WO2018227828A1 - 表层床沙污染物吸附/解吸特性测量装置及其使用方法 - Google Patents

表层床沙污染物吸附/解吸特性测量装置及其使用方法 Download PDF

Info

Publication number
WO2018227828A1
WO2018227828A1 PCT/CN2017/105468 CN2017105468W WO2018227828A1 WO 2018227828 A1 WO2018227828 A1 WO 2018227828A1 CN 2017105468 W CN2017105468 W CN 2017105468W WO 2018227828 A1 WO2018227828 A1 WO 2018227828A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
sample
liquid
cylinder
adsorption
Prior art date
Application number
PCT/CN2017/105468
Other languages
English (en)
French (fr)
Inventor
唐洪武
李青霞
肖洋
李志伟
袁赛瑜
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to AU2017399742A priority Critical patent/AU2017399742B2/en
Priority to US16/084,224 priority patent/US10545128B2/en
Priority to JP2018548002A priority patent/JP6698171B2/ja
Priority to EP17896324.5A priority patent/EP3441759B1/en
Priority to CA3015735A priority patent/CA3015735C/en
Publication of WO2018227828A1 publication Critical patent/WO2018227828A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/56Labware specially adapted for transferring fluids
    • B01L3/561Tubes; Conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/047Additional chamber, reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0609Holders integrated in container to position an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the invention belongs to the field of sediment property measurement, and relates to a measuring device for adsorbing/desorbing characteristics of pollutants by sediment and a using method thereof.
  • the surface bed sand mainly adsorbs pollutants through interaction with pore water, and the pollutants in the overlying water body mainly adsorb/desorb pollutants to the bed sand through ion diffusion and water exchange between the overlying water and the pore water, so the design measuring device is designed.
  • the design measuring device is designed.
  • the most common method is the constant temperature oscillating box batch processing method.
  • the experiment of adsorbing/desorbing pollutants in a small container by a constant temperature oscillation method can obtain the isothermal adsorption curve and adsorption kinetic curve of sediment. .
  • This method is mainly applied to the exploration of the adsorption/desorption capacity of sediment particles. It cannot give the adsorption characteristics for the occurrence state of bed sand and the action characteristics of pore water. Due to the high frequency oscillation and small reaction space, the sediment and the pollutants are in full contact, which greatly increases the contact area of water and sand, which leads to the overestimation of the amount of pollutants adsorbed by the bed sand, which is not conducive to the prediction of the water ecological environment. In addition, this method can not simulate the thickness characteristics of the bed sand and the boundary permeable condition, and the measured sediment adsorption/desorption curve is quite different from the actual one.
  • the traditional soil column experiment is to open the hole in the side wall of the container containing the soil column, injecting pollutants from one end, and receiving the other end, mainly for observing the migration and transformation of pollutants in the soil column and the interception ability of the soil to the pollutants.
  • This method considers the permeability of pore water in the mud layer, but it is not a device for quantitatively measuring the adsorption/desorption capacity of the mud layer. The contact of water and sand is insufficient, and the adsorption and desorption amount of a certain layer of bed sand cannot be quantitatively determined, so it cannot be drawn.
  • Patent No. "CN 102590479 A” discloses a method and a device for testing the flow of pollutants in rivers and lakes based on diffusion theory. The method is to place the river bed sediment in the base cylinder, then inject the overlying water, and then The overlying moisture layer was sampled at different time periods, and then the pollutant release flux of the sediment was calculated according to the diffusion theory. This method is mainly for the calculation of the release flux of bed sand. The bed sand is completely quiescent at the bottom of the device. The overlying water and pore water can only act through ion diffusion.
  • the sediment In the circulating water tank experiment, the sediment is laid on the bottom of the water tank and powered by a water pump or a turbine to circulate water on the surface of the bed sand.
  • This method is mainly aimed at exploring the influence of hydrodynamics on sediment adsorption/desorption. Although it is more in line with the hydrodynamic effect under natural conditions, it does not consider the boundary conditions of the bed sand with permeable and certain osmotic pressure, resulting in The exchange of pore water and overlying water is limited, and the experimental device is not suitable for batch experiments, so it is impossible to give the adsorption characteristic curve to the surface bed sand.
  • the invention provides a measuring device and a method for measuring the adsorption/desorption characteristics of pollutants in the surface bed sand, and solves the problem that the sufficient effect of the surface bed sand and the pore water and the full exchange of the overlying water and the pore water cannot be simultaneously satisfied in the prior art. And the situation that the lower boundary of the bed sand is permeable and the osmotic pressure can be controlled at the same time; at the same time, the invention can carry out adsorption and desorption experiments on the surface bed sand of any thickness.
  • the specific technical issues are described as follows:
  • the constant temperature shock box can carry out batch experiments, it is convenient to give the adsorption/desorption characteristic curve of sediment, but the high frequency oscillation makes the contact of water and sand too sufficient, resulting in a significant increase in the contact area of water and sand, so that the sediment adsorption/ The desorption amount is obviously too large; the traditional sand column experiment can consider the permeability of the mud layer, but it can not draw the corresponding isothermal adsorption curve and adsorption kinetic curve for a certain sand layer.
  • the simulated bed sand permeability is only under the action of gravity.
  • Natural permeation unable to regulate and control osmotic pressure; a method and device for testing the flow of pollutants in rivers and lakes based on diffusion theory, ignoring the dynamic exchange of overlying water and pore water, the bottom boundary is impermeable, and the bottom cannot be obtained.
  • the exchange of water and overlying water is limited, and the experimental device is not suitable for batch experiments, so it is impossible to give the adsorption characteristic curve to the surface bed sand.
  • the present invention can be implemented by the following technical solutions:
  • a measuring device for adsorbing/desorbing characteristics of pollutants in a surface bed sand comprising a reaction cylinder, a liquid collecting cylinder and a liquid circulating component from the inside to the outside, the collecting cylinder is a cylinder with an upper opening, and the reaction cylinder is a collecting cylinder The upper opening, the bottom of the reaction tube is suspended in the liquid collecting cylinder, and the reaction cylinder wall has two symmetrical vent holes at two-thirds of the bottom.
  • the sample holder and the sample sand tray are placed inside the reaction tube, and the solution circulating part is arranged. It consists of a rubber tube and a peristaltic pump.
  • the upper part of the reaction tube is formed into a reaction tube, that is, the outer wall of the reaction tube is the inner wall of the liquid collecting tube, and the bottom of the reaction tube and the bottom of the liquid collecting tube are more than one-half of the total height of the liquid collecting tube, thereby ensuring
  • the total volume of the reaction cartridge is smaller than the volume of the lower portion of the collection cylinder.
  • the total volume of the reaction liquid should be lower than the volume of the reaction tube during the experiment, but when the permeation mode is natural permeation, the total volume of the reaction liquid can exceed the volume of the reaction tube, but lower than the total volume of the collection tube. This can prevent the liquid level in the reaction tube from overflowing excessively after the vent hole is closed, and can prevent the sample sand table from being immersed when the liquid level in the liquid collecting tube is too high.
  • the reaction tube as described above is a hole in the upper part of the liquid collecting cylinder, and the diameter of the lower bottom opening is smaller than the diameter of the top opening and the diameter of the bottom surface of the sample holder, and is used for supporting the sample holder and closely contacting the bottom of the sample holder to realize the reaction.
  • the liquid in the cylinder penetrates into the collection cylinder through the bottom of the sample sand tray.
  • the sample holder as described above is a frame structure, the sample sand tray is placed at the bottom of the sample holder, and the bottom is hollowed out, and can be woven by a nylon rope, which can be used to support the sample sand tray, and can not penetrate the water without changing the permeability of the sample sand, and is convenient for the sample sand. Transfer.
  • the diameter of the bottom of the sample holder is slightly smaller than the diameter of the opening at the top of the reaction tube, which is larger than the diameter of the opening at the bottom of the reaction tube.
  • the sample sand tray as described above is located on the sample holder, which is a hollow cylinder having the same diameter as the bottom of the sample holder.
  • a plastic braided sleeve is placed from the bottom, and then a rubber band is placed on the outside of the woven bag.
  • Plastic weaving The sleeve can ensure the water permeability of the bed sand sample, can simulate the water permeability of the lower boundary of the bed sand, and at the same time fix the bed sand in the reaction tube.
  • the liquid circulation component as described above two rubber pipes extending from the peristaltic pump, one connected to the bottom of the liquid collecting cylinder, the other connected to the wall of the reaction cylinder, fixed to the wall of the cylinder, and the liquid in the upper reaction cylinder
  • the liquid in the collecting cylinder is powered by the peristaltic pump, enters the upper reaction tube, forms the water circulation in the device, and satisfies the full contact between the bed sand and the pore water, and the pore water and the overlying water are fully exchanged.
  • the device for measuring the adsorption/desorption characteristics of the surface bed sand pollutants as described above can realize the bed sand by controlling the permeation rate (aqueous solution circulation rate) of the sample sand by controlling the flow of the vent hole of the reaction tube side wall and the peristaltic pump flow rate.
  • the osmotic pressure is controllable.
  • the method for measuring the adsorption/desorption characteristics of surface bed sand pollutants using the apparatus described above includes the following steps:
  • the permeation mode is selected to accelerate the penetration (the set permeation rate is greater than The natural permeation rate) closes the vent hole on the side wall of the reaction tube to form a negative pressure in the liquid collecting cylinder to accelerate the penetration of the pore water.
  • the calculation formula of the peristaltic pump flow rate Q is:
  • the desorption amount, combined with the change in liquid concentration, can obtain the adsorption/desorption characteristics of the surface bed sand.
  • a real-time sampling device for pore water may be added to the device, and the concentration of the liquid taken is an average value of the pore water concentration for short-term downward penetration (generally an average value within 5 to 15 minutes, depending on The size of the pore water sampling component and the rate at which the pore water penetrates downward).
  • the short-term concentration average of the pore water infiltration obtained in real time can better explore the variation of the concentration of each component in the pore water that migrates downward under different working conditions, and obtain the buffering law of the bed sand.
  • the pore water sampling component includes a pore water sampling component and a pore water sampling tube.
  • the upper side of the pore water sampling part is opened, and one end of the pore water sampling tube is stuck in the opening of the side wall of the upper part of the sampling part, and the other end is extended by the venting hole on the side of the reaction tube for sampling.
  • the aperture hole diameter of the upper vessel of the pore water sampling component, the pore diameter of the vent hole and the diameter of the pore water sampling tube are the same, which meets the requirements of airtightness inside the liquid collecting cylinder during accelerated penetration, and facilitates the fixing of the pore water sampling tube. .
  • the upper part of the pore water sampling component as described above is a wide shallow and small capacity vessel, and the middle support long rod and the lower weight member stand in the liquid collecting cylinder, and the wide and shallow small capacity vessels and the support rod are fixedly coupled with the lower weight component.
  • the wide and shallow small-capacity vessels are used to collect the liquid directly infiltrated from the sample tray, and the infiltrated liquid enters the liquid collecting cylinder after overflowing in the wide shallow vessel;
  • the middle support rod is used to support the vessel in the upper part of the collecting cylinder, avoiding the set
  • the liquid infiltrated before the liquid cylinder is mixed;
  • the lower weight is mainly used for fixing the pore water sampling part to avoid dumping due to buoyancy.
  • the pore water sampling part can be placed in the liquid collecting cylinder or taken out before the start of the experiment according to whether or not there is a need for real-time collection of pore water.
  • the capacity of the pore water sampling component determines the average of the pore water concentration for the downward migration over which the liquid is taken.
  • the formula for calculating time t is as follows:
  • V is the volume of the upper wide and shallow vessels of the pore water sampling component
  • Q the flow of the peristaltic pump after the liquid circulation balance of the device
  • the most significant advantage of the surface bed sand pollutant adsorption/desorption characteristic measuring device is that it can fully contact the bed sand and the pore water and fully exchange the overlying water and the pore water without changing the occurrence form of the bed sand; Experiments can be carried out on bed sand of any thickness, especially in thin bed sand (below 5cm). At the same time, natural conditions can be simulated to realize the boundary conditions of permeable and osmotic pressure at the bottom of the bed sand, and it can be easily adjusted. Peristaltic pump flow and venting of the vents enable natural penetration of bed sand and accelerated permeation switching.
  • the short-term concentration average value of the downwardly migrating pore water (generally 5 to 15 minutes) can be obtained in real time, and the information of the effect of the bed sand on the foreign matter can be obtained more comprehensively.
  • the peristaltic pump can realize multi-line parallel operation, and the structure of the device is simple and easy to process, which provides the possibility of batch processing of the sand sample, so that the adsorption kinetic curve, the isothermal adsorption curve and the adsorption desorption which are in accordance with the natural characteristics of the bed sand can be obtained more conveniently and quickly. capacity.
  • the adsorption characteristic parameters obtained by the device and the method can provide more scientific and reasonable data support for the water quality model to meet the natural occurrence conditions of the bed sand, and have significant environmental benefits.
  • FIG. 1 is a schematic structural view of a device for measuring adsorption/desorption characteristics of a surface bed sand pollutant according to the present invention
  • FIG. 2 is a schematic structural view of a sample holder and a sample sand tray
  • Figure 3 is a front view and a plan view of the reaction tube and the liquid collection cartridge of the main body portion of the apparatus.
  • Figure 4 is a schematic view showing the structure of the device for adding the pore water sampling portion.
  • Figure 5 is a schematic view showing the structure of the pore water sampling portion
  • Figure 6 is a kinetic adsorption curve of bed sand per unit area obtained by using the measuring device of the present invention in Application Example 1.
  • Fig. 7 is a graph showing the time-dependent change of the amount of bed sand released per unit area obtained by the measuring device of the present invention in Application Example 2, and the static release process of the bed sand in the cylindrical column.
  • a device for measuring adsorption/desorption characteristics of pollutants in a surface bed sand includes a sample sand tray 4, a sample holder 3, a reaction tube 2, a liquid collection tube 1 and a liquid circulation unit 6, and a liquid from the inside to the outside.
  • Cycle department The piece 6 is composed of a rubber tube 7 and a peristaltic pump 8, the liquid collecting cylinder 1 is a cylinder with an upper opening, the reaction cylinder 2 is a opening of the upper portion of the liquid collecting cylinder 1, and the bottom opening of the reaction cylinder 2 is suspended in the liquid collecting cylinder 1.
  • the reaction tube 2 has two symmetrical venting holes 5 at two-thirds of the bottom of the cylinder wall; the sample holder 3 is nested in the reaction tube 2, the sample holder 3 is framed and the bottom is hollowed out and the bottom of the reaction tube 2
  • the open holes are connected; the sample sand tray 4 is placed on the sample holder 3, the sample sand tray 4 is a hollow cylinder and has the same diameter as the bottom of the sample holder 3;
  • two rubber tubes 7 extending from the peristaltic pump 8 are connected to the set
  • the bottom of the liquid cylinder 1 is connected to the bottom wall of the reaction cylinder 2, and is fixed to the cylinder wall.
  • the liquid in the upper reaction cylinder 2 passes through the sample sand into the lower liquid collecting cylinder 1, and the liquid in the liquid collecting cylinder 1 passes through the peristaltic pump 8 Power is supplied to the upper reaction cartridge 2 to form a water circulation within the device.
  • the upper portion of the liquid collecting cylinder 1 is opened to form a reaction cylinder 2, that is, the outer wall of the reaction cylinder 2 is the inner wall of the liquid collecting cylinder 1, as shown in Fig. 3.
  • the bottom of the reaction cylinder 2 is farther from the bottom of the liquid collecting cylinder 1 than the liquid collecting cylinder 1
  • One-half of the height ensures that the total volume of the reaction cartridge 2 is smaller than the lower volume of the liquid collection cartridge 1.
  • the total volume of the reaction liquid is lower than the volume of the reaction tube 2, which can prevent the liquid level in the reaction tube from overflowing excessively after the vent hole is closed, and can prevent the sample sand table from being immersed when the liquid level in the liquid collection tube 1 is too high. .
  • the diameter of the bottom surface of the reaction tube 2 is smaller than the diameter of the bottom surface of the sample holder 3 ⁇ the diameter of the top surface of the reaction tube 2, so that the bottom of the reaction tube 2 supports the sample holder 3 and is closely connected with the bottom of the sample holder 3 to realize the reaction tube.
  • the liquid in 2 penetrates into the liquid collecting cylinder 1 through the bottom of the sample sand tray 4.
  • the frame structure of the sample rack 3 is shown in Fig. 2, which is mainly used for laying and transferring the bed sand sample, and the bottom is hollowed out, which can be woven by nylon rope, and is used for supporting the sample sand tray 4.
  • the diameter of the bottom of the sample rack 3 is slightly smaller than the reaction.
  • the diameter of the top opening of the cylinder 2 is larger than the diameter of the opening of the bottom of the reaction cylinder 2.
  • the sample sand tray 4 is placed on the sample holder 3, and the sample sand tray 4 is a hollow cylinder, as shown in Fig. 2, the diameter of which is the same as the diameter of the bottom of the sample holder 3; the plastic braided sleeve is required to be immersed from the bottom during the experiment, and the plastic braided sleeve is permeable. Strong, woven dense, will not cause sand loss; then put a rubber band on the outside of the woven bag for fixing the plastic braid; then place it on the sample rack 3, lay the bed sand sample, and sample the sand table through the sample rack 3. 4 Transfer to the reaction cartridge 2.
  • the rubber tube 7 of the liquid circulation component 6 is sleeved on the outward opening of the bottom of the liquid collection cylinder 1, as shown in Fig. 3.
  • the upper part is closely attached to the side wall of the reaction cylinder 2, so that the liquid is along the side wall of the reaction cylinder 2. Injecting to avoid disturbance to the liquid level in the reaction tube 2.
  • the reaction tube 2 is opened. Side wall vent 5.
  • the peristaltic pump 8 draws liquid from the liquid collecting cylinder 1, the air pressure inside and outside the liquid collecting cylinder 1 is equal, and the pore water permeates into the liquid collecting cylinder 1 under the action of its own weight.
  • the side wall vent 5 of the reaction tube 2 is closed.
  • the peristaltic pump 8 draws liquid from the liquid collecting cylinder 1, the pressure inside the liquid collecting cylinder 1 is lowered to form a negative pressure, and the pore water is accelerated to permeate and drip into the liquid collecting cylinder 1 under the action of the negative pressure, and the flow rate of the peristaltic pump 8 is larger.
  • the peristaltic pump permeate flow rate can be calculated from equation (1) according to the set permeation rate. During the specific implementation process, the flow rate of the peristaltic pump should be slowly increased, and the accelerated permeation rate should be adjusted according to the permeability of the sand sample.
  • the experimental parameters are generally selected based on the characteristics of the bed sand taken at the site to determine the thickness of the bed sand sample, the total volume of the reaction liquid, and the permeation rate.
  • the total volume of the liquid cannot exceed the capacity of the vent hole 5 to the bottom of the reaction tube 2 (i.e., two-thirds of the total volume of the reaction tube), ensuring that the liquid can be circulated normally.
  • the size of the reaction tube try to make the ratio of the diameter of the reaction tube to the depth as large as possible, which can increase the permeate flow rate and reduce the time required for the liquid to circulate once in the device.
  • the size of the reaction tube 2, the sample holder 3 and the sample sand tray 4 is determined according to the size of the column sampler, and the surface sample sand sample can be directly transferred to the sample sand tray 4 to obtain the scene. Adsorption/desorption characteristics of undisturbed sand.
  • the method for measuring the adsorption/desorption characteristics of the surface bed sand pollutants using the device includes the following steps:
  • the bed sand in the sample sand table 4 is air-dried, The dry weight of the surface bed sand can be obtained, and the adsorption/desorption amount of bed sand per unit mass or unit area can be obtained. Combined with the change of liquid concentration, the adsorption/desorption characteristics of the surface bed sand can be obtained.
  • a real-time sampling portion of pore water may be added to the device, and the liquid concentration is an average value of the pore water concentration for short-term downward penetration (generally an average value within 5 to 15 minutes, depending on The size of the shallow and shallow vessels in the upper part of the pore water sampling part and the rate of downward penetration of the pore water).
  • the real-time sampling part of the pore water is realized by real-time measurement of the pore water concentration of the downward migration by placing the pore water sampling portion in the liquid collection cylinder 1.
  • the pore water sampling portion includes a pore water sampling member 9 and a pore water sampling tube 10.
  • the pore water sampling component 9 has an opening in the upper side wall of the vessel, and one end of the pore water sampling tube 10 is stuck in the side wall opening of the upper vessel of the pore water sampling component 9, and the other end protrudes through the vent hole 5 of the reaction cylinder 2 to facilitate sampling. .
  • the pore water sampling part 9 has the same hole diameter of the upper side wall of the vessel, the pore diameter of the vent hole 5 and the diameter of the pore water sampling tube 10, which meet the requirements of the airtightness of the liquid collecting cylinder 1 at the time of accelerated penetration, and facilitate the pore water.
  • the fixing of the sampling tube 10 is performed.
  • the upper part of the pore water sampling member 9 as described above is a wide shallow and small capacity vessel, and stands in the liquid collecting cylinder 1 through the middle supporting long rod and the lower weight member, and the wide and shallow small capacity vessels and the supporting rod are fixedly connected with the lower weight member.
  • the wide and shallow small-capacity vessel is used for collecting the liquid which is directly infiltrated from the sample tray, and the infiltrated liquid enters the liquid collecting cylinder 1 after overflowing in the wide shallow vessel;
  • the middle support rod is used for supporting the vessel in the upper part of the collecting cylinder 1 to avoid It is mixed with the liquid which is infiltrated before the liquid collecting cylinder 1;
  • the lower weight is mainly used for fixing the pore water sampling member 9 to avoid dumping due to buoyancy.
  • the pore water sampling member 9 may be placed in the liquid collection cartridge 1 or taken out before the start of the experiment, depending on whether or not there is a need for real-time collection of pore water.
  • the capacity of the pore water sampling member 9 determines the average value of the pore water concentration for the downward migration in which the liquid is taken.
  • the formula for calculating time t is as follows:
  • V is the volume of the upper vessel of the pore water sampling component
  • Q the flow of the peristaltic pump after the liquid circulation balance of the device
  • the batch constant temperature oscillation experiment is a commonly used method to determine the sediment adsorption characteristics. Because of its small water and sediment reaction space, the water and sand contact is too full, and the results obtained are significantly larger, which has been reported in many literatures, and CN 102590479
  • the method provided by the A device the bed sand adsorption pollutants can only rely on ion diffusion, and the thickness can not be less than 5cm, and the adsorption effect of the bed sand covering the lower layer is greatly limited, so that the measurement result is small.
  • the sediment equilibrium adsorption value obtained by the apparatus is basically between the measured values obtained by the above two means, especially for fine particle sediment.
  • the peristaltic pump can realize multi-pipeline parallel operation, and the device structure is simple and easy to process, and the sand sample batch processing can be realized, so that the isothermal adsorption curve and the adsorption desorption capacity according to the natural characteristics of the bed sand can be obtained more conveniently and quickly.
  • the bed sand sample is the sediment sand column collected on the Huaihe River site, and the surface silt bed sand is taken for the kinetic adsorption curve measurement and the equilibrium adsorption amount determination. Since the diameter of the general cylindrical sampler is 9 cm or 12 cm, the diameter of the sample sand tray can be determined accordingly. The ratio of the diameter to the depth of the reaction cylinder is as large as possible.
  • the diameter of the reaction tube selected in this embodiment is 13 cm, the height is 9 cm, the two-thirds of the volume is 0.8 L, the diameter of the vent hole of the cylinder wall is 1.5 cm, and the diameter of the collecting cylinder At 17 cm, the bottom of the collection tube is 10 cm from the bottom of the reaction tube; the sample sand tray has a diameter of 12 cm (the same diameter as the cylindrical sampler).
  • the sample median particle size is 60 ⁇ m.
  • the sample sand thickness is 2cm
  • the adsorbed solute is selected as orthophosphate
  • the concentration is 2mg/L
  • the volume is 2L
  • more than two-thirds of the volume of the reaction tube is discharged.
  • the pores are discharged into the liquid collecting cylinder, and the sand infiltration mode of the sample bed is selected as natural infiltration.
  • the flow rate of the peristaltic pump is calculated according to formula (1) to be 3.39mL/min, which is slightly larger than the calculation result of 3.5mL/min. Since the liquid passes through the bed sand sample, the natural infiltration is selected. Shoulder vents on the side wall.
  • the kinetic adsorption curve of the adsorption amount of bed sand phosphorus per unit area can be plotted; the initial concentration and the phosphorus liquid at the end of the experiment The difference in concentration is used as the adsorption amount of the bed sand, and the adsorption amount of bed sand per unit area at this concentration can be obtained.
  • the kinetic adsorption curve of bed sand per unit area is shown in Fig. 4.
  • the equilibrium adsorption amount is 358 mg P/m 2 , which is converted into a unit mass sediment adsorption amount of 18.7 mg P/kg.
  • the amount of sediment equilibrium adsorption measured by the batch constant temperature oscillation test method and the method provided by CN 102590479 A device was compared with the measured results of the device.
  • the constant temperature shaking experiment (10 g/L for sediment concentration and 2 mg/L for phosphorus solution) yielded 81.3 mg P/kg per unit mass of bed sand, which is much larger than the measured results of this device; CN 102590479 A
  • the method provided (bed sand thickness 5 cm, diameter 12 cm, dry weight 532 g, phosphorus solution 5 L) obtained a unit mass bed sand phosphorus adsorption amount of 10.6 mg P / kg, significantly lower than the measured results of the device.
  • the measured results of the device are located between the two devices, avoiding the problem that the bed sand adsorption/desorption is too large or too small.
  • the diameter of the sample sand tray should be designed to be small, which is convenient for uniform sanding.
  • the peristaltic pump can use a multi-channel peristaltic pump to conduct adsorption experiments under different liquid concentrations, obtain equilibrium adsorption amount, and draw an isothermal adsorption curve.
  • the isotherm adsorption model calculates the adsorption characteristic parameters.
  • the liquid concentration can be set to zero or very low concentration, the liquid concentration change is measured at different times, and the bed sand desorption amount is calculated.
  • the bed sand sample is a sediment sand column collected on the Huaihe River site, and the superficial silt bed sand is taken for accelerated desorption of phosphorus desorption experiment.
  • the reaction tube selected in this embodiment has a diameter of 9.5 cm and a height of 10 cm.
  • the center point of the vent hole of the tube wall is 3 cm from the top of the tube, the diameter of the vent hole is 0.5 cm, the diameter of the liquid collecting tube is 12 cm, and the distance from the bottom of the collecting tube is long.
  • the distance from the bottom of the cylinder is 10 cm; the inner diameter of the sample sand tray is 9 cm (in comparison with the diameter of the cylindrical sampler)
  • the pore water sampling part is a wide shallow disc, a long support rod and a solid cylindrical counterweight.
  • the pore water sampling disc has a diameter of 8 cm and a height of 1 cm.
  • the side wall sampling hole has a diameter of 0.5 cm and a volume of 50 ml.
  • the pore water is sampled.
  • the tube has an outer diameter of 0.5 mm and can protrude from one side of the vent hole and maintain the airtightness of the container.
  • the median particle size of the sample sand was 15.6 ⁇ m.
  • the sand thickness of the sample was 8 mm in the experiment, and the phosphorus content in the superficial bed was the highest. Therefore, the thickness was selected for the experiment.
  • the experimental liquid is deionized water, taking into account the volume of the solution occupied by the pore water sampling component, and at the same time ensuring that the side wall of the liquid collecting cylinder is submerged in water to ensure water circulation, so the liquid volume is selected to be 0.8L.
  • the sample bed sand infiltration mode was selected as accelerated infiltration, and the accelerated permeate flow rate was set to 5 mL/min.
  • the exhaust hole on one side of the reaction tube was closed with a rubber stopper, and the other side was left to pass through the pore water sampling tube.
  • the natural permeation flow rate of the sample bed sand is calculated by the permeation flow formula to be about 2 mL/min. Since the permeation mode of the liquid passing through the bed sand sample is selected to accelerate the permeation, the permeate flow rate is set to 5 mL/min, so the peristaltic pump flow rate is set to 5 mL/min. Min, close the vent hole on the other side of the reaction tube.
  • the bed sand in the sample sand tray was air-dried and weighed to obtain a bed sand dry weight of 47.3 g.
  • the phosphorus release curve after bed sand and deionized pure water can be preliminarily obtained from the change of pore water concentration at different time points and the change of overlying water at the last two moments; the difference between the initial concentration and the concentration of the overlying water and phosphorus liquid at the end of the experiment is taken as the bed.
  • the desorption amount of sand can obtain the desorption amount of bed sand per unit area at this concentration.
  • the desorption amount per unit area of bed sand changes with time as shown in Fig. 7. At the end of the experiment, the desorption amount was 11.3 mg P/m 2 , which was converted into a unit mass sediment desorption amount of 1.52 mg P/kg.
  • the same experiment as the above-mentioned working conditions was carried out in a cylindrical cylinder having an inner diameter of 9 cm, and the same thickness of 8 mm of surface bed sand and 0.8 L of deionized water were compared with the measurement results of the apparatus.
  • the comparison results are shown in Fig. 7.
  • the bed sand in the cylinder is always in the released state, and the obtained unit mass bed sand desorption amount is 2.96 mg P/kg, which is close to 2 times the measured result of the device of the present invention.
  • the adsorption characteristics of the bed sand obtained by the device are first released. When the liquid concentration is high, the bed sand is realized as adsorption, which is a dynamic adsorption and desorption process. Therefore, more features of sediment adsorption and desorption can be obtained by the device of the invention, thereby obtaining a buffering mechanism of bed sand in various natural rivers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

一种表层床沙对污染物吸附/解吸的测量装置及其使用方法,其中测量装置自内而外包括样品沙盘、样品架、反应筒、集液筒和液体循环部件,液体循环部件由橡胶管和蠕动泵组成;其中使用方法是通过液体的循环实现床沙与孔隙水的充分接触和上覆水与孔隙水的充分交换,同时又不会改变床沙的赋存形态,可对任意厚度的床沙进行实验,尤其是薄层床沙,并简便地通过调节蠕动泵流量和排气孔的开关实现床沙自然渗透和加速渗透的切换。通过上述装置和方法得到的吸附特征参数可为水质模型提供符合床沙自然赋存条件的、更加科学合理的数据支撑,具有显著的环境效益。

Description

表层床沙污染物吸附/解吸特性测量装置及其使用方法 技术领域
本发明属于泥沙特性测量领域,涉及泥沙对污染物的吸附/解吸特性的测量装置及其使用方法。
背景技术
近年来,泥沙的环境效应得到越来越多的重视,在不同的环境条件下,泥沙会对污染物进行吸附/解吸,可成为河流污染物的源和汇,从而实现对水环境的调节。表层床沙和上覆水体直接接触,且粒径相对较细,是床沙对污染物吸附解吸的主要部分,环境效应显著,因此对其吸附/解吸特性的测量对水生态环境的评估意义重大。尤其是平原河流和湖泊,其河床大部分是由粘细泥沙组成,吸附容量大,对水生态自我调节能力的作用极大。因此,有必要针对表层床沙的特征提出一种合理有效的污染物吸附/解吸特性的测量装置及方法。
表层床沙主要通过与孔隙水的相互作用吸附污染物,而上覆水体中的污染物主要通过离子扩散以及上覆水与孔隙水的水体交换向床沙吸附/解吸污染物,因此在设计测量装置时模拟表层床沙对上覆水体污染物的吸附,必须要充分考虑表层床沙与孔隙水和上覆水与孔隙水的作用特点。另外,在污染物迁移转化过程中起关键作用的表层床沙厚度通常很薄。目前提出的几种泥沙吸附/解吸性能实验装置均未充分考虑到这一特点:
最常用的方法是恒温振荡箱批量处理法,通过恒温振荡的方法对一定量的泥沙在较小容器内进行吸附/解吸污染物的实验,可以获得泥沙的等温吸附曲线和吸附动力学曲线。此法主要适用于泥沙颗粒本身吸附/解吸能力的探究,无法针对床沙的赋存状态以及与孔隙水的作用特点给出其吸附特性。由于高频振荡和较小的反应空间,泥沙与污染物充分接触,极大得增大了水沙接触面积,造成床沙对污染物吸附量的高估,不利于对水生态环境的预测;另外此法无法模拟床沙的厚度特性及边界可渗透的情况,所测的泥沙吸附/解吸曲线与实际必然相差很大。
传统的土柱实验,是在盛有土柱的容器侧壁开孔,从一端注入污染物,另外一端接收,主要用于观测污染物在土柱中迁移转化和土壤对污染物的截留能力。 此法考虑了孔隙水在泥层中的渗透性,但其并非定量测量泥层吸附/解吸能力的装置,水沙接触不充分,无法定量给出某层床沙的吸附解吸量,因此无法绘制相应的等温吸附曲线和吸附动力学曲线;另外,此法所模拟的床沙渗透性只是重力作用下的自然渗透,无法针对不同工况对床沙渗透压进行控制和调节。通常情况下,土柱/沙柱厚度较厚,长达几十厘米,无法针对薄层床沙进行实验研究。
专利号为“CN 102590479 A”的发明专利公开了一种基于扩散理论的河湖底泥污染物通量测试方法及装置,此法是将河床底泥置于底座圆筒中,然后注入上覆水,然后在不同时间段内对上覆水分层取样,然后依据扩散理论计算底泥的污染物释放通量。此法主要针对床沙释放通量的计算,床沙在装置底部,处于完全静止状态,上覆水与孔隙水只能通过离子扩散进行作用,没有上覆水与孔隙水的动态交换,因此较适用于水动力弱的水体,比如上覆水和孔隙水交换较弱的湖泊;底部边界不可渗透,必然会影响到下层床沙与孔隙水的接触,这与自然条件不符,与传统的土柱实验一样,无法定量给出某层床沙的吸附解吸量,因此无法绘制相应的等温吸附曲线和吸附动力学曲线,同时该方法适用于底泥厚度大于5cm的情况,不适用于薄层床沙。
循环水槽实验,是将泥沙铺在水槽底部,通过水泵或者轮机提供动力,使水在床沙表面循环。此法主要针对水动力对泥沙吸附/解吸的影响进行探究,虽然更符合天然条件下的水动力作用情况,但是没有考虑到床沙底部具有可渗透,且具有一定渗透压的边界条件,导致孔隙水与上覆水交换受限,另外其实验装置不适用于批量实验,因此无法针对表层床沙给出其吸附特征曲线。
发明内容
本发明提供了一种测量表层床沙对污染物吸附/解吸特性的测量装置及方法,解决了现有技术中无法同时满足表层床沙与孔隙水充分作用和上覆水与孔隙水充分交换的特点,以及无法同时模拟床沙下部边界可渗透且渗透压可控的情况;同时,本发明可以对任意厚度的表层床沙进行吸附解吸实验。具体技术问题描述如下:
恒温震荡箱虽然可以进行批量实验,方便地给出泥沙的吸附/解吸特征曲线,但是高频振荡使水沙接触过于充分,造成水沙接触面积显著增大,使泥沙吸附/ 解吸量明显偏大;传统的沙柱实验可以考虑到泥层的渗透性,但无法针对某一沙层绘制相应的等温吸附曲线和吸附动力学曲线,所模拟的床沙渗透性只是重力作用下的自然渗透,无法对渗透压进行调节和控制;一种基于扩散理论的河湖底泥污染物通量测试方法及装置,忽略了上覆水与孔隙水的动态交换,底部边界不可渗透,无法得到底泥的等温吸附曲线和相应的特征参数;循环水槽实验,虽然更符合天然条件下的水动力作用情况,但很少考虑到床沙底部的可渗透,且具有一定渗透压的边界条件,导致孔隙水与上覆水交换受限,另外其实验装置不适用于批量实验,因此无法针对表层床沙给出其吸附特征曲线。
为了解决上述技术问题,本发明可以通过以下技术方案实现:
提供一种表层床沙对污染物吸附/解吸特性的测量装置,自内而外包括反应筒、集液筒和液体循环部件,集液筒为上部开洞的圆筒,反应筒为集液筒上部的开洞,反应筒底部开孔悬空位于集液筒内,反应筒筒壁距底部三分之二处有对称的两个排气孔,反应筒内部放置样品架和样品沙盘,溶液循环部件由橡胶管和蠕动泵组成。
如上所述的集液筒,其上部开洞形成反应筒,即反应筒的外壁是集液筒的内壁,反应筒底部与集液筒底部距离大于集液筒总高度的二分之一,保证反应筒总体积小于集液筒下部体积。实验时应使反应液体的总体积低于反应筒体积,但当渗透方式为自然渗透时,反应液体总体积可超过反应筒体积,但要低于集液筒总体积。这样既可防止排气孔关闭后反应筒内液面过高溢出,又可防止集液筒内液面过高时,浸没样品沙盘。
如上所述的反应筒,是集液筒上部的开洞,其下底面开孔直径小于顶面开孔直径和样品架底面直径,用于支撑样品架并跟样品架底部紧密相接,实现反应筒内的液体都通过样品沙盘底部渗透到集液筒中。
如上所述的样品架为框架结构,样品沙盘置于样品架底部,底部镂空,可由尼龙绳编织而成,可用于支撑样品沙盘,既能透水又不会改变样品沙的渗透性,方便样品沙的转移。样品架底部直径略小于反应筒顶部开孔直径,大于反应筒底部开孔直径。
如上所述的样品沙盘位于样品架上,其为中空圆筒,直径与样品架底部直径相同,实验时从底部套上塑料编织套,然后在编织袋外侧扎上橡皮筋。塑料编织 套可以保证床沙样品的透水性,可以模拟床沙下边界的透水特性,同时又能将床沙固定在反应筒内。
如上所述的液体循环部件,自蠕动泵延伸出的两根橡胶管,一根连接到集液筒底部,另一根连接到反应筒筒壁上,紧贴筒壁固定,上部反应筒内液体通过样品沙进入下部集液筒内,集液筒内液体通过蠕动泵提供动力,进入上部反应筒,形成装置内水循环,同时满足了床沙与孔隙水充分接触,孔隙水与上覆水充分交换。
如上所述的测量表层床沙污染物吸附/解吸特性的装置,可以通过控制反应筒侧壁排气孔的开关和蠕动泵流量控制样品沙的渗透速率(水溶液循环速率),实现了床沙的渗透压可控。
基于上述使用该装置测量表层床沙污染物吸附/解吸特性的方法,包括如下步骤:
1)准备床沙样品,根据设定的床沙厚度,将设定厚度的床沙样品转移到已固定好塑料编织套的样品沙盘内,或者将现场采集的表层床沙样品按照设定厚度铺设到固定好塑料编织套的样品沙盘内,将样品沙盘放置到样品架上,将样品架放到反应筒中;
2)设定好蠕动泵的流量,若溶液通过床沙样品的渗透方式选择为自然渗透,则打开反应筒侧壁排气孔,蠕动泵流量根据下式取自然渗透速率进行计算,一般使蠕动泵流量略大于渗透流量,若反应筒内液位过高,会通过侧壁排气孔排入集液筒内;若溶液通过床沙样品的渗透方式选择为加速渗透(设定的渗透速率大于自然渗透速率),则关闭反应筒侧壁排气孔,使集液筒内形成负压,加速孔隙水的渗透,蠕动泵流量Q的计算公式为:
Q=π/4×d2×υ×60              (1)
式中Q——蠕动泵流量,mL/min;d——样品沙盘内径,cm;
υ——渗透速率,cm/s,自然渗透速率可初步选为5×10-4cm/s。
3)将准备好的设定浓度和体积的液体全部倒入反应筒中,打开蠕动泵,实验开始计时,集液筒内溶液通过橡胶管进入反应筒,反应筒内溶液通过样品沙滴入集液筒,形成床沙与循环的溶液相互作用。
4)在固定时间内通过针管在反应筒中取10mL液体,过0.45μm水系滤膜,测定该时段的液体浓度,以初始浓度与实验结束时液体浓度差计算泥沙吸附/解吸量,记录床沙的吸附/解吸动力学曲线和固定时间内的吸附/解吸量;实验结束后,将样品沙盘中的床沙风干称量,得到表层床沙干重,可以得到单位质量或单位面积床沙吸附/解吸量,结合液体浓度变化,可以得到表层床沙的吸附/解吸特性。
特别地,在上述装置基础之上,可在装置中加设孔隙水实时取样装置,所取液体浓度为短期向下渗透的孔隙水浓度平均值(一般为5~15分钟内的平均值,取决于孔隙水取样部件容量的大小和孔隙水向下渗透的速率)。实时获取的孔隙水向下渗透的短期浓度平均值,可以更好的探究床沙在不同工况下向下迁移的孔隙水中各组分浓度的变化情况,得到床沙对污染物的缓冲规律。
通过在集液筒中安置孔隙水取样部件实现对向下迁移的孔隙水浓度的实时测量。孔隙水取样部件包括孔隙水取样部件和孔隙水取样管。孔隙水取样部件上部器皿侧壁开孔,孔隙水取样管一端卡在取样部件上部器皿侧壁的开孔,另一端通过反应筒一侧排气孔伸出装置,便于取样。孔隙水取样部件上部器皿侧壁开孔孔径、排气孔孔径和孔隙水取样管管径三者大小一致,满足加速渗透时集液筒内部气密性的要求,同时便于孔隙水取样管的固定。
如上所述的孔隙水取样部件上部为宽浅小容量器皿,通过中部支撑长杆和下部配重部件立于集液筒中,宽浅小容量器皿、支撑杆与下部配重部件固定连结。宽浅小容量器皿用于收集从样品盘中直接下渗的液体,下渗液体在宽浅器皿中满溢后进入集液筒;中部支撑杆用于支撑器皿位于集液筒上部,避免与集液筒之前下渗的液体混合;下部配重主要用于孔隙水取样部件的固定,避免由于浮力作用倾倒。实验准备时,可根据是否有孔隙水实时收集的需要,在实验开始前将孔隙水取样部件置于集液筒中或取出。孔隙水取样部件的容量决定了所取液体代表多长时间内的向下迁移的孔隙水浓度平均值。时间t的计算公式如下:
t=V/Q                (2)
式中V——孔隙水取样部件上部宽浅器皿的容积;Q——装置液体循环平衡后的蠕动泵流量
与现有技术相比,本发明的有益效果是:
该表层床沙污染物吸附/解吸特性测量装置,最显著的优势是既能实现床沙与孔隙水的充分接触和上覆水与孔隙水的充分交换,又不会改变床沙的赋存形态;可以对任意厚度的床沙进行实验,尤其是薄层床沙(5cm以下);同时也可以模拟天然条件,实现了床沙底部可渗透且渗透压可控的边界条件,并且可以简便得通过调节蠕动泵流量和排气孔的开关实现床沙的自然渗透和加速渗透的切换。另外,通过加设孔隙水取样部件,可以实时获取向下迁移的孔隙水的短期浓度平均值(一般为5~15min),更加全面的获取床沙对外源物质作用的信息。蠕动泵可以实现多管路并联工作,而本装置结构简单易于加工,为沙样批量处理提供可能,从而可以更加方便快捷得获得符合床沙天然特性的吸附动力学曲线、等温吸附曲线和吸附解吸容量。通过本装置和方法得到的吸附特征参数可为水质模型提供符合床沙自然赋存条件的、更加科学合理的数据支撑,具有显著的环境效益。
附图说明
图1为本发明的表层床沙污染物吸附/解吸特性测量装置的结构示意图;
图2为样品架和样品沙盘的结构示意图;
图3为装置主体部分反应筒和集液筒的正视图和俯视图。
图4为加入孔隙水取样部分的装置结构示意图
图5为孔隙水取样部分的结构示意图
图6应用实例1中利用本发明测量装置所获得的单位面积床沙的动力学吸附曲线。
图7应用实例2中利用本发明测量装置所获得的单位面积床沙释放量随时间变化曲线,及与圆筒柱中床沙静置释放过程的对比。
其中1-集液筒;2-反应筒;3-样品架;4-样品沙盘;5-排气孔;6-溶液循环部件;7-橡胶管;8-蠕动泵;9-孔隙水取样部件;10-孔隙水取样管。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
如图1所示,一种表层床沙对污染物吸附/解吸特性的测量装置,自内而外包括样品沙盘4、样品架3、反应筒2、集液筒1和液体循环部件6,液体循环部 件6由橡胶管7和蠕动泵8组成,集液筒1为上部开洞的圆筒,反应筒2为集液筒1上部的开洞,反应筒2底部开孔悬空位于集液筒1内,反应筒2筒壁距底部三分之二处有对称的两个排气孔5;样品架3套置在反应筒2内,样品架3为框架结构且底部镂空并与反应筒2底部的开孔相接;样品沙盘4置于样品架3上,样品沙盘4为中空圆筒且直径与样品架3底部直径相同;自蠕动泵8延伸出的两根橡胶管7,一根连接到集液筒1底部,另一根连接到反应筒2筒壁上,紧贴筒壁固定,上部反应筒2内液体通过样品沙进入下部集液筒1内,集液筒1内液体通过蠕动泵8提供动力,进入上部反应筒2,形成装置内水循环。
所述的集液筒1上部开洞形成反应筒2,即反应筒2的外壁是集液筒1的内壁,见图3,反应筒2底部与集液筒1底部距离大于集液筒1总高度的二分之一,保证反应筒2总体积小于集液筒1下部体积。实验时使反应液体的总体积低于反应筒2体积,既可防止排气孔关闭后反应筒内液面过高溢出,又可防止集液筒1内液面过高时,浸没样品沙盘4。
所述的反应筒2下底面开孔直径<样品架3底面直径<反应筒2顶面开孔直径,使得反应筒2底部支撑样品架3,并跟样品架3底部紧密相接,实现反应筒2内的液体都通过样品沙盘4底部渗透到集液筒1中。
所述的样品架3的框架结构见图2,主要用于床沙样品的铺设和转移,底部镂空,可通过尼龙绳编织而成,用于支撑样品沙盘4,样品架3底部直径略小于反应筒2顶部开孔直径,大于反应筒2底部开孔直径。
所述的样品沙盘4置于样品架3上,样品沙盘4为中空圆筒,见图2,其直径与样品架3底部直径相同;实验时需要从底部套上塑料编织套,塑料编织套透水性强,编织致密,不会造成沙样流失;然后在编织袋外侧套上橡皮筋,用于固定塑料编织套;然后放置到样品架3上,铺设床沙样品,通过样品架3将样品沙盘4转移到反应筒2内。
所述的液体循环部件6的橡胶管7,套接在集液筒1底部向外的开孔上,见图3,实验时上部紧贴反应筒2侧壁,使液体沿反应筒2侧壁注入,避免对反应筒2内液面的扰动。
在实际操作过程中,若液体通过样品沙盘4的渗透方式选择为自然渗透,即渗透速率为自然渗透速率(对于一般粘性土可以选为5×10-4cm/s),则打开反应 筒2侧壁排气孔5。当蠕动泵8从集液筒1内抽取液体后,集液筒1内外气压相等,孔隙水在自重作用下渗透滴入集液筒1。同时,在设定蠕动泵8流量时,使其略大于由公式(1)计算所得的渗透流量,当反应筒2内液位过高时,可通过侧壁排气孔5排入集液筒1内,保持反应筒2内水位在中部以上,保证床沙样品所承受的水压基本不变。
在实际操作过程中,若液体通过样品沙盘4的渗透方式选择为加速渗透,即渗透速率为加速渗透速率,则关闭反应筒2侧壁排气孔5。当蠕动泵8从集液筒1内抽取液体后,集液筒1内压强降低,形成负压,孔隙水在负压作用下加速渗透滴入集液筒1,蠕动泵8流量越大,集液筒1内压降降低越快,负压越大,形成的渗透压越大,渗透速度越快,装置本身可通过自调节使系统正常运行。蠕动泵渗透流量根据所设定的渗透速率可由公式(1)计算可得。具体实施过程中,要缓慢增大蠕动泵流量,根据沙样渗透能力,调整加速渗透速率。
在具体实施例中,通常根据现场所采床沙特点选定实验参数,从而确定床沙样品铺设厚度、反应液体总体积和渗透速率。当液体渗透方式为自然渗透时,液体总体积不能超过排气孔5到反应筒2底部到之间的容量(即反应筒总容积的三分之二),确保液体可以正常循环。具体设计反应筒尺寸时,尽量使反应筒直径与深度的比值取大,可以增大渗透流量,减少液体在装置内循环一次所用的时间。若样品为现场柱状采样器所取,则根据柱状采样器尺寸确定装置反应筒2、样品架3和样品沙盘4的尺寸,可直接将柱状采样器表层沙样转移到样品沙盘4中,得到现场原状沙的吸附/解吸特性。
实验参数选定后,使用装置测量表层床沙污染物吸附/解吸特性的方法包括以下步骤:
1)准备床沙样品,根据设定的床沙厚度,将设定厚度的床沙转移到已固定好塑料编织套的样品沙盘4内,或者将现场采集的表层床沙样品按照设定的实验床沙厚度铺设到固定好塑料编织套的样品沙盘4内,将样品沙盘4放置到样品架3上,将样品架3放到反应筒2中;
2)设定好蠕动泵8的流量,若液体通过床沙样品的渗透方式选择为自然渗透,则打开反应筒2侧壁排气孔5,蠕动泵8流量根据公式(1)取自然渗透速率进行计算,一般使蠕动泵8流量略大于渗透流量;若液体通过床沙样品的渗透 方式选择为加速渗透,则关闭反应筒2侧壁排气孔5,蠕动泵8流量根据公式(1)取设定的加速渗透速率进行计算,实验开始后,蠕动泵8流量缓慢增加到预设值;
3)准备好实验所需的浓度和体积的液体,将液体全部倒入反应筒2中,打开蠕动泵8,实验开始计时;
4)在固定时间内通过针管在反应筒2中取10mL液体,过0.45μm水系滤膜,用钼-锑-抗比色法测定上清液中溶解性磷酸盐的含量,以初始浓度与实验结束时磷液体浓度差作为泥沙吸附量测量浓度,记录床沙的吸附/解吸动力学曲线和固定时间内的吸附/解吸量;实验结束后,将样品沙盘4中的床沙风干称量,得到表层床沙干重,可以得到单位质量或单位面积床沙吸附/解吸量,结合液体浓度变化,可以得到表层床沙的吸附/解吸特性。
特别地,在上述装置基础之上,可在装置中加设孔隙水实时取样部分,所取液体浓度为短期向下渗透的孔隙水浓度平均值(一般为5~15分钟内的平均值,取决于孔隙水取样部件上部宽浅器皿容量的大小和孔隙水向下渗透的速率)。
所述的孔隙水实时取样部分,是通过在集液筒1中安置孔隙水取样部分实现对向下迁移的孔隙水浓度的实时测量。孔隙水取样部分包括孔隙水取样部件9和孔隙水取样管10。孔隙水取样部件9上部器皿侧壁开孔,孔隙水取样管10一端卡在孔隙水取样部件9上部器皿侧壁开孔,另一端通过反应筒2一侧排气孔5伸出装置,便于取样。孔隙水取样部件9上部器皿侧壁开孔孔径、排气孔5孔径和孔隙水取样管10管径三者大小一致,满足加速渗透时集液筒1内部气密性的要求,同时便于孔隙水取样管10的固定。
如上所述的孔隙水取样部件9上部为宽浅小容量器皿,通过中部支撑长杆和下部配重部件立于集液筒1中,宽浅小容量器皿、支撑杆与下部配重部件固定连结。宽浅小容量器皿用于收集从样品盘中直接下渗的液体,下渗液体在宽浅器皿中满溢后进入集液筒1;中部支撑杆用于支撑器皿位于集液筒1上部,避免与集液筒1之前下渗的液体混合;下部配重主要用于孔隙水取样部件9的固定,避免由于浮力作用倾倒。实验准备时,可根据是否有孔隙水实时收集的需要,在实验开始前将孔隙水取样部件9置于集液筒1中或取出。孔隙水取样部件9的容量决定了所取液体代表多长时间内的向下迁移的孔隙水浓度平均值。时间t的计算公式如下:
t=V/Q               (2)
式中V——孔隙水取样部件上部器皿的容积;Q——装置液体循环平衡后的蠕动泵流量
实际操作中,若需加设孔隙水取样部分,需在液体注入集液筒1和将样品架3放入反应筒2之前,并且要注意避免直接注入的液体进入孔隙水取样部件9上部器皿,避免影响实验初始阶段向下迁移的孔隙水浓度短期平均值。
批量恒温振荡实验是目前普遍采用的确定泥沙吸附特性的方法,由于其水沙反应空间小,水沙接触过于充分,得到的结果显著偏大,在多篇文献中均有报道,而CN 102590479 A装置所提供的方法,床沙吸附污染物只能依靠离子扩散,且厚度不能小于5cm,覆盖在下层的床沙的吸附作用被极大地限制,使得测量结果偏小。通过本装置所得到的泥沙平衡吸附值,基本位于上述两种手段所得的测量值之间,尤其是对于细颗粒泥沙。
另外,蠕动泵可以实现多管路并联工作,且装置结构简单易于加工,可实现沙样批量处理,从而可以更加方便快捷得获得符合床沙天然特性的等温吸附曲线和吸附解吸容量。
实施例1
床沙样品为淮河现场采集的沉积物沙柱,取其表层淤泥质床沙进行动力学吸附曲线测量和平衡吸附量的测定。由于一般柱状采样器的直径为9cm或12cm,样品沙盘的直径可依其确定。反应筒直径与深度比尽量取大,此实施例中选取的反应筒直径为13cm,高度为9cm,容积的三分之二是0.8L,筒壁排气孔直径为1.5cm,集液筒直径为17cm,集液筒底部距离反应筒底部距离为10cm;样品沙盘直径为12cm(与柱状采样器直径相同)。样品沙中值粒径为60μm,实验中样品沙厚度取为2cm,待吸附溶质选为正磷酸盐,浓度为2mg/L,体积为2L,多于反应筒容积三分之二的部分由排气孔排入集液筒,样品床沙渗透方式选为自然渗透。具体实施步骤为:
1)准备床沙样品,将表层2cm内的现场采集的沉积柱直接转移到已固定好塑料编织套的样品沙盘内,将样品沙盘放置到样品架上,将样品架放到反应筒中。
2)蠕动泵流量根据公式(1)进行计算为3.39mL/min,取略大于公式计算结果的3.5mL/min,由于液体通过床沙样品的渗透方式选择为自然渗透,打开反 应筒侧壁排气孔。
3)将2L浓度为2mg/L磷酸盐溶液倒入反应筒中,打开蠕动泵,实验开始计时,集液筒内溶液通过橡胶管进入反应筒,反应筒内溶液通过样品沙滴入集液筒,形成床沙与循环的溶液相互作用。
4)每隔4h通过针管在反应筒中取10mL液体,过0.45μm水系滤膜,用钼-锑-抗比色法测定上清液中磷酸盐的含量,测量该时刻水液体中的磷浓度,直到液体浓度保持不变,72h后实验结束,将样品沙盘中的床沙风干称量,得到床沙干重为215.4g。以反应筒内不同时刻与初始时刻磷液体浓度差作为该时刻泥沙吸附量,则可绘出单位面积床沙磷吸附量随时间变化的动力学吸附曲线;以初始浓度与实验结束时磷液体浓度差作为床沙的吸附量,可以得到该浓度下单位面积床沙的吸附量。单位面积床沙的动力学吸附曲线如图4所示,平衡吸附量为358mg P/m2,换算成单位质量泥沙吸附量为18.7mg P/kg。
在相同工况下,将批量恒温振荡实验法和CN 102590479 A装置所提供的方法测得的泥沙平衡吸附量,与本装置测得结果进行对比。恒温震荡实验(泥沙浓度选为10g/L,磷溶液浓度为2mg/L)所得单位质量床沙吸附量为81.3mg P/kg,远远大于本装置所测的结果;CN 102590479 A装置所提供的方法(床沙厚度5cm,直径12cm,干重532g,磷溶液5L)得到的单位质量床沙磷吸附量为10.6mg P/kg,明显低于本装置所测结果。本装置所测结果位于两种装置之间,避免了床沙吸附/解吸量过大或过小的问题。
若需要绘制等温吸附曲线,样品沙盘直径要设计得较小,方便统一铺沙,蠕动泵可采用多通道蠕动泵,在不同液体浓度下进行吸附实验,得到平衡吸附量,绘制等温吸附曲线,利用等温吸附模型计算吸附特征参数。
对于床沙解吸实验,可将液体浓度设定为零或者极低浓度,在不同时间测量液体浓度变化,计算床沙解吸量。
实施例2
床沙样品为淮河现场采集的沉积物沙柱,取其浅表层淤泥质床沙进行加速渗透的磷解吸实验。此实施例中选取的反应筒直径为9.5cm,高度为10cm,筒壁排气孔中心点距筒顶3cm,排气孔直径为0.5cm,集液筒直径为12cm,集液筒底部距离反应筒底部距离为10cm;样品沙盘内径为9cm(与柱状采样器直径相 同);孔隙水取样部件为宽浅圆盘、长支撑杆和实心圆柱配重,孔隙水取样盘直径为8cm,高度为1cm,侧壁取样孔直径为0.5cm,容积为50ml,孔隙水取样管外径为0.5mm,可以从一侧排气孔伸出,并保持容器的气密性。样品沙中值粒径为15.6μm,实验中样品沙厚度取为8mm,浅表层床沙磷含量最高,故选取该厚度进行实验。实验液体为去离子水,考虑到孔隙水取样部件所占据的溶液体积,同时又要保证集液筒侧壁开孔淹没在水中,保证水循环,因此液体体积选为0.8L。样品床沙渗透方式选为加速渗透,加速渗透流量设为5mL/min,反应筒一侧排气孔用橡胶塞封闭,另一侧留于孔隙水取样管通过。具体实施步骤为:
1)准备装置,将孔隙水取样部件置于集液筒中,孔隙水取样管一端卡在取样盘侧壁开孔,另一端通过反应筒一侧排气孔伸出装置,便于取样;利用橡胶管将蠕动泵连入装置;将0.4L水直接倒入集液筒(注意避开孔隙水取样盘)。
2)准备床沙样品,用9cm取样环获取表层8mm内的现场采集的沉积柱,直接转移到已固定好塑料编织套的样品沙盘内(由于泥层较薄,为了防止细小颗粒随孔隙水流失,可在塑料编织套上部放0.8μm滤膜),将样品沙盘放置到样品架上,将样品架放到反应筒中。
3)通过渗透流量公式计算得到样品床沙自然渗透流量大约为2mL/min,由于液体通过床沙样品的渗透方式选择为加速渗透,渗透流量设置为5mL/min,因此蠕动泵流量设置为5mL/min,关闭反应筒另一侧排气孔。
4)将剩余的0.4L去离子水倒入反应筒中,打开蠕动泵,实验开始计时,集液筒内溶液通过橡胶管进入反应筒,反应筒内溶液通过样品沙滴入集液筒,形成床沙与循环的溶液相互作用。
5)在0.25、24、48和72h分别将针管插入孔隙水取样管中抽取孔隙水样品25mL(由于浓度较低,故样品取样量较多),该样品反映取样前10min内的孔隙水浓度平均值。抽取的溶液过0.45μm水系滤膜,用钼-锑-抗比色法测定上清液中磷酸盐的含量,测量该时刻水液体中的磷浓度。96h和120h时,分别用针管抽取反应筒内上覆水液体和孔隙水取样盘中液体各25mL,通过对比二者的浓度得到床沙在磷浓度缓冲方面的作用。
实验结束后,将样品沙盘中的床沙风干称量,得到床沙干重为47.3g。以不同时刻孔隙水浓度变化和最后两个时刻上覆水的变化,则可初步得到床沙与去离 子纯水作用后的磷释放曲线;以初始浓度与实验结束时上覆水磷液体浓度差作为床沙的解吸量,可以得到该浓度下单位面积床沙的解吸量。单位面积床沙的解吸量随时间的变化如图7所示,实验结束时解吸量为11.3mg P/m2,换算成单位质量泥沙解吸量为1.52mg P/kg。
在相同工况下,在内径为9cm的圆柱筒中进行与上述工况设置相同的实验,相同厚度为8mm的表层床沙和0.8L去离子水,与本装置测量结果进行对比。对比结果如图7所示,圆柱筒中的床沙一直处于释放状态,所得单位质量床沙解吸量为2.96mg P/kg,接近本发明装置所测结果的2倍。通过本装置获得的床沙吸附特点为先释放,当液体浓度较高时,床沙又变现为吸附,是一个动态的吸附解吸过程。因此通过本发明装置可以获得泥沙吸附解吸的更多特点,从而获得自然河流中床沙对各种污染物的缓冲作用机制。
本发明中涉及的未说明部分与现有技术相同或采用现有技术加以实现。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (8)

  1. 表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:自内而外包括样品沙盘(4)、样品架(3)、反应筒(2)、集液筒(1)和液体循环部件(6),液体循环部件(6)由橡胶管(7)和蠕动泵(8)组成,集液筒(1)为上部开洞的圆筒,反应筒(2)为集液筒(1)上部的开洞,反应筒(2)的外壁是集液筒(1)的内壁,反应筒(2)底部开孔并悬空位于集液筒(1)内,反应筒(2)底部与集液筒(1)底部距离大于集液筒(1)总高度的二分之一,反应筒(2)的筒壁上设有排气孔(5);样品架(3)套置在反应筒(2)内,样品架(3)为框架结构且底部镂空并与反应筒(2)底部的开孔相接;样品沙盘(4)置于样品架(3)上,样品沙盘(4)为中空圆筒且直径与样品架(3)底部直径相同;自蠕动泵(8)延伸出的两根橡胶管(7),一根连接到集液筒(1)底部,另一根连接到反应筒(2)筒壁上,紧贴筒壁固定,上部反应筒(2)内液体通过样品沙进入下部集液筒(1)内,集液筒(1)内液体通过蠕动泵(8)提供动力,进入上部反应筒(2),形成装置内水循环。
  2. 根据权利要求1所述的表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:反应筒(2)下底面开孔直径<样品架(3)底面直径<反应筒(2)顶面开孔直径,使得反应筒(2)底部支撑样品架(3),并跟样品架(3)底部紧密相接,实现反应筒(2)内的液体都通过样品沙盘(4)底部渗透到集液筒(1)中。
  3. 根据权利要求1所述的表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:反应筒(2)筒壁距底部三分之二处有对称的两个排气孔(5)。
  4. 根据权利要求1所述的表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:样品沙盘(4)从底部套上塑料编织套,在编织套外侧扎上橡皮筋。
  5. 根据权利要求1或3所述的表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:可以通过控制反应筒(2)筒壁的排气孔(5)的开关和蠕动泵(8)的流量来控制样品沙的渗透速率,实现了床沙的渗透压可控。
  6. 根据权利要求1所述的表层床沙对污染物吸附/解吸特性的测量装置的使用方法,其特征在于:包括如下步骤:
    1)准备床沙样品,根据设定的实验床沙厚度,将沙样转移到已固定好塑料编织套的样品沙盘(4)内,或者将现场采集的表层床沙样品按照设定的实验床沙厚 度铺设到固定好塑料编织套的样品沙盘(4)内,将样品沙盘(4)放置到样品架(3)上,将样品架(3)放到反应筒(2)中;
    2)设定好蠕动泵(8)的流量,若液体通过床沙样品的渗透方式选择为自然渗透,则打开反应筒(2)侧壁排气孔(5),蠕动泵(8)流量取自然渗透速率根据下式进行计算,一般使蠕动泵(8)流量略大于渗透流量;若液体通过床沙样品的渗透方式选择为加速渗透,则关闭反应筒(2)侧壁排气孔(5),蠕动泵(8)流量根据下式取设定的加速渗透速率进行计算,实验开始后,蠕动泵(8)流量缓慢增加到预设值;
    蠕动泵(8)流量Q的计算公式为:
    Q=π/4×d2×υ×60
    式中Q——蠕动泵流量,mL/min;d——样品沙盘内径,cm;
    υ——渗透速率,cm/s,自然渗透速率可初步选为5×10-4cm/s。
    3)将准备好的待反应液体全部倒入反应筒(2)中,打开蠕动泵(8),实验开始计时;
    4)在固定时间内通过针管在反应筒(2)中取10mL液体,过0.45μm水系滤膜,测定该时段的液体浓度,以初始浓度与实验结束时液体浓度差计算泥沙吸附/解吸量,记录床沙的吸附/解吸动力学曲线和固定时间内的吸附/解吸量;实验结束后,将样品沙盘(4)中的床沙风干称量,得到表层床沙干重,可以得到单位质量或单位面积床沙吸附/解吸量,结合液体浓度变化,可以得到表层床沙的吸附/解吸特性。
  7. 根据权利要求1所述的表层床沙对污染物吸附/解吸特性的测量装置,其特征在于:所述装置还设有孔隙水实时取样部分,所述孔隙水取样部分包括孔隙水取样部件(9)和孔隙水取样管(10),孔隙水取样部件(9)上部为宽浅小容量器皿,通过中部支撑长杆和下部配重部件立于集液筒中,宽浅小容量器皿、支撑杆与下部配重部件固定连结,宽浅小容量器皿用于收集从样品盘中直接下渗的液体,中部支撑杆用于支撑器皿位于集液筒上部,下部配重主要用于孔隙水取样部件的固定,孔隙水取样部件(9)上部器皿侧壁开孔,孔隙水取样管(10)一端卡在孔隙水取样部件(9)上部器皿侧壁的开孔,另一端通过反应筒(2)一侧排气孔 (5)伸出装置,孔隙水取样部件(9)上部器皿侧壁开孔孔径、排气孔(5)孔径和孔隙水取样管(10)管径三者大小一致。
  8. 根据权利要求6所述的表层床沙对污染物吸附/解吸特性的测量装置的使用方法,其特征在于:在准备床沙样品前还包括准备装置的步骤,将孔隙水取样部件置于集液筒中,孔隙水取样管一端卡在孔隙水取样部件上部器皿侧壁开孔,另一端通过反应筒一侧排气孔伸出装置,利用橡胶管将蠕动泵连入装置;避开孔隙水取样部件上部宽浅器皿将水直接倒入集液筒。
PCT/CN2017/105468 2017-06-12 2017-10-10 表层床沙污染物吸附/解吸特性测量装置及其使用方法 WO2018227828A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2017399742A AU2017399742B2 (en) 2017-06-12 2017-10-10 Device for measuring adsorption/desorption characteristic of surface bed sediments on contaminants and method of using the device
US16/084,224 US10545128B2 (en) 2017-06-12 2017-10-10 Device for measuring adsorption/desorption characteristic of surface bed sediments on contaminants and method of using the device
JP2018548002A JP6698171B2 (ja) 2017-06-12 2017-10-10 河床表層材料の汚染物に対する吸着/脱着特性の測定装置およびその使用方法
EP17896324.5A EP3441759B1 (en) 2017-06-12 2017-10-10 Sample preparation device for measuring pollutant adsorption/desorption characteristic of surface bed sediments and use method therefor
CA3015735A CA3015735C (en) 2017-06-12 2017-10-10 Device for measuring adsorption/desorption characteristic of surface bed sediments on contaminants and method of using the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710438454.0A CN107389896B (zh) 2017-06-12 2017-06-12 表层床沙污染物吸附/解吸特性测量装置及其使用方法
CN201710438454.0 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018227828A1 true WO2018227828A1 (zh) 2018-12-20

Family

ID=60332231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105468 WO2018227828A1 (zh) 2017-06-12 2017-10-10 表层床沙污染物吸附/解吸特性测量装置及其使用方法

Country Status (6)

Country Link
US (1) US10545128B2 (zh)
EP (1) EP3441759B1 (zh)
JP (1) JP6698171B2 (zh)
CN (1) CN107389896B (zh)
AU (1) AU2017399742B2 (zh)
WO (1) WO2018227828A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033754A (zh) * 2020-09-23 2020-12-04 中国科学院东北地理与农业生态研究所 一种沙质河床沉积物孔隙水采集装置及其制作方法
CN112179729A (zh) * 2019-07-04 2021-01-05 天津大学 一种管道沉积物模拟实验装置、实验系统及实验方法
CN117232910A (zh) * 2023-11-16 2023-12-15 天津工大纺织助剂有限公司 一种用于fdy纺织助剂抽检的取样装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389896B (zh) * 2017-06-12 2018-04-03 河海大学 表层床沙污染物吸附/解吸特性测量装置及其使用方法
CN109187911A (zh) * 2018-06-26 2019-01-11 广东省测试分析研究所(中国广州分析测试中心) 一种用于研究缺氧/厌氧沉积物中汞形态的动态模拟实验装置
CN109781588B (zh) * 2019-01-18 2022-02-15 南京智感环境科技有限公司 一种沉积物-水界面污染物最大扩散通量采样装置和方法
CN109813626B (zh) * 2019-03-28 2023-10-20 青岛理工大学 一种平行持载作用方向的混凝土吸水率测试装置
CN110726640B (zh) * 2019-11-18 2022-05-17 中煤能源研究院有限责任公司 一种煤样瓦斯吸附常数自动测定装置
CN111257541B (zh) * 2020-03-12 2022-07-01 湖南科技大学 一种连续测定土体状态等温吸附曲线的方法
CN113029864B (zh) * 2021-03-03 2021-12-14 重庆科技学院 一种循环测试聚合物溶液动态吸附量的监测装置及方法
CN113029992B (zh) * 2021-03-03 2022-01-18 重庆科技学院 一种黏弹性流体在介质表面动态吸附的实验装置及方法
CN113702618B (zh) * 2021-07-22 2022-06-24 浙江大学 快速测定土体等温吸附曲线的循环闭合系统土柱测试方法
CN113607922B (zh) * 2021-08-04 2023-06-23 河海大学 一种基于水体纳污能力分析的氮、磷污染底泥环保疏浚深度确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062988A (ko) * 2002-01-22 2003-07-28 김수삼 진공배수 기법과 동전기 현상의 복합 기법(진공-동전기배수정화 기법)에 의한 준설 슬러리 및 광미의 정화와탈수처리
CN102372362A (zh) * 2011-09-30 2012-03-14 东北林业大学 一体化生物膜-颗粒污泥耦合反应器及利用其对污水进行同步脱氮除磷的方法
CN102590479A (zh) 2012-02-29 2012-07-18 武汉大学 一种基于扩散理论的河湖底泥污染物通量测试方法及装置
CN203616304U (zh) * 2013-12-13 2014-05-28 河海大学 环形水槽模拟悬沙及床沙吸附污染物装置
CN105923962A (zh) * 2016-06-16 2016-09-07 盐城工学院 生物淋滤-铝碳微电解处理铝型材电镀废渣设备反应器
US20170240446A1 (en) * 2013-10-02 2017-08-24 John H. Reid Process for operating an upflow continuous backwash filter
CN107389896A (zh) * 2017-06-12 2017-11-24 河海大学 表层床沙污染物吸附/解吸特性测量装置及其使用方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6546341B2 (en) * 2001-01-08 2003-04-08 The Regents Of The University Of Michigan Technique for rapid prediction of long-term hydrophobic organic contaminant desorption rates
US7793552B2 (en) * 2007-08-20 2010-09-14 The Hong Kong University Of Science And Technology High suction double-cell extractor
CN201749072U (zh) * 2010-07-16 2011-02-16 沈阳大学 土壤中污染物迁移转化的淋滤装置
CN102062773A (zh) * 2010-11-05 2011-05-18 中国科学院新疆生态与地理研究所 一种实验室土壤溶质运移模拟方法
CN102866093B (zh) * 2012-09-04 2014-12-10 中国农业大学 一种多孔介质生物堵塞模拟测试装置及模拟测试评估方法
CN103969419A (zh) * 2013-02-04 2014-08-06 中国科学院南京地理与湖泊研究所 应用于人工降雨条件下污染物迁移过程研究的室内模拟系统
CN204044146U (zh) * 2014-08-05 2014-12-24 中国地质调查局水文地质环境地质调查中心 一种用于土壤淋滤实验的组装式多参数监测装置
CN104569353B (zh) * 2015-01-29 2016-03-16 中国地质大学(武汉) 基于强吸附污染物的包气带土壤吸附参数测定仪
CN105510258B (zh) * 2015-12-29 2018-01-19 河海大学 硝酸盐在有水生植物的地下水‑湖泊界面运移的实验方法
CN105717275B (zh) * 2016-01-28 2017-12-22 东南大学 一种模拟土中挥发性有机污染物运移一维试验装置
CN105891085A (zh) * 2016-04-13 2016-08-24 天津大学 微生物诱导碳酸钙沉积胶结试验装置
CN106248905B (zh) * 2016-07-08 2018-06-19 河海大学 一种监测洪水过程底泥中污染物释放的实验系统及其实验方法
US10775312B2 (en) * 2017-06-15 2020-09-15 Tesfa-Michael Tekleab Instantaneous and time-lapse fluid-flow contaminant indicator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062988A (ko) * 2002-01-22 2003-07-28 김수삼 진공배수 기법과 동전기 현상의 복합 기법(진공-동전기배수정화 기법)에 의한 준설 슬러리 및 광미의 정화와탈수처리
CN102372362A (zh) * 2011-09-30 2012-03-14 东北林业大学 一体化生物膜-颗粒污泥耦合反应器及利用其对污水进行同步脱氮除磷的方法
CN102590479A (zh) 2012-02-29 2012-07-18 武汉大学 一种基于扩散理论的河湖底泥污染物通量测试方法及装置
US20170240446A1 (en) * 2013-10-02 2017-08-24 John H. Reid Process for operating an upflow continuous backwash filter
CN203616304U (zh) * 2013-12-13 2014-05-28 河海大学 环形水槽模拟悬沙及床沙吸附污染物装置
CN105923962A (zh) * 2016-06-16 2016-09-07 盐城工学院 生物淋滤-铝碳微电解处理铝型材电镀废渣设备反应器
CN107389896A (zh) * 2017-06-12 2017-11-24 河海大学 表层床沙污染物吸附/解吸特性测量装置及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZHONGWEI ET AL.: "Effects of Reverbed and Lake Bottom Sediment Thickness on Infiltration and Purification of Reclaimed Water", ENVIRON EARTH SCI, vol. 76, no. 1, 31 January 2017 (2017-01-31), XP036203384 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179729A (zh) * 2019-07-04 2021-01-05 天津大学 一种管道沉积物模拟实验装置、实验系统及实验方法
CN112179729B (zh) * 2019-07-04 2024-05-14 天津大学 一种管道沉积物模拟实验装置、实验系统及实验方法
CN112033754A (zh) * 2020-09-23 2020-12-04 中国科学院东北地理与农业生态研究所 一种沙质河床沉积物孔隙水采集装置及其制作方法
CN112033754B (zh) * 2020-09-23 2024-05-17 中国科学院东北地理与农业生态研究所 一种沙质河床沉积物孔隙水采集装置及其制作方法
CN117232910A (zh) * 2023-11-16 2023-12-15 天津工大纺织助剂有限公司 一种用于fdy纺织助剂抽检的取样装置
CN117232910B (zh) * 2023-11-16 2024-01-23 天津工大纺织助剂有限公司 一种用于fdy纺织助剂抽检的取样装置

Also Published As

Publication number Publication date
US10545128B2 (en) 2020-01-28
EP3441759A4 (en) 2019-05-29
EP3441759A1 (en) 2019-02-13
JP6698171B2 (ja) 2020-05-27
AU2017399742B2 (en) 2019-06-06
AU2017399742A1 (en) 2019-01-03
EP3441759B1 (en) 2020-04-22
JP2019522773A (ja) 2019-08-15
US20190212318A1 (en) 2019-07-11
CN107389896B (zh) 2018-04-03
CN107389896A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018227828A1 (zh) 表层床沙污染物吸附/解吸特性测量装置及其使用方法
Ottiger et al. Competitive adsorption equilibria of CO 2 and CH 4 on a dry coal
CN107860681A (zh) 一种预吸附水分煤样的瓦斯吸附解吸特性测试装置及其测试方法
CN104897540B (zh) 一种非饱和土渗透‑扩散土柱试验装置
CN105136648B (zh) 土壤有效孔径及其分布参数的测试方法
CN107300521B (zh) 膨胀土开裂含水量的测定方法及测定装置
Azam et al. Engineering properties of an expansive soil
Fan et al. Experimental study on the effects of sediment size and porosity on contaminant adsorption/desorption and interfacial diffusion characteristics
CA3015735C (en) Device for measuring adsorption/desorption characteristic of surface bed sediments on contaminants and method of using the device
CN105823706B (zh) 气润湿性测试方法
CN102590362B (zh) 一种模拟污染物原位迁移转化的柱状渗滤装置及方法
Li et al. The Effects of Brine Species on the Formation of Residual Water in a CO _ 2 CO 2–Brine System
CN205404351U (zh) 一种土样固结反渗透模拟装置
CN206804650U (zh) 一种土水特性曲线测试装置
CN102426158B (zh) 一种直接测定吸油材料吸附水中油量的新方法
CN208568486U (zh) 一种大变形固结与污染物迁移耦合试验加载装置及平台
CN208043489U (zh) 全自动水质分样装置
CN108931608B (zh) 一种固化淤泥渗出液收集测试装置及方法
CN107340234B (zh) 一种测定土壤粘结力的装置及方法
CN207703544U (zh) 一种海洋勘探用海底取样装置
CN218974115U (zh) 一种多功能柱状岩土水理性质测试装置
McDermot et al. CHARCOAL SORPTION STUDIES: I. THE PORE DISTRIBUTION IN ACTIVATED CHARCOALS
CN207689454U (zh) 一种粉末材料动态吸附性能的测试装置
Desorption et al. Cornell Soil Health Laboratory 2022 Code: CSH 12
Gefell et al. Vertical Hydraulic Conductivity Measurement by Gravity Drainage.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548002

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017896324

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017896324

Country of ref document: EP

Effective date: 20180924

ENP Entry into the national phase

Ref document number: 2017399742

Country of ref document: AU

Date of ref document: 20171010

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE