WO2018227920A1 - 空调器增焓系统及具有其的定频空调器 - Google Patents

空调器增焓系统及具有其的定频空调器 Download PDF

Info

Publication number
WO2018227920A1
WO2018227920A1 PCT/CN2017/117908 CN2017117908W WO2018227920A1 WO 2018227920 A1 WO2018227920 A1 WO 2018227920A1 CN 2017117908 W CN2017117908 W CN 2017117908W WO 2018227920 A1 WO2018227920 A1 WO 2018227920A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpa
air conditioner
refrigerant
mechanical valve
pressure
Prior art date
Application number
PCT/CN2017/117908
Other languages
English (en)
French (fr)
Inventor
韩鹏
郭凯
刘畅
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Publication of WO2018227920A1 publication Critical patent/WO2018227920A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/05Cost reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of air conditioner equipment, and in particular to an air conditioner augmentation system and a fixed frequency air conditioner having the same.
  • the single-stage compressor operates with a large pressure ratio, a low refrigerant flow rate, and a large attenuation of capacity.
  • the two-stage compression air-enhancement system has the advantages of small compression ratio, low exhaust gas temperature and high cooling efficiency.
  • the two-stage compression and augmentation system needs to be enhanced by an electronic expansion valve, a temperature sensing package, an electromagnetic two-way valve, and a control board. Moreover, it is currently only used in inverter air conditioners.
  • the enthalpy system adopts a combination of an electromagnetic shut-off valve, a temperature sensing package and a control board to control, so that the structure of the reinforced system is complicated and requires special software control logic, which is costly and complicated to control, and does not Easy to install and repair after sale.
  • the shut-off valve used in the prior art is arranged such that the shut-off valve in the enthalpy system is either in the closed state or in the open state, that is, the shut-off valve setting mode is adopted in the prior art, and the opening degree of the shut-off valve cannot be adjusted. It is easy to cause problems of cooling or heating of the air conditioner.
  • the main object of the present invention is to provide an air conditioner reinforced system and a fixed frequency air conditioner having the same to solve the problem of air conditioner cooling or heating difference in the prior art reinforced system.
  • an air conditioner reinforced system comprising: a compressor having a gas supply port; a flasher having an exhaust port; a gas supply line, and one end of the gas supply line
  • the air supply port is connected to each other, and the other end of the air supply line is in communication with the exhaust port, and the flasher supplies refrigerant into the compressor through the air supply line to perform air supply;
  • the mechanical valve is disposed on the air supply line, and the opening of the mechanical valve The pressure difference between the two ends of the mechanical valve is adjustable.
  • the design pressure parameter of the mechanical valve when the opening degree of the mechanical valve is fully opened is obtained by the following formula: Where K is the pressure design parameter; P1 is the low pressure design pressure; P2 is the high pressure design pressure; P0 is the design pressure parameter of the mechanical valve when the mechanical valve is fully open.
  • the mechanical valve when M ⁇ -1, the mechanical valve is in a closed state; when -1 ⁇ M ⁇ 0, the mechanical valve is partially opened according to the pressure value of the air supply line; when 0 ⁇ M, the mechanical valve is fully open status.
  • the refrigerant includes one of R410A, R22, R32, R290, and R134a; wherein, when the refrigerant is R410A, 1.0MPa ⁇ P1 ⁇ 1.3MPa, or when the refrigerant is R22, 0.6MPa ⁇ P1 ⁇ 0.8MPa Or, when the refrigerant is R32, 1.0 MPa ⁇ P1 ⁇ 1.3 MPa, or 0.5 MPa ⁇ P1 ⁇ 0.8 MPa when the refrigerant is R290, or 0.3 MPa ⁇ P1 ⁇ 0.5 MPa when the refrigerant is R134a.
  • the refrigerant when the refrigerant is R410A, 3.0 MPa ⁇ P2 ⁇ 3.9 MPa, or 1.9 MPa ⁇ P2 ⁇ 2.5 MPa when the refrigerant is R22, or 3.1 MPa ⁇ P2 ⁇ 4.0 MPa when the refrigerant is R32, or When the refrigerant is R290, 1.7MPa ⁇ P2 ⁇ 2.2Mpa, or when the refrigerant is R134a, 1.3MPa ⁇ P2 ⁇ 1.7Mpa.
  • the refrigerant when the refrigerant is R410A, 1.6MPa ⁇ P0 ⁇ 2.4MPa, or 1.0MPa ⁇ P0 ⁇ 1.5MPa when the refrigerant is R22, or 1.6MPa ⁇ P0 ⁇ 2.4MPa when the refrigerant is R32, or When the refrigerant is R290, 0.8MPa ⁇ P0 ⁇ 1.4Mpa, or 0.5MPa ⁇ P0 ⁇ 1.0Mpa when the refrigerant is R134a.
  • the compressor is a multi-stage compressor.
  • a fixed frequency air conditioner comprising an air conditioner reinforced system, the air conditioner reinforced system being the air conditioner reinforced system described above.
  • the mechanical valve is disposed on the air supply line between the compressor and the flasher, and the mechanical valve is controlled by the pressure of the refrigerant in the air supply line, so that the opening degree of the mechanical valve can be based on the air conditioner system.
  • the pressure conditions in the pipeline are adjusted in real time, which effectively improves the heating and cooling performance of the air conditioner.
  • the solenoid valve of the prior art requires an additional setting of the main board and the connecting line, resulting in high production cost of the air conditioner.
  • the air conditioner reinforced system the production cost of the air conditioner having the enthalpy system can be effectively reduced.
  • Figure 1 shows a schematic structural view of an embodiment of a sputum enhancement system according to the present invention
  • Fig. 2 is a view showing the effect of the air entrainment of the compressor.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • an air conditioner reinforced system is provided.
  • the air conditioner heating system includes a compressor 10, a flasher 30, and a mechanical valve 70.
  • the compressor 10 has a gas supply port.
  • the flasher 30 has an exhaust port, one end of the supplemental gas line is connected with the air supply port, and the other end of the air supply line is connected with the exhaust port, and the flasher passes through the air supply line to introduce refrigerant into the compressor for air supply.
  • the mechanical valve 70 is disposed on the air supply line, and the opening degree of the mechanical valve 70 is adjustably set according to the pressure difference of the refrigerant at both ends of the mechanical valve.
  • the mechanical valve 70 is disposed on the air supply line between the compressor 10 and the flasher 30, and the mechanical valve 70 is controlled by the pressure of the refrigerant in the air supply line so that the opening degree of the mechanical valve 70 can be
  • the real-time adjustment according to the pressure working condition in the pipeline of the air conditioner system effectively improves the heating and cooling performance of the air conditioner.
  • the solenoid valve of the prior art requires an additional setting of the main board and the connecting line, resulting in high production cost of the air conditioner.
  • the production cost of the air conditioner having the enthalpy system can be effectively reduced.
  • the mechanical valve 70 When M ⁇ -1, the mechanical valve 70 is in the closed state. When -1 ⁇ M ⁇ 0, the mechanical valve 70 is in a partially open state according to the pressure value of the air supply line, and when 0 ⁇ M, the mechanical valve 70 is fully open. status.
  • Such an arrangement can adjust the opening degree of the mechanical valve 70 according to the internal pressure in the air conditioner piping system, so that the adaptive adjustment of the mechanical valve 70 by the self-adaptation of the mechanical valve 70 itself enables adaptive adjustment by the mechanical valve 70 itself.
  • the opening degree of the mechanical valve 70 adjusts the amount of air supplied to the compressor by the system, and improves the overall energy efficiency of the system.
  • This arrangement can effectively improve the reliability of the adjustable opening degree of the mechanical valve 70 during operation.
  • K is the pressure design parameter
  • P1 is the low pressure design pressure
  • P2 is the high pressure design pressure.
  • the value range of K is preferably 0.95 ⁇ K ⁇ 1.05.
  • the refrigerant includes one of R410A, R22, R32, R290, and R134a.
  • the refrigerant when the refrigerant is R410A, 1.0 MPa ⁇ P1 ⁇ 1.3 MPa, or 0.6 MPa ⁇ P1 ⁇ 0.8 MPa when the refrigerant is R22, or 1.0 MPa ⁇ P1 ⁇ 1.3 MPa when the refrigerant is R32, or When the refrigerant is R290, 0.5 MPa ⁇ P1 ⁇ 0.8 MPa, or 0.3 MPa ⁇ P1 ⁇ 0.5 MPa when the refrigerant is R134a.
  • the refrigerant is R410A, 3.0MPa ⁇ P2 ⁇ 3.9MPa, or 1.9MPa ⁇ P2 ⁇ 2.5MPa when the refrigerant is R22, or 3.1MPa ⁇ P2 ⁇ 4.0MPa when the refrigerant is R32, or when the refrigerant When it is R290, 1.7MPa ⁇ P2 ⁇ 2.2Mpa, or when the refrigerant is R134a, 1.3MPa ⁇ P2 ⁇ 1.7Mpa.
  • the refrigerant is R410A, 1.6MPa ⁇ P0 ⁇ 2.4MPa, or 1.0MPa ⁇ P0 ⁇ 1.5MPa when the refrigerant is R22, or 1.6MPa ⁇ P0 ⁇ 2.4MPa when the refrigerant is R32, or when the refrigerant When it is R290, 0.8MPa ⁇ P0 ⁇ 1.4Mpa, or when the refrigerant is R134a, 0.5MPa ⁇ P0 ⁇ 1.0Mpa.
  • the design parameter a of the mechanical valve 70, the pressure design parameter K, the low pressure design pressure P1, the high pressure design pressure P2, and the opening degree of the mechanical valve 70 can be respectively determined according to the type of the refrigerant introduced in the air conditioning system.
  • the pressure value P0 in the air supply line at the time of opening is determined to determine the opening degree M of the mechanical valve 70.
  • the compressor may be a multi-stage compressor, that is, the compressor may employ a two-stage compressor, which can effectively improve the cooling and heating performance of the air conditioner having the enthalpy system.
  • the air conditioner augmentation system in the above embodiment can also be used in the technical field of air conditioner equipment, that is, according to another aspect of the present invention, a fixed frequency air conditioner is provided.
  • the fixed frequency air conditioner includes an air conditioner entrainment system, and the air conditioner entrainment system is the air conditioner entrainment system in the above embodiment.
  • the air conditioner heating system includes a compressor 10, a flasher 30, and a mechanical valve 70.
  • the compressor 10 has a gas supply port.
  • the flasher 30 has an exhaust port, one end of the supplemental gas line is in communication with the air supply port, and the other end of the air supply line is in communication with the exhaust port, and the flasher supplies air to the compressor through the air supply line.
  • the mechanical valve 70 is disposed on the air supply line, and the opening degree of the mechanical valve 70 is adjustably set according to the pressure of the refrigerant in the air supply line.
  • the air conditioner further includes an evaporator 20, a condenser 40, and a throttle valve 50 and a four-way valve 60 disposed on the air conditioner piping system.
  • the mechanical valve 70 is disposed on the air supply line between the compressor 10 and the flasher 30, and the mechanical valve 70 is controlled by the pressure difference between the two ends of the mechanical valve so that the opening degree of the mechanical valve 70 can be
  • the real-time adjustment according to the pressure working condition in the pipeline of the air conditioner system effectively improves the heating and cooling performance of the air conditioner.
  • the mechanical valve 70 it is possible to avoid the problem that the solenoid valve of the prior art needs to additionally set the main board and the connecting line to cause high production cost of the air conditioner. With the air conditioner reinforced system, the production cost of the air conditioner having the enthalpy system can be effectively reduced.
  • the compressor is a two-stage compressor.
  • the boosting circulation system is controlled by a combination of an electromagnetic shut-off valve, a temperature sensing package and a control board, and the structure is complicated and special logic needs to be set.
  • the control software makes the cost of the air conditioner expensive and complicated to control, and it is not convenient for installation and maintenance after sale.
  • a mechanical valve is used instead of the electromagnetic shut-off valve, and the mechanical valve automatically opens or closes the spool through the pressure of the sensing system.
  • the control process does not need to add additional components such as temperature sensing package and motherboard, reduces related control components and electrical circuits, effectively saves the production cost of the air conditioner, improves the production efficiency of the air conditioner, and improves the after-sales installation of the air conditioner. The efficiency of maintenance.
  • the conventional electromagnetic shut-off valve can only realize the opening and closing of the valve core, and can not adjust the opening degree of the valve core
  • the mechanical valve 70 in this embodiment can adaptively adjust the valve of the mechanical valve 70 according to the pressure change of the air conditioner system.
  • the degree of opening of the core thereby adjusting the amount of air supplied by the air conditioner to increase the system performance, so that the system performance is at an optimal state.
  • the traditional electromagnetic shut-off valve needs to consume electricity, which will increase the system energy consumption, and the pressure self-starting mechanical valve 70 does not need to consume electricity, can reduce the system power loss, and effectively improve the energy efficiency of the air conditioner.
  • the schematic diagram of the circulation of the gas supplementation system is shown in Figure 2.
  • the traditional two-stage air supply system senses the outside temperature of the compressor, the operating frequency of the compressor, and the opening and closing time of the air supply valve.
  • the use of the traditional two-stage air supply system requires a special control valve and software control logic of the air supply valve, which may easily cause the mis-opening or mis-closing of the air supply valve.
  • the mechanical valve 70 is used.
  • the mechanical valve 70 is controlled by the pressure of the refrigerant inside the induction air conditioner system. Whether the air supply pipe supplies air to the compressor.
  • the structure of the air conditioner entraining system in the embodiment is simple and practical, and there is no need to set the control main board to control the mechanical valve, so there is no case that the mechanical valve 70 is accidentally opened or misclosed.
  • the air supply valves used in the prior art are both voltage force switches and electronic expansion valves
  • the voltage force switch and the electronic expansion valve are easily mis-closed or mis-opened, and when the compressor needs to be ventilated, The electric pressure switch or the electronic expansion valve is in an incorrectly closed state, and when it is necessary to stop the air supply to the compressor, the voltage force switch or the electronic expansion valve is in an open state, so that the energy efficiency of the whole machine is lowered.
  • mi is the refrigerant flow
  • h1 is the abscissa of 1 in Figure 2
  • h2 is the abscissa of 2 in Figure 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器增焓系统及具有其的定频空调器。空调器增焓系统包括:具有补气口的压缩机(10),具有排气口的闪发器(30),补气管路的一端与补气口相连通,补气管路的另一端与排气口相连通,闪发器(30)通过补气管路向压缩机进行补气。机械阀(70)设置于补气管路上,机械阀(70)的开度根据机械阀(70)的两端的压力差可调地设置。

Description

空调器增焓系统及具有其的定频空调器 技术领域
本发明涉及空调器设备技术领域,具体而言,涉及一种空调器增焓系统及具有其的定频空调器。
背景技术
传统定频空调器常采用单级压缩系统,原因是结构简单,成本较低。但在超高温和超低温地区,单级压缩机运行时由于压比大,制冷剂流量低,能力大幅衰减。相比常规系统,双级压缩补气增焓系统具有压缩比小、排气温度低、制冷效率高等优点。但是双级压缩增焓系统需要由电子膨胀阀、感温包、电磁二通阀、控制主板等实现增焓控制。而且,目前仅应用于变频空调中。而定频空调由于结构简单,如果采用变频机的控制方案实现增焓控制需要增加感温包、电磁阀、主板、连接线等零件,造成空调器生产成本高、生产效率低、经济效益差等情况。
通常,增焓循环系统采用电磁式截止阀、感温包和控制板的组合方式来进行控制,使得该增焓系统的结构复杂且需要设置专门的软件控制逻辑,成本高昂且控制复杂,且不便于售后安装维修。尤其是现有技术中采用的截止阀的设置方式,使得增焓系统中的截止阀要么处于关闭状态,要么处于打开状态,即采用现有技术中截止阀设置方式,截止阀的开度不能调,容易造成空调器的制冷或制热差的问题。
发明内容
本发明的主要目的在于提供一种空调器增焓系统及具有其的定频空调器,以解决现有技术中增焓系统中空调器制冷或制热差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种空调器增焓系统,包括:压缩机,具有补气口;闪发器,具有排气口;补气管路,补气管路的一端与补气口相连通,补气管路的另一端与排气口相连通,闪发器通过补气管路向压缩机内通入冷媒以进行补气;机械阀,设置于补气管路上,机械阀的开度根据机械阀的两端的压力差可调地设置。
进一步地,机械阀的开度全开时机械阀的设计压力参数通过以下公式获得:
Figure PCTCN2017117908-appb-000001
Figure PCTCN2017117908-appb-000002
其中,K为压力设计参数;P1为低压设计压力;P2为高压设计压力;P0为机械阀的开度全开时机械阀的设计压力参数。
进一步地,机械阀的开度通过以下公式获得:M=(Px-P0)/a,其中,M为机械阀的开度;Px为补气管路的靠近闪发器一端的实时压力值;a为机械阀设计参数。
进一步地,当M≤-1时,机械阀处于关闭状态;当-1<M<0时,机械阀根据补气管路的压力值处于部分打开状态;当0≤M时,机械阀处于完全打开状态。
进一步地,0.05≤a≤0.2,其中,a为机械阀设计参数。
进一步地,0.95≤K≤1.05,其中,K为压力设计参数。
进一步地,冷媒包括R410A、R22、R32、R290、R134a中的一种;其中,当冷媒为R410A时,1.0MPa≤P1≤1.3MPa,或者,当冷媒为R22时,0.6MPa≤P1≤0.8MPa,或者,当冷媒为R32时,1.0MPa≤P1≤1.3MPa,或者,当冷媒为R290时,0.5MPa≤P1≤0.8Mpa,或者,当冷媒为R134a时,0.3MPa≤P1≤0.5Mpa。
进一步地,当冷媒为R410A时,3.0MPa≤P2≤3.9MPa,或者,当冷媒为R22时,1.9MPa≤P2≤2.5MPa,或者,当冷媒为R32时,3.1MPa≤P2≤4.0MPa,或者,当冷媒为R290时,1.7MPa≤P2≤2.2Mpa,或者,当冷媒为R134a时,1.3MPa≤P2≤1.7Mpa。
进一步地,当冷媒为R410A时,1.6MPa≤P0≤2.4MPa,或者,当冷媒为R22时,1.0MPa≤P0≤1.5MPa,或者,当冷媒为R32时,1.6MPa≤P0≤2.4MPa,或者,当冷媒为R290时,0.8MPa≤P0≤1.4Mpa,或者,当冷媒为R134a时,0.5MPa≤P0≤1.0Mpa。
进一步地,压缩机为多级压缩机。
根据本发明的另一方面,提供了一种定频空调器,包括空调器增焓系统,空调器增焓系统为上述的空调器增焓系统。
应用本发明的技术方案,将机械阀设置于压缩机和闪发器之间的补气管路上,并利用补气管路中冷媒的压力控制机械阀,使得该机械阀的开度能够根据空调器系统的管路中压力工况进行实时地调整,有效地提高了空调器的制热和制冷性能。同时,能够避免采用现有技术中的电磁阀需要额外设置主板和连接线造成空调器生产成本高的问题。采用该空调器增焓系统,能够有效地降低了具有该增焓系统的空调器的生产成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的增焓系统的实施例的结构示意图;
图2示出了压缩机的补气增焓效果示意图。
其中,上述附图包括以下附图标记:
10、压缩机;20、蒸发器;30、闪发器;40、冷凝器;50、节流阀;60、四通阀;70、机械阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1和图2所示,根据本发明的实施例,提供了一种空调器增焓系统。
具体地,如图1所示,该包括空调器增焓系统包括压缩机10、闪发器30以及机械阀70。压缩机10具有补气口。闪发器30具有排气口,补气管路的一端与补气口相连通,补气管路的另一端与排气口相连通,闪发器通过补气管路向压缩机内通入冷媒以进行补气。机械阀70设置于补气管路上,机械阀70的开度根据机械阀的两端冷媒的压力差可调地设置。
在本实施例中,将机械阀70设置于压缩机10和闪发器30之间的补气管路上,并利用补气管路中冷媒的压力控制机械阀70,使得该机械阀70的开度能够根据空调器系统的管路中压 力工况进行实时地调整,有效地提高了空调器的制热和制冷性能。同时,能够避免采用现有技术中的电磁阀需要额外设置主板和连接线造成空调器生产成本高的问题。采用该空调器增焓系统,能够有效地降低了具有该增焓系统的空调器的生产成本。
其中,机械阀70的开度通过以下公式获得:M=(Px-P0)/a,M为机械阀70的开度,Px为补气管路的靠近闪发器一端的实时压力值,P0为机械阀70的开度全开时的机械阀的设计压力参数,a为机械阀70设计参数。
当M≤-1时,机械阀70处于关闭状态,当-1<M<0时,机械阀70根据补气管路的压力值处于部分打开状态,当0≤M时,机械阀70处于完全打开状态。这样设置可以根据空调器管路系统中的内部压力对机械阀70的开度进行调整,使得通过机械阀70自身的自适应调整机械阀70的开度来使得通过机械阀70自身的自适应调整机械阀70的开度来调整系统对压缩机的补气量,提高系统的整机能效。
优选地,0.05≤a≤0.2,其中,a为机械阀设计参数。这样设置能够有效提高机械阀70运行时实现开度可调的可靠性。
具体地,P0通过以下公式获得:
Figure PCTCN2017117908-appb-000003
其中,K为压力设计参数,P1为低压设计压力,P2为高压设计压力。K的取值范围优选为:0.95≤K≤1.05。
在本实施例中,冷媒包括R410A、R22、R32、R290、R134a中的一种。其中,当冷媒为R410A时,1.0MPa≤P1≤1.3MPa,或者,当冷媒为R22时,0.6MPa≤P1≤0.8MPa,或者,当冷媒为R32时,1.0MPa≤P1≤1.3MPa,或者,当冷媒为R290时,0.5MPa≤P1≤0.8Mpa,或者,当冷媒为R134a时,0.3MPa≤P1≤0.5Mpa。
当冷媒为R410A时,3.0MPa≤P2≤3.9MPa,或者,当冷媒为R22时,1.9MPa≤P2≤2.5MPa,或者,当冷媒为R32时,3.1MPa≤P2≤4.0MPa,或者,当冷媒为R290时,1.7MPa≤P2≤2.2Mpa,或者,当冷媒为R134a时,1.3MPa≤P2≤1.7Mpa。
当冷媒为R410A时,1.6MPa≤P0≤2.4MPa,或者,当冷媒为R22时,1.0MPa≤P0≤1.5MPa,或者,当冷媒为R32时,1.6MPa≤P0≤2.4MPa,或者,当冷媒为R290时,0.8MPa≤P0≤1.4Mpa,或者,当冷媒为R134a时,0.5MPa≤P0≤1.0Mpa。
在本实施例中,可以根据空调系统中通入的冷媒的种类,分别确定机械阀70的设计参数a、压力设计参数K以及低压设计压力P1、高压设计压力P2以及机械阀70的开度全开时补气管路中的压力值P0,从而确定出机械阀70的开度M。
优选地,在本实施例中的,压缩机可以是多级压缩机,即该压缩机可以采用双级压缩机,能够有效地提高具有该增焓系统的空调器的制冷和制热性能。
上述实施例中的空调器增焓系统还可以用于空调器设备技术领域,即根据本发明的另一方面,提供了一种定频空调器。该定频空调器包括空调器增焓系统,空调器增焓系统为上述实施例中的空调器增焓系统。具体地,该包括空调器增焓系统包括压缩机10、闪发器30以及 机械阀70。压缩机10具有补气口。闪发器30具有排气口,补气管路的一端与补气口相连通,补气管路的另一端与排气口相连通,闪发器通过补气管路向压缩机进行补气。机械阀70设置于补气管路上,机械阀70的开度根据补气管路中冷媒的压力可调地设置。其中,该空调器还包括蒸发器20、冷凝器40以及设置于空调器管路系统上的节流阀50和四通阀60。
在本实施例中,将机械阀70设置于压缩机10和闪发器30之间的补气管路上,并利用机械阀的两端的压力差控制机械阀70,使得该机械阀70的开度能够根据空调器系统的管路中压力工况进行实时地调整,有效地提高了空调器的制热和制冷性能。同时,采用机械阀70的设置方式,能够避免采用现有技术中的电磁阀需要额外设置主板和连接线造成空调器生产成本高的问题。采用该空调器增焓系统,能够有效地降低了具有该增焓系统的空调器的生产成本。
具体地,在本实施例中,压缩机为双级压缩机,通常,增焓循环系统采用电磁式截止阀、感温包、控制板的组合方式来进行控制,结构复杂且需要设置专门的逻辑控制软件,使得空调器的造价成本高昂且控制起来复杂,不便于售后安装维修。
在本实施例中,采用机械阀代替电磁式截止阀,机械阀通过感应系统压力自动开启或关闭阀芯。该控制过程无需额外增加感温包、主板等元件,减少相关的控制元件和电气线路,有效地节省了空调器整机的生产成本,同时提高了空调器的生产效率,提高了空调器售后安装维修的效率。
进一步地,传统的电磁截止阀只能实现阀芯的开启和关闭,无法调节阀芯的开启程度,而本实施例中的机械阀70可以根据空调器系统压力变化自适应调节机械阀70的阀芯的开启程度,从而调节空调器增焓系统的补气量,使系统性能处于最佳状态。
传统的电磁截止阀需要耗电,会增加系统能耗,而采用压力自启动式的机械阀70无需耗电,可以减少系统功率损耗,有效地提高空调器的整机能效。
补气增焓系统循环示意图如图2所示,传统双级补气系统通过感受压缩机外侧温度、压缩机运行频率和控制补气阀的开闭时间。采用传统的双级补气系统需要专门的补气阀的控制主板和软件控制逻辑,容易引起补气阀的误开或误关。压缩机在低负荷状态下,系统中间压力较低,高负荷状态下,系统中间压力较高,在如图1中采用了机械阀70,机械阀70通过感应空调器系统内部冷媒的压力来控制补气管是否对压缩机进行补气。
采用本实施例中的空调器增焓系统的结构简单、实用,无需设置控制主板对机械阀进行控制,所以不存在机械阀70误开或误关的情况。另外,从图2补气增焓压焓图可以得出,普通单级系统循环图为1→2’→3’→4’,补气增焓系统循环图为1→7→6→2→3→4,当开启补气增焓后,相对于普通压缩机功耗增加ΔW=mi×(h2-h1),所以当系统处于低负荷运行情况下,此时如果对压缩机进行补气,反而会影响整机能效,应该停止对压缩机进行补气,从而才能够保证整机能够保持在最佳的运行状态。然而,由于现有技术中采用的补气阀均为电压力开关或是电子膨胀阀,而电压力开关和电子膨胀阀容易误关或是误开,而当需要对压缩机进行补气时,电压力开关或是电子膨胀阀处于误关状态,而当需要对压缩机进行停止补 气时,电压力开关或是电子膨胀阀处于误开状态,使得整机的能效下降。其中,mi为冷媒流量,h1为图2中1的横坐标,h2为图2中2的横坐标。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种空调器增焓系统,其特征在于,包括:
    压缩机,具有补气口;
    闪发器,具有排气口;
    补气管路,所述补气管路的一端与所述补气口相连通,所述补气管路的另一端与所述排气口相连通,所述闪发器通过所述补气管路向所述压缩机内通入冷媒以进行补气;
    机械阀,设置于所述补气管路上,所述机械阀的开度根据所述机械阀的两端的压力差可调地设置。
  2. 根据权利要求1所述的空调器增焓系统,其特征在于,所述机械阀的开度全开时所述机械阀的设计压力参数通过以下公式获得:
    Figure PCTCN2017117908-appb-100001
    其中,
    K为压力设计参数;
    P1为低压设计压力;
    P2为高压设计压力;
    P0为所述机械阀的开度全开时所述机械阀的设计压力参数。
  3. 根据权利要求2所述的空调器增焓系统,其特征在于,所述机械阀的开度通过以下公式获得:
    M=(Px-P0)/a,其中,
    M为所述机械阀的开度;
    Px为所述补气管路的靠近所述闪发器一端的实时压力值;
    a为所述机械阀设计参数。
  4. 根据权利要求3所述的空调器增焓系统,其特征在于,
    当M≤-1时,所述机械阀处于关闭状态;
    当-1<M<0时,所述机械阀根据所述补气管路的压力值处于部分打开状态;
    当0≤M时,所述机械阀处于完全打开状态。
  5. 根据权利要求3所述的空调器增焓系统,其特征在于,0.05≤a≤0.2,其中,a为所述机械阀设计参数。
  6. 根据权利要求2所述的空调器增焓系统,其特征在于,0.95≤K≤1.05,其中,K为压力设计参数。
  7. 根据权利要求2所述的空调器增焓系统,其特征在于,所述冷媒包括R410A、R22、R32、R290、R134a中的一种;
    其中,当所述冷媒为R410A时,1.0MPa≤P1≤1.3MPa,或者,
    当所述冷媒为R22时,0.6MPa≤P1≤0.8MPa,或者,
    当所述冷媒为R32时,1.0MPa≤P1≤1.3MPa,或者,
    当所述冷媒为R290时,0.5MPa≤P1≤0.8Mpa,或者,
    当所述冷媒为R134a时,0.3MPa≤P1≤0.5Mpa。
  8. 根据权利要求7所述的空调器增焓系统,其特征在于,
    当所述冷媒为R410A时,3.0MPa≤P2≤3.9MPa,或者,
    当所述冷媒为R22时,1.9MPa≤P2≤2.5MPa,或者,
    当所述冷媒为R32时,3.1MPa≤P2≤4.0MPa,或者,
    当所述冷媒为R290时,1.7MPa≤P2≤2.2Mpa,或者,
    当所述冷媒为R134a时,1.3MPa≤P2≤1.7Mpa。
  9. 根据权利要求7或8所述的空调器增焓系统,其特征在于,
    当所述冷媒为R410A时,1.6MPa≤P0≤2.4MPa,或者,
    当所述冷媒为R22时,1.0MPa≤P0≤1.5MPa,或者,
    当所述冷媒为R32时,1.6MPa≤P0≤2.4MPa,或者,
    当所述冷媒为R290时,0.8MPa≤P0≤1.4Mpa,或者,
    当所述冷媒为R134a时,0.5MPa≤P0≤1.0Mpa。
  10. 根据权利要求1所述的空调器增焓系统,其特征在于,所述压缩机为多级压缩机。
  11. 一种定频空调器,包括空调器增焓系统,其特征在于,所述空调器增焓系统为权利要求1至10中任一项所述的空调器增焓系统。
PCT/CN2017/117908 2017-06-12 2017-12-22 空调器增焓系统及具有其的定频空调器 WO2018227920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710441741.7 2017-06-12
CN201710441741.7A CN107192158B (zh) 2017-06-12 2017-06-12 空调器增焓系统及具有其的定频空调器

Publications (1)

Publication Number Publication Date
WO2018227920A1 true WO2018227920A1 (zh) 2018-12-20

Family

ID=59876612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117908 WO2018227920A1 (zh) 2017-06-12 2017-12-22 空调器增焓系统及具有其的定频空调器

Country Status (2)

Country Link
CN (1) CN107192158B (zh)
WO (1) WO2018227920A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701819A (zh) * 2019-10-16 2020-01-17 天津商业大学 一种三工况系统
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192158B (zh) * 2017-06-12 2023-07-14 珠海格力电器股份有限公司 空调器增焓系统及具有其的定频空调器
CN108087238B (zh) * 2017-11-03 2024-04-02 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调系统
CN109357863A (zh) * 2018-11-26 2019-02-19 科希曼电器有限公司 综合压力与温度的增焓电子膨胀阀开度的测试方法
CN109341153A (zh) * 2018-12-13 2019-02-15 珠海格力电器股份有限公司 冷媒循环系统和制冷设备
CN109579365B (zh) * 2019-01-16 2023-06-20 珠海格力电器股份有限公司 补气量可调的压缩机补气装置、方法及空调
CN114576825B (zh) * 2020-11-30 2023-11-28 广东美的制冷设备有限公司 空调器控制方法、空调器及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247071A1 (en) * 2004-05-10 2005-11-10 York International Corporation Capacity control for economizer refrigeration systems
WO2010117973A2 (en) * 2009-04-09 2010-10-14 Carrier Corporation Refrigerant vapor compression system with hot gas bypass
CN201837135U (zh) * 2010-07-15 2011-05-18 湖北东橙新能源科技有限公司 涡旋压缩机闪发器热泵系统
WO2014031708A1 (en) * 2012-08-24 2014-02-27 Carrier Corporation Stage transition in transcritical refrigerant vapor compression system
CN105091427A (zh) * 2015-08-07 2015-11-25 珠海格力电器股份有限公司 双级压缩中间补气系统电子膨胀阀的控制方法及空调器
CN107192158A (zh) * 2017-06-12 2017-09-22 珠海格力电器股份有限公司 空调器增焓系统及具有其的定频空调器
CN206944521U (zh) * 2017-06-12 2018-01-30 珠海格力电器股份有限公司 空调器增焓系统及具有其的定频空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8931288B2 (en) * 2012-10-19 2015-01-13 Lennox Industries Inc. Pressure regulation of an air conditioner
CN105333656B (zh) * 2014-07-09 2018-10-30 海信(山东)空调有限公司 一种补气增焓空调系统及空调器
CN105202792B (zh) * 2015-10-15 2018-02-16 珠海格力电器股份有限公司 喷气增焓系统、具有该系统的空调机组及该增焓控制方法
CN205262011U (zh) * 2015-12-11 2016-05-25 珠海格力电器股份有限公司 双级压缩机及其补气增焓控制设备
CN105371548B (zh) * 2015-12-11 2017-11-21 珠海格力电器股份有限公司 双级压缩机的补气增焓控制方法、设备和装置
CN106196721B (zh) * 2016-07-04 2018-02-16 珠海格力电器股份有限公司 一种喷焓压缩机空调系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247071A1 (en) * 2004-05-10 2005-11-10 York International Corporation Capacity control for economizer refrigeration systems
WO2010117973A2 (en) * 2009-04-09 2010-10-14 Carrier Corporation Refrigerant vapor compression system with hot gas bypass
CN201837135U (zh) * 2010-07-15 2011-05-18 湖北东橙新能源科技有限公司 涡旋压缩机闪发器热泵系统
WO2014031708A1 (en) * 2012-08-24 2014-02-27 Carrier Corporation Stage transition in transcritical refrigerant vapor compression system
CN105091427A (zh) * 2015-08-07 2015-11-25 珠海格力电器股份有限公司 双级压缩中间补气系统电子膨胀阀的控制方法及空调器
CN107192158A (zh) * 2017-06-12 2017-09-22 珠海格力电器股份有限公司 空调器增焓系统及具有其的定频空调器
CN206944521U (zh) * 2017-06-12 2018-01-30 珠海格力电器股份有限公司 空调器增焓系统及具有其的定频空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110701819A (zh) * 2019-10-16 2020-01-17 天津商业大学 一种三工况系统
CN115247922A (zh) * 2022-06-27 2022-10-28 浙江中广电器集团股份有限公司 一种防止压缩机冷媒回流到闪蒸罐的自动控制方法

Also Published As

Publication number Publication date
CN107192158A (zh) 2017-09-22
CN107192158B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2018227920A1 (zh) 空调器增焓系统及具有其的定频空调器
WO2019128278A1 (zh) 空调器系统
WO2015158109A1 (zh) 热回收多联机及控制方法
CA3006572A1 (en) Positive-displacement compressor, two-stage compressor system, and control method thereof
CN103591732B (zh) 空调系统
CN203024273U (zh) 多联室内机及多联式空调系统
CN206944521U (zh) 空调器增焓系统及具有其的定频空调器
CN102798256B (zh) 一种多联机组室外机换热器能力输出调节装置
CN101769575A (zh) 蒸发式与常规冷水机组结合作为冷源的半集中式空调系统
JP2005049051A (ja) 空気調和装置
CN111023620A (zh) 一种涡旋式空气源热泵双级系统
CN106949581B (zh) 变频空调系统及其控制方法
CN103591740A (zh) 一种离心式热泵机组用节流装置
CN109737632B (zh) 高效节能型厨房卫浴一体式空调机组及其控制方法
CN107504706B (zh) 空调器及其快速制冷方法
CN103954065A (zh) 制冷装置
CN107401851B (zh) 空调器系统以及空调器系统不停机除霜的控制方法
CN110715394A (zh) 一种机房空调节能改造系统及其控制方法
CN114017941A (zh) 空调系统
CN109579357B (zh) 一种具有高效热回收的多联机热泵系统及控制方法
CN112781097B (zh) 一种无水地暖多联机制冷时制冷剂的储存控制方法
CN204851594U (zh) 压缩机及具有其的空调器
CN112762509B (zh) 一种无水地暖多联机制热时制冷剂的储存控制方法
CN219141172U (zh) 制冷循环系统和冷水机
CN104879944A (zh) 热泵空调及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913900

Country of ref document: EP

Kind code of ref document: A1