WO2018227468A1 - 一种天线的选择方法、装置及终端 - Google Patents

一种天线的选择方法、装置及终端 Download PDF

Info

Publication number
WO2018227468A1
WO2018227468A1 PCT/CN2017/088422 CN2017088422W WO2018227468A1 WO 2018227468 A1 WO2018227468 A1 WO 2018227468A1 CN 2017088422 W CN2017088422 W CN 2017088422W WO 2018227468 A1 WO2018227468 A1 WO 2018227468A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink signal
terminal
directional antennas
average value
antennas
Prior art date
Application number
PCT/CN2017/088422
Other languages
English (en)
French (fr)
Inventor
李琦
周映泉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780090514.2A priority Critical patent/CN110612670B/zh
Priority to PCT/CN2017/088422 priority patent/WO2018227468A1/zh
Publication of WO2018227468A1 publication Critical patent/WO2018227468A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method, an apparatus, and a terminal for selecting an antenna.
  • a directional antenna In the existing wireless communication system, in order to improve the transmission and reception performance of the terminal, a directional antenna is usually employed. Since the directional antenna has the characteristics of electromagnetic wave intensity and long radiation distance transmitted and received in the directional direction, when the directional direction of the directional antenna is set to point to the base station, the terminal can obtain a higher antenna gain. However, the beam of the directional antenna is very narrow. Such an antenna increases the difficulty of antenna alignment during the installation process, which is technically difficult and increases the labor cost. Even after successful installation, the transceiver performance of the terminal will decrease as the surrounding environment changes. For example: there is building occlusion, or the terminal itself moves, or the network side equipment has been adjusted. It can be seen that there is a limitation in the direction of the directional antenna.
  • the omnidirectional antenna exhibits 360-degree uniform radiation in the horizontal direction, so there is no need to set the orientation direction, and the installation process is not technically difficult, which can save labor costs. And the omnidirectional antenna can adapt to changes in the surrounding environment, and no direction adjustment is needed.
  • the omnidirectional antenna has the characteristics that the electromagnetic waves transmitted and received in various directions are weak and the radiation distance is short, and thus the transmission and reception performance of the terminal is also limited.
  • the present application provides a method, an apparatus, and a terminal for selecting an antenna, which are used to solve the problem that it is difficult to improve both the directivity problem of the terminal antenna and the antenna gain in all directions.
  • the embodiment of the present application provides a method for selecting an antenna, which is applied to a terminal, where the terminal has N directional antennas placed in a ring shape, and the directional direction of each directional antenna is set to be perpendicular to the tangential direction of the ring, and the pointing
  • the outer side of the ring has a method, the method includes: acquiring, by the terminal, a first downlink signal parameter of each directional antenna of the N directional antennas, and selecting, from the N directional antennas, M directional antennas as the terminal according to the first downlink signal parameter
  • the receiving antenna selects L directional antennas from the M directional antennas as the transmitting antenna of the terminal.
  • the present application places the N directional antennas in a ring shape so that the terminal can acquire a 360-degree signal radiation range, and determines, from the N directional antennas, the directional antenna with the highest first downlink signal parameter according to the first downlink signal parameter.
  • the receiving antenna and the transmitting antenna of the terminal improve the antenna gain of the terminal, which is beneficial to improving the communication quality of the terminal.
  • the first downlink signal parameter includes a downlink signal quality or a downlink signal strength.
  • N ⁇ 2, N ⁇ M ⁇ L, and L, M, and N are positive integers.
  • the terminal may divide the N directional antennas into P packets, where each packet includes M directional antennas. In this way, the terminal determines the receiving antenna group in units of packets, which can reduce the combination of directional antennas.
  • the number, as well as the number of switches required to reduce implementation, facilitates the selection process for the terminal.
  • the terminal may obtain an average value of the first downlink signal parameters of each packet according to the first downlink signal parameters of the directional antennas. Then, the packet with the largest average value of the first downlink signal parameters of each packet is selected as the first packet, and the M directional antennas included in the first packet are selected as the receiving antennas of the terminal. The M directional antennas in the first group are further sorted according to the first downlink signal parameters from high to low, and the largest L directional antennas are selected as the transmitting antennas of the terminal. In this way, the terminal has the directional antenna with the best signal strength or quality as the receiving antenna and the transmitting antenna, which is beneficial to improving the transceiver performance of the terminal and improving the communication quality of the terminal.
  • the terminal periodically detects the M directional antennas included in the first group, and acquires the second downlink signal parameter. If the average value of the second downlink signal parameter of the first packet is compared with the average value of the first downlink signal parameter of the first packet, the amount of decrease is greater than the first threshold, indicating that the directional antenna of the first packet of the receiving antenna of the terminal The signal strength or quality is degraded, and the terminal needs to re-determine the receiving antenna and the transmitting antenna. The terminal may re-measure the N directional antennas to obtain the third downlink signal parameter. Among the P packets, the directional antenna in the packet with the largest average value of the third downlink signal parameter is used as the new receiving antenna and the transmitting antenna.
  • the terminal can regain the directional antenna with good signal as the receiving antenna and the transmitting antenna, which is beneficial to improving the transceiver performance of the terminal, and is beneficial to improving the communication quality of the terminal.
  • the terminal periodically detects N directional antennas, acquires fourth downlink signal parameters of each directional antenna, and further obtains an average value of fourth downlink signal parameters of each group, and directly selects
  • the group with the largest average value of the four downlink signal parameters is the second group, and the M directional antennas included in the second group are selected as the new receiving antenna, and then the L directional antennas with the largest fourth downlink signal parameter among the M directional antennas are selected.
  • the direct selection signal is good as the new receiving antenna and the transmitting antenna of the terminal, which is beneficial to improving the transceiver performance of the terminal and improving the communication quality of the terminal.
  • the M directional antennas in the second group before determining the M directional antennas in the second group as the receiving antennas of the terminal, it may be determined whether the average value of the fourth downlink signal parameters of the second group is greater than a certain degree, for example: greater than A first predetermined multiple of the average of the fourth downlink signal parameters of the first group. If it is greater, the M directional antennas in the second group are re-determined as the receiving antennas of the terminal, and the L directional antennas with the largest downlink signal parameter are used as the transmitting antennas of the terminal.
  • the receiving antenna is not re-determined. However, it is necessary to further determine whether it is necessary to re-determine the transmitting antenna.
  • the directional antenna calculates the average value of the fourth downlink signal parameters of the L directional antennas, that is, the second average value. If the second average is greater than the second predetermined multiple of the first average, the terminal re-determines that the L directional antennas are new transmit antennas. If the second average is less than or equal to the second predetermined multiple of the first average, the terminal does not need to re-determine the transmit antenna.
  • the terminal directly selects the M directional antennas with the largest downlink signal parameter as the receiving antenna of the terminal, and selects the first downlink signal.
  • the L directional antennas with the largest parameters are used as the transmitting antennas of the terminal.
  • the terminal acquires an average value of the first downlink signal parameters of the M directional antennas as the receiving antenna, that is, a third average value; the terminal periodically checks the M directional antennas to obtain the first Five downlink parameters are obtained, and an average value of the fifth downlink parameter of the M directional antennas, that is, a fourth average value is obtained.
  • the terminal needs to re-determine the transmitting antennas of the receiving antennas. Therefore, the terminal detects N directional antennas and acquires the sixth downlink signal parameter of each directional antenna. The receiving antenna and the transmitting antenna of the terminal are re-determined according to the sixth downlink signal parameter of each directional antenna.
  • the terminal periodically detects the N directional antennas, obtains the seventh downlink signal parameter of each directional antenna, and selects the M directional antennas with the largest seventh downlink signal parameter as the receiving antenna of the terminal. And selecting L directional antennas with the largest seventh downlink signal parameter as the transmitting antenna of the terminal.
  • the terminal may first obtain an average value of the first downlink signal parameters of the M directional antennas as the receiving antenna, that is, a fifth average value. . Then, an average value of the M directional antennas having the largest seventh downlink signal parameter, that is, a sixth average value is obtained. If the sixth average is greater than the third predetermined multiple of the fifth average, the terminal re-determines the terminal receiving antenna and the transmitting antenna.
  • the terminal does not need to re-determine the receiving antenna, but further determines whether the transmitting antenna needs to be re-determined.
  • the average value of the seventh downlink signal parameters of the L directional antennas as the transmitting antennas, that is, the seventh average value is obtained. Then, obtain L directional antennas with the seventh downlink signal parameter being the largest, and calculate an average value of the seventh downlink signal parameters of the L directional antennas, that is, an eighth average value.
  • the terminal re-determines the first L directional antennas as the transmitting antennas of the terminal after being sorted according to the seventh downlink signal parameter. If the eighth average is less than or equal to the fourth predetermined multiple of the seventh average, the terminal does not need to re-determine the transmit antenna.
  • the embodiment of the present application provides an antenna selection apparatus, where the device has N directional antennas and N directional antennas are placed in a ring shape, the device further includes: a processing unit and a communication unit; and a processing unit, configured to obtain through the communication unit a first downlink signal parameter of each directional antenna of the N directional antennas, the first downlink signal parameter includes a downlink signal strength or a downlink signal quality; and the processing unit is further configured to: according to the first downlink signal parameter of each directional antenna M directional antennas are determined from the N directional antennas as the receiving antennas of the device, and L directional antennas are determined from the M directional antennas as the transmitting antennas of the device.
  • N ⁇ 2, N ⁇ M ⁇ L, and L, M, and N are positive integers.
  • the processing unit is further configured to divide the N directional antennas into P packets, wherein each packet includes M directional antennas.
  • the processing unit is further configured to: obtain an average value of the first downlink signal parameter of each of the P packets according to the first downlink signal parameter of each directional antenna; For selecting the M directional antennas included in the first group of the P packets as the receiving antenna of the device, the first packet is the packet with the largest average value of the first downlink signal parameters in the P packets; the processing unit is further used for The M directional antennas of the first group are sorted according to the order of the first downlink signal parameters from high to low, and the first L directional antennas of the M directional antennas of the first group are selected as the transmitting antennas of the device.
  • the processing unit is further configured to: after the first preset time period is the first period, re-acquire the second downlink signal parameter of each directional antenna in the first group in the first period by using the communication unit, And obtaining an average value of the second downlink signal parameter of the first packet, where the second downlink signal parameter includes a downlink signal strength or a downlink signal quality, and the processing unit is further configured to: if the average value of the second downlink signal parameter of the first packet is relative to the first If the falling amount of the average value of the first downlink signal parameter of a group is greater than the first threshold, the third downlink signal parameter of each directional antenna of the N directional antennas in the first period is re-acquired through the communication unit, so that the device is configured according to The third downlink signal parameter of each directional antenna re-determines the new M directional antennas as the receiving antennas of the device, and re-determines the new L directional antennas as the transmitting antennas of the device from the
  • the processing unit is further configured to re-acquire the fourth downlink signal parameter of each directional antenna of the N directional antennas in the second period by using the second preset period as the second period. And obtaining an average value of the fourth downlink signal parameter of each of the P packets, where the fourth downlink signal parameter includes a downlink signal strength or a downlink signal quality, and the processing unit is further configured to select the P packets in the second period.
  • the second group includes M directional antennas as the receiving antennas of the device, the second group is the group with the largest average value of the fourth downlink signal parameters in the P packets, and the processing unit is further configured to use the fourth downlink signal parameter according to the fourth downlink signal parameter
  • the low order sorts the M directional antennas of the second group, and selects the first L directional antennas of the M directional antennas of the second group in the second period as the transmitting antenna of the device.
  • the processing unit is further configured to determine that the average value of the fourth downlink signal parameter of the second group is greater than the first preset multiple of the average value of the fourth downlink signal parameter of the first group.
  • the processing unit is further configured to determine that the M directional antennas included in the first group are the receiving antennas of the device, and the processing unit is further configured to obtain a first average value, where the first average value is the first group An average value of the fourth downlink signal parameters of the L directional antennas; the processing unit is further configured to sort the M directional antennas of the first group according to the order of the fourth downlink signal parameters from high to low, to obtain a second average a second average value is an average value of fourth downlink signal parameters of the first L directional antennas of the M directional antennas of the first group; the processing unit is further configured to: if the second average value is greater than the second average value For a preset multiple, the first L directional antennas of the M directional antennas of the first group are re-determined as the transmitting antennas of the device according to the order of the fourth downlink signal parameters from high to low.
  • the processing unit is further configured to sort the N directional antennas from high to low according to the first downlink signal parameter of each directional antenna, and select the first M of the N directional antennas.
  • the directional antenna is used as the receiving antenna of the device, and the first L directional antennas of the M directional antennas are selected as the transmitting antennas of the device.
  • the processing unit is further configured to obtain a third average value, wherein the third average value is an average value of the first downlink signal parameters of the M directional antennas; and the processing unit is further configured to use the third pre- The time period is the third period, and the fifth downlink signal parameter of the M directional antennas in the third period and the fourth average value are obtained through the communication unit, and the fourth average value is an average of the fifth downlink signal parameters of the M directional antennas.
  • the fifth downlink signal parameter includes a downlink signal strength or a downlink signal quality
  • the processing unit is further configured to: obtain, by the communication unit, N orientations, if the amount of decrease of the fourth average value relative to the fourth average value is greater than the second threshold value a sixth downlink signal parameter of each directional antenna of the antenna, so that the device re-determines the new M directional antennas as the receiving antennas of the device according to the sixth downlink signal parameter of each directional antenna, and the new M directional antennas Redefining the new L
  • the directional antenna serves as a transmitting antenna of the device; wherein the sixth downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the processing unit is further configured to re-acquire the seventh downlink signal parameter of each directional antenna of the N directional antennas in the fourth period by using the fourth preset period as the fourth period.
  • the processing unit is further configured to sort the N directional antennas from high to low according to the seventh downlink signal parameter of each directional antenna, and reselect the first M directional antennas of the N directional antennas after the sorting
  • the receiving antenna of the device re-selects the first L directional antennas of the M directional antennas after the sorting as the transmitting antenna of the device.
  • the processing unit is further configured to obtain a fifth average value and a sixth average value, wherein the fifth average value is the first downlink of the M directional antennas determined according to the first downlink signal parameter.
  • the average value of the signal parameters; the sixth average value is an average value of the seventh downlink signal parameters of the first M directional antennas among the N directional antennas determined according to the seventh downlink signal parameter; and the processing unit is further configured to determine the sixth The average is greater than the third predetermined multiple of the fifth average.
  • the processing unit is further configured to determine the M directional antennas determined according to the first downlink signal parameter as the receiving antenna of the device; the processing unit is further configured to obtain the seventh average value, the seventh average The value is an average value of the seventh downlink signal parameters of the L directional antennas determined according to the first downlink signal parameter; and the processing unit is further configured to follow the first downlink signal according to the seventh downlink signal parameter in descending order
  • the M directional antennas determined by the parameters are sorted, and an eighth average value is obtained, and the eighth average value is an average value of the seventh downlink signal parameters of the first L directional antennas of the M directional antennas after the sorting; the processing unit further And if the eighth average value is greater than the fourth preset multiple of the seventh average value, the first L directional antennas of the M directional antennas after the sorting are re-determined as the transmitting antenna of the device.
  • the embodiment of the present application provides a terminal for antenna selection, where the terminal has N directional antennas and N directional antennas are placed in a ring shape, and the terminal further includes: a processor and a transceiver; and a processor, configured to obtain through the transceiver a first downlink signal parameter of each directional antenna of the N directional antennas, the first downlink signal parameter includes a downlink signal strength or a downlink signal quality; and the processor is further configured to: according to the first downlink signal parameter of each directional antenna Determining M directional antennas as the receiving antennas of the terminals from the N directional antennas, and determining L directional antennas as the transmitting antennas of the terminals from the M directional antennas.
  • N ⁇ 2, N ⁇ M ⁇ L, and L, M, and N are positive integers.
  • the processor is further configured to divide the N directional antennas into P packets, wherein each packet includes M directional antennas.
  • the processor is further configured to: obtain an average value of the first downlink signal parameter of each of the P packets according to the first downlink signal parameter of each directional antenna; For selecting the M directional antennas included in the first packet of the P packets as the receiving antenna of the terminal, the first packet is the packet with the largest average value of the first downlink signal parameters in the P packets; the processor is also used for The M directional antennas of the first group are sorted according to the order of the first downlink signal parameters from high to low, and the first L directional antennas of the M directional antennas of the first group are selected as the transmitting antennas of the terminal.
  • the processor is further configured to: after the first preset time period is the first period, re-acquire the second downlink signal parameter of each directional antenna in the first group in the first period by using the transceiver, And obtaining an average value of the second downlink signal parameter of the first packet, where the second downlink signal parameter includes a downlink signal strength or a downlink signal.
  • the processor is further configured to: if the amount of decrease of the average value of the second downlink signal parameter of the first packet relative to the average value of the first downlink signal parameter of the first packet is greater than the first threshold, re-acquire the transceiver a third downlink signal parameter of each directional antenna of the N directional antennas in a period, so that the terminal re-determines a new M directional antenna as a receiving antenna of the terminal according to the third downlink signal parameter of each directional antenna, and Re-determining the new L directional antennas as the transmitting antennas of the terminal from the new M directional antennas; wherein the third downlink signal parameters include downlink signal strength or downlink signal quality.
  • the processor is further configured to re-acquire the fourth downlink signal parameter of each directional antenna of the N directional antennas in the second period by using the second preset period as the second period. And obtaining an average value of the fourth downlink signal parameter of each of the P packets, where the fourth downlink signal parameter includes a downlink signal strength or a downlink signal quality; and the processor is further configured to select the P packets in the second period.
  • the second group includes M directional antennas as the receiving antennas of the terminal, and the second group is the group with the largest average value of the fourth downlink signal parameters in the P packets; the processor is further configured to use the fourth downlink signal parameter according to the fourth downlink signal parameter
  • the low order sorts the M directional antennas of the second group, and selects the first L directional antennas of the M directional antennas of the second group in the second period as the transmitting antenna of the terminal.
  • the processor is further configured to determine that the average value of the fourth downlink signal parameter of the second group is greater than the first predetermined multiple of the average value of the fourth downlink signal parameter of the first group.
  • the processor is further configured to determine that the M directional antennas included in the first group are the receiving antennas of the terminal, and the processor is further configured to obtain a first average value, where the first average value is the first group The average value of the fourth downlink signal parameters of the L directional antennas; the processor is further configured to sort the M directional antennas of the first group according to the order of the fourth downlink signal parameters from high to low, to obtain a second average a second average value is an average of fourth downlink signal parameters of the first L directional antennas of the M directional antennas of the first group; the processor is further configured to: if the second average value is greater than the second average value For a preset multiple, the first L directional antennas of the M directional antennas of the first group are re-determined as the transmitting antennas of the terminal according to the order of the fourth downlink signal parameters from high to low.
  • the processor is further configured to sort the N directional antennas from high to low according to the first downlink signal parameter of each directional antenna, and select the first M of the N directional antennas.
  • the directional antenna is used as the receiving antenna of the terminal, and the first L directional antennas of the M directional antennas are selected as the transmitting antennas of the terminal.
  • the processor is further configured to obtain a third average value, wherein the third average value is an average value of the first downlink signal parameters of the M directional antennas; the processor is further configured to use the third pre- The time period is the third period, and the fifth downlink signal parameter of the M directional antennas in the third period and the fourth average value are obtained through the transceiver, and the fourth average value is an average of the fifth downlink signal parameters of the M directional antennas.
  • the fifth downlink signal parameter includes a downlink signal strength or a downlink signal quality
  • the processor is further configured to: obtain, by the transceiver, N orientations, if the amount of decrease of the fourth average value relative to the fourth average value is greater than the second threshold value a sixth downlink signal parameter of each directional antenna of the antenna, so that the terminal re-determines a new M directional antenna as a receiving antenna of the terminal according to the sixth downlink signal parameter of each directional antenna, and re-routes the new M directional antennas
  • the new L directional antennas are re-determined as the transmitting antennas of the terminal; wherein the sixth downlink signal parameters include downlink signal strength or downlink signal quality.
  • the processor is further configured to re-acquire the seventh downlink signal parameter of each directional antenna of the N directional antennas in the fourth period by using the fourth preset period as the fourth period.
  • the method further uses the seventh downlink signal parameter of each directional antenna to sort the N directional antennas from high to low, and reselects the top M directional antennas of the N directional antennas as the receiving antenna of the terminal. And re-selecting the first L directional antennas of the M directional antennas after the sorting as the transmitting antenna of the terminal.
  • the processor is further configured to obtain a fifth average value and a sixth average value, wherein the fifth average value is the first downlink of the M directional antennas determined according to the first downlink signal parameter.
  • the average value of the signal parameters; the sixth average value is an average value of the seventh downlink signal parameters of the first M directional antennas among the N directional antennas determined according to the seventh downlink signal parameter; the processor is also used to determine the sixth The average is greater than the third predetermined multiple of the fifth average.
  • the processor is further configured to determine the M directional antennas determined according to the first downlink signal parameter as the receiving antenna of the terminal; the processor is further configured to obtain the seventh average value, the seventh average The value is an average value of the seventh downlink signal parameters of the L directional antennas determined according to the first downlink signal parameter; the processor is further configured to follow the first downlink signal according to the seventh downlink signal parameter in descending order
  • the M directional antennas determined by the parameters are sorted, and an eighth average value is obtained, and the eighth average value is an average value of the seventh downlink signal parameters of the first L directional antennas of the M directional antennas after the sorting; And if the eighth average value is greater than the fourth preset multiple of the seventh average value, the first L directional antennas of the M directional antennas after the sorting are re-determined as the transmitting antenna of the terminal.
  • an embodiment of the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the method of any of the above aspects.
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, cause the computer to perform the method of any of the above aspects.
  • the present application provides a chip system including a processor for supporting a data transmitting device to implement the functions involved in the above aspects, such as, for example, generating or processing data involved in the above method and/or Or information.
  • the chip system further includes a memory for holding program instructions and data necessary for the data transmitting device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1a is a schematic diagram of a radiation range of a terminal provided by the prior art
  • FIG. 1b is a schematic diagram of another radiation range of a terminal provided by the prior art
  • FIG. 2 is a schematic diagram of a radiation range of a terminal according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a position of an antenna according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another location of an antenna according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for antenna selection according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of grouping of an antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 9 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 10 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 11 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 12 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 13 is a flowchart of still another method for antenna selection according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an apparatus for selecting an antenna according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of still another antenna selection terminal according to an embodiment of the present disclosure.
  • terminal 101 and base station 102 are typically included. If the terminal 101 adopts a directional antenna, and the directional direction of the directional antenna is directed to the base station 102, the radiation range of the directional antenna is as shown in FIG. 1a, and a strong electromagnetic wave is radiated in the directional direction, and the antenna gain is large, and in other directions. The electromagnetic waves are weak, not even. If the terminal 101 employs an omnidirectional antenna, the radiation range of the omnidirectional antenna is as shown in FIG. 1b, and electromagnetic waves of the same intensity are radiated in the direction around the terminal 101, but the radiation distance is short and the antenna gain is small. Therefore, if the terminal adopts the method provided by the embodiment of the present application, the radiation range of the terminal antenna can be as shown in FIG. 2, which can ensure the directivity of the terminal antenna and improve the antenna gain in each direction.
  • FIG. 3 is a schematic structural diagram of a terminal in an embodiment of the present application, which can be applied to the foregoing network.
  • the terminal may be a Customer Premise Equipment (CPE), a wireless Internet access device, or the like.
  • the terminal 300 may include a processing module 301, a communication module 302, a storage module 303, and an antenna module 304.
  • the processing module 301 is configured to control various parts of the hardware device, application software, and the like of the network device 300.
  • the processing module 31 can be used, for example, to obtain downlink signal parameters of each directional antenna through the antenna module 304, calculate an average value of downlink signal parameters of the directional antenna in each packet, and perform downlink signal parameters for each directional antenna.
  • the order is sorted from high to low, and M directional antennas are determined from the N directional antennas as the receiving antennas of the terminal, and L directional antennas are determined from the M directional antennas as the transmitting antennas of the terminal and the like.
  • the communication module 302 is configured to receive commands and data sent by other devices by using a wireless fidelity (WiFi), Long Term Evolution (LTE), and 5G communication modes, and may also send commands and data to other devices.
  • WiFi wireless fidelity
  • LTE Long Term Evolution
  • 5G communication modes may also send commands and data to other devices.
  • the communication module 302 can be used to receive the road construction request and service data sent by other network devices, and also to send the road construction request and service data to other network devices.
  • the storage module 303 is configured to execute storage of software programs of the network device 300, storage of data, operation of software, and the like.
  • the storage module 303 can be used, for example, to store downlink signal parameters of each directional antenna, information of antennas in the packet, and the like.
  • the antenna module 304 includes N directional antennas, and the N directional antennas are placed in a ring shape.
  • the orientation direction of each directional antenna is set to be perpendicular to the tangential direction of the ring and directed to the outside of the ring.
  • the spacing of the N directional antennas may be increased.
  • the N directional antennas may also be divided into multiple layers, and the antennas of each layer are annularly placed on a horizontal plane, where The orientation direction of each directional antenna is set to be perpendicular to the tangential direction of the ring and directed toward the outside of the ring.
  • FIG. 4 and FIG. 5 only show eight positioning antennas, that is, the case where N is 8, but the embodiment of the present application does not limit the directional antenna. Quantity, number of layers, and specific placement locations.
  • a method for selecting an antenna provided by an embodiment of the present application may be applied to the foregoing terminal, and the method specifically includes:
  • the terminal acquires a first downlink signal parameter of each directional antenna.
  • the first downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the reference signal receiving power (RSRP) can be used to characterize the downlink signal strength
  • the signal to interference plus noise ratio (SINR) is used to characterize the downlink signal quality. The stronger the downlink signal strength or the better the downlink signal quality, the better the transceiver performance of the antenna.
  • the terminal uses the cell search process to identify the cell and obtain downlink synchronization, and the terminal can read the cell broadcast information and camp and use various services provided by the network.
  • the terminal detects the synchronization channel or the cell pilot signal of the cell on each directional antenna, obtains the channel estimation value and the interference information on each directional antenna, and obtains the orientation by the channel estimation value on each directional antenna.
  • the downlink signal strength of the antenna is obtained from the channel estimation value and the interference information on each directional antenna to obtain the downlink signal quality on each directional antenna.
  • the terminal determines, according to the first downlink signal parameter of each directional antenna, that M directional antennas are the receiving antennas of the terminal from the N directional antennas, and determines, by the M directional antennas, L directional antennas as terminal transmitting antennas. .
  • the number of the receiving antenna and the transmitting antenna are respectively determined according to the capability of the baseband chip of the terminal. It is determined that the number of receiving antennas that the baseband chip of the terminal can support is M, and the number of transmitting antennas that the baseband chip can support is L.
  • the baseband chip is used to synthesize the baseband signal to be transmitted or to decode the received baseband signal. Specifically, when transmitting, the audio signal is compiled into a baseband code for transmission; upon reception, the received baseband code is interpreted as an audio signal. At the same time, it is also responsible for the compilation of address information (mobile phone number, website address), text information (short message text, website text), and picture information.
  • the N directional antennas are sorted from high to low according to the first downlink signal parameter, and the M directional antennas with the largest downlink signal parameter are selected from the N directional antennas.
  • the receiving antenna of the terminal selects, from the M directional antennas, L directional antennas having the largest downlink signal parameter as the transmitting antenna of the terminal.
  • the terminal includes eight positioning antennas, and the baseband chip of the terminal supports four receiving antennas and two supporting transmitting antennas. The terminal detects the pilot signals of the cells on the eight antennas to obtain signal strength and/or signal quality in the eight positioning antennas.
  • antenna 1 > antenna 2 > antenna 3 > antenna 4 > antenna 5 > antenna 6 > antenna 7 > antenna 8 the terminal determines the antenna 1.
  • Antenna 2 antenna 3 and antenna 4 are receiving antennas, and antenna 1 and antenna 2 are transmitting antennas.
  • the terminal implementation is very Complex, for example, the number of switches required is also large, and the more switches, the greater the amount of signal attenuation and the greater the amount of processing. Therefore, in order to simplify the complexity of the terminal when selecting the antenna and reduce the combination, in the embodiment of the present application, the N directional antennas may also be grouped and selected in units of groups. Grouped party The method may be a group of adjacent M directional antennas, and the directional antennas between the groups may or may not overlap, and the N directional antennas are divided into P groups.
  • the terminal averages the first downlink signal parameters of the M directional antennas in each group to obtain an average value of the first downlink signal parameters of each group. Then, the packet having the largest average value of the downlink signal parameters in each packet, that is, the first packet, is determined, and the M directional antennas in the first packet are used as the terminal receiving antenna group. In the first group, the M directional antennas are sorted according to the first downlink parameter from high to low, and the first L directional antennas of the M directional antennas in the first group are selected as the transmitting antennas of the terminal.
  • the terminal includes eight positioning antennas, and the baseband chip of the terminal supports four receiving antennas and two supporting transmitting antennas. Then, the eight directional antennas of the terminal can be divided into three packets: packet 1 includes antenna 1 - antenna 4; packet 2 includes antenna 3 - antenna 6; packet 3 includes antenna 6 - antenna 8 and antenna 1.
  • packet 1 includes antenna 1 - antenna 4; packet 2 includes antenna 3 - antenna 6; packet 3 includes antenna 6 - antenna 8 and antenna 1.
  • the directional antennas between the packets overlap, for example, both antenna 1 and antenna 4 are included in both packet 1 and packet 2; antenna 6 is included in both packet 2 and packet 3; antenna 1 is included in both packet 3 and packet 1.
  • the terminal determines four positioning antennas in the packet 3 (antenna 6, antenna 7, antenna 8 and The antenna 1) is a receiving antenna, and the two positioning antennas that determine the maximum signal strength and/or signal quality in the packet 3 are the transmitting antennas.
  • a method for selecting an antenna according to an embodiment of the present application is applied to a terminal that includes N directional antennas and the N directional antennas are placed in a ring shape, and M directions are determined according to downlink signal parameters of each directional antenna.
  • the antenna is a receiving antenna of the terminal, and a transmitting antenna in which L directional antennas are terminals is determined.
  • the terminal uses the directional antenna to obtain the antenna gain, but if the surrounding environment changes, the communication quality of the terminal may decrease, and the direction of the antenna needs to be manually adjusted.
  • the 360-degree signal radiation range is obtained by the omnidirectional antenna to adapt to changes in the surrounding environment, and the antenna direction is not required to be manually adjusted, but the antenna gain of the omnidirectional antenna is small, which also affects the transceiver performance of the terminal.
  • the terminal can acquire a 360-degree signal radiation range, and determine, from the N directional antennas, the M directional antennas having the highest downlink signal parameter according to the first downlink signal parameter.
  • the receiving antenna of the terminal determines that the L directional antennas with the highest downlink signal parameter are the transmitting antennas of the terminal from the M directional antennas, thereby improving the antenna gain of the terminal.
  • the orientation direction of each directional antenna is set to be perpendicular to the tangential direction of the ring, and can be directed to the outer side of the ring, and the orientation direction is not strictly set to point to the base station, thereby reducing the technology when the directional antenna is installed. Difficulty, saving labor costs.
  • the directional antenna with the highest downlink signal parameter is automatically determined from the N directional antennas as the terminal receiving antenna, which can adapt to changes in the surrounding environment, and does not require manual adjustment of the antenna, thereby saving Labor costs.
  • the terminal After accessing the wireless network, the terminal can continue to use the receiving antenna and the transmitting antenna determined when the terminal is powered on to communicate, and can also re-determine the receiving antenna and the transmitting antenna of the terminal according to changes in the downlink signal parameters.
  • the selection method of the antenna will be described below.
  • the embodiment of the present application further provides a method for selecting an antenna. After the step 102, the method specifically includes:
  • the terminal After the first preset time period, the terminal acquires the second downlink of the M directional antennas in the first group.
  • the signal parameter obtains an average of the second downlink signal parameters of the first packet.
  • the second downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the average of the second downlink signal parameters of the first packet is the average of the second downlink signal parameters of the M directional antennas included in the first packet.
  • the terminal determines, after the power is turned on, the M directional antennas in the first group as the receiving antennas of the terminal. Then, after the network is connected, the terminal detects the cell pilot signal on the M directional antennas in real time or according to a certain period, that is, the first period, and obtains the second downlink signal parameter on each of the M directional antennas. And an average of the second downlink signal parameters of the M directional antennas.
  • the terminal determines, by the average value of the second downlink signal parameter of the first packet, whether the amount of decrease of the average value of the first downlink signal parameter of the first packet is greater than a first threshold. If yes, go to step 203. If no, go to step 205.
  • the average value of the second downlink signal parameter of the first packet is greater than the first threshold value compared to the average value of the first downlink signal parameter of the first packet, indicating that the M directional antennas in the first packet.
  • the signal strength or quality generally deteriorates, and the variation reaches a certain level, and the communication quality of the terminal may be affected, and the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the terminal re-determines the occurrence of the receiving antenna and the transmitting antenna.
  • the average value of the second downlink signal parameters of the M directional antennas in the first group may be detected, and the amount of decrease of the average value of the first downlink signal parameter exceeds the first time in a certain period of time
  • the terminal considers that the signal strength or quality on the M directional antennas in the first packet deteriorates, and the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the average value of the second downlink signal parameter of the first packet is smaller than or equal to the first threshold value compared to the average value of the first downlink signal parameter of the first packet, indicating that the first group of M directional antennas
  • the signal strength or quality is generally not degraded, or only a little worse, the communication quality of the terminal is not greatly affected. Therefore, there is no need to re-determine the receiving antenna and the transmitting antenna of the terminal.
  • the terminal acquires a third downlink signal parameter on the N directional antennas of the terminal.
  • the third downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the terminal detects the cell pilot signals on all the N directional antennas, and acquires the third downlink signal parameters on the N directional antennas.
  • the terminal re-determines the receiving antenna and the transmitting antenna of the terminal according to the third downlink signal parameter.
  • step 102 For a specific implementation, refer to step 102, and details are not described herein.
  • the terminal determines to continue to use the previously determined receiving antenna and transmitting antenna.
  • the terminal determines that the signal strength or quality of the M receiving antennas of the first group decreases after entering the network, and when the falling reaches a certain level, the terminal can re-determine the directional antenna with the best signal strength or quality as the receiving. Antenna and transmitting antenna. In this way, it is possible to prevent the signal strength or quality on the receiving antenna and the transmitting antenna that are originally determined from being deteriorated, thereby causing degradation of the communication quality of the terminal.
  • the embodiment of the present application further provides a method for selecting an antenna. After the step 102, the method specifically includes:
  • the terminal obtains, after the second preset time period, a fourth downlink signal parameter of each directional antenna on the N directional antennas, and an average value of the fourth downlink signal parameters of each group.
  • the fourth downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the average of the fourth downlink signal parameters of each packet is the average of the second downlink signal parameters of the M directional antennas included in each packet.
  • the terminal detects the cell pilot signals on the N directional antennas according to a certain period, that is, the second period, so as to observe whether the signal strength or quality on each directional antenna on the terminal is improved.
  • the terminal re-determines M directional antennas in the second group as new receiving antennas according to an average value of fourth downlink signal parameters of each group, and determines L directional antennas from the M directional antennas in the second group as new Transmitting antenna.
  • the second packet is a packet with the largest average value of the fourth downlink signal parameters among the P packets.
  • the terminal re-determines the M directional antennas in the second group as the new receiving antenna of the terminal. Then, the terminal sorts the M directional antennas in the reselected second group according to the fourth downlink signal parameter from high to low, and obtains the first L directional antennas as the transmitting antenna of the terminal. In this way, the terminal updating the receiving antenna and the transmitting antenna is beneficial to improving the transceiver performance of the terminal and improving the call quality.
  • the terminal re-determines the situation of the receiving antenna and the transmitting antenna.
  • the embodiment of the present application further A method for antenna selection is provided. Before step 302, the method specifically includes:
  • step 302 If the average value of the fourth downlink signal parameter of the second group is greater than a first preset multiple of the average value of the fourth downlink signal parameter of the first group, step 302 is performed. Otherwise, step 402 is performed.
  • the second packet is a packet with the largest average value of the fourth downlink signal parameters among the P packets.
  • the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the average value of the fourth downlink signal parameter of the second packet is less than or equal to a first predetermined multiple of the average value of the fourth downlink signal parameter of the first packet, indicating the signal strength or quality on the directional antenna of the second packet.
  • the M directional antennas as the receiving antennas in the first group do not become better and do not reach a certain level in general, and the terminal does not need to re-determine the receiving antenna. It should be noted that it is possible that the signal strength or quality of the M directional antennas inside the second packet changes at this time. Therefore, it is necessary to further determine whether the transmitting antenna needs to be re-determined.
  • the terminal acquires a first average value and a second average value according to the fourth downlink signal parameter.
  • the terminal calculates an average value of the fourth downlink signal parameters of the L directional antennas as the receiving antennas in the first group, that is, a first average value. Then, the terminal sorts the M directional antennas in the first group according to the fourth downlink signal parameter from high to low, and obtains L directional antennas with the largest fourth downlink signal parameter in the first packet, and calculates the L directional antennas.
  • the average value of the fourth downlink signal parameter of the directional antenna is the second average value.
  • the terminal determines that the L directional antennas with the fourth downlink signal parameter in the first packet are the new transmit antenna of the terminal.
  • the terminal needs to re-determine the receiving antenna of the terminal, which is beneficial to improving the transmitting performance of the terminal and improving the communication quality of the terminal. Otherwise, the terminal does not need to re-determine the transmit antenna.
  • the terminal determines the signal strength or quality of the M receiving antennas after the network is dropped, and when the falling reaches a certain level, the terminal can re-determine the directional antenna with the best signal strength or quality as the receiving antenna and the transmitting. antenna. In this way, it is possible to prevent the signal strength or quality on the receiving antenna and the transmitting antenna that are originally determined from being deteriorated, thereby causing degradation of the communication quality of the terminal.
  • the N directional antennas of the terminal are not grouped.
  • the embodiment of the present application further provides a method for selecting an antenna. After the step 102, the method specifically includes:
  • the terminal according to an average value of the first downlink signal parameters of the M directional antennas as the receiving antennas, that is, a third average value.
  • the terminal After the third preset time period, the terminal acquires a fifth downlink signal parameter and a fourth average value of the M directional antennas.
  • the fifth downlink signal parameter includes a downlink signal strength or a downlink signal quality
  • the fourth average value is an average value of the fifth downlink signal parameters of the M directional antennas.
  • the terminal determines whether the fourth average value is greater than the second average value compared to the third average value. If yes, go to step 504. If no, go to step 506.
  • the amount of decrease of the fourth average value compared to the third average value is greater than the second threshold value, it indicates that the signal strength or quality on the M directional antennas as the receiving antennas generally deteriorates, and the variation reaches a certain level, and the communication of the terminal The quality may be affected and the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the terminal re-determines the occurrence of the receiving antenna and the transmitting antenna.
  • the terminal may consider that the signal strength or quality of the M directional antennas deteriorates when it is detected that the amount of decrease of the fourth average value compared to the third average value exceeds the second threshold value continuously for a certain period of time.
  • the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the amount of decrease of the fourth average value compared to the third average value is less than or equal to the second threshold value, it indicates that the signal strength or quality on the M directional antennas as the receiving antennas is generally not deteriorated, or only slightly deteriorated.
  • the communication quality of the terminal is not greatly affected. Therefore, there is no need to re-determine the receiving antenna and the transmitting antenna of the terminal.
  • the terminal acquires a sixth downlink signal parameter on the N directional antennas of the terminal.
  • the sixth downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the terminal re-determines the receiving antenna and the transmitting antenna of the terminal according to the sixth downlink signal parameter.
  • step 102 For a specific implementation, refer to step 102, and details are not described herein.
  • the terminal determines to continue to use the previously determined receiving antenna and transmitting antenna.
  • the terminal determines the signal strength or quality of the M receiving antennas after the network is dropped, and when the falling reaches a certain level, the terminal can re-determine the directional antenna with the best signal strength or quality as the receiving antenna and the transmitting. antenna. In this way, it is possible to prevent the signal strength or quality on the receiving antenna and the transmitting antenna that are originally determined from being deteriorated, thereby causing degradation of the communication quality of the terminal.
  • the embodiment of the present application further provides a method for selecting an antenna. After the step 102, the method specifically includes:
  • the terminal obtains a seventh downlink signal parameter of each directional antenna on the N directional antennas after the fourth preset time period.
  • the seventh downlink signal parameter includes a downlink signal strength or a downlink signal quality.
  • the terminal detects the cell pilot signals on the N directional antennas according to a certain period, that is, the fourth period, so as to observe whether the signal strength or quality on each directional antenna on the terminal is improved.
  • the terminal re-determines the receiving antenna and the transmitting antenna according to the seventh downlink signal parameter of each directional antenna.
  • the terminal sorts the N directional antennas from high to low according to the seventh downlink signal parameter, and re-determines that the first M directional antennas of the N directional antennas are the receiving antennas, and the first L directional antennas are Transmitting antenna.
  • the terminal updating the receiving antenna and the transmitting antenna is beneficial to improving the transceiver performance of the terminal and improving the call quality.
  • the terminal re-determines the situation of the receiving antenna and the transmitting antenna.
  • a method for antenna selection specifically includes:
  • the terminal acquires a fifth average value and a sixth average value according to the seventh downlink signal parameter of the N directional antennas.
  • the fifth average value is an average value of the seventh downlink signal parameters of the M directional antennas that are the receiving antennas at this time.
  • the terminal selects M directional antennas with the largest downlink signal parameter from the N directional antennas, and determines an average value of the seventh downlink signal parameters of the M directional antennas as a sixth average value.
  • the sixth average value is greater than a third preset multiple of the fifth average value, for example, 1.2 times, indicating signal strength or quality on other directional antennas other than the M directional antenna as the receiving antenna, in general, It has become better and has become better to a certain extent. Then, the terminal needs to re-determine the receiving antenna and the transmitting antenna.
  • the terminal does not need to re-determine the receiving antenna. It should be noted that there is a possibility that the signal strength or quality between the M directional antennas as the receiving antennas changes at this time. Therefore, it is necessary to further determine whether or not it is necessary. To re-determine the transmit antenna.
  • the terminal acquires a seventh average value and an eighth average value according to the seventh downlink signal parameter.
  • the terminal calculates an average value of the seventh downlink signal parameters of the L directional antennas as the receiving antenna, that is, a seventh average value. Then, the terminal sorts the M directional antennas as the receiving antennas according to the seventh downlink signal parameter from high to low, obtains L directional antennas with the seventh downlink signal parameter being the largest, and calculates the L directional antennas.
  • the average of the seven downlink signal parameters is the eighth average.
  • the terminal determines that the L directional antennas with the largest downlink signal parameter are the new transmit antenna of the terminal.
  • the eighth average value is greater than the fourth predetermined multiple of the seventh average value, for example, 1.2 times, it indicates that the signal strength or quality inside the M directional antennas as the receiving antennas has undergone a large change, that is, there is a division Other than the L directional antennas of the receiving antenna, the signal strength or quality of other antennas is significantly improved. Therefore, the terminal needs to re-determine the transmitting antenna of the terminal, which is beneficial to improving the transmitting performance of the terminal and improving the communication quality of the terminal. Otherwise, the terminal does not need to re-determine the transmit antenna.
  • each network element such as a base station, a user equipment, etc.
  • each network element includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide a function module into a terminal or the like according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 14 is a schematic diagram showing a possible structure of a terminal involved in the foregoing embodiment, where the terminal 1400 includes: a processing unit 1401, a storage unit 1402, a communication unit 1403, and Antenna unit 1404.
  • the processing unit 1401 is configured to support the terminal to perform the processes 101 and 102 in FIG. 6, the processes 201-205 in FIG. 8, the processes 301-302 in FIG. 9, the processes 401-403 in FIG. 10, and the process 501 in FIG. - 506, 601-602 in Fig. 12, 701-704 in Fig. 13.
  • the storage unit 1402 is configured to support the terminal to store corresponding program codes and data.
  • Antenna unit 1404 is used to support communication between the terminal and the base station.
  • the communication unit 1403 is configured to support communication between the terminal and other network entities. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional description of the corresponding functional modules, and details are not described herein again.
  • the processing unit 1401 may be the processing module 301 in FIG. 3
  • the storage unit 1402 may be the storage module 303 in FIG. 3
  • the communication unit 1403 may be the communication module 302 in FIG.
  • Antenna unit 1404 can be antenna module 304 in FIG.
  • the processing module 301 can be a processor or a controller, and can be, for example, a central processing unit (CPU), a general-purpose processor, and a digital signal processor (DSP). Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 302 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 303 can be a memory.
  • the base station involved in the embodiment of the present application may be the base station shown in FIG. 13B.
  • the terminal 1500 includes a processor 1501, a transceiver 1502, a memory 1503, and a bus 1504.
  • the transceiver 1502, the processor 1501, and the memory 1503 are connected to each other through a bus 1504.
  • the bus 1503 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the present application provides a chip system including a processor for supporting a data transmitting device to implement the functions involved in the above aspects, such as, for example, generating or processing data and/or information involved in the above methods.
  • the chip system further includes a memory for holding program instructions and data necessary for the data transmitting device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开一种天线的选择方法、装置及终端,用以解决现有技术中难以同时解决天线的方向性问题和天线增益的问题。本申请的方法可应用于终端,终端具有N个定向天线,且这N个定向天线呈环形放置,该方法包括;终端获取这N个定向天线的每个定向天线的第一下行信号参数,其中,第一下行信号参数包括下行信号强度和下行信号质量。终端根据第一下行信号参数从N个定向天线中选取M个定向天线作为该终端的接收天线,从M个定向天线中选取L个定向天线作为该终端的发射天线。本发明实施例应用于终端与基站的通信中。

Description

一种天线的选择方法、装置及终端 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种天线的选择方法、装置及终端。
背景技术
在现有的无线通信系统中,为了提升终端收发性能,通常采用定向天线。因为定向天线具有在定向方向上发射及接收的电磁波强、辐射距离远的特点,所以当定向天线的定向方向设置为指向基站时,终端能够获得较高的天线增益。然而定向天线的波束非常窄,这样的天线在安装过程中会增加天线对准难度,技术难度大,增加了人工成本。即使成功安装完,终端的收发性能也会随着周围环境的变化而降低。例如:有建筑物遮挡、或终端自身发生移动,或网络侧设备发生了调整等等。可见,定向天线存在方向上的局限性问题。
为了解决定向天线的方向局限性问题,部分厂商选择使用全向天线。这是因为全向天线在水平方向表现为360度均匀辐射,因此不需要设置定向方向,安装过程技术难度不大,能够节省人力成本。并且在全向天线能够适应周围环境的变化,不需要进行方向调整。但全向天线具有在各个方向上发射及接收的电磁波较弱,辐射距离较短的特点,因此终端的收发性能也受限。
然而,随着用户对终端性能的要求越来越高,在解决终端天线的方向性问题的前提下,提升天线增益,已成为亟待解决的问题。
发明内容
本申请提供一种天线的选择方法、装置及终端,用以解决难以既改善终端天线的方向性问题,又能提升在各个方向上的天线增益的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种天线选择的方法,应用于终端,该终端具有N个呈环形放置的定向天线,每个定向天线的定向方向设置为与环形的切线方向垂直,且指向环形外侧,该方法具有包括:终端获取这N个定向天线的每个定向天线的第一下行信号参数,并根据第一下行信号参数从N个定向天线中选取M个定向天线作为该终端的接收天线,从M个定向天线中选取L个定向天线作为该终端的发射天线。由此,本申请通过将N个定向天线环形放置使得终端能够获取360度的信号辐射范围,并根据第一下行信号参数从N个定向天线中确定第一下行信号参数最高的定向天线为终端的接收天线和发射天线,从而提升终端的天线增益,有利于提高终端的通信质量。
其中,第一下行信号参数包括下行信号质量或下行信号强度。N≥2,N≥M≥L,且L、M、N为正整数。
在一种可能的设计中,在终端获取这N个定向天线的每个定向天线的第一下行信号参数之前,终端可将这N个定向天线划分为P个分组,其中每一个分组中包含M个定向天线。这样,终端以分组为单位进行确定接收天线组,可减少定向天线的组合 数量,以及减少具体实现时需要的开关数量,有利于简化终端的选择过程。
在一种可能的设计中,若终端对N个定向天线进行了分组,那么,终端可根据各个定向天线的第一下行信号参数获取每个分组的第一下行信号参数的平均值。再选取每个分组的第一下行信号参数的平均值最大的分组为第一分组,选取第一分组中包括的M个定向天线作为该终端的接收天线。对第一分组中的M个定向天线再按照第一下行信号参数从高到低进行排序,选择其中最大的L个定向天线作为终端的发射天线。这样,终端拥有信号强度或质量最好的定向天线作为接收天线和发射天线,有利于提终端的收发性能,提高终端的通信质量。
在一种可能的设计中,终端对第一分组包括的M个定向天线进行周期性检测,获取第二下行信号参数。若第一分组的第二下行信号参数的平均值与第一分组的第一下行信号参数的平均值比较,下降量大于了第一阈值,表明作为终端的接收天线的第一分组的定向天线的信号强度或质量变差,终端需要重新确定接收天线和发射天线。终端可对N个定向天线重新进行测量,获取第三下行信号参数。选取P个分组中,第三下行信号参数的平均值最大的分组中的定向天线作为新的接收天线和发射天线。由此,当作为接收天线和发射天线的定向天线的信号变差时,终端可以重新获取信号好的定向天线作为接收天线和发射天线,有利于提高终端的收发性能,有利于提高终端的通信质量。
在一种可能的设计中,终端周期性对N个定向天线都进行检测,获取每个定向天线的第四下行信号参数,进一步获取每个分组的第四下行信号参数的平均值,直接选取第四下行信号参数的平均值最大的分组为第二分组,选取第二分组包括的M个定向天线作为新的接收天线,再选取这M个定向天线中第四下行信号参数最大的L个定向天线作为发射天线。这样,当N个定向天线中,有其他定向天线的信号变好时,直接选择信号好的作为终端新的接收天线和发射天线,有利于提高终端的收发性能,有利于提高终端的通信质量。
在一种可能的设计中,在确定第二分组中的M个定向天线作为终端的接收天线之前,可以先判断一下第二分组的第四下行信号参数的平均值是否大于一定程度,例如:大于第一分组的第四下行信号参数平均值的第一预设倍数。若大于,则重新确定第二分组中的M个定向天线作为该终端的接收天线,其中第四下行信号参数最大的L个定向天线作为该终端的发射天线。
若小于或等于,则不重新确定接收天线。但需要进一步确定是否需要重新确定发射天线。获取第一分组中作为发射天线的L个定向天线的第四下行信号参数的平均值,即第一平均值;终端按照第四下行信号参数进行排序,选取其中第四下行信号参数最大的L个定向天线,计算着L个定向天线的第四下行信号参数的平均值,即第二平均值。如第二平均值大于第一平均值的第二预设倍数,则终端重新确定这L个定向天线为新的发射天线。如第二平均值小于或等于第一平均值的第二预设倍数,则终端也不需要重新确定发射天线。
在一种可能的设计中,若终端没有对这N个定向天线进行分组,那么,终端直接选取第一下行信号参数最大的M个定向天线作为终端的接收天线,选取第一下行信号 参数最大的L个定向天线作为终端的发射天线。
在一种可能的设计中,终端获取作为接收天线的这M个定向天线的第一下行信号参数的平均值,即第三平均值;终端对这M个定向天线进行周期性检查,获取第五下行参数,并获取这M个定向天线的第五下行参数的平均值,即第四平均值。
若第四平均值相对于第三平均值的下降量大于了第二阈值,表明作为接收天线的这M个定向天线的信号变差,则终端需要重新确定接收天线的发射天线。故终端对N个定向天线都进行检测,获取每个定向天线的第六下行信号参数。根据每个定向天线的第六下行信号参数重新确定终端的接收天线和发射天线。
在一种可能的设计中,终端周期性对这N个定向天线都进行检测,获取每个定向天线的第七下行信号参数,选取第七下行信号参数最大的M个定向天线作为终端的接收天线,选取第七下行信号参数最大的L个定向天线作为终端的发射天线。
在一种可能的设计中,终端在确定是否重新确定新的接收天线和发射天线之前,可以先获取作为接收天线的M个定向天线的第一下行信号参数的平均值,即第五平均值。再获取按照第七下行信号参数最大的M个定向天线的平均值,即第六平均值。若第六平均值大于第五平均值的第三预设倍数,则终端重新确定终端接收天线和发射天线。
若第六平均值等于或小于第五平均值,则终端不需要重新确定接收天线,但需进一步判断是否需要重新确定发射天线。获取作为发射天线的L个定向天线的第七下行信号参数的平均值,即第七平均值。再获取第七下行信号参数最大的L个定向天线,并计算这L个定向天线的第七下行信号参数的平均值,即第八平均值。
若第八平均值大于第七平均值的第四预设倍数,则终端重新确定按照第七下行信号参数排序后,前L个定向天线作为终端的发射天线。若第八平均值小于或等于第七平均值的第四预设倍数,则终端也不需要重新确定发射天线。
第二方面,本申请实施例提供一种天线选择的装置,装置具有N个定向天线且N个定向天线呈环形放置,装置还包括:处理单元和通信单元;处理单元,用于通过通信单元获取N个定向天线的每个定向天线的第一下行信号参数,第一下行信号参数包括下行信号强度或下行信号质量;处理单元,还用于根据每个定向天线的第一下行信号参数,从N个定向天线中确定M个定向天线作为装置的接收天线,并从M个定向天线中确定L个定向天线作为装置的发射天线。
其中,N≥2,N≥M≥L,且L、M、N为正整数。
在一种可能的设计中,处理单元,还用于将N个定向天线划分成P个分组,其中,每个分组中包含M个定向天线。
在一种可能的设计中,处理单元,还用于根据每个定向天线的第一下行信号参数,获取P个分组中每个分组的第一下行信号参数的平均值;处理单元,还用于选取P个分组中的第一分组包括的M个定向天线作为装置的接收天线,第一分组为P个分组中第一下行信号参数的平均值最大的分组;处理单元,还用于按照第一下行信号参数由高到低的顺序将第一分组的M个定向天线进行排序,选取第一分组的M个定向天线的前L个定向天线作为装置的发射天线。
在一种可能的设计中,处理单元,还用于以第一预设时间段为第一周期,重新通过通信单元获取第一周期内第一分组中每个定向天线的第二下行信号参数,进而获取第一分组的第二下行信号参数的平均值,第二下行信号参数包括下行信号强度或下行信号质量;处理单元,还用于若第一分组的第二下行信号参数的平均值相对第一分组的第一下行信号参数的平均值的下降量大于第一阈值,则重新通过通信单元获取第一周期内N个定向天线的每个定向天线的第三下行信号参数,以便于装置根据每个定向天线的第三下行信号参数,重新确定出新的M个定向天线作为装置的接收天线,并从新的M个定向天线中重新确定新的L个定向天线作为装置的发射天线;其中,第三下行信号参数包括下行信号强度或下行信号质量。
在一种可能的设计中,处理单元,还用于以第二预设时间段为第二周期,重新通过通信单元获取第二周期内N个定向天线的每个定向天线的第四下行信号参数,进而获取P个分组中每个分组的第四下行信号参数的平均值,第四下行信号参数包括下行信号强度或下行信号质量;处理单元,还用于选取第二周期内P个分组中的第二分组包括的M个定向天线作为装置的接收天线,第二分组为P个分组中第四下行信号参数的平均值最大的分组;处理单元,还用于按照第四下行信号参数由高到低的顺序将第二分组的M个定向天线进行排序,选取第二周期内第二分组的M个定向天线的前L个定向天线作为装置的发射天线。
在一种可能的设计中,处理单元,还用于确定第二分组的第四下行信号参数的平均值大于第一分组的第四下行信号参数的平均值的第一预设倍数。
在一种可能的设计中,处理单元,还用于确定第一分组包括的M个定向天线为装置的接收天线;处理单元,还用于获取第一平均值,第一平均值为第一分组中的L个定向天线的第四下行信号参数的平均值;处理单元,还用于按照第四下行信号参数由高到低的顺序将第一分组的M个定向天线进行排序,获取第二平均值,第二平均值为第一分组的M个定向天线的前L个定向天线的第四下行信号参数的平均值;处理单元,还用于若第二平均值大于第一平均值的第二预设倍数,则按照第四下行信号参数由高到低的顺序重新确定第一分组的M个定向天线的前L个定向天线为装置的发射天线。
在一种可能的设计中,处理单元,还用于根据每个定向天线的第一下行信号参数将N个定向天线从高到低的顺序进行排序,选取N个定向天线中的前M个定向天线作为装置的接收天线,并选取M个定向天线的前L个定向天线作为装置的发射天线。
在一种可能的设计中,处理单元,还用于获取第三平均值,第三平均值为M个定向天线的第一下行信号参数的平均值;处理单元,还用于以第三预设时间段为第三周期,重新通过通信单元获取第三周期内M个定向天线的第五下行信号参数以及第四平均值,第四平均值为M个定向天线的第五下行信号参数的平均值,第五下行信号参数包括下行信号强度或下行信号质量;处理单元,还用于若第四平均值相对于第四平均值的下降量大于第二阈值,则重新通过通信单元获取N个定向天线的每个定向天线的第六下行信号参数,以便于装置根据每个定向天线的第六下行信号参数,重新确定出新的M个定向天线作为装置的接收天线,并从新的M个定向天线中重新确定新的L 个定向天线作为装置的发射天线;其中,第六下行信号参数包括下行信号强度或下行信号质量。
在一种可能的设计中,处理单元,还用于以第四预设时间段为第四周期,重新通过通信单元获取第四周期内N个定向天线的每个定向天线的第七下行信号参数;处理单元,还用于根据每个定向天线的第七下行信号参数将N个定向天线从高到低的顺序进行排序,重新选取此次排序后N个定向天线中的前M个定向天线作为装置的接收天线,并重新选取此次排序后M个定向天线的前L个定向天线作为装置的发射天线。
在一种可能的设计中,处理单元,还用于获取第五平均值和第六平均值,其中,第五平均值为按照第一下行信号参数确定的M个定向天线的第一下行信号参数的平均值;第六平均值为按照第七下行信号参数确定的,N个定向天线中的前M个定向天线的第七下行信号参数的平均值;处理单元,还用于确定第六平均值大于第五平均值的第三预设倍数。
在一种可能的设计中,处理单元,还用于将按照第一下行信号参数确定的M个定向天线确定为装置的接收天线;处理单元,还用于获取第七平均值,第七平均值为按照第一下行信号参数确定的L个定向天线的第七下行信号参数的平均值;处理单元,还用于按照第七下行信号参数由高到低的顺序将按照第一下行信号参数确定的M个定向天线进行排序,并获取第八平均值,第八平均值为此次排序后M个定向天线的前L个定向天线的第七下行信号参数的平均值;处理单元,还用于若第八平均值大于第七平均值的第四预设倍数,则重新确定此次排序后M个定向天线的前L个定向天线为装置的发射天线。
第三方面,本申请实施例提供一种天线选择的终端,终端具有N个定向天线且N个定向天线呈环形放置,终端还包括:处理器和收发器;处理器,用于通过收发器获取N个定向天线的每个定向天线的第一下行信号参数,第一下行信号参数包括下行信号强度或下行信号质量;处理器,还用于根据每个定向天线的第一下行信号参数,从N个定向天线中确定M个定向天线作为终端的接收天线,并从M个定向天线中确定L个定向天线作为终端的发射天线。
其中,N≥2,N≥M≥L,且L、M、N为正整数。
在一种可能的设计中,处理器,还用于将N个定向天线划分成P个分组,其中,每个分组中包含M个定向天线。
在一种可能的设计中,处理器,还用于根据每个定向天线的第一下行信号参数,获取P个分组中每个分组的第一下行信号参数的平均值;处理器,还用于选取P个分组中的第一分组包括的M个定向天线作为终端的接收天线,第一分组为P个分组中第一下行信号参数的平均值最大的分组;处理器,还用于按照第一下行信号参数由高到低的顺序将第一分组的M个定向天线进行排序,选取第一分组的M个定向天线的前L个定向天线作为终端的发射天线。
在一种可能的设计中,处理器,还用于以第一预设时间段为第一周期,重新通过收发器获取第一周期内第一分组中每个定向天线的第二下行信号参数,进而获取第一分组的第二下行信号参数的平均值,第二下行信号参数包括下行信号强度或下行信号 质量;处理器,还用于若第一分组的第二下行信号参数的平均值相对第一分组的第一下行信号参数的平均值的下降量大于第一阈值,则重新通过收发器获取第一周期内N个定向天线的每个定向天线的第三下行信号参数,以便于终端根据每个定向天线的第三下行信号参数,重新确定出新的M个定向天线作为终端的接收天线,并从新的M个定向天线中重新确定新的L个定向天线作为终端的发射天线;其中,第三下行信号参数包括下行信号强度或下行信号质量。
在一种可能的设计中,处理器,还用于以第二预设时间段为第二周期,重新通过收发器获取第二周期内N个定向天线的每个定向天线的第四下行信号参数,进而获取P个分组中每个分组的第四下行信号参数的平均值,第四下行信号参数包括下行信号强度或下行信号质量;处理器,还用于选取第二周期内P个分组中的第二分组包括的M个定向天线作为终端的接收天线,第二分组为P个分组中第四下行信号参数的平均值最大的分组;处理器,还用于按照第四下行信号参数由高到低的顺序将第二分组的M个定向天线进行排序,选取第二周期内第二分组的M个定向天线的前L个定向天线作为终端的发射天线。
在一种可能的设计中,处理器,还用于确定第二分组的第四下行信号参数的平均值大于第一分组的第四下行信号参数的平均值的第一预设倍数。
在一种可能的设计中,处理器,还用于确定第一分组包括的M个定向天线为终端的接收天线;处理器,还用于获取第一平均值,第一平均值为第一分组中的L个定向天线的第四下行信号参数的平均值;处理器,还用于按照第四下行信号参数由高到低的顺序将第一分组的M个定向天线进行排序,获取第二平均值,第二平均值为第一分组的M个定向天线的前L个定向天线的第四下行信号参数的平均值;处理器,还用于若第二平均值大于第一平均值的第二预设倍数,则按照第四下行信号参数由高到低的顺序重新确定第一分组的M个定向天线的前L个定向天线为终端的发射天线。
在一种可能的设计中,处理器,还用于根据每个定向天线的第一下行信号参数将N个定向天线从高到低的顺序进行排序,选取N个定向天线中的前M个定向天线作为终端的接收天线,并选取M个定向天线的前L个定向天线作为终端的发射天线。
在一种可能的设计中,处理器,还用于获取第三平均值,第三平均值为M个定向天线的第一下行信号参数的平均值;处理器,还用于以第三预设时间段为第三周期,重新通过收发器获取第三周期内M个定向天线的第五下行信号参数以及第四平均值,第四平均值为M个定向天线的第五下行信号参数的平均值,第五下行信号参数包括下行信号强度或下行信号质量;处理器,还用于若第四平均值相对于第四平均值的下降量大于第二阈值,则重新通过收发器获取N个定向天线的每个定向天线的第六下行信号参数,以便于终端根据每个定向天线的第六下行信号参数,重新确定出新的M个定向天线作为终端的接收天线,并从新的M个定向天线中重新确定新的L个定向天线作为终端的发射天线;其中,第六下行信号参数包括下行信号强度或下行信号质量。
在一种可能的设计中,处理器,还用于以第四预设时间段为第四周期,重新通过收发器获取第四周期内N个定向天线的每个定向天线的第七下行信号参数;处理器, 还用于根据每个定向天线的第七下行信号参数将N个定向天线从高到低的顺序进行排序,重新选取此次排序后N个定向天线中的前M个定向天线作为终端的接收天线,并重新选取此次排序后M个定向天线的前L个定向天线作为终端的发射天线。
在一种可能的设计中,处理器,还用于获取第五平均值和第六平均值,其中,第五平均值为按照第一下行信号参数确定的M个定向天线的第一下行信号参数的平均值;第六平均值为按照第七下行信号参数确定的,N个定向天线中的前M个定向天线的第七下行信号参数的平均值;处理器,还用于确定第六平均值大于第五平均值的第三预设倍数。
在一种可能的设计中,处理器,还用于将按照第一下行信号参数确定的M个定向天线确定为终端的接收天线;处理器,还用于获取第七平均值,第七平均值为按照第一下行信号参数确定的L个定向天线的第七下行信号参数的平均值;处理器,还用于按照第七下行信号参数由高到低的顺序将按照第一下行信号参数确定的M个定向天线进行排序,并获取第八平均值,第八平均值为此次排序后M个定向天线的前L个定向天线的第七下行信号参数的平均值;处理器,还用于若第八平均值大于第七平均值的第四预设倍数,则重新确定此次排序后M个定向天线的前L个定向天线为终端的发射天线。
第四方面,本申请实施例提供用一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面任一项的方法。
第五方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面任一项的方法。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持数据发送设备实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1a为现有技术提供的一种终端的辐射范围的示意图;
图1b为现有技术提供的又一种终端的辐射范围的示意图;
图2为本申请实施例提供的一种终端的辐射范围的示意图;
图3为本申请实施例提供的一种终端的结构示意图;
图4为本申请实施例提供的一种天线的位置示意图;
图5为本申请实施例提供的又一种天线的位置示意图;
图6为本申请实施例提供的一种天线选择的方法的流程图;
图7为本申请实施例提供的一种天线的分组示意图;
图8为本申请实施例提供的又一种天线选择的方法的流程图;
图9为本申请实施例提供的又一种天线选择的方法的流程图;
图10为本申请实施例提供的又一种天线选择的方法的流程图;
图11为本申请实施例提供的又一种天线选择的方法的流程图;
图12为本申请实施例提供的又一种天线选择的方法的流程图;
图13为本申请实施例提供的又一种天线选择的方法的流程图;
图14为本申请实施例提供的一种天线选择的装置的结构示意图;
图15为本申请实施例提供的又一种天线选择的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
在现有无线通信网络中,通常包括终端101和基站102。若终端101采用定向天线,该定向天线的定向方向指向基站102,则该定向天线的辐射范围如图1a所示,在定向方向上辐射有较强的电磁波,天线增益大,而在其他方向上电磁波较弱,甚至没有。若终端101采用全向天线,则全向天线的辐射范围如图1b所示,在终端101周围的方向上辐射有相同的强度的电磁波,但辐射距离较短,天线增益小。因此,若终端采用本申请实施例提供的方法,则该终端天线的辐射范围可如图2所示,既能保证终端天线的方向性,又能提高各个方向上的天线增益。
图3为本申请实施例中终端的一种结构示意图,可应用于上述的网络中。其中,该终端可为无线客户终端设备(Customer Premise Equipment,CPE)、无线上网设备等。在本申请实施例中,该终端300可以包括处理模块301、通信模块302、存储模块303以及天线模块304。
其中,处理模块301用于控制网络设备300的各部分硬件装置和应用程序软件等。在本申请实施例中,处理模块31例如可用于通过天线模块304获取每个定向天线的下行信号参数,计算每个分组中定向天线的下行信号参数的平均值,对各个定向天线按照下行信号参数从高到低的顺序进行排序,以及从N个定向天线中确定M个定向天线作为终端的接收天线,从M个定向天线中确定L个定向天线作为所述终端的发射天线等等。
通信模块302用于可使用无线保真(Wireless Fidelity,WiFi)、长期演进(Long Term Evolution,LTE)以及5G等通讯方式接受其它设备发送的指令和数据,也可以向其它设备发送指令和数据。在本申请实施例中,通信模块302可以用于接收其他网络设备发送的建路请求及业务数据,也用于向其他网络设备发送建路请求及业务数据等。
存储模块303用于执行网络设备300的软件程序的存储、数据的存储和软件的运行等。在本申请实施例中,存储模块303例如可以用于存储每个定向天线的下行信号参数,分组中天线的信息等等。
天线模块304包括N个定向天线,并且这N个定向天线呈环形放置。其中,如图4所示,每个定向天线的定向方向设置为垂直于环形的切线方向,且指向环形外侧。可选的,为了提升终端的分集增益,可增加这N个定向天线的间距,如图5所示,这N个定向天线也可以分成多层,每层的天线在水平面上环形放置,其中,每个定向天线的定向方向设置为垂直于环形的切线方向,且指向环形外侧。需要说明是,图4和图5仅示出了8个定位天线,即N为8的情况,但本申请实施例并不限定定向天线的 数量、分层的数量以及具体的放置位置等。
在本申请实施例中,各模块的具体功能在下述实施例中说明。
如图6所示,本申请实施例提供的一种天线选择的方法可运用于上述终端中,该方法具体包括:
101、终端获取每个定向天线的第一下行信号参数。
其中,第一下行信号参数包括下行信号强度或下行信号质量。具体的,可用参考信号接收功率(Reference Signal Receiving Power,RSRP)来表征下行信号强度,可用信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)来表征下行信号质量。下行信号强度越强,或者下行信号质量越好,表明该天线的收发性能越好。
具体的,终端在开机后,终端使用小区搜索过程来识别小区,并获得下行同步,进而终端可以读取小区广播信息并驻留、使用网络提供的各种服务。在小区搜索过程中,终端分别在各个定向天线上检测小区的同步信道或小区导频信号,获得各个定向天线上的信道估计值和干扰信息,再由各个定向天线上的信道估计值得到各个定向天线的下行信号强度,由各个定向天线上的信道估计值和干扰信息得到各个定向天线上的下行信号质量。
102、终端根据每个定向天线的第一下行信号参数,从N个定向天线中确定M个定向天线为该终端的接收天线,从M个定向天线中确定L个定向天线为终端的发射天线。
其中,接收天线和发射天线的数量分别都是根据终端的基带芯片的能力确定的。确定终端的基带芯片能够支持的接收天线的数量为M,基带芯片能够支持的发射天线的数量为L。其中,基带芯片是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是发射时,把音频信号编译成用来发射的基带码;接收时,把收到的基带码解译为音频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、图片信息的编译。
一种可能的实现方式中,按照第一下行信号参数对这N个定向天线进行从高到低的排序,从这N个定向天线中选取第一下行信号参数最大的M个定向天线为该终端的接收天线,再从这M个定向天线中选取第一下行信号参数最大的L个定向天线为该终端的发射天线。示例性的,如图4或图5所示,该终端包括8个定位天线,且该终端的基带芯片支持的接收天线为4个,支持的发送天线为2个。终端在这8个天线上检测小区的导频信号,得到这8个定位天线中的信号强度和/或信号质量。假设这8个定位天线中的第一下行信号参数从高到低的排序为:天线1>天线2>天线3>天线4>天线5>天线6>天线7>天线8,则终端确定天线1、天线2、天线3和天线4为接收天线,天线1和天线2为发送天线。
另一种可能的实现方式中,考虑到终端需从N个定向天线中选取M个定向天线作为终端的接收天线的天线组合有很多种情况,而针对这么多组合情况,终端具体实现时会十分复杂,例如:需要的开关数量也大,并且开关越多,信号的衰减量越大、处理量也越大。因此,为简化终端在选择天线时的复杂程度,减少组合情况,在本申请实施例中,也可以将这N个定向天线进行分组,以分组为单位进行选择。分组的方 法可以为相邻的M个定向天线为一组,组之间的定向天线可以重叠,也可以不重叠,N个定向天线分成P个分组。分组之后,终端将各个分组中的M个定向天线的第一下行信号参数求平均值,得到各个分组的第一下行信号参数的平均值。然后,确定各个分组中下行信号参数平均值最大的分组,即第一分组,将第一分组中的M个定向天线作为终端接收天线组。在对第一分组中M个定向天线按照第一下行参数从高到低的顺序进行排序,选取第一分组中M个定向天线的前L个定向天线为该终端的发射天线。
示例性的,如图7所示,该终端包括8个定位天线,且该终端的基带芯片支持的接收天线为4个,支持的发送天线为2个。那么,该终端的8个定向天线可划分为3个分组:分组1包括天线1-天线4;分组2包括天线3-天线6;分组3包括天线6-天线8以及天线1。分组之间的定向天线有重叠,例如分组1和分组2中都包括天线3和天线4;分组2和分组3中都包括天线6;分组3和分组1中都包括天线1。
假设这3个分组的第一下行信号参数的平均值的关系为:分组3>分组2>分组1,则该终端确定分组3中的4个定位天线(天线6、天线7、天线8和天线1)为接收天线,再从分组3中的确定信号强度和/或信号质量最大的2个定位天线为发射天线。
本申请实施例提供的一种天线的选择的方法,应用于包含N个定向天线且所述N个定向天线呈环形放置的终端中,根据每个定向天线的下行信号参数,确定其中M个定向天线为终端的接收天线,确定其中L个定向天线为终端的发射天线。与现有技术相比较,现有技术中终端使用定向天线获取天线增益,但若周围环境的变化,则终端的通信质量会下降,需要人工调整天线的方向。或者通过全向天线获取360度的信号辐射范围,以便适应周围环境的变化,不需要进行人工调整天线方向,但全向天线的天线增益小,也会影响终端的收发性能。而本申请通过将N个定向天线环形放置使得终端能够获取360度的信号辐射范围,并根据第一下行信号参数从N个定向天线中确定第一下行信号参数最高的M个定向天线为终端的接收天线,从M个定向天线中确定第一下行信号参数最高的L个定向天线为终端的发射天线,从而提升终端的天线增益。
此外,本申请实施例中,每个定向天线的定向方向设置为垂直于环形的切线方向,且指向环形外侧即可,不用严格的将定向方向设置为指向基站,降低了定向天线安装时的技术难度,节省了人力成本。而且,本申请实施例中通过从N个定向天线中自动确定第一下行信号参数最高的定向天线作为终端接收天线,能够适应周围环境的变化,不需要人工的对天线进行调整,也节省了人力成本。
终端在接入无线网后,可继续采用终端开机时确定的接收天线和发送天线进行通信,也可以根据下行信号参数的变化来重新确定该终端的接收天线和发射天线。下面分情况对天线的选择方法进行说明。
一、对终端的N个定向天线进行了分组。
考虑到终端入网后,随着周围环境发生变化,原先确定的M个接收天线上信号强度或质量可能会变差的情况,终端需要确定是否需要确定接收天线和发射天线。于是,如图8所示,本申请实施例还提供了一种天线选择的方法,在步骤102之后,具体包括:
201、在第一预设时间段后,终端获取第一分组的中的M个定向天线的第二下行 信号参数,进而获取第一分组的第二下行信号参数的平均值。
其中,第二下行信号参数包括下行信号强度或下行信号质量。第一分组的第二下行信号参数的平均值即为第一分组中包括的M个定向天线的第二下行信号参数的平均值。
具体的,根据步骤102可知,终端在开机后确定第一分组中的M个定向天线作为该终端的接收天线。那么,在入网后,终端实时或者按照一定周期,即第一周期,在这M个定向天线上检测小区导频信号,进而获得这M个定向天线中每个天线上的第二下行信号参数,以及这M个定向天线的第二下行信号参数的平均值。
202、终端判断第一分组的第二下行信号参数的平均值,相比较于第一分组的第一下行信号参数的平均值的下降量是否大于第一阈值。若是,执行步骤203。若否,执行步骤205。
若第一分组的第二下行信号参数的平均值,相比较于第一分组的第一下行信号参数的平均值的下降量大于第一阈值,表明第一分组中的这M个定向天线上的信号强度或质量总体变差,且变差达到一定程度,终端的通信质量可能会受到影响,则终端需要重新确定接收天线和发射天线。
进一步的,为了增加系统的鲁棒性,避免第一分组中这M个定向天线上的信号强度或质量有短暂的下降,终端就重新确定接收天线和发射天线的情况发生。可以在检测到第一分组中这M个定向天线的第二下行信号参数的平均值,相较于第一下行信号参数的平均值的下降量在一定的时间段内连续多次超过第一阈值时,终端才认为第一分组中的M个定向天线上的信号强度或质量变差,终端需要重新确定接收天线和发射天线。
若第一分组的第二下行信号参数的平均值,相比较于第一分组的第一下行信号参数的平均值的下降量小于或等于第一阈值,表明第一分组的M个定向天线上的信号强度或质量总体上没有变差,或者只有少许的变差,终端的通信质量不会受到较大的影响。因此,不需要重新确定终端的接收天线和发射天线。
203、终端获取终端N个定向天线上的第三下行信号参数。
其中,第三下行信号参数包括下行信号强度或下行信号质量。
具体的,终端对全部的N个定向天线上的小区导频信号都进行检测,获取N个定向天线上的第三下行信号参数。
204、终端根据第三下行信号参数重新确定终端的接收天线和发射天线。
具体的实现方式可参考步骤102,在此不重复赘述。
205、终端确定继续使用之前确定的接收天线和发射天线。
由此,当终端在入网后,之前确定第一分组的M个接收天线的信号强度或质量下降时,且下降时达到一定程度时,终端可以重新确定信号强度或质量最好的定向天线为接收天线和发射天线。这样,可以避免原先确定的接收天线和发射天线上的信号强度或质量变差而造成终端的通信质量下降。
进一步的,考虑到终端入网后,虽然终端原先确定第一分组中的M个定向天线的信号强度或质量没有变差,但该终端的其他分组中的定向天线上的信号强度或质量有 可能变的更好,从而导致该终端上的通信质量不是最好的。于是,如图9所示,本申请实施例还提供了一种天线选择的方法,在步骤102之后,具体包括:
301、终端在第二预设时间段后获得N个定向天线上每个定向天线的第四下行信号参数,以及各个分组的第四下行信号参数的平均值。
其中,第四下行信号参数包括下行信号强度或下行信号质量。各个分组的第四下行信号参数的平均值即为各个分组中包括的M个定向天线的第二下行信号参数的平均值。
具体的,终端按照一定周期,即第二周期,对N个定向天线上的小区导频信号进行检测,以便观察该终端上各个定向天线上的信号强度或质量是否有变好。
302、终端根据各个分组的第四下行信号参数的平均值重新确定第二分组中的M个定向天线为新的接收天线,从第二分组中的M个定向天线中确定L个定向天线为新的发射天线。
其中,第二分组为P个分组中第四下行信号参数的平均值最大的分组。
具体的,终端重新确定第二分组中的M个定向天线作为该终端新的接收天线。然后,终端按照第四下行信号参数从高到低的顺序将重新选取的第二分组中的M个定向天线进行排序,获取其中前L个定向天线作为该终端的发射天线。这样,终端更新接收天线和发射天线有利于提高终端的收发性能,提高通话质量。
进一步,为了增加系统的鲁棒性,避免其他分组的定向天线上信号强度或质量稍有变好,终端就重新确定接收天线和发射天线的情况发生,如图10所示,本申请实施例还提供了一种天线选择的方法,在步骤302之前,具体包括:
401、若第二分组的第四下行信号参数的平均值大于第一分组的第四下行信号参数的平均值的第一预设倍数,则执行步骤302。否则执行步骤402。
其中,第二分组为P个分组中第四下行信号参数的平均值最大的分组。
具体的,若第二分组的第四下行信号参数的平均值大于第一分组的第四下行信号参数的平均值的第一预设倍数,例如:1.2倍,表明第二分组的定向天线上的信号强度或质量,相对于第一分组中作为接收天线的M个定向天线,总体上有变好且变好达到一定程度。那么,终端需要重新确定接收天线和发射天线。
若第二分组的第四下行信号参数的平均值小于或等于第一分组的第四下行信号参数的平均值的第一预设倍数,表明第二分组的定向天线上的信号强度或质量,相对于第一分组中作为接收天线的M个定向天线,总体上没有变好且变好没有达到一定程度,则终端不需要重新确定接收天线。需要注意的是,有可能此时第二分组内部的M个定向天线上信号强度或质量有发生变化,因此,需进一步判断是否需要重新确定发射天线。
402、终端根据第四下行信号参数获取第一平均值以及第二平均值。
具体的,终端计算第一分组中作为接收天线的L个定向天线的第四下行信号参数的平均值,即为第一平均值。然后,终端按照第四下行信号参数从高到低的顺序将第一分组中的M个定向天线进行排序,获取第一分组中第四下行信号参数最大的L个定向天线,并计算这L个定向天线的第四下行信号参数的平均值,即为第二平均值。
403、若第二平均值大于第一平均值的第二预设倍数,则终端确定第一分组中第四下行信号参数最大的L个定向天线为终端新的发射天线。
具体的,若第二平均值大于第一平均值的第二预设倍数,例如1.2倍,表明第二分组中M个定向天线内部的信号强度或质量发生了较大的变化,且有除原来作为接收天线的L个的定向天线以外的,其他的天线的信号强度或质量明显变好。于是,终端需要重新确定终端的接收天线,有利于提高终端的发射性能,提高终端的通信质量。否则,终端也不需要重新确定发射天线。
由此,当终端在入网后,之前确定的M个接收天线的信号强度或质量下降时,且下降时达到一定程度时,终端可以重新确定信号强度或质量最好的定向天线为接收天线和发射天线。这样,可以避免原先确定的接收天线和发射天线上的信号强度或质量变差而造成终端的通信质量下降。
二、未对终端的N个定向天线进行分组
考虑到终端入网后,随着周围环境发生变化,原先确定的M个接收天线上信号强度或质量可能会变差的情况,终端需要确定是否需要确定接收天线和发射天线。于是,如图11所示,本申请实施例还提供了一种天线选择的方法,在步骤102之后,具体包括:
501、终端根据作为接收天线的M个定向天线的第一下行信号参数的平均值,即第三平均值。
502、在第三预设时间段后,终端获取该M个定向天线的第五下行信号参数以及第四平均值。
其中,第五下行信号参数包括下行信号强度或下行信号质量,第四平均值为该M个定向天线的第五下行信号参数的平均值。
503、该终端判断第四平均值相比较于第三平均值是否大于第二阈值。若是,执行步骤504。若否,执行步骤506。
若第四平均值相比较于第三平均值的下降量大于第二阈值,表明作为接收天线的这M个定向天线上的信号强度或质量总体变差,且变差达到一定程度,终端的通信质量可能会受到影响,则终端需要重新确定接收天线和发射天线。
进一步的,为了增加系统的鲁棒性,避免作为接收天线的这M个定向天线上的信号强度或质量有短暂的下降,终端就重新确定接收天线和发射天线的情况发生。可以在检测到第四平均值相较于第三平均值的下降量在一定的时间段内连续多次超过第二阈值时,终端才认为这M个定向天线上的信号强度或质量变差,终端需要重新确定接收天线和发射天线。
若第四平均值相比较于第三平均值的下降量小于或等于第二阈值,表明作为接收天线的M个定向天线上的信号强度或质量总体上没有变差,或者只有少许的变差,终端的通信质量不会受到较大的影响。因此,不需要重新确定终端的接收天线和发射天线。
504、终端获取终端N个定向天线上的第六下行信号参数。
其中,第六下行信号参数包括下行信号强度或下行信号质量。
505、终端根据第六下行信号参数重新确定终端的接收天线和发射天线。
具体的实现方式可参考步骤102,在此不重复赘述。
506、终端确定继续使用之前确定的接收天线和发射天线。
由此,当终端在入网后,之前确定的M个接收天线的信号强度或质量下降时,且下降时达到一定程度时,终端可以重新确定信号强度或质量最好的定向天线为接收天线和发射天线。这样,可以避免原先确定的接收天线和发射天线上的信号强度或质量变差而造成终端的通信质量下降。
进一步的,考虑到终端入网后,虽然终端原先确定M个定向天线的信号强度或质量没有变差,但该终端的其他定向天线上的信号强度或质量有可能变的更好,从而导致该终端上的通信质量不是最好的。于是,如图12所示,本申请实施例还提供了一种天线选择的方法,在步骤102之后,具体包括:
601、终端在第四预设时间段后获得N个定向天线上每个定向天线的第七下行信号参数。
其中,第七下行信号参数包括下行信号强度或下行信号质量。
具体的,终端按照一定周期,即第四周期,对N个定向天线上的小区导频信号进行检测,以便观察该终端上各个定向天线上的信号强度或质量是否有变好。
602、终端根据每个定向天线的第七下行信号参数重新确定接收天线和发射天线。
具体的,终端按照第七下行信号参数对N个定向天线进行从高到低的排序,重新确定此次排序后的N个定向天线中前M个定向天线为接收天线,前L个定向天线为发射天线。这样,终端更新接收天线和发射天线有利于提高终端的收发性能,提高通话质量。
进一步,为了增加系统的鲁棒性,避免其他定向天线上信号强度或质量稍有变好,终端就重新确定接收天线和发射天线的情况发生,如图13所示,本申请实施例还提供了一种天线选择的方法,在步骤602之前,具体包括:
701、终端根据这N个定向天线的第七下行信号参数获取第五平均值和第六平均值。
其中,第五平均值为此时作为接收天线的M个定向天线的第七下行信号参数的平均值。终端从N个定向天线中选取第七下行信号参数最大的M个定向天线,将这M个定向天线的第七下行信号参数的平均值确定为第六平均值。
702、若第六平均值大于第五平均值的第三预设倍数,则执行步骤602。否则执行步骤703。
具体的,若第六平均值大于第五平均值的第三预设倍数,例如:1.2倍,表明除作为接收天线的M定向天线以外的,其他的定向天线上的信号强度或质量,总体上有变好且变好达到一定程度。那么,终端需要重新确定接收天线和发射天线。
若第六平均值小于或等于第五平均值的第三预设倍数,表明其他定向天线上的信号强度或质量,相对于作为接收天线的M个定向天线,总体上没有变好且变好没有达到一定程度,则终端不需要重新确定接收天线。需要注意的是,有可能此时作为接收天线的M个定向天线之间的信号强度或质量有发生变化,因此,需进一步判断是否需 要重新确定发射天线。
703、终端根据第七下行信号参数获取第七平均值以及第八平均值。
具体的,终端计算作为接收天线的L个定向天线的第七下行信号参数的平均值,即为第七平均值。然后,终端按照第七下行信号参数从高到低的顺序将作为接收天线的M个定向天线进行排序,获取其中第七下行信号参数最大的L个定向天线,并计算这L个定向天线的第七下行信号参数的平均值,即为第八平均值。
704、若第八平均值大于第七平均值的第四预设倍数,则终端确定第七下行信号参数最大的L个定向天线为终端新的发射天线。
具体的,若第八平均值大于第七平均值的第四预设倍数,例如1.2倍,表明作为接收天线的M个定向天线内部的信号强度或质量发生了较大的变化,即有除原来作为接收天线的L个的定向天线以外的,其他的天线的信号强度或质量明显变好。于是,终端需要重新确定终端的发射天线,有利于提高终端的发射性能,提高终端的通信质量。否则,终端不需要重新确定发射天线。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、用户设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述实施例中所涉及的终端的一种可能的结构示意图,终端1400包括:处理单元1401,存储单元1402,通信单元1403和天线单元1404。处理单元1401用于支持终端执行图6中的过程101和102,图8中的过程201-205,图9中的过程301-302,图10中的过程401-403,图11中的过程501-506,图12中的601-602,图13中的701-704。存储单元1402用于支持终端存储相应的程序代码和数据。天线单元1404用于支持终端与基站之间的通信。通信单元1403用于支持终端与其他网络实体的通信。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,上述的处理单元1401可以是图3中的处理模块301,存储单元1402可以是图3中的存储模块303,通信单元1403可以是图3中的通信模块302,天线单元1404可以是图3中的天线模块304。
其中,处理模块301可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP), 专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块302可以是收发器、收发电路或通信接口等。存储模块303可以是存储器。
当处理模块301为处理器,通信模块302为收发器,存储模块303为存储器时,本申请实施例所涉及的基站可以为图13B所示的基站。
参阅图15所示,该终端1500包括:处理器1501、收发器1502、存储器1503以及总线1504。其中,收发器1502、处理器1501以及存储器1503通过总线1504相互连接;总线1503可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持数据发送设备实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、 改进等,均应包括在本申请的保护范围之内。

Claims (26)

  1. 一种天线选择的方法,其特征在于,应用于终端,所述终端具有N个定向天线且所述N个定向天线呈环形放置,所述方法包括:
    所述终端获取所述N个定向天线的每个定向天线的第一下行信号参数,所述第一下行信号参数包括下行信号强度或下行信号质量;
    所述终端根据所述每个定向天线的所述第一下行信号参数,从所述N个定向天线中确定M个定向天线作为所述终端的接收天线,并从所述M个定向天线中确定L个定向天线作为所述终端的发射天线;
    其中,N≥2,N≥M≥L,且L、M、N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端获取所述N个定向天线的每个定向天线的第一下行信号参数之前,所述方法还包括:
    所述终端将所述N个定向天线划分成P个分组,其中,每个分组中包含M个定向天线。
  3. 根据权利要求2所述的方法,其特征在于,所述终端根据所述每个定向天线的所述第一下行信号参数,从所述N个定向天线中确定M个定向天线作为所述终端的接收天线,并从所述M个定向天线中确定L个定向天线作为所述终端的发射天线包括:
    所述终端根据所述每个定向天线的所述第一下行信号参数,获取所述P个分组中每个分组的所述第一下行信号参数的平均值;
    所述终端选取所述P个分组中的第一分组包括的M个定向天线作为所述终端的接收天线,所述第一分组为所述P个分组中所述第一下行信号参数的平均值最大的分组;
    所述终端按照所述第一下行信号参数由高到低的顺序将所述第一分组的M个定向天线进行排序,选取所述第一分组的M个定向天线的前L个定向天线作为所述终端的发射天线。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    以第一预设时间段为第一周期,所述终端重新获取所述第一周期内所述第一分组中每个定向天线的第二下行信号参数,进而获取所述第一分组的所述第二下行信号参数的平均值,所述第二下行信号参数包括所述下行信号强度或所述下行信号质量;
    若所述第一分组的所述第二下行信号参数的平均值相对所述第一分组的所述第一下行信号参数的平均值的下降量大于第一阈值,则所述终端重新获取所述第一周期内所述N个定向天线的每个定向天线的第三下行信号参数,以便于所述终端根据所述每个定向天线的所述第三下行信号参数,重新确定出新的M个定向天线作为所述终端的接收天线,并从所述新的M个定向天线中重新确定新的L个定向天线作为所述终端的发射天线;
    其中,所述第三下行信号参数包括所述下行信号强度或所述下行信号质量。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    以第二预设时间段为第二周期,所述终端重新获取所述第二周期内所述N个定向天线的每个定向天线的第四下行信号参数,进而获取所述P个分组中每个分组的所述 第四下行信号参数的平均值,所述第四下行信号参数包括所述下行信号强度或所述下行信号质量;
    所述终端选取所述第二周期内所述P个分组中的第二分组包括的M个定向天线作为所述终端的接收天线,所述第二分组为所述P个分组中所述第四下行信号参数的平均值最大的分组;
    所述终端按照所述第四下行信号参数由高到低的顺序将所述第二分组的M个定向天线进行排序,选取所述第二周期内所述第二分组的M个定向天线的前L个定向天线作为所述终端的发射天线。
  6. 根据权利要求5所述的方法,其特征在于,在所述终端选取所述第二周期内所述P个分组中的第二分组包括的M个定向天线作为所述终端的接收天线之前,所述方法还包括:
    所述终端确定所述第二分组的所述第四下行信号参数的平均值大于所述第一分组的所述第四下行信号参数的平均值的第一预设倍数。
  7. 根据权利要求6所述的方法,其特征在于,若所述终端确定所述第二分组的所述第四下行信号参数的平均值小于或等于所述第一分组的所述第四下行信号参数的平均值的所述第一预设倍数,则所述方法还包括:
    所述终端确定所述第一分组包括的M个定向天线为所述终端的接收天线;
    所述终端获取第一平均值,所述第一平均值为所述第一分组中的L个定向天线的所述第四下行信号参数的平均值;
    所述终端按照所述第四下行信号参数由高到低的顺序将所述第一分组的M个定向天线进行排序,获取第二平均值,所述第二平均值为所述第一分组的M个定向天线的前L个定向天线的所述第四下行信号参数的平均值;
    若所述第二平均值大于所述第一平均值的第二预设倍数,则所述终端按照所述第四下行信号参数由高到低的顺序重新确定所述第一分组的M个定向天线的前L个定向天线为所述终端的发射天线。
  8. 根据权利要求1所述的方法,其特征在于,所述终端根据所述每个定向天线的所述第一下行信号参数,从所述N个定向天线中确定M个定向天线作为所述终端的接收天线,并从所述M个定向天线中确定L个定向天线作为所述终端的发射天线包括:
    所述终端根据所述每个定向天线的所述第一下行信号参数将所述N个定向天线从高到低的顺序进行排序,选取所述N个定向天线中的前M个定向天线作为所述终端的接收天线,并选取所述M个定向天线的前L个定向天线作为所述终端的发射天线。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端获取第三平均值,所述第三平均值为所述M个定向天线的所述第一下行信号参数的平均值;
    以第三预设时间段为第三周期,所述终端重新获取所述第三周期内所述M个定向天线的第五下行信号参数以及第四平均值,所述第四平均值为所述M个定向天线的所 述第五下行信号参数的平均值,所述第五下行信号参数包括所述下行信号强度或所述下行信号质量;
    若所述第四平均值相对于所述第四平均值的下降量大于第二阈值,则所述终端重新获取所述N个定向天线的每个定向天线的第六下行信号参数,以便于所述终端根据所述每个定向天线的所述第六下行信号参数,重新确定出新的M个定向天线作为所述终端的接收天线,并从所述新的M个定向天线中重新确定新的L个定向天线作为所述终端的发射天线;
    其中,所述第六下行信号参数包括所述下行信号强度或所述下行信号质量。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    以第四预设时间段为第四周期,所述终端重新获取所述第四周期内所述N个定向天线的每个定向天线的第七下行信号参数;
    所述终端根据所述每个定向天线的所述第七下行信号参数将所述N个定向天线从高到低的顺序进行排序,重新选取此次排序后所述N个定向天线中的前M个定向天线作为所述终端的接收天线,并重新选取此次排序后所述M个定向天线的前L个定向天线作为所述终端的发射天线。
  11. 根据权利要求10所述的方法,其特征在于,在重新选取此次排序后所述N个定向天线中的前M个定向天线作为所述终端的接收天线之前,所述方法还包括:
    所述终端获取第五平均值和第六平均值,其中,所述第五平均值为按照所述第一下行信号参数确定的所述M个定向天线的所述第一下行信号参数的平均值;所述第六平均值为按照所述第七下行信号参数确定的,所述N个定向天线中的前M个定向天线的所述第七下行信号参数的平均值;
    所述终端确定所述第六平均值大于所述第五平均值的第三预设倍数。
  12. 根据权利要求11所述的方法,其特征在于,若所述终端确定所述第六平均值小于或等于所述第五平均值的第三预设倍数,则所述方法还包括:
    所述终端将按照所述第一下行信号参数确定的所述M个定向天线确定为所述终端的接收天线;
    所述终端获取第七平均值,所述第七平均值为按照所述第一下行信号参数确定的所述L个定向天线的所述第七下行信号参数的平均值;
    所述终端按照所述第七下行信号参数由高到低的顺序将按照所述第一下行信号参数确定的所述M个定向天线进行排序,并获取第八平均值,所述第八平均值为此次排序后所述M个定向天线的前L个定向天线的所述第七下行信号参数的平均值;
    若所述第八平均值大于所述第七平均值的第四预设倍数,则所述终端重新确定此次排序后所述M个定向天线的前L个定向天线为所述终端的发射天线。
  13. 一种天线选择的终端,其特征在于,所述终端具有N个定向天线且所述N个定向天线呈环形放置,所述终端还包括:处理器和收发器;
    所述处理器,用于通过所述收发器获取所述N个定向天线的每个定向天线的第一下行信号参数,所述第一下行信号参数包括下行信号强度或下行信号质量;
    所述处理器,还用于根据所述每个定向天线的所述第一下行信号参数,从所述N 个定向天线中确定M个定向天线作为所述终端的接收天线,并从所述M个定向天线中确定L个定向天线作为所述终端的发射天线;
    其中,N≥2,N≥M≥L,且L、M、N为正整数。
  14. 根据权利要求13所述的终端,其特征在于,所述处理器,还用于将所述N个定向天线划分成P个分组,其中,每个分组中包含M个定向天线。
  15. 根据权利要求14所述的终端,其特征在于,所述处理器,还用于根据所述每个定向天线的所述第一下行信号参数,获取所述P个分组中每个分组的所述第一下行信号参数的平均值;
    所述处理器,还用于选取所述P个分组中的第一分组包括的M个定向天线作为所述终端的接收天线,所述第一分组为所述P个分组中所述第一下行信号参数的平均值最大的分组;
    所述处理器,还用于按照所述第一下行信号参数由高到低的顺序将所述第一分组的M个定向天线进行排序,选取所述第一分组的M个定向天线的前L个定向天线作为所述终端的发射天线。
  16. 根据权利要求15所述的终端,其特征在于,所述处理器,还用于以第一预设时间段为第一周期,重新通过所述收发器获取所述第一周期内所述第一分组中每个定向天线的第二下行信号参数,进而获取所述第一分组的所述第二下行信号参数的平均值,所述第二下行信号参数包括所述下行信号强度或所述下行信号质量;
    所述处理器,还用于若所述第一分组的所述第二下行信号参数的平均值相对所述第一分组的所述第一下行信号参数的平均值的下降量大于第一阈值,则重新通过所述收发器获取所述第一周期内所述N个定向天线的每个定向天线的第三下行信号参数,以便于所述终端根据所述每个定向天线的所述第三下行信号参数,重新确定出新的M个定向天线作为所述终端的接收天线,并从所述新的M个定向天线中重新确定新的L个定向天线作为所述终端的发射天线;
    其中,所述第三下行信号参数包括所述下行信号强度或所述下行信号质量。
  17. 根据权利要求15所述的终端,其特征在于,所述处理器,还用于以第二预设时间段为第二周期,重新通过所述收发器获取所述第二周期内所述N个定向天线的每个定向天线的第四下行信号参数,进而获取所述P个分组中每个分组的所述第四下行信号参数的平均值,所述第四下行信号参数包括所述下行信号强度或所述下行信号质量;
    所述处理器,还用于选取所述第二周期内所述P个分组中的第二分组包括的M个定向天线作为所述终端的接收天线,所述第二分组为所述P个分组中所述第四下行信号参数的平均值最大的分组;
    所述处理器,还用于按照所述第四下行信号参数由高到低的顺序将所述第二分组的M个定向天线进行排序,选取所述第二周期内所述第二分组的M个定向天线的前L个定向天线作为所述终端的发射天线。
  18. 根据权利要求17所述的终端,其特征在于,所述处理器,还用于确定所述第二分组的所述第四下行信号参数的平均值大于所述第一分组的所述第四下行信号 参数的平均值的第一预设倍数。
  19. 根据权利要求18所述的终端,其特征在于,所述处理器,还用于确定所述第一分组包括的M个定向天线为所述终端的接收天线;
    所述处理器,还用于获取第一平均值,所述第一平均值为所述第一分组中的L个定向天线的所述第四下行信号参数的平均值;
    所述处理器,还用于按照所述第四下行信号参数由高到低的顺序将所述第一分组的M个定向天线进行排序,获取第二平均值,所述第二平均值为所述第一分组的M个定向天线的前L个定向天线的所述第四下行信号参数的平均值;
    所述处理器,还用于若所述第二平均值大于所述第一平均值的第二预设倍数,则按照所述第四下行信号参数由高到低的顺序重新确定所述第一分组的M个定向天线的前L个定向天线为所述终端的发射天线。
  20. 根据权利要求13所述的终端,其特征在于,所述处理器,还用于根据所述每个定向天线的所述第一下行信号参数将所述N个定向天线从高到低的顺序进行排序,选取所述N个定向天线中的前M个定向天线作为所述终端的接收天线,并选取所述M个定向天线的前L个定向天线作为所述终端的发射天线。
  21. 根据权利要求20所述的终端,其特征在于,所述处理器,还用于获取第三平均值,所述第三平均值为所述M个定向天线的所述第一下行信号参数的平均值;
    所述处理器,还用于以第三预设时间段为第三周期,重新通过所述收发器获取所述第三周期内所述M个定向天线的第五下行信号参数以及第四平均值,所述第四平均值为所述M个定向天线的所述第五下行信号参数的平均值,所述第五下行信号参数包括所述下行信号强度或所述下行信号质量;
    所述处理器,还用于若所述第四平均值相对于所述第四平均值的下降量大于第二阈值,则重新通过所述收发器获取所述N个定向天线的每个定向天线的第六下行信号参数,以便于所述终端根据所述每个定向天线的所述第六下行信号参数,重新确定出新的M个定向天线作为所述终端的接收天线,并从所述新的M个定向天线中重新确定新的L个定向天线作为所述终端的发射天线;
    其中,所述第六下行信号参数包括所述下行信号强度或所述下行信号质量。
  22. 根据权利要求20所述的终端,其特征在于,所述处理器,还用于以第四预设时间段为第四周期,重新通过所述收发器获取所述第四周期内所述N个定向天线的每个定向天线的第七下行信号参数;
    所述处理器,还用于根据所述每个定向天线的所述第七下行信号参数将所述N个定向天线从高到低的顺序进行排序,重新选取此次排序后所述N个定向天线中的前M个定向天线作为所述终端的接收天线,并重新选取此次排序后所述M个定向天线的前L个定向天线作为所述终端的发射天线。
  23. 根据权利要求22所述的终端,其特征在于,所述处理器,还用于获取第五平均值和第六平均值,其中,所述第五平均值为按照所述第一下行信号参数确定的所述M个定向天线的所述第一下行信号参数的平均值;所述第六平均值为按照所述第七下行信号参数确定的,所述N个定向天线中的前M个定向天线的所述第七下行信号 参数的平均值;
    所述处理器,还用于确定所述第六平均值大于所述第五平均值的第三预设倍数。
  24. 根据权利要求23所述的终端,其特征在于,所述处理器,还用于将按照所述第一下行信号参数确定的所述M个定向天线确定为所述终端的接收天线;
    所述处理器,还用于获取第七平均值,所述第七平均值为按照所述第一下行信号参数确定的所述L个定向天线的所述第七下行信号参数的平均值;
    所述处理器,还用于按照所述第七下行信号参数由高到低的顺序将按照所述第一下行信号参数确定的所述M个定向天线进行排序,并获取第八平均值,所述第八平均值为此次排序后所述M个定向天线的前L个定向天线的所述第七下行信号参数的平均值;
    所述处理器,还用于若所述第八平均值大于所述第七平均值的第四预设倍数,则重新确定此次排序后所述M个定向天线的前L个定向天线为所述终端的发射天线。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1至12任一项所述的方法。
  26. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行权利要求1至12任一项所述的方法。
PCT/CN2017/088422 2017-06-15 2017-06-15 一种天线的选择方法、装置及终端 WO2018227468A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780090514.2A CN110612670B (zh) 2017-06-15 2017-06-15 一种天线的选择方法、装置及终端
PCT/CN2017/088422 WO2018227468A1 (zh) 2017-06-15 2017-06-15 一种天线的选择方法、装置及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088422 WO2018227468A1 (zh) 2017-06-15 2017-06-15 一种天线的选择方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2018227468A1 true WO2018227468A1 (zh) 2018-12-20

Family

ID=64659352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088422 WO2018227468A1 (zh) 2017-06-15 2017-06-15 一种天线的选择方法、装置及终端

Country Status (2)

Country Link
CN (1) CN110612670B (zh)
WO (1) WO2018227468A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726145A (zh) * 2020-06-30 2020-09-29 展讯通信(上海)有限公司 上行链路的传输选择方法及终端
CN112290983A (zh) * 2020-10-30 2021-01-29 深圳移航通信技术有限公司 天线选择方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021195834A1 (zh) * 2020-03-30 2021-10-07 华为技术有限公司 天线系统以及控制方法、处理器、摄像系统
CN113904706B (zh) * 2020-06-22 2023-12-29 华为技术有限公司 终端设备、信号传输方法及基带芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084715A1 (en) * 2009-12-21 2011-07-14 Qualcomm Incorporated Dynamic antenna selection in a wireless device
CN104144515A (zh) * 2013-05-08 2014-11-12 中兴通讯股份有限公司 终端及其实现wifi热点网络共享的方法
CN104617980A (zh) * 2015-01-13 2015-05-13 联想(北京)有限公司 一种信息处理方法及电子设备
WO2016000460A1 (zh) * 2014-06-30 2016-01-07 华为技术有限公司 移动终端的天线的控制方法和移动终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959966B (zh) * 2016-04-26 2019-10-22 深圳前海智讯中联科技有限公司 一种多波束选择智能天线通信装置及其通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084715A1 (en) * 2009-12-21 2011-07-14 Qualcomm Incorporated Dynamic antenna selection in a wireless device
CN104144515A (zh) * 2013-05-08 2014-11-12 中兴通讯股份有限公司 终端及其实现wifi热点网络共享的方法
WO2016000460A1 (zh) * 2014-06-30 2016-01-07 华为技术有限公司 移动终端的天线的控制方法和移动终端
CN104617980A (zh) * 2015-01-13 2015-05-13 联想(北京)有限公司 一种信息处理方法及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726145A (zh) * 2020-06-30 2020-09-29 展讯通信(上海)有限公司 上行链路的传输选择方法及终端
CN112290983A (zh) * 2020-10-30 2021-01-29 深圳移航通信技术有限公司 天线选择方法和装置

Also Published As

Publication number Publication date
CN110612670B (zh) 2021-05-11
CN110612670A (zh) 2019-12-24

Similar Documents

Publication Publication Date Title
US11082890B2 (en) Method, system and apparatus of wireless local area network (WLAN) communication in conjunction with cellular communication
WO2018227468A1 (zh) 一种天线的选择方法、装置及终端
CN108282898B (zh) 随机接入方法、用户设备和网络设备
US10187858B2 (en) System for boosting a network signal, and the method thereof
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
JP7319394B2 (ja) 測定制御方法および装置、端末、ネットワーク機器
JP2021529442A (ja) 物理ランダムアクセスチャネル伝送用のチャネルアクセス方法、装置およびプログラム
US10779225B2 (en) Methods, network nodes and wireless device for handling access information
US11706775B2 (en) Wireless communication method and device
CN105703789A (zh) 通信装置及多个无线电活动的处理方法
US20200229003A1 (en) Access Point Device and Communication Method
CN115399006A (zh) 多载波通信方法、终端设备和网络设备
WO2019157756A1 (zh) 信号传输的方法和设备
US8254387B2 (en) Method and apparatus for establishing and maintaining a spectrally efficient multicast group call
CN114365579B (zh) 用于缓解激进介质预留的设备、系统和方法
CN113904706B (zh) 终端设备、信号传输方法及基带芯片
WO2022027681A1 (zh) 无线通信方法和设备
JPWO2019242452A5 (zh)
WO2014101138A1 (zh) 多载波通信的方法、装置、设备和系统
WO2022236613A9 (zh) 一种确定参考资源的方法及装置、终端
CN111903150B (zh) 信道处理方法及相关设备
WO2024138343A1 (zh) 资源选择方法、侧行通信方法、装置、设备及存储介质
CN113840300A (zh) 传输剩余最小系统信息的方法和装置
WO2005043777A1 (fr) Antenne en reseau couverte en quinconce

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913958

Country of ref document: EP

Kind code of ref document: A1