WO2018176255A1 - Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition - Google Patents

Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition Download PDF

Info

Publication number
WO2018176255A1
WO2018176255A1 PCT/CN2017/078552 CN2017078552W WO2018176255A1 WO 2018176255 A1 WO2018176255 A1 WO 2018176255A1 CN 2017078552 W CN2017078552 W CN 2017078552W WO 2018176255 A1 WO2018176255 A1 WO 2018176255A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
composition
group
binder
lithium ion
Prior art date
Application number
PCT/CN2017/078552
Other languages
French (fr)
Inventor
Jun Yang
Zhixin XU
Yuqian DOU
Jingjing Zhang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201780089130.9A priority Critical patent/CN110461980B/en
Priority to PCT/CN2017/078552 priority patent/WO2018176255A1/en
Priority to DE112017007332.4T priority patent/DE112017007332T5/en
Publication of WO2018176255A1 publication Critical patent/WO2018176255A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1 –3 carbon atoms,
  • an anode composition which contains a silicon-based electrode active material and the binder composition according to the present invention.
  • Said object can be achieved by a method for preparing a binder composition for lithium ion batteries, including the following steps:
  • an anode for lithium ion batteries which contains the anode composition according to the present invention.
  • the molecular weight Mw of the silane coupling agent can be 50,000 –200,000, preferably 80,000 –150,000.
  • the anode composition can optionally contain one or more carbon materials selected from the group consisting of carbon black, super P, acetylene black, Ketjen black, graphite, graphene, carbon nanotubes and vapour grown carbon fibers.
  • the content of the carbon materials can be 0 to 85%, based on the total weight of the anode composition.
  • the present invention relates to a lithium ion battery, which contains the anode according to the present invention.
  • a silane coupling agent poly ( ⁇ -methacryloxypropyltrimethoxysilane) (PKH570) was synthesized by free radical polymeriazation from ⁇ -methacryloxypropyltrimethoxysilane (KH570) in tetrahydrofuran (THF) at about 60°C for 24 hours in a glove box (MB-10 compact, MBRAUN) under an argon atmosphere containing less than 1 ppm water and O 2 , wherein the free radical polymeriazation was initiated by azobisisobutyronitrile (AIBN) .
  • AIBN azobisisobutyronitrile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a binder composition for lithium ion batteries and its preparation method, wherein said binder composition contains a carboxyl-containing binder and a silane coupling agent. The present invention further relates to an anode composition and its preparation method, wherein said anode composition contains a silicon-based electrode active material and said binder composition. The present invention further relates to an anode containing said anode composition, and to a lithium ion battery containing said anode.

Description

BINDER-AND ANODE-COMPOSITION, METHODS FOR THEIR PREPARATION, AND AN ANODE AND A LITHIUM ION BATTERY CONTAINING SAID ANODE COMPOSITION Technical Field
The present invention relates to a binder composition for lithium ion batteries and its preparation method, wherein said binder composition contains a carboxyl-containing binder and a silane coupling agent. The present invention further relates to an anode composition and its preparation method, wherein said anode composition contains a silicon-based electrode active material and said binder composition. The present invention further relates to an anode containing said anode composition, and to a lithium ion battery containing said anode.
Background Art
Silicon is a promising candidate anode material owing to its high theoretical specific capacity of 4200 mAh/g for Li4.4Si. However, the cycling performance of silicon base anode is still not satisfied for industrial application. One of the biggest challenge is binder failure due to repeating volume change of silicon. Therefore, the binder network plays key role to reach good cycling performance. Among all kinds of binders, polyacrylic acid (PAA) is considered to be an advanced binder for Si-based anodes compared with polyvinylidene fluoride (PVDF) , sodium carboxymethyl cellulose (CMC) which are more used for traditional anode such as graphite-based. In addition to low swell ability in carbonates and good elasticity, PAA can be dissolved both in water and a variety of organic solvents, such as ethanol. And it also offers a much higher concentration of carboxyl groups which can form plenty of hydrogen bonds with silanol groups on the silicon surface.
Despite of the advantages of PAA, there are still two issues for PAA binder: 1) as non-chemical bond, hydrogen bonds formed between PAA binder and silicon active material is not strong enough. After repeated volume change, the connection between PAA binder and Si active materials may be easily lost. 2) PAA is a linear polymer; therefore, the binding network formed by PAA is not strong enough to maintain electrode integrity during long cycling.
Summary of Invention
The object of the present invention is to provide a cross-linked PAA based binder other than a pure PAA binder, wherein a 3D binding network is formed by covalent bonds. The enhanced binding network is beneficial for long cycling performance.
Said object, according to one aspect, can be achieved by a binder composition for lithium ion batteries, which contains:
a) a carboxyl-containing binder; and
b) a silane coupling agent prepared by free radical polymeriazation from the monomer of formula (1) :
Y- (CH2n-Si-X3               (1) ,
wherein
Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1 –3 carbon atoms,
n represents an integer of 0 –6, preferably 0 –3.
According to another aspect of the present invention, an anode composition is provided, which contains a silicon-based electrode active material and the binder composition according to the present invention.
Said object, according to another aspect, can be achieved by a method for preparing a binder composition for lithium ion batteries, including the following steps:
1) preparing a silane coupling agent by free radical polymeriazation from the monomer of formula (1) :
Y- (CH2n-Si-X3          (1) ,
wherein
Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1 –3 carbon atoms,
n represents an integer of 0 –6, preferably 0 –3;
2) mixing the silane coupling agent with a carboxyl-containing binder to obtain the binder composition.
According to another aspect of the present invention, a method for preparing an anode composition for lithium ion batteries is provided, wherein a silicon-based electrode active material is mixed with the binder composition according to the present invention.
According to another aspect of the present invention, an anode for lithium ion batteries is provided, which contains the anode composition according to the present invention.
According to another aspect of the present invention, a lithium ion battery is provided, which contains the anode according to the present invention.
Brief Description of Drawings
Each aspect of the present invention will be illustrated in more detail in conjunction with the accompanying drawings, wherein :
Fig. 1 shows a schematic chemical structure of the PKH550-PAA-Si-based anode  composition of Example 1 (E1) and Example 2 (E2) , and n = 0, 1 or 2;
Fig. 2 shows the cycling performances of the anode compositions with PAA (CE) , PAA+5%PKH570 (E1) , PAA+10%PKH570 (E2) .
Detailed Description of Preferred Embodiments
All publications, patent applications, patents and other references mentioned herein, if not otherwise indicated, are explicitly incorporated by reference herein in their entirety for all purposes as if fully set forth.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control.
When an amount, concentration, or other value or parameter is given as either a range, preferred range or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
The present invention, according to one aspect, relates to a binder composition for lithium ion batteries, which contains:
a) a carboxyl-containing binder; and
b) a silane coupling agent prepared by free radical polymeriazation from the monomer of formula (1) :
Y- (CH2n-Si-X3         (1) ,
wherein
Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1 –3 carbon atoms,
n represents an integer of 0 –6, preferably 0 –3.
In accordance with an embodiment of the binder composition according to the present invention, the carboxyl-containing binder can be selected from the group consisting of polyacrylic acid, carboxymethyl cellulose, alginic acid, and polysaccharide, for example oxystarch, carrageenan, and xanthan gum.
In accordance with another embodiment of the binder composition according to the present invention, the monomer can be selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (2-methoxyethoxy) silane and γ-methacryloxypropyl- trimethoxysilane. Thus, the corresponding silane coupling agents prepared by free radical polymeriazation from these monomers are polyvinyltrimethoxysilane, polyvinyltriethoxysilane, polyvinyltri (2-methoxyethoxy) silane and poly (γ-methacryloxy-propyltrimethoxysilane) , respectively.
For example, poly (γ-methacryloxypropyltrimethoxysilane) (PKH570) can be synthesized by free radical polymeriazation from γ-methacryloxypropyltrimethoxysilane (KH570) in tetrahydrofuran (THF) at an elevated temperature, for example at about 60℃ for 24 hours:
Figure PCTCN2017078552-appb-000001
wherein the free radical polymeriazation can be initiated, for example, by azobisisobutyronitrile (AIBN) .
In accordance with another embodiment of the binder composition according to the present invention, the molecular weight Mw of the silane coupling agent can be 50,000 –200,000, preferably 80,000 –150,000.
In accordance with another embodiment of the binder composition according to the present invention, the content of the silane coupling agent can be 1 –20%, preferably 2 –10%, more preferably 3 –8%, based on the weight of the carboxyl-containing binder.
In accordance with another embodiment of the binder composition according to the present invention, the carboxyl-containing binder can be crosslinked with the silane coupling agent to form a 3D binding network. In addition, the binder composition according to the present invention can also form strong and flexible Si–O–Si bonds with Si particles, thus exhibiting a high mechanical strength of adhesion on Si. This binder composition can effectively accommodate the huge volume change of silicon anodes during lithiation/delithiation, with a better cycling stability and higher Coulombic efficiency than the pure PAA binder, even at a high current density and high coverage (3 mAh/cm2) . In view of simplicity in using this PAA-modified polymer binder, it is believed that this novel binder has a great potential to be commercialized with high capacity silicon anodes in next generation Li-ion batteries.
The present invention, according to another aspect, relates to an anode composition, which contains a silicon-based electrode active material and 2 –25%, preferably 5 –15%, of the binder composition according to the present invention, based on the total weight of the anode  composition. The silicon-based electrode active material used here is not particularly limited. For example silicon nanoparticle can be used.
In accordance with an embodiment of the anode composition according to the present invention, the anode composition can optionally contain one or more carbon materials selected from the group consisting of carbon black, super P, acetylene black, Ketjen black, graphite, graphene, carbon nanotubes and vapour grown carbon fibers. The content of the carbon materials can be 0 to 85%, based on the total weight of the anode composition. In this case, other binders in addition to the above carboxyl-containing binders can also be used, for example hydroxypropyl methylcellulose (HPMC) , cellulose acetate, gelatin, chitosan, polyvinylidene fluoride (PVDF) , and styrene-butadiene rubber (SBR) .
The present invention, according to another aspect, relates to a method for preparing a binder composition for lithium ion batteries, including the following steps:
1) preparing a silane coupling agent by free radical polymeriazation from the monomer of formula (1) :
Y- (CH2n-Si-X3           (1) ,
wherein
Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1 –3 carbon atoms,
n represents an integer of 0 –6, preferably 0 –3;
2) mixing the silane coupling agent with a carboxyl-containing binder to obtain the binder composition.
1) Preparing a silane coupling agent
A silane coupling agent can be prepared by free radical polymeriazation from the monomer of formula (1) .
In accordance with an embodiment of the method according to the present invention, the monomer can be selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (2-methoxyethoxy) silane and γ-methacryloxypropyl-trimethoxysilane. Thus, the corresponding silane coupling agents prepared by free radical polymeriazation from these monomers are polyvinyltrimethoxysilane, polyvinyltriethoxysilane, polyvinyltri (2-methoxyethoxy) silane and poly (γ-methacryloxy-propyltrimethoxysilane) , respectively.
For example, poly (γ-methacryloxypropyltrimethoxysilane) (PKH570) can be synthesized by free radical polymeriazation from γ-methacryloxypropyltrimethoxysilane (KH570) in tetrahydrofuran (THF) at an elevated temperature, for example at about 60℃ for 24 hours:
Figure PCTCN2017078552-appb-000002
wherein the free radical polymeriazation can be initiated, for example, by azobisisobutyronitrile (AIBN) .
In accordance with another embodiment of the method according to the present invention, the molecular weight Mw of the silane coupling agent can be 50,000 –200,000, preferably 80,000 – 150,000.
In accordance with another embodiment of the method according to the present invention, the silane coupling agent can be used in an amout of 1 –20%, preferably 2 –10%, more preferably 3 –8%, based on the weight of the carboxyl-containing binder.
2) Mixing the silane coupling agent with a carboxyl-containing binder
The silane coupling agent can be mixed with a carboxyl-containing binder to obtain the binder composition.
In accordance with another embodiment of the method according to the present invention, the carboxyl-containing binder can be selected from the group consisting of polyacrylic acid, carboxymethyl cellulose, alginic acid, and polysaccharide, for example oxystarch, carrageenan, and xanthan gum.
In accordance with another embodiment of the method according to the present invention, the carboxyl-containing binder can be crosslinked with the silane coupling agent to form a 3D binding network.
The present invention, according to another aspect, relates to a method for preparing an anode composition for lithium ion batteries, wherein a silicon-based electrode active material can be mixed with 2 –25%, preferably 5 –15%, of the binder composition prepared according to the present invention, based on the total weight of the anode composition. The silicon-based electrode active material used here is not particularly limited. For example silicon nanoparticle can be used.
In accordance with an embodiment of the method according to the present invention, one or more carbon materials selected from the group consisting of carbon black, super P, acetylene black, Ketjen black, graphite, graphene, carbon nanotubes and vapour grown carbon fibers can be optionally mixed into the anode composition. The carbon materials can be used in an  amout of 0 to 85%, based on the total weight of the anode composition. In this case, other binders in addition to the above carboxyl-containing binders can also be used, for example hydroxypropyl methylcellulose (HPMC) , cellulose acetate, gelatin, chitosan, polyvinylidene fluoride (PVDF) , and styrene-butadiene rubber (SBR) .
The present invention, according to another aspect, relates to an anode for lithium ion batteries, which contains the anode composition according to the present invention.
The present invention, according to further aspect, relates to a lithium ion battery, which contains the anode according to the present invention.
Example 1 (E1) :
A silane coupling agent poly (γ-methacryloxypropyltrimethoxysilane) (PKH570) was synthesized by free radical polymeriazation from γ-methacryloxypropyltrimethoxysilane (KH570) in tetrahydrofuran (THF) at about 60℃ for 24 hours in a glove box (MB-10 compact, MBRAUN) under an argon atmosphere containing less than 1 ppm water and O2, wherein the free radical polymeriazation was initiated by azobisisobutyronitrile (AIBN) .
A carboxyl-containing binder polyacrylic acid (PAA) was in situ crosslinked by mixing the silane coupling agent (PKH570) with PAA in ethanol at room temperature to obtain a binder composition PAA-PKH570, wherein the silane coupling agent was used in an amout of 5%, based on the weight of the carboxyl-containing binder.
Cells assembling and electrochemical evaluation:
The electrochemical performance of the as-prepared composites was evaluated using two electrode coin-type cells. The working electrodes were prepared by pasting a mixture of active material (Silicon powder 50 nm/graphite, 7 : 9 by weight) , Super P conductive carbon black (40 nm, Timical) , and the binder at a weight ratio of 80 : 7 : 13. After coating the mixture onto Cu foil, the electrodes were dried, cut to Ф12 mm disks, pressed at 3 MPa, and finally dried at 60℃ in vacuum for 8 hours, the total loading was ca. 2.0 mg cm-2. The CR2016 coin cells were assembled in an argon-filled glove box (MB-10 compact, MBraun) using 1M LiPF6 in dimethyl carbonate (DMC) and ethylene carbonate (EC) mixed solvent of 1: 1 by volume, including 10 wt. %fluoroethylene carbonate (FEC) as electrolyte, ENTEK ET 20-26 (PE, thickness: 20 μm) as separator, and lithium metal as counter electrode. The cycling performance was evaluated on a LAND-CT 2001A Battery test system (Wuhan, China) at room temperature with constant current densities. The cut-off voltage was 0.01 V versus Li+/Li for discharge (Li insertion) and 1.2 V versus Li+/Li for charge (Li extraction) . The specific capacity was calculated on the basis of the weight of Si-graphite composites. The cycling performance was evaluated at a rate of 0.3C at room temperature. The coin cell was discharged at 0.1C for the first four cycles and then at 0.3C in the following cycles.
Fig. 1 shows a schematic chemical structure of the PKH550-PAA-Si-based anode composition of Example 1 (E1) . Fig. 2 shows the cycling performance of the anode composition with PAA+5%PKH570 of Example 1 (E1) .
Example 2 (E2) :
Example 2 (E2) was carried out similar to Example 1, except that the silane coupling agent was used in an amout of 10%, based on the weight of the carboxyl-containing binder.
Fig. 1 shows a schematic chemical structure of the PKH550-PAA-Si-based anode composition of Example 2 (E2) . Fig. 2 shows the cycling performance of the anode composition with PAA+10%PKH570 of Example 2 (E2) .
Comparative Example (CE) :
Comparative Example (CE) was carried out similar to Example 1, except that unmodified polyacrylic acid (PAA) was used as the binder.
Fig. 2 shows the cycling performance of the anode composition with PAA of Comparative Example (CE) .
Potential applications of the electrode active material according to the present invention include, but are not limited to, high-energy-density lithium ion batteries with acceptable high power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. The attached claims and their equivalents are intended to cover all the modifications, substitutions and changes as would fall within the scope and spirit of the invention.

Claims (14)

  1. A binder composition for lithium ion batteries, which contains:
    a) a carboxyl-containing binder; and
    b) a silane coupling agent prepared by free radical polymeriazation from the monomer of formula (1) :
    Y- (CH2n-Si-X3  (1) ,
    wherein
    Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
    X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1–3 carbon atoms,
    n represents an integer of 0–6, preferably 0–3.
  2. The binder composition of claim 1, characterized in that the carboxyl-containing binder is selected from the group consisting of polyacrylic acid, carboxymethyl cellulose, alginic acid, and polysaccharide, for example oxystarch, carrageenan, and xanthan gum.
  3. The binder composition of claim 1 or 2, characterized in that the monomer is selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (2-methoxyethoxy) silane and γ-methacryloxypropyltrimethoxysilane.
  4. The binder composition of any one of claims 1 to 3, characterized in that the molecular weight Mw of the silane coupling agent is 50,000–200,000, preferably 80,000–150,000.
  5. The binder composition of any one of claims 1 to 4, characterized in that the content of the silane coupling agent is 1–20%, preferably 2–10%, more preferably 3–8%, based on the weight of the carboxyl-containing binder.
  6. An anode composition, characterized in that said anode composition contains a silicon-based electrode active material and 2–25%, preferably 5–15%, of the binder composition of any one of claims 1 to 5, based on the total weight of the anode composition.
  7. A method for preparing a binder composition for lithium ion batteries, including the following steps:
    1) preparing a silane coupling agent by free radical polymeriazation from the monomer of formula (1) :
    Y- (CH2n-Si-X3  (1) ,
    wherein
    Y represents a non-hydrolyzable ethylenically unsaturated group, such as acryloxy, methacryloxy, vinyl, and propenyl group,
    X can be identical or different, and each independently represents a hydroxyl group, or a hydrolyzable group selected from the group consisting of halogen atoms, alkoxy groups, ether groups and siloxy groups, preferably alkoxy group having 1–3 carbon atoms,
    n represents an integer of 0–6, preferably 0–3;
    2) mixing the silane coupling agent with a carboxyl-containing binder to obtain the binder composition.
  8. The method of claim 7, characterized in that the carboxyl-containing binder is selected from the group consisting of polyacrylic acid, carboxymethyl cellulose, alginic acid, and polysaccharide, for example oxystarch, carrageenan, and xanthan gum.
  9. The method of claim 7 or 8, characterized in that the monomer is selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri (2-methoxy-ethoxy) silane and γ-methacryloxypropyltrimethoxysilane.
  10. The method of any one of claims 7 to 9, characterized in that the molecular weight Mw of the silane coupling agent is 50,000–200,000, preferably 80,000–150,000.
  11. The method of any one of claims 7 to 10, characterized in that the silane coupling agent is used in an amout of 1–20%, preferably 2–10%, more preferably 3–8%, based on the weight of the carboxyl-containing binder.
  12. A method for preparing an anode composition for lithium ion batteries, wherein a silicon-based electrode active material is mixed with 2–25%, preferably 5–15%, of the binder composition prepared by the method of any one of claims 7 to 11, based on the total weight of the anode composition.
  13. An anode for lithium ion batteries, characterized in that said anode contains the anode composition of claim6 or the anode composition prepared by the method of claim 12.
  14. A lithium ion battery, characterized in that said lithium ion battery contains the anode of claim 13.
PCT/CN2017/078552 2017-03-29 2017-03-29 Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition WO2018176255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780089130.9A CN110461980B (en) 2017-03-29 2017-03-29 Binder and anode composition, preparation method thereof, and anode and lithium ion battery comprising the anode composition
PCT/CN2017/078552 WO2018176255A1 (en) 2017-03-29 2017-03-29 Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition
DE112017007332.4T DE112017007332T5 (en) 2017-03-29 2017-03-29 BINDER AND ANODE COMPOSITION, METHOD FOR THE PRODUCTION THEREOF, AND A LITHIUMION BATTERY CONTAINING THE ANODE COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078552 WO2018176255A1 (en) 2017-03-29 2017-03-29 Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition

Publications (1)

Publication Number Publication Date
WO2018176255A1 true WO2018176255A1 (en) 2018-10-04

Family

ID=63673873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078552 WO2018176255A1 (en) 2017-03-29 2017-03-29 Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition

Country Status (3)

Country Link
CN (1) CN110461980B (en)
DE (1) DE112017007332T5 (en)
WO (1) WO2018176255A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233265A (en) * 2019-06-13 2019-09-13 华中科技大学 Application and corresponding binder of the carragheen based binder in lithium ion battery
CN110911611A (en) * 2019-10-26 2020-03-24 浙江锋锂新能源科技有限公司 Composite diaphragm and preparation method thereof
CN110970622A (en) * 2019-12-18 2020-04-07 陕西煤业化工技术研究院有限责任公司 Water-based binder and preparation method and application thereof
CN113140729A (en) * 2021-03-23 2021-07-20 深圳市优宝新材料科技有限公司 Electrode binder and preparation method thereof, negative plate and secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901694A (en) * 2010-06-23 2010-12-01 万星光电子(东莞)有限公司 Super capacitor electrode slice
CN103311552A (en) * 2013-06-25 2013-09-18 湖南友能高新技术有限公司 Method for improving adhesive force of battery negative electrode material lithium titanate
US20140050975A1 (en) * 2012-08-20 2014-02-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and negative electrode and rechargeable lithium battery including same
JP2015069878A (en) * 2013-09-30 2015-04-13 凸版印刷株式会社 Electrode active material for secondary battery and electrode for secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901694A (en) * 2010-06-23 2010-12-01 万星光电子(东莞)有限公司 Super capacitor electrode slice
US20140050975A1 (en) * 2012-08-20 2014-02-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and negative electrode and rechargeable lithium battery including same
CN103311552A (en) * 2013-06-25 2013-09-18 湖南友能高新技术有限公司 Method for improving adhesive force of battery negative electrode material lithium titanate
JP2015069878A (en) * 2013-09-30 2015-04-13 凸版印刷株式会社 Electrode active material for secondary battery and electrode for secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110233265A (en) * 2019-06-13 2019-09-13 华中科技大学 Application and corresponding binder of the carragheen based binder in lithium ion battery
CN110911611A (en) * 2019-10-26 2020-03-24 浙江锋锂新能源科技有限公司 Composite diaphragm and preparation method thereof
CN110970622A (en) * 2019-12-18 2020-04-07 陕西煤业化工技术研究院有限责任公司 Water-based binder and preparation method and application thereof
CN113140729A (en) * 2021-03-23 2021-07-20 深圳市优宝新材料科技有限公司 Electrode binder and preparation method thereof, negative plate and secondary battery
CN113140729B (en) * 2021-03-23 2022-09-13 深圳市优宝新材料科技有限公司 Electrode binder and preparation method thereof, negative plate and secondary battery

Also Published As

Publication number Publication date
CN110461980A (en) 2019-11-15
DE112017007332T5 (en) 2019-12-12
CN110461980B (en) 2022-03-15

Similar Documents

Publication Publication Date Title
KR101807543B1 (en) Slurry for secondary battery negative electrodes, secondary battery negative electrode and manufacturing method thereof, and secondary battery
KR101921169B1 (en) Slurry composition for negative electrode of lithium ion secondary cell, negative electrode of lithium ion secondary cell, and lithium ion secondary cell
Mukkabla et al. Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone
TWI549338B (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
KR20120034686A (en) Cathode active material for lithium secondary battery
WO2018176255A1 (en) Binder-and anode-composition, methods for their preparation, and an anode and a lithium ion battery containing said anode composition
Liao et al. Cost-effective water-soluble poly (vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium–sulfur batteries
CN109314242B (en) Negative electrode composition, method for preparing negative electrode and lithium ion battery
KR102392241B1 (en) Composite binder for lithium ion battery and manufacturing thereof
WO2019213068A1 (en) Compositions and methods for silicon containing dry anode films
CN108780891B (en) Binder composition for nonaqueous secondary battery electrode, conductive material paste composition, slurry composition, electrode, and secondary battery
US20190181451A1 (en) Silicon-based composite with three dimensional binding network for lithium ion batteries
WO2017059117A1 (en) High capacity anode electrodes with mixed binders for energy storage devices
JP6801167B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
KR20180075436A (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, negative electrode and lithium ion secondary battery
KR20120069314A (en) Anode having improved adhesion for lithium secondary battery
JP6528497B2 (en) Binder composition for lithium ion secondary battery silicon-based negative electrode and slurry composition for lithium ion secondary battery silicon-based negative electrode
KR101645773B1 (en) Electrode active material slurry and secondary battery comprising the same
KR20120092918A (en) Polymer composite electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
WO2018168502A1 (en) Binder composition for nonaqueous secondary battery electrode, conductive-material paste composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20180090306A (en) Cathode composition, method for manufacturing cathode, and lithium ion battery
JPWO2019044166A1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
US20190181450A1 (en) Silicon-based composite with three dimensional binding network for lithium ion batteries
KR20180075308A (en) Anode binder for secondary battery, anode for secondary battery, and lithium secondary battery
WO2019181660A1 (en) Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, and non-aqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903887

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17903887

Country of ref document: EP

Kind code of ref document: A1