WO2018226059A1 - Energy harvesting apparatus capable of cooling, and integrated heat spreader-type wireless charging receiving module - Google Patents

Energy harvesting apparatus capable of cooling, and integrated heat spreader-type wireless charging receiving module Download PDF

Info

Publication number
WO2018226059A1
WO2018226059A1 PCT/KR2018/006507 KR2018006507W WO2018226059A1 WO 2018226059 A1 WO2018226059 A1 WO 2018226059A1 KR 2018006507 W KR2018006507 W KR 2018006507W WO 2018226059 A1 WO2018226059 A1 WO 2018226059A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
wireless charging
energy harvesting
receiving module
Prior art date
Application number
PCT/KR2018/006507
Other languages
French (fr)
Korean (ko)
Inventor
이형순
이상민
최승태
공대영
정상우
용형석
김태훈
김반석
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2018226059A1 publication Critical patent/WO2018226059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures

Definitions

  • the present invention relates to an energy harvesting device capable of cooling, and more particularly, to improve the energy use efficiency by cooling the heat from the electronic device, and to improve the structure so that energy lost in the electric field environment can be harvested.
  • the present invention relates to an energy harvesting device capable of cooled cooling.
  • the present invention also relates to a wireless charging receiving module, and more particularly, to an integrated heat spreader type wireless charging receiving module installed in an electronic device and receiving power from a wireless charging transmitting module.
  • Electronic devices such as smartphones, laptops, cameras, or electronic components such as graphics cards and graphics cards that are commonly used in life, generate heat and electric fields by the use of electrical energy.
  • the energy loss is generated by the electric field generated in the electronic device, the development of technology that can further improve the energy use efficiency by harvesting the lost energy again.
  • the present invention has been made in view of the above necessity, and an object of the present invention is to provide a coolable energy harvesting device that enables efficient cooling of an electronic device and harvest of lost energy even with a simple configuration. It is.
  • another object of the present invention is to provide a wireless charging receiving module having a structure that can maximize the heat dissipation performance while improving the wireless charging efficiency by shielding the magnetic field in the wireless charging receiving module.
  • the present invention for achieving the above object is to cool the heat from the electronic device to increase the energy use efficiency and to harvest the lost energy using the electric field from the electronic device, a flow path through which the working fluid flows is formed
  • a heat absorption layer for vaporizing the working fluid by heat from the electronic device
  • a heat dissipation layer disposed at a position facing the heat absorbing layer at intervals, the heat dissipating layer being communicatively connected to the flow path of the heat absorbing layer, and dissipating heat of the working fluid in a gas state to change into a liquid state
  • An electrode layer receiving an electric field signal from the electronic device through the working fluid and generating an output
  • And a cover layer for closing the heat absorbing layer, the heat dissipating layer, and the electrode layer.
  • the present invention preferably comprises a steam layer which is formed in the space between the heat absorbing layer and the heat dissipating layer, and transfers the gas generated in the heat absorbing layer to the heat dissipating layer.
  • the heat absorption layer and the heat dissipation layer have a porous structure.
  • the electrode layer is disposed between the cover layer and the heat dissipating layer to surround the heat dissipating layer.
  • the cover layer may be formed of a non-metallic material to surround the heat absorbing layer, and may be formed of a metallic material to enclose the heat-dissipating layer.
  • an integrated heat spreader type wireless charging receiving module receiving an induced current from an electromagnetic field generated by a transmitting coil of a wireless charging transmitting module, wherein a gas flows therein.
  • a chamber housing in which a flow space is formed;
  • a receiving coil installed in the chamber housing and receiving an induced current by an electromagnetic field generated by the transmitting coil, one end of which is connected to a battery;
  • a shielding sheet that shields an electromagnetic field received by the receiving coil and has a porous structure in which a refrigerant flows.
  • a porous material may be provided inside the plate forming the chamber housing.
  • the shielding sheet may be made in powder form.
  • the receiving coil may have a rear end connected to the battery by a receiving coil electrode, and the receiving coil may be made of a porous structure.
  • An auxiliary coil pad is installed in a portion of the chamber housing opposite to the shielding sheet.
  • the auxiliary coil pad may have a rear end connected to the battery by an auxiliary coil pad electrode, and the auxiliary coil pad may have a porous structure. .
  • the shielding sheet may be provided to be mounted inside a plate forming the chamber housing.
  • the shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporator and the condenser, wherein the evaporator may have a smaller pore than the condenser.
  • the shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporation part and the condensation part, wherein the evaporation part and the condensation part may have a smaller pore than the moving part.
  • Cooling energy harvesting apparatus having the above-described configuration, by forming a heat exchange cycle between the heat absorbing layer and the heat dissipating layer enables cooling of the heat from the electronic device even with a simple configuration.
  • the AC signal from the electronic device can be received and output through the electrode layer, thereby enabling energy harvesting lost in the electric field, and eventually the electronic device. Cooling and re-harvesting of heat from the effluent have the effect of maximizing energy use efficiency.
  • the integrated heat spreader type wireless charging receiving module by forming a shielding sheet in a porous structure to shield the magnetic field in the wireless charging receiving module to improve the wireless charging efficiency and at the same time maximize the heat dissipation performance.
  • FIG. 1 is a cross-sectional view of a cooling energy harvesting apparatus according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
  • Figure 3 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
  • Figure 4 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a cooling energy harvesting apparatus according to another embodiment of the present invention.
  • Figure 6 is a cross-sectional view of a cooling energy harvesting device according to another embodiment of the present invention.
  • FIG. 7 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to an embodiment of the present invention.
  • FIG. 8 is a view showing the flow of the refrigerant in the wireless charging receiving module.
  • FIG. 9 is a view showing that the heat is discharged to the outside of the wireless charging receiving module.
  • FIG. 10 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to an embodiment of the present invention.
  • a cooling energy harvesting device by cooling the heat from the electronic device (A) to increase the energy use efficiency and the electric field from the electronic device (A)
  • it comprises a heat absorbing layer 12, heat dissipating layer 14, electrode layer 16 and cover layer 18.
  • the electronic device (A) uses electrical energy, not only the finished products such as smartphones, notebooks, cameras, etc. which are commonly used in life, but also electronic components such as a central processing unit, graphics card, etc. constituting the finished products. Means any device.
  • the heat absorbing layer 12 and the heat dissipating layer 14 employed in the present embodiment, for example, to cool the object on the principle of evaporation and condensation of the refrigeration cycle, can be implemented in various structures It enables effective evaporation and condensation.
  • the heat absorption layer 12 has a flow path through which a working fluid flows, and serves to vaporize the working fluid by heat from the electronic device A.
  • the working fluid is preferably a fluid capable of dielectric polarization so as to serve as a refrigerant that enables cooling of heat and at the same time to facilitate energy harvesting lost in the electric field.
  • the flow path of the heat absorption layer 12 is a generic term for a structure through which the working fluid can flow, and is not limited to a specific form.
  • the flow path may be a pore forming a porous structure.
  • the heat dissipating layer 14 has a function that is different from that of the heat absorbing layer 12, and is disposed at a position facing the heat absorbing layer 12 at intervals, and has a flow path of the heat absorbing layer 12. It is communicatively connected and serves to phase change into a liquid state by releasing heat from the working fluid in the gas state.
  • phase change means may be employed.
  • the heat absorbing layer 12 and the heat dissipating layer 14 have a porous structure
  • the heat absorbing layer 12 be implemented to have a larger pore size than the pore size.
  • the working fluid of the heat absorbing layer 12 absorbs and evaporates heat emitted from the electronic device A, and the vaporized portion is vaporized.
  • the working fluid is radiated from the heat dissipating layer 14 to be changed into a liquid phase, thereby enabling cooling of the electronic device A.
  • the flow of the working fluid between the heat absorbing layer 12 and the heat dissipating layer 14 depends on the gaseous phase present in the heat absorbing layer 12 without depending on the forced pumping of the fluid or the forced circulation device.
  • the present embodiment allows the electrode layer 16 to be organically coupled to the composition consisting of the heat absorbing layer 12 and the heat dissipating layer 14 which derive this advantage, thereby allowing harvesting of lost energy in the electric field.
  • the electrode layer 16 employed in the present embodiment receives the electric field signal from the electronic device A through the working fluid and generates an output, thereby re-harvesting energy lost in the electric field. Let's do it.
  • the energy loss layer is generated by materials that are easily influenced and polarized by an external electric field.
  • the electronic device A is based on an alternating current output, the sign of the electric field and the electromagnetic wave is continuously changed, and at this time, as the polarization direction inside the polarized material is continuously changed, the dielectric loss is caused by these materials. Energy loss such as heat and vibration are generated.
  • the working fluid is composed of ferroelectric material (ex. Water, polar molecules), and the working fluid is located as close as possible to the heat dissipating layer 14 containing liquid phase.
  • ferroelectric material ex. Water, polar molecules
  • the present embodiment having such a configuration includes a heat dissipation layer 14 containing the working fluid and an electrode layer 16 disposed at a position adjacent to the heat dissipation layer 14, thereby operating with the ferroelectric material.
  • the electrode layer 16 is also configured to generate a corresponding alternating current output, eventually occurring at the electrode layer 16 By harvesting the collected electrical energy, energy harvesting can be realized.
  • the cooling energy harvesting device is formed by forming a heat exchange cycle by the heat absorbing layer 12 and the heat dissipating layer 14, so that the electronic device A can be simplified.
  • an AC signal from the electronic device A is received through a working fluid circulating through the heat absorbing layer 12 and the heat dissipating layer 14.
  • the working fluid may be a polar fluid that is well polarized reverse, such as water can be used, of course, it is preferable that the liquid that vaporization occurs in the operating temperature range of 40 ⁇ 80 °C of the electronic device (A). .
  • the present embodiment includes a steam layer 15 formed between the heat absorbing layer 12 and the heat dissipating layer 14, so that the gas generated in the heat absorbing layer 12 is transferred to the heat dissipating layer 14. It has the advantage of being able to deliver smoothly.
  • the heat absorbing layer 12 and the heat dissipating layer 14 is preferably made of a porous structure, so as to facilitate the evaporation and condensation function, the voids of the heat absorbing layer 12 than the heat dissipating layer 14 It is desirable to form smaller.
  • the electrode layer 16 is preferably arranged in such a manner as to surround the heat dissipation layer 14 so that the electrode dissipation layer 14 can be disposed as close as possible to the heat dissipation layer 14, and the cover layer 18 is the heat absorption layer. (12) and the heat dissipation layer 14 and the electrode layer 16 serves to close.
  • FIG. 2 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
  • the embodiment shown in this figure has the same configuration as most of the embodiments described above, but there are differences in electrode layers.
  • the electrode layer 26 employed in the present embodiment includes a first electrode layer 26a disposed between the cover layer and the heat dissipating layer 24, and a first electrode layer 26 disposed between the cover layer and the heat absorption layer 22. It comprises a two-electrode layer 26b, which derives the advantages of enabling energy harvesting through the working fluid flowing through the heat absorbing layer 22 and energy harvesting through the working fluid flowing through the heat dissipating layer 24 at the same time. .
  • FIG 3 is a cross-sectional view of a cooling energy harvesting apparatus according to another embodiment of the present invention.
  • the embodiment illustrated in this figure is configured such that the electrode layers 36a and 36b are formed only in a part of the heat absorption layer 32 and a part of the heat dissipation layer 34.
  • the first electrode layer 36a is disposed only in a part of the heat absorption layer 32 so that the AC signal transmitted in the electric field of the electronic device is transmitted to the first electrode layer 36a.
  • Blocking can be suppressed as much as possible, so that the second electrode layer 36b is disposed only in a part of the heat dissipating layer 34, so that the heat dissipation efficiency of the second electrode layer 36b is reduced. It is expected to have advantages.
  • FIG. 4 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
  • the electrode layer employed in the present embodiment may include a plurality of first electrode layers 46a and a second electrode layer disposed to cover the entire heat dissipation layer 44 at intervals in a portion of the heat absorption layer 42 ( 46b).
  • FIG. 5 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
  • the cover layer described above is formed integrally by a single material, the first cover layer 58a and the heat dissipating layer 54 to surround the heat absorbing layer 52, The two cover layers 58b are formed of different materials.
  • the first cover layer 58a is preferably formed of a nonmetallic material in order to minimize electromagnetic wave blocking
  • the second cover layer 58b is made of a metal material having high thermal conductivity (Cu) in order to increase heat dissipation efficiency. , Al, Fe and the like).
  • FIG. 6 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
  • the cover layer 68 is similar in the configuration consisting of the first cover layer 68a made of a non-metal material and the second cover layer 68b made of a metal material
  • the second cover layer 68b formed of a metal material is different from the above-described embodiments in that it is configured to replace the electrode layer.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • FIG 7 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to an embodiment of the present invention
  • Figure 8 is a view showing the flow of the refrigerant in the wireless charging receiving module
  • Figure 9 is a wireless charging The figure shows that heat is released to the outside of the receiving module.
  • the wireless charging receiving module includes a chamber housing 10 in which a flow space 11 through which gas flows is formed; A receiving coil 12 installed in the chamber housing 10 and receiving an induced current by an electromagnetic field generated by the transmitting coil 2, one end of which is connected to the battery 30; And it may include a shielding sheet 20 made of a porous structure to shield the electromagnetic field received by the receiving coil 12, the refrigerant flows.
  • the wireless charging transmission module includes a power supply unit 1 and a transmission coil 2 receiving electric energy supplied from the power supply unit 1.
  • the power supply unit 1 may generate AC power having a predetermined frequency and supply it to the transmission coil 2.
  • the induced current generated by the transmitting coil 2 may be transmitted to the receiving coil 12 inductively coupled with the transmitting coil 2.
  • the power delivered to the transmitting coil 2 may be transmitted to the wireless charging receiving module having the same resonance frequency as the wireless charging transmitting module by the frequency resonance method. Power may be transmitted by resonance between two impedance matched LC circuits.
  • the wireless charging receiving module is configured to be arranged in the chamber housing 10, the chamber housing 10 serves as a kind of vapor chamber (vapor chamber).
  • the role of the chamber housing 10 as a vapor chamber means that the refrigerant circulates through the evaporation and condensation in the chamber housing 10. This will be described in more detail below.
  • the chamber housing 10 is made of a metal having a substantially rectangular parallelepiped shape, and as shown in FIG. 1, a battery 30 and a receiving coil 12 are connected to one side thereof.
  • the receiving coil 12 is electrically connected to the battery 30 by the receiving coil electrode 14 at a rear end thereof, and is formed in a shape in which the coil is wound in a substantially circular or rectangular shape in the chamber housing 10.
  • the chamber housing 10 is not limited to the rectangular parallelepiped shape as described above, and may be made in various shapes such as a circle and a polygon according to the position and shape of the heat generating source 40.
  • the chamber housing 10 may be made to be folded or bent using a polymer material, without being limited to the above-described metal material.
  • a predetermined flow space 11 is formed inside the chamber housing 10.
  • the flow space 11 is a space in which the refrigerant contained in the liquid state in the shielding sheet 20 evaporates and flows. As the flow space 11 is formed in this way, the refrigerant gas flows, so that the refrigerant can circulate freely while repeatedly evaporating and condensing.
  • the shield sheet 20 is installed below the inner wall of the chamber housing 10.
  • the shielding sheet 20 serves to shield electromagnetic waves radiated from the transmitting coil 2 and electromagnetic waves received from the receiving coil 12. Therefore, energy loss between the wireless charging transmission module and the wireless charging receiving module is minimized, and the power transmission and reception efficiency can be increased.
  • the shielding sheet 20 is illustrated as being installed below the inner wall of the chamber housing 10, but is not necessarily limited thereto and may be installed in various parts according to the induction direction of electromagnetic waves.
  • a mobile device, an electronic pad, etc., to which the present wireless charging receiving module is mainly employed, is often overturned, so that the shielding sheet 20 may be installed on the inner wall of the chamber housing 10.
  • the shielding sheet 20 may have a porous structure in which a refrigerant flows.
  • the shielding sheet 20 is configured to allow the shielding sheet 20 to act as a shield for electromagnetic waves and to perform heat dissipation of the wireless charging receiving module.
  • the liquid refrigerant is permeated into the gaps formed therebetween.
  • the refrigerant located in the evaporator 22 on the shielding sheet 20 is evaporated.
  • the heat of the heat generating source 40 is absorbed, and the gas refrigerant moves to the condensation unit 24 having a lower density and pressure, thereby condensing and dissipating heat.
  • the condensation unit 24 may be formed to be in close contact with the inner wall side of the chamber housing 10 may emit heat in the lateral direction of the chamber housing 10.
  • the wick sucks the material into the surface tension. Then, the liquid refrigerant flows back through the moving part 26 toward the evaporation part 22 due to the capillary action of the wick. As described above, when the coolant circulates, the heat generated from the heat generating source 40 may be released, thereby improving heat dissipation efficiency.
  • the shielding sheet 20 since the shielding sheet 20 not only serves to shield the electromagnetic wave but also performs a heat dissipation role as described above, the performance of the product can be improved.
  • the pore forming the porous structure of the shielding sheet 20 is too small, the heat dissipation performance may be reduced by the flow resistance, and if the pore is formed too large, it may be appropriately formed in an appropriate size because the refrigerant may not be properly supplied.
  • the shielding sheet 20 may be made of a porous structure of various forms.
  • a ferrite sheet, a polymer sheet, an amorphous alloy or a ribbon sheet of nanocrystalline alloy, etc. may be used, and may be made of a porous structure using powders of these materials.
  • the shielding sheet 20 may have a saturation magnetic flux density of 0.25 Tesla or more in the frequency band of 50kHz ⁇ 350kHz and 6.765MHz ⁇ 6.795MHz.
  • the saturation flux density may be 0.35 Tesla or more in the frequency band of 50 kHz to 350 kHz and 6.765 MHz to 6.795 MHz. This is because the higher the saturation magnetic flux density of the shielding sheet 20, the later the saturation due to the magnetic field is generated, so that a thinner thickness can be used than the shielding sheet 20 having the low saturation magnetic flux density.
  • the ferrite sheet may be a sintered ferrite sheet, and Ni-Zn ferrite or Mn-Zn ferrite may be used.
  • the amorphous alloy or nanocrystalline alloy may be used Fe-based or Co-based magnetic alloy.
  • the amorphous alloy and the nanocrystalline alloy may include a three-element alloy or a five-element alloy.
  • the three-element alloy may include Fe, Si, and B
  • the five-element alloy may include Fe, Si, B, Cu, and Nb.
  • the polymer sheet may be a Fe-Si-Al-based or Fe-Si-Cr-based polymer sheet.
  • the shielding sheet 20 described above is provided as an example and is not necessarily limited thereto. Any shielding sheet 20 may be used as long as the material and structure may be made of a porous structure.
  • the porous structure may be formed in various forms such as sintered particles, inverse opal, mesh form, or the like.
  • the sintered particle structure is a structure in which spherical particles are heated to a high temperature in a stacked state so that the particles adhere to each other, and a space between the particles creates a porous structure.
  • the inverse opal structure has a spherical sacrificial template laminated and then metals are deposited around it to dissolve the internal sacrificial templates, and the part where the sacrificial templates are located becomes porous. Speak structure.
  • the mesh foam structure refers to a shape structure consisting of a mesh shape of irregular shape.
  • nanowire structures, pin-fins structures, or the like may be employed as the porous structures.
  • the evaporator 22 may have a smaller pore than the condenser 24.
  • the evaporator 22 and the condenser 24 may be formed with a relatively small gap than the moving part 26 to which the refrigerant moves.
  • the heating source 40 may be, for example, various components such as a central processing unit (cpu), a camera module, a graphics card, and the like installed inside an electronic device such as a smartphone.
  • the heat generating source 40 is to be set in advance in the design stage, the shielding sheet 20 may be installed inside the chamber housing 10 so as to cover the entire position of the heat generating source (40).
  • an auxiliary coil pad 50 may be installed at a portion of the chamber housing 10 that faces the shield sheet 20.
  • the auxiliary coil pad 50 has a rear end connected to the battery 30 by the auxiliary coil pad electrode 52 to receive an induced current together with the receiving coil 12.
  • the auxiliary coil pad 50 is formed in a porous structure so that the auxiliary coil pad 50 may perform a heat dissipation function. As described above, when the auxiliary coil pad 50 has a porous structure, the auxiliary coil pad 50 may serve as a kind of vapor chamber as in the chamber housing 10.
  • the receiving coil 12 also serves to receive the induced current generated in the transmitting coil 2 and at the same time may be made of a porous structure so that the receiving coil 12 itself to radiate heat.
  • the receiving coil 12 when the receiving coil 12 is formed of a porous structure, it may serve as a kind of vapor chamber like the chamber housing 10.
  • the receiving coil 12 may be formed of a porous structure such as sintered particles, inverse opals, and a mesh form structure.
  • the auxiliary coil pad 50 is formed of a porous structure to perform a heat dissipation function as described above, the receiving coil 12 does not necessarily need to be formed of a porous structure.
  • a porous structure may be formed by forming a flow space in the plate constituting the chamber housing 10 and having a porous material. In this case, heat transferred from the heat generating source 40 may be released more quickly through the chamber housing 10 having high thermal conductivity.
  • the shielding sheet 20 is described as being disposed inside the chamber housing 10 in the above-described embodiment, the shielding sheet 20 may be provided to be mounted inside the plate forming the chamber housing 10. have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention relates to an energy harvesting apparatus capable of cooling. The energy harvesting apparatus, according to the present invention, is for increasing energy use efficiency by cooling heat emitting from an electronic device, and for harvesting lost energy by using an electric field emitting from the electronic device. The energy harvesting apparatus comprises: a heat absorption layer which has formed thereto a flow path enabling a working fluid to flow, and vaporizes the working fluid by means of heat emitting from an electronic device; a heat dissipation layer which is arranged in a position facing the heat absorption layer at an interval, is communicatably connected with the flow path of the heat absorption layer, and enables the gas-state heat of the working fluid to be dissipated so that same may undergo a phase change into a liquid state; an electrode layer which generates an output by receiving, via the working fluid, a signal of an electric field emitting from the electronic device; and a cover layer which closes off the heat absorption layer, the heat dissipation layer and the electrode layer.

Description

쿨링이 가능한 에너지 하베스팅 장치 및 통합된 히트 스프레더형 무선충전 수신모듈Cooling energy harvesting device and integrated heat spreader wireless charging receiver module
본 발명은 쿨링이 가능한 에너지 하베스팅 장치에 관한 것으로, 더욱 상세하게는 전자 장치에서 나오는 열의 쿨링이 가능하여 에너지 사용 효율을 높일 수 있고, 전기장 환경에서 손실된 에너지를 수확할 수 있도록, 구조가 개선된 쿨링이 가능한 에너지 하베스팅 장치에 관한 것이다. The present invention relates to an energy harvesting device capable of cooling, and more particularly, to improve the energy use efficiency by cooling the heat from the electronic device, and to improve the structure so that energy lost in the electric field environment can be harvested. The present invention relates to an energy harvesting device capable of cooled cooling.
그리고, 본 발명은 무선충전 수신모듈에 관한 것으로, 더욱 상세하게는 전자 장치의 내부에 설치되어 무선충전 송신모듈로부터 전력을 전달받는 통합된 히트 스프레더형 무선충전 수신모듈에 관한 것이다.The present invention also relates to a wireless charging receiving module, and more particularly, to an integrated heat spreader type wireless charging receiving module installed in an electronic device and receiving power from a wireless charging transmitting module.
우리가 일생생활에서 흔히 사용하는 제품인 스마트폰, 노트북, 카메라 또는 그 제품을 구성하는 중앙처리장치, 그래픽 카드 등의 전자부품과 같은 전자 장치는, 전기에너지의 사용에 의해 열과 전기장이 생성된다.Electronic devices, such as smartphones, laptops, cameras, or electronic components such as graphics cards and graphics cards that are commonly used in life, generate heat and electric fields by the use of electrical energy.
이러한 전자 장치에서 발생하는 열은 에너지 사용 효율을 떨어뜨리는 가장 큰 요인이기 때문에, 그 열을 쿨링하여 주기 위한 수많은 기술들이 지속적으로 개발되고 있다. Since the heat generated by such electronic devices is the biggest factor in decreasing the energy use efficiency, numerous technologies are continuously developed to cool the heat.
상기 열을 쿨링하여 주기 위하여 냉각물질의 개선 등에 의한 화학적 방법이나 냉각핀 구조 변경과 같은 기계적 방법 기술들이 활발하게 개발되고 있으나, 이러한 쿨링 기술들은 좀 더 작은 사이즈로 간소한 구성을 가질 것이 요구된다. In order to cool the heat, mechanical methods such as chemical method and cooling fin structure change by improving cooling materials are actively developed, but these cooling technologies are required to have a simple configuration with a smaller size.
또한, 전자 장치에서 발생하는 전기장에 의해 에너지 손실이 발생하게 되는데, 이러한 손실된 에너지를 재차 수확함으로써 에너지 사용 효율을 더욱 향상시킬 수 있는 기술개발이 절실히 요구되고 있다. In addition, the energy loss is generated by the electric field generated in the electronic device, the development of technology that can further improve the energy use efficiency by harvesting the lost energy again.
한편, 소비자의 성능에 대한 요구가 증대됨에 따라 전자 장치에서의 방열(heat dissipation) 문제는 디바이스의 전체적인 성능을 결정짓는 가장 중요한 요소가 되고 있다. 이러한 문제의 해결책으로 상변화(phase change)를 이용한 냉각은 높은 열전달 성능 때문에 각광을 받고 있다. 최근 개발된 삼성전자와 엘지전자의 스마트폰에서는 액체 냉각(liquid cooling)을 이용한 히트 파이프(heat pipe)를 사용하여 높은 성능을 구현하였다. On the other hand, as the demand for consumer performance increases, heat dissipation problems in electronic devices have become the most important factor in determining the overall performance of the device. As a solution to this problem, cooling using phase change is in the spotlight due to its high heat transfer performance. Recently developed smartphones of Samsung Electronics and LG Electronics have realized high performance by using a heat pipe using liquid cooling.
또한, 최근에는 전자 장치의 무선충전(wireless charging)에 대한 급격한 기술개발로 실제 무선충전을 이용한 어플리케이션이 증가하고 있다. 무선충전의 효율 증대를 위해서는 수신모듈(receiving module)의 자기장 차폐(magnetic shielding)가 중요한데, 많은 경우 페라이트(ferrite) 재질의 자기장 차폐시트를 이용하여 성능향상을 추구하고 있다. 이에 자기장 차폐를 함과 동시에 방열 성능을 극대화할 수 있는 구조를 가진 무선충전 장치의 개발이 필요한 실정이다. In addition, recently, due to rapid technology development for wireless charging of electronic devices, applications using actual wireless charging are increasing. In order to increase the efficiency of wireless charging, magnetic shielding of a receiving module is important. In many cases, a magnetic field shielding sheet made of ferrite is used to improve performance. Therefore, it is necessary to develop a wireless charging device having a structure capable of maximizing heat dissipation performance while shielding magnetic fields.
[관련 선행특허문헌][Related Patent Documents]
한국공개특허 제10-2017-0018370호(2017.02.17. 공개)Korean Patent Publication No. 10-2017-0018370 (published Feb. 17, 2017)
본 발명은 상기와 같은 필요성에 의해 안출된 것으로, 본 발명의 목적은 간소한 구성에 의해서도 전자 장치의 쿨링 및 손실된 에너지 수확을 효율적으로 수행할 수 있게 하는 쿨링이 가능한 에너지 하베스팅 장치를 제공하고자 하는 것이다. SUMMARY OF THE INVENTION The present invention has been made in view of the above necessity, and an object of the present invention is to provide a coolable energy harvesting device that enables efficient cooling of an electronic device and harvest of lost energy even with a simple configuration. It is.
또한, 본 발명의 다른 목적은 무선충전 수신모듈 내에서 자기장을 차폐하여 무선충전 효율을 향상시킴과 동시에 방열 성능을 극대화할 수 있는 구조를 가진 무선충전 수신모듈을 제공하고자 하는 것이다.In addition, another object of the present invention is to provide a wireless charging receiving module having a structure that can maximize the heat dissipation performance while improving the wireless charging efficiency by shielding the magnetic field in the wireless charging receiving module.
상기 목적을 달성하기 위한 본 발명은, 전자 장치에서 나오는 열을 쿨링하여 에너지 사용 효율을 높이고 전자 장치에서 나오는 전기장을 이용하여 손실된 에너지를 수확하기 위한 것으로, 작동유체가 흐를 수 있는 유로가 형성되어 있고, 전자 장치에서 나오는 열에 의해 상기 작동유체를 기화시키는 열흡수층; 상기 열흡수층과 간격을 두고 마주하는 위치에 배치되고, 상기 열흡수층의 유로와 소통 가능하게 연결되며, 기체 상태의 작동유체의 열을 방출시켜 액체 상태로 상변화시키는 열방출층; 상기 전자 장치에서 나오는 전기장의 신호를 상기 작동유체를 통해 전달 받아 출력을 발생시키는 전극층; 및 상기 열흡수층과 열방출층과 전극층을 폐쇄시키는 커버층;을 포함하여 이루어지는 것을 특징으로 한다. The present invention for achieving the above object is to cool the heat from the electronic device to increase the energy use efficiency and to harvest the lost energy using the electric field from the electronic device, a flow path through which the working fluid flows is formed A heat absorption layer for vaporizing the working fluid by heat from the electronic device; A heat dissipation layer disposed at a position facing the heat absorbing layer at intervals, the heat dissipating layer being communicatively connected to the flow path of the heat absorbing layer, and dissipating heat of the working fluid in a gas state to change into a liquid state; An electrode layer receiving an electric field signal from the electronic device through the working fluid and generating an output; And a cover layer for closing the heat absorbing layer, the heat dissipating layer, and the electrode layer.
본 발명은, 상기 열흡수층과 열방출층 사이의 공간에 형성되는 부분으로, 상기 열흡수층에서 발생한 기체를 상기 열방출층에 전달시키는 스팀층;을 포함하여 이루어지는 것이 바람직하다. The present invention preferably comprises a steam layer which is formed in the space between the heat absorbing layer and the heat dissipating layer, and transfers the gas generated in the heat absorbing layer to the heat dissipating layer.
상기 열흡수층과 열방출층은, 다공성 구조로 이루어지는 것이 바람직하다. It is preferable that the heat absorption layer and the heat dissipation layer have a porous structure.
상기 전극층은, 상기 커버층과 열방출층 사이에 그 열방출층을 감싸는 형태로 배치되는 것이 바람직하다. Preferably, the electrode layer is disposed between the cover layer and the heat dissipating layer to surround the heat dissipating layer.
상기 커버층은, 상기 열흡수층을 감싸는 부분을 비금속 재질로 형성하고, 열방출층을 감싸는 부분을 금속 재질로 형성하는 것이 바람직하다. The cover layer may be formed of a non-metallic material to surround the heat absorbing layer, and may be formed of a metallic material to enclose the heat-dissipating layer.
상기 다른 목적을 달성하기 본 발명에 의한 통합된 히트 스프레더형 무선충전 수신모듈은, 무선충전 송신모듈의 송신 코일에서 생성된 전자기장으로부터 유도전류를 수신하는 무선충전 수신모듈에 있어서, 내부에 기체가 유동하는 유동공간이 형성되는 챔버 하우징; 상기 챔버 하우징 내에 설치되고, 상기 송신 코일에서 생성된 전자기장에 의해 유도전류를 수신하며, 일단은 배터리에 연결되는 수신 코일; 및 상기 수신 코일로 수신되는 전자기장을 차폐하고, 냉매가 유동하는 다공성 구조로 이루어지는 차폐시트를 포함할 수 있다.In accordance with another aspect of the present invention, there is provided an integrated heat spreader type wireless charging receiving module, the wireless charging receiving module receiving an induced current from an electromagnetic field generated by a transmitting coil of a wireless charging transmitting module, wherein a gas flows therein. A chamber housing in which a flow space is formed; A receiving coil installed in the chamber housing and receiving an induced current by an electromagnetic field generated by the transmitting coil, one end of which is connected to a battery; And a shielding sheet that shields an electromagnetic field received by the receiving coil and has a porous structure in which a refrigerant flows.
상기 챔버 하우징을 형성하는 판의 내부에는 다공성 물질이 구비될 수 있다.A porous material may be provided inside the plate forming the chamber housing.
상기 차폐시트는 파우더 형태로 만들어질 수 있다.The shielding sheet may be made in powder form.
상기 수신 코일은 후단이 수신 코일 전극에 의해 상기 배터리와 연결되고, 상기 수신 코일은 다공성 구조로 만들어질 수 있다.The receiving coil may have a rear end connected to the battery by a receiving coil electrode, and the receiving coil may be made of a porous structure.
상기 챔버 하우징의 내부에는 상기 차폐시트에 대향되는 부분에 보조 코일 패드가 설치되는데, 상기 보조 코일 패드은 후단이 보조 코일 패드 전극에 의해 상기 배터리와 연결되고, 상기 보조 코일 패드는 다공성 구조로 이루어질 수 있다.An auxiliary coil pad is installed in a portion of the chamber housing opposite to the shielding sheet. The auxiliary coil pad may have a rear end connected to the battery by an auxiliary coil pad electrode, and the auxiliary coil pad may have a porous structure. .
상기 차폐시트는 상기 챔버 하우징을 형성하는 판의 내부에 실장되도록 구비될 수 있다.The shielding sheet may be provided to be mounted inside a plate forming the chamber housing.
상기 차폐시트는 상기 냉매가 증발하는 증발부; 상기 증발부에서 증발된 기체가 응축되는 응축부; 및 상기 증발부와 응축부 사이의 이동부를 포함하고, 상기 증발부는 상기 응축부보다 상대적으로 공극이 작게 형성될 수 있다. The shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporator and the condenser, wherein the evaporator may have a smaller pore than the condenser.
상기 차폐시트는 상기 냉매가 증발하는 증발부; 상기 증발부에서 증발된 기체가 응축되는 응축부; 및 상기 증발부와 응축부 사이의 이동부를 포함하고, 상기 증발부와 응축부는 상기 이동부보다 상대적으로 공극이 작게 형성될 수 있다.The shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporation part and the condensation part, wherein the evaporation part and the condensation part may have a smaller pore than the moving part.
상술한 바와 같은 구성을 가지는 본 발명에 의한 쿨링이 가능한 에너지 하베스팅 장치는, 열흡수층과 열방출층에 의해 열교환 사이클을 형성시킴으로써 간소한 구성에 의해서도 전자 장치에서 나오는 열의 쿨링을 가능하게 함은 물론, 열흡수층과 열방출층을 순환하는 작동유체를 통해, 전자 장치에서 나오는 교류 신호를 전달 받아, 전극층을 통해 출력시킬 수 있도록 구성됨으로써, 전기장 내에서 손실되는 에너지 수확을 가능하게 하여, 결국 전자 장치에서 나오는 열의 쿨링과 에너지 재수확을 통해 에너지 사용 효율을 극대화시킬 수 있는 효과를 가진다. Cooling energy harvesting apparatus according to the present invention having the above-described configuration, by forming a heat exchange cycle between the heat absorbing layer and the heat dissipating layer enables cooling of the heat from the electronic device even with a simple configuration. Through the working fluid circulating the heat absorbing layer and the heat dissipating layer, the AC signal from the electronic device can be received and output through the electrode layer, thereby enabling energy harvesting lost in the electric field, and eventually the electronic device. Cooling and re-harvesting of heat from the effluent have the effect of maximizing energy use efficiency.
한편, 본 발명에 의한 통합된 히트 스프레더형 무선충전 수신모듈은, 차폐시트를 다공성 구조로 형성하여 무선충전 수신모듈 내에서 자기장을 차폐하여 무선충전 효율을 향상시킴과 동시에 방열 성능을 극대화할 수 있다. On the other hand, the integrated heat spreader type wireless charging receiving module according to the present invention, by forming a shielding sheet in a porous structure to shield the magnetic field in the wireless charging receiving module to improve the wireless charging efficiency and at the same time maximize the heat dissipation performance. .
도 1은 본 발명의 일실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.1 is a cross-sectional view of a cooling energy harvesting apparatus according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.Figure 2 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
도 3은 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.Figure 3 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.Figure 4 is a cross-sectional view of the cooling energy harvesting apparatus according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.5 is a cross-sectional view of a cooling energy harvesting apparatus according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도.Figure 6 is a cross-sectional view of a cooling energy harvesting device according to another embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 무선충전 수신모듈과 무선충전 송신모듈을 개략적으로 보인 도면.7 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to an embodiment of the present invention.
도 8은 무선충전 수신모듈 내에서의 냉매의 유동을 보인 도면.8 is a view showing the flow of the refrigerant in the wireless charging receiving module.
도 9는 무선충전 수신모듈 외부로 열이 방출되는 것을 보인 도면.9 is a view showing that the heat is discharged to the outside of the wireless charging receiving module.
도 10은 본 발명의 다른 실시예에 따른 무선충전 수신모듈과 무선충전 송신모듈을 개략적으로 보인 도면.10 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to another embodiment of the present invention.
이하에서는 본 발명의 일실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치를 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, a cooling capable energy harvesting apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다. 1 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to an embodiment of the present invention.
이 도면에 도시된 바와 같이, 본 발명의 일실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치는, 전자 장치(A)에서 나오는 열을 쿨링하여 에너지 사용 효율을 높이고 전자 장치(A)에서 나오는 전기장을 이용하여 손실된 에너지를 수확하기 위한 것으로, 열흡수층(12)과 열방출층(14)과 전극층(16)과 커버층(18)을 포함하여 이루어진다.As shown in this figure, a cooling energy harvesting device according to an embodiment of the present invention, by cooling the heat from the electronic device (A) to increase the energy use efficiency and the electric field from the electronic device (A) In order to harvest the energy lost by using, it comprises a heat absorbing layer 12, heat dissipating layer 14, electrode layer 16 and cover layer 18.
여기서, 상기 전자 장치(A)는, 일생생활에서 흔히 사용하는 제품인 스마트폰, 노트북, 카메라 등의 완제품 뿐만 아니라 그 완제품을 구성하는 중앙처리장치, 그래픽 카드 등의 전자부품과 같이, 전기 에너지를 사용하는 모든 장치를 의미한다. Here, the electronic device (A) uses electrical energy, not only the finished products such as smartphones, notebooks, cameras, etc. which are commonly used in life, but also electronic components such as a central processing unit, graphics card, etc. constituting the finished products. Means any device.
본 실시예에 채용된 열흡수층(12)과 열방출층(14)은, 예컨대, 냉동 사이클의 증발과 응축의 원리로 대상체를 냉각시켜 주기 위한 것으로, 다양한 구조로 구현될 수 있다공성 구조로 이루어져서 효과적인 증발과 응축 기능 구현을 가능하게 한다. The heat absorbing layer 12 and the heat dissipating layer 14 employed in the present embodiment, for example, to cool the object on the principle of evaporation and condensation of the refrigeration cycle, can be implemented in various structures It enables effective evaporation and condensation.
상기 열흡수층(12)은, 작동유체가 흐를 수 있는 유로가 형성되어 있고, 전자 장치(A)에서 나오는 열에 의해 상기 작동유체를 기화시키는 역할을 한다.The heat absorption layer 12 has a flow path through which a working fluid flows, and serves to vaporize the working fluid by heat from the electronic device A.
여기서, 상기 작동유체는 열의 냉각을 가능하게 하는 냉매의 역할을 함과 동시에, 전기장 내에서 손실된 에너지 수확이 원활하도록 유전분극이 가능한 유체인 것이 바람직하다. Here, the working fluid is preferably a fluid capable of dielectric polarization so as to serve as a refrigerant that enables cooling of heat and at the same time to facilitate energy harvesting lost in the electric field.
그리고, 상기 열흡수층(12)의 유로는, 상기 작동유체가 흐를 수 있는 구조를 총칭하는 의미로서, 특정한 형태에 국한되지 않는다. 예컨대, 상기 열흡수층(12)이 다공성 구조로 구현되는 실시예의 경우, 상기 유로는 다공성 구조를 형성시키는 공극일 수 있음은 물론이다. In addition, the flow path of the heat absorption layer 12 is a generic term for a structure through which the working fluid can flow, and is not limited to a specific form. For example, in the embodiment in which the heat absorbing layer 12 is implemented in a porous structure, the flow path may be a pore forming a porous structure.
상기 열방출층(14)은, 상기 열흡수층(12)과 대비되는 기능을 발휘하는 것으로, 상기 열흡수층(12)과 간격을 두고 마주하는 위치에 배치되고, 상기 열흡수층(12)의 유로와 소통 가능하게 연결되며, 기체 상태의 작동유체의 열을 방출시켜 액체 상태로 상변화시키는 역할을 한다. The heat dissipating layer 14 has a function that is different from that of the heat absorbing layer 12, and is disposed at a position facing the heat absorbing layer 12 at intervals, and has a flow path of the heat absorbing layer 12. It is communicatively connected and serves to phase change into a liquid state by releasing heat from the working fluid in the gas state.
이러한 열방출층(14)의 상변화의 원활함을 위해 다양한 상변화수단이 채용될 수 있음은 물론이나, 예컨대, 상기 열흡수층(12)과 열방출층(14)이 다공성 구조로 이루어지는 경우에는 그 열흡수층(12)의 공극의 크기보다 더 큰 공극의 크기를 갖도록 구현되는 것이 바람직하다. In order to facilitate the phase change of the heat dissipating layer 14, various phase change means may be employed. For example, when the heat absorbing layer 12 and the heat dissipating layer 14 have a porous structure, It is preferred that the heat absorbing layer 12 be implemented to have a larger pore size than the pore size.
이러한 열흡수층(12)과 열방출층(14)을 포함하여 이루어지는 본 실시예는, 전자 장치(A)에서 방출되는 열을 열흡수층(12)의 작동유체가 흡수하여 기화되게 하고, 그 기화된 작동유체를 상기 열방출층(14)에서 방열시켜 액상으로 변화되게 함으로써 전자 장치(A)의 쿨링을 가능하게 한다.According to the present embodiment including the heat absorbing layer 12 and the heat dissipating layer 14, the working fluid of the heat absorbing layer 12 absorbs and evaporates heat emitted from the electronic device A, and the vaporized portion is vaporized. The working fluid is radiated from the heat dissipating layer 14 to be changed into a liquid phase, thereby enabling cooling of the electronic device A. FIG.
그리고, 본 실시예는, 상기 열흡수층(12)과 열방출층(14) 간의 작동유체의 흐름을, 유체의 강제 펌핑이나 강제 순환 장치에 의존하지 않고, 열흡수층(12)에 존재하는 기체상의 유체와 열방출층(14)에 존재하는 액상의 유체 간의 표면장력을 통해 자연 순환되게 함으로써, 간소한 구성에 의해 열교환 사이클의 형성을 가능하게 하는 장점을 기대할 수 있게 한다. In this embodiment, the flow of the working fluid between the heat absorbing layer 12 and the heat dissipating layer 14 depends on the gaseous phase present in the heat absorbing layer 12 without depending on the forced pumping of the fluid or the forced circulation device. By allowing natural circulation through the surface tension between the fluid and the liquid fluid present in the heat dissipating layer 14, the advantage of enabling the formation of a heat exchange cycle by a simple configuration can be expected.
본 실시예는, 이러한 장점을 도출하는 열흡수층(12)과 열방출층(14)으로 이루어진 구성에, 전극층(16)이 유기적으로 결합됨으로써, 전기장 내에서 손실된 에너지를 수확할 수 있게 한다. The present embodiment allows the electrode layer 16 to be organically coupled to the composition consisting of the heat absorbing layer 12 and the heat dissipating layer 14 which derive this advantage, thereby allowing harvesting of lost energy in the electric field.
즉, 본 실시예에 채용된 전극층(16)은, 상기 전자 장치(A)에서 나오는 전기장의 신호를 상기 작동유체를 통해 전달 받아 출력을 발생시킴으로써, 상기 전기장 내에서 손실된 에너지의 재수확을 가능하게 한다.That is, the electrode layer 16 employed in the present embodiment receives the electric field signal from the electronic device A through the working fluid and generates an output, thereby re-harvesting energy lost in the electric field. Let's do it.
여기서, 상기 전극층(16)에 의한 에너지 수확 원리를 설명하면, 다음과 같다.Here, the principle of energy harvesting by the electrode layer 16 will be described.
상기 전자 장치(A)가 작동하게 되면, 일정 수준의 전기장 및 전자파가 발생하게 되고, 이 과정에서 전자 장치(A)의 작동에 연관되지 않은 물질들(제품 케이스, 전선 피복, 전자제품 주변물질 등)중 외부 전기장에 취약한 물질들은 전기장에 영향을 받아 극화된다. When the electronic device A is operated, a certain level of electric field and electromagnetic waves are generated, and in this process, materials that are not related to the operation of the electronic device A (product case, wire coating, peripheral material, etc.) The materials vulnerable to the external electric field are polarized by the electric field.
외부 전기장에 쉽게 영향을 받아 극화되는 물질들에 의하여 에너지 손실층이 발생하게 된다. 우선, 전자 장치(A)가 교류 출력 기반인 경우, 전기장 및 전자파의 부호가 지속적으로 바뀌게 되고, 이 때, 극화되는 물질 내부의 극화 방향이 지속적으로 바뀌게 됨에 따라, 이 물질들에 의하여 유전 손실에 의한 열, 진동 등의 에너지 손실이 발생하게 된다.The energy loss layer is generated by materials that are easily influenced and polarized by an external electric field. First, when the electronic device A is based on an alternating current output, the sign of the electric field and the electromagnetic wave is continuously changed, and at this time, as the polarization direction inside the polarized material is continuously changed, the dielectric loss is caused by these materials. Energy loss such as heat and vibration are generated.
이와 같이 손실된 에너지를 수확하기 위하여, 본 실시예에서는 상기 작동유체를 강유전성 물질(ex. 물, 극성분자)로 구성하고, 상기 작동유체가 액상으로 함유된 열방출층(14)과 최대한 인접한 위치에 상기 전극층(16)을 구성함으로써, 물질의 극화로 인한 에너지 손실층에서 발생하는 에너지를 상기 작동유체를 통해 전극층(16) 측으로 전달시킨다. In order to harvest the energy lost in this way, in this embodiment, the working fluid is composed of ferroelectric material (ex. Water, polar molecules), and the working fluid is located as close as possible to the heat dissipating layer 14 containing liquid phase. By configuring the electrode layer 16, energy generated in the energy loss layer due to polarization of the material is transferred to the electrode layer 16 through the working fluid.
이러한 구성을 가지는 본 실시예는, 상기 작동유체를 함유한 열방출층(14)과 그 열방출층(14)과 인접한 위치에 배치되는 전극층(16)을 포함하여 이루어져서, 상기 강유전성 물질로 이루어진 작동유체에 형성된 극성 배열의 방향이 양 (+)에서 음 (-)으로 지속적으로 바뀌고, 상기 전극층(16) 역시 이에 상응하는 교류 출력을 발생시킬 수 있도록 구성됨에 따라, 결국 상기 전극층(16)에서 발생된 전기에너지를 수확함으로써 에너지 하베스팅을 구현할 수 있게 된다. The present embodiment having such a configuration includes a heat dissipation layer 14 containing the working fluid and an electrode layer 16 disposed at a position adjacent to the heat dissipation layer 14, thereby operating with the ferroelectric material. As the direction of the polarity arrangement formed in the fluid is continuously changed from positive (+) to negative (-), and the electrode layer 16 is also configured to generate a corresponding alternating current output, eventually occurring at the electrode layer 16 By harvesting the collected electrical energy, energy harvesting can be realized.
상술한 바와 같이, 본 발명의 일실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치는, 열흡수층(12)과 열방출층(14)에 의해 열교환 사이클을 형성시킴으로써 간소한 구성에 의해서도 전자 장치(A)에서 나오는 열의 쿨링을 가능하게 함은 물론, 열흡수층(12)과 열방출층(14)을 순환하는 작동유체를 통해, 전자 장치(A)에서 나오는 교류 신호를 전달 받아, 전극층(16)을 통해 출력시킬 수 있도록 구성됨으로써, 전기장 내에서 손실되는 에너지 수확을 가능하게 하여, 결국 전자 장치(A)에서 나오는 열의 쿨링과 에너지 재수확을 통해 에너지 사용 효율을 극대화시킬 수 있는 장점을 도출한다. As described above, the cooling energy harvesting device according to the embodiment of the present invention is formed by forming a heat exchange cycle by the heat absorbing layer 12 and the heat dissipating layer 14, so that the electronic device A can be simplified. In addition to enabling cooling of the heat emitted from the heat sink), an AC signal from the electronic device A is received through a working fluid circulating through the heat absorbing layer 12 and the heat dissipating layer 14. By being configured to output through, it is possible to harvest the energy lost in the electric field, which leads to the advantage of maximizing the energy use efficiency through the cooling of the heat from the electronic device (A) and energy re-harvest.
한편, 상기 작동유체로는 물과 같이 분극역전이 잘 일어나는 극성유체가 사용될 수 있음은 물론이나, 전자 장치(A)의 작동온도영역인 40~80℃ 범위에서 기화가 발생하는 액체인 것이 바람직하다. On the other hand, the working fluid may be a polar fluid that is well polarized reverse, such as water can be used, of course, it is preferable that the liquid that vaporization occurs in the operating temperature range of 40 ~ 80 ℃ of the electronic device (A). .
그리고, 본 실시예는, 상기 열흡수층(12)과 열방출층(14) 사이에 형성된 스팀층(15)을 포함하여 이루어져서, 상기 열흡수층(12)에서 발생한 기체를 상기 열방출층(14)에 원활하게 전달시킬 수 있는 장점을 가진다. In addition, the present embodiment includes a steam layer 15 formed between the heat absorbing layer 12 and the heat dissipating layer 14, so that the gas generated in the heat absorbing layer 12 is transferred to the heat dissipating layer 14. It has the advantage of being able to deliver smoothly.
또한, 상기 열흡수층(12)과 열방출층(14)은, 증발과 응축 기능 구현이 원활하도록, 다공성 구조로 이루어지는 것이 바람직하고, 상기 열흡수층(12)의 공극이 열방출층(14)보다 더 작게 형성되는 것이 바람직하다. In addition, the heat absorbing layer 12 and the heat dissipating layer 14 is preferably made of a porous structure, so as to facilitate the evaporation and condensation function, the voids of the heat absorbing layer 12 than the heat dissipating layer 14 It is desirable to form smaller.
상기 전극층(16)은, 상기 열방출층(14)과 최대한 가깝게 배치될 수 있도록, 그 열방출층(14)을 감싸는 형태로 배치되는 것이 바람직하고, 상기 커버층(18)은, 상기 열흡수층(12)과 열방출층(14)과 전극층(16)을 폐쇄시키는 역할을 한다.The electrode layer 16 is preferably arranged in such a manner as to surround the heat dissipation layer 14 so that the electrode dissipation layer 14 can be disposed as close as possible to the heat dissipation layer 14, and the cover layer 18 is the heat absorption layer. (12) and the heat dissipation layer 14 and the electrode layer 16 serves to close.
이하에서는 도 2를 참조하여 본 발명의 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치를 상세히 설명하기로 한다.Hereinafter, a cooling capable energy harvesting apparatus according to another embodiment of the present invention will be described in detail with reference to FIG. 2.
도 2는 본 발명의 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다.2 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
이 도면에 도시된 실시예는, 앞에서 설명한 실시예와 대부분의 구성이 동일하나, 전극층에 있어서 차이점이 있다.The embodiment shown in this figure has the same configuration as most of the embodiments described above, but there are differences in electrode layers.
즉, 본 실시예에 채용된 전극층(26)은, 상기 커버층과 열방출층(24) 사이에 배치되는 제1전극층(26a)과, 상기 커버층과 열흡수층(22) 사이에 배치되는 제2전극층(26b)을 포함하여 이루어져서, 열흡수층(22)을 유동하는 작동유체를 통한 에너지 수확과 열방출층(24)을 유동하는 작동유체를 통한 에너지 수확을 동시에 이룰 수 있게 하는 장점을 도출한다.That is, the electrode layer 26 employed in the present embodiment includes a first electrode layer 26a disposed between the cover layer and the heat dissipating layer 24, and a first electrode layer 26 disposed between the cover layer and the heat absorption layer 22. It comprises a two-electrode layer 26b, which derives the advantages of enabling energy harvesting through the working fluid flowing through the heat absorbing layer 22 and energy harvesting through the working fluid flowing through the heat dissipating layer 24 at the same time. .
도 3은 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다.3 is a cross-sectional view of a cooling energy harvesting apparatus according to another embodiment of the present invention.
이 도면에 도시된 실시예는, 앞에서 설명한 실시예들과는 달리, 열흡수층(32)의 일부 영역과 열방출층(34)의 일부 영역에만 전극층(36a)(36b)이 형성되도록 구성되었다.Unlike the above-described embodiments, the embodiment illustrated in this figure is configured such that the electrode layers 36a and 36b are formed only in a part of the heat absorption layer 32 and a part of the heat dissipation layer 34.
이러한 구성을 가지는 본 실시예에 의하면, 상기 열흡수층(32)의 일부 영역에만 제1전극층(36a)이 배치되게 하여, 상기 전자 장치의 전기장 내에서 송출되는 교류 신호를 그 제1전극층(36a)에 의해 차단시키는 것을 최대한 억제시킬 수 있고, 상기 열방출층(34)의 일부 영역에만 제2전극층(36b)이 배치되게 하여, 그 제2전극층(36b)에 의해 열방출 효율이 떨어지는 것을 억제시킬 수 있는 장점이 기대된다. According to the present exemplary embodiment having such a configuration, the first electrode layer 36a is disposed only in a part of the heat absorption layer 32 so that the AC signal transmitted in the electric field of the electronic device is transmitted to the first electrode layer 36a. Blocking can be suppressed as much as possible, so that the second electrode layer 36b is disposed only in a part of the heat dissipating layer 34, so that the heat dissipation efficiency of the second electrode layer 36b is reduced. It is expected to have advantages.
도 4는 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다.4 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
본 실시예에 채용된 전극층은, 열흡수층(42)의 일부 영역에 간격을 두고 배열되는 복수의 제1전극층(46a)들과 열방출층(44) 전체를 감싸는 형태로 배치되는 제2전극층(46b)을 포함하여 이루어진다. The electrode layer employed in the present embodiment may include a plurality of first electrode layers 46a and a second electrode layer disposed to cover the entire heat dissipation layer 44 at intervals in a portion of the heat absorption layer 42 ( 46b).
도 5는 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다.5 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
이 도면에 도시된 실시예는, 앞에서 설명한 커버층이 하나의 재질에 의해 일체로 형성되는 것과는 달리, 열흡수층(52)을 감싸는 제1커버층(58a)과 열방출층(54)을 감싸는 제2커버층(58b)이 서로 다른 재질에 의해 형성된다.In the embodiment shown in this figure, unlike the cover layer described above is formed integrally by a single material, the first cover layer 58a and the heat dissipating layer 54 to surround the heat absorbing layer 52, The two cover layers 58b are formed of different materials.
즉, 상기 제1커버층(58a)은, 전자파 차단을 최소화하기 위하여 비금속 재질로 형성되는 것이 바람직하고, 제2커버층(58b)은, 열방출 효율을 높이기 위해 열전도도가 높은 금속 재질(Cu, Al, Fe 등)로 형성되는 것이 바람직하다.That is, the first cover layer 58a is preferably formed of a nonmetallic material in order to minimize electromagnetic wave blocking, and the second cover layer 58b is made of a metal material having high thermal conductivity (Cu) in order to increase heat dissipation efficiency. , Al, Fe and the like).
도 6은 본 발명의 또 다른 실시예에 따른 쿨링이 가능한 에너지 하베스팅 장치의 단면도이다.6 is a cross-sectional view of an energy harvesting apparatus capable of cooling according to another embodiment of the present invention.
본 실시예는, 도 5에 도시된 실시예와 마찬가지로, 커버층(68)이 비금속 재질로 이루어진 제1커버층(68a)과 금속 재질로 이루어진 제2커버층(68b)으로 이루어진 구성에 있어서 유사하나, 금속 재질로 형성된 제2커버층(68b)이 전극층을 대체할 수 있도록 구성된 점에서 앞에서 설명한 실시예들과 차이점이 있다.In this embodiment, similar to the embodiment shown in Figure 5, the cover layer 68 is similar in the configuration consisting of the first cover layer 68a made of a non-metal material and the second cover layer 68b made of a metal material However, the second cover layer 68b formed of a metal material is different from the above-described embodiments in that it is configured to replace the electrode layer.
이러한 실시예에 의하면, 구성을 더욱 간소화시킬 수 있게 됨에 따라 제품의 원가경쟁력을 향상시킬 수 있는 장점이 기대된다. According to this embodiment, as the configuration can be further simplified, the advantage of improving the cost competitiveness of the product is expected.
이상 본 발명의 다양한 실시예에 대하여 설명하였으나, 본 실시예 및 본 명세서에 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타내고 있는 것에 불과하며, 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 권리범위에 포함되는 것이 자명하다고 할 것이다. Although various embodiments of the present invention have been described above, the present embodiment and the accompanying drawings are only clearly showing a part of the technical spirit included in the present invention, and are included in the specification and drawings of the present invention. Modifications and specific embodiments that can be easily inferred by those skilled in the art within the scope of the technical idea will be apparent to be included in the scope of the present invention.
이하에서는 도 7 내지 도 10을 참조하여 본 발명에 의한 통합된 히트 스프레더형 무선충전 수신모듈에 관한 실시예들에 대해 설명하기로 한다. Hereinafter, embodiments of the integrated heat spreader wireless charging receiving module according to the present invention will be described with reference to FIGS. 7 to 10.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만,상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
이하, 본 발명에 의한 무선충전 수신모듈의 일 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, an embodiment of the wireless charging receiving module according to the present invention will be described in detail with reference to the accompanying drawings, in the following description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and Duplicate explanations will be omitted.
도 7은 본 발명의 일 실시예에 따른 무선충전 수신모듈과 무선충전 송신모듈을 개략적으로 보인 도면이고, 도 8은 무선충전 수신모듈 내에서의 냉매의 유동을 보인 도면이며, 도 9는 무선충전 수신모듈 외부로 열이 방출되는 것을 보인 도면이다.7 is a view schematically showing a wireless charging receiving module and a wireless charging transmitting module according to an embodiment of the present invention, Figure 8 is a view showing the flow of the refrigerant in the wireless charging receiving module, Figure 9 is a wireless charging The figure shows that heat is released to the outside of the receiving module.
이에 도시된 바에 따르면, 본 발명에 의한 무선충전 수신모듈은 내부에 기체가 유동하는 유동공간(11)이 형성되는 챔버 하우징(10); 챔버 하우징(10) 내에 설치되고, 송신 코일(2)에서 생성된 전자기장에 의해 유도전류를 수신하며, 일단은 배터리(30)에 연결되는 수신 코일(12); 및 수신 코일(12)로 수신되는 전자기장을 차폐하고, 냉매가 유동하는 다공성 구조로 이루어지는 차폐시트(20)를 포함할 수 있다.As shown in the drawing, the wireless charging receiving module according to the present invention includes a chamber housing 10 in which a flow space 11 through which gas flows is formed; A receiving coil 12 installed in the chamber housing 10 and receiving an induced current by an electromagnetic field generated by the transmitting coil 2, one end of which is connected to the battery 30; And it may include a shielding sheet 20 made of a porous structure to shield the electromagnetic field received by the receiving coil 12, the refrigerant flows.
무선충전 송신모듈은 전원부(1)와, 전원부(1)에서 공급되는 전기 에너지를 전달받는 송신 코일(2)을 포함한다. 전원부(1)는 소정의 주파수를 갖는 교류 전력을 생성하여 송신 코일(2)에 공급할 수 있다. The wireless charging transmission module includes a power supply unit 1 and a transmission coil 2 receiving electric energy supplied from the power supply unit 1. The power supply unit 1 may generate AC power having a predetermined frequency and supply it to the transmission coil 2.
송신 코일(2)에 의하여 발생한 유도전류는 송신 코일(2)과 유도 결합된 수신 코일(12)로 전달될 수 있다. 또는, 송신 코일(2)로 전달된 전력은 주파수 공진 방식에 의하여 무선충전 송신모듈과 동일한 공진 주파수를 갖는 무선충전 수신모듈로 전달될 수도 있다. 임피던스가 매칭된 2개의 LC 회로 간에는 공진에 의하여 전력이 전송될 수 있다. The induced current generated by the transmitting coil 2 may be transmitted to the receiving coil 12 inductively coupled with the transmitting coil 2. Alternatively, the power delivered to the transmitting coil 2 may be transmitted to the wireless charging receiving module having the same resonance frequency as the wireless charging transmitting module by the frequency resonance method. Power may be transmitted by resonance between two impedance matched LC circuits.
본 실시예에서는 무선충전 수신모듈이 챔버 하우징(10) 내에 배치되도록 구성하였는데, 챔버 하우징(10)은 일종의 증기 챔버(vapor chamber) 역할을 한다. 챔버 하우징(10)이 증기 챔버로서의 역할을 수행한다는 것은 챔버 하우징(10) 내에서 냉매가 증발, 응축을 거치면서 순환하는 구조를 구성하였다는 것이다. 이에 대해서는 이하에서 보다 상세하게 설명하기로 한다. In this embodiment, the wireless charging receiving module is configured to be arranged in the chamber housing 10, the chamber housing 10 serves as a kind of vapor chamber (vapor chamber). The role of the chamber housing 10 as a vapor chamber means that the refrigerant circulates through the evaporation and condensation in the chamber housing 10. This will be described in more detail below.
챔버 하우징(10)은 대략 직육면체 형상의 금속으로 만들어지며, 도 1에 도시된 바와 같이 일측에는 배터리(30)와 수신 코일(12)이 연결되어 있다. 수신 코일(12)은 후단이 수신 코일 전극(14)에 의해 배터리(30)와 전기적으로 연결되며, 챔버 하우징(10) 내에서는 대략 원형 또는 사각형의 형태로 코일이 감긴 형태로 형성된다. 챔버 하우징(10)은 상술한 바와 같이 직육면체 형상으로 제한되지 않으며, 발열원(40)의 위치 및 형태에 따라 원형, 다각형 등 다양한 형상으로 만들어질 수 있다. 또한, 챔버 하우징(10)은 상술한 금속 재질에 제한되지 않고 폴리머 소재 등을 이용하여 접거나 구부러짐이 가능하도록 만들어질 수도 있다. The chamber housing 10 is made of a metal having a substantially rectangular parallelepiped shape, and as shown in FIG. 1, a battery 30 and a receiving coil 12 are connected to one side thereof. The receiving coil 12 is electrically connected to the battery 30 by the receiving coil electrode 14 at a rear end thereof, and is formed in a shape in which the coil is wound in a substantially circular or rectangular shape in the chamber housing 10. The chamber housing 10 is not limited to the rectangular parallelepiped shape as described above, and may be made in various shapes such as a circle and a polygon according to the position and shape of the heat generating source 40. In addition, the chamber housing 10 may be made to be folded or bent using a polymer material, without being limited to the above-described metal material.
그리고, 챔버 하우징(10)의 내부에는 소정의 유동공간(11)이 형성된다. 유동공간(11)은 차폐시트(20)에 액체 상태로 포함된 냉매가 증발하여 유동하는 공간이다. 이와 같이 유동공간(11)이 형성되어 있어 냉매 기체가 유동함으로써, 냉매가 자유롭게 증발, 응축을 반복하면서 순환할 수 있게 된다. In addition, a predetermined flow space 11 is formed inside the chamber housing 10. The flow space 11 is a space in which the refrigerant contained in the liquid state in the shielding sheet 20 evaporates and flows. As the flow space 11 is formed in this way, the refrigerant gas flows, so that the refrigerant can circulate freely while repeatedly evaporating and condensing.
챔버 하우징(10)의 내벽 하부에는 차폐시트(20)가 설치된다. 차폐시트(20)는 송신 코일(2)로부터 방사되는 전자기파와 수신 코일(12)로 수신되는 전자기파를 차폐하는 역할을 한다. 따라서, 무선충전 송신모듈과 무선충전 수신모듈 간의 에너지 손실이 최소화되며, 전력 송수신 효율이 높아질 수 있다. The shield sheet 20 is installed below the inner wall of the chamber housing 10. The shielding sheet 20 serves to shield electromagnetic waves radiated from the transmitting coil 2 and electromagnetic waves received from the receiving coil 12. Therefore, energy loss between the wireless charging transmission module and the wireless charging receiving module is minimized, and the power transmission and reception efficiency can be increased.
도 7에서 차폐시트(20)는 챔버 하우징(10)의 내벽 하부에 설치되는 것으로 도시하였으나, 반드시 이에 제한되는 것은 아니고 전자기파의 유도방향에 따라 다양한 부분에 설치될 수 있다. 예를 들어, 본 무선충전 수신모듈이 주로 채용되는 모바일 기기, 전자패드 등은 기기를 뒤집는 경우가 빈번하기 때문에 차폐시트(20)가 챔허 하우징(10)의 내벽 상부에 설치될 수도 있는 것이다. In FIG. 7, the shielding sheet 20 is illustrated as being installed below the inner wall of the chamber housing 10, but is not necessarily limited thereto and may be installed in various parts according to the induction direction of electromagnetic waves. For example, a mobile device, an electronic pad, etc., to which the present wireless charging receiving module is mainly employed, is often overturned, so that the shielding sheet 20 may be installed on the inner wall of the chamber housing 10.
본 실시예에서 차폐시트(20)는 냉매가 유동하는 다공성 구조로 이루어질 수 있다. 이와 같이 차폐시트(20)를 구성하는 것은 차폐시트(20)가 전자기파의 차폐 역할을 함과 동시에 무선충전 수신모듈의 방열을 수행하도록 하기 위함이다. In this embodiment, the shielding sheet 20 may have a porous structure in which a refrigerant flows. Thus, the shielding sheet 20 is configured to allow the shielding sheet 20 to act as a shield for electromagnetic waves and to perform heat dissipation of the wireless charging receiving module.
도 8 및 도 9를 참조하면, 차폐시트(20)가 다공성 구조로 이루어지면 사이마다 형성된 공극에 액체 냉매가 스며들게 된다. 이 상태에서 발열원(40)에 의해 냉매가 가열되면 차폐시트(20) 상에서 증발부(22)에 위치한 냉매가 증발된다. 이와 같이 냉매가 증발되면서 발열원(40)의 열을 흡수하게 되고, 기체 냉매는 밀도 및 압력이 상승하게 되어 상대적으로 밀도와 압력이 낮은 응축부(24)로 이동하여 응축되면서 열을 방출하게 된다. 이때, 응축부(24)는 챔버 하우징(10)의 내벽 측면에 밀착되도록 형성되어 챔버 하우징(10)의 측면 방향으로 열을 방출시킬 수 있다. 8 and 9, when the shielding sheet 20 is made of a porous structure, the liquid refrigerant is permeated into the gaps formed therebetween. In this state, when the refrigerant is heated by the heat generating source 40, the refrigerant located in the evaporator 22 on the shielding sheet 20 is evaporated. As the refrigerant evaporates as described above, the heat of the heat generating source 40 is absorbed, and the gas refrigerant moves to the condensation unit 24 having a lower density and pressure, thereby condensing and dissipating heat. At this time, the condensation unit 24 may be formed to be in close contact with the inner wall side of the chamber housing 10 may emit heat in the lateral direction of the chamber housing 10.
다음으로 냉매가 기체에서 액체로 바뀌면 윅(wick)에 의해 표면장력으로 물질을 빨아들인다. 그리고, 액체 냉매는 윅의 모세관 작용으로 인해 이동부(26)를 지나 다시 증발부(22) 쪽으로 유동된다. 이상에서 살펴본 바와 같이 냉매가 순환을 하게 되면, 발열원(40)에서 발생한 열을 방출시킬 수 있으므로 방열 효율이 향상될 수 있다. 본 실시예에서 차폐시트(20)는 상술한 바와 같이 전자기파를 차폐하는 역할 뿐만 아니라 방열 역할을 동시에 수행하게 되므로 제품의 성능도 향상시킬 수 있다. 차폐시트(20)의 다공성 구조를 형성하는 공극은 너무 작게 형성되면 유동저항에 의해 방열성능이 떨어질 수 있고 너무 크게 형성되면 냉매를 적절하게 공급하지 못할 수 있기 때문에 적절한 크기로 형성하는 것이 바람직하다.Next, when the refrigerant is changed from gas to liquid, the wick sucks the material into the surface tension. Then, the liquid refrigerant flows back through the moving part 26 toward the evaporation part 22 due to the capillary action of the wick. As described above, when the coolant circulates, the heat generated from the heat generating source 40 may be released, thereby improving heat dissipation efficiency. In the present embodiment, since the shielding sheet 20 not only serves to shield the electromagnetic wave but also performs a heat dissipation role as described above, the performance of the product can be improved. If the pore forming the porous structure of the shielding sheet 20 is too small, the heat dissipation performance may be reduced by the flow resistance, and if the pore is formed too large, it may be appropriately formed in an appropriate size because the refrigerant may not be properly supplied.
한편, 차폐시트(20)는 다양한 형태의 다공성 구조로 만들어질 수 있다. 예를 들어, 차폐시트(20)의 재질로는 페라이트 시트, 폴리머 시트, 비정질 합금 또는 나노결정립 합금의 리본 시트 등이 사용될 수 있고, 이들 재질의 파우더를 이용하여 다공성 구조로 만들어질 수 있다. 또한, 차폐시트(20)는 50kHz ~ 350kHz 및 6.765MHz ~ 6.795MHz의 주파수 대역에서 포화자속밀도가 0.25테슬러 이상일 수 있다. 바람직하게는 50kHz ~ 350kHz 및 6.765MHz ~ 6.795MHz의 주파수 대역에서 포화자속밀도가 0.35테슬러 이상일 수 있다. 이는, 차폐시트(20)의 포화자속밀도가 높을 수록 자기장에 의한 포화가 늦게 발생되므로 포화자속밀도가 낮은 차폐시트(20)에 비하여 얇은 두께를 사용할 수 있기 때문이다.On the other hand, the shielding sheet 20 may be made of a porous structure of various forms. For example, as the material of the shielding sheet 20, a ferrite sheet, a polymer sheet, an amorphous alloy or a ribbon sheet of nanocrystalline alloy, etc. may be used, and may be made of a porous structure using powders of these materials. In addition, the shielding sheet 20 may have a saturation magnetic flux density of 0.25 Tesla or more in the frequency band of 50kHz ~ 350kHz and 6.765MHz ~ 6.795MHz. Preferably, the saturation flux density may be 0.35 Tesla or more in the frequency band of 50 kHz to 350 kHz and 6.765 MHz to 6.795 MHz. This is because the higher the saturation magnetic flux density of the shielding sheet 20, the later the saturation due to the magnetic field is generated, so that a thinner thickness can be used than the shielding sheet 20 having the low saturation magnetic flux density.
또한, 차폐시트(20)는 50kHz ~ 350kHz, 6.765MHz ~ 6.795MHz 및 13.56MHz의 주파수 대역에서 Tanㅿ(=μ"/μ')가 0.05이하인 재질로 이루어질 수 있다(μ'은 투자율이고, μ"은 투자손실율임).In addition, the shielding sheet 20 may be made of a material having a Tan ㅿ (= μ ″ / μ ′) of 0.05 or less in the frequency bands of 50 kHz to 350 kHz, 6.765 MHz to 6.795 MHz, and 13.56 MHz (μ ′ is the permeability, μ "Is the loss rate of investment).
여기에서, 페라이트 시트는 소결 페라이트 시트일 수 있으며, Ni-Zn 페라이트 또는 Mn-Zn 페라이트가 사용될 수 있다. 더불어, 상기 비정질 합금 또는 나노결정립 합금은 Fe계 또는 Co계 자성 합금이 사용될 수 있다. 일예로, 상기 비정질 합금 및 나노결정립 합금은 3원소 합금 또는 5원소 합금을 포함할 수 있다. 여기서, 상기 3원소 합금은 Fe, Si 및 B를 포함하며, 상기 5원소 합금은 Fe, Si, B, Cu 및 Nb를 포함할 수 있다. 또한, 상기 폴리머 시트는 Fe-Si-Al계 또는 Fe-Si-Cr계 폴리머 시트일 수 있다.Here, the ferrite sheet may be a sintered ferrite sheet, and Ni-Zn ferrite or Mn-Zn ferrite may be used. In addition, the amorphous alloy or nanocrystalline alloy may be used Fe-based or Co-based magnetic alloy. For example, the amorphous alloy and the nanocrystalline alloy may include a three-element alloy or a five-element alloy. Here, the three-element alloy may include Fe, Si, and B, and the five-element alloy may include Fe, Si, B, Cu, and Nb. In addition, the polymer sheet may be a Fe-Si-Al-based or Fe-Si-Cr-based polymer sheet.
이상에서 설명한 차폐시트(20)는 일 예로 제시한 것으로서 이에 반드시 제한되는 것은 아니고, 다공성 구조로 만들어질 수 있는 재질, 구조라면 어떠한 것이라도 채용될 수 있다. The shielding sheet 20 described above is provided as an example and is not necessarily limited thereto. Any shielding sheet 20 may be used as long as the material and structure may be made of a porous structure.
예를 들어, 다공성 구조는 소결입자(sintered particle), 역오팔(inverse opal), 메쉬폼(mesh form) 구조 등으로 다양하게 형성될 수 있다. 소결입자 구조는 구형상의 입자들을 적층한 상태에서 높은 온도로 가열하여 입자들이 서로 붙도록 만드는 구조로서, 입자들 사이의 공간이 생겨 다공성 구조를 말한다. 역오팔 구조는 구형상의 새크리피셜 템플레이트(sacrificial template)를 적층한 상태에서 주변에 금속을 전착(eletrodeposition)한 후 내부의 새크리피셜 템플레이트를 용해시키면 새크리피셜 템플레이트가 있던 부분이 공극이 되어 다공성 구조를 말한다. 또한, 메쉬폼 구조는 불규칙적인 형상의 메쉬 모양으로 이루어진 형상 구조를 말한다. 이외에도 다공성 구조로서 나노와이어 구조, 핀타입(pin-fins) 구조 등이 채용될 수도 있다. For example, the porous structure may be formed in various forms such as sintered particles, inverse opal, mesh form, or the like. The sintered particle structure is a structure in which spherical particles are heated to a high temperature in a stacked state so that the particles adhere to each other, and a space between the particles creates a porous structure. The inverse opal structure has a spherical sacrificial template laminated and then metals are deposited around it to dissolve the internal sacrificial templates, and the part where the sacrificial templates are located becomes porous. Speak structure. In addition, the mesh foam structure refers to a shape structure consisting of a mesh shape of irregular shape. In addition, nanowire structures, pin-fins structures, or the like may be employed as the porous structures.
차폐시트(20)에서는 표면 면적 증대로 인한 높은 방열 성능을 구현하기 위해 증발부(22)는 응축부(24)보다 상대적으로 공극이 작게 형성될 수 있다. 또한, 증발부(22)와 응축부(24)는 냉매가 이동하는 이동부(26)보다 상대적으로 공극이 작게 형성될 수 있다. In the shielding sheet 20, in order to realize high heat dissipation performance due to an increase in surface area, the evaporator 22 may have a smaller pore than the condenser 24. In addition, the evaporator 22 and the condenser 24 may be formed with a relatively small gap than the moving part 26 to which the refrigerant moves.
발열원(40)은 예를 들어, 스마트폰과 같은 전자기기의 내부에 설치된 중앙처리장치(cpu), 카메라 모듈, 그래픽 카드 등의 다양한 부품일 수 있다. 발열원(40)은 설계 단계에서 미리 설정이 되는 것이고, 차폐시트(20)는 발열원(40)의 위치를 전부 커버할 수 있도록 챔버 하우징(10)의 내부에 설치되면 된다. The heating source 40 may be, for example, various components such as a central processing unit (cpu), a camera module, a graphics card, and the like installed inside an electronic device such as a smartphone. The heat generating source 40 is to be set in advance in the design stage, the shielding sheet 20 may be installed inside the chamber housing 10 so as to cover the entire position of the heat generating source (40).
도 10을 참조하면, 챔버 하우징(10)의 내부에는 차폐시트(20)에 대향되는 부분에 보조 코일 패드(50)가 설치될 수 있다. 보조 코일 패드(50)는 후단이 보조 코일 패드 전극(52)에 의해 배터리(30)와 연결되어 수신 코일(12)과 함께 유도전류를 수신하게 된다. 또한, 본 실시예에서는 보조 코일 패드(50)가 다공성 구조로 형성되어 있어 그 자체가 방열 기능을 수행할 수 있다. 이와 같이 보조 코일 패드(50)가 다공성 구조로 형성되면 챔버 하우징(10)과 같이 일종의 증기 챔버로서의 역할을 수행할 수 있게 된다. Referring to FIG. 10, an auxiliary coil pad 50 may be installed at a portion of the chamber housing 10 that faces the shield sheet 20. The auxiliary coil pad 50 has a rear end connected to the battery 30 by the auxiliary coil pad electrode 52 to receive an induced current together with the receiving coil 12. In addition, in the present embodiment, the auxiliary coil pad 50 is formed in a porous structure so that the auxiliary coil pad 50 may perform a heat dissipation function. As described above, when the auxiliary coil pad 50 has a porous structure, the auxiliary coil pad 50 may serve as a kind of vapor chamber as in the chamber housing 10.
한편, 수신 코일(12)은 송신 코일(2)에서 발생한 유도전류를 수신하는 역할도 함과 동시에 수신 코일(12) 자체가 방열 기능을 하도록 다공성 구조로 만들어질 수 있다. 이와 같이 수신 코일(12)이 다공성 구조로 형성되면 챔버 하우징(10)과 같이 일종의 증기 챔버로서의 역할을 수행할 수 있다. 수신 코일(12)은 상술한 바와 같이 소결입자(sintered particle), 역오팔(inverse opal), 메쉬폼(mesh form) 구조 등의 다공성 구조로 형성될 수 있다. 물론, 상술한 바와 같이 보조 코일 패드(50)가 다공성 구조로 형성되어 방열 기능을 수행하게 되면 수신 코일(12) 또한 반드시 다공성 구조로 형성할 필요는 없다. On the other hand, the receiving coil 12 also serves to receive the induced current generated in the transmitting coil 2 and at the same time may be made of a porous structure so that the receiving coil 12 itself to radiate heat. As such, when the receiving coil 12 is formed of a porous structure, it may serve as a kind of vapor chamber like the chamber housing 10. As described above, the receiving coil 12 may be formed of a porous structure such as sintered particles, inverse opals, and a mesh form structure. Of course, when the auxiliary coil pad 50 is formed of a porous structure to perform a heat dissipation function as described above, the receiving coil 12 does not necessarily need to be formed of a porous structure.
또한, 챔버 하우징(10)을 구성하는 판의 내부에도 유동공간을 형성하고 다공성 물질이 구비되도록 하여 다공성 구조를 형성할 수도 있다. 이와 같이 되면, 발열원(40)에서 전달되는 열이 열전도가 빠른 챔버 하우징(10)을 통해 보다 빠르게 방출될 수 있다. In addition, a porous structure may be formed by forming a flow space in the plate constituting the chamber housing 10 and having a porous material. In this case, heat transferred from the heat generating source 40 may be released more quickly through the chamber housing 10 having high thermal conductivity.
또한, 상술한 실시예에서 차폐시트(20)는 챔버 하우징(10)의 내부에 배치되는 것으로 기술하였으나, 차폐시트(20)가 챔버 하우징(10)을 형성하는 판의 내부에 실장되도록 구비될 수도 있다. In addition, although the shielding sheet 20 is described as being disposed inside the chamber housing 10 in the above-described embodiment, the shielding sheet 20 may be provided to be mounted inside the plate forming the chamber housing 10. have.
상기에서는 본 발명의 특정의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the foregoing has been described with reference to specific embodiments of the present invention, those skilled in the art may vary the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. It will be understood that modifications and changes can be made.

Claims (16)

  1. 전자 장치에서 나오는 열을 쿨링하여 에너지 사용 효율을 높이고 전자 장치에서 나오는 전기장을 이용하여 손실된 에너지를 수확하기 위한 것으로, To cool down the heat from the electronic device to improve energy use efficiency and harvest the lost energy using the electric field from the electronic device.
    작동유체가 흐를 수 있는 유로가 형성되어 있고, 전자 장치에서 나오는 열에 의해 상기 작동유체를 기화시키는 열흡수층;A heat absorption layer having a flow path through which a working fluid flows, and vaporizing the working fluid by heat from the electronic device;
    상기 열흡수층과 간격을 두고 마주하는 위치에 배치되고, 상기 열흡수층의 유로와 소통 가능하게 연결되며, 기체 상태의 작동유체의 열을 방출시켜 액체 상태로 상변화시키는 열방출층; A heat dissipation layer disposed at a position facing the heat absorbing layer at intervals, the heat dissipating layer being communicatively connected to the flow path of the heat absorbing layer, and dissipating heat of the working fluid in a gas state to change into a liquid state;
    상기 전자 장치에서 나오는 전기장의 신호를 상기 작동유체를 통해 전달 받아 출력을 발생시키는 전극층; 및An electrode layer receiving an electric field signal from the electronic device through the working fluid and generating an output; And
    상기 열흡수층과 열방출층과 전극층을 폐쇄시키는 커버층;을 포함하여 이루어지는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.Cooling energy harvesting device comprising a; the cover layer for closing the heat absorption layer, the heat dissipation layer and the electrode layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 열흡수층과 열방출층 사이의 공간에 형성되는 부분으로, 상기 열흡수층에서 발생한 기체를 상기 열방출층에 전달시키는 스팀층;을 포함하여 이루어지는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.Cooling energy harvesting device comprising a; formed in the space between the heat absorbing layer and the heat dissipating layer, the steam layer for transferring the gas generated in the heat absorbing layer to the heat dissipating layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 열흡수층과 열방출층은, 다공성 구조로 이루어지는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.Cooling energy harvesting device, characterized in that the heat absorption layer and the heat dissipation layer is made of a porous structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 전극층은, 상기 커버층과 열방출층 사이에 그 열방출층을 감싸는 형태로 배치되는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.Cooling energy harvesting device, characterized in that the electrode layer is disposed between the cover layer and the heat dissipating layer to surround the heat dissipating layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 전극층은, 상기 커버층과 열방출층 사이에 배치되는 제1전극층과, 상기 커버층과 열흡수층 사이에 배치되는 제2전극층을 포함하여 이루어지는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.And the electrode layer comprises a first electrode layer disposed between the cover layer and the heat dissipating layer, and a second electrode layer disposed between the cover layer and the heat absorbing layer.
  6. 제5항에 있어서,The method of claim 5,
    상기 제2전극층은, 그 제2전극층에 의한 전기장 차폐를 억제시킬 수 있도록, 상기 커버층과 열흡수층 사이의 영역에서 일부 영역에만 배치되는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.And the second electrode layer is disposed only in a partial region in the region between the cover layer and the heat absorbing layer so as to suppress electric field shielding by the second electrode layer.
  7. 제1항에 있어서,The method of claim 1,
    상기 커버층은, 상기 열흡수층을 감싸는 부분을 비금속 재질로 형성하고, 열방출층을 감싸는 부분을 금속 재질로 형성하는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.The cover layer is a cooling energy harvesting device, characterized in that for forming the portion surrounding the heat absorption layer made of a non-metal material, and the portion surrounding the heat dissipating layer formed of a metal material.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 커버층의 금속 재질 부분과 전극층을 일체로 형성시키는 것을 특징으로 하는 쿨링이 가능한 에너지 하베스팅 장치.Cooling energy harvesting device, characterized in that to form the metal part and the electrode layer of the cover layer integrally.
  9. 무선충전 송신모듈의 송신 코일에서 생성된 전자기장으로부터 유도전류를 수신하는 무선충전 수신모듈에 있어서, In the wireless charging receiving module for receiving an induced current from the electromagnetic field generated by the transmission coil of the wireless charging transmission module,
    내부에 기체가 유동하는 유동공간이 형성되는 챔버 하우징;A chamber housing in which a flow space through which gas flows is formed;
    상기 챔버 하우징 내에 설치되고, 상기 송신 코일에서 생성된 전자기장에 의해 유도전류를 수신하며, 일단은 배터리에 연결되는 수신 코일; 및A receiving coil installed in the chamber housing and receiving an induced current by an electromagnetic field generated by the transmitting coil, one end of which is connected to a battery; And
    상기 수신 코일로 수신되는 전자기장을 차폐하고, 냉매가 유동하는 다공성 구조로 이루어지는 차폐시트를 포함하는 통합된 히트 스프레더형 무선충전 수신모듈. Integrated heat spreader wireless charging receiving module including a shielding sheet made of a porous structure to shield the electromagnetic field received by the receiving coil, the refrigerant flows.
  10. 제9항에 있어서,The method of claim 9,
    상기 챔버 하우징을 형성하는 판의 내부에는 다공성 물질이 구비되는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈.Integrated heat spreader wireless charging receiving module, characterized in that the porous material is provided inside the plate forming the chamber housing.
  11. 제9항에 있어서,The method of claim 9,
    상기 차폐시트는 파우더 형태로 만들어지는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈. The shielding sheet is integrated heat spreader type wireless charging receiving module, characterized in that the powder is made.
  12. 제9항에 있어서,The method of claim 9,
    상기 수신 코일은 후단이 수신 코일 전극에 의해 상기 배터리와 연결되고, 상기 수신 코일은 다공성 구조로 만들어지는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈. And the receiving coil has a rear end connected to the battery by a receiving coil electrode, and the receiving coil is made of a porous structure.
  13. 제9항에 있어서,The method of claim 9,
    상기 챔버 하우징의 내부에는 상기 차폐시트에 대향되는 부분에 보조 코일 패드가 설치되는데, 상기 보조 코일 패드은 후단이 보조 코일 패드 전극에 의해 상기 배터리와 연결되고, 상기 보조 코일 패드는 다공성 구조로 이루어지는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈. An auxiliary coil pad is installed in a portion of the chamber housing opposite to the shielding sheet. The auxiliary coil pad has a rear end connected to the battery by an auxiliary coil pad electrode, and the auxiliary coil pad has a porous structure. Integrated heat spreader wireless charging receiver module.
  14. 제9항에 있어서,The method of claim 9,
    상기 차폐시트는 상기 챔버 하우징을 형성하는 판의 내부에 실장되도록 구비되는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈.The shielding sheet is integrated heat spreader type wireless charging receiving module, characterized in that it is provided to be mounted inside the plate forming the chamber housing.
  15. 제9항에 있어서,The method of claim 9,
    상기 차폐시트는 상기 냉매가 증발하는 증발부; 상기 증발부에서 증발된 기체가 응축되는 응축부; 및 상기 증발부와 응축부 사이의 이동부를 포함하고,The shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporation part and the condensation part,
    상기 증발부는 상기 응축부보다 상대적으로 공극이 작게 형성되는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈. The evaporator is integrated heat spreader type wireless charging receiving module, characterized in that the gap is formed smaller than the condensation unit.
  16. 제9항에 있어서,The method of claim 9,
    상기 차폐시트는 상기 냉매가 증발하는 증발부; 상기 증발부에서 증발된 기체가 응축되는 응축부; 및 상기 증발부와 응축부 사이의 이동부를 포함하고,The shielding sheet is an evaporation unit for the refrigerant evaporates; A condenser for condensing the gas evaporated in the evaporator; And a moving part between the evaporation part and the condensation part,
    상기 증발부와 응축부는 상기 이동부보다 상대적으로 공극이 작게 형성되는 것을 특징으로 하는 통합된 히트 스프레더형 무선충전 수신모듈. The evaporator and the condensation unit integrated heat spreader type wireless charging receiving module, characterized in that the gap is formed smaller than the moving unit.
PCT/KR2018/006507 2017-06-08 2018-06-08 Energy harvesting apparatus capable of cooling, and integrated heat spreader-type wireless charging receiving module WO2018226059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170071486A KR101886968B1 (en) 2017-06-08 2017-06-08 Energy harvesting apparatus enabling cooling
KR10-2017-0071486 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018226059A1 true WO2018226059A1 (en) 2018-12-13

Family

ID=63229904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006507 WO2018226059A1 (en) 2017-06-08 2018-06-08 Energy harvesting apparatus capable of cooling, and integrated heat spreader-type wireless charging receiving module

Country Status (2)

Country Link
KR (1) KR101886968B1 (en)
WO (1) WO2018226059A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004769B2 (en) 2019-07-11 2021-05-11 Toyota Motor Engineering & Manufacturing North America, Inc. Metal inverse opal substrate with integrated jet cooling in electronic modules
CN113271827A (en) * 2019-01-11 2021-08-17 Lg电子株式会社 Cooking apparatus
US11457544B2 (en) 2020-11-24 2022-09-27 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics systems comprising a two phase cold plate having an outer enclosure and an inner enclosure
US11683865B2 (en) 2019-01-11 2023-06-20 Lg Electronics Inc. Cooking appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532779B (en) * 2020-11-27 2023-03-28 努比亚技术有限公司 Heat dissipation back splint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093020A (en) * 2005-09-26 2007-04-12 Nakamura Mfg Co Ltd Liquid-cooled heat exchanger and its working fluid sealing method
JP2008281275A (en) * 2007-05-10 2008-11-20 Toshiba Corp Loop heat pipe, cooling apparatus, electronic equipment
CN201878745U (en) * 2010-09-28 2011-06-29 罗兴红 Intelligent air energy tobacco baking equipment provided with wireless remote control device
JP2016226087A (en) * 2015-05-27 2016-12-28 株式会社Ihi Cooling system and non-contact power supply system
US20170063134A1 (en) * 2015-09-01 2017-03-02 Dell Products, Lp Cover System for Wireless Power Pad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161879A (en) * 1998-11-20 2000-06-16 Fujikura Ltd Planar heat pipe
JP2002034223A (en) * 2000-07-11 2002-01-31 Mitsuba Corp Brush structure of motor, and electric motor-driven power steering using the motor
DE112011102448T5 (en) * 2010-07-23 2013-08-14 Murata Manufacturing Co., Ltd. Device for thermodielectric power generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093020A (en) * 2005-09-26 2007-04-12 Nakamura Mfg Co Ltd Liquid-cooled heat exchanger and its working fluid sealing method
JP2008281275A (en) * 2007-05-10 2008-11-20 Toshiba Corp Loop heat pipe, cooling apparatus, electronic equipment
CN201878745U (en) * 2010-09-28 2011-06-29 罗兴红 Intelligent air energy tobacco baking equipment provided with wireless remote control device
JP2016226087A (en) * 2015-05-27 2016-12-28 株式会社Ihi Cooling system and non-contact power supply system
US20170063134A1 (en) * 2015-09-01 2017-03-02 Dell Products, Lp Cover System for Wireless Power Pad

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271827A (en) * 2019-01-11 2021-08-17 Lg电子株式会社 Cooking apparatus
US11683865B2 (en) 2019-01-11 2023-06-20 Lg Electronics Inc. Cooking appliance
CN113271827B (en) * 2019-01-11 2024-01-02 Lg电子株式会社 Cooking apparatus
US12082329B2 (en) 2019-01-11 2024-09-03 Lg Electronics, Inc. Cooking appliance
US11004769B2 (en) 2019-07-11 2021-05-11 Toyota Motor Engineering & Manufacturing North America, Inc. Metal inverse opal substrate with integrated jet cooling in electronic modules
US11457544B2 (en) 2020-11-24 2022-09-27 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics systems comprising a two phase cold plate having an outer enclosure and an inner enclosure

Also Published As

Publication number Publication date
KR101886968B1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
WO2018226059A1 (en) Energy harvesting apparatus capable of cooling, and integrated heat spreader-type wireless charging receiving module
WO2016159551A1 (en) Heat dissipation unit for wireless charging and wireless power charging module comprising same
US10756411B2 (en) Heat radiating sheet and a wireless power transmission module including same
WO2017014493A1 (en) Magnetic field shielding unit
WO2017135687A1 (en) Shielding unit for wireless power transmission module and wireless power transmission module including same
WO2016186443A1 (en) Combo antenna unit and wireless power receiving module comprising same
JP5771250B2 (en) Wireless charger electric field shield
CN103068212B (en) Shielding device and wireless power transmission apparatus
US11521789B2 (en) Actively cooled infrastructure side of an inductive charging system
KR101497025B1 (en) Coil unit and electronic instrument
KR20170017416A (en) antenna unit for wireless power transfer and a wireless charging receiver module having the same
WO2016186444A1 (en) Shield unit for wireless charging and wireless power transmission module comprising same
JP7126284B2 (en) Vehicle wireless power transmitter
KR20170010734A (en) Shielding unit for wireless charging
KR20210101887A (en) Wireless charging apparatus capable of releasing heat generated by wireless power transmission
WO2019111848A1 (en) Coil module
Qian et al. Magnetic Field‐Induced Synthesis of One‐Dimensional Nickel Nanowires for Enhanced Microwave Absorption
US20090066453A1 (en) Choke of electric device
KR20180116821A (en) Integrated heat spreader type receiving module for wireless charging
US6909351B2 (en) Ignition coil module
WO2018230991A1 (en) Wireless power transmission device for vehicle
KR20210080751A (en) Wireless charging system capable of releasing heat generated by wireless power transmission
KR20210069226A (en) Wireless charging system capable of releasing heat generated by wireless power transmission
JP2016214050A (en) Thermal power generator
WO2019017646A1 (en) Wireless power transmission device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814293

Country of ref document: EP

Kind code of ref document: A1