WO2018227957A1 - 制造车辆零部件的方法和车辆零部件及车辆 - Google Patents

制造车辆零部件的方法和车辆零部件及车辆 Download PDF

Info

Publication number
WO2018227957A1
WO2018227957A1 PCT/CN2018/071769 CN2018071769W WO2018227957A1 WO 2018227957 A1 WO2018227957 A1 WO 2018227957A1 CN 2018071769 W CN2018071769 W CN 2018071769W WO 2018227957 A1 WO2018227957 A1 WO 2018227957A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
injection molding
fiber
resin film
injection
Prior art date
Application number
PCT/CN2018/071769
Other languages
English (en)
French (fr)
Inventor
段瑛涛
Original Assignee
北京汽车集团有限公司
北京汽车研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京汽车集团有限公司, 北京汽车研究总院有限公司 filed Critical 北京汽车集团有限公司
Publication of WO2018227957A1 publication Critical patent/WO2018227957A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars

Definitions

  • the present disclosure relates to the field of composite materials, and in particular to a method of manufacturing a vehicle component and a vehicle component and a vehicle.
  • Fiber reinforced composites have the advantages of high specific modulus, high temperature resistance, good fatigue resistance and high designability, and have been widely used in aerospace.
  • existing fiber reinforced composite molding methods include hand lay-up, winding, pultrusion, compression molding, bag forming, injection molding, and resin transfer molding (RTM).
  • Chinese patent CN106426743A uses low-pressure injection molding to inject thermoplastic into the inner side of PVC leather, so that the leather is completely absorbed on the surface of the plastic part, realizing the one-time molding of the automobile back guard, solving the problem of bonding of PVC leather and plastic parts, reducing Car VOC is very beneficial.
  • this technology is only applicable to automotive interior parts. The overall strength of the parts is not high and cannot be applied to structural parts or covers, etc., and has no application value for the lightweight of automobiles.
  • the purpose of the present disclosure is to provide a method for manufacturing a vehicle component, a vehicle component and a vehicle, which is a revolutionary innovation of a conventional low-pressure injection molding process, and the obtained component can simultaneously satisfy the requirements of mechanical properties and formability.
  • the invention solves the problem that the traditional lamination process is difficult to form and the mechanical performance of the conventional injection molding process is low.
  • a first aspect of the present disclosure provides a method of manufacturing a vehicle component, the method comprising:
  • the continuous fiber fabric is layered to obtain a layup structure
  • the resin film is laid on the bottom of the layered structure obtained in step a, and then pre-cut to obtain a fiber preform;
  • step b placing the fiber preform obtained in step b in an injection mold that is geometrically matched with a target vehicle component, the injection mold having an injection molding space, and molding the mold into the injection mold after molding An injection molding of a discontinuous fiber and a thermoplastic resin, the injection molding filling the injection molding space with the injection molding space and infiltrating the fiber preform, and obtaining a vehicle component after pressure molding.
  • the continuous fiber fabric comprises at least one of a uniaxial cloth, a multiaxial cloth, a woven cloth and a knitted fabric, and the layer structure has a layer number of 2-50 layers.
  • the continuous fiber fabric is made of fibers including at least one of carbon fiber, ultra high molecular weight polyethylene fiber, aramid fiber, basalt fiber, and glass fiber.
  • the resin film is selected from the group consisting of a polyethylene resin film, a polypropylene resin film, a polyamide resin film, a polyvinyl chloride resin film, a polystyrene resin film, a polyacetal resin film, and a polycarbonate. At least one of a resin film, a polytetrafluoroethylene resin film, a polyphenylene sulfide resin film, and a polysulfone resin film.
  • step c when the fiber preform is placed in the injection mold, the side of the fiber preform covered with the resin film and the surface of the static mold of the injection mold are type-followed.
  • the portion of the injection mold that is not filled with the fiber preform is formed as the injection space.
  • the discontinuous fiber in the injection molding material is at least one selected from the group consisting of carbon fiber, ultra high molecular weight polyethylene fiber, aramid fiber, basalt fiber and glass fiber.
  • the thermoplastic resin in the injection molding material is selected from the group consisting of polyethylene resin, polypropylene resin, polyamide resin, polyvinyl chloride resin, polystyrene resin, polyacetal resin, polycarbonate resin, At least one of a polytetrafluoroethylene resin, a polyphenylene sulfide resin, and a polysulfone resin.
  • the vehicle component obtained in step c is composed of a first portion located in the fiber preform region in the injection mold and a second portion located in the injection molding space region;
  • thermoplastic resin in the injection molding compound (6) is calculated according to the formula (I):
  • C is the content of the thermoplastic resin in the injection molding plastic
  • M is the total weight of the vehicle component
  • M0 is the weight of the fiber preform
  • C1 is the resin content required in the first portion
  • M1 For the weight of the first portion
  • C2 is the desired resin content in the second portion
  • M2 is the weight of the second portion.
  • step c the pressure of the injection molding is 20-500 MPa, and the temperature of the injection molding is 20-80 ° C higher than the melting point of the thermoplastic resin in the resin film and the injection plastic.
  • the time for holding the pressure is 5-120 seconds.
  • the method further comprises the step of surface finishing the pressure-molded vehicle component.
  • a second aspect of the present disclosure provides a vehicle component manufactured by the method of the first aspect of the present disclosure.
  • a third aspect of the present disclosure provides a vehicle including the vehicle component of the second aspect of the present disclosure.
  • the present disclosure uses a fiber preform composed of a continuous fiber fabric and a resin film as an injection molding lining, and uses a non-continuous fiber reinforced thermoplastic resin as a injection molding material, and directly injection molding the injection plastic into the continuous fiber fabric by injection molding.
  • the resin content of the discontinuous fiber reinforced thermoplastic resin is higher than that of the conventional injection molding process, and partially infiltrates into the continuous fiber fabric during injection molding to form a composite material of continuous fiber reinforced thermoplastic resin, which has extremely high mechanical properties.
  • the non-continuous fiber reinforced thermoplastic resin has good formability and moderate mechanical properties, and can realize the molding of complex surfaces while ensuring the performance of the components; at the same time, the discontinuous fibers are oriented during the resin wetting process and are connected to the continuous fiber fabric portion. It can effectively improve the interlayer performance and interfacial connection properties of continuous fiber reinforced thermoplastic resin composites.
  • the vehicle parts of the disclosure have the advantages of high forming speed, low cost, good mechanical performance, remarkable light weight effect, and can be used for automobile structural parts, covering parts and the like, and can meet the processing requirements of lightweight and batch processing of automobile structural parts, and are sheet metal. A good substitute for parts and stampings, while meeting the recyclable requirements of automotive parts, has a wide application prospect.
  • 1 and 2 are schematic views of two alternative embodiments of a layup structure
  • Figure 3 is a schematic view showing the resin film 2 laid on the bottom of the layered structure 1 in the step b;
  • Figure 4 is a schematic view showing the step of placing the fiber preform 3 in an injection mold in the step c;
  • Figure 5 is a schematic view showing the injection molding of a plastic injection molding 6 containing a discontinuous fiber and a thermoplastic resin into the injection mold in the step c;
  • FIG. 6 is a schematic illustration of the vehicle component 7 obtained in step c.
  • a first aspect of the present disclosure provides a method of manufacturing a vehicle component, the method comprising:
  • the continuous fiber fabric is layered to obtain a layup structure 1;
  • step b the bottom of the ply structure 1 obtained in step a is coated with a resin film 2, and then pre-cut to obtain a fiber preform 3;
  • step b placing the fiber preform 3 obtained in step b in an injection mold that is geometrically matched with a target vehicle component, the injection mold having an injection molding space 8 and being clamped into the injection mold
  • An injection molding 6 containing a discontinuous fiber and a thermoplastic resin is injected, and the injection molding causes the injection molding compound 6 to fill the injection molding space 8 and infiltrate the fiber preform 3, and the vehicle component 7 is obtained after pressure molding.
  • the kind of the continuous fiber fabric is not particularly limited, and may be, for example, at least one of a uniaxial cloth, a multiaxial cloth, a woven cloth, and a knitted fabric.
  • the meaning of the continuous fiber fabric is well known to those skilled in the art and is made of fibers (continuous fibers), which may for example comprise carbon fibers, ultra high molecular weight polyethylene fibers, aramid fibers, basalt fibers and glass fibers. At least one of the above fibers is woven in a conventional manner to obtain a continuous fiber fabric of the present disclosure, which is also commercially available.
  • the number of layers of the layup structure may vary over a wide range, for example, may be 2-50 layers, and may be partially reinforced for the needs of actual parts.
  • the laying angle of the adjacent two continuous fiber fabrics in the ply structure is not particularly limited, and may be, for example, 0°, 15°, 30°, 45°, 60°, 75°, 90°, 120°, or the like.
  • 1 and 2 are schematic views of two alternative embodiments of the ply structure, and the continuous fiber fabric used in the ply structure of FIG. 1 may be a single and/or multiaxial cloth, as in FIG.
  • the continuous fiber fabric used in the layup structure may be a woven fabric.
  • FIG. 3 is a schematic view of the resin film 2 laid on the bottom of the ply structure 1 in the step b.
  • the resin film is a thermoplastic resin film, and may be, for example, a polyethylene resin film, a polypropylene resin film, a polyamide resin film, a polyvinyl chloride resin film, a polystyrene resin film, a polyacetal resin film, or the like. At least one of a polycarbonate resin film, a polytetrafluoroethylene resin film, a polyphenylene sulfide resin film, and a polysulfone resin film.
  • the resin film may be obtained by directly drawing a commercially available resin, and the thickness of the resin film is not particularly limited in the present disclosure.
  • the layup structure of the resin film is pre-cut to obtain a fiber preform.
  • the cut shape can be simulated by analysis software such as FiberSim, which can be cut by hand or by laser cutting.
  • step c is a schematic view of the fiber preform 3 placed in an injection mold in step c, in accordance with the present disclosure.
  • step c when the fiber preform 3 is placed in the injection mold, it is preferable to carry out the side of the fiber preform 3 on which the resin film 2 is laid and the surface of the static mold 4 of the injection mold. A portion that is not filled with the fiber preform 3 in the injection mold is formed as the injection space 8 as it is attached.
  • the resin film is in contact with the surface of the static mold, and as the outer surface of the final vehicle component, the surface quality of the vehicle component can be improved, and the resin in the injection plastic can be blocked to avoid excessive resin extrusion of the fiber fabric layer. .
  • FIG. 5 is a schematic view of injection molding 6 containing a discontinuous fiber and a thermoplastic resin into the injection mold in step c, which injection molding 6 can be injected from an injection hole in the movable mold 5.
  • step c after the laying of the fiber preform is completed, the mold is closed, and a molding compound containing a discontinuous fiber and a thermoplastic resin is injected into the mold, and the injection molding can be carried out by a conventional apparatus in the art, for example, by an injection molding machine.
  • the discontinuous fiber in the injection molding material may be at least one selected from the group consisting of carbon fiber, ultrahigh molecular weight polyethylene fiber, aramid fiber, basalt fiber, and glass fiber, and is preferably the same fiber material as the continuous fiber fabric.
  • the thermoplastic resin in the injection molding material may be selected from the group consisting of polyethylene resin, polypropylene resin, polyamide resin, polyvinyl chloride resin, polystyrene resin, polyacetal resin, polycarbonate resin, polytetrafluoroethylene resin, and poly At least one of the phenyl sulfide resin and the polysulfone resin is preferably the same material as the resin film in the step b.
  • the thermoplastic resin reinforced with discontinuous fibers has good formability and moderate mechanical properties, and can realize the molding of complex surfaces while ensuring the performance of components.
  • thermoplastic resin content of the injection molding plastic is higher than that of the conventional non-continuous fiber reinforced resin injection molding, and the specific content thereof can be calculated by setting the resin content in the target vehicle component.
  • Figure 6 is a schematic view of the vehicle component 7 obtained in step c, the vehicle component 7 being located in the first portion 9 of the fiber preform 3 region and in the injection molding space 8 region within the injection mold
  • the second part 10 is composed, that is, the vehicle parts produced according to the method of the present disclosure can be regarded as consisting of two parts, the first part 9 is the part of the original fiber preform formed by the injection of plastic injection, and the second part Portion 10 is the portion of the injection molding space that the injection molding space fills.
  • thermoplastic resin in the injection molding compound (6) can be calculated according to the formula (I):
  • C is the content of the thermoplastic resin in the injection molding 6, and M0 is the weight of the fiber preform 3.
  • C1 is the resin content required in the first portion 9
  • M1 is the weight of the first portion 9
  • C2 is the desired resin content in the second portion 10
  • M2 is the weight of the second portion 10. That is, the total weight M of the vehicle component 7 is an addition of the weight M1 of the first portion 9 and the weight M2 of the second portion 10.
  • step c the resin in the injection molding material is infiltrated into the fiber preform under the action of the injection pressure to form a stable liquid flow.
  • the discontinuous fiber in the plastic injection is inserted into the fiber preform under the action of the liquid flow, which not only improves the shear strength between the fiber preform layers, but also effectively combines the fiber preform portion with the injection molded portion. , eliminating the problem of low interface strength.
  • a higher injection pressure is required, and the pressure of the injection may be 20 to 500 MPa, preferably 50 to 200 MPa.
  • the temperature of the injection may be higher than the melting point of the thermoplastic resin in the resin film and the injection plastic by 20 to 80 ° C, preferably 30 to 60 ° C.
  • the higher injection temperature improves the flow properties of the resin in the injection mold in the mold and improves the wettability in the fiber preform.
  • heat transfer can occur between the resin film and the resin film.
  • the micro-melting state improves the bonding strength between the resin film and the resin in the fiber preform and the injection molding compound.
  • the injection temperature is too high, the adhesion of the resin in the injection molding plastic to the discontinuous fiber is lowered, which is disadvantageous for the interpenetration and orientation of the discontinuous fiber in the fiber preform.
  • the pressure holding time may be 5 to 120 seconds, preferably 20 to 50 seconds.
  • the method may further comprise the step of surface finishing the pressure-molded vehicle component, which may be, for example, cut, sanded, etc. according to the requirements of the final product.
  • the method of manufacturing a vehicle component provided by the present disclosure is a revolutionary innovation in the conventional low pressure injection molding process.
  • the fiber preform can be realized only by simple layering and cutting, and then directly injection molding, with few intermediate links; using a non-continuous fiber reinforced thermoplastic resin as the matrix, injection molding directly into the surface of the continuous fiber fabric, once Injection molding, and avoiding the restrictions on the injection pressure in the traditional low-pressure injection molding process, high-pressure injection molding can be used, and only 1 to 2 minutes can be used to obtain the required parts, which can meet the requirements of the production cycle of automobile parts, and Easy to achieve full automation control, can guarantee the production efficiency and consistency of parts.
  • the method of the present disclosure can realize integrated design of multiple parts, which helps to reduce development cycle and cost.
  • the continuous fiber fabric and the discontinuous fiber are jointly reinforced with the thermoplastic resin, and the obtained component has the high strength of the continuous fiber reinforced composite material and the complicated structure of the injection molding, and the pole is also provided.
  • the high recyclability which satisfies the needs of modern automotive processes, is an effective alternative to traditional metal parts and FRP (fiber reinforced thermosetting composites).
  • a second aspect of the present disclosure provides a vehicle component manufactured by the method of the first aspect of the present disclosure.
  • the composite component of the automobile component of the present disclosure can be any shape and can be partially reinforced, and has a high molding speed, low cost, good mechanical performance, and remarkable weight reduction effect, and can meet the weight and bulk of the automobile structural parts.
  • the processing requirements are a good substitute for sheet metal parts and stamping parts.
  • the thermoplastic resin matrix is used to meet the recyclable requirements of automotive parts and has a wide application prospect.
  • a third aspect of the present disclosure provides a vehicle including the vehicle component of the second aspect of the present disclosure.
  • This embodiment is for explaining a method of manufacturing a vehicle component of the present disclosure.
  • the biaxial cloth (purchased from KSK Special Textile Co., Ltd., made of T700 carbon fiber, trade name BX300) is laminated, and the angle of the biaxial cloth layer is 90°, and the adjacent two layers are biaxial.
  • the laying angle of the cloth was 0°, and a layered structure 1 as shown in Fig. 1 having a layer of 13 layers was obtained.
  • Nylon 6 resin (purchased from China Petrochemical Corporation, trade number BL2340-H, melting point 220 ° C) was pulled to obtain a nylon 6 resin film, and the resin film was laid on the bottom of the layered structure 1, according to The requirements of the required prefabricated structure of the target vehicle components are simulated by the FiberSim analysis software to obtain the shape of the cut, and then the laminated structure of the resin film is pre-cut by the laser device to obtain the fiber preform 3, The weight of the fiber preform 3 obtained above was measured and found to be 1.3 kg.
  • the fiber preform 3 is placed in an injection mold that is geometrically matched to a target vehicle component, the side of the fiber preform 3 coated with the resin film 2 and the static mold of the injection mold 4 The surface is attached and clamped.
  • the resin content C1 required to set the first portion 9 of the target vehicle component 7 is 35%, the weight M1 of the first portion 9 is 2.0 kg, and the resin content C2 required for the second portion 10 is 55%, the second portion
  • the weight M10 of 10 is 0.8 kg, and the total weight M of the vehicle parts is 2.8 kg.
  • the vehicle component was manufactured in the same manner as in the first embodiment, except that the ply structure in the present embodiment was carried out by using a woven fabric (purchased from Toray Co., Ltd., manufactured by T700 carbon fiber, product number CK6244) as shown in FIG.
  • the layup is obtained, the laying angle of the adjacent two layers of woven fabric is 90°, and the number of layers of the layup structure is 19 layers.
  • thermoplastic resin in the resin film and the injection molding compound in the present embodiment was a polypropylene resin (purchased from China Petrochemical Corporation, product number PPB-M02, melting point was 170 ° C), the temperature of the injection molding is 220 ° C.
  • thermoplastic resin in the resin film and the injection molding compound in the present embodiment was a polystyrene resin (purchased from China Petrochemical Corporation, product number GH660, melting point 240 °C), the injection temperature is 270 °C.
  • the vehicle component is manufactured in accordance with the method of Embodiment 1, except that in the present embodiment, the resin content C1 required for setting the first portion 9 of the target vehicle component 7 is 20%, and the weight M1 of the first portion 9 is 1.6 kg.
  • the resin content C2 required in the second portion 10 is 50%, the weight M2 of the second portion 10 is 0.9 kg, and the total weight M of the vehicle parts is 2.5 kg.
  • the content C of the thermoplastic resin in the injection molding compound was calculated according to the formula (I) to be 64%.
  • the vehicle component is manufactured in accordance with the method of Embodiment 1, except that in the present embodiment, the resin content C1 required for setting the first portion 9 of the target vehicle component 7 is 60%, and the weight M1 of the first portion 9 is 3.2 kg.
  • the resin content C2 required in the second portion 10 is 60%, the weight M2 of the second portion 10 is 0.7 kg, and the total weight M of the vehicle parts is 3.9 kg.
  • the content C of the thermoplastic resin in the injection molding compound was calculated according to the formula (I) to be 90%.
  • This comparative example is used to explain a method of manufacturing a vehicle component that is different from the present disclosure.
  • the vehicle parts of the present comparative example were produced by a conventional method, and the same method as in Example 1 was carried out by mixing nylon 6 resin to prepare a plastic injection, wherein the content C of the nylon 6 resin was 60%, and the same as in Example 1 was used.
  • the mold was injected into the mold directly at 105 MPa and 245 ° C for injection molding, and the injection molded parts prepared in the comparative example were obtained.
  • the total weight M of the parts was 4.1 kg.
  • This comparative example is used to explain a method of manufacturing a vehicle component that is different from the present disclosure.
  • the vehicle parts of the present comparative example are manufactured by a conventional method, and the specific method is as follows: the HC220YD galvanized sheet is punched in a stamping die, and the sheet metal stamping parts prepared by the comparative example are obtained, and the thickness of the parts is the same as in the first embodiment.
  • the thickness of the prepared parts is 1/3, and the total weight M is 4.7 kg.
  • the test method of yield strength refers to GB/T228-2002, and the specific strength is defined as the ratio of yield strength to weight.
  • the test results are listed in Table 1.
  • the vehicle parts manufactured by the method of the present disclosure have higher yield strength and specific strength than the injection molded parts and sheet metal stampings prepared by the conventional method, and have good mechanical properties and light weight effects. Significantly, it can meet the processing requirements of lightweight and batch-based automotive structural parts. It is a good substitute for sheet metal parts, stamping parts and traditional injection parts. It can meet the recyclable requirements of auto parts and has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种制造车辆零部件的方法和车辆零部件及车辆,该方法包括:a、将连续纤维织物进行铺层,得到铺层结构(1);b、在铺层结构(1)的底部铺覆树脂膜(2),然后进行预裁切,得到纤维预制体(3);c、将纤维预制体(3)置于注塑模具内,注塑模具具有注塑空间(8),合模后向注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料(6),注塑使得注塑料(6)充满注塑空间(8)并浸润纤维预制体(3),保压成型后得到车辆零部件(7)。该方法制得的零部件可同时满足机械性能和成型性的要求,解决了传统层压工艺成型难、传统注塑工艺机械性能低的问题。

Description

制造车辆零部件的方法和车辆零部件及车辆 技术领域
本公开涉及复合材料技术领域,具体地,涉及一种制造车辆零部件的方法和车辆零部件及车辆。
背景技术
随着能源危机和环境危机的日益突出,汽车轻量化已经成为了汽车工业发展的必然选择。纤维增强复合材料具有比强度比模量高、耐高温、抗疲劳性好、可设计性强等优点,已经广泛应用于航天航空领域。然而由于落后的成型工艺和不成熟的结构设计技术使纤维增强复合材料在汽车工业中尚未获得大规模的应用。已有的纤维增强复合材料成型方法主要有手糊成型、缠绕成型、拉挤成型、模压成型、袋压成型、注射成型和树脂传递塑模成型(RTM)等。
通过低温注塑工艺对树脂材料进行成型能够快速地制造出结构复杂的成品件。中国专利CN106426743A采用低压注塑的方式将热塑性塑料注塑到PVC皮革内侧,使皮革完全吸附在塑料件表面,实现了汽车靠背护板的一次成型,解决了PVC皮革与塑料件的粘接问题,对降低汽车VOC十分有益。但该技术只适用于汽车内饰件,零部件的整体强度不高,无法应用于结构件或覆盖件等,对汽车的轻量化不具备应用价值。
发明内容
本公开的目的是提供一种制造车辆零部件的方法和车辆零部件及车辆,该方法是对传统低压注塑工艺的革命性创新,制得的零部件可同时满足机械性能和成型性的要求,解决了传统层压工艺成型难、传统注塑工艺 机械性能低的问题。
为了实现上述目的,本公开第一方面:提供一种制造车辆零部件的方法,该方法包括:
a、将连续纤维织物进行铺层,得到铺层结构;
b、在步骤a得到的所述铺层结构的底部铺覆树脂膜,然后进行预裁切,得到纤维预制体;
c、将步骤b中得到的所述纤维预制体置于与目标车辆零部件在几何形状上相匹配的注塑模具内,所述注塑模具具有注塑空间,合模后向所述注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料,所述注塑使得所述注塑料充满所述注塑空间并浸润所述纤维预制体,保压成型后得到车辆零部件。
可选地,步骤a中,所述连续纤维织物包括单轴向布、多轴向布、编织布和针织布中的至少一种,所述铺层结构的层数为2-50层。
可选地,所述连续纤维织物由纤维制成,所述纤维包括碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种。
可选地,步骤b中,所述树脂膜为选自聚乙烯树脂膜、聚丙烯树脂膜、聚酰胺树脂膜、聚氯乙烯树脂膜、聚苯乙烯树脂膜、聚甲醛树脂膜、聚碳酸酯树脂膜、聚四氟乙烯树脂膜、聚苯硫醚树脂膜和聚砜树脂膜中的至少一种。
可选地,步骤c中,将所述纤维预制体置于所述注塑模具内时,将所述纤维预制体的铺覆有树脂膜的一侧与所述注塑模具的静模表面进行随型贴覆,所述注塑模具内未被所述纤维预制体填充的部分形成为所述注塑空间。
可选地,步骤c中,所述注塑料中的非连续纤维为选自碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种。
可选地,步骤c中,所述注塑料中的热塑性树脂为选自聚乙烯树脂、聚 丙烯树脂、聚酰胺树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚甲醛树脂、聚碳酸酯树脂、聚四氟乙烯树脂、聚苯硫醚树脂和聚砜树脂中的至少一种。
可选地,步骤c中得到的所述车辆零部件由在所述注塑模具内位于所述纤维预制体区域的第一部分和位于所述注塑空间区域的第二部分组成;
所述注塑料(6)中的热塑性树脂的含量根据式(I)进行计算:
Figure PCTCN2018071769-appb-000001
其中,C为所述注塑料中的热塑性树脂的含量,M为所述车辆零部件的总重量,M0为所述纤维预制体的重量,C1为所述第一部分中所需的树脂含量,M1为所述第一部分的重量,C2为所述第二部分中所需的树脂含量,M2为所述第二部分的重量。
可选地,步骤c中,所述注塑的压力为20-500MPa,所述注塑的温度比所述树脂膜和所述注塑料中的热塑性树脂的熔点高20-80℃。
可选地,所述保压的时间为5-120秒。
可选地,该方法还包括将保压成型后的车辆零部件进行表面修整的步骤。
本公开第二方面:提供一种由本公开第一方面所述的方法制造的车辆零部件。
本公开第三方面:提供一种车辆,该车辆包括本公开第二方面所述的车辆零部件。
通过上述技术方案,本公开将连续纤维织物和树脂膜共同构成的纤维预制体作为注塑衬层,采用非连续纤维增强的热塑性树脂为注塑料,采用注塑的方式直接将注塑料注塑到连续纤维织物表面,一次性注塑成型。非连续纤维增强热塑性树脂中的树脂含量高于传统注塑工艺,在注塑时部分浸润到连续纤维织物内,形成了连续纤维增强热塑性树脂的复合材料,具 有极高的机械性能。非连续纤维增强热塑性树脂的成型性好,机械性能适中,可在保证零部件性能的同时实现复杂表面的成型;同时非连续纤维在树脂浸润的过程中实现取向,并与连续纤维织物部分连接,可有效提高连续纤维增强热塑性树脂复合材料的层间性能和界面连接性能。本公开的车辆零部件成型速度快,成本低,机械性能好,轻量化效果显著,可用于汽车结构件、覆盖件等部位,可满足汽车结构件轻量化、批量化的加工要求,是钣金件、冲压件的良好替代品,同时可满足汽车零部件的可回收要求,具有广泛的应用前景。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1和图2是铺层结构的两种可选的实施方式的示意图;
图3是步骤b中在所述铺层结构1的底部铺覆树脂膜2的示意图;
图4是步骤c中将所述纤维预制体3置于注塑模具内的示意图;
图5是步骤c中向所述注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料6的示意图;
图6是步骤c中得到的所述车辆零部件7的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制 本公开。
本公开第一方面:提供一种制造车辆零部件的方法,该方法包括:
a、将连续纤维织物进行铺层,得到铺层结构1;
b、在步骤a得到的所述铺层结构1的底部铺覆树脂膜2,然后进行预裁切,得到纤维预制体3;
c、将步骤b中得到的所述纤维预制体3置于与目标车辆零部件在几何形状上相匹配的注塑模具内,所述注塑模具具有注塑空间8,合模后向所述注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料6,所述注塑使得所述注塑料6充满所述注塑空间8并浸润所述纤维预制体3,保压成型后得到车辆零部件7。
根据本公开,步骤a中,对所述连续纤维织物的种类没有特殊的限定,例如可以为包括单轴向布、多轴向布、编织布和针织布中的至少一种。所述连续纤维织物的含义为本领域技术人员所熟知,是由纤维(连续纤维)制成的,所述纤维例如可以包括碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种,将上述纤维采用常规的方式进行编织即可得到本公开所述的连续纤维织物,所述连续纤维织物也可商购得到。
根据本公开,步骤a中,所述铺层结构的层数可以在很大范围内变化,例如可以为2-50层,并可针对实际零部件的需要对局部进行补强。所述铺层结构中相邻两层连续纤维织物的铺设角度没有特殊的限制,例如可为0°、15°、30°、45°、60°、75°、90°、120°等。图1和图2是所述铺层结构的两种可选的实施方式的示意图,图1中的铺层结构所采用的连续纤维织物可以是单和/或多轴向布,图2中的铺层结构所采用的连续纤维织物可以是编织布。
根据本公开,图3是步骤b中在所述铺层结构1的底部铺覆树脂膜2的 示意图。步骤b中,所述树脂膜为热塑性树脂薄膜,例如可以为选自聚乙烯树脂膜、聚丙烯树脂膜、聚酰胺树脂膜、聚氯乙烯树脂膜、聚苯乙烯树脂膜、聚甲醛树脂膜、聚碳酸酯树脂膜、聚四氟乙烯树脂膜、聚苯硫醚树脂膜和聚砜树脂膜中的至少一种。所述树脂膜可以为将商购的树脂直接进行拉膜得到,本公开对所述树脂膜的厚度没有特殊的限制。
根据目标车辆零部件对所需预制体结构的要求,对铺覆好树脂膜的铺层结构进行预裁切,得到纤维预制体。裁切的形状可以通过FiberSim等分析软件进行模拟,裁切工艺可通过手工裁切,也可以通过激光裁切实现。
根据本公开,图4是步骤c中将所述纤维预制体3置于注塑模具内的示意图。步骤c中,将所述纤维预制体3置于所述注塑模具内时,优选为将所述纤维预制体3的铺覆有树脂膜2的一侧与所述注塑模具的静模4表面进行随型贴覆,所述注塑模具内未被所述纤维预制体3填充的部分形成为所述注塑空间8。树脂膜与静模表面接触,作为最终车辆零部件的外表面,既可提高车辆零部件的表面质量,又可对注塑料中的树脂起到一定的阻挡作用,避免过量树脂挤出纤维织物层。
根据本公开,图5是步骤c中向所述注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料6的示意图,所述注塑料6可以由动模5上的注塑孔注入。步骤c中,完成纤维预制体的铺设后,闭合模具,向模具内注塑含有非连续纤维和热塑性树脂的注塑料,所述注塑可以采用本领域的常规设备进行,例如通过注塑机进行。所述注塑料中的非连续纤维可以为选自碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种,优选为与连续纤维织物相同的纤维材质。所述注塑料中的热塑性树脂可以为选自聚乙烯树脂、聚丙烯树脂、聚酰胺树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚甲醛树脂、聚碳酸酯树脂、聚四氟乙烯树脂、聚苯硫醚树脂和聚砜树脂中的至少一种,优选为与步骤b中的树脂膜相同的材质。采用 非连续纤维增强的热塑性树脂的成型性好,机械性能适中,可在保证零部件性能的同时实现复杂表面的成型。
根据本公开,所述注塑料中的热塑性树脂含量高于常规的非连续纤维增强树脂的注塑料,其具体含量可以通过设定的目标车辆零部件中的树脂含量进行计算。图6是步骤c中得到的所述车辆零部件7的示意图,所述车辆零部件7由在所述注塑模具内位于所述纤维预制体3区域的第一部分9和位于所述注塑空间8区域的第二部分10组成,即按照本公开的方法所制得的车辆零部件可视为由两部分所组成,第一部分9为原始的纤维预制体经注塑料浸润所形成的那部分,第二部分10为注塑料填充注塑空间所形成的那部分。
所述注塑料(6)中的热塑性树脂的含量可以根据式(I)进行计算:
Figure PCTCN2018071769-appb-000002
其中,C为所述注塑料6中的热塑性树脂的含量,M0为所述纤维预制体3的重量。C1为所述第一部分9中所需的树脂含量,M1为所述第一部分9的重量,C2为所述第二部分10中所需的树脂含量,M2为所述第二部分10的重量,即,所述车辆零部件7的总重量M为所述第一部分9的重量M1与所述第二部分10的重量M2的加合。这样,通过设定目标车辆零部件中第一部分和第二部分中所需的树脂含量和其各自的重量,以及测量步骤b所得到的纤维预制体的重量,代入式(I)中即可求得注塑料6中的热塑性树脂的百分比含量。
根据本公开,步骤c中,在注塑压力的作用下,注塑料中的树脂向纤维预制体中浸润,形成稳定的液流。注塑料中的非连续纤维在液流的带动下,穿插到纤维预制体中,既起到了提高纤维预制体层间剪切强度的作用,又使纤维预制体部分与注塑部分有效的结合在一起,消除了界面强度 低的问题。为保证树脂和纤维的浸润,需要较高的注塑压力,所述注塑的压力可以为20-500MPa,优选50-200MPa。
根据本公开,步骤c中,所述注塑的温度可以比所述树脂膜和所述注塑料中的热塑性树脂的熔点高20-80℃,优选为高30-60℃。较高的注塑温度一方面改善了注塑料中的树脂在模具中的流动性能,提高了其在纤维预制体中的浸润性;另一方面也可以与树脂膜间发生热传递,使树脂膜处于微熔状态,改善树脂膜与纤维预制体和注塑料中的树脂之间的粘接强度。但注塑温度过高会导致注塑料中的树脂与非连续纤维的粘接性降低,不利于非连续纤维在纤维预制体内的穿插和取向。
根据本公开,步骤c中,所述保压的时间可以为5-120秒,优选为20-50秒。
保压结束后开启模具,取出制得的车辆零部件。此外,该方法还可以包括将保压成型后的车辆零部件进行表面修整的步骤,所述表面修整例如可以为根据最终产品的需求进行切削、打磨等。将所得的车辆零部件装配到整车上,可以实现对整车的减重目的。
本公开提供的制造车辆零部件的方法是对传统低压注塑工艺的革命性创新。纤维预制体只需要简单的铺层和裁切即可实现,随后直接注塑成型,中间环节少;采用非连续纤维增强的热塑性树脂为基体,采用注塑的方式直接将其注塑到连续纤维织物表面,一次性注塑成型,且避免了传统低压注塑工艺中对注塑压力的限制,可采用高压注塑,只需1~2分钟即可制得所需零部件,可满足汽车零部件生产节拍的要求,且极易实现全自动化控制,可以极好的保证零部件生产效率及一致性。同时,本公开的方法可实现多零件的集成化设计,有助于降低开发周期和成本。采用本公开的方法,使连续纤维织物和非连续纤维共同对热塑性树脂进行增强,所制得的零部件既具有连续纤维增强复合材料的高强度、又可实现注塑成型的复杂 结构,还具备极高的可回收性,极好的满足了现代汽车工艺的需求,是传统金属件、FRP(纤维增强热固性复合材料)等汽车零部件的有效替代手段。
本公开第二方面:提供一种由本公开第一方面所述的方法制造的车辆零部件。
本公开的汽车零部件所述复合材料零部件可以为任何形状,并可局部进行补强,其成型速度快、成本低、机械性能好,轻量化效果显著,可满足汽车结构件轻量化、批量化的加工要求,是钣金件、冲压件的良好替代品,同时采用热塑性树脂基体,可满足汽车零部件的可回收要求,具有广泛的应用前景。
本公开第三方面:提供一种车辆,该车辆包括本公开第二方面所述的车辆零部件。
下面通过实施例对本公开做进一步说明,但并不因此而限制本公开的内容。
实施例1
本实施例用于说明本公开的制造车辆零部件的方法。
将双轴向布(购自科纺勒特种纺织品有限公司,由T700碳纤维制成,商品号为BX300)进行铺层,双轴向布层内铺设角度为90°,相邻两层双轴向布的铺设角度为0°,得到层数为13层的如图1所示的铺层结构1。将尼龙6树脂(购自中国石油化工集团公司,商品号为BL2340-H,熔点为220℃)拉膜得到尼龙6树脂膜,将该树脂膜铺覆于所述铺层结构1的底部,根据目标车辆零部件对所需预制体结构的要求,通过FiberSim分析软件进行模拟得到裁切的形状,再通过激光设备对铺覆好树脂膜的铺层结构进行预裁切,得到纤维预制体3,测量上述得到的纤维预制体3重量为1.3kg。将所述纤维预制体3置于与目标车辆零部件在几何形状上相匹配的注塑模具内,所 述纤维预制体3的铺覆有树脂膜2的一侧与所述注塑模具的静模4表面进行随型贴覆,合模。
设定目标车辆零部件7的第一部分9中所需的树脂含量C1为35%,第一部分9的重量M1为2.0kg,第二部分10中所需的树脂含量C2为55%,第二部分10的重量M2为0.8kg,车辆零部件的总重量M为2.8kg。根据式(I)计算注塑料中的热塑性树脂的含量:
Figure PCTCN2018071769-appb-000003
求得C为76%。
将碳纤维(购自Toray公司,商品号为T700)和尼龙6树脂(购自中国石油化工集团公司,商品号为BL2340-H,熔点为220℃)按上述含量配比混合配制注塑料。将配制好的注塑料在105MPa,250℃下通过动模上的注塑孔注入模具内。所述注塑料充满注塑空间8并浸润纤维预制体3。保压20秒后开启模具,取出成型件,根据最终产品的需求对其进行切削、打磨等后处理,得到本实施例制造的车辆零部件。
实施例2
按照实施例1的方法制造车辆零部件,区别在于,本实施例中的铺层结构为采用如图2所示的编织布(购自Toray公司,由T700碳纤维制成,商品号为CK6244)进行铺层得到,相邻两层编织布的铺设角度为90°,铺层结构的层数为19层。
实施例3
按照实施例1的方法制造车辆零部件,区别在于,本实施例中的树脂膜和注塑料中的热塑性树脂为聚丙烯树脂(购自中国石油化工集团公司,商品号为PPB-M02,熔点为170℃),注塑的温度为220℃。
实施例4
按照实施例1的方法制造车辆零部件,区别在于,本实施例中的树脂膜和注塑料中的热塑性树脂为聚苯乙烯树脂(购自中国石油化工集团公司,商品号为GH660,熔点为240℃),注塑的温度为270℃。
实施例5
按照实施例1的方法制造车辆零部件,区别在于,本实施例中,设定目标车辆零部件7的第一部分9中所需的树脂含量C1为20%,第一部分9的重量M1为1.6kg,第二部分10中所需的树脂含量C2为50%,第二部分10的重量M2为0.9kg,车辆零部件的总重量M为2.5kg。根据式(I)计算注塑料中的热塑性树脂的含量C为64%。
实施例6
按照实施例1的方法制造车辆零部件,区别在于,本实施例中,设定目标车辆零部件7的第一部分9中所需的树脂含量C1为60%,第一部分9的重量M1为3.2kg,第二部分10中所需的树脂含量C2为60%,第二部分10的重量M2为0.7kg,车辆零部件的总重量M为3.9kg。根据式(I)计算注塑料中的热塑性树脂的含量C为90%。
对比例1
本对比例用于说明与本公开不同的制造车辆零部件的方法。
采用传统方法制造本对比例的车辆零部件,具体方法为:将与实施例1相同的和尼龙6树脂混合配制注塑料,其中尼龙6树脂的含量C为60%,采用与实施例1相同的模具,将注塑料在105MPa,245℃下直接注入模具内进行注塑成型,得到本对比例制备的注塑零部件,该零部件的总重量M为 4.1kg。
对比例2
本对比例用于说明与本公开不同的制造车辆零部件的方法。
采用传统方法制造本对比例的车辆零部件,具体方法为:将HC220YD镀锌板置于冲压模具中冲压,得到本对比例制备的钣金冲压零部件,该零部件的厚度为实施例1所制备的零部件厚度的1/3,总重量M为4.7kg。
测试实施例1
分别对实施例1-6和对比例1-2中得到的车辆零部件的重量和屈服强度进行测试,屈服强度的测试方法参照GB/T228-2002,比强度定义为屈服强度与重量的比值,测试结果列于表1。
表1
  重量/kg 屈服强度/MPa 比强度/(MPa·kg -1)
实施例1 2.8 757 270
实施例2 2.8 650 232
实施例3 2.2 574 261
实施例4 2.4 635 265
实施例5 2.5 532 213
实施例6 3.9 493 126
对比例1 4.1 157 38.3
对比例2 4.7 230 48.9
从表1的结果可以看出,相比传统方法制备的注塑件和钣金冲压件,采用本公开的方法制造的车辆零部件具有较高的屈服强度和比强度,机械性能好,轻量化效果显著,能够满足汽车结构件轻量化、批量化的加工要求,是钣金件、冲压件及传统注塑件的良好替代品,同时可满足汽车零部件的可回收要求,具有广泛的应用前景。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本发明所公开的内容。

Claims (13)

  1. 一种制造车辆零部件的方法,其特征在于,该方法包括:
    a、将连续纤维织物进行铺层,得到铺层结构(1);
    b、在步骤a得到的所述铺层结构(1)的底部铺覆树脂膜(2),然后进行预裁切,得到纤维预制体(3);
    c、将步骤b中得到的所述纤维预制体(3)置于与目标车辆零部件在几何形状上相匹配的注塑模具内,所述注塑模具具有注塑空间(8),合模后向所述注塑模具内注塑含有非连续纤维和热塑性树脂的注塑料(6),所述注塑使得所述注塑料(6)充满所述注塑空间(8)并浸润所述纤维预制体(3),保压成型后得到车辆零部件(7)。
  2. 根据权利要求1所述的方法,其中,步骤a中,所述连续纤维织物包括单轴向布、多轴向布、编织布和针织布中的至少一种,所述铺层结构(1)的层数为2-50层。
  3. 根据权利要求2所述的方法,其中,所述连续纤维织物由纤维制成,所述纤维包括碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种。
  4. 根据权利要求1所述的方法,其中,步骤b中,所述树脂膜(2)为选自聚乙烯树脂膜、聚丙烯树脂膜、聚酰胺树脂膜、聚氯乙烯树脂膜、聚苯乙烯树脂膜、聚甲醛树脂膜、聚碳酸酯树脂膜、聚四氟乙烯树脂膜、聚苯硫醚树脂膜和聚砜树脂膜中的至少一种。
  5. 根据权利要求1所述的方法,其中,步骤c中,将所述纤维预制体 (3)置于所述注塑模具内时,将所述纤维预制体的铺覆有树脂膜(2)的一侧与所述注塑模具的静模(4)表面进行随型贴覆,所述注塑模具内未被所述纤维预制体(3)填充的部分形成为所述注塑空间(8)。
  6. 根据权利要求1所述的方法,其中,步骤c中,所述注塑料(6)中的非连续纤维为选自碳纤维、超高分子量聚乙烯纤维、芳纶纤维、玄武岩纤维和玻璃纤维中的至少一种。
  7. 根据权利要求1所述的方法,其中,步骤c中,所述注塑料(6)中的热塑性树脂为选自聚乙烯树脂、聚丙烯树脂、聚酰胺树脂、聚氯乙烯树脂、聚苯乙烯树脂、聚甲醛树脂、聚碳酸酯树脂、聚四氟乙烯树脂、聚苯硫醚树脂和聚砜树脂中的至少一种。
  8. 根据权利要求1所述的方法,其中,步骤c中得到的所述车辆零部件(7)由在所述注塑模具内位于所述纤维预制体(3)区域的第一部分(9)和位于所述注塑空间(8)区域的第二部分(10)组成;
    所述注塑料(6)中的热塑性树脂的含量根据式(I)进行计算:
    Figure PCTCN2018071769-appb-100001
    其中,C为所述注塑料(6)中的热塑性树脂的含量,M为所述车辆零部件(7)的总重量,M0为所述纤维预制体(3)的重量,C1为所述第一部分(9)中所需的树脂含量,M1为所述第一部分(9)的重量,C2为所述第二部分(10)中所需的树脂含量,M2为所述第二部分(10)的重量。
  9. 根据权利要求1所述的方法,其中,步骤c中,所述注塑的压力为20-500MPa,所述注塑的温度比所述树脂膜和所述注塑料(6)中的热塑性树 脂的熔点高20-80℃。
  10. 根据权利要求1所述的方法,其中,所述保压的时间为5-120秒。
  11. 根据权利要求1所述的方法,其中,该方法还包括将保压成型后的车辆零部件进行表面修整的步骤。
  12. 一种由权利要求1-11中任意一项所述的方法制造的车辆零部件。
  13. 一种车辆,其特征在于,该车辆包括权利要求12所述的车辆零部件。
PCT/CN2018/071769 2017-06-13 2018-01-08 制造车辆零部件的方法和车辆零部件及车辆 WO2018227957A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710444606.8A CN107053703B (zh) 2017-06-13 2017-06-13 制造车辆零部件的方法和车辆零部件及车辆
CN201710444606.8 2017-06-13

Publications (1)

Publication Number Publication Date
WO2018227957A1 true WO2018227957A1 (zh) 2018-12-20

Family

ID=59595407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071769 WO2018227957A1 (zh) 2017-06-13 2018-01-08 制造车辆零部件的方法和车辆零部件及车辆

Country Status (2)

Country Link
CN (1) CN107053703B (zh)
WO (1) WO2018227957A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053703B (zh) * 2017-06-13 2019-09-13 北京汽车集团有限公司 制造车辆零部件的方法和车辆零部件及车辆
CN107856370B (zh) * 2017-11-10 2019-11-22 中材科技股份有限公司 一种轻量化中空织物复合材料座椅靠背的制备方法
CN108015923A (zh) * 2017-11-23 2018-05-11 宁波伯骏智能科技有限公司 一种纤维增强热塑性复合材料产品的加工成型工艺
CN109404458B (zh) * 2017-12-12 2020-09-04 安庆安簧汽车零部件有限公司 张力叶片弹簧总成及悬架结构
CN108621448A (zh) * 2018-04-24 2018-10-09 厦门宇诠复材科技有限公司 一种复合材料及其制备工艺
CN108943765A (zh) * 2018-09-21 2018-12-07 吉林省华阳新材料研发有限公司 一种玄武岩纤维产品的制作方法
CN110435182A (zh) * 2019-08-07 2019-11-12 上海沥高科技股份有限公司 一种连续纤维增强热塑性复合材料制件的快速成型工艺
CN110826222B (zh) * 2019-11-05 2023-03-24 上海波客实业有限公司 一种汽车碳纤维增强复合材料覆盖件正向开发方法
CN111086234A (zh) * 2019-12-12 2020-05-01 北京汽车集团有限公司 热塑性复合材料和复合材料部件及其制造方法
CN115071043A (zh) * 2022-06-16 2022-09-20 中国十七冶集团有限公司 一种大批量塑料表面纤维增强生产方法
CN117067631A (zh) * 2023-10-16 2023-11-17 歌尔股份有限公司 复合材料壳体及其一体成型方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407884A (zh) * 2011-09-20 2012-04-11 奇瑞汽车股份有限公司 一种汽车车身件及其生产方法
CN103009731A (zh) * 2013-01-21 2013-04-03 株洲联诚集团有限责任公司 一种压电吸声复合材料及其制备方法
US20140374011A1 (en) * 2013-06-22 2014-12-25 Diehl Aircabin Gmbh Method for the manufacturing of a cladding element for a passenger cabin of a vehicle
CN107053703A (zh) * 2017-06-13 2017-08-18 北京汽车集团有限公司 制造车辆零部件的方法和车辆零部件及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103029262B (zh) * 2011-10-10 2016-10-12 汉达精密电子(昆山)有限公司 塑胶表面具有纤维网纹质感的表面处理方法
CN102686059A (zh) * 2012-04-26 2012-09-19 华为终端有限公司 一种合成板材外壳及其制作方法、电子设备
US9643380B2 (en) * 2012-07-12 2017-05-09 Inoac Corporation Carbon fibre reinforced composite material and production method thereof
CN103909659B (zh) * 2014-04-03 2016-03-30 中航复合材料有限责任公司 一种树脂膜渗透成型树脂基复合材料的方法
EP3175979B1 (en) * 2014-07-31 2020-03-04 KOMATSU MATERE Co., Ltd. Molded object and process for producing same
CN105881929A (zh) * 2016-02-25 2016-08-24 中航复合材料有限责任公司 一种连续纤维织物和lft复合壁板结构的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102407884A (zh) * 2011-09-20 2012-04-11 奇瑞汽车股份有限公司 一种汽车车身件及其生产方法
CN103009731A (zh) * 2013-01-21 2013-04-03 株洲联诚集团有限责任公司 一种压电吸声复合材料及其制备方法
US20140374011A1 (en) * 2013-06-22 2014-12-25 Diehl Aircabin Gmbh Method for the manufacturing of a cladding element for a passenger cabin of a vehicle
CN107053703A (zh) * 2017-06-13 2017-08-18 北京汽车集团有限公司 制造车辆零部件的方法和车辆零部件及车辆

Also Published As

Publication number Publication date
CN107053703A (zh) 2017-08-18
CN107053703B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2018227957A1 (zh) 制造车辆零部件的方法和车辆零部件及车辆
US8048815B2 (en) Composite article and method of manufacture
JP6966848B2 (ja) 補強材を有する複合構造体及びその製造方法
US6048488A (en) One-step resin transfer molding of multifunctional composites consisting of multiple resins
JP4803028B2 (ja) プリフォーム、frpおよびそれらの製造方法
WO2020071417A1 (ja) 複合材料製航空機用部品およびその製造方法
CN107521124A (zh) 碳纤维双面板加筋结构件及其制造方法
US10913223B2 (en) Fibre reinforced composites
WO2018129848A1 (zh) 中空车辆零部件的成型方法及中空车辆零部件和汽车
CN110435182A (zh) 一种连续纤维增强热塑性复合材料制件的快速成型工艺
CN105014870A (zh) 一种碳纤维复合材料汽车零部件的制备方法
JP2013221114A (ja) 炭素繊維複合樹脂材料からなる樹脂シート、ならびに樹脂成形品およびその製造方法
US11135742B2 (en) Vehicle component based on selective comingled fiber bundle positioning form
US20160075105A1 (en) Automotive vehicle exterior laminate component and method of forming same
CN109843564A (zh) 复合片材及其制造方法
CN107521123B (zh) 嵌入式共固化缝合阻尼薄膜复合材料及其制作工艺
KR20180135203A (ko) 탄소섬유 원단과 금속 그물 구조물을 밀착가공한 탄소섬유 원단 프리프레그 및 그 제조방법
JP2020090110A (ja) 複合材料製航空機用部品およびその製造方法
JP7039823B2 (ja) 炭素繊維強化プラスチック積層体およびその製造方法
JP2010076356A (ja) プリフォームおよび繊維強化プラスチックの成型方法
JP2005271350A (ja) 炭素繊維強化プラスチック製カバー部材
CN206938911U (zh) 用于替换金属零部件的复合材料汽车零部件
WO2021200047A1 (ja) 航空機部品の中間生成品の製造方法および航空機部品
JP2004338270A (ja) 繊維強化樹脂複合材料の製造方法および繊維強化樹脂複合材料
WO2017089460A1 (en) Improvements in or relating to fibre reinforced composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818682

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18818682

Country of ref document: EP

Kind code of ref document: A1