WO2018227366A1 - Composite binder for lithium ion batteries and its preparation - Google Patents

Composite binder for lithium ion batteries and its preparation Download PDF

Info

Publication number
WO2018227366A1
WO2018227366A1 PCT/CN2017/088035 CN2017088035W WO2018227366A1 WO 2018227366 A1 WO2018227366 A1 WO 2018227366A1 CN 2017088035 W CN2017088035 W CN 2017088035W WO 2018227366 A1 WO2018227366 A1 WO 2018227366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
binder
modified
composite binder
composite
Prior art date
Application number
PCT/CN2017/088035
Other languages
French (fr)
Inventor
Jun Yang
Yitian BIE
Jingjing Zhang
Lei Wang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to PCT/CN2017/088035 priority Critical patent/WO2018227366A1/en
Priority to JP2019568311A priority patent/JP6952806B2/en
Priority to KR1020197036783A priority patent/KR102392241B1/en
Priority to CN201780091952.0A priority patent/CN110770950B/en
Publication of WO2018227366A1 publication Critical patent/WO2018227366A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium ion batteries and specifically relates to the development and improvement of binder network in silicon-based anode for lithium ion batteries.
  • Silicon is a promising candidate electrode material for lithium ion batteries owning to its high theoretical specific capacity of 4200 mAh/g for Li 4.4 Si.
  • binders comprising carboxyl groups, such as polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) based polymers show better electrochemical performance than non-functional polymers such as PVDF and styrene-butadiene rubber and are thus frequently used.
  • PAA polyacrylic acid
  • CMC carboxymethyl cellulose
  • These functional binders show enhanced binding with Si particles via hydrogen bonding and/or covalent chemical bonds between the polar functional groups of the binder and the partially hydrolyzed surface layer of Si particles.
  • a composite binder which is deformable has been proposed for Si-based electrode material.
  • a composite binder comprising crosslinking product of:
  • the present invention provides a deformable composite binder with three dimensional binding network and enhanced interaction between the binder and silicon-based material for lithium ion batteries.
  • the present invention further provides an electrode material, which comprises the composite binder according to the present invention.
  • the present invention further provides a silicon-based lithium ion battery, which comprises the composite binder according to the present invention.
  • the present invention also relates to a process for preparing the above composite binder, comprising the steps of:
  • Figure 1 is a schematic illustration of the three dimensional binding network and the corresponding structural formula when cyclodextrin or ⁇ -cyclodextrin is added to the PAA.
  • Figure 2 is a schematic illustration showing the carbonyl modification of hydrogen peroxide to ⁇ -cyclodextrin.
  • Figure 3 is an infrared spectrum of the crosslinking product prepared in Example 1.
  • Figure 4 is a plot showing the cycling performance of the Si electrodes prepared in Examples 1 to 4.
  • Figure 5 is a plot showing the cycling performance comparison of the Si electrodes prepared in Example 3 and in Comparative Example 1.
  • Figure 6 is a plot showing the different C-rate of the Si electrodes prepared in Example 3 and in Comparative Example 1.
  • Figure 7 is a plot showing the cycling performance of the Si electrode prepared in Example 3 at 0.5C.
  • Figure 8 is a plot showing the cycling performance of the Si electrode prepared in Example 3 at 3C.
  • the present inventor surprisingly found that when ⁇ -, ⁇ -, or ⁇ -cyclodextrin and/or modified ⁇ -, ⁇ -, or ⁇ -cyclodextrin such as carbonyl modified ⁇ -cyclodextrin is introduced into an binder comprising carboxyl groups, an excellent cycling stability and high coulombic efficiency can be achieved.
  • Cyclodextrins are a family of compounds made up of sugar molecules bound together in a ring. Typical cyclodextrins are constituted by 6-8 glucopyranoside units, can be topologically represented as toroids with the larger and smaller openings of the toroid exposing to the solvent secondary and primary hydroxyl groups respectively.
  • typical ⁇ -, ⁇ -, or ⁇ -cyclodextrins contain a number of glucose monomers ranging from six to eight units in a ring, creating a cone shape:
  • ⁇ -cyclodextrin 6-member sugar ring molecule
  • ⁇ -cyclodextrin 7-member sugar ring molecule
  • ⁇ -cyclodextrin 8-member sugar ring molecule
  • CD refers to both ⁇ -, ⁇ -, or ⁇ -cycllodextrin and/or modified ⁇ -, ⁇ -, or ⁇ -cyclodextrin. It is advantageous for ⁇ -, ⁇ -, or ⁇ -cyclodextrin to be modified so as to have a better water solubility than the non-modified ⁇ -, ⁇ -, or ⁇ -cyclodextrin.
  • CD can be modified by carbonyl groups, amine groups, and the combination thereof. In a preferable embodiment, a carbonyl modified cyclodextrin is used.
  • a carbonyl modified ⁇ -cyclodextrin is used, which will induce both carboxyl and carbonyl.
  • a schematic illustration can be shown in Figure 2. After modification the ratio of carboxylation is around 15% to 60%, more preferably from 25%to 45%.
  • the improvement on cycling stability and high coulombic efficiency is due to the crosslinking of an binder comprising carboxyl groups and CD.
  • the binder comprising carboxyl groups such as polyacrylic acid (briefed as PAA) are linked together by CD ring, and thus the binder has much improved toughness and mechanical strength due to the uniform 3D network.
  • the binder can strongly bond with Si by carboxylic groups and hydroxyl functional groups, exhibiting high mechanic strength of adhesion on Si, as well as a particularly recoverable deformation through the reversible morphology change with Si particles.
  • volume expansion of Si particle is buffered by CD ring, and isolation of Si particle is relieved after volume expansion.
  • the binder which contains carboxyl groups can be any suitable binder as long as it carries carboxyl groups.
  • the preferred binder is selected from the group consisting of polyacrylic acid, carboxymethyl cellulose (hereinafter briefed as “CMC” ) , sodium alginate (hereinafter briefed as “SA” ) , copolymers thereof and combinations thereof.
  • the inventive composite binder comprises crosslinking product of:
  • polyacrylic acid and carbonyl modified ⁇ -cyclodextrin are in a weight ratio of 1: 1 to 10: 1, more preferably from 1: 1 to 8: 1, still further preferably from 1: 1 to 6: 1.
  • the process for preparing the inventive composite binder comprises:
  • Another advantage of this invention is that the synthesis process is facile and easy to upscale.
  • Carbonyl modified ⁇ -cyclodextrin was obtained via a simple procedure. Specifically, 2 g ⁇ -cyclodextrin (Sinopharm chemical) was added to 2 g H 2 O 2 aqueous solution with concentration of 30%, and kept at 80°C for 24 h in a sealed bottle, ensuring that the ⁇ -cyclodextrin fully reacts with H 2 O 2 . The solution was then dried under vacuum to completely remove all the water and residual H 2 O 2 .
  • a -COO-ester group is proven to have been prepared.
  • the crosslinking product of PAA and carbonyl modified ⁇ -cyclodextrin has a relatively higher intensity than CD but a relatively weaker intensity than PAA at 1650 cm -1 , which is the adsorption peak for -COO-group.
  • the inventive composite binder A2 was prepared in the same manner as in Example 1.
  • the inventive composite binder A3 was prepared in the same manner as in Example 1.
  • the inventive composite binder A4 was prepared in the same manner as in Example 1.
  • the working electrodes were prepared by pasting a mixture of active material Si powder, graphite, Super P conductive (40 nm, Timical) , and the above prepared binder at a weight ratio of 35: 45: 7: 13. After coating the mixture onto Cu foil, the electrodes were dried, cut to ⁇ 12 mm disks, pressed at 3 MPa and finally the silicon electrode was thermally treated at 70°C for 5 h and then increased to 150°C for another 4 h under vacuum.
  • the electrochemical performance of the as-prepared composites was evaluated using two electrode coin-type cells.
  • the CR2016 coin cells were assembled in an argon-filled glove box (MB-10 compact, MBraun) using 1 M LiPF 6 in dimethyl carbonate (DMC) and ethylene carbonate (EC) mixed solvent of 1: 1 by volume, including 10 wt. %fluoroethylene carbonate (FEC) as electrolyte, PE membrane (Celgard 2400) as separator, and lithium metal as counter electrode.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • FEC wt. %fluoroethylene carbonate
  • PE membrane Li 2400
  • lithium metal as counter electrode.
  • the cycling performance was evaluated on a LAND battery test system (CT 2007 A, Wuhan Land Electronics, Ltd. ) at 25°C with constant current densities.
  • the cut-off voltage was 0.01 V versus Li + /Li for discharge (Li insertion) and 1.2 V versus Li + /Li for charge (Li extraction) .
  • the specific capacity was calculated on the basis of the weight of Si
  • Figure 4 shows the cycling performance of the cells each including binders prepared in Examples 1 to 4. It can be seen that when the weight ratio of PAA to the carbonyl modified ⁇ -cyclodextrin is 4: 1 (Example 3) , the best cycling performance can be achieved. Cycling performance of cells each including binder with a weight ratio of 2: 1 (Example 2) , 6: 1 (Example 4) or 1: 1 (Example 1) were decreasing in order.
  • Figure 5 shows the cycling performance of the cells each including binders prepared in Example 3 and Comparative Example 1. It can be seen that the capacity of the cell comprising binder of Comparative Example 1 has unfavorably decreased 50%only after 20 circles. In contrast, the cell including binder of Example 3 can maintain its capacity to a high level even after 300 circles.
  • Figure 6 shows the C-rate performance of cells each including binders prepared in Example 3 and Comparative Example 1. It is apparent that the cell including binder of Example 3 has dramatically improved the C-rate and cycling performance compared to the cell including binder of Comparative Example 1.
  • Figures 7 and 8 respectively show the cycling performance of cells including binder of Example 3 at 0.5C and 3C. From the figures, it is clear that their cycling performance is satisfactory.
  • the present invention has greatly improved electrochemical performances, especially cycling performance via creating a unique binder that flexibly wraps the silicon particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a composite binder; an electrode material and a silicon-based lithium-ion battery comprising said composite binder, and a process for preparing said composite binder.

Description

Composite Binder for Lithium Ion Batteries and its Preparation Technical field
The present invention relates to lithium ion batteries and specifically relates to the development and improvement of binder network in silicon-based anode for lithium ion batteries.
Background Art
With the rapid development and popularization of portable electronic devices and electronic vehicles, the demand for lithium ion batteries with increased energy and powder density becomes more and more urgent. Silicon is a promising candidate electrode material for lithium ion batteries owning to its high theoretical specific capacity of 4200 mAh/g for Li4.4Si.
However, the cycling performance of Si-based electrode material is still not satisfied for industrial application. One of the biggest challenges is binder failure due to repeated volume change of silicon, for example, during lithiation/delithiation process, silicon undergoes dramatic expansion and contraction, which would cause many cracks in both Si-based active materials and electrode. The binder network is known as playing key role in maintaining the electrode integrity during volume change in the electrode and achieving good cycling performance.
Among all kinds of binders, binders comprising carboxyl groups, such as polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) based polymers show better electrochemical performance than non-functional polymers such as PVDF and styrene-butadiene rubber and are thus frequently used. These functional binders show enhanced binding with Si particles via hydrogen bonding and/or covalent chemical bonds between the polar functional groups of the binder and the partially hydrolyzed surface layer of Si particles.
Nevertheless, the bonding formed by carboxyl groups is still not strong enough to endure the extent volume change of silicon. To combat this, three dimensional polymer networks including cross-linked CMC-PAA binder were sequentially developed for Si electrode material, in which the polymer chain was anchored by a cross-linking technique. These designs effectively enhanced the electrochemical performance of Si electrode material by suppressing the adverse effect from their large volume expansion.
Summary of Invention
It is therefore an object of the present invention to provide further modification and improvements to the binder used in silicon-based anode for lithium ion batteries. According to the present invention, a composite binder which is deformable has been proposed for Si-based electrode material.
Specifically, a composite binder comprising crosslinking product of:
a) a binder comprising carboxyl groups; and
b) α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin with a better water solubility than the non-modified corresponding cyclodextrin, is proposed.
Accordingly, the present invention provides a deformable composite binder with three dimensional binding network and enhanced interaction between the binder and silicon-based material for lithium ion batteries.
The present invention further provides an electrode material, which comprises the composite binder according to the present invention.
The present invention further provides a silicon-based lithium ion battery, which comprises the composite binder according to the present invention.
The present invention also relates to a process for preparing the above composite binder, comprising the steps of:
(1) respectively, preparing an aqueous solution of a binder comprising carboxyl groups and an aqueous solution of α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin;
(2) mixing the aqueous solution prepared above under stirring;
(3) drying and dewatering the mixed solution under vacuum;
(4) carrying out in-situ crosslinking reaction.
Brief Description of Drawings
Figure 1 is a schematic illustration of the three dimensional binding network and the corresponding structural formula when cyclodextrin or β-cyclodextrin is added to the PAA.
Figure 2 is a schematic illustration showing the carbonyl modification of hydrogen peroxide to β-cyclodextrin.
Figure 3 is an infrared spectrum of the crosslinking product prepared in Example 1.
Figure 4 is a plot showing the cycling performance of the Si electrodes prepared in  Examples 1 to 4.
Figure 5 is a plot showing the cycling performance comparison of the Si electrodes prepared in Example 3 and in Comparative Example 1.
Figure 6 is a plot showing the different C-rate of the Si electrodes prepared in Example 3 and in Comparative Example 1.
Figure 7 is a plot showing the cycling performance of the Si electrode prepared in Example 3 at 0.5C.
Figure 8 is a plot showing the cycling performance of the Si electrode prepared in Example 3 at 3C.
Detailed Description of Preferred Embodiments
All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
According to the present invention, the present inventor surprisingly found that when α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin such as carbonyl modified β-cyclodextrin is introduced into an binder comprising carboxyl groups, an excellent cycling stability and high coulombic efficiency can be achieved.
Cyclodextrins are a family of compounds made up of sugar molecules bound together in a ring. Typical cyclodextrins are constituted by 6-8 glucopyranoside units, can be topologically represented as toroids with the larger and smaller openings of the toroid exposing to the solvent secondary and primary hydroxyl groups respectively.
In the present context, typical α-, β-, or γ-cyclodextrins contain a number of glucose monomers ranging from six to eight units in a ring, creating a cone shape:
α-cyclodextrin: 6-member sugar ring molecule
β-cyclodextrin: 7-member sugar ring molecule
γ-cyclodextrin: 8-member sugar ring molecule
The formula of α-, β-and γ-cyclodextrin can be referred to as below:
Figure PCTCN2017088035-appb-000001
The cone shape can be clearly shown from the below formula:
Figure PCTCN2017088035-appb-000002
In the present context, abbreviation CD refers to both α-, β-, or γ-cycllodextrin and/or modified α-, β-, or γ-cyclodextrin. It is advantageous for α-, β-, or γ-cyclodextrin to be modified so as to have a better water solubility than the non-modified α-, β-, or γ-cyclodextrin. In this aspect, for example, CD can be modified by carbonyl groups, amine groups, and the combination thereof. In a preferable embodiment, a carbonyl modified cyclodextrin is used. In a more preferable embodiment, a carbonyl modified β-cyclodextrin is used, which will induce both carboxyl and carbonyl. A schematic illustration can be shown in Figure 2. After modification the ratio of carboxylation is around 15% to 60%, more preferably from 25%to 45%.
Not bound by theory and as can be shown in Figure 1, it is believed that the improvement on cycling stability and high coulombic efficiency is due to the crosslinking of an binder comprising carboxyl groups and CD. The binder comprising carboxyl groups such as polyacrylic acid (briefed as PAA) are linked together by CD  ring, and thus the binder has much improved toughness and mechanical strength due to the uniform 3D network. Besides, the binder can strongly bond with Si by carboxylic groups and hydroxyl functional groups, exhibiting high mechanic strength of adhesion on Si, as well as a particularly recoverable deformation through the reversible morphology change with Si particles. As a result, volume expansion of Si particle is buffered by CD ring, and isolation of Si particle is relieved after volume expansion.
In the present context, the binder which contains carboxyl groups can be any suitable binder as long as it carries carboxyl groups. The preferred binder is selected from the group consisting of polyacrylic acid, carboxymethyl cellulose (hereinafter briefed as “CMC” ) , sodium alginate (hereinafter briefed as “SA” ) , copolymers thereof and combinations thereof.
In a preferable embodiment, the inventive composite binder comprises crosslinking product of:
a) polyacrylic acid; and
b) carbonyl modified β-cyclodextrin;
wherein polyacrylic acid and carbonyl modified β-cyclodextrin are in a weight ratio of 1: 1 to 10: 1, more preferably from 1: 1 to 8: 1, still further preferably from 1: 1 to 6: 1.
In the present context, the process for preparing the inventive composite binder comprises:
(1) respectively, preparing an aqueous solution of a binder comprising carboxyl groups and an aqueous solution of α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin;
(2) mixing the aqueous solution prepared above under stirring;
(3) drying and dewatering the mixed solution under vacuum;
(4) carrying out in-situ crosslinking reaction.
For silicon-graphite composite anode, capacity retention of 80%over 500 cycles using the inventive composite binder can be achieved. In addition, C-rate performance of silicon-graphite composite anode using different binders in lithium batteries is tested. It was proved that the C-rate performance of batteries using the inventive composite binder was better than those using PAA binder alone.
Another advantage of this invention is that the synthesis process is facile and easy to upscale.
Examples
The following non-limiting examples describe preparation of the electrode comprising the composite binder according to the present invention and compare the performance  of the obtained electrodes with those prepared not according to the present invention. The following Examples illustrate various features and characteristics of the present invention, whose scope however is not to be construed as limited thereto:
Example 1
Preparation of the inventive composite binder A1
Synthesis of carbonyl modified β-cyclodextrin
Carbonyl modified β-cyclodextrin was obtained via a simple procedure. Specifically, 2 g β-cyclodextrin (Sinopharm chemical) was added to 2 g H2O2 aqueous solution with concentration of 30%, and kept at 80℃ for 24 h in a sealed bottle, ensuring that the β-cyclodextrin fully reacts with H2O2. The solution was then dried under vacuum to completely remove all the water and residual H2O2.
Synthesis of the crosslinking product of PAA and carbonyl modified β-cyclodextrin
An aqueous solution of PAA (Alfa Aesar, average Mw=240, 000) and an aqueous solution of the carbonyl modified β-cyclodextrin obtained above were mixed with a weight ratio of 1: 1 under stirring. The above mixed solution was dried and dewatered under vacuum. An in-situ crosslinking reaction was carried out.
As shown in Figure 3, a -COO-ester group is proven to have been prepared. The crosslinking product of PAA and carbonyl modified β-cyclodextrin has a relatively higher intensity than CD but a relatively weaker intensity than PAA at 1650 cm-1, which is the adsorption peak for -COO-group.
Example 2
Preparation of the inventive composite binder A2
Except that the weight ratio of PAA and carbonyl modified β-cyclodextrin was changed to 2: 1, the inventive composite binder A2 was prepared in the same manner as in Example 1.
Example 3
Preparation of the inventive composite binder A3
Except that the weight ratio of PAA and carbonyl modified β-cyclodextrin was changed to 4: 1, the inventive composite binder A3 was prepared in the same manner as in Example 1.
Example 4
Preparation of the inventive composite binder A4
Except that the weight ratio of PAA and carbonyl modified β-cyclodextrin was changed to 6: 1, the inventive composite binder A4 was prepared in the same manner as in Example 1.
Comparative Example 1
For comparison, PAA (Alfa Aesar, average Mw=240, 000) in water was used as comparative binder C1.
Preparation of the electrode comprising the composite binder according to the present invention
The working electrodes were prepared by pasting a mixture of active material Si powder, graphite, Super P conductive (40 nm, Timical) , and the above prepared binder at a weight ratio of 35: 45: 7: 13. After coating the mixture onto Cu foil, the electrodes were dried, cut to Φ12 mm disks, pressed at 3 MPa and finally the silicon electrode was thermally treated at 70℃ for 5 h and then increased to 150℃ for another 4 h under vacuum.
Cell assembling and electrochemical test:
The electrochemical performance of the as-prepared composites was evaluated using two electrode coin-type cells.
The CR2016 coin cells were assembled in an argon-filled glove box (MB-10 compact, MBraun) using 1 M LiPF6 in dimethyl carbonate (DMC) and ethylene carbonate (EC) mixed solvent of 1: 1 by volume, including 10 wt. %fluoroethylene carbonate (FEC) as electrolyte, PE membrane (Celgard 2400) as separator, and lithium metal as counter electrode. The cycling performance was evaluated on a LAND battery test system (CT 2007 A, Wuhan Land Electronics, Ltd. ) at 25℃ with constant current densities. The cut-off voltage was 0.01 V versus Li+/Li for discharge (Li insertion) and 1.2 V versus Li+/Li for charge (Li extraction) . The specific capacity was calculated on the basis of the weight of Si-graphite composites. The mass loading of active materials (Si-graphite) in every electrode is about 2 mg/cm2.
Figure 4 shows the cycling performance of the cells each including binders prepared in Examples 1 to 4. It can be seen that when the weight ratio of PAA to the carbonyl modified β-cyclodextrin is 4: 1 (Example 3) , the best cycling performance can be achieved. Cycling performance of cells each including binder with a weight ratio of 2: 1 (Example 2) , 6: 1 (Example 4) or 1: 1 (Example 1) were decreasing in order.
Figure 5 shows the cycling performance of the cells each including binders prepared in Example 3 and Comparative Example 1. It can be seen that the capacity of the cell comprising binder of Comparative Example 1 has unfavorably decreased 50%only after 20 circles. In contrast, the cell including binder of Example 3 can maintain its capacity to a high level even after 300 circles.
In addition, Figure 6 shows the C-rate performance of cells each including binders prepared in Example 3 and Comparative Example 1. It is apparent that the cell including binder of Example 3 has dramatically improved the C-rate and cycling performance compared to the cell including binder of Comparative Example 1.
Figures 7 and 8 respectively show the cycling performance of cells including binder of Example 3 at 0.5C and 3C. From the figures, it is clear that their cycling performance is satisfactory.
The present invention has greatly improved electrochemical performances, especially cycling performance via creating a unique binder that flexibly wraps the silicon particles.

Claims (7)

  1. A composite binder, comprising crosslinking product of:
    a) a binder comprising carboxyl groups; and
    b) α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin with a better water solubility than the non-modified corresponding cyclodextrin.
  2. The composite binder according to claim 1, wherein the binder comprising carboxyl groups are selected from the group consisting of polyacrylic acid, carboxymethyl cellulose, sodium alginate, polysaccharide and combinations thereof.
  3. The binder according to claim 1 or 2, wherein the modified cyclodextrin comprises carbonyl group modification, amine group modification and combinations thereof.
  4. The silicon-based composite according to claim 1 or 2, comprising crosslinking product of:
    a) a binder comprising carboxyl groups being polyacrylic acid; and
    b) modified α-, β-, or γ-cyclodextrin with a better water solubility than the non-modified corresponding cyclodextrin being carbonyl modified β-cyclodextrin, wherein the polyacrylic acid and the carbonyl modified β-cyclodextrin are in a weight ratio of 1: 1 to 10: 1, more preferably from 1: 1 to 8: 1, still further preferably from 1: 1 to 6: 1.
  5. An electrode material, comprising the composite binder of any one of claims 1 to 4.
  6. A silicon-based lithium-ion battery, comprising the composite binder of any one of claims 1 to 4.
  7. A process for preparing the composite binder of any one of claims 1 to 4, comprising the steps of:
    (1) respectively, preparing an aqueous solution of a binder comprising carboxyl groups and an aqueous solution of α-, β-, or γ-cyclodextrin and/or modified α-, β-, or γ-cyclodextrin;
    (2) mixing the aqueous solutions prepared above under stirring;
    (3) drying and dewatering the mixed solution under vacuum;
    (4) carrying out in-situ crosslinking reaction.
PCT/CN2017/088035 2017-06-13 2017-06-13 Composite binder for lithium ion batteries and its preparation WO2018227366A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/088035 WO2018227366A1 (en) 2017-06-13 2017-06-13 Composite binder for lithium ion batteries and its preparation
JP2019568311A JP6952806B2 (en) 2017-06-13 2017-06-13 Composite binders for lithium-ion batteries and their preparation
KR1020197036783A KR102392241B1 (en) 2017-06-13 2017-06-13 Composite binder for lithium ion battery and manufacturing thereof
CN201780091952.0A CN110770950B (en) 2017-06-13 2017-06-13 Composite adhesive for lithium ion battery and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088035 WO2018227366A1 (en) 2017-06-13 2017-06-13 Composite binder for lithium ion batteries and its preparation

Publications (1)

Publication Number Publication Date
WO2018227366A1 true WO2018227366A1 (en) 2018-12-20

Family

ID=64660551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088035 WO2018227366A1 (en) 2017-06-13 2017-06-13 Composite binder for lithium ion batteries and its preparation

Country Status (4)

Country Link
JP (1) JP6952806B2 (en)
KR (1) KR102392241B1 (en)
CN (1) CN110770950B (en)
WO (1) WO2018227366A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111740090A (en) * 2020-07-06 2020-10-02 江西理工大学 Synthetic method for improving conductivity of silicon-based negative electrode material
JPWO2021131409A1 (en) * 2019-12-27 2021-07-01
EP3936544A4 (en) * 2019-03-04 2022-12-07 Osaka University Binder for electrochemical devices, electrode mixture, electrode, electrochemical device and secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293312B (en) * 2020-02-21 2024-02-20 上海交通大学 Flexible multifunctional crosslinking adhesive and preparation method and application thereof
CN111613795B (en) * 2020-04-26 2021-11-12 中山大学 Multifunctional binder for lithium-sulfur battery anode and preparation method thereof
CN114665094A (en) * 2022-03-15 2022-06-24 南京航空航天大学 Aqueous binder, silicon-based negative electrode of lithium ion battery and preparation method of silicon-based negative electrode
CN114976011B (en) * 2022-06-21 2024-03-15 东莞市众尚源科技有限公司 Preparation method of lithium ion battery negative electrode slurry and negative electrode plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159272A (en) * 2015-04-27 2016-11-23 中国人民解放军63971部队 A kind of nitrogenous binding agent for lithium-sulfur cell and preparation method thereof
CN106784842A (en) * 2016-12-25 2017-05-31 常州市鼎日环保科技有限公司 A kind of preparation method of lithium battery aqueous, environmental protective binding agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074704B (en) * 2010-12-22 2012-08-29 上海交通大学 Preparation method of secondary lithium-sulfur battery anode adhesive
CN103074007B (en) * 2012-12-27 2015-08-26 上海交通大学 The preparation method of lithium ion battery silicium cathode use tackiness agent and silicium cathode
KR102006721B1 (en) * 2015-06-22 2019-08-02 주식회사 엘지화학 Electrode for lithium secondary battery, method for manufacturing the same, electrode assembly comprising the same, and lithium secondary battery comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159272A (en) * 2015-04-27 2016-11-23 中国人民解放军63971部队 A kind of nitrogenous binding agent for lithium-sulfur cell and preparation method thereof
CN106784842A (en) * 2016-12-25 2017-05-31 常州市鼎日环保科技有限公司 A kind of preparation method of lithium battery aqueous, environmental protective binding agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIULIN WANG ET AL.: "Carbonyl-beta-cyclodextrin as a Novel Binder for Sulur Composite Cathodes in Rechargeable Lithium Batteries", ADVANCED FUNCTIONAL MATERIAL, vol. 23, no. 9, 6 March 2013 (2013-03-06), XP055554791, ISSN: 1616-3028 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3936544A4 (en) * 2019-03-04 2022-12-07 Osaka University Binder for electrochemical devices, electrode mixture, electrode, electrochemical device and secondary battery
JPWO2021131409A1 (en) * 2019-12-27 2021-07-01
WO2021131409A1 (en) * 2019-12-27 2021-07-01 国立大学法人大阪大学 Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mix, electrode, electrochemical device, and secondary battery
CN114901727A (en) * 2019-12-27 2022-08-12 国立大学法人大阪大学 Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mixture, electrode, electrochemical device, and secondary battery
JP7304593B2 (en) 2019-12-27 2023-07-07 国立大学法人大阪大学 Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mixture, electrode, electrochemical device and secondary battery
EP4083082A4 (en) * 2019-12-27 2024-01-24 Univ Osaka Resin composition, polymer, method for producing polymer, binder for electrochemical device, electrode mix, electrode, electrochemical device, and secondary battery
CN111740090A (en) * 2020-07-06 2020-10-02 江西理工大学 Synthetic method for improving conductivity of silicon-based negative electrode material
CN111740090B (en) * 2020-07-06 2022-09-16 江西理工大学 Synthetic method for improving conductivity of silicon-based negative electrode material

Also Published As

Publication number Publication date
KR20200018449A (en) 2020-02-19
JP6952806B2 (en) 2021-10-20
JP2020524725A (en) 2020-08-20
CN110770950A (en) 2020-02-07
KR102392241B1 (en) 2022-05-02
CN110770950B (en) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2018227366A1 (en) Composite binder for lithium ion batteries and its preparation
Kwon et al. The emerging era of supramolecular polymeric binders in silicon anodes
Rajeev et al. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries
Qi et al. Multifunctional binder designs for lithium-sulfur batteries
KR102369488B1 (en) Secondary-battery binder composition, slurry composition for secondary-battery electrode, secondary-battery negative electrode, and secondary battery
Mochizuki et al. “Natto” binder of poly-γ-glutamate enabling to enhance silicon/graphite composite electrode performance for lithium-ion batteries
US20160164099A1 (en) Elastic gel polymer binder for silicon-based anode
CN107408665B (en) Electrode active coating for lithium ion batteries and method for producing same
Liao et al. Cost-effective water-soluble poly (vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium–sulfur batteries
CN110573544A (en) Composite binder for lithium ion battery and preparation method thereof
CN108780891B (en) Binder composition for nonaqueous secondary battery electrode, conductive material paste composition, slurry composition, electrode, and secondary battery
Li et al. Kinetics and electrochemical evolution of binary silicon–polymer systems for lithium ion batteries
Duan et al. Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food
KR20180075436A (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, negative electrode and lithium ion secondary battery
JP2020019702A (en) Polymer-modified silicon-carbon composite material and use thereof
KR101636004B1 (en) Photo-cross-linkable polyacrylic acid binder for silicon anodes
Ling et al. Sustainable okra gum for silicon anode in lithium-ion batteries
WO2018176255A1 (en) Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition
CN110651387A (en) Sulfur-carbon material composite, positive electrode material for lithium-sulfur secondary battery, and lithium-sulfur secondary battery
Kaur et al. Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithium‐Ion Batteries
Lim et al. Design of a Bioinspired Robust Three-Dimensional Cross-Linked Polymer Binder for High-Performance Li-Ion Battery Applications
Yoo et al. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries
CN111868978A (en) Dispersant and binder for lithium ion batteries based on modified lignin and carboxymethylcellulose
CN111801821B (en) Binder composition for nonaqueous secondary battery electrode, conductive material paste composition, slurry composition, electrode, and battery
US11515516B2 (en) Method of preparing cathode matertal for a battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568311

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036783

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913427

Country of ref document: EP

Kind code of ref document: A1