WO2018225871A1 - Compound serving as cationic lipid - Google Patents

Compound serving as cationic lipid Download PDF

Info

Publication number
WO2018225871A1
WO2018225871A1 PCT/JP2018/022220 JP2018022220W WO2018225871A1 WO 2018225871 A1 WO2018225871 A1 WO 2018225871A1 JP 2018022220 W JP2018022220 W JP 2018022220W WO 2018225871 A1 WO2018225871 A1 WO 2018225871A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
nucleic acid
lipid
mmol
alkyl
Prior art date
Application number
PCT/JP2018/022220
Other languages
French (fr)
Japanese (ja)
Inventor
智幸 直井
慎太郎 細江
泰典 植村
香機 八木
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2018225871A1 publication Critical patent/WO2018225871A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/08Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/16Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of hydrocarbon radicals substituted by amino or carboxyl groups, e.g. ethylenediamine-tetra-acetic acid, iminodiacetic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/30Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a novel compound as a cationic lipid and a pharmaceutical composition containing the novel compound.
  • nucleic acid drugs have attracted attention as drug formats having a mechanism of action different from existing low-molecular drugs and antibody drugs such as gene therapy, gene expression suppression, and intermolecular interaction inhibition.
  • a short interfering RNA hereinafter abbreviated as siRNA
  • siRNA has a function of cleaving a target mRNA having its complementary sequence and suppressing the expression of the target protein.
  • pDNA circularly-structured plasmid DNA
  • pDNA circularly-structured plasmid DNA
  • nucleic acid drugs include administration of nucleic acids alone and administration of nucleic acids utilizing Drug Delivery System (DDS) technology in which nucleic acids are loaded on a carrier for delivery.
  • DDS Drug Delivery System
  • lipid nanoparticles for nucleic acid delivery contain a cationic lipid.
  • Cationic lipids are amphiphilic molecules having a lipophilic region containing one or more hydrocarbon groups and at least one hydrophilic region that can be positively charged.
  • cationic lipids and macromolecules such as nucleic acids form a positively charged complex that makes it easier for nucleic acids and other macromolecules to pass through the plasma membrane of the cell and enter the cytoplasm.
  • This process which can be performed in vitro and in vivo, is also known as transfection.
  • Patent Documents 1 to 4 describe cationic lipids useful for delivering nucleic acids into cells in vivo and for use in nucleic acid-lipid particle compositions suitable for disease treatment, and cationic lipids.
  • lipid particles comprising.
  • Patent Document 1 discloses, for example, 2,2-dilinoleyl-4- (2-dimethylaminoethyl)-[1,3] -dioxolane; DLin-KC2-DMA).
  • Patent Document 2 includes, for example, (6Z, 9Z, 28Z, 31Z) -heptatriconta-6,9,28,31-tetraen-19-yl 4- (dimethylamino) butanoate; DLin-MC3-DMA) and the like.
  • Patent Document 3 discloses, for example, 3- [di [(9Z, 12Z) -octadeca-9,12-dien-1-yl] amino] propan-1-ol.
  • Patent Document 4 discloses, for example, bis (2-hexyldecyl) 6,6 ′-[(3-hydroxypropyl) azanediyl] dihexanoate.
  • Non-Patent Document 1 states that by introducing a biodegradable group into a part of the fatty chain of a cationic lipid, the toxicity in the liver can be reduced while maintaining the ability to deliver nucleic acids to cells in vivo.
  • di [(Z) -non-2-en-1-yl] 9-[[4- (dimethylamino) butanoyl] oxy] heptadecandioate Di [(Z) -non-2-en Cationic lipids such as 1-yl] 9-[[4- (dimethylamino) butanoyl] oxy] heptadecanedioate) are disclosed.
  • nucleic acid drugs using such lipid nanoparticles exhibit the therapeutic effect of nucleic acid drugs by being delivered to various organs.
  • respiratory diseases targeting the lung include refractory lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), bronchial asthma and the like. Sufficient therapeutic effect is not obtained by therapy.
  • New therapeutic methods using nucleic acid drugs for such intractable lung diseases are being actively studied.
  • Non-Patent Document 2 discloses that siRNA can be efficiently delivered to the lung by intravenous administration of liposomes using 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) as a cationic lipid, and It is disclosed that a gene of interest is suppressed in lung epithelial cells.
  • Patent Document 5 discloses that administration of a cationic liposome and a plasmid DNA complex intratracheally increases target gene expression in the human lung and provides a therapeutic effect. Has been. On the other hand, Patent Document 5 discloses a result that intratracheal administration of a cationic liposome and a plasmid DNA complex induces a systemic inflammatory reaction, and Non-Patent Document 3 uses DOTAP. It is disclosed that lipid nanoparticles have a pro-inflammatory effect on various cells. For these reasons, lipid nanoparticles for nucleic acid delivery with higher safety are demanded.
  • DOTAP 1,2-dioleoyl-3-tri
  • An object of the present invention is to provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into cells and the like, a pharmaceutical composition containing the novel compound, and the like.
  • the present invention relates to the following (1) to (24).
  • a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof (Where R1 is a hydrogen atom or hydroxymethyl, n1 is 1 or 2, A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene, M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —, B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl, R2 is absent or is C1-C3 alkyl; If R2 does not exist, Y does not exist, When R2 is C1-C3 alkyl, Y is a pharmaceutically acceptable anion.
  • a compound represented by the following formula (II) or a pharmaceutically acceptable salt thereof (Where n2 is 1 or 2, L is a linear C12-C24 alkenyl, A3 is a linear C5-C14 alkylene, M3 is -OC (O)-, -C (O) O- or -NHC (O)- B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl. )
  • a pharmaceutical composition comprising the compound according to any one of (1) to (7), or a pharmaceutically acceptable salt thereof, and a nucleic acid.
  • RNA interference RNA interference
  • the pharmaceutical composition according to (9), wherein the target gene is a gene expressed in the liver, lung, or spleen.
  • a therapeutic or prophylactic agent for a disease associated with the liver, lung or spleen comprising the pharmaceutical composition according to any one of (8) to (13).
  • a therapeutic or prophylactic agent for diseases related to the lung comprising the pharmaceutical composition according to any one of (8) to (13).
  • a method for treating or preventing a disease associated with the liver, lung or spleen comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
  • a therapeutic or prophylactic agent for diseases related to the lung comprising the pharmaceutical composition according to any one of (8) to (13).
  • a method for treating or preventing a lung-related disease comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
  • An antitumor agent comprising the pharmaceutical composition according to any one of (8) to (13).
  • a method for treating or preventing a malignant tumor comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
  • the present invention can provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into a cell or the like, a composition containing the novel compound, and the like.
  • Formulation 2 and Formulation A-2 obtained in Example 26 and Comparative Example 2 were each administered in normal mice at a dose of 15 ⁇ g / mouse and then contained in alveolar lavage fluid (BALF). Cytokine levels were calculated.
  • FIG. 1 shows the results of Keratinocyte chemoattractant (KC). The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). As the amount of cytokine contained in the same BALF as in FIG. 1, FIG. 2 shows the results of Interleukin-6 (IL-6).
  • KC Keratinocyte chemoattractant
  • saline formulation number and negative control group
  • FIG. 2 shows the results of Interleukin-6 (IL-6).
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 3 shows the result of Granulocyte-colony ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ stimulating factorBA (G-CSF).
  • G-CSF Granulocyte-colony ⁇ ⁇ ⁇ ⁇ ⁇ stimulating factorBA
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 4 shows the KC results.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 5 shows the results of IL-6 as the amount of cytokine contained in the same BALF as FIG.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 4 shows the KC results.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 6 shows the result of G-CSF as the amount of cytokine contained in the same BALF as FIG.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • Each of Formulation 4, Formulation 6 and Formulation 12 obtained in Example 26 was intratracheally administered to normal mice at a dose of 20 ⁇ g / mouse, and then the amount of each cytokine contained in BALF was calculated.
  • FIG. 7 shows the KC results.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 8 shows the result of IL-6 as the amount of cytokine contained in the same BALF as FIG.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 9 shows the results of G-CSF as the amount of cytokine contained in the same BALF as FIG.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • Formulation 2-3, Formulation 2-4, Formulation A-3 and Formulation A-4 obtained in Example 28, Example 29, Comparative Example 3 and Comparative Example 4, respectively, at a dose of 10 mg / kg, normal Mice were administered intravenously.
  • FIG. 10 shows the KC results.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 11 shows the results of IL-6.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • FIG. 12 shows the result of G-CSF as the amount of cytokine contained in the same blood as FIG.
  • the vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline).
  • Bleomycin Nippon Kayaku
  • Formulation 2-5, Formulation 2-6, Formulation A-5 and Formulation A-6 were each administered intratracheally under the condition of 1 ⁇ g / mouse.
  • BALF and left lung were collected 24 hours after the last dose.
  • FIG. 13 shows the results of quantifying the amount of Tgfb-1 mRNA in the left lung.
  • the amount of mRNA in the specimen was expressed as a relative ratio when the amount of Tgfb-1 mRNA relative to the amount of HPRT1 mRNA was calculated and the value in normal mice was 1.
  • the vertical axis indicates the relative value of the mRNA amount of the sample calculated as described above, and the horizontal axis indicates the formulation number and the negative control group (saline).
  • FIG. 14 shows the results of quantifying the amount of Tgfb-1 mRNA in cells contained in BALF collected simultaneously with the left lung in FIG.
  • the amount of mRNA in the specimen was expressed as a relative ratio when the amount of Tgfb-1 mRNA relative to the amount of HPRT1 mRNA was calculated and the value in normal mice was 1.
  • FIG. 15 shows the total amount of Tgfb-1 protein contained in the same BALF as FIG.
  • the vertical axis represents the amount of protein (pg / mL) of Tgfb-1
  • the horizontal axis represents the formulation number, the negative control group (saline), and normal mice.
  • R1 is a hydrogen atom or hydroxymethyl
  • n1 is 1 or 2
  • A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene
  • M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —
  • B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl
  • R2 is absent or alkyl having 1 to 3 carbon atoms
  • Y does not exist
  • Y is a pharmaceutically acceptable anion.
  • a compound represented by the following formula (II) (Where n2 is 1 or 2, L is a linear C12-C24 alkenyl, A3 is a linear C5-C14 alkylene, M3 is -OC (O)-, -C (O) O- or -NHC (O)- B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl. ).
  • Y which is an anion is present, a part or the whole of the structure other than Y in the formula (I) exists as a cation, and the anion and the cation form an ionic bond.
  • the compounds represented by formula (I) and formula (II) have a lipophilic region containing two hydrocarbon groups and a hydrophilic region containing one positively chargeable polar head group, and a cation It has properties as a functional lipid.
  • the compound represented by the formula (I) may be referred to as the compound (I).
  • the compounds represented by the formulas (I) and (II), or pharmaceutically acceptable salts thereof may be collectively referred to as “cationic lipids”.
  • linear C9-C20 alkylene examples include nonylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, hexadecylene, octadecylene, icosylene and the like.
  • C9-C20 alkylene means that the alkylene has 9 to 20 carbon atoms.
  • the linear C9-C20 alkenylene may be a group containing one or more double bonds in the linear C9-C20 alkylene, such as (Z) -tetradec-9-enylene, (Z) -hexadecaylene.
  • linear or branched C1-C12 alkyl examples include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, hexyl, octyl, nonyl, 2-nonyl, decyl, and dodecyl, and structural isomers thereof. Is mentioned.
  • 2-nonyl when 2-nonyl is described as an example, 2- is bonded to M1, M2, and M3 among terminal carbon atoms in the alkyl that is B1, B2, and B3.
  • linear or branched C2-C13 alkyl examples include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and tridecyl, and structural isomers thereof.
  • the linear or branched C2-C13 alkenyl may be a group containing one or more double bonds in the linear or branched C2-C13 alkyl, such as vinyl, allyl, (Z)- But-2-enyl, (Z) -pent-2-enyl, (Z) -hex-2-enyl, (Z) -hept-2-enyl, (Z) -oct-2-enyl, octa-7- Enyl, (E) -3,7-dimethylocta-2,6-dien-1-yl (geranyl), 3,7-dimethyloct-6-en-1-yl (citronellyl), (Z) -nona- 2-enyl, (Z) -nona-3-enyl, (Z) -nona-5-enyl, (E) -nona-2-enyl, nona-8-enyl, (Z) -undec-2-eny
  • (Z) -but-2-enyl will be described as an example.
  • -2- is the terminal carbon in alkenyl which is B1, B2 and B3.
  • the position of the double bond in the alkenyl as B1, B2 and B3 when the terminal carbon atom closer to the position of bonding to M1, M2 and M3 is defined as the 1st position.
  • C1-C3 alkyl examples include methyl, ethyl, propyl, isopropyl, cyclopropyl and the like.
  • linear C12-C24 alkyl examples include dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl and the like.
  • the linear C12-C24 alkenyl may be a group containing one or more double bonds in the linear C12-C24 alkyl, such as (Z) -tetradec-9-enyl, (Z) -hexadeca -9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadeca-9-enyl, (Z) -octadeca-11-enyl, (9Z, 12Z) -Octadec-9,12-dienyl, (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl and the like.
  • linear C5-C14 alkylene examples include pentylene, hexylene, octylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene and the like.
  • a linear or branched C2-C13 alkenyl includes a group having a cyclopropane ring in which a methylene biradical is added formally to a double bond of a linear or branched C2-C13 alkenyl. Is done. Furthermore, linear C9-C20 alkenylene and linear C12-C24 alkenyl are also included in linear or branched C2-C13 alkenyl. Taking (Z) -non-2-enyl as an example, the following groups having a cyclopropane ring are also included in the linear or branched C2-C13 alkenyl in the present invention.
  • Y is a pharmaceutically acceptable anion.
  • the pharmaceutically acceptable anion include chloride ion, bromide ion, and nitrate ion.
  • inorganic acid ions such as sulfate ion and phosphate ion, and organic acid ions such as acetate ion, oxalate ion, maleate ion, fumarate ion, citrate ion, benzoate ion, and methanesulfonate ion.
  • N1 is preferably 2 when R1 is a hydrogen atom.
  • N1 is preferably 1 when R1 is hydroxymethyl.
  • A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene, preferably linear C9-C20 alkylene, preferably linear C9-C15 alkylene. More preferably, it is more preferably a linear C9-C12 alkylene.
  • A1 and A2 are preferably nonylene, undecylene, tridecylene, or pentadecylene, and more preferably nonylene or undecylene.
  • A1 and A2 are preferably the same.
  • M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —, and are —OC (O) — or —C (O) O—. And M1 and M2 are more preferably the same.
  • M1 and M2 in the case where M1 and M2 are —OC (O) —, for example, —OC (O) — represents B1-OC (O) -A1 or B2-OC (O ) -A2 means binding.
  • B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl, preferably linear C1-C12 alkyl or C2-C13 alkenyl, and are the same More preferably, they are linear C1-C12 alkyl or C2-C13 alkenyl, more preferably the same, linear C2-C13 alkenyl, and the same, linear C5-C13 alkenyl. It is even more preferred that they are C11 alkenyl, and even more preferred that they are the same and linear C7-C10 alkenyl.
  • B1 and B2 are preferably (Z) -hept-2-enyl, (Z) -hept-3-enyl, hepta-8-enyl, (Z) -non-2-enyl, (Z) -nona-3 -Enyl, nona-8-enyl, more preferably (Z) -non-2-enyl, (Z) -non-3-enyl and non-8-enyl.
  • B1-M1-A1 and B2-M2-A2 are preferably the same.
  • B1-M1-A1 and B2-M2-A2 are the same or different and are preferably the following structures (1) to (6), preferably the same and the following structures (1) to (6) Are more preferably the same and more preferably the following structures (1) to (4).
  • n3 is preferably an integer of 2 to 10, more preferably an integer of 2 to 5, and further preferably 2, 4 or 5.
  • R2 does not exist and Y does not exist.
  • Examples of the pharmaceutically acceptable salt of the compound represented by the formula (I) of the present invention include hydrochloride, odorate, nitrate, sulfate, phosphate, acetate, oxalate, maleate, Examples include fumarate, citrate, benzoate, and methanesulfonate.
  • N2 is preferably 2.
  • L is linear C12-C24 alkenyl, preferably linear C14-C18 alkenyl, more preferably linear C16-C18 alkenyl, and linear C18 More preferably, it is alkenyl.
  • A3 is a linear C5-C14 alkylene, preferably a linear C5-C10 alkylene, and more preferably a linear C5-C7.
  • M3 is -OC (O)-, -C (O) O- or -NHC (O)-, preferably -OC (O)-or -C (O) O-, O)-is more preferable.
  • B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl, preferably linear C1-C12 alkyl or C2-C13 alkenyl, and is linear C2-C13 alkenyl. More preferably.
  • B3-M3-A3 preferably has the following structures (1) to (6), and more preferably has the following structures (1) to (4).
  • n4 is preferably an integer of 1 to 8, more preferably an integer of 1 to 5, still more preferably an integer of 1 to 3, and even more preferably 1 or 3.
  • a method for producing the compounds represented by the formulas (I) and (II) of the present invention, or pharmaceutically acceptable salts thereof (hereinafter collectively referred to as cationic lipids) will be described.
  • a method for introducing and removing a protective group commonly used in organic synthetic chemistry For example, use the method described in Protective Groups in Organic Synthesis, third edition, TW Greene, John Wiley & Sons Inc. (1999), etc.]
  • the target compound can be produced.
  • the order of reaction steps such as introduction of substituents can be changed as necessary.
  • Production method 1 Compound (Ia) or compound (Ib) can be produced, for example, by the following method.
  • R2 ′ represents C1-C3 alkyl
  • X1, X2 and X3 are the same or different, (Representing leaving groups such as chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyloxy, p-toluenesulfonyloxy, etc.)
  • Compound (IIIf) is compound (IIIa) and compound (IIIb), compound (IIIc) and compound (IIId), or compound (IIIa) and compound (IIIe), each without solvent or in a solvent. It can be produced by reacting with 10 equivalents of a condensing agent in the presence of 1 to 10 equivalents of base at room temperature to 200 ° C. for 5 minutes to 50 hours.
  • solvent examples include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, pyridine and the like can be mentioned, and these can be used alone or in combination.
  • condensing agent examples include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-dicyclohexylcarbodiimide, 4- (4,6-dimethoxy-1,3,5-triazine-2- ⁇ ⁇ yl ) -4-Methylmorpholinium chloride n hydrate, 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate, O- (7-azabenzotriazol-1-yl) -N , N, N ′, N ′,-tetramethyluronium hexafluorophosphate and the like.
  • Examples of the base include potassium carbonate, cesium carbonate, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine and the like.
  • Compound (IIIa) is a commercially available product or a known method [for example, “New Experimental Chemistry Lecture 14 Synthesis and Reaction of Organic Compounds (II)”, first edition, Maruzen (1977), “March's Advanced Organic Chemistry: Reactions, Mechanisms, And It can be obtained by combining the methods described in “Structure, 7 th Edition”] or a method according thereto.
  • Compound (IIIb), compound (IIIc), compound (IIId) and compound (IIIe) can be obtained as commercial products.
  • Step 4 and Step 5 Compound (IVb) is produced by reacting compound (IVa) and compound (IIIf) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. can do. Further, compound (Ia) is obtained by reacting compound (IVb) and compound (IIIg) without solvent or in the presence of 1 to 500 equivalents of a base at room temperature to 200 ° C. for 5 minutes to 50 hours. Can be manufactured.
  • solvent examples include ethanol, toluene, acetonitrile, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, pyridine and the like. These can be used alone or in combination.
  • Examples of the base include triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), and the like.
  • Compound (Ia) in the case where A1 and A2 and B1 and B2 are the same can be produced by using 2 equivalents or more of compound (IIIf) in Step 4.
  • Compound (IIIg) can be produced in the same manner as Compound (IIIf).
  • Compound (IVa) can be obtained as a commercial product
  • Compound (Ib) can be produced by reacting compound (Ia) with one or more equivalents of compound (IIIh) without solvent or in a solvent at 0 ° C. to 100 ° C. for 5 minutes to 100 hours. If necessary, Y can be changed to a desired pharmaceutically acceptable anion by using an appropriate method such as a commercially available anion exchange resin.
  • Examples of the solvent include those exemplified in Steps 1 to 3.
  • Compound (IIIh) can be obtained as a commercial product.
  • Compound (II) can be produced, for example, by the following method. (Wherein, L, A3, M3, B3, n2 are as defined above, and X4 and X5 are the same or different, chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyl (Representing a leaving group such as oxy, p-toluenesulfonyloxy)
  • Step 7 and Step 8 Compound (IVd) is produced by reacting compound (IIIi) and compound (IVc) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. can do. Further, compound (II) is obtained by reacting compound (IVd) and compound (IIIj) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. Can be manufactured.
  • Examples of the solvent and base include those exemplified in Step 4 and Step 5.
  • Compound (IIIi) can be produced in the same manner as Compound (IIIf).
  • the intermediates and target compounds in the above production methods should be isolated and purified by separation and purification methods commonly used in organic synthetic chemistry, such as filtration, extraction, washing, drying, concentration, recrystallization, and / or various chromatography. Can do.
  • the intermediate may be subjected to the next reaction without particular purification.
  • a hydrogen ion may be coordinated to a lone electron pair on the nitrogen atom in the structure, and in that case, a salt with a pharmaceutically acceptable anion may be formed.
  • a cationic lipid in which a hydrogen ion is coordinated to a lone pair on a nitrogen atom in the structure is also included as a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof.
  • stereoisomers such as geometric isomers or optical isomers or tautomers, and the like.
  • compound (II) include all possible isomers and mixtures thereof, including these.
  • each atom in the compound (I) and compound (II) of the present invention may be replaced by a corresponding isotope atom, respectively, and the compound (I) and the compound (II) are those isotopes. Also includes compounds replaced with atoms.
  • some or all of the hydrogen atoms in the compounds (I) and (II) may be hydrogen atoms having a weight of 2 (deuterium atoms).
  • the nucleic acid used in the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
  • the nucleic acid include ribonucleic acid (RNA) which is a polymer of ribonucleotides, deoxyribonucleic acid (DNA) which is a polymer of deoxyribonucleotides, chimeric nucleic acids composed of RNA and DNA, and at least one nucleotide of these nucleic acids.
  • RNA ribonucleic acid
  • DNA deoxyribonucleic acid
  • chimeric nucleic acids composed of RNA and DNA and at least one nucleotide of these nucleic acids.
  • nucleotide polymers substituted with molecules having functions equivalent to nucleotides include nucleotide polymers substituted with molecules having functions equivalent to nucleotides.
  • a nucleic acid used in the present invention also includes a derivative containing at least a part of the structure of a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
  • uracil U and thymine T can be replaced with each other.
  • nucleotide derivatives examples include nucleotide derivatives.
  • the nucleotide derivative may be any molecule as long as it is a modified molecule, for example, in order to improve nuclease resistance or stabilize from other degradation factors compared to RNA or DNA, for example.
  • a molecule in which ribonucleotide or deoxyribonucleotide is modified is preferably used.
  • nucleotide derivatives include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and the like.
  • the sugar-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the sugar of the nucleotide is modified or substituted with any substituent, or substituted with any atom.
  • '-Modified nucleotides are preferably used.
  • Examples of the modifying group in the sugar moiety-modified nucleotide include 2′-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-alkenyl, 2′-substituted alkenyl, 2′-halogen and 2′-O-cyano.
  • sugar-modified nucleotide examples include a crosslinked nucleic acid (BNA) having two cyclic structures by introducing a crosslinked structure into the sugar moiety.
  • BNA crosslinked nucleic acid
  • cross-linked artificial nucleic acids include, for example, Locked Nucleic Acid (LNA) ["Tetrahedron Letters" in which the 2'-position oxygen atom and the 4'-position carbon atom are cross-linked via methylene. , Volume 38, Issue 50, 1997, Pages 8735-8738, and "Tetrahedron", Volume 54, Issue 14, 1998, Pages 3607-3630] and Ethylene bridged nucleic acid (Ethylene bridged nucleic acid) ENA) ["Nucleic Acid Research", 32, e175 (2004)].
  • LNA Locked Nucleic Acid
  • ENA Ethylene bridged nucleic acid
  • Sugar-modified nucleotides include peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001). ], Peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] and the like.
  • PNA peptide nucleic acids
  • OPNA oxypeptide nucleic acids
  • PRNA Peptide ribonucleic acid
  • Examples of the modifying group in the sugar-modified nucleotide include 2'-cyano, 2'-halogen, 2'-O-cyano, 2'-alkyl, 2'-substituted alkyl, 2'-O-alkyl, 2'-O- Preferred are substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2′-Se-alkyl, 2′-Se-substituted alkyl, 2′-cyano, 2′-fluoro, 2′-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (Methoxy) ethyl], 2'-O- (3-aminopropyl), 2'-O- [2- (N, N-dimethylamin
  • the modifying group in the sugar moiety-modified nucleotide can also define a preferred range from the size of the modifying group, and is preferably a modifying group corresponding to a size from fluoro to -O-butyl, from -O-methyl More preferred is a modifying group corresponding to a size up to -O-ethyl.
  • alkyl in the modifying group in the sugar-modified nucleotide examples include C1-C6 alkyl, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, Neopentyl, hexyl and the like can be mentioned.
  • alkenyl in the modifying group in the sugar moiety-modified nucleotide examples include C3-C6 alkenyl, and specific examples include allyl, propenyl, butenyl, pentenyl, hexenyl and the like.
  • halogen in the modifying group in the sugar-modified nucleotide examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • amino acids in the amino acid residue include aliphatic amino acids (specifically, glycine, alanine, valine, leucine and isoleucine), hydroxy amino acids (specifically, serine and threonine), acidic amino acids (specifically, Is aspartic acid and glutamic acid), acidic amino acid amide (specifically asparagine and glutamine etc.), basic amino acid (specifically lysine, hydroxylysine, arginine and ornithine etc.), sulfur-containing amino acid (specifically Include cysteine, cystine, methionine, etc.), imino acids (specifically, proline, 4-hydroxyproline, etc.) and the like.
  • aliphatic amino acids specifically, glycine, alanine, valine, leucine and isoleucine
  • hydroxy amino acids specifically, serine and threonine
  • acidic amino acids specifically, Is aspartic acid and glutamic acid
  • acidic amino acid amide specifically asparagine
  • Examples of the substituted alkyl and the substituted alkenyl in the modified group in the sugar-modified nucleotide include halogen (as defined above), hydroxy, sulfanyl, amino, oxo, -O-alkyl (the alkyl part of -O-alkyl is the above-mentioned C1.
  • -S6 alkyl the alkyl part of -S-alkyl is the same as C1-C6 alkyl
  • -NH-alkyl the alkyl part of -NH-alkyl is the same as C1-C6 alkyl
  • Dialkylaminooxy the two alkyl parts of dialkylaminooxy are the same or different and have the same meaning as the C1-C6 alkyl
  • dialkylamino the two alkyl parts of dialkylamino are the same or different and are the same as the C1-C6 alkyl
  • Dialkylaminoalkyleneoxy the alkyl part of dialkylaminoalkyleneoxy is the same or different, Le and are synonymous, alkylene moiety refers to a structure in which the hydrogen atom from the C1-C6 alkyl is removed one), and the like, the number of substitutions is preferably 1-3.
  • the phosphodiester bond-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the phosphodiester bond of the nucleotide is modified or substituted with any substituent, or with any atom. Good.
  • Examples of the phosphodiester bond-modified nucleotide include nucleotides in which the phosphodiester bond is replaced with a phosphorothioate bond, nucleotides in which the phosphodiester bond is replaced with phosphorodithioate bond, and phosphodiester bond in the alkyl phosphonate bond. And nucleotides in which a phosphodiester bond is substituted with a phosphoramidate bond.
  • the base-modified nucleotide may be any nucleotide as long as a part or all of the nucleotide base chemical structure is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom.
  • Examples of the base-modified nucleotide include those in which the oxygen atom in the base is substituted with a sulfur atom, those in which a hydrogen atom is substituted with C1-C6 alkyl, those in which methyl is substituted with a hydrogen atom or C2-C6 alkyl, Examples include amino protected with a protecting group such as C1-C6 alkyl or C1-C6 alkanoyl.
  • nucleotide derivative a nucleotide, sugar moiety, nucleotide derivative modified with at least one of phosphodiester bond or base, lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, dye, etc.
  • 5'-polyamine addition nucleotide derivative examples include nucleotide derivatives, red fluorescent dye (Cy5) -added nucleotide derivatives, fluorescein (6-FAM) -added nucleotide derivatives, and biotin-added nucleotide derivatives.
  • a nucleotide or a nucleotide derivative is an alkylene structure, a peptide structure, a nucleotide structure, an ether structure and an ester structure, or a combination of these two or more with other nucleotides or nucleotide derivatives in the nucleic acid.
  • a cross-linked structure such as
  • the nucleic acid used in the present invention is preferably a nucleic acid that suppresses the expression of the target gene, and more preferably a nucleic acid that has an action of suppressing the expression of the target gene using RNA interference (RNAi).
  • RNAi RNA interference
  • the target gene in the present invention is not particularly limited as long as it is a gene that produces and expresses mRNA, and examples thereof include genes associated with tumors or inflammation.
  • Specific examples of genes related to tumor or inflammation as target genes include vascular endothelial growth factor receptor, fibroblast growth factor receptor, fibroblast growth factor receptor, and platelet-derived growth.
  • Ets express sequence tag (Ets) transcription factor, nuclear factor, hypoxia-inducible factor, cell Examples include genes encoding proteins such as cycle-related factors, chromosome replication-related factors, chromosome repair-related factors, microtubule-related factors, growth signal pathway-related factors, growth-related transcription factors, and apoptosis-related factors.
  • Endothelial growth factor gene vascular endothelial growth factor receptor gene, fibroblast growth factor gene (e.g., transforming growth factor- ⁇ ), Fibroblast growth factor receptor gene, platelet-derived growth factor gene, platelet-derived growth factor receptor gene, hepatocyte growth factor gene, hepatocyte growth factor receptor gene, Kruppel-like factor gene, express sequence tag (Ets) transcription Factor gene, nuclear factor gene, hypoxia-inducible factor gene, cell cycle-related factor gene, chromosome replication-related factor gene, chromosome repair-related factor gene, microtubule-related factor gene (for example, CKAP5 gene), growth signal pathway-related factor gene (For example, KRAS gene), growth-related transcription factor gene, and apoptosis-related factor (for example, BCL-2 gene).
  • fibroblast growth factor gene e.g., transforming growth factor- ⁇
  • Fibroblast growth factor receptor gene e.g., transforming growth factor- ⁇
  • Fibroblast growth factor receptor gene e
  • the target gene in the present invention is preferably a gene expressed in the liver, lung or spleen.
  • the gene related to tumor or inflammation described above hepatitis B virus genome, hepatitis C virus genome, apolipoprotein (APO) ), Hydroxymethylglutaryl (HMG) CoA reductase, kexin 9 type serine protease (PCSK9), factor 12, glucagon, glucocorticoid receptor, leukotriene receptor, thromboxane A2 receptor, histamine H1 receptor, carbonic acid Dehydrase, angiotensin converting enzyme, renin, p53, tyrosine phosphatase (PTP), sodium-dependent glucose transporter, tumor necrosis factor, interleukin, hepcidin, transthyretin, antithrombin, protein C and matriptase enzymes (e.g. TMPRSS6 Protein) Gene encoding the like.
  • APO hepati
  • nucleic acid that suppresses the expression of the target gene for example, a nucleic acid that includes a base sequence complementary to a partial base sequence of mRNA of a gene encoding the protein (target gene) and suppresses the expression of the target gene
  • a nucleic acid that includes a base sequence complementary to a partial base sequence of mRNA of a gene encoding the protein (target gene) and suppresses the expression of the target gene If so, for example, using any nucleic acid such as double-stranded nucleic acid such as siRNA (short interference (RNA) and miRNA (micro RNA), shRNA (short hairpin RNA), single-stranded nucleic acid such as antisense nucleic acid and ribozyme, etc.
  • double-stranded nucleic acids are preferred.
  • a nucleic acid containing a base sequence complementary to a part of the base sequence of the target gene mRNA is called an antisense strand nucleic acid
  • a nucleic acid containing a base sequence complementary to the base sequence of the antisense strand nucleic acid is a sense strand.
  • a sense strand nucleic acid refers to a nucleic acid capable of forming a double strand forming part by pairing with an antisense strand nucleic acid, such as a nucleic acid itself consisting of a partial base sequence of a target gene.
  • a double-stranded nucleic acid refers to a nucleic acid in which two strands are paired and have a duplex forming part.
  • the duplex forming part refers to a part (duplex forming part) in which a nucleotide or a derivative thereof constituting a double-stranded nucleic acid forms a base pair to form a duplex.
  • the base pair constituting the duplex forming part is usually 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and 15 to 19 base pairs. Even more preferred is base pairing.
  • the antisense strand nucleic acid of the duplex forming part for example, a nucleic acid consisting of a partial sequence of the mRNA of the target gene, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base in the nucleic acid, A nucleic acid that is deleted or added and has an activity of suppressing the expression of the target protein is preferably used.
  • the single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of a series of 15 to 30 bases (nucleosides), preferably 15 to 29 bases, more preferably 15 to 27 bases, and further preferably 15 to 25 bases. 17 to 23 bases are more preferred, and 19 to 21 bases are particularly preferred.
  • Either the antisense strand, the sense strand, or both of the nucleic acids constituting the double-stranded nucleic acid have a portion that does not form a duplex on the 3 ′ side or 5 ′ side following the duplex forming portion. Also good.
  • the part that does not form a double chain is also referred to as a protrusion (overhang).
  • Examples of the double-stranded nucleic acid having a protruding portion include a double-stranded nucleic acid having a protruding portion consisting of 1 to 4 bases, usually 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand.
  • the protruding portion is preferably a protruding portion consisting of two bases, and more preferably a protruding portion consisting of dTdT or UU.
  • the overhang can be present only in the antisense strand, only in the sense strand, and both in the antisense strand and the sense strand, but a double-stranded nucleic acid having a protrusion in both the antisense strand and the sense strand is preferred.
  • nucleic acids that suppress the expression of the target gene include nucleic acid molecules that generate double-stranded nucleic acids by the action of ribonucleases such as Dicer (International Publication No. 2005/089287), and protrusions at the 3 ′ end and 5 ′ end.
  • Dicer International Publication No. 2005/089287
  • a double-stranded nucleic acid or the like that does not exist can also be used.
  • the antisense strand preferably has a sequence of at least the 1st to 17th bases (nucleosides) from the 5 ′ end to the 3 ′ end and the target gene mRNA is continuous. It is a base sequence complementary to the 17 base sequence, and more preferably, the antisense strand has the sequence of the 1st to 19th bases from the 5 ′ end to the 3 ′ end, and the target gene mRNA is continuous.
  • base sequence complementary to the 19 base sequence, or the sequence of the 1st to 21st bases from the 5 'end to the 3' end are complementary to the base sequence of 25 consecutive bases of the target gene mRNA. It is.
  • nucleic acid used in the present invention is siRNA
  • preferably 10 to 100%, more preferably 20 to 100%, and still more preferably 40 to 100% of the sugar in the nucleic acid is substituted with a modifying group at the 2 ′ position.
  • Ribose Ribose substituted with a modifying group at the 2′-position means that the hydroxyl group at the 2′-position of ribose is substituted with the modifying group, and has the same configuration as the hydroxyl group at the 2′-position of ribose. Although it may be present or different, the configuration is preferably the same as the hydroxyl group at the 2 ′ position of ribose.
  • Examples of the modifying group in ribose substituted with a modifying group at the 2′-position include those exemplified as the modifying group in the 2′-modified nucleotide in the sugar moiety-modified nucleotide and the hydrogen atom, and 2′-cyano, 2′-halogen 2′-O-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-O-alkyl, 2′-O-substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2 '-Se-alkyl or 2'-Se-substituted alkyl is preferred, 2'-cyano, 2'-fluoro, 2'-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-tri
  • the nucleic acid used in the present invention includes a derivative in which an oxygen atom or the like contained in a phosphoric acid part, an ester part or the like in the structure of the nucleic acid is substituted with another atom such as a sulfur atom.
  • the sugar that binds to the 5 ′ terminal base of the antisense strand and the sense strand has a 5′-position hydroxyl group, either a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
  • the sugar that binds to the 3 ′ terminal base of the antisense strand and the sense strand is such that the hydroxyl group at the 3 ′ position is a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
  • Examples of the single-stranded nucleic acid include 15 to 27 bases (nucleosides) of the target gene, preferably 15 to 25 bases, more preferably 15 to 23 bases, still more preferably 15 to 21 bases, and still more preferably 15 to 25 bases.
  • a nucleic acid comprising a sequence complementary to a sequence consisting of 19 bases, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base substituted or deleted or added in the nucleic acid, and having an activity of suppressing the expression of the target protein Any nucleic acid can be used.
  • the single-stranded nucleic acid preferably consists of a sequence of 15 to 30 bases (nucleosides), more preferably 15 to 27 bases, still more preferably 15 to 25 bases, and even more preferably 15 to 23 bases.
  • the single-stranded nucleic acid one obtained by linking an antisense strand and a sense strand constituting a double-stranded nucleic acid via a spacer sequence (spacer oligonucleotide) may be used.
  • the spacer oligonucleotide is preferably a 6- to 12-base single-stranded nucleic acid, and its 5 ′ terminal sequence is preferably 2 U.
  • An example of the spacer oligonucleotide is a single-stranded nucleic acid having a UUCAAGAGA sequence. Either the antisense strand or the sense strand connected by the spacer oligonucleotide may be on the 5 ′ side.
  • Examples of the single-stranded nucleic acid in which the antisense strand and the sense strand constituting the double-stranded nucleic acid are linked via a spacer oligonucleotide include, for example, a single-stranded nucleic acid such as shRNA having a double-stranded forming part by a stem-loop structure. Preferably there is.
  • Single-stranded nucleic acids such as shRNA are usually 50 to 70 bases in length.
  • a nucleic acid having a length of 70 bases or less, preferably 50 bases or less, more preferably 30 bases or less, designed to generate a single-stranded nucleic acid or a double-stranded nucleic acid by the action of ribonuclease or the like may be used.
  • the nucleic acid used in the present invention can be produced using known RNA or DNA synthesis methods and RNA or DNA modification methods.
  • composition contains the compound represented by formula (I) or formula (II) of the present invention, or a pharmaceutically acceptable salt thereof (cationic lipid) and nucleic acid To do.
  • the composition of the present invention may be, for example, a complex of the cationic lipid of the present invention and a nucleic acid.
  • the composition of the present invention is a composition containing the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid.
  • the composition of the present invention may contain a lipid membrane, and the complex may be encapsulated by the lipid membrane.
  • the lipid membrane may be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane).
  • the lipid membrane may contain the cationic lipid, neutral lipid and / or polymer of the present invention.
  • the complex and / or lipid membrane contains a cationic lipid other than the cationic lipid which is the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof. Also good.
  • compositions of the present invention include a complex of a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention and a neutral lipid and / or a polymer.
  • a composition containing a complex with a nucleic acid and a lipid membrane encapsulating the complex and containing the cationic lipid of the present invention in the lipid membrane is also included.
  • the lipid membrane in this case may also be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane).
  • the lipid membrane may contain a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer.
  • the lipid membrane may contain a neutral lipid and / or a polymer. Further, the complex and / or the lipid membrane may contain a cationic lipid other than the cationic lipid of the present invention.
  • Examples of the form of the complex include a complex of a nucleic acid and a membrane composed of a single lipid (single molecule) layer (reverse micelle), a complex of a nucleic acid and a liposome, and a complex of a nucleic acid and a micelle.
  • a complex of a membrane composed of a nucleic acid and a lipid monolayer or a complex of a nucleic acid and a liposome Is a complex of a membrane composed of a nucleic acid and a lipid monolayer or a complex of a nucleic acid and a liposome.
  • composition containing a lipid membrane that encapsulates the complex examples include liposomes and lipid nanoparticles that encapsulate the complex with an arbitrary number of lipid membranes.
  • the cationic lipids of the present invention include, in addition to the cationic lipids of the present invention, other than the cationic lipids of the present invention.
  • the cationic lipid may be mixed.
  • Examples of the cationic lipid other than the cationic lipid which is the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof include, for example, JP-A-61-161246 (US). No. 5049386), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) and N- (2,3-dioxy).
  • DOTMA DOTAP
  • DORIE DOSPA1,2-dilinoleyloxy-N, N-dimethylaminopropane
  • DLinDMA DOSPA1,2-dilinoleyloxy-N, N-dimethylaminopropane
  • DLin-K-DMA 2,2-dilinoleyl-4- Cationic lipids with tertiary amine moieties with two unsubstituted alkyl groups such as dimethylaminomethyl- [1,3] -dioxolane (DLin-K-DMA) or quaternary ammonium moieties with three unsubstituted alkyl groups
  • it is a cationic lipid having a tertiary amine moiety.
  • the unsubstituted alkyl group at the tertiary amine moiety and the quaternary ammonium moiety is preferably a methyl group.
  • the composition of the present invention may contain a compound (for example, a peptide nucleic acid) chemically similar to the nucleic acid in addition to the nucleic acid.
  • the composition of this invention can be manufactured according to a well-known manufacturing method or it, and may be manufactured by what kind of manufacturing method.
  • a known method for preparing liposomes can be applied to the production of a composition containing liposome, which is one of the compositions.
  • Known methods for preparing liposomes include, for example, Bangham et al., “Liposome preparation method” (“J. Mol. Biol.”), 1965, Vol. 13, p. 238- 252], ethanol injection method ["J. Cell Biol.”, 1975, Vol. 66, pp. 621-634], French press method ["FBS Letters (FEBS Lett.) ", 1979, Vol. 99, p.210-214], freeze-thaw method [" Arch.
  • antioxidants such as citric acid, ascorbic acid, cysteine and ethylenediaminetetraacetic acid (EDTA), for example, isotonic agents such as glycerin, glucose and sodium chloride may be added.
  • EDTA ethylenediaminetetraacetic acid
  • isotonic agents such as glycerin, glucose and sodium chloride
  • the cationic lipid of the present invention, or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention is dissolved in an organic solvent such as ethanol, and the solvent is distilled off.
  • Liposomes can be formed by adding saline and stirring with shaking.
  • composition of the present invention can be prepared, for example, by dissolving a cationic lipid of the present invention or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid in chloroform in advance, and then an aqueous nucleic acid solution. And methanol are added and mixed to form a cationic lipid / nucleic acid complex, and the chloroform layer is taken out, and then the polyethylene glycolated phospholipid, neutral lipid, and water are added to the extracted chloroform layer to form a water-in-oil type. (W / O) emulsion is formed and processed by the reverse phase evaporation method (see Japanese Patent Application Publication No.
  • nucleic acid is dissolved in an acidic electrolyte aqueous solution, for example, the cation of the present invention Or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention (in ethanol), and the ethanol concentration is lowered to 20 v / v% to encapsulate the nucleic acid.
  • an acidic electrolyte aqueous solution for example, the cation of the present invention Or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention (in ethanol), and the ethanol concentration is lowered to 20 v / v% to encapsulate the nucleic acid.
  • posomes are prepared, sizing filtered, excess ethanol is removed by dialysis, and then the sample is dialyzed at a higher pH to remove nucleic acids adhering to the surface of the composition (Special Table 2002-50151
  • compositions of the present invention a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of a neutral lipid and / or polymer and a nucleic acid, and a complex are encapsulated in the cationic lipid of the present invention.
  • the composition containing lipid nanoparticles containing the lipid membrane can be produced, for example, according to the production method described in WO 02/28367 and WO 2006/080118.
  • the cationic lipid, nucleic acid, neutral lipid and / or high lipid of the present invention are used.
  • a complex is produced using molecules and components appropriately selected from cationic lipids other than the cationic lipid of the present invention, and the complex is dispersed in water or a 0-40% ethanol aqueous solution without dissolving it (A Separately, the lipid membrane component encapsulating the complex is dissolved in, for example, an ethanol aqueous solution (B solution), and the A and B solutions having a volume ratio of 1: 1 to 10: 1 are mixed, and water is appropriately added.
  • cationic lipid in the liquid A and the liquid B one or plural kinds of the cationic lipid of the present invention or a cationic lipid other than the cationic lipid of the present invention may be used.
  • a cationic lipid other than the cationic lipid of the invention may be used in combination.
  • a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid, and a lipid membrane encapsulating the complex A composition comprising a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer, and a nucleic acid And a lipid membrane encapsulating the complex, and the composition containing the cationic lipid of the present invention in the lipid membrane, and after the production, the nucleic acid in the complex and the cationic property in the lipid membrane
  • the composition of the present invention also includes those in which the structure of the complex and the membrane is mutated due to electrostatic interaction with the lipid or fusion of the cationic lipid in the complex and the cationic property
  • a nucleic acid preferably a double-stranded nucleic acid
  • the cationic lipid of the present invention and / or the cationic lipid of the present invention
  • a complex with a liposome containing a cationic lipid is produced and dispersed in water or a 0-40% ethanol aqueous solution without dissolving the complex (solution A).
  • the cationic lipid of the present invention and / or Alternatively, a cationic lipid other than the cationic lipid of the present invention is dissolved in an aqueous ethanol solution (liquid B), and liquid A and liquid B with a volume ratio of 1: 1 to 10: 1 are mixed, or more appropriately.
  • a composition containing the composition of the present invention and a nucleic acid can also be produced by adding water.
  • the composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or from a lipid monolayer containing a nucleic acid and a cationic lipid.
  • a composition comprising a membrane (reverse micelle) and a lipid membrane encapsulating the complex.
  • the lipid membrane in the composition may be any of a lipid monolayer (lipid monomolecular membrane), a lipid bilayer membrane (lipid bimolecular membrane), or a multilayer membrane.
  • the size of the liposome in the complex of nucleic acid and liposome in the present invention is preferably adjusted in advance to an average particle size of preferably 10 nm to 400 nm, more preferably 20 nm to 110 nm, and still more preferably 20 nm to 80 nm. .
  • the complex and / or lipid membrane may contain a neutral lipid and / or a polymer. As long as the solution A can form a complex of liposomes and nucleic acids, the ethanol concentration may be 20 to 70%.
  • the complex does not dissolve after mixing liquid A and liquid B, and the ratio is such that ethanol concentration does not dissolve the cationic lipid in liquid B.
  • the liquid may be mixed. Instead of mixing the A liquid and the B liquid in such a ratio that preferably the complex does not dissolve, the cationic lipid in the B liquid does not dissolve, and the ethanol concentration is 20 to 60%.
  • the ethanol concentration is 20 to 60%.
  • mix liquid A and liquid B mix liquid A and liquid B at a ratio that will result in an ethanol concentration that does not dissolve the complex, and then add water to add cationic lipid in liquid B. It is also possible to use an ethanol concentration at which no dissolution occurs.
  • the composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or a membrane comprising a lipid monolayer containing a cationic lipid (Reverse micelle) and nucleic acid complex and a lipid membrane that encapsulates the complex, and a lipid membrane containing a cationic lipid, and the productivity (yield and / or uniformity) of this production method Is excellent.
  • the total number of molecules of the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times, more preferably 1.5 to 3.5 times the number of phosphorus atoms of the nucleic acid. More preferably, it is 2 to 3 times.
  • the total number of the cationic lipid molecules of the present invention and the cationic lipid molecules other than the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times the number of phosphorus atoms of the nucleic acid, and preferably 1.5 to 3.5. It is more preferable that the ratio is twice, and it is more preferable that the ratio is 2 to 3 times.
  • the total number of molecules of the cationic lipid of the present invention in the composition containing the complex and the lipid membrane encapsulating the complex is 1 to 10 times the number of phosphorus atoms of the nucleic acid. Preferably, it is 2.5 to 9 times, more preferably 3.5 to 8 times.
  • the total number of the cationic lipid molecules of the present invention and the cationic lipid molecules other than the cationic lipid of the present invention in the composition is preferably 1 to 10 times the number of phosphorus atoms of the nucleic acid, and preferably 2.5 to 9
  • the ratio is more preferably double, and further preferably 3.5 to 8 times.
  • the neutral lipid may be any of simple lipids, complex lipids or derived lipids, and examples thereof include phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids and sterols.
  • the total number of neutral lipid molecules is based on the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention.
  • the ratio is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, and still more preferably 0.3 to 1.2 times.
  • the composition of the present invention may contain a neutral lipid in a complex, or may be contained in a lipid membrane encapsulating the complex.
  • the neutral lipid is preferably contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
  • phospholipids in neutral lipids include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), dimyristoylphosphatidylcholine).
  • EPC egg yolk phosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine
  • POPC palmitoyloleoylphosphatidylcholine
  • dimyristoylphosphatidylcholine dimyristoylphosphatidylcholine
  • DMPC dioleoylphosphatidylcholine
  • phosphatidylethanolamine specifically distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE)), Dimyristoylphosphatidylethanolamine (DMPE), 16-0-monomethylphosphatidylethanolamine, 16-0-dimethylphosphatidylethanolamine 18-1-transphosphatidylethanolamine, palmitoyl oleoyl phosphatidylethanolamine (POPE) and 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE), glycerophospholipid (specifically phosphatidylserine, phosphatidic acid, Phosphatidylglycerol, phosphatidylinositol, palmitoyl oleoylphosphatid
  • Examples of the glyceroglycolipid in the neutral lipid include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
  • glycosphingolipid in the neutral lipid examples include galactosyl cerebroside, lactosyl cerebroside, ganglioside and the like.
  • Examples of the sphingoid in the neutral lipid include sphingan, icosasphingan and sphingosine, and derivatives thereof.
  • Derivatives include, for example, —NH 2 such as sphingan, icosasphingan, or sphingosine —NHCO (CH 2 ) xCH 3 (wherein x is an integer of 0 to 18, among which 6, 12 or 18 is preferred) And the like converted to.
  • sterols in neutral lipids include cholesterol, dihydrocholesterol, lanosterol, ⁇ -sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol, 3 ⁇ - [N- (N ', N'-dimethyl Aminoethyl) carbamoyl] cholesterol (DC-Chol) and the like.
  • polymer examples include protein, albumin, dextran, polyfect, chitosan, dextran sulfate, poly-L-lysine, polyethyleneimine, polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acryl pyrrolidone copolymer.
  • the polymer may be a micelle composed of one or more of the exemplified polymer salts.
  • Examples of the polymer salt include metal salts, ammonium salts, acid addition salts, organic amine addition salts, amino acid addition salts, and the like.
  • Examples of the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt and zinc salt.
  • As an ammonium salt salts, such as ammonium and tetramethylammonium, are mentioned, for example.
  • Examples of the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, nitrate and phosphate, and organic acid salts such as acetate, maleate, fumarate and citrate.
  • organic amine addition salts include addition salts such as morpholine and piperidine.
  • amino acid addition salts include addition salts of glycine, phenylalanine, aspartic acid, glutamic acid, lysine, and the like.
  • composition of the present invention preferably contains, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers, or a surfactant, etc., and is contained in the complex.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers, or a surfactant, etc. may be contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
  • composition of the present invention contains a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, they are selected from sugars, peptides, nucleic acids, and water-soluble polymers.
  • the total number of lipid derivatives and fatty acid derivative molecules of one or more substances is preferably 0.01 to 0.3 times the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention.
  • the ratio is more preferably 0.02 to 0.25 times, and further preferably 0.03 to 0.15 times.
  • the lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or the surfactant is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferably, it is a lipid derivative or fatty acid derivative of a water-soluble polymer.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant is a part of the molecule that is, for example, hydrophobic with other components in the composition of the present invention. It has the property of binding by affinity or electrostatic interaction, etc., and other parts have the property of binding to the solvent at the time of production of the composition, for example, hydrophilic affinity or electrostatic interaction, etc. A substance is preferred.
  • lipid derivatives or fatty acid derivatives of sugars, peptides or nucleic acids include sugars such as sucrose, sorbitol and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides and peptides such as glutathione, or DNA, RNA, plasmids, etc. , A compound in which a nucleic acid such as siRNA and oligodeoxynucleotide (ODN) and a neutral lipid or the cationic lipid of the present invention, or a fatty acid such as stearic acid, palmitic acid, myristic acid, lauric acid, etc. are bound. .
  • a nucleic acid such as siRNA and oligodeoxynucleotide (ODN) and a neutral lipid or the cationic lipid of the present invention, or a fatty acid such as stearic acid, palmitic acid, myristic acid, lauric
  • sugar lipid derivative or fatty acid derivative examples include glyceroglycolipid and glycosphingolipid.
  • water-soluble polymer lipid derivative or fatty acid derivative examples include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan or oligoglycerol etc.
  • lipid derivative or fatty acid derivative of the water-soluble polymer may be a salt.
  • lipid derivatives or fatty acid derivatives of polyethylene glycol examples include polyethylene glycolated lipids [specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] (PEG-DMPE) Etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc., polyethylene glycol sorbitan fatty acid esters (specifically polyoxyethylene sorbitan monooleate, etc.) and polyethylene glycol fatty acid esters, etc.
  • it is a polyethylene glycolated lipid.
  • Examples of the lipid derivative or fatty acid derivative of polyglycerin include polyglycerinized lipid (specifically, polyglycerin-phosphatidylethanolamine) or polyglycerin fatty acid esters, and the polyglycerinized lipid is preferable.
  • surfactant examples include polyoxyethylene sorbitan monooleate (specifically polysorbate 80 and the like), polyoxyethylene polyoxypropylene glycol (specifically Pluronic (registered trademark) F68 and the like), sorbitan fatty acid ester (specifically Sorbitan monolaurate and sorbitan monooleate), polyoxyethylene derivatives (specifically polyoxyethylene hydrogenated castor oil 60 and polyoxyethylene lauryl alcohol), glycerin fatty acid ester, polyethylene glycol alkyl ether, etc.
  • it is polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester or polyethylene glycol alkyl ether.
  • the complex and the lipid membrane in the composition of the present invention can be optionally subjected to surface modification with, for example, a water-soluble polymer [Radasic, edited by F. Martin, "Stealth liposome. Stealth Liposomes "(USA), CRC Press Inc., 1995, p. 93-102].
  • water-soluble polymers that can be used for surface modification include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, and polyglycerin.
  • lipid derivatives or fatty acid derivatives of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers can be used.
  • the surface modification is a method in which the complex and lipid membrane in the composition of the present invention contain a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant. One of them.
  • the targeting ligand can also be directly bound to the surface of the composition of the present invention by covalently binding to the polar head residue of the lipid component of the composition of the present invention (see International Publication No. 2006/116107).
  • the average particle size of the complex or the lipid membrane encapsulating the complex in the composition of the present invention can be freely selected as desired.
  • a method for adjusting the average particle size for example, an extrusion method, a method of mechanically pulverizing large multilamellar liposomes (MLV) or the like (specifically using a manton gourin or a microfluidizer, etc.) [Müller (RHMuller ), Edited by S. Benita, B.
  • the average particle size is preferably 5 nm to 200 nm, more preferably 20 nm to 150 nm, and 20 nm to 80 nm. Further preferred.
  • the average particle size is preferably 10 nm to 300 nm, more preferably 30 nm to 200 nm, and 50 nm to 150 nm. More preferably, it is nm.
  • the average particle size of the complex in the composition of the present invention or the lipid membrane encapsulating the complex can be measured, for example, by a dynamic light scattering method.
  • the nucleic acid in the composition of the present invention can be introduced into cells by introducing the composition of the present invention into mammalian cells.
  • the introduction of the composition of the present invention into mammalian cells in vivo may be performed according to known transfection procedures that can be performed in vivo.
  • the composition of the present invention is intravenously administered to a mammal, including a human, so that the composition is delivered to, for example, a tumor or an inflamed organ or site, and the cells of the delivery organ or site are contained in the composition of the present invention.
  • the organ or site where the tumor or inflammation has occurred is not particularly limited, but for example, the digestive tract such as the stomach and large intestine, the central nervous system such as the liver, lung, spleen, pancreas, kidney, bladder, brain and spinal cord, skin and blood vessels And eyeballs.
  • composition of the present invention can be delivered intravenously to mammals including humans, for example, to the liver, lungs, kidneys, gastrointestinal tract, central nervous system and / or spleen.
  • the nucleic acid in the composition of the present invention can be introduced.
  • Liver, lung, kidney, gastrointestinal tract, central nervous system or spleen cells can be normal cells, cells associated with tumors or inflammation or cells associated with other diseases.
  • the nucleic acid in the composition of the present invention is a nucleic acid having an inhibitory effect on the expression of a target gene using RNA interference (RNAi), a nucleic acid that suppresses the expression of the target gene in vivo in a mammalian cell. Can be introduced, and the expression of the target gene can be suppressed.
  • RNAi RNA interference
  • the present invention can be used as a target gene expression inhibitor using RNA interference (RNAi) containing the composition of the present invention.
  • the administration subject is preferably a human.
  • the present invention contains the composition of the present invention as a therapeutic or prophylactic agent for a disease related to the liver, lung, or spleen. It can be used and is preferably used as a therapeutic or prophylactic agent for diseases related to the lung.
  • the present invention can also be used as an antitumor agent containing the composition of the present invention, and is preferably used for malignant tumors, and more preferably used for malignant tumors in the liver, lung or spleen.
  • diseases related to the lung include bronchial asthma, chronic obstructive pulmonary disease, idiopathic interstitial pneumonia, hypersensitivity pneumonia, eosinophilic pneumonia, drug-induced pneumonia, allergic bronchopulmonary aspergillosis, sarcoidosis, collagen Diseased lung, emphysema, alveolar proteinosis, pulmonary arterial hypertension, cystic fibrosis, nontuberculous pulmonary mycobacterial disease, pulmonary thromboembolism, eosinophilic polyangiogenic granulomatosis, lung water species , Pleurisy, empyema, pneumothorax, chronic respiratory failure and the like.
  • liver-related diseases include cirrhosis, nonalcoholic steatohepatitis, familial hypercholesterolemia, familial amyloidosis, viral hepatitis, hepatic porphyria, primary hyperoxaluria type I, ⁇ 1 anti Examples include trypsin deficiency, hypertriglyceridemia, and hepatitis B virus infection.
  • diseases related to the spleen include hereditary spherocytosis, idiopathic thrombocytopenic purpura, sepsis, idiopathic portal hypertension, spleen hyperfunction and the like.
  • the present invention also provides a treatment or prevention method including the step of administering the composition of the present invention to a subject.
  • a method of treating a disease associated with the liver, lungs or spleen is provided by administering the composition of the present invention to a mammal.
  • the administration subject is preferably a human, more preferably a patient suffering from a disease related to the liver, lungs or spleen.
  • the present invention also provides a method for treating or preventing malignant tumors, comprising the step of administering the composition or antitumor agent of the present invention to a subject, and is more preferably used for malignant tumors in the liver, lung or spleen. .
  • composition of the present invention can also be used as a tool for verifying the effectiveness of suppressing a target gene in an in vivo drug efficacy evaluation model for a therapeutic or prophylactic agent for diseases related to the liver, lung or spleen. it can.
  • composition of the present invention can stabilize nucleic acids in biological components such as blood components (e.g. blood and digestive tract), reduce side effects, or accumulate drugs in tissues or organs containing target gene expression sites. It can also be used as a preparation for the purpose of increase or the like.
  • composition of the present invention When the composition of the present invention is used as a therapeutic or prophylactic agent for diseases related to the liver, lung or spleen of pharmaceuticals, it is desirable to use the most effective route for treatment as the administration route,
  • parenteral or oral administration such as intraoral, intratracheal, rectal, subcutaneous, intramuscular or intravenous administration can be mentioned, and intravenous administration or intratracheal administration is preferable.
  • the dose of the composition of the present invention varies depending on the disease state, age, route of administration, etc. of the administration subject, but for example, it may be administered such that the daily dose converted to nucleic acid is 0.1 ⁇ g to 1000 ⁇ g.
  • a preparation suitable for intravenous administration or intramuscular administration for example, an injection is exemplified, and a prepared dispersion of the composition of the present invention is directly used as an injection or the like.
  • Suitable preparations preferably include preparations obtained by removing the solvent from the dispersion by, for example, filtration or centrifugation, preparations obtained by lyophilizing the dispersion, and excipients such as mannitol, lactose, trehalose, maltose and glycine. It is the formulation which freeze-dried the added dispersion liquid.
  • the dispersion or solvent of the composition of the present invention is removed or lyophilized, for example, water, acid, alkali, various buffers, physiological saline or amino acid infusion, etc. are mixed for injection.
  • an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine and EDTA or an isotonic agent such as glycerin, glucose and sodium chloride.
  • an isotonic agent such as glycerin, glucose and sodium chloride.
  • a cryopreservation agent such as glycerin may be added for cryopreservation.
  • the present invention also provides a pharmaceutical composition for use in the treatment of a disease; the use of a pharmaceutical composition for the treatment of a disease; the use of a cationic lipid or a pharmaceutical composition in the manufacture of a medicament for the treatment of a disease; Provided is a cationic lipid or pharmaceutical composition for use in the manufacture of a therapeutic medicament; a method of treating or preventing a disease comprising administering an effective amount of the pharmaceutical composition to a subject in need thereof.
  • the obtained crude product was dissolved in tetrahydrofuran (8 mL), tetrabutylammonium fluoride (1 mol / L tetrahydrofuran solution, 1.07 mL, 1.07 mmol) was added, and the mixture was stirred at room temperature for 6 hr.
  • Reference Example 3 Nonyl 12-bromododecanoate In the same manner as Reference Example 2, instead of (Z) -non-2-en-1-ol, nonan-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. Used to obtain nonyl 12-bromododecanoate (1.30 g, yield 60%).
  • Reference Example 4 (Z) -Non-3-en-1-yl 12-bromododecanoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol, cis-3-nonene (Z) -non-3-en-1-yl 12-bromododecanoate (1.50 g, yield 52%) was obtained using -1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • Reference Example 6 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoic acid step 1
  • ethyl 12-bromododecanoate obtained in Reference Example 5 instead of (Z) -non-2-en-1-yl 12-bromododecanoate, diethyl 12,12 ′-((3-hydroxypropyl) azanediyl) didodecanoate (1.23 g, yield 44%) was obtained.
  • Reference Example 7 Nona-8-en-1-yl 12-bromododecanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol, nona-8-en-1-ol (Manufactured by Tokyo Chemical Industry Co., Ltd.) was used to obtain nona-8-en-1-yl 12-bromododecanoate (0.900 g, yield 42%).
  • Reference Example 8 (Z) -Octa-5-en-1-yl 12-bromododecanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol, (Z) -octa (Z) -oct-5-en-1-yl 12-bromododecanoate (1.80 g, yield 86%) was obtained using -5-en-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.).
  • Hexamethylphosphoric triamide (Tokyo Chemical Industry Co., Ltd., 5.00 mL, 28.7 mmol) and n-butyllithium (Tokyo Chemical Industry Co., Ltd., 1.6 mol / L hexane solution, 21.0 mL, 33.7) after cooling to -78 ° C mmol) were sequentially added, and the mixture was stirred at -78 ° C for 1 hour. The temperature was raised to ⁇ 30 ° C., and 1-bromooctane (2.50 g, 12.9 mmol) was added. Thereafter, the temperature was gradually raised to room temperature, followed by reaction at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with hexane.
  • Reference Example 12 3,7-dimethyloct-6-en-1-yl 12-bromododecanoate
  • 3 instead of cis-2-nonen-1-ol, 3,7- Using dimethyl-6-octen-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.), 3,7-dimethyloct-6-en-1-yl 12-bromododecanoate (3.76 g, yield 74%) was obtained. It was.
  • Reference Example 13 12-bromododecyl nonanoate
  • 12-bromododecan-1-ol manufactured by Tokyo Chemical Industry Co., Ltd.
  • nonanoic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • Reference Example 14 12-bromododecyl non-8-enoate
  • 12-bromododecan-1-ol (Tokyo 12-bromododecyl nona-8-enoate (1.33 g, yield 52%) was obtained using Kasei Kogyo Co., Ltd. and 8-nonenoic acid (Tokyo Kasei Kogyo Co., Ltd.).
  • Tetrahydrofuran 32 mL
  • water 5 mL
  • 4-methylmorpholine 4-oxide Sigma Aldrich, 2.41 g, 20.6 mmol
  • microencapsulated osmium tetroxide (Wako Pure Chemical Industries, Ltd.) 10 wt%, 0.261 g, 0.103 mmol) was added, and the mixture was stirred at room temperature overnight.
  • Sodium periodate (5.28 g, 24.7 mmol) was added to the reaction solution, and the mixture was stirred at room temperature for 5 hours.
  • a saturated aqueous sodium thiosulfate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • Methyl 18,18 '-(((2-nitrophenyl) sulfonyl) azanediyl) diolate (0.179 g, 0.217 mmol) was dissolved in acetonitrile (2 mL) and 1,8-diazabicyclo [5.4.0] -7-undecene was dissolved. (0.0890 mL, 0.558 mmol) and 1-dodecanethiol (0.142 mL, 0.565 mmol) were added and stirred at 60 ° C. for 2 hours.
  • 1,8-diazabicyclo [5.4.0] -7-undecene (0.0890 mL, 0.558 mmol) and 1-dodecanethiol (0.142 mL, 0.565 mmol) were added to the reaction solution, and the mixture was further stirred at 60 ° C. for 2 hours.
  • a saturated aqueous sodium thiosulfate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure.
  • N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added to the reaction solution, and the mixture was stirred at room temperature for 3 hours.
  • N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added, and the mixture was stirred at room temperature overnight and then at 50 ° C. for 2 hr.
  • N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added, and the mixture was stirred at 50 ° C. for 1 hr.
  • a saturated aqueous sodium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure.
  • Reference Example 15 Nonan-2-yl 12-bromododecanoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol, nonan-2-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. Used to obtain nonan-2-yl 12-bromododecanoate (1.36 g, yield 47%).
  • the obtained crude product was dissolved in acetonitrile (20 mL), and 1,8-diazabicyclo [5.4.0] -7-undecene (1.12 mL, 7.50 mmol) and 1-dodecanethiol (1.79 mL, 7.50 mmol) were added. In addition, the mixture was stirred at 60 degrees for 3 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure.
  • Reference Example 17 (Z) -Undec-2-en-1-yl 6-bromohexanoate In the same manner as Reference Example 1, instead of 10-bromodecanoic acid, 6-bromohexanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) , 5.11 g, 26.2 mmol), and (Z) -undec-2-en-1-ol (5.35 g, 31.4 mmol) obtained in Step 2 of Reference Example 9 instead of cis-2-nonen-1-ol ) To give (Z) -undec-2-en-1-yl 6-bromohexanoate (8.07 g, yield 89%).
  • potassium phthalimide Tokyo Kasei Kogyo Co., Ltd., 1.14 g, 6.14 mmol
  • water was added to the reaction mixture, and the mixture was extracted with ethyl acetate.
  • the organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered.
  • a composition was prepared as follows.
  • the nucleic acid used was a sense strand [5'-rGrCrCrArGrArCrUrUrUrGrUrUrGrGrArUrUrGrGrArUrUrGrArUrUrGrArUrUrGrA-3 '(the sugar attached to the base to which r is attached is ribose)] and an antisense strand [5'-rArAmArUmCrCmArAmCrAmUmUmGrAm Hypoxanthine-guanine phosphoribosyltransferase 1, a sugar that binds to the attached base is ribose and ribose in which the hydroxyl group at the 2 ′ position is substituted with a methoxy group.
  • HPRT1 siRNA Anti-HPRT1 siRNA that suppresses gene expression (hereinafter referred to as HPRT1) and was obtained from Gene Design (hereinafter referred to as HPRT1 siRNA).
  • the suspension was passed through a 0.05 ⁇ m polycarbonate membrane filter (manufactured by GE Healthcare Japan) at room temperature to obtain a dispersion of particles of compound 1 / PEG-DMPE Na (liposomes).
  • the average particle size of the liposomes obtained with a particle size measuring device (Zetasizer Nano ZS, manufactured by Malvern) was measured and confirmed to be within the range of 30 nm to 100 nm.
  • -A dispersion of DMPE Na / HPRT1 siRNA complex was prepared.
  • the obtained crude preparation was concentrated using Amicon Ultra (manufactured by Millipore), diluted with physiological saline, and filtered in a clean bench using a 0.2 ⁇ m filter (manufactured by Toyo Roshi Kaisha, Ltd.).
  • the siRNA concentration of the obtained composition was measured, and diluted to an appropriate concentration using physiological saline to obtain Formulation 1 (composition containing Compound 1 and HPRT1 siRNA).
  • compositions containing each of compounds 2 to 20 and HPRT1 siRNA were obtained in the same manner as Example 25.
  • Formulation 2-2 was prepared by the same method.
  • the amount of ethanol was added to the resulting lipid membrane component solution, and the lipid membrane component solution and the compound 21 / PEG-DMPE Na / HPRT1 siRNA complex dispersion were in a ratio of 2: 3.
  • the mixture was further mixed with several times the amount of distilled water to obtain a crude preparation.
  • Subsequent operations were carried out in the same manner as in Example 25 to obtain Formulation 21 (a composition containing Compound 21 and HPRT1 siRNA).
  • the average particle diameter and polydispersity index of the preparations (compositions) obtained in Examples 25 to 27 were measured with a particle diameter measuring apparatus. The results are shown in Table 7.
  • Comparative Example 1 Preparation A-1 (Compound A and HPRT1 siRNA) was carried out in the same manner as in Example 25 except that Compound A in Example 25 was changed to Compound A using Compound A synthesized by the method described in International Publication No. 2014/007398. Containing the composition).
  • the structure of Compound A is shown in Table 8 below.
  • the resulting lipid membrane component solution and the dispersion of Compound A / PEG-DMPE Na / HPRT1 siRNA complex are mixed in a ratio of 2: 3, and then mixed with several times the amount of distilled water.
  • Formulation A-2 a composition containing Compound A and HPRT1 siRNA.
  • the average particle size of the preparations (compositions) obtained in Comparative Examples 1 and 2 was measured with a particle size measuring apparatus. The results are shown in Table 9.
  • a composition was prepared as follows.
  • the nucleic acid used consists of a sense strand (5'-CCGUCGUAUUCGUGAGCAAGA-3 ') and an antisense strand (5'-UUGCUCACGAAUACGACGGUG-3'), an anti-luciferase (hereinafter referred to as Luc) gene that suppresses the expression of the luciferase gene.
  • Luc siRNA was obtained from Gene Design (hereinafter referred to as Luc-1 siRNA).
  • the nucleic acid was prepared to 24 mg / mL with distilled water.
  • Luc-1 siRNA solution 3: 1, and 17.7 times the amount of distilled water is added and mixed.
  • a dispersion of Compound 2 / PEG-DSPE Na / Luc-1 siRNA complex was prepared.
  • lipid membrane component solution An equal amount of ethanol is added to the resulting lipid membrane component solution, and the lipid membrane component and the dispersion of the compound 2 / PEG-DSPE Na / Luc-1 siRNA complex are in a ratio of 3: 7. And then mixed with several times the amount of distilled water to obtain a crude preparation.
  • the obtained crude preparation was concentrated using Amicon Ultra, diluted with physiological saline, and filtered in a clean bench using a 0.2 ⁇ m filter.
  • the siRNA concentration of the obtained composition was measured, and diluted with physiological saline according to the administration concentration to obtain Formulation 2-3 (a composition containing Compound 2 and Luc-1 siRNA).
  • Comparative Example 4 Using compound A, preparation A-4 (composition containing compound A and Luc-1 siRNA) was obtained in the same manner as in Example 29. The average particle size of the preparations (compositions) obtained in Comparative Examples 3 and 4 was measured with a particle size measuring device. The results are shown in Table 11.
  • a composition was prepared as follows.
  • the nucleic acid used was a sense strand [5'-mCmUmUrAmCrGmCmUrGrArGmUrAmCmUmUmCrGrAdTdT-3 ' Deoxyribose, the bond between deoxyribose that binds to the 20th base and deoxyribose that binds to the 21st base from the 5 'end toward the 3' end is a phosphorothioate bond)] and antisense Chain [5'-rUrCrGrArArGmUrArCrUmCrArGrCrGmUrArArGdTdT-3 ' From the 'terminal side to the 3' terminal side, the deoxyribose binding to the 20th base and the deoxyribose binding to the 21st base is a phosphorothioate bond)]
  • Luc-2 siRNA (hereinafter referred to as Luc-2 siRNA).
  • the nucleic acid was prepared to 24 mg / mL with distilled water.
  • Compound 2-5 (compound 2 and containing Luc-2 siRNA) was prepared in the same manner as in Example 25 except that Compound 1 in Example 25 was changed to Compound 2 and the nucleic acid HPRT1 siRNA used in Example 25 was changed to Luc-2 siRNA. Composition) was obtained.
  • a composition was prepared as follows.
  • the nucleic acid used is a sense strand [5'-mGmCrArArArGrArUrArArArArArArCrUrCrCrArCrGrUrGmGmA-3 '(the sugars bound to the bases to which r and m are attached are ribose and ribose in which the hydroxyl group at the 2' position is substituted with a methoxy group, respectively) And an antisense strand [5'-rUrCrCrArCrGrUrGrGrArGrUrUrUrGrUrUrArUrCrUrUrGrC-3 '(the sugar attached to the base to which r is attached is ribose)], a transforming growth factor-beta1 (hereinafter referred to as Tgfb-1) gene It was an antisense strand [5'-
  • the nucleic acid was prepared to 24 mg / mL with distilled water.
  • a preparation 2-6 composition containing Compound 2 and Tgfb-1 siRNA was obtained in the same manner as in Example 30, except that the nucleic acid Luc-2 siRNA used in Example 30 was changed to Tgfb-1 siRNA.
  • the average particle size of the preparations (compositions) obtained in Examples 30 and 31 was measured with a particle size measuring device. The results are shown in Table 12.
  • Comparative Example 5 Compound A-5 (composition containing Compound A and Luc-2 siRNA) was prepared in the same manner as in Comparative Example 2, except that the nucleic acid HPRT1 siRNA used in Comparative Example 2 was changed to Luc-2 siRNA. Obtained.
  • Comparative Example 6 A preparation A-6 (composition containing Compound A and Tgfb-1 siRNA) was prepared in the same manner as in Comparative Example 2, except that Compound A was used and the nucleic acid HPRT1 siRNA used in Comparative Example 2 was changed to Tgfb-1 siRNA. Obtained. The average particle size of the preparations (compositions) obtained in Comparative Examples 5 and 6 was measured with a particle size measuring device. The results are shown in Table 13.
  • Test Example 1 In vitro activity evaluation test of the preparation in human lung fibroblast cell line Preparations 1-13 and 15-21 obtained in Examples 25-27 and Comparative Examples 1-2, activities of A-1 and A-2 was evaluated by the method described below.
  • Human lung fibroblast cell line Nomal Human Lung Fibroblasts (Lonza CC-2512), DMEM medium (Thermo Fischer) containing 15% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Thermo Fischer) ) was seeded at 4000 cells / 100 ⁇ L / well and cultured at 37 ° C. under 5% CO 2 for 22-24 hours.
  • Applied Biosystems QuantStudio 12K Flex (Applied Biosystems QuantStudio 12K Flex), TaqMan Fast Universal PCR Master Mix (2X) (Applied Biosystems, 4352042) and TaqMan probe ( TaqMan (registered trademark) Gene Expression Assays, HPRT1: Hs02800695_m1, PPIA: Hs04194521_s1) were used to perform PCR amplification specific for the HPRT1 gene and the constitutively expressed gene PPIA (peptidylprolyl isomerase A) gene, respectively, and quantify the amount of mRNA. It was.
  • the conditions for the PCR reaction were in accordance with the instruction manual attached to TaqMan Fast Universal PCR Master Mix (2X).
  • the amount of mRNA in the specimen was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of PPIA mRNA was calculated, and the value in the negative control treatment group was 1.
  • the results for the amount of mRNA of HPRT1 are shown in Table 14.
  • Test Example 2 In vivo irritation evaluation test of preparation by intratracheal administration For each preparation 2, 2-2, 3, 4, 6, 12, 13, and A-2 obtained in Example 26 and Comparative Example 2 The in vivo irritation evaluation test was carried out by the following methods. Each preparation was diluted with physiological saline in accordance with the test. C57BL / 6J mice (9 weeks old, female, purchased from Charles River, Japan) under isoflurane anesthesia, siRNA weight of 15 ⁇ g / mouse each or 20 ⁇ g / mouse microspray (Pen-Century, IA -IC-M, FMJ-250).
  • Test Example 3 In vivo irritation evaluation test of the preparation by intravenous administration
  • Each preparation 2-3, 2-4, A-3 and A obtained in Example 28, Example 29, Comparative Example 3 and Comparative Example 4 -4 was subjected to an in vivo stimulation evaluation test by the following method.
  • Each preparation was diluted with physiological saline in accordance with the test.
  • Each preparation was intravenously administered to Balb / cA Jcl mice (7 weeks old, male, purchased from CLEA Japan, Inc.) at a siRNA weight of 10 mg / kg.
  • Blood was collected 24 hours after administration into Microtina (BD, 365967), centrifuged at 15000 rpm for 2 minutes at 4 ° C using a small cooling centrifuge (MX-201: TOMY), and serum was collected.
  • the values of KC, IL-6, and G-CSF in the obtained serum were measured using the BD CBA Flex Sets (BD CBA Flex Sets), 560152 (G-CSF), 558340 (KC ), 558301 (IL-6), 558267 (buffers)) and BD Fax Bath (BD FACS Vers) using a flow cytometer (BD), according to the method described in the instructions attached to the product. Quantified. The measured serum KC, IL-6, and G-CSF concentrations are shown in FIGS. 10, 11, and 12, respectively.
  • Test Example 4 In vivo activity evaluation test of the preparation by intratracheal administration The preparations 2-5, 2-6, A-5 and A- obtained in Example 30, Example 31, Comparative Example 5 and Comparative Example 6 Each of 6 was subjected to in vivo activity evaluation test by the following method. Each preparation was diluted with physiological saline in accordance with the test. C57BL / 6J mice (9 weeks old, female, purchased from Charles River, Japan) were administered a single dose of bleomycin (manufactured by Nippon Kayaku Co., Ltd.) into the trachea under the condition of 0.012 mg / mouse under isoflurane anesthesia.
  • bleomycin manufactured by Nippon Kayaku Co., Ltd.
  • MRNA was recovered from each homogenate according to the attached protocol of Maxwell RSC simplyRNA Tissue Kit (Promega), and cDNA was prepared according to the attached protocol of SuperScript VILO cDNA Synthesis Kit (Thermo Fisher). Maxwell RSC (Promega) was used for mRNA preparation, and GeneAmp PCR system 9700 (Applied Biosynthesis) was used for cDNA preparation. Thereafter, Tgfb-1 mRNA was quantified in the same manner as in Test Example 1. HPRT1, which is a constitutive expression gene, was used as a correction gene. Cells in BALF were collected by centrifuging BALF collected in a 1.5 mL Eppendorf tube at 2000 rpm at 4 ° C. for 2 minutes to collect precipitated cells.
  • mRNA of the recovered BALF cells was performed by the following method. Buffer RLT (Qiagen, 25 mL) added with 1 mol / L dithiothreitol solution (1 mL) was used as a homogenization buffer. After collecting the cells in BALF, the cells were immediately homogenized with a homogenization buffer. Then, mRNA was recovered from each homogenate according to the protocol attached to Maxwell RSC simplyRNA Cells Kit (Promega), and cDNA was prepared according to the protocol attached to SuperScript VILO cDNA Synthesis Kit (Thermo Fisher). Maxwell RSC (Promega) was used for mRNA preparation, and GeneAmp PCR system 9700 (Applied Biosynthesis) was used for cDNA preparation.
  • Tgfb-1 mRNA was quantified in the same manner as in Test Example 1.
  • HPRT1 which is a constitutive expression gene, was used as a correction gene.
  • the Tgfb-1 protein in BALF was measured using Mouse TGF-beta 1 DuoSet (R & D Systems).
  • FIG. 13 shows the quantification result of left lung mRNA
  • FIG. 14 shows the quantification result of cellular mRNA in BALF
  • FIG. 15 shows the Tgfb-1 protein concentration in BALF.
  • Test Example 1 From Test Example 1, it was clarified that the preparation containing the cationic lipid of the present invention can introduce nucleic acid into cells in vitro. From Test Example 2 (FIGS. 1 to 9), it was clarified that the in vivo irritancy can be reduced more than the preparation containing Compound A by intratracheally administering the preparation containing the cationic lipid of the present invention to normal mice. From Test Example 3 (FIGS. 10 to 12), it was clarified that the in vivo irritancy can be reduced more than the preparation containing Compound A by intravenously administering the preparation containing the cationic lipid of the present invention to normal mice. From Test Example 4 (FIGS.
  • nucleic acid can be introduced into cells.
  • the nucleic acid can be easily introduced into a cell, for example.
  • SEQ ID NO: 1 Hypoxanthine-guanine phosphoribosyltransferase (HPRT1) siRNA sense strand
  • SEQ ID NO: 2 Hypoxanthine-guanine phosphoribosyltransferase (HPRT1) siRNA antisense strand
  • SEQ ID NO: 3 Luciferase (Luc-1) siRNA Sense strand
  • SEQ ID NO: 4 Luciferase (Luc-1) siRNA antisense strand
  • SEQ ID NO: 5 Luciferase (Luc-2) siRNA sense strand
  • SEQ ID NO: 8 Transforming growth factor-beta1 (Tgfb-1) siRNA antisense strand

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof. (In the formula, R1 represents a hydrogen atom or a hydroxymethyl group; n1 represents 1 or 2; A1 and A2 may be the same or different, and each represents a linear C9-C20 alkylene group or the like; M1 and M2 may be the same or different, and each represents -OC(O)-, -C(O)O- or -NHC(O)-; B1 and B2 may be the same or different, and each represents a linear or branched C1-C12 alkyl group or the like; R2 is absent or represents a C1-C3 alkyl group; and in cases where R2 is absent, Y is also absent, while in cases where R2 is a C1-C3 alkyl group, Y is a pharmaceutically acceptable anion.)

Description

カチオン性脂質としての化合物Compounds as cationic lipids
 本発明は、カチオン性脂質としての新規化合物および該新規化合物を含有する医薬組成物等に関する。 The present invention relates to a novel compound as a cationic lipid and a pharmaceutical composition containing the novel compound.
 核酸医薬は近年、遺伝子治療、遺伝子発現抑制、分子間相互作用の阻害等、既存の低分子薬剤や抗体医薬とは異なる作用メカニズムを有する薬剤フォーマットとして注目されている。例えば、短鎖干渉性RNA (small interfering RNA、以下siRNAと略す)は、その相補配列を有する標的mRNAを切断し、目的のタンパク質の発現を抑制する機能を有する。また、染色体のDNAとは独立して存在する、環状構造のplasmid DNA(pDNA)は、細胞内に導入されることで目的のタンパク質を発現させることが可能である。さらに、近年では、人工的に合成されたmRNAを用いて、目的のタンパク質を生体内で発現させる方法が知られている。
 こうした核酸医薬のインビボでの応用としては、核酸単独での投与や、核酸を送達用のキャリアに搭載させる、Drug Delivery System (DDS)技術を活用した核酸の投与が行われている。例えば、核酸送達用のキャリアとしては脂質ナノ粒子を用いたDDS技術の開発が進んでいる。一般に、核酸送達用の脂質ナノ粒子にはカチオン性脂質が含有されている。
 カチオン性脂質は、一つまたは複数の炭化水素基を含む脂質親和性領域と、少なくとも一つのプラスに帯電することのできる親水性領域と、を有する両親媒性分子である。カチオン性脂質と核酸等の巨大分子とが、総荷電としてプラスに帯電する複合体を形成することにより、核酸等の巨大分子が細胞の原形質膜を通過して細胞質に入りやすくなるというプロセスが存在する。このため、カチオン性脂質は有用である。また、インビトロおよびインビボにおいて行うことのできるこのプロセスは、トランスフェクションとして知られている。
In recent years, nucleic acid drugs have attracted attention as drug formats having a mechanism of action different from existing low-molecular drugs and antibody drugs such as gene therapy, gene expression suppression, and intermolecular interaction inhibition. For example, a short interfering RNA (hereinafter abbreviated as siRNA) has a function of cleaving a target mRNA having its complementary sequence and suppressing the expression of the target protein. In addition, circularly-structured plasmid DNA (pDNA) that exists independently of chromosomal DNA can be introduced into cells to express the target protein. Further, in recent years, a method for expressing a target protein in vivo using artificially synthesized mRNA is known.
In vivo applications of such nucleic acid drugs include administration of nucleic acids alone and administration of nucleic acids utilizing Drug Delivery System (DDS) technology in which nucleic acids are loaded on a carrier for delivery. For example, development of DDS technology using lipid nanoparticles as a carrier for nucleic acid delivery is progressing. In general, lipid nanoparticles for nucleic acid delivery contain a cationic lipid.
Cationic lipids are amphiphilic molecules having a lipophilic region containing one or more hydrocarbon groups and at least one hydrophilic region that can be positively charged. A process in which cationic lipids and macromolecules such as nucleic acids form a positively charged complex that makes it easier for nucleic acids and other macromolecules to pass through the plasma membrane of the cell and enter the cytoplasm. Exists. For this reason, cationic lipids are useful. This process, which can be performed in vitro and in vivo, is also known as transfection.
 特許文献1~4は、インビボにて核酸を細胞内に送達するために、および疾患の治療に好適な核酸-脂質粒子組成物に使用するために有用であるカチオン性脂質および該カチオン性脂質を含む脂質粒子を開示している。
 特許文献1には、例えば2,2-ジリノレイル-4-(2-ジメチルアミノエチル)-[1,3]-ジオキソラン; DLin-KC2-DMA)等が開示されている。
Figure JPOXMLDOC01-appb-C000003
 特許文献2には、例えば(6Z,9Z,28Z,31Z)-ヘプタトリアコンタ-6,9,28,31-テトラエン-19-イル 4-(ジメチルアミノ)ブタノアート;DLin-MC3-DMA)等が開示されている。
Figure JPOXMLDOC01-appb-C000004
 特許文献3には、例えば3-[ジ[(9Z,12Z)-オクタデカ-9,12-ジエン-1-イル]アミノ]プロパン-1-オール等が開示されている。
Figure JPOXMLDOC01-appb-C000005
 特許文献4には、例えばビス(2-ヘキシルデシル) 6,6'-[(3-ヒドロキシプロピル)アザンジイル]ジヘキサノアート等が開示されている。
Figure JPOXMLDOC01-appb-C000006
Patent Documents 1 to 4 describe cationic lipids useful for delivering nucleic acids into cells in vivo and for use in nucleic acid-lipid particle compositions suitable for disease treatment, and cationic lipids. Disclosed are lipid particles comprising.
Patent Document 1 discloses, for example, 2,2-dilinoleyl-4- (2-dimethylaminoethyl)-[1,3] -dioxolane; DLin-KC2-DMA).
Figure JPOXMLDOC01-appb-C000003
Patent Document 2 includes, for example, (6Z, 9Z, 28Z, 31Z) -heptatriconta-6,9,28,31-tetraen-19-yl 4- (dimethylamino) butanoate; DLin-MC3-DMA) and the like. It is disclosed.
Figure JPOXMLDOC01-appb-C000004
Patent Document 3 discloses, for example, 3- [di [(9Z, 12Z) -octadeca-9,12-dien-1-yl] amino] propan-1-ol.
Figure JPOXMLDOC01-appb-C000005
Patent Document 4 discloses, for example, bis (2-hexyldecyl) 6,6 ′-[(3-hydroxypropyl) azanediyl] dihexanoate.
Figure JPOXMLDOC01-appb-C000006
 また、非特許文献1には、カチオン性脂質の脂肪鎖の一部に生分解性基を入れることにより、インビボでの核酸の細胞への送達能はそのままに、肝臓での毒性を軽減できることを開示され、例えばジ[(Z)-ノナ-2-エン-1-イル] 9-[[4-(ジメチルアミノ)ブタノイル]オキシ]ヘプタデカンジオアート(Di[(Z)-non-2-en-1-yl] 9-[[4-(dimethylamino)butanoyl]oxy] heptadecanedioate)等のカチオン性脂質が開示されている。
 近年の研究では、このような脂質ナノ粒子を用いた核酸医薬による治療剤が各種臓器に送達されることで、核酸医薬の治療効果を発揮することが報告されている。例えば肺を標的とした呼吸器疾患としては、近年、肺線維症、慢性閉塞性肺疾患(COPD)、気管支喘息等の難治性肺疾患が挙げられるが、いずれの難治性疾患においても既存の薬物療法等では十分な治療効果が得られていない。こうした難治性肺疾患に対して核酸医薬を用いた新しい治療方法が盛んに研究されている。
 非特許文献2には、1,2-ジオレオイル-3-トリメチルアンモニウムプロパン(DOTAP)をカチオン性脂質として用いたリポソームを静脈内投与することによって、siRNAが肺に効率的に送達されること、および肺上皮細胞で目的の遺伝子が抑制されることが開示されている。また特許文献5には、カチオン性のリポソームとプラスミドDNAの複合体とを気管内投与することによって、ヒトの肺内での目的の遺伝子発現が上昇すること、および治療効果がもたらされることが開示されている。一方、特許文献5には、カチオン性のリポソームとプラスミドDNAの複合体との気管内投与が全身性の炎症反応を惹起する結果が開示されており、非特許文献3には、DOTAPを用いた脂質ナノ粒子が各種細胞に対して炎症誘発作用を有することが開示されている。これらのことから、より安全性の高い核酸送達用の脂質ナノ粒子が求められている。
In addition, Non-Patent Document 1 states that by introducing a biodegradable group into a part of the fatty chain of a cationic lipid, the toxicity in the liver can be reduced while maintaining the ability to deliver nucleic acids to cells in vivo. Disclosed, for example, di [(Z) -non-2-en-1-yl] 9-[[4- (dimethylamino) butanoyl] oxy] heptadecandioate (Di [(Z) -non-2-en Cationic lipids such as 1-yl] 9-[[4- (dimethylamino) butanoyl] oxy] heptadecanedioate) are disclosed.
In recent studies, it has been reported that therapeutic agents of nucleic acid drugs using such lipid nanoparticles exhibit the therapeutic effect of nucleic acid drugs by being delivered to various organs. For example, respiratory diseases targeting the lung include refractory lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), bronchial asthma and the like. Sufficient therapeutic effect is not obtained by therapy. New therapeutic methods using nucleic acid drugs for such intractable lung diseases are being actively studied.
Non-Patent Document 2 discloses that siRNA can be efficiently delivered to the lung by intravenous administration of liposomes using 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) as a cationic lipid, and It is disclosed that a gene of interest is suppressed in lung epithelial cells. Patent Document 5 discloses that administration of a cationic liposome and a plasmid DNA complex intratracheally increases target gene expression in the human lung and provides a therapeutic effect. Has been. On the other hand, Patent Document 5 discloses a result that intratracheal administration of a cationic liposome and a plasmid DNA complex induces a systemic inflammatory reaction, and Non-Patent Document 3 uses DOTAP. It is disclosed that lipid nanoparticles have a pro-inflammatory effect on various cells. For these reasons, lipid nanoparticles for nucleic acid delivery with higher safety are demanded.
国際公開第2010/042877号International Publication No. 2010/042877 国際公開第2010/054401号International Publication No. 2010/054401 国際公開第2014/007398号International Publication No. 2014/007398 国際公開第2016/176330号International Publication No. 2016/176330 国際公開第2013/061091号International Publication No.2013 / 061091
 本発明の目的は、例えば、細胞内等に核酸を導入することのできるカチオン性脂質としての新規化合物および該新規化合物を含有する医薬組成物等を提供することにある。 An object of the present invention is to provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into cells and the like, a pharmaceutical composition containing the novel compound, and the like.
 本発明は以下の(1)~(24)に関する。
(1) 下記式(I)で表される化合物、またはその製薬上許容し得る塩。
Figure JPOXMLDOC01-appb-C000008
(式中、
 R1は水素原子、またはヒドロキシメチルであり、
 n1は1または2であり、
 A1およびA2は同一または異なって、直鎖状のC9-C20アルキレンまたはC9-C20アルケニレンであり、
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-または-NHC(O)-であり、
 B1およびB2は同一または異なって、直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルであり、
 R2は存在しないか、またはC1-C3のアルキルであり、
 R2が存在しない場合には、Yも存在せず、
 R2がC1-C3のアルキルである場合には、Yは製薬上許容し得る陰イオンである。)
(2) B1およびB2は同一または異なって、直鎖状のC1-C12アルキルまたはC2-C13アルケニルである、(1)に記載の化合物、またはその製薬上許容し得る塩。
(3) A1およびA2は同一または異なって、直鎖状のC9-C12アルキレンである、(1)または(2)に記載の化合物、またはその製薬上許容し得る塩。
(4) B1-M1-A1およびB2-M2-A2は同一である、(1)~(3)のいずれかに記載の化合物、またはその製薬上許容し得る塩。
(5) R1が水素原子であり、かつn1が2である、(1)~(4)のいずれかに記載の化合物、またはその製薬上許容し得る塩。
(6) R1がヒドロキシメチルであり、かつn1が1である、(1)~(4)のいずれかに記載の化合物、またはその製薬上許容し得る塩。
(7) 下記式(II)で表される化合物、またはその製薬上許容し得る塩。
Figure JPOXMLDOC01-appb-C000009
(式中、
 n2は1または2であり、
 Lは直鎖状のC12-C24アルケニルであり、
 A3は直鎖状のC5-C14アルキレンであり、
 M3は-OC(O)-、-C(O)O-または-NHC(O)-であり、
 B3は直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルである。)
(8) (1)~(7)のいずれかに記載の化合物、またはその製薬上許容し得る塩、および核酸を含有する医薬組成物。
(9) 前記核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である、(8)に記載の医薬組成物。
(10) 前記標的遺伝子が、肝臓、肺、または脾臓において発現する遺伝子である、(9)に記載の医薬組成物。
(11) 前記標的遺伝子が、肺において発現する遺伝子である、(9)に記載の医薬組成物。
(12) 静脈内投与用である、(8)~(11)のいずれかに記載の医薬組成物。
(13) 気道内投与用である、(8)~(11)のいずれかに記載の医薬組成物。
(14) (8)~(13)のいずれかに記載の医薬組成物を含有する、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制剤。
(15) (8)~(13)のいずれかに記載の医薬組成物を含有する、肝臓、肺または脾臓に関連する疾患の治療剤または予防剤。
(16) (8)~(13)のいずれかに記載の医薬組成物を含有する、肺に関連する疾患の治療剤または予防剤。
(17) (8)~(13)のいずれかに記載の医薬組成物を対象に投与する工程を含む、肝臓、肺または脾臓に関連する疾患の治療または予防方法。
(18) (8)~(13)のいずれかに記載の医薬組成物を含有する、肺に関連する疾患の治療剤または予防剤。
(19) (8)~(13)のいずれかに記載の医薬組成物を対象に投与する工程を含む、肺に関連する疾患の治療または予防方法。
(20) (8)~(13)のいずれかに記載の医薬組成物を含有する抗腫瘍剤。
(21) (8)~(13)のいずれかに記載の医薬組成物を対象に投与する工程を含む、悪性腫瘍の治療または予防方法。
(22) 疾患の治療または予防に使用する為の、(8)~(13)のいずれかに記載の医薬組成物。
(23) 肝臓、肺または脾臓に関連する疾患の治療または予防に使用する為の、(22)に記載の医薬組成物。
(24) 肺に関連する疾患の治療または予防に使用する為の、(22)に記載の医薬組成物。
The present invention relates to the following (1) to (24).
(1) A compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000008
(Where
R1 is a hydrogen atom or hydroxymethyl,
n1 is 1 or 2,
A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene,
M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —,
B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl,
R2 is absent or is C1-C3 alkyl;
If R2 does not exist, Y does not exist,
When R2 is C1-C3 alkyl, Y is a pharmaceutically acceptable anion. )
(2) The compound according to (1) or a pharmaceutically acceptable salt thereof, wherein B1 and B2 are the same or different and are linear C1-C12 alkyl or C2-C13 alkenyl.
(3) The compound according to (1) or (2) or a pharmaceutically acceptable salt thereof, wherein A1 and A2 are the same or different and are linear C9-C12 alkylene.
(4) The compound according to any one of (1) to (3), or a pharmaceutically acceptable salt thereof, wherein B1-M1-A1 and B2-M2-A2 are the same.
(5) The compound according to any one of (1) to (4) or a pharmaceutically acceptable salt thereof, wherein R1 is a hydrogen atom and n1 is 2.
(6) The compound or a pharmaceutically acceptable salt thereof according to any one of (1) to (4), wherein R1 is hydroxymethyl and n1 is 1.
(7) A compound represented by the following formula (II) or a pharmaceutically acceptable salt thereof.
Figure JPOXMLDOC01-appb-C000009
(Where
n2 is 1 or 2,
L is a linear C12-C24 alkenyl,
A3 is a linear C5-C14 alkylene,
M3 is -OC (O)-, -C (O) O- or -NHC (O)-
B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl. )
(8) A pharmaceutical composition comprising the compound according to any one of (1) to (7), or a pharmaceutically acceptable salt thereof, and a nucleic acid.
(9) The pharmaceutical composition according to (8), wherein the nucleic acid is a nucleic acid having an action of suppressing the expression of a target gene using RNA interference (RNAi).
(10) The pharmaceutical composition according to (9), wherein the target gene is a gene expressed in the liver, lung, or spleen.
(11) The pharmaceutical composition according to (9), wherein the target gene is a gene expressed in the lung.
(12) The pharmaceutical composition according to any one of (8) to (11), which is for intravenous administration.
(13) The pharmaceutical composition according to any one of (8) to (11), which is for intratracheal administration.
(14) A target gene expression inhibitor using RNA interference (RNAi), comprising the pharmaceutical composition according to any one of (8) to (13).
(15) A therapeutic or prophylactic agent for a disease associated with the liver, lung or spleen, comprising the pharmaceutical composition according to any one of (8) to (13).
(16) A therapeutic or prophylactic agent for diseases related to the lung, comprising the pharmaceutical composition according to any one of (8) to (13).
(17) A method for treating or preventing a disease associated with the liver, lung or spleen, comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
(18) A therapeutic or prophylactic agent for diseases related to the lung, comprising the pharmaceutical composition according to any one of (8) to (13).
(19) A method for treating or preventing a lung-related disease, comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
(20) An antitumor agent comprising the pharmaceutical composition according to any one of (8) to (13).
(21) A method for treating or preventing a malignant tumor, comprising a step of administering the pharmaceutical composition according to any one of (8) to (13) to a subject.
(22) The pharmaceutical composition according to any one of (8) to (13) for use in the treatment or prevention of a disease.
(23) The pharmaceutical composition according to (22) for use in the treatment or prevention of diseases associated with liver, lung or spleen.
(24) The pharmaceutical composition according to (22) for use in the treatment or prevention of diseases related to the lung.
 本発明により、例えば、細胞内等に核酸を導入することのできるカチオン性脂質としての新規化合物および該新規化合物を含有する組成物等を提供することができる。 The present invention can provide, for example, a novel compound as a cationic lipid capable of introducing a nucleic acid into a cell or the like, a composition containing the novel compound, and the like.
実施例26および比較例2で得られた、製剤2および製剤A-2を、それぞれ15 μg/mouseの用量で、ノーマルマウスに気管内投与した後に、肺胞洗浄液(BALF)中に含まれる各サイトカイン量を算出した。図1はKeratinocyte chemoattractant(KC)の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。 Formulation 2 and Formulation A-2 obtained in Example 26 and Comparative Example 2 were each administered in normal mice at a dose of 15 μg / mouse and then contained in alveolar lavage fluid (BALF). Cytokine levels were calculated. FIG. 1 shows the results of Keratinocyte chemoattractant (KC). The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図1と同じBALF中に含まれるサイトカイン量として、図2はInterleukin-6 (IL-6)の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。As the amount of cytokine contained in the same BALF as in FIG. 1, FIG. 2 shows the results of Interleukin-6 (IL-6). The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図1と同じBALF中に含まれるサイトカイン量として、図3はGranulocyte-colony stimulating factor (G-CSF)の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。As the amount of cytokine contained in the same BALF as in FIG. 1, FIG. 3 shows the result of Granulocyte-colony サ イ ト カ イ ン stimulating factorBA (G-CSF). The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 実施例26で得られた製剤2-2、製剤3および製剤13を、それぞれ 20 μg/mouseの用量で、ノーマルマウスに気管内投与した後に、BALF中に含まれる各サイトカイン量を算出した。図4はKCの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。Formulation 2-2, Formulation 3 and Formulation 13 obtained in Example 26 were each intratracheally administered to normal mice at a dose of 20 μg / mouse, and then the amount of each cytokine contained in BALF was calculated. FIG. 4 shows the KC results. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図4と同じBALF中に含まれるサイトカイン量として、図5はIL-6の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。FIG. 5 shows the results of IL-6 as the amount of cytokine contained in the same BALF as FIG. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図4と同じBALF中に含まれるサイトカイン量として、図6はG-CSFの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。FIG. 6 shows the result of G-CSF as the amount of cytokine contained in the same BALF as FIG. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 実施例26で得られた製剤4、製剤6および製剤12を、それぞれ 20μg/mouseの用量で、ノーマルマウスに気管内投与した後に、BALF中に含まれる各サイトカイン量を算出した。図7はKCの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。Each of Formulation 4, Formulation 6 and Formulation 12 obtained in Example 26 was intratracheally administered to normal mice at a dose of 20 μg / mouse, and then the amount of each cytokine contained in BALF was calculated. FIG. 7 shows the KC results. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図7と同じBALF中に含まれるサイトカイン量として、図8はIL-6の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。FIG. 8 shows the result of IL-6 as the amount of cytokine contained in the same BALF as FIG. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図7と同じBALF中に含まれるサイトカイン量として、図9はG-CSFの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。FIG. 9 shows the results of G-CSF as the amount of cytokine contained in the same BALF as FIG. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 実施例28、実施例29、比較例3および比較例4で得られた製剤2-3、製剤2-4、製剤A-3および製剤A-4を、それぞれ 10 mg/kgの用量で、ノーマルマウスに静脈内投与した。投与後24時間後に血液中に含まれる各サイトカイン量を算出した。図10はKCの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。Formulation 2-3, Formulation 2-4, Formulation A-3 and Formulation A-4 obtained in Example 28, Example 29, Comparative Example 3 and Comparative Example 4, respectively, at a dose of 10 mg / kg, normal Mice were administered intravenously. The amount of each cytokine contained in the blood was calculated 24 hours after administration. FIG. 10 shows the KC results. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図10と同じ血液中に含まれるサイトカイン量として、図11はIL-6の結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。As the amount of cytokine contained in the same blood as FIG. 10, FIG. 11 shows the results of IL-6. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). 図10と同じ血液中に含まれるサイトカイン量として、図12はG-CSFの結果を表す。縦軸は各サイトカインの量(pg/mL)、横軸は製剤番号および陰性対照群(saline)を示す。FIG. 12 shows the result of G-CSF as the amount of cytokine contained in the same blood as FIG. The vertical axis represents the amount of each cytokine (pg / mL), and the horizontal axis represents the formulation number and negative control group (saline). ブレオマイシン(日本化薬)を0.012 mg /mouseの条件でC57BL/6Jマウスに気管内投与し、7、9および13日後に、実施例30、実施例31、比較例5および比較例6で得られた製剤2-5、製剤2-6、製剤A-5および製剤A-6を、それぞれ 1 μg/mouseの条件で、気管内投与した。最終投与の24時間後に、BALFおよび左肺を回収した。図13は左肺におけるTgfb-1のmRNA量を定量した結果を表す。検体のmRNA量は、HPRT1のmRNA量に対するTgfb-1のmRNA量を算出し、ノーマルマウスにおける当該値を1としたときの相対的な割合として表示した。縦軸は上記のように算出した検体のmRNA量の相対値を示し、横軸は製剤番号、陰性対照群(saline)を示す。Bleomycin (Nippon Kayaku) was intratracheally administered to C57BL / 6J mice under the conditions of 0.012 mg / mouse and obtained in Example 30, Example 31, Comparative Example 5 and Comparative Example 6 after 7, 9 and 13 days. Formulation 2-5, Formulation 2-6, Formulation A-5 and Formulation A-6 were each administered intratracheally under the condition of 1 μg / mouse. BALF and left lung were collected 24 hours after the last dose. FIG. 13 shows the results of quantifying the amount of Tgfb-1 mRNA in the left lung. The amount of mRNA in the specimen was expressed as a relative ratio when the amount of Tgfb-1 mRNA relative to the amount of HPRT1 mRNA was calculated and the value in normal mice was 1. The vertical axis indicates the relative value of the mRNA amount of the sample calculated as described above, and the horizontal axis indicates the formulation number and the negative control group (saline). 図14は図13の左肺と同時に回収したBALFに含まれる細胞におけるTgfb-1のmRNA量を定量した結果を表す。検体のmRNA量は、HPRT1のmRNA量に対するTgfb-1のmRNA量を算出し、ノーマルマウスにおける当該値を1としたときの相対的な割合として表示した。縦軸は上記のように算出した検体のmRNA量の相対値を示し、横軸は製剤番号、陰性対照群(saline)を示す。FIG. 14 shows the results of quantifying the amount of Tgfb-1 mRNA in cells contained in BALF collected simultaneously with the left lung in FIG. The amount of mRNA in the specimen was expressed as a relative ratio when the amount of Tgfb-1 mRNA relative to the amount of HPRT1 mRNA was calculated and the value in normal mice was 1. The vertical axis indicates the relative value of the mRNA amount of the sample calculated as described above, and the horizontal axis indicates the formulation number and the negative control group (saline). 図15は図14と同じBALFに含まれるTotal Tgfb-1タンパク質量を表す。縦軸はTgfb-1のタンパク質量(pg/mL) 、横軸は製剤番号、陰性対照群(saline)およびノーマルマウスを示す。FIG. 15 shows the total amount of Tgfb-1 protein contained in the same BALF as FIG. The vertical axis represents the amount of protein (pg / mL) of Tgfb-1, and the horizontal axis represents the formulation number, the negative control group (saline), and normal mice.
 本発明の化合物は、
 下記、式(I)
Figure JPOXMLDOC01-appb-C000010
(式中、
 R1は水素原子、またはヒドロキシメチルであり、
 n1は1または2であり、
 A1およびA2は同一または異なって、直鎖状のC9-C20アルキレンまたはC9-C20アルケニレンであり、
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-または-NHC(O)-であり、
 B1およびB2は同一または異なって、直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルであり、
 R2は存在しないか、または炭素数1~3のアルキルであり、
 R2が存在しない場合には、Yも存在せず、
 R2がC1-C3のアルキルである場合には、Yは製薬上許容し得る陰イオンである。)で表される化合物、または
下記式(II)
Figure JPOXMLDOC01-appb-C000011
(式中、
 n2は1または2であり、
 Lは直鎖状のC12-C24アルケニルであり、
 A3は直鎖状のC5-C14アルキレンであり、
 M3は-OC(O)-、-C(O)O-または-NHC(O)-であり、
 B3は直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルである。)で表される化合物である。
 なお、陰イオンであるYが存在する場合は、式(I)中におけるY以外の構造の一部または全体が陽イオンとして存在し、それらの陰イオンと陽イオンとがイオン結合を形成する。
The compounds of the present invention
Formula (I) below
Figure JPOXMLDOC01-appb-C000010
(Where
R1 is a hydrogen atom or hydroxymethyl,
n1 is 1 or 2,
A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene,
M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —,
B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl,
R2 is absent or alkyl having 1 to 3 carbon atoms,
If R2 does not exist, Y does not exist,
When R2 is C1-C3 alkyl, Y is a pharmaceutically acceptable anion. Or a compound represented by the following formula (II)
Figure JPOXMLDOC01-appb-C000011
(Where
n2 is 1 or 2,
L is a linear C12-C24 alkenyl,
A3 is a linear C5-C14 alkylene,
M3 is -OC (O)-, -C (O) O- or -NHC (O)-
B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl. ).
When Y which is an anion is present, a part or the whole of the structure other than Y in the formula (I) exists as a cation, and the anion and the cation form an ionic bond.
 式(I)および式(II)で表される化合物は、二つの炭化水素基を含む脂質親和性領域と、一つのプラスに帯電し得る極性ヘッドグループを含む親水性領域とを有し、カチオン性脂質としての性質を有する。 The compounds represented by formula (I) and formula (II) have a lipophilic region containing two hydrocarbon groups and a hydrophilic region containing one positively chargeable polar head group, and a cation It has properties as a functional lipid.
 以下、式(I)で表される化合物を化合物(I)ということもある。他の式番号の化合物についても同様である。また、以下、式(I)および式(II)で表される化合物、またはその製薬上許容し得る塩を、総称して「カチオン性脂質」ということもある。 Hereinafter, the compound represented by the formula (I) may be referred to as the compound (I). The same applies to the compounds of other formula numbers. Hereinafter, the compounds represented by the formulas (I) and (II), or pharmaceutically acceptable salts thereof may be collectively referred to as “cationic lipids”.
 直鎖状のC9-C20アルキレンとしては、例えばノニレン、デシレン、ウンデシレン、ドデシレン、トリデシレン、テトラデシレン、ヘキサデシレン、オクタデシレン、イコシレン等が挙げられる。
 本発明において、C9-C20アルキレンである場合を例示して説明すると、C9-C20アルキレンのC9-C20は、アルキレンの炭素数が9~20であることを意味する。
Examples of the linear C9-C20 alkylene include nonylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene, hexadecylene, octadecylene, icosylene and the like.
In the present invention, the case of C9-C20 alkylene will be described as an example. C9-C20 in C9-C20 alkylene means that the alkylene has 9 to 20 carbon atoms.
 直鎖状のC9-C20アルケニレンとしては、直鎖状のC9-C20アルキレンにおいて1以上の2重結合を含む基であればよく、例えば(Z)-テトラデカ-9-エニレン、(Z)-ヘキサデカ-9-エニレン、(Z)-ヘプタデカ-9-エニレン、(E)-ヘプタデカ-9-エニレン、(Z)-ヘプタデカ-11-エニレン、(9Z,12Z)-ヘプタデカ-9,12-ジエニレン、(9Z,12Z,15Z)-ヘプタデカ-9,12,15-トリエニレン、(Z)-オクタカ-6-エニレン、(Z)-オクタデカ-9-エニレン、(E)-オクタデカ-9-エニレン、(Z)-オクタデカ-11-エニレン、(9Z,12Z)-オクタデカ-9,12-ジエニレン、および(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニレン、並びにこれらの構造異性体が挙げられる。直鎖状のC9-C20アルケニレンとしての記載において、(Z)-テトラデカ-9-エニレンを例にして説明すると、9-は、窒素原子に結合するA1およびA2における炭素原子を1位とした場合のA1およびA2であるアルケニレンにおける置換位置を表す。 The linear C9-C20 alkenylene may be a group containing one or more double bonds in the linear C9-C20 alkylene, such as (Z) -tetradec-9-enylene, (Z) -hexadecaylene. -9-Enylene, (Z) -Heptadeca-9-Enylene, (E) -Heptadeca-9-Enylene, (Z) -Heptadeca-11-Enylene, (9Z, 12Z) -Heptadeca-9,12-Dienylene, ( 9Z, 12Z, 15Z) -heptadeca-9,12,15-trienylene, (Z) -octaca-6-enylene, (Z) -octadeca-9-enylene, (E) -octadeca-9-enylene, (Z) -Octadeca-11-enylene, (9Z, 12Z) -octadeca-9,12-dienylene, and (9Z, 12Z, 15Z) -octadeca-9,12,15-trienylene, and their structural isomers. In the description of linear C9-C20 alkenylene, (Z) -tetradec-9-enylene will be described as an example. When 9- is the first carbon atom in A1 and A2 bonded to the nitrogen atom Represents the substitution position in alkenylene which is A1 and A2.
 直鎖状または分岐状のC1-C12アルキルとしては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル、ヘキシル、オクチル、ノニル、2-ノニル、デシル、およびドデシル、並びにこれらの構造異性体が挙げられる。分岐状のC1-C12アルキルとしての記載において、2-ノニルを例にして説明すると、2-は、B1、B2およびB3であるアルキルにおける末端の炭素原子のうち、M1、M2およびM3に結合する位置により近い末端の炭素原子を1位とした場合の、B1、B2およびB3であるアルキルにおけるM1およびM2に結合する位置を表す。また、このような説明は、後述する分岐状のC2-C13のアルケニルについても同様に適用される。 Examples of linear or branched C1-C12 alkyl include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, hexyl, octyl, nonyl, 2-nonyl, decyl, and dodecyl, and structural isomers thereof. Is mentioned. In the description of branched C1-C12 alkyl, when 2-nonyl is described as an example, 2- is bonded to M1, M2, and M3 among terminal carbon atoms in the alkyl that is B1, B2, and B3. This represents the position of bonding to M1 and M2 in the alkyl as B1, B2 and B3 when the terminal carbon atom closer to the position is the 1st position. Such a description is similarly applied to branched C2-C13 alkenyl described later.
 直鎖状または分岐状のC2-C13アルキルとしては、例えばエチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルおよびトリデシル、並びにこれらの構造異性体が挙げられる。 Examples of linear or branched C2-C13 alkyl include ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl and tridecyl, and structural isomers thereof.
 直鎖状または分岐状のC2-C13のアルケニルとしては、直鎖状または分岐状のC2-C13アルキルにおいて1以上の2重結合を含む基であればよく、例えばビニル、アリル、(Z)-ブタ-2-エニル、(Z)-ペンタ-2-エニル、(Z)-ヘキサ-2-エニル、(Z)-ヘプタ-2-エニル、(Z)-オクタ-2-エニル、オクタ-7-エニル、(E)-3,7-ジメチルオクタ-2,6-ジエン-1-イル(ゲラニル)、3,7-ジメチルオクタ-6-エン-1-イル(シトロネリル)、(Z)-ノナ-2-エニル、(Z)-ノナ-3-エニル、(Z)-ノナ-5-エニル、(E)-ノナ-2-エニル、ノナ-8-エニル、(Z)-ウンデカ-2-エニル、ウンデカ-10-エニル、(Z)-ドデカ-2-エニルおよび(Z)-トリデカ-2-エニル、並びにこれらの構造異性体が挙げられる。直鎖状または分岐状のC2-C13のアルケニルとしての記載において、(Z)-ブタ-2-エニルを例にして説明すると、-2-は、B1、B2およびB3であるアルケニルにおける末端の炭素原子のうち、M1、M2およびM3に結合する位置により近い末端の炭素原子を1位とした場合の、B1、B2およびB3であるアルケニルおける二重結合の位置を表す。 The linear or branched C2-C13 alkenyl may be a group containing one or more double bonds in the linear or branched C2-C13 alkyl, such as vinyl, allyl, (Z)- But-2-enyl, (Z) -pent-2-enyl, (Z) -hex-2-enyl, (Z) -hept-2-enyl, (Z) -oct-2-enyl, octa-7- Enyl, (E) -3,7-dimethylocta-2,6-dien-1-yl (geranyl), 3,7-dimethyloct-6-en-1-yl (citronellyl), (Z) -nona- 2-enyl, (Z) -nona-3-enyl, (Z) -nona-5-enyl, (E) -nona-2-enyl, nona-8-enyl, (Z) -undec-2-enyl, Examples include undeca-10-enyl, (Z) -dodec-2-enyl and (Z) -tridec-2-enyl, and their structural isomers. In the description of linear or branched C2-C13 as alkenyl, (Z) -but-2-enyl will be described as an example. -2- is the terminal carbon in alkenyl which is B1, B2 and B3. Of the atoms, the position of the double bond in the alkenyl as B1, B2 and B3 when the terminal carbon atom closer to the position of bonding to M1, M2 and M3 is defined as the 1st position.
 C1-C3アルキルとしては、例えばメチル、エチル、プロピル、イソプロピル、シクロプロピル等が挙げられる。 Examples of C1-C3 alkyl include methyl, ethyl, propyl, isopropyl, cyclopropyl and the like.
 直鎖状のC12-C24アルキルとしては、例えばドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、オクタデシル、ノナデシル、イコシル、ドコシル、テトラコシル等が挙げられる。 Examples of the linear C12-C24 alkyl include dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, docosyl, tetracosyl and the like.
 直鎖状のC12-C24アルケニルとしては、直鎖状のC12-C24アルキルにおいて1以上の2重結合を含む基であればよく、例えば(Z)-テトラデカ-9-エニル、(Z)-ヘキサデカ-9-エニル、(Z)-オクタデカ-6-エニル、(Z)-オクタデカ-9-エニル、(E)-オクタデカ-9-エニル、(Z)-オクタデカ-11-エニル、(9Z,12Z)-オクタデカ-9,12-ジエニル、(9Z,12Z,15Z)-オクタデカ-9,12,15-トリエニル等が挙げられる。 The linear C12-C24 alkenyl may be a group containing one or more double bonds in the linear C12-C24 alkyl, such as (Z) -tetradec-9-enyl, (Z) -hexadeca -9-enyl, (Z) -octadeca-6-enyl, (Z) -octadeca-9-enyl, (E) -octadeca-9-enyl, (Z) -octadeca-11-enyl, (9Z, 12Z) -Octadec-9,12-dienyl, (9Z, 12Z, 15Z) -octadeca-9,12,15-trienyl and the like.
 直鎖状のC5-C14アルキレンとしては、例えばペンチレン、ヘキシレン、オクチレン、デシレン、ウンデシレン、ドデシレン、トリデシレン、テトラデシレン等が挙げられる。 Examples of the linear C5-C14 alkylene include pentylene, hexylene, octylene, decylene, undecylene, dodecylene, tridecylene, tetradecylene and the like.
 本発明においては、直鎖状または分岐状のC2-C13アルケニルの二重結合にメチレンビラジカルが形式的に付加したシクロプロパン環を有する基も、直鎖状または分岐状のC2-C13アルケニルに包含される。さらに、直鎖状のC9-C20アルケニレンおよび直鎖状のC12-C24アルケニルの場合も同様に、直鎖状または分岐状のC2-C13アルケニルに包含される。
 (Z)-ノナ-2-エニルを例にして説明すると、シクロプロパン環を有する以下の基も、本発明における直鎖または分岐状のC2-C13アルケニルに包含される。
In the present invention, a linear or branched C2-C13 alkenyl includes a group having a cyclopropane ring in which a methylene biradical is added formally to a double bond of a linear or branched C2-C13 alkenyl. Is done. Furthermore, linear C9-C20 alkenylene and linear C12-C24 alkenyl are also included in linear or branched C2-C13 alkenyl.
Taking (Z) -non-2-enyl as an example, the following groups having a cyclopropane ring are also included in the linear or branched C2-C13 alkenyl in the present invention.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 本発明において、R2がC1-C3のアルキルである場合には、Yは製薬上許容し得る陰イオンであり、その製薬上許容し得る陰イオンとしては、例えば塩化物イオン、臭化物イオン、硝酸イオン、硫酸イオン、リン酸イオン等の無機酸イオンならびに酢酸イオン、シュウ酸イオン、マレイン酸イオン、フマル酸イオン、クエン酸イオン、安息香酸イオン、メタンスルホン酸イオン等の有機酸イオン等が挙げられる。 In the present invention, when R2 is C1-C3 alkyl, Y is a pharmaceutically acceptable anion. Examples of the pharmaceutically acceptable anion include chloride ion, bromide ion, and nitrate ion. And inorganic acid ions such as sulfate ion and phosphate ion, and organic acid ions such as acetate ion, oxalate ion, maleate ion, fumarate ion, citrate ion, benzoate ion, and methanesulfonate ion.
 R1が水素原子である場合には、n1は2であることが好ましい。 N1 is preferably 2 when R1 is a hydrogen atom.
 R1がヒドロキシメチルである場合には、n1は1であることが好ましい。 N1 is preferably 1 when R1 is hydroxymethyl.
 A1およびA2は同一または異なって、直鎖状のC9-C20アルキレンまたはC9-C20アルケニレンであり、直鎖状のC9-C20のアルキレンであることが好ましく、直鎖状のC9-C15のアルキレンであることがより好ましく、直鎖状のC9-C12のアルキレンであることがさらに好ましい。
 A1およびA2は、好ましくはノニレン、ウンデシレン、トリデシレン、ペンタデシレンであり、より好ましくはノニレン、ウンデシレンである。
 A1およびA2は同一であることが好ましい。
A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene, preferably linear C9-C20 alkylene, preferably linear C9-C15 alkylene. More preferably, it is more preferably a linear C9-C12 alkylene.
A1 and A2 are preferably nonylene, undecylene, tridecylene, or pentadecylene, and more preferably nonylene or undecylene.
A1 and A2 are preferably the same.
 M1およびM2は同一または異なって、-OC(O)-、-C(O)O-または-NHC(O)-であり、-OC(O)-または-C(O)O-であることが好ましく、M1およびM2は同一であることがより好ましい。
 M1およびM2としての記載において、M1およびM2が-OC(O)-である場合を例にして説明すると、-OC(O)-は、B1-OC(O)-A1またはB2-OC(O)-A2として結合していることを意味する。
M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —, and are —OC (O) — or —C (O) O—. And M1 and M2 are more preferably the same.
In the description of M1 and M2, in the case where M1 and M2 are —OC (O) —, for example, —OC (O) — represents B1-OC (O) -A1 or B2-OC (O ) -A2 means binding.
 B1およびB2は同一または異なって、直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルであり、直鎖状のC1-C12アルキルまたはC2-C13アルケニルであることが好ましく、同一であり、直鎖状のC1-C12アルキルまたはC2-C13アルケニルであることがより好ましく、同一であり、直鎖状のC2-C13アルケニルであることがさらに好ましく、同一であり、直鎖状のC5-C11アルケニルであることがよりさらに好ましく、同一であり、直鎖状のC7-C10アルケニルであることがさらにより好ましい。
 B1およびB2は、好ましくは(Z)-ヘプタ-2-エニル、(Z)-ヘプタ-3-エニル、ヘプタ-8-エニル、(Z)-ノナ-2-エニル、(Z)-ノナ-3-エニル、ノナ-8-エニルであり、より好ましくは(Z)-ノナ-2-エニル,
(Z)-ノナ-3-エニル、ノナ-8-エニルである。
B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl, preferably linear C1-C12 alkyl or C2-C13 alkenyl, and are the same More preferably, they are linear C1-C12 alkyl or C2-C13 alkenyl, more preferably the same, linear C2-C13 alkenyl, and the same, linear C5-C13 alkenyl. It is even more preferred that they are C11 alkenyl, and even more preferred that they are the same and linear C7-C10 alkenyl.
B1 and B2 are preferably (Z) -hept-2-enyl, (Z) -hept-3-enyl, hepta-8-enyl, (Z) -non-2-enyl, (Z) -nona-3 -Enyl, nona-8-enyl, more preferably (Z) -non-2-enyl,
(Z) -non-3-enyl and non-8-enyl.
 B1-M1-A1およびB2-M2-A2は同一であることが好ましい。B1-M1-A1およびB2-M2-A2は同一または異なって、以下の構造(1)~(6)であることが好ましく、同一であり、以下の構造(1)~(6)であることがより好ましく、同一であり、以下の構造(1)~(4)であることがさらに好ましい。 B1-M1-A1 and B2-M2-A2 are preferably the same. B1-M1-A1 and B2-M2-A2 are the same or different and are preferably the following structures (1) to (6), preferably the same and the following structures (1) to (6) Are more preferably the same and more preferably the following structures (1) to (4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記構造(1)~(6)において、波線の結合は、式(I)中の窒素原子への結合手である。
 n3は、2~10の整数であることが好ましく、2~5の整数であることがより好ましく、2、4または5であることがさらに好ましい。
In the structures (1) to (6), the wavy bond is a bond to the nitrogen atom in the formula (I).
n3 is preferably an integer of 2 to 10, more preferably an integer of 2 to 5, and further preferably 2, 4 or 5.
 R2は存在せず、Yも存在しないことが好ましい。 It is preferable that R2 does not exist and Y does not exist.
 本発明の式(I)で表される化合物の製薬上許容し得る塩としては、例えば塩酸塩、臭酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、シュウ酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、安息香酸塩、メタンスルホン酸塩等が挙げられる。 Examples of the pharmaceutically acceptable salt of the compound represented by the formula (I) of the present invention include hydrochloride, odorate, nitrate, sulfate, phosphate, acetate, oxalate, maleate, Examples include fumarate, citrate, benzoate, and methanesulfonate.
 n2は、2であることが好ましい。 N2 is preferably 2.
 Lは、直鎖状のC12-C24アルケニルであり、直鎖状のC14-C18のアルケニルであることが好ましく、直鎖状のC16-C18のアルケニルであることがより好ましく、直鎖状のC18のアルケニルであることがさらに好ましい。 L is linear C12-C24 alkenyl, preferably linear C14-C18 alkenyl, more preferably linear C16-C18 alkenyl, and linear C18 More preferably, it is alkenyl.
 A3は、直鎖状のC5-C14アルキレンであり、直鎖状のC5-C10アルキレンであることが好ましく、直鎖状のC5-C7であることがより好ましい。 A3 is a linear C5-C14 alkylene, preferably a linear C5-C10 alkylene, and more preferably a linear C5-C7.
 M3は、-OC(O)-、-C(O)O-または-NHC(O)-であり、-OC(O)-または-C(O)O-であることが好ましく、-OC(O)-であることがより好ましい。 M3 is -OC (O)-, -C (O) O- or -NHC (O)-, preferably -OC (O)-or -C (O) O-, O)-is more preferable.
 B3は、直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルであり、直鎖状のC1-C12アルキルまたはC2-C13アルケニルであることが好ましく、直鎖状のC2-C13アルケニルであることがより好ましい。 B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl, preferably linear C1-C12 alkyl or C2-C13 alkenyl, and is linear C2-C13 alkenyl. More preferably.
 B3-M3-A3は、以下の構造(1)~(6)であることが好ましく、以下の構造(1)~(4)であることがさらに好ましい。 B3-M3-A3 preferably has the following structures (1) to (6), and more preferably has the following structures (1) to (4).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記構造(7)~(12)において、波線の結合は、式(II)中の窒素原子への結合手である。
 n4は、1~8の整数であることが好ましく、1~5の整数であることがより好ましく、1~3の整数であることがさらに好ましく、1または3であることがよりさらに好ましい。
In the structures (7) to (12), the wavy bond is a bond to the nitrogen atom in the formula (II).
n4 is preferably an integer of 1 to 8, more preferably an integer of 1 to 5, still more preferably an integer of 1 to 3, and even more preferably 1 or 3.
 本発明の式(I)および式(II)で表わされる化合物、またはその製薬上許容し得る塩(以下これらを総称してカチオン性脂質ともいう)の製造法について説明する。
 以下に示す製造法において、定義した基が該製造法の条件下で変化するかまたは該製造法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入および除去方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法]等を用いることにより、目的化合物を製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
A method for producing the compounds represented by the formulas (I) and (II) of the present invention, or pharmaceutically acceptable salts thereof (hereinafter collectively referred to as cationic lipids) will be described.
In the production method shown below, when the defined group changes under the conditions of the production method or is inappropriate for carrying out the production method, a method for introducing and removing a protective group commonly used in organic synthetic chemistry [ For example, use the method described in Protective Groups in Organic Synthesis, third edition, TW Greene, John Wiley & Sons Inc. (1999), etc.] Thus, the target compound can be produced. Further, the order of reaction steps such as introduction of substituents can be changed as necessary.
 製造法1
 化合物(Ia)または化合物(Ib)は、例えば、以下の方法によって製造することができる。
Production method 1
Compound (Ia) or compound (Ib) can be produced, for example, by the following method.
Figure JPOXMLDOC01-appb-C000015
(式中、A1、A2、M1、M2、B1、B2、n1、R1およびYはそれぞれ前記と同義であり、R2'はC1-C3アルキルを表し、X1、X2およびX3は同一または異なって、塩素原子、臭素原子、ヨウ素原子、トリフルオロメタンスルホニルオキシ、メタンスルホニルオキシ、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシ等の脱離基を表す)
Figure JPOXMLDOC01-appb-C000015
(Wherein, A1, A2, M1, M2, B1, B2, n1, R1 and Y are as defined above, R2 ′ represents C1-C3 alkyl, and X1, X2 and X3 are the same or different, (Representing leaving groups such as chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyloxy, p-toluenesulfonyloxy, etc.)
 工程1~3
 化合物(IIIf)は、化合物(IIIa)と化合物(IIIb)を、化合物(IIIc)と化合物(IIId)を、または化合物(IIIa)と化合物(IIIe)を、それぞれ無溶媒でまたは溶媒中、1~10当量の縮合剤と、1~10当量の塩基の存在下、室温~200℃で、5分間~50時間反応させることにより製造することができる。
Process 1-3
Compound (IIIf) is compound (IIIa) and compound (IIIb), compound (IIIc) and compound (IIId), or compound (IIIa) and compound (IIIe), each without solvent or in a solvent. It can be produced by reacting with 10 equivalents of a condensing agent in the presence of 1 to 10 equivalents of base at room temperature to 200 ° C. for 5 minutes to 50 hours.
 溶媒としては、例えばジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン等が挙げられ、これらは単独でまたは混合して用いることができる。 Examples of the solvent include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methylpyrrolidone, pyridine and the like can be mentioned, and these can be used alone or in combination.
 縮合剤としては、例えば塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、N,N'-ジシクロヘキシルカルボジイミド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2- イル)-4-メチルモルホリニウムクロリドn水和物、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸塩、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N',-テトラメチルウロニウムヘキサフルオロリン酸塩等が挙げられる。 Examples of the condensing agent include 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-dicyclohexylcarbodiimide, 4- (4,6-dimethoxy-1,3,5-triazine-2- ジ ン yl ) -4-Methylmorpholinium chloride n hydrate, 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate, O- (7-azabenzotriazol-1-yl) -N , N, N ′, N ′,-tetramethyluronium hexafluorophosphate and the like.
 塩基としては、例えば炭酸カリウム、炭酸セシウム、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン等が挙げられる。 Examples of the base include potassium carbonate, cesium carbonate, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine and the like.
 化合物(IIIa)は市販品、または公知の方法[例えば「新実験化学講座14 有機化合物の合成と反応(II)」、初版、丸善(1977年)、「March's  Advanced Organic Chemistry:Reactions, Mechanisms, And Structure, 7thEdition」]に記載の方法を組み合わせること、もしくはそれに準じた方法で得ることができる。 Compound (IIIa) is a commercially available product or a known method [for example, “New Experimental Chemistry Lecture 14 Synthesis and Reaction of Organic Compounds (II)”, first edition, Maruzen (1977), “March's Advanced Organic Chemistry: Reactions, Mechanisms, And It can be obtained by combining the methods described in “Structure, 7 th Edition”] or a method according thereto.
 化合物(IIIb)、化合物(IIIc)、化合物(IIId)および化合物(IIIe)は市販品として得ることができる。 Compound (IIIb), compound (IIIc), compound (IIId) and compound (IIIe) can be obtained as commercial products.
 工程4および工程5
 化合物(IVb)は、化合物(IVa)と化合物(IIIf)を、無溶媒でまたは溶媒中、1~500当量の塩基の存在下、室温~200℃で、5分間~50時間反応させることにより製造することができる。さらに、化合物(Ia)は、化合物(IVb)と化合物(IIIg)を、無溶媒でまたは溶媒中、1~500当量の塩基の存在下、室温~200℃で、5分間~50時間反応させることにより製造することができる。
Step 4 and Step 5
Compound (IVb) is produced by reacting compound (IVa) and compound (IIIf) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. can do. Further, compound (Ia) is obtained by reacting compound (IVb) and compound (IIIg) without solvent or in the presence of 1 to 500 equivalents of a base at room temperature to 200 ° C. for 5 minutes to 50 hours. Can be manufactured.
 溶媒としては、例えばエタノール、トルエン、アセトニトリル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン等が挙げられ、これらは単独でまたは混合して用いることができる。 Examples of the solvent include ethanol, toluene, acetonitrile, tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, pyridine and the like. These can be used alone or in combination.
 塩基としては、例えばトリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)等が挙げられる。 Examples of the base include triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), and the like.
 A1とA2およびB1とB2が同一である場合の化合物(Ia)は、工程4において、2当量以上の化合物(IIIf)を用いることにより製造することができる。 Compound (Ia) in the case where A1 and A2 and B1 and B2 are the same can be produced by using 2 equivalents or more of compound (IIIf) in Step 4.
 化合物(IIIg)は化合物(IIIf)と同様の方法で製造することができる。 Compound (IIIg) can be produced in the same manner as Compound (IIIf).
 化合物(IVa)は市販品として得ることができる Compound (IVa) can be obtained as a commercial product
 工程6
 化合物(Ib)は化合物(Ia)と1等量以上の化合物(IIIh)を、無溶媒でまたは溶媒中、0℃~100℃で、5分間~100時間反応させることにより製造することができる。また必要に応じて、市販の陰イオン交換樹脂等の適切な方法を用いて、Yを望みの製薬上許容し得る陰イオンに変更することができる。
Process 6
Compound (Ib) can be produced by reacting compound (Ia) with one or more equivalents of compound (IIIh) without solvent or in a solvent at 0 ° C. to 100 ° C. for 5 minutes to 100 hours. If necessary, Y can be changed to a desired pharmaceutically acceptable anion by using an appropriate method such as a commercially available anion exchange resin.
 溶媒としては、例えば、工程1~3で例示したものが挙げられる。 Examples of the solvent include those exemplified in Steps 1 to 3.
 化合物(IIIh)は市販品として得ることができる。 Compound (IIIh) can be obtained as a commercial product.
 製造法2
 化合物(II)は、例えば、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000016
(式中、L、A3、M3、B3、n2はそれぞれ前記と同義であり、X4およびX5は同一または異なって、塩素原子、臭素原子、ヨウ素原子、トリフルオロメタンスルホニルオキシ、メタンスルホニルオキシ、ベンゼンスルホニルオキシ、p-トルエンスルホニルオキシ等の脱離基を表す)
Production method 2
Compound (II) can be produced, for example, by the following method.
Figure JPOXMLDOC01-appb-C000016
(Wherein, L, A3, M3, B3, n2 are as defined above, and X4 and X5 are the same or different, chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy, methanesulfonyloxy, benzenesulfonyl (Representing a leaving group such as oxy, p-toluenesulfonyloxy)
 工程7および工程8
 化合物(IVd)は、化合物(IIIi)と化合物(IVc)を、無溶媒でまたは溶媒中、1~500当量の塩基の存在下、室温~200℃で、5分間~50時間反応させることにより製造することができる。さらに、化合物(II)は、化合物(IVd)と化合物(IIIj)を、無溶媒でまたは溶媒中、1~500当量の塩基の存在下、室温~200℃で、5分間~50時間反応させることにより製造することができる。
Step 7 and Step 8
Compound (IVd) is produced by reacting compound (IIIi) and compound (IVc) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. can do. Further, compound (II) is obtained by reacting compound (IVd) and compound (IIIj) in the presence of 1 to 500 equivalents of a base without solvent or in a solvent at room temperature to 200 ° C. for 5 minutes to 50 hours. Can be manufactured.
 溶媒および塩基としては、工程4および工程5で例示したものが挙げられる。 Examples of the solvent and base include those exemplified in Step 4 and Step 5.
 化合物(IIIi)および化合物(IVc)は市販品として得ることができる。 Compound (IIIi) and compound (IVc) can be obtained as commercial products.
 化合物(IIIi)は化合物(IIIf)と同様の方法にて製造することができる。 Compound (IIIi) can be produced in the same manner as Compound (IIIf).
 上記各製造法における中間体および目的化合物は、有機合成化学で常用される分離精製法、例えば、ろ過、抽出、洗浄、乾燥、濃縮、再結晶および/または各種クロマトグラフィー等により単離精製することができる。中間体を特に精製することなく次の反応に供してもよい。 The intermediates and target compounds in the above production methods should be isolated and purified by separation and purification methods commonly used in organic synthetic chemistry, such as filtration, extraction, washing, drying, concentration, recrystallization, and / or various chromatography. Can do. The intermediate may be subjected to the next reaction without particular purification.
 本発明の化合物(I)において、構造中の窒素原子上の孤立電子対に水素イオンが配位してもよく、その場合には、製薬上許容し得る陰イオンと塩を形成していてもよく、本発明においては、式(I)で表される化合物、またはその製薬上許容し得る塩として、構造中の窒素原子上の孤立電子対に水素イオンが配位したカチオン性脂質も包含される。 In the compound (I) of the present invention, a hydrogen ion may be coordinated to a lone electron pair on the nitrogen atom in the structure, and in that case, a salt with a pharmaceutically acceptable anion may be formed. In the present invention, a cationic lipid in which a hydrogen ion is coordinated to a lone pair on a nitrogen atom in the structure is also included as a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof. The
 本発明の化合物(I)および化合物(II)の中には、幾何異性体もしくは光学異性体等の立体異性体または互変異性体等が存在し得るものもあるが、本発明の化合物(I)および化合物(II)は、これらを含め、全ての可能な異性体およびそれらの混合物を包含する。 Among the compounds (I) and (II) of the present invention, there may be stereoisomers such as geometric isomers or optical isomers or tautomers, and the like. ) And compound (II) include all possible isomers and mixtures thereof, including these.
 本発明の化合物(I)および化合物(II)中の各原子の一部またはすべては、それぞれ対応する同位体原子で置き換わっていてもよく、化合物(I)および化合物(II)は、これら同位体原子で置き換わった化合物も包含する。例えば、化合物(I)および化合物(II)中の水素原子の一部またはすべては、原子量2の水素原子(重水素原子)であってもよい。 A part or all of each atom in the compound (I) and compound (II) of the present invention may be replaced by a corresponding isotope atom, respectively, and the compound (I) and the compound (II) are those isotopes. Also includes compounds replaced with atoms. For example, some or all of the hydrogen atoms in the compounds (I) and (II) may be hydrogen atoms having a weight of 2 (deuterium atoms).
 本発明の化合物(I)および化合物(II)中の各原子の一部またはすべてが、それぞれ対応する同位体原子で置き換わった化合物は、市販のビルディングブロックを用いて、上記各製造法と同様な方法で製造することができる。また、化合物(I)および化合物(II)中の水素原子の一部またはすべてが重水素原子で置き換わった化合物は、例えば、イリジウム錯体を触媒として用い、重水を重水素源として用いてアルコール、カルボン酸等を重水素化する方法[ジャーナル・オブ・アメリカン・ケミカル・ソサイアティ(J.Am.Chem.Soc.), Vol.124,No.10,2092(2002)参照]等を用いて製造することができる。 Compounds in which some or all of the respective atoms in the compounds (I) and (II) of the present invention are replaced by the corresponding isotope atoms are the same as in the above production methods using commercially available building blocks. It can be manufactured by the method. In addition, compounds in which some or all of the hydrogen atoms in the compounds (I) and (II) are replaced with deuterium atoms include, for example, alcohols, carboxyls using iridium complexes as catalysts and deuterium as a deuterium source. Manufacturing using a method of deuterating acids etc. [Journal of American Chemical Society (J. Am. Chem. Soc.), Vol. 124, No. 10, 2092 (2002)] etc. Can do.
 本発明の化合物(I)および化合物(II)の具体例を表1~表6に示す。ただし、本発明の化合物(I)および化合物(II)はこれらに限定されるものではない。 Specific examples of compound (I) and compound (II) of the present invention are shown in Tables 1 to 6. However, the compound (I) and the compound (II) of the present invention are not limited to these.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明で用いられる核酸としては、例えばヌクレオチドおよび/またはヌクレオチドと同等の機能を有する分子が重合した分子であれば、いかなる分子であってもよい。
 核酸としては、例えばリボヌクレオチドの重合体であるリボ核酸(RNA)、デオキシリボヌクレオチドの重合体であるデオキシリボ核酸(DNA)、RNAとDNAとからなるキメラ核酸、これらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体等が挙げられる。
 ヌクレオチドおよび/またはヌクレオチドと同等の機能を有する分子が重合した分子の構造を少なくとも一部に含む誘導体も、本発明で用いられる核酸に含まれる。
 本発明において、ウラシルUと、チミンTとは、それぞれ読み替えることができる。
The nucleic acid used in the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
Examples of the nucleic acid include ribonucleic acid (RNA) which is a polymer of ribonucleotides, deoxyribonucleic acid (DNA) which is a polymer of deoxyribonucleotides, chimeric nucleic acids composed of RNA and DNA, and at least one nucleotide of these nucleic acids. Examples thereof include nucleotide polymers substituted with molecules having functions equivalent to nucleotides.
A nucleic acid used in the present invention also includes a derivative containing at least a part of the structure of a molecule obtained by polymerizing nucleotides and / or molecules having functions equivalent to nucleotides.
In the present invention, uracil U and thymine T can be replaced with each other.
 ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等が挙げられる。 Examples of molecules having functions equivalent to nucleotides include nucleotide derivatives.
 ヌクレオチド誘導体としては、例えばヌクレオチドに修飾を施した分子であればいかなる分子であってもよいが、例えばRNAまたはDNAと比較して、ヌクレアーゼ耐性を向上させるかもしくはその他の分解因子から安定化させるため、相補鎖核酸とのアフィニティーをあげるため、細胞透過性をあげるため、または可視化させるために、リボヌクレオチドまたはデオキシリボヌクレオチドに修飾を施した分子等が好適に用いられる。 The nucleotide derivative may be any molecule as long as it is a modified molecule, for example, in order to improve nuclease resistance or stabilize from other degradation factors compared to RNA or DNA, for example. In order to increase affinity with complementary strand nucleic acid, to increase cell permeability, or to visualize, a molecule in which ribonucleotide or deoxyribonucleotide is modified is preferably used.
 ヌクレオチド誘導体としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチド、塩基修飾ヌクレオチド等が挙げられる。 Examples of nucleotide derivatives include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and the like.
 糖部修飾ヌクレオチドとしては、例えばヌクレオチドの糖の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2'-修飾ヌクレオチドが好ましく用いられる。 The sugar-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the sugar of the nucleotide is modified or substituted with any substituent, or substituted with any atom. '-Modified nucleotides are preferably used.
 糖部修飾ヌクレオチドにおける修飾基としては、例えば、2'-シアノ、2'-アルキル、2'-置換アルキル、2'-アルケニル、2'-置換アルケニル、2'-ハロゲン、2'-O-シアノ、2'-O-アルキル、2'-O-置換アルキル、2'-O-アルケニル、2'-O-置換アルケニル、2'-S-アルキル、2'-S-置換アルキル、2'-S-アルケニル、2'-S-置換アルケニル、2'-アミノ、2'-NH-アルキル、2'-NH-置換アルキル、2'-NH-アルケニル、2'-NH-置換アルケニル、2'-SO-アルキル、2'-SO-置換アルキル、2'-カルボキシ、2'-CO-アルキル、2'-CO-置換アルキル、2'-Se-アルキル、2'-Se-置換アルキル、2'-SiH2-アルキル、2'-SiH2-置換アルキル、2'-ONO2、2'-NO2、2'-N3、2'-アミノ酸残基(アミノ酸のカルボン酸から水酸基が除去されたもの)、2'-O-アミノ酸残基(前記アミノ酸残基と同義)等が挙げられる。 Examples of the modifying group in the sugar moiety-modified nucleotide include 2′-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-alkenyl, 2′-substituted alkenyl, 2′-halogen and 2′-O-cyano. 2'-O-alkyl, 2'-O-substituted alkyl, 2'-O-alkenyl, 2'-O-substituted alkenyl, 2'-S-alkyl, 2'-S-substituted alkyl, 2'-S -Alkenyl, 2'-S-substituted alkenyl, 2'-amino, 2'-NH-alkyl, 2'-NH-substituted alkyl, 2'-NH-alkenyl, 2'-NH-substituted alkenyl, 2'-SO -Alkyl, 2'-SO-substituted alkyl, 2'-carboxy, 2'-CO-alkyl, 2'-CO-substituted alkyl, 2'-Se-alkyl, 2'-Se-substituted alkyl, 2'-SiH 2 -alkyl, 2'-SiH 2 -substituted alkyl, 2'-ONO 2 , 2'-NO 2 , 2'-N 3 , 2'-amino acid residue (hydroxyl group removed from carboxylic acid of amino acid) 2'-O-amino acid residues (synonymous with the above amino acid residues) and the like.
 糖部修飾ヌクレオチドとしては、例えば糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)が挙げられる。
 架橋構造型人工核酸としては、例えば2'位の酸素原子と4'位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA) ["テトラヘドロンレターズ (Tetrahedron Letters)", Volume 38, Issue 50, 1997, Pages 8735-8738、および"テトラヘドロン (Tetrahedron)", Volume 54, Issue 14, 1998, Pages 3607-3630]ならびにエチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[“ヌクレイックアシッドリサーチ (Nucleic Acid Research)", 32, e175(2004)]等が挙げられる。
Examples of the sugar-modified nucleotide include a crosslinked nucleic acid (BNA) having two cyclic structures by introducing a crosslinked structure into the sugar moiety.
Examples of cross-linked artificial nucleic acids include, for example, Locked Nucleic Acid (LNA) ["Tetrahedron Letters" in which the 2'-position oxygen atom and the 4'-position carbon atom are cross-linked via methylene. , Volume 38, Issue 50, 1997, Pages 8735-8738, and "Tetrahedron", Volume 54, Issue 14, 1998, Pages 3607-3630] and Ethylene bridged nucleic acid (Ethylene bridged nucleic acid) ENA) ["Nucleic Acid Research", 32, e175 (2004)].
 糖部修飾ヌクレオチドとしては、ペプチド核酸(PNA)[Acc. Chem. Res., 32, 624(1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653(2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900(2000)]等も挙げられる。 Sugar-modified nucleotides include peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001). ], Peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] and the like.
 糖部修飾ヌクレオチドにおける修飾基としては、2'-シアノ、2'-ハロゲン、2'-O-シアノ、2'-アルキル、2'-置換アルキル、2'-O-アルキル、2'-O-置換アルキル、2'-O-アルケニル、2'-O-置換アルケニル、2'-Se-アルキル、2'-Se-置換アルキルが好ましく、2'-シアノ、2'-フルオロ、2'-クロロ、2'-ブロモ、2'-トリフルオロメチル、2'-O-メチル、2'-O-エチル、2'-O-イソプロピル、2'-O-トリフルオロメチル、2'-O-[2-(メトキシ)エチル]、2'-O-(3-アミノプロピル)、2'-O-[2-(N,N-ジメチルアミノオキシ)エチル]、2'-O-[3-(N,N-ジメチルアミノ)プロピル]、2'-O-[2-[2-(N,N-ジメチルアミノ)エトキシ]エチル]、2'-O-[2-(メチルアミノ)-2-オキソエチル]、2'-Se-メチルがより好ましく、2'-O-メチル、2'-O-エチル、2'-フルオロがさらに好ましく、2'-O-メチルおよび2'-O-エチルがよりさらに好ましい。 Examples of the modifying group in the sugar-modified nucleotide include 2'-cyano, 2'-halogen, 2'-O-cyano, 2'-alkyl, 2'-substituted alkyl, 2'-O-alkyl, 2'-O- Preferred are substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2′-Se-alkyl, 2′-Se-substituted alkyl, 2′-cyano, 2′-fluoro, 2′-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (Methoxy) ethyl], 2'-O- (3-aminopropyl), 2'-O- [2- (N, N-dimethylaminooxy) ethyl], 2'-O- [3- (N, N -Dimethylamino) propyl], 2'-O- [2- [2- (N, N-dimethylamino) ethoxy] ethyl], 2'-O- [2- (methylamino) -2-oxoethyl], 2 '-Se-methyl is more preferred, 2'-O-methyl, 2'-O-ethyl and 2'-fluoro are more preferred, and 2'-O-methyl and 2'-O-ethyl are even more preferred.
 糖部修飾ヌクレオチドにおける修飾基は、修飾基の大きさから好ましい範囲を定義することもでき、フルオロから-O-ブチルまでの大きさに相当する修飾基であることが好ましく、-O-メチルから-O-エチルまでの大きさに相当する修飾基であることがより好ましい。 The modifying group in the sugar moiety-modified nucleotide can also define a preferred range from the size of the modifying group, and is preferably a modifying group corresponding to a size from fluoro to -O-butyl, from -O-methyl More preferred is a modifying group corresponding to a size up to -O-ethyl.
 糖部修飾ヌクレオチドにおける修飾基におけるアルキルとしては、例えばC1-C6アルキル等が挙げられ、具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル等が挙げられる。 Examples of the alkyl in the modifying group in the sugar-modified nucleotide include C1-C6 alkyl, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, Neopentyl, hexyl and the like can be mentioned.
 糖部修飾ヌクレオチドにおける修飾基におけるアルケニルとしては、例えばC3-C6のアルケニル等が挙げられ、具体的にはアリル、プロペニル、ブテニル、ペンテニル、ヘキセニル等が挙げられる。 Examples of alkenyl in the modifying group in the sugar moiety-modified nucleotide include C3-C6 alkenyl, and specific examples include allyl, propenyl, butenyl, pentenyl, hexenyl and the like.
 糖部修飾ヌクレオチドにおける修飾基におけるハロゲンとしては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen in the modifying group in the sugar-modified nucleotide include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アミノ酸残基におけるアミノ酸としては、例えば脂肪族アミノ酸(具体的には、グリシン、アラニン、バリン、ロイシンおよびイソロイシン等)、ヒドロキシアミノ酸(具体的には、セリンおよびトレオニン等)、酸性アミノ酸(具体的には、アスパラギン酸およびグルタミン酸等)、酸性アミノ酸アミド(具体的には、アスパラギンおよびグルタミン等)、塩基性アミノ酸(具体的には、リジン、ヒドロキシリジン、アルギニンおよびオルニチン等)、含硫アミノ酸(具体的には、システイン、シスチンおよびメチオニン等)、イミノ酸(具体的には、プロリンおよび4-ヒドロキシプロリン等)等が挙げられる。 Examples of amino acids in the amino acid residue include aliphatic amino acids (specifically, glycine, alanine, valine, leucine and isoleucine), hydroxy amino acids (specifically, serine and threonine), acidic amino acids (specifically, Is aspartic acid and glutamic acid), acidic amino acid amide (specifically asparagine and glutamine etc.), basic amino acid (specifically lysine, hydroxylysine, arginine and ornithine etc.), sulfur-containing amino acid (specifically Include cysteine, cystine, methionine, etc.), imino acids (specifically, proline, 4-hydroxyproline, etc.) and the like.
 糖部修飾ヌクレオチドにおける修飾基における置換アルキルおよび置換アルケニルにおける置換基としては、例えばハロゲン(前記と同義)、ヒドロキシ、スルファニル、アミノ、オキソ、-O-アルキル(-O-アルキルのアルキル部分は前記C1-C6アルキルと同義)、-S-アルキル(-S-アルキルのアルキル部分は前記C1-C6アルキルと同義)、-NH-アルキル(-NH-アルキルのアルキル部分は前記C1-C6アルキルと同義)、ジアルキルアミノオキシ(ジアルキルアミノオキシの2つのアルキル部分は同一または異なって前記C1-C6アルキルと同義)、ジアルキルアミノ(ジアルキルアミノの2つのアルキル部分は同一または異なって前記C1-C6アルキルと同義)、ジアルキルアミノアルキレンオキシ(ジアルキルアミノアルキレンオキシのアルキル部分は同一または異なって前記C1-C6アルキルと同義であり、アルキレン部分は前記C1-C6アルキルから水素原子が1つ除かれたものを意味する)等が挙げられ、置換数は好ましくは1~3である。 Examples of the substituted alkyl and the substituted alkenyl in the modified group in the sugar-modified nucleotide include halogen (as defined above), hydroxy, sulfanyl, amino, oxo, -O-alkyl (the alkyl part of -O-alkyl is the above-mentioned C1. -S6 alkyl), -S-alkyl (the alkyl part of -S-alkyl is the same as C1-C6 alkyl), -NH-alkyl (the alkyl part of -NH-alkyl is the same as C1-C6 alkyl) Dialkylaminooxy (the two alkyl parts of dialkylaminooxy are the same or different and have the same meaning as the C1-C6 alkyl), dialkylamino (the two alkyl parts of dialkylamino are the same or different and are the same as the C1-C6 alkyl), Dialkylaminoalkyleneoxy (the alkyl part of dialkylaminoalkyleneoxy is the same or different, Le and are synonymous, alkylene moiety refers to a structure in which the hydrogen atom from the C1-C6 alkyl is removed one), and the like, the number of substitutions is preferably 1-3.
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよい。
 リン酸ジエステル結合修飾ヌクレオチドとしては、例えばリン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等が挙げられる。
The phosphodiester bond-modified nucleotide may be any nucleotide as long as part or all of the chemical structure of the phosphodiester bond of the nucleotide is modified or substituted with any substituent, or with any atom. Good.
Examples of the phosphodiester bond-modified nucleotide include nucleotides in which the phosphodiester bond is replaced with a phosphorothioate bond, nucleotides in which the phosphodiester bond is replaced with phosphorodithioate bond, and phosphodiester bond in the alkyl phosphonate bond. And nucleotides in which a phosphodiester bond is substituted with a phosphoramidate bond.
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部またはすべてが、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよい。
 塩基修飾ヌクレオチドとしては、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子がC1-C6アルキルで置換されたもの、メチルが水素原子もしくはC2-C6アルキルで置換されたもの、アミノがC1-C6アルキルまたはC1-C6アルカノイル等の保護基で保護されたもの等が挙げられる。
The base-modified nucleotide may be any nucleotide as long as a part or all of the nucleotide base chemical structure is modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom.
Examples of the base-modified nucleotide include those in which the oxygen atom in the base is substituted with a sulfur atom, those in which a hydrogen atom is substituted with C1-C6 alkyl, those in which methyl is substituted with a hydrogen atom or C2-C6 alkyl, Examples include amino protected with a protecting group such as C1-C6 alkyl or C1-C6 alkanoyl.
 ヌクレオチド誘導体として、ヌクレオチドまたは糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素等の別の化学物質を付加したものも挙げられ、例えば5'-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、緑色蛍光色素(Cy3)付加ヌクレオチド誘導体、赤色蛍光色素(Cy5)付加ヌクレオチド誘導体、フルオロセイン(6-FAM)付加ヌクレオチド誘導体、ビオチン付加ヌクレオチド誘導体等が挙げられる。 As a nucleotide derivative, a nucleotide, sugar moiety, nucleotide derivative modified with at least one of phosphodiester bond or base, lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, dye, etc. In addition, for example, 5'-polyamine addition nucleotide derivative, cholesterol addition nucleotide derivative, steroid addition nucleotide derivative, bile acid addition nucleotide derivative, vitamin addition nucleotide derivative, green fluorescent dye (Cy3) addition Examples include nucleotide derivatives, red fluorescent dye (Cy5) -added nucleotide derivatives, fluorescein (6-FAM) -added nucleotide derivatives, and biotin-added nucleotide derivatives.
 本発明で用いられる核酸においては、ヌクレオチドまたはヌクレオチド誘導体が、該核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造およびエステル構造、これらの2つ以上を組み合わせた構造等の架橋構造を形成してもよい。 In the nucleic acid used in the present invention, a nucleotide or a nucleotide derivative is an alkylene structure, a peptide structure, a nucleotide structure, an ether structure and an ester structure, or a combination of these two or more with other nucleotides or nucleotide derivatives in the nucleic acid. A cross-linked structure such as
 本発明で用いられる核酸としては、好ましくは標的遺伝子の発現を抑制する核酸であり、より好ましくはRNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である。 The nucleic acid used in the present invention is preferably a nucleic acid that suppresses the expression of the target gene, and more preferably a nucleic acid that has an action of suppressing the expression of the target gene using RNA interference (RNAi).
 本発明における標的遺伝子としては、mRNAを産生して発現する遺伝子であれば特に限定されないが、例えば腫瘍または炎症に関連する遺伝子が挙げられる。
 標的遺伝子となる腫瘍または炎症に関連する遺伝子としては、具体的には、血管内皮増殖因子受容体(vascular endothelial growth factor receptor)、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子(Kruppel-like factor)、エクスプレスドシーケンスタグ(Ets)転写因子、核因子、低酸素誘導因子、細胞周期関連因子、染色体複製関連因子、染色体修復関連因子、微小管関連因子、増殖シグナル経路関連因子、増殖関連転写因子およびアポトーシス関連因子等のタンパク質をコードする遺伝子等が挙げられ、具体的には血管内皮増殖因子遺伝子、血管内皮増殖因子受容体遺伝子、線維芽細胞増殖因子遺伝子(例えば、トランスフォーミング増殖因子-β)、線維芽細胞増殖因子受容体遺伝子、血小板由来増殖因子遺伝子、血小板由来増殖因子受容体遺伝子、肝細胞増殖因子遺伝子、肝細胞増殖因子受容体遺伝子、クルッペル様因子遺伝子、エクスプレスドシーケンスタグ(Ets)転写因子遺伝子、核因子遺伝子、低酸素誘導因子遺伝子、細胞周期関連因子遺伝子、染色体複製関連因子遺伝子、染色体修復関連因子遺伝子、微小管関連因子遺伝子(例えば、CKAP5遺伝子等)、増殖シグナル経路関連因子遺伝子(例えば、KRAS遺伝子等)、増殖関連転写因子遺伝子およびアポトーシス関連因子(例えば、BCL-2遺伝子等)が挙げられる。
The target gene in the present invention is not particularly limited as long as it is a gene that produces and expresses mRNA, and examples thereof include genes associated with tumors or inflammation.
Specific examples of genes related to tumor or inflammation as target genes include vascular endothelial growth factor receptor, fibroblast growth factor receptor, fibroblast growth factor receptor, and platelet-derived growth. Factor, platelet-derived growth factor receptor, hepatocyte growth factor, hepatocyte growth factor receptor, Kruppel-like factor, express sequence tag (Ets) transcription factor, nuclear factor, hypoxia-inducible factor, cell Examples include genes encoding proteins such as cycle-related factors, chromosome replication-related factors, chromosome repair-related factors, microtubule-related factors, growth signal pathway-related factors, growth-related transcription factors, and apoptosis-related factors. Endothelial growth factor gene, vascular endothelial growth factor receptor gene, fibroblast growth factor gene (e.g., transforming growth factor-β), Fibroblast growth factor receptor gene, platelet-derived growth factor gene, platelet-derived growth factor receptor gene, hepatocyte growth factor gene, hepatocyte growth factor receptor gene, Kruppel-like factor gene, express sequence tag (Ets) transcription Factor gene, nuclear factor gene, hypoxia-inducible factor gene, cell cycle-related factor gene, chromosome replication-related factor gene, chromosome repair-related factor gene, microtubule-related factor gene (for example, CKAP5 gene), growth signal pathway-related factor gene (For example, KRAS gene), growth-related transcription factor gene, and apoptosis-related factor (for example, BCL-2 gene).
 本発明における標的遺伝子としては、肝臓、肺または脾臓において発現する遺伝子が好ましく、例えば、前記に記載の腫瘍または炎症に関連する遺伝子、B型肝炎ウイルスゲノム、C型肝炎ウイルスゲノム、アポリポタンパク質(APO)、ヒドロキシメチルグルタリル(HMG)CoA還元酵素、ケキシン 9 型セリンプロテアーゼ(PCSK9)、第12因子、グルカゴン体、グルココルチコイド受容体、ロイコトリエン受容体、トロンボキサンA2受容体、ヒスタミンH1受容体、炭酸脱水酵素、アンギオテンシン変換酵素、レニン、p53、チロシンホスファターゼ(PTP)、ナトリウム依存性グルコース輸送担体、腫瘍壊死因子、インターロイキン、ヘプシジン、トランスサイレチン、アンチトロンビン、プロテインCおよびマトリプターゼ酵素(例えば、TMPRSS6遺伝子等)のタンパク質をコードする遺伝子が挙げられる。 The target gene in the present invention is preferably a gene expressed in the liver, lung or spleen. For example, the gene related to tumor or inflammation described above, hepatitis B virus genome, hepatitis C virus genome, apolipoprotein (APO) ), Hydroxymethylglutaryl (HMG) CoA reductase, kexin 9 type serine protease (PCSK9), factor 12, glucagon, glucocorticoid receptor, leukotriene receptor, thromboxane A2 receptor, histamine H1 receptor, carbonic acid Dehydrase, angiotensin converting enzyme, renin, p53, tyrosine phosphatase (PTP), sodium-dependent glucose transporter, tumor necrosis factor, interleukin, hepcidin, transthyretin, antithrombin, protein C and matriptase enzymes (e.g. TMPRSS6 Protein) Gene encoding the like.
 標的遺伝子の発現を抑制する核酸としては、例えばタンパク質等をコードする遺伝子(標的遺伝子)のmRNAの一部の塩基配列に対して相補的な塩基配列を含み、かつ標的遺伝子の発現を抑制する核酸であれば、例えばsiRNA(short interference RNA)およびmiRNA(micro RNA)等の二本鎖核酸、shRNA(short hairpin RNA)、アンチセンス核酸およびリボザイム等の一本鎖核酸等、いずれの核酸を用いてもよいが、二本鎖核酸が好ましい。 As a nucleic acid that suppresses the expression of the target gene, for example, a nucleic acid that includes a base sequence complementary to a partial base sequence of mRNA of a gene encoding the protein (target gene) and suppresses the expression of the target gene If so, for example, using any nucleic acid such as double-stranded nucleic acid such as siRNA (short interference (RNA) and miRNA (micro RNA), shRNA (short hairpin RNA), single-stranded nucleic acid such as antisense nucleic acid and ribozyme, etc. However, double-stranded nucleic acids are preferred.
 標的遺伝子のmRNAの一部の塩基配列に対して相補的な塩基配列を含む核酸をアンチセンス鎖核酸といい、アンチセンス鎖核酸の塩基配列に対して相補的な塩基配列を含む核酸をセンス鎖核酸ともいう。センス鎖核酸は、標的遺伝子の一部の塩基配列からなる核酸そのもの等、アンチセンス鎖核酸と対合して二重鎖形成部ができる核酸をいう。 A nucleic acid containing a base sequence complementary to a part of the base sequence of the target gene mRNA is called an antisense strand nucleic acid, and a nucleic acid containing a base sequence complementary to the base sequence of the antisense strand nucleic acid is a sense strand. Also called nucleic acid. A sense strand nucleic acid refers to a nucleic acid capable of forming a double strand forming part by pairing with an antisense strand nucleic acid, such as a nucleic acid itself consisting of a partial base sequence of a target gene.
 二本鎖核酸とは、二本の鎖が対合し二重鎖形成部を有する核酸をいう。二重鎖形成部とは、二本鎖核酸を構成するヌクレオチドまたはその誘導体が塩基対を構成して二重鎖を形成している部分(二重鎖形成部)をいう。
 二重鎖形成部を構成する塩基対は、通常15~27塩基対であり、15~25塩基対が好ましく、15~23塩基対がより好ましく、15~21塩基対がさらに好ましく、15~19塩基対がよりさらに好ましい。
A double-stranded nucleic acid refers to a nucleic acid in which two strands are paired and have a duplex forming part. The duplex forming part refers to a part (duplex forming part) in which a nucleotide or a derivative thereof constituting a double-stranded nucleic acid forms a base pair to form a duplex.
The base pair constituting the duplex forming part is usually 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and 15 to 19 base pairs. Even more preferred is base pairing.
 二重鎖形成部のアンチセンス鎖核酸としては、例えば標的遺伝子のmRNAの一部配列からなる核酸、または該核酸において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつ標的タンパク質の発現抑制活性を有する核酸が好適に用いられる。二本鎖核酸を構成する一本鎖の核酸は、通常15~30塩基(ヌクレオシド)の連なりからなるが、15~29塩基が好ましく、15~27塩基がより好ましく、15~25塩基がさらに好ましく、17~23塩基がよりさらに好ましく、19~21塩基が特に好ましい。 As the antisense strand nucleic acid of the duplex forming part, for example, a nucleic acid consisting of a partial sequence of the mRNA of the target gene, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base in the nucleic acid, A nucleic acid that is deleted or added and has an activity of suppressing the expression of the target protein is preferably used. The single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of a series of 15 to 30 bases (nucleosides), preferably 15 to 29 bases, more preferably 15 to 27 bases, and further preferably 15 to 25 bases. 17 to 23 bases are more preferred, and 19 to 21 bases are particularly preferred.
 二本鎖核酸を構成するアンチセンス鎖、センス鎖のいずれか一方、または両方の核酸は、二重鎖形成部に続く3'側または5'側に二重鎖を形成しない部分を有してもよい。この二重鎖を形成しない部分を突出部(オーバーハング)ともいう。 Either the antisense strand, the sense strand, or both of the nucleic acids constituting the double-stranded nucleic acid have a portion that does not form a duplex on the 3 ′ side or 5 ′ side following the duplex forming portion. Also good. The part that does not form a double chain is also referred to as a protrusion (overhang).
 突出部を有する二本鎖核酸としては、例えば少なくとも一方の鎖の3'末端または5'末端に1~4塩基、通常は1~3塩基からなる突出部を有する二本鎖核酸が挙げられる。
 突出部を有する二本鎖核酸において、突出部は、2塩基からなる突出部であることが好ましく、dTdTまたはUUからなる突出部であることがより好ましい。
 突出部は、アンチセンス鎖のみ、センス鎖のみ、およびアンチセンス鎖とセンス鎖の両方に有することができるが、アンチセンス鎖とセンス鎖の両方に突出部を有する二本鎖核酸が好ましい。
Examples of the double-stranded nucleic acid having a protruding portion include a double-stranded nucleic acid having a protruding portion consisting of 1 to 4 bases, usually 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand.
In a double-stranded nucleic acid having a protruding portion, the protruding portion is preferably a protruding portion consisting of two bases, and more preferably a protruding portion consisting of dTdT or UU.
The overhang can be present only in the antisense strand, only in the sense strand, and both in the antisense strand and the sense strand, but a double-stranded nucleic acid having a protrusion in both the antisense strand and the sense strand is preferred.
 二重鎖形成部に続いて標的遺伝子のmRNAの塩基配列と一部またはすべてが一致する配列、または、二重鎖形成部に続いて標的遺伝子のmRNAの相補鎖の塩基配列と一部またはすべてが一致する配列を用いてもよい。
 標的遺伝子の発現を抑制する核酸としては、例えばDicer等のリボヌクレアーゼの作用により二本鎖核酸を生成する核酸分子(国際公開第2005/089287号)や、3'末端や5'末端の突出部を有していない二本鎖核酸等を用いることもできる。
Sequence that matches part or all of the base sequence of the target gene mRNA following the duplex formation part, or part or all of the base sequence of the complementary strand of the target gene mRNA following the duplex formation part Sequences that match may be used.
Examples of nucleic acids that suppress the expression of the target gene include nucleic acid molecules that generate double-stranded nucleic acids by the action of ribonucleases such as Dicer (International Publication No. 2005/089287), and protrusions at the 3 ′ end and 5 ′ end. A double-stranded nucleic acid or the like that does not exist can also be used.
 二本鎖核酸がsiRNAである場合、好ましくはアンチセンス鎖は、5'末端側から3'末端側に向って少なくとも1~17番目の塩基(ヌクレオシド)の配列が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列であり、より好ましくはアンチセンス鎖は、5'末端側から3'末端側に向って1~19番目の塩基の配列が、標的遺伝子のmRNAの連続する19塩基の配列と相補的な塩基の配列であるか、5'末端側から3'末端側に向って1~21番目の塩基の配列が、標的遺伝子のmRNAの連続する21塩基の配列と相補的な塩基の配列であるか、5'末端側から3'末端側に向って1~25番目の塩基の配列が、標的遺伝子のmRNAの連続する25塩基の配列と相補的な塩基の配列である。 When the double-stranded nucleic acid is siRNA, the antisense strand preferably has a sequence of at least the 1st to 17th bases (nucleosides) from the 5 ′ end to the 3 ′ end and the target gene mRNA is continuous. It is a base sequence complementary to the 17 base sequence, and more preferably, the antisense strand has the sequence of the 1st to 19th bases from the 5 ′ end to the 3 ′ end, and the target gene mRNA is continuous. Or the base sequence complementary to the 19 base sequence, or the sequence of the 1st to 21st bases from the 5 'end to the 3' end, Complementary base sequence, or the sequence of bases 1 to 25 from the 5 'end to the 3' end are complementary to the base sequence of 25 consecutive bases of the target gene mRNA. It is.
 本発明で用いられる核酸がsiRNAである場合、好ましくは核酸中の糖の10~100%、より好ましくは20~100%、さらに好ましくは40~100%が、2'位において修飾基で置換されたリボースである。本発明における2'位において修飾基で置換されたリボースとは、リボースの2'位の水酸基が修飾基に置換されているものを意味し、リボースの2'位の水酸基と立体配置が同じであっても異なっていてもよいが、好ましくはリボースの2'位の水酸基と立体配置が同じである。2'位において修飾基で置換されたリボースにおける修飾基としては、糖部修飾ヌクレオチドにおける2'-修飾ヌクレオチドにおける修飾基として例示したものおよび水素原子が挙げられ、2'-シアノ、2'-ハロゲン、2'-O-シアノ、2'-アルキル、2'-置換アルキル、2'-O-アルキル、2'-O-置換アルキル、2'-O-アルケニル、2'-O-置換アルケニル、2'-Se-アルキルまたは2'-Se-置換アルキルが好ましく、2'-シアノ、2'-フルオロ、2'-クロロ、2'-ブロモ、2'-トリフルオロメチル、2'-O-メチル、2'-O-エチル、2'-O-イソプロピル、2'-O-トリフルオロメチル、2'-O-[2-(メトキシ)エチル]、2'-O-(3-アミノプロピル)、2'-O-[2-(N,N-ジメチル)アミノオキシ]エチル、2'-O-[3-(N,N-ジメチルアミノ)プロピル]、2'-O-[2-[2-(N,N-ジメチルアミノ)エトキシ]エチル]、2'-O-[2-(メチルアミノ)-2-オキソエチル]、2'-Se-メチル、水素原子がより好ましく、2'-O-メチル、2'-O-エチル、2'-フルオロまたは水素原子がさらに好ましく、2'-O-メチルまたは2'-O-フルオロがよりさらに好ましい。 When the nucleic acid used in the present invention is siRNA, preferably 10 to 100%, more preferably 20 to 100%, and still more preferably 40 to 100% of the sugar in the nucleic acid is substituted with a modifying group at the 2 ′ position. Ribose. In the present invention, ribose substituted with a modifying group at the 2′-position means that the hydroxyl group at the 2′-position of ribose is substituted with the modifying group, and has the same configuration as the hydroxyl group at the 2′-position of ribose. Although it may be present or different, the configuration is preferably the same as the hydroxyl group at the 2 ′ position of ribose. Examples of the modifying group in ribose substituted with a modifying group at the 2′-position include those exemplified as the modifying group in the 2′-modified nucleotide in the sugar moiety-modified nucleotide and the hydrogen atom, and 2′-cyano, 2′-halogen 2′-O-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-O-alkyl, 2′-O-substituted alkyl, 2′-O-alkenyl, 2′-O-substituted alkenyl, 2 '-Se-alkyl or 2'-Se-substituted alkyl is preferred, 2'-cyano, 2'-fluoro, 2'-chloro, 2'-bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (methoxy) ethyl], 2'-O- (3-aminopropyl), 2 '-O- [2- (N, N-dimethyl) aminooxy] ethyl, 2'-O- [3- (N, N-dimethylamino) propyl], 2'-O- [2- [2- ( N, N-dimethylamino) ethoxy] ethyl], 2′-O- [2- (methylamino) -2-oxoethyl], 2′-Se-methyl More preferred are til and hydrogen atoms, more preferred are 2'-O-methyl, 2'-O-ethyl, 2'-fluoro and hydrogen atoms, and even more preferred are 2'-O-methyl and 2'-O-fluoro. .
 本発明で用いられる核酸は、核酸の構造中のリン酸部、エステル部等に含まれる酸素原子等が、例えば硫黄原子等の他の原子に置換された誘導体を包含する。 The nucleic acid used in the present invention includes a derivative in which an oxygen atom or the like contained in a phosphoric acid part, an ester part or the like in the structure of the nucleic acid is substituted with another atom such as a sulfur atom.
 アンチセンス鎖およびセンス鎖の5'末端の塩基に結合する糖は、それぞれ5'位の水酸基が、リン酸基もしくは前記修飾基、または生体内の核酸分解酵素等でリン酸基もしくは前記修飾基に変換される基によって修飾されていてもよい。 The sugar that binds to the 5 ′ terminal base of the antisense strand and the sense strand has a 5′-position hydroxyl group, either a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
 アンチセンス鎖およびセンス鎖の3'末端の塩基に結合する糖は、それぞれ3'位の水酸基が、リン酸基もしくは前記修飾基、または生体内の核酸分解酵素等でリン酸基もしくは前記修飾基に変換される基によって修飾されていてもよい。 The sugar that binds to the 3 ′ terminal base of the antisense strand and the sense strand is such that the hydroxyl group at the 3 ′ position is a phosphate group or the modifying group, or a phosphate group or the modifying group by an in vivo nucleolytic enzyme, etc. It may be modified by a group that is converted into
 一本鎖核酸としては、例えば標的遺伝子の連続する15~27塩基(ヌクレオシド)、好ましくは15~25塩基、より好ましくは15~23塩基、さらに好ましくは15~21塩基、よりさらに好ましくは15~19塩基からなる配列の相補配列からなる核酸、または該核酸において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつ標的タンパク質の発現抑制活性を有する核酸であればいずれでもよい。
 一本鎖核酸は、好ましくは15~30塩基(ヌクレオシド)、より好ましくは15~27塩基、さらに好ましくは15~25塩基、よりさらに好ましくは15~23塩基の連なりからなる。
Examples of the single-stranded nucleic acid include 15 to 27 bases (nucleosides) of the target gene, preferably 15 to 25 bases, more preferably 15 to 23 bases, still more preferably 15 to 21 bases, and still more preferably 15 to 25 bases. A nucleic acid comprising a sequence complementary to a sequence consisting of 19 bases, or 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base substituted or deleted or added in the nucleic acid, and having an activity of suppressing the expression of the target protein Any nucleic acid can be used.
The single-stranded nucleic acid preferably consists of a sequence of 15 to 30 bases (nucleosides), more preferably 15 to 27 bases, still more preferably 15 to 25 bases, and even more preferably 15 to 23 bases.
 一本鎖核酸として、二本鎖核酸を構成するアンチセンス鎖およびセンス鎖を、スペーサー配列(スペーサーオリゴヌクレオチド)を介して連結したものを用いてもよい。スペーサーオリゴヌクレオチドとしては6~12塩基の一本鎖核酸が好ましく、その5'末端側の配列は2個のUであるのが好ましい。スペーサーオリゴヌクレオチドの例として、UUCAAGAGAの配列からなる一本鎖核酸が挙げられる。スペーサーオリゴヌクレオチドによってつながれるアンチセンス鎖およびセンス鎖の順番はどちらが5'側になってもよい。
 二本鎖核酸を構成するアンチセンス鎖およびセンス鎖が、スペーサーオリゴヌクレオチドを介して連結した一本鎖核酸としては、例えばステムループ構造によって二重鎖形成部を有するshRNA等の一本鎖核酸であることが好ましい。shRNA等の一本鎖核酸は、通常50~70塩基長である。
As the single-stranded nucleic acid, one obtained by linking an antisense strand and a sense strand constituting a double-stranded nucleic acid via a spacer sequence (spacer oligonucleotide) may be used. The spacer oligonucleotide is preferably a 6- to 12-base single-stranded nucleic acid, and its 5 ′ terminal sequence is preferably 2 U. An example of the spacer oligonucleotide is a single-stranded nucleic acid having a UUCAAGAGA sequence. Either the antisense strand or the sense strand connected by the spacer oligonucleotide may be on the 5 ′ side.
Examples of the single-stranded nucleic acid in which the antisense strand and the sense strand constituting the double-stranded nucleic acid are linked via a spacer oligonucleotide include, for example, a single-stranded nucleic acid such as shRNA having a double-stranded forming part by a stem-loop structure. Preferably there is. Single-stranded nucleic acids such as shRNA are usually 50 to 70 bases in length.
 リボヌクレアーゼ等の作用により、一本鎖核酸または二本鎖核酸を生成するように設計した、70塩基長以下、好ましくは50塩基長以下、さらに好ましくは30塩基長以下の核酸を用いてもよい。 A nucleic acid having a length of 70 bases or less, preferably 50 bases or less, more preferably 30 bases or less, designed to generate a single-stranded nucleic acid or a double-stranded nucleic acid by the action of ribonuclease or the like may be used.
 本発明で用いられる核酸は、既知のRNAまたはDNA合成法、およびRNAまたはDNA修飾法を用いて製造することができる。 The nucleic acid used in the present invention can be produced using known RNA or DNA synthesis methods and RNA or DNA modification methods.
 本発明の医薬組成物(以下組成物と略す)は、本発明の式(I)または式(II)で表される化合物、またはその製薬上許容し得る塩(カチオン性脂質)および核酸を含有する。
 本発明の組成物は、例えば本発明のカチオン性脂質と核酸との複合体であってよい。
 本発明の組成物は、本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸とを含有する組成物であり、例えば、本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体であってよい。
 本発明の組成物は、脂質膜を含有し、複合体が脂質膜により封入されていてもよい。
 脂質膜は、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。脂質膜に、本発明のカチオン性脂質、中性脂質および/または高分子を含有していてもよい。
 複合体および/または脂質膜に、本発明の式(I)もしくは式(II)で表される化合物、またはその製薬上許容し得る塩であるカチオン性脂質以外のカチオン性脂質を含有していてもよい。
The pharmaceutical composition of the present invention (hereinafter abbreviated as composition) contains the compound represented by formula (I) or formula (II) of the present invention, or a pharmaceutically acceptable salt thereof (cationic lipid) and nucleic acid To do.
The composition of the present invention may be, for example, a complex of the cationic lipid of the present invention and a nucleic acid.
The composition of the present invention is a composition containing the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid. For example, the cationic lipid of the present invention, the neutral lipid and / or Alternatively, it may be a complex of a polymer and a nucleic acid.
The composition of the present invention may contain a lipid membrane, and the complex may be encapsulated by the lipid membrane.
The lipid membrane may be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane). The lipid membrane may contain the cationic lipid, neutral lipid and / or polymer of the present invention.
The complex and / or lipid membrane contains a cationic lipid other than the cationic lipid which is the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof. Also good.
 本発明の組成物としては、例えば本発明のカチオン性脂質以外のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質以外のカチオン性脂質に中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物等も挙げられる。この場合の脂質膜も、脂質一重膜(脂質1分子膜)でも脂質二重膜(脂質2分子膜)であってもよい。また、脂質膜に、本発明のカチオン性脂質以外のカチオン性脂質、中性脂質および/または高分子を含有していてもよい。 Examples of the composition of the present invention include a complex of a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention and a neutral lipid and / or a polymer. A composition containing a complex with a nucleic acid and a lipid membrane encapsulating the complex and containing the cationic lipid of the present invention in the lipid membrane is also included. The lipid membrane in this case may also be a lipid monolayer (lipid monomolecular membrane) or a lipid bilayer membrane (lipid bimolecular membrane). The lipid membrane may contain a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer.
 いずれの組成物においても、脂質膜に、中性脂質および/または高分子を含有していてもよい。また、複合体および/または脂質膜に、本発明のカチオン性脂質以外のカチオン性脂質を含有していてもよい。 In any composition, the lipid membrane may contain a neutral lipid and / or a polymer. Further, the complex and / or the lipid membrane may contain a cationic lipid other than the cationic lipid of the present invention.
 複合体の形態としては、例えば核酸と脂質一重(一分子)層からなる膜(逆ミセル)との複合体、核酸とリポソームとの複合体および核酸とミセルとの複合体等が挙げられ、好ましくは核酸と脂質一重層からなる膜との複合体または核酸とリポソームとの複合体である。 Examples of the form of the complex include a complex of a nucleic acid and a membrane composed of a single lipid (single molecule) layer (reverse micelle), a complex of a nucleic acid and a liposome, and a complex of a nucleic acid and a micelle. Is a complex of a membrane composed of a nucleic acid and a lipid monolayer or a complex of a nucleic acid and a liposome.
 複合体を封入する脂質膜を含有する組成物としては、例えば複合体を任意の数の脂質膜で封入するリポソームおよび脂質ナノ粒子等が挙げられる。 Examples of the composition containing a lipid membrane that encapsulates the complex include liposomes and lipid nanoparticles that encapsulate the complex with an arbitrary number of lipid membranes.
 本発明の組成物には、一種または複数種の本発明のカチオン性脂質を使用してよく、本発明のカチオン性脂質には、本発明のカチオン性脂質に加え、本発明のカチオン性脂質以外のカチオン性脂質を混合してもよい。 In the composition of the present invention, one or more kinds of the cationic lipids of the present invention may be used. The cationic lipids of the present invention include, in addition to the cationic lipids of the present invention, other than the cationic lipids of the present invention. The cationic lipid may be mixed.
 本発明の式(I)または式(II)で表される化合物、またはその製薬上許容し得る塩であるカチオン性脂質以外のカチオン性脂質としては、例えば特開昭61-161246号公報(米国特許5049386号明細書)中で開示される、N-[1-(2,3-ジオレイルオキシ)プロピル]-N,N,N-トリメチルアンモニウムクロリド(DOTMA)およびN-(2,3-ジ-(9-(Z)-オクタデセノイルオキシ))-プロパ-1-イル-N,N,N-トリメチルアンモニウムクロリド(DOTAP)等、国際公開第91/16024号および国際公開第97/019675号中で開示される、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DORIE)および2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)等、国際公開第2005/121348号中で開示される、DLinDMA等、国際公開第2009/086558号中で開示される、DLin-K-DMA等、国際公開第2011/136368号中で開示される、(3R2R)-3,4-ビス((Z)-ヘキサデカ-9-エニルオキシ)-1-メチルピロリジンおよびN-メチル-N,N-ビス(2-((Z)-オクタデカ-6-エニルオキシ)エチル)アミン等が挙げられる。
 本発明のカチオン性脂質以外のカチオン性脂質としては、好ましくはDOTMA、DOTAP、DORIE、DOSPA1,2-ジリノレイルオキシ- N,N-ジメチルアミノプロパン(DLinDMA)、2,2-ジリノレイル-4-ジメチルアミノメチル-[1,3]-ジオキソラン(DLin-K-DMA)等の2つの非置換アルキル基を有する3級アミン部位または3つの非置換アルキル基を有する4級アンモニウム部位を有するカチオン性脂質であり、より好ましくは、3級アミン部位を有するカチオン性脂質である。
 3級アミン部位および4級アンモニウム部位の非置換アルキル基はメチル基であることが好ましい。
 本発明の組成物は、核酸に加え、核酸と化学的に近似した化合物(例えば、ペプチド核酸等)を含有してもよい。
Examples of the cationic lipid other than the cationic lipid which is the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof include, for example, JP-A-61-161246 (US). No. 5049386), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) and N- (2,3-dioxy). -(9- (Z) -octadecenoyloxy))-prop-1-yl-N, N, N-trimethylammonium chloride (DOTAP), etc., WO 91/16024 and WO 97/019675 N- [1- (2,3-dioleyloxypropyl)]-N, N-dimethyl-N-hydroxyethylammonium bromide (DORIE) and 2,3-dioleyloxy-N -[2- (sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), etc., disclosed in WO 2005/121348, DLinDMA, etc. 2009/086558 (3R2R) -3,4-bis ((Z) -hexadec-9-enyloxy) -1- disclosed in International Publication No. 2011/136368, DLin-K-DMA, etc. Examples include methylpyrrolidine and N-methyl-N, N-bis (2-((Z) -octadec-6-enyloxy) ethyl) amine.
As the cationic lipid other than the cationic lipid of the present invention, preferably DOTMA, DOTAP, DORIE, DOSPA1,2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA), 2,2-dilinoleyl-4- Cationic lipids with tertiary amine moieties with two unsubstituted alkyl groups such as dimethylaminomethyl- [1,3] -dioxolane (DLin-K-DMA) or quaternary ammonium moieties with three unsubstituted alkyl groups More preferably, it is a cationic lipid having a tertiary amine moiety.
The unsubstituted alkyl group at the tertiary amine moiety and the quaternary ammonium moiety is preferably a methyl group.
The composition of the present invention may contain a compound (for example, a peptide nucleic acid) chemically similar to the nucleic acid in addition to the nucleic acid.
 本発明の組成物は、公知の製造方法またはそれに準じて製造することができ、いかなる製造方法で製造されたものであってよい。例えば、組成物の1つであるリポソームを含有する組成物の製造には、公知のリポソームの調製方法が適用できる。
 公知のリポソームの調製方法としては、例えばバンガム(Bangham)らのリポソーム調製法["ジャーナル・オブ・モレキュラー・バイオロジー(J.Mol.Biol.)",1965年,第13巻,p.238-252参照]、エタノール注入法["ジャーナル・オブ・セル・バイオロジー(J.Cell Biol.)",1975年,第66巻,p.621-634参照]、フレンチプレス法["エフイービーエス・レターズ(FEBS Lett.)",1979年,第99巻,p.210-214参照]、凍結融解法["アーカイブス・オブ・バイオケミストリー・アンド・バイオフィジックス(Arch.Biochem.Biophys.)",1981年,第212巻,p.186-194参照]、逆相蒸発法["プロシーディングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・ユナイテッド・ステイツ・オブ・アメリカ(Proc.Natl.Acad.Sci.USA)",1978年,第75巻, p.4194-4198参照]およびpH勾配法(例えば特許第2572554号公報、特許第2659136号公報等参照)等が挙げられる。
 リポソームの製造の際にリポソームを分散させる溶液としては、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水およびアミノ酸輸液等が挙げられる。
 リポソームの製造の際には、例えばクエン酸、アスコルビン酸、システインおよびエチレンジアミン四酢酸(EDTA)等の抗酸化剤、例えばグリセリン、ブドウ糖および塩化ナトリウム等の等張化剤等を添加してもよい。
 本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物等を、例えばエタノール等の有機溶媒に溶解し、溶媒を留去した後、生理食塩水等を添加、振とう攪拌することで、リポソームを形成させることができる。
The composition of this invention can be manufactured according to a well-known manufacturing method or it, and may be manufactured by what kind of manufacturing method. For example, a known method for preparing liposomes can be applied to the production of a composition containing liposome, which is one of the compositions.
Known methods for preparing liposomes include, for example, Bangham et al., “Liposome preparation method” (“J. Mol. Biol.”), 1965, Vol. 13, p. 238- 252], ethanol injection method ["J. Cell Biol.", 1975, Vol. 66, pp. 621-634], French press method ["FBS Letters (FEBS Lett.) ", 1979, Vol. 99, p.210-214], freeze-thaw method [" Arch. Biochem. Biophys. ", 1981 Year 212, p.186-194], reverse phase evaporation ["Proceedings of the National Academy of Sciences United States of America" (Proc. Natl. Acad. Sci. USA) ", 1978, Vol. 75, p.4194-4198] and pH gradient method (see, for example, Japanese Patent No. 2572554, Japanese Patent No. 2659136) And the like.
Examples of the solution in which the liposome is dispersed during the production of the liposome include water, acid, alkali, various buffers, physiological saline, and amino acid infusion.
In the production of liposomes, for example, antioxidants such as citric acid, ascorbic acid, cysteine and ethylenediaminetetraacetic acid (EDTA), for example, isotonic agents such as glycerin, glucose and sodium chloride may be added.
The cationic lipid of the present invention, or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention is dissolved in an organic solvent such as ethanol, and the solvent is distilled off. Liposomes can be formed by adding saline and stirring with shaking.
 本発明の組成物は、例えば、本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物を、クロロホルムに予め溶解し、次いで核酸の水溶液とメタノールを加えて混合してカチオン性脂質/核酸の複合体を形成させ、さらにクロロホルム層を取り出し、取り出したクロロホルム層にポリエチレングリコール化リン脂質と中性の脂質と水を加えて油中水型(W/O)エマルジョンを形成し、逆相蒸発法で処理して製造する方法(特表2002-508765号公報参照)や、核酸を、酸性の電解質水溶液に溶解し、例えば、本発明のカチオン性脂質、または本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質との混合物(エタノール中)を加え、エタノール濃度を20v/v%まで下げて核酸内包リポソームを調製し、サイジングろ過し、透析によって、過剰のエタノールを除去した後、試料をさらにpHを上げて透析して組成物表面に付着した核酸を除去して製造する方法(特表2002-501511号公報およびバイオキミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta),2001年,第1510巻,p.152-166参照)等によって製造することができる。 The composition of the present invention can be prepared, for example, by dissolving a cationic lipid of the present invention or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid in chloroform in advance, and then an aqueous nucleic acid solution. And methanol are added and mixed to form a cationic lipid / nucleic acid complex, and the chloroform layer is taken out, and then the polyethylene glycolated phospholipid, neutral lipid, and water are added to the extracted chloroform layer to form a water-in-oil type. (W / O) emulsion is formed and processed by the reverse phase evaporation method (see Japanese Patent Application Publication No. 2002-508765), nucleic acid is dissolved in an acidic electrolyte aqueous solution, for example, the cation of the present invention Or a mixture of the cationic lipid of the present invention and a cationic lipid other than the cationic lipid of the present invention (in ethanol), and the ethanol concentration is lowered to 20 v / v% to encapsulate the nucleic acid. A method in which posomes are prepared, sizing filtered, excess ethanol is removed by dialysis, and then the sample is dialyzed at a higher pH to remove nucleic acids adhering to the surface of the composition (Special Table 2002-501511) No. gazette and Biochimica et Biophysica Acta, 2001, Vol. 1510, p.152-166) and the like.
 本発明の組成物のうち、本発明のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質に中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入した脂質膜を含有する脂質ナノ粒子を含有する組成物は、例えば、国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って製造することができる。 Among the compositions of the present invention, a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of a neutral lipid and / or polymer and a nucleic acid, and a complex are encapsulated in the cationic lipid of the present invention. The composition containing lipid nanoparticles containing the lipid membrane can be produced, for example, according to the production method described in WO 02/28367 and WO 2006/080118.
 国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って本発明の組成物を製造する場合には、本発明のカチオン性脂質、核酸、中性脂質および/または高分子、ならびに本発明のカチオン性脂質以外のカチオン性脂質から適宜選択した成分を用いて複合体を製造し、水または0~40%エタノール水溶液中に、複合体を溶解させずに分散させ(A液)、別途、複合体を封入する脂質膜成分を、例えばエタノール水溶液中に溶解させ(B液)、体積比1:1~10:1のA液とB液を混合し、さらに適宜に水を加えることで本発明の組成物を製造することができる。
 A液およびB液中のカチオン性脂質としては、一種または複数種の本発明のカチオン性脂質または本発明のカチオン性脂質以外のカチオン性脂質を使用してよく、本発明のカチオン性脂質と本発明のカチオン性脂質以外のカチオン性脂質を組み合わせて混合して使用してもよい。
When the composition of the present invention is produced according to the production method described in WO 02/28367 and WO 2006/080118, etc., the cationic lipid, nucleic acid, neutral lipid and / or high lipid of the present invention are used. A complex is produced using molecules and components appropriately selected from cationic lipids other than the cationic lipid of the present invention, and the complex is dispersed in water or a 0-40% ethanol aqueous solution without dissolving it (A Separately, the lipid membrane component encapsulating the complex is dissolved in, for example, an ethanol aqueous solution (B solution), and the A and B solutions having a volume ratio of 1: 1 to 10: 1 are mixed, and water is appropriately added. Can be added to produce the composition of the present invention.
As the cationic lipid in the liquid A and the liquid B, one or plural kinds of the cationic lipid of the present invention or a cationic lipid other than the cationic lipid of the present invention may be used. A cationic lipid other than the cationic lipid of the invention may be used in combination.
 本発明において、本発明のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入した脂質膜を含有する組成物、本発明のカチオン性脂質以外のカチオン性脂質と核酸との複合体、または本発明のカチオン性脂質以外のカチオン性脂質と、中性脂質および/または高分子と、核酸との複合体、ならびに複合体を封入する脂質膜を含有し、脂質膜に本発明のカチオン性脂質を含有する組成物等の製造中および製造後に、複合体中の核酸と脂質膜中のカチオン性脂質との静電相互作用や、複合体中のカチオン性脂質と脂質膜中のカチオン性脂質との融合によって、複合体および膜の構造が変異したものも、本発明の組成物に包含される。 In the present invention, a complex of the cationic lipid of the present invention and a nucleic acid, or a complex of the cationic lipid of the present invention, a neutral lipid and / or polymer, and a nucleic acid, and a lipid membrane encapsulating the complex A composition comprising a cationic lipid other than the cationic lipid of the present invention and a nucleic acid, or a cationic lipid other than the cationic lipid of the present invention, a neutral lipid and / or a polymer, and a nucleic acid And a lipid membrane encapsulating the complex, and the composition containing the cationic lipid of the present invention in the lipid membrane, and after the production, the nucleic acid in the complex and the cationic property in the lipid membrane The composition of the present invention also includes those in which the structure of the complex and the membrane is mutated due to electrostatic interaction with the lipid or fusion of the cationic lipid in the complex and the cationic lipid in the lipid membrane. .
 国際公開第02/28367号および国際公開第2006/080118号等に記載の製造方法に従って、核酸、好ましくは二本鎖核酸と、本発明のカチオン性脂質および/または本発明のカチオン性脂質以外のカチオン性脂質を含有するリポソームとの複合体を製造し、水または0~40%エタノール水溶液中に、複合体を溶解させずに分散させ(A液)、別途、本発明のカチオン性脂質および/または本発明のカチオン性脂質以外のカチオン性脂質を、エタノール水溶液中に溶解させ(B液)、体積比1:1~10:1のA液とB液を混合すること、または、さらに適宜に水を加えることでも、本発明の組成物と核酸を含有する組成物を製造することができる。
 本製法により得られる組成物は、好ましくはカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有する組成物であるか、または核酸とカチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)との複合体および複合体を封入する脂質膜を含有する組成物である。該組成物における脂質膜は、脂質一重膜(脂質1分子膜)、脂質二重膜(脂質2分子膜)または多重膜のいずれであってもよい。
According to the production method described in WO 02/28367 and WO 2006/080118, etc., a nucleic acid, preferably a double-stranded nucleic acid, the cationic lipid of the present invention and / or the cationic lipid of the present invention A complex with a liposome containing a cationic lipid is produced and dispersed in water or a 0-40% ethanol aqueous solution without dissolving the complex (solution A). Separately, the cationic lipid of the present invention and / or Alternatively, a cationic lipid other than the cationic lipid of the present invention is dissolved in an aqueous ethanol solution (liquid B), and liquid A and liquid B with a volume ratio of 1: 1 to 10: 1 are mixed, or more appropriately. A composition containing the composition of the present invention and a nucleic acid can also be produced by adding water.
The composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or from a lipid monolayer containing a nucleic acid and a cationic lipid. A composition comprising a membrane (reverse micelle) and a lipid membrane encapsulating the complex. The lipid membrane in the composition may be any of a lipid monolayer (lipid monomolecular membrane), a lipid bilayer membrane (lipid bimolecular membrane), or a multilayer membrane.
 本発明における核酸とリポソームとの複合体中のリポソームの大きさを、平均粒子径として、予め、好ましくは10nm~400nm、より好ましくは20nm~110nm、さらに好ましくは20nm~80nmに調節することが好ましい。複合体および/または脂質膜に、中性脂質および/または高分子を含有していてもよい。
 A液は、リポソームと核酸との複合体を形成させることができれば、エタノール濃度は、20~70%であってもよい。
The size of the liposome in the complex of nucleic acid and liposome in the present invention is preferably adjusted in advance to an average particle size of preferably 10 nm to 400 nm, more preferably 20 nm to 110 nm, and still more preferably 20 nm to 80 nm. . The complex and / or lipid membrane may contain a neutral lipid and / or a polymer.
As long as the solution A can form a complex of liposomes and nucleic acids, the ethanol concentration may be 20 to 70%.
 等量のA液とB液を混合する代わりに、A液とB液を混合後に複合体が溶解せず、かつB液中のカチオン性脂質が溶解しないエタノール濃度となる比でA液とB液を混合してもよい。好ましくは複合体が溶解せず、B液中のカチオン性脂質が溶解せず、かつエタノール濃度が20~60%のエタノール水溶液になるような比でA液とB液を混合することに代えてもよく、またはA液とB液を混合後に複合体が溶解しないようなエタノール濃度になるような比でA液とB液を混合し、さらに水を加えることで、B液中のカチオン性脂質が溶解しなくなるエタノール濃度にしてもよい。 Instead of mixing equal amounts of liquid A and liquid B, the complex does not dissolve after mixing liquid A and liquid B, and the ratio is such that ethanol concentration does not dissolve the cationic lipid in liquid B. The liquid may be mixed. Instead of mixing the A liquid and the B liquid in such a ratio that preferably the complex does not dissolve, the cationic lipid in the B liquid does not dissolve, and the ethanol concentration is 20 to 60%. Alternatively, after mixing liquid A and liquid B, mix liquid A and liquid B at a ratio that will result in an ethanol concentration that does not dissolve the complex, and then add water to add cationic lipid in liquid B. It is also possible to use an ethanol concentration at which no dissolution occurs.
 本製法により得られる組成物は、好ましくはカチオン性脂質と核酸との複合体および複合体を封入する脂質膜を含有する組成物であり、または、カチオン性脂質を含有する脂質一重層からなる膜(逆ミセル)と核酸との複合体および複合体を封入する脂質膜を含有し、脂質膜にカチオン性脂質を含有する組成物であり、本製法の製造性(収率および/または均一性)は優れている。 The composition obtained by this production method is preferably a composition containing a complex of a cationic lipid and a nucleic acid and a lipid membrane encapsulating the complex, or a membrane comprising a lipid monolayer containing a cationic lipid (Reverse micelle) and nucleic acid complex and a lipid membrane that encapsulates the complex, and a lipid membrane containing a cationic lipid, and the productivity (yield and / or uniformity) of this production method Is excellent.
 本発明の組成物において、複合体中の本発明のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して0.5~4倍であるのが好ましく、1.5~3.5倍であるのがより好ましく、2~3倍であるのがさらに好ましい。
 複合体中の本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して0.5~4倍であるのが好ましく、1.5~3.5倍であるのがより好ましく、2~3倍であるのがさらに好ましい。
In the composition of the present invention, the total number of molecules of the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times, more preferably 1.5 to 3.5 times the number of phosphorus atoms of the nucleic acid. More preferably, it is 2 to 3 times.
The total number of the cationic lipid molecules of the present invention and the cationic lipid molecules other than the cationic lipid of the present invention in the complex is preferably 0.5 to 4 times the number of phosphorus atoms of the nucleic acid, and preferably 1.5 to 3.5. It is more preferable that the ratio is twice, and it is more preferable that the ratio is 2 to 3 times.
 本発明の組成物において、複合体および複合体を封入する脂質膜を含有する組成物中の本発明のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して1~10倍であるのが好ましく、2.5~9倍であるのがより好ましく、3.5~8倍であるのがさらに好ましい。
 組成物中の本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数は、核酸のリン原子の数に対して1~10倍であるのが好ましく、2.5~9倍であるのがより好ましく、3.5~8倍であるのがさらに好ましい。
In the composition of the present invention, the total number of molecules of the cationic lipid of the present invention in the composition containing the complex and the lipid membrane encapsulating the complex is 1 to 10 times the number of phosphorus atoms of the nucleic acid. Preferably, it is 2.5 to 9 times, more preferably 3.5 to 8 times.
The total number of the cationic lipid molecules of the present invention and the cationic lipid molecules other than the cationic lipid of the present invention in the composition is preferably 1 to 10 times the number of phosphorus atoms of the nucleic acid, and preferably 2.5 to 9 The ratio is more preferably double, and further preferably 3.5 to 8 times.
 中性脂質としては、単純脂質、複合脂質または誘導脂質のいかなるものであってもよく、例えばリン脂質、グリセロ糖脂質、スフィンゴ糖脂質、スフィンゴイド、ステロール等が挙げられる。 The neutral lipid may be any of simple lipids, complex lipids or derived lipids, and examples thereof include phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids and sterols.
 本発明の組成物において中性脂質を含有する場合には、中性脂質の分子の総数は、本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数に対して0.1~2倍であるのが好ましく、0.2~1.5倍であるのがより好ましく、0.3~1.2倍であるのがさらに好ましい。
 本発明の組成物は、中性脂質を、複合体に含有してもよく、複合体を封入する脂質膜に含有していてもよい。
 中性脂質を、複合体を封入する脂質膜に含有していることが好ましく、複合体および複合体を封入する脂質膜のどちらにも含有していることがより好ましい。
When the composition of the present invention contains neutral lipids, the total number of neutral lipid molecules is based on the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention. The ratio is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, and still more preferably 0.3 to 1.2 times.
The composition of the present invention may contain a neutral lipid in a complex, or may be contained in a lipid membrane encapsulating the complex.
The neutral lipid is preferably contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
 中性脂質におけるリン脂質としては、例えばホスファチジルコリン(具体的には大豆ホスファチジルコリン、卵黄ホスファチジルコリン(EPC)、ジステアロイルホスファチジルコリン(DSPC)、ジパルミトイルホスファチジルコリン(DPPC)、パルミトイルオレオイルホスファチジルコリン(POPC)、ジミリストイルホスファチジルコリン(DMPC)およびジオレオイルホスファチジルコリン(DOPC)等)、ホスファチジルエタノールアミン(具体的にはジステアロイルホスファチジルエタノールアミン(DSPE)、ジパルミトイルホスファチジルエタノールアミン(DPPE)、ジオレオイルホスファチジルエタノールアミン(DOPE)、ジミリストイルホスファチジルエタノールアミン(DMPE)、16-0-モノメチルホスファチジルエタノールアミン、16-0-ジメチルホスファチジルエタノールアミン、18-1-トランスホスファチジルエタノールアミン、パルミトイルオレオイルホスファチジルエタノールアミン(POPE)および1-ステアロイル-2-オレオイル-ホスファチジルエタノールアミン(SOPE)等)、グリセロリン脂質(具体的にはホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、パルミトイルオレオイルホスファチジルグリセロール(POPG)およびリゾホスファチジルコリン等)、スフィンゴリン脂質(具体的にはスフィンゴミエリン、セラミドホスホエタノールアミン、セラミドホスホグリセロールおよびセラミドホスホグリセロリン酸等)、グリセロホスホノ脂質、スフィンゴホスホノ脂質、天然レシチン(具体的には卵黄レシチンおよび大豆レシチン等)ならびに水素添加リン脂質(具体的には水素添加大豆ホスファチジルコリン等)等の天然または合成のリン脂質が挙げられる。 Examples of phospholipids in neutral lipids include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine (DSPC), dipalmitoylphosphatidylcholine (DPPC), palmitoyloleoylphosphatidylcholine (POPC), dimyristoylphosphatidylcholine). (DMPC) and dioleoylphosphatidylcholine (DOPC), etc.), phosphatidylethanolamine (specifically distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DOPE)), Dimyristoylphosphatidylethanolamine (DMPE), 16-0-monomethylphosphatidylethanolamine, 16-0-dimethylphosphatidylethanolamine 18-1-transphosphatidylethanolamine, palmitoyl oleoyl phosphatidylethanolamine (POPE) and 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE), glycerophospholipid (specifically phosphatidylserine, phosphatidic acid, Phosphatidylglycerol, phosphatidylinositol, palmitoyl oleoylphosphatidylglycerol (POPG) and lysophosphatidylcholine), sphingophospholipids (specifically sphingomyelin, ceramide phosphoethanolamine, ceramide phosphoglycerol and ceramide phosphoglycerophosphate, etc.), glycerophosphono Lipids, sphingophosphonolipids, natural lecithins (specifically egg yolk lecithin and soy lecithin) and hydrogenated phospholipids (specifically hydrogen Natural phospholipids or synthetic pressurized soybean phosphatidylcholine, etc.) and the like.
 中性脂質におけるグリセロ糖脂質としては、例えばスルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド等が挙げられる。 Examples of the glyceroglycolipid in the neutral lipid include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
 中性脂質におけるスフィンゴ糖脂質としては、例えばガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシド等が挙げられる。 Examples of the glycosphingolipid in the neutral lipid include galactosyl cerebroside, lactosyl cerebroside, ganglioside and the like.
 中性脂質におけるスフィンゴイドとしては、例えばスフィンガン、イコサスフィンガンおよびスフィンゴシン、それらの誘導体等が挙げられる。
 誘導体としては、例えばスフィンガン、イコサスフィンガンまたはスフィンゴシン等の-NH2を-NHCO(CH2)xCH3(式中、xは0~18の整数であり、中でも6、12または18が好ましい)に変換したもの等が挙げられる。
Examples of the sphingoid in the neutral lipid include sphingan, icosasphingan and sphingosine, and derivatives thereof.
Derivatives include, for example, —NH 2 such as sphingan, icosasphingan, or sphingosine —NHCO (CH 2 ) xCH 3 (wherein x is an integer of 0 to 18, among which 6, 12 or 18 is preferred) And the like converted to.
 中性脂質におけるステロールとしては、例えばコレステロール、ジヒドロコレステロール、ラノステロール、β-シトステロール、カンペステロール、スチグマステロール、ブラシカステロール、エルゴカステロール、フコステロール、3β-[N-(N',N'-ジメチルアミノエチル)カルバモイル]コレステロール(DC-Chol)等が挙げられる。 Examples of sterols in neutral lipids include cholesterol, dihydrocholesterol, lanosterol, β-sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol, 3β- [N- (N ', N'-dimethyl Aminoethyl) carbamoyl] cholesterol (DC-Chol) and the like.
 高分子としては、例えばタンパク質、アルブミン、デキストラン、ポリフェクト(polyfect)、キトサン、デキストラン硫酸、ポリ-L-リジン、ポリエチレンイミン、ポリアスパラギン酸、スチレンマレイン酸共重合体、イソプロピルアクリルアミド-アクリルピロリドン共重合体、ポリエチレングリコール修飾デンドリマー、ポリ乳酸、ポリ乳酸ポリグリコール酸、ポリエチレングリコール化ポリ乳酸等が挙げられる。
 高分子としては、例示した高分子の塩の1以上からなるミセルであってもよい。
Examples of the polymer include protein, albumin, dextran, polyfect, chitosan, dextran sulfate, poly-L-lysine, polyethyleneimine, polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acryl pyrrolidone copolymer. Polyethylene glycol modified dendrimer, polylactic acid, polylactic acid polyglycolic acid, polyethylene glycolated polylactic acid and the like.
The polymer may be a micelle composed of one or more of the exemplified polymer salts.
 高分子の塩は、例えば金属塩、アンモニウム塩、酸付加塩、有機アミン付加塩、アミノ酸付加塩等が挙げられる。
 金属塩としては、例えばリチウム塩、ナトリウム塩およびカリウム塩等のアルカリ金属塩、マグネシウム塩およびカルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等が挙げられる。
 アンモニウム塩としては、例えばアンモニウム、テトラメチルアンモニウム等の塩が挙げられる。
 酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩およびリン酸塩等の無機酸塩、ならびに酢酸塩、マレイン酸塩、フマル酸塩およびクエン酸塩等の有機酸塩が挙げられる。
 有機アミン付加塩としては、例えばモルホリン、ピペリジン等の付加塩が挙げられる。
 アミノ酸付加塩としては、例えばグリシン、フェニルアラニン、アスパラギン酸、グルタミン酸、リジン等の付加塩が挙げられる。
Examples of the polymer salt include metal salts, ammonium salts, acid addition salts, organic amine addition salts, amino acid addition salts, and the like.
Examples of the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt and zinc salt.
As an ammonium salt, salts, such as ammonium and tetramethylammonium, are mentioned, for example.
Examples of the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, nitrate and phosphate, and organic acid salts such as acetate, maleate, fumarate and citrate.
Examples of organic amine addition salts include addition salts such as morpholine and piperidine.
Examples of amino acid addition salts include addition salts of glycine, phenylalanine, aspartic acid, glutamic acid, lysine, and the like.
 本発明の組成物は、例えば糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤等を含有することが好ましく、複合体に含有していてもよく、複合体を封入する脂質膜に含有していてもよく、複合体および複合体を封入する脂質膜ともに含有していることがより好ましい。 The composition of the present invention preferably contains, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers, or a surfactant, etc., and is contained in the complex. Alternatively, it may be contained in the lipid membrane encapsulating the complex, and more preferably contained in both the complex and the lipid membrane encapsulating the complex.
 本発明の組成物が、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体を含有する場合には、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体および脂肪酸誘導体の分子の総数は、本発明のカチオン性脂質および本発明のカチオン性脂質以外のカチオン性脂質の分子の総数に対して0.01~0.3倍であるのが好ましく、0.02~0.25倍であるのがより好ましく、0.03~0.15倍であるのがさらに好ましい。 When the composition of the present invention contains a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, they are selected from sugars, peptides, nucleic acids, and water-soluble polymers. The total number of lipid derivatives and fatty acid derivative molecules of one or more substances is preferably 0.01 to 0.3 times the total number of cationic lipid molecules of the present invention and cationic lipids other than the cationic lipids of the present invention. The ratio is more preferably 0.02 to 0.25 times, and further preferably 0.03 to 0.15 times.
 糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤としては、好ましくは、糖脂質、または水溶性高分子の脂質誘導体もしくは脂肪酸誘導体であり、より好ましくは、水溶性高分子の脂質誘導体または脂肪酸誘導体である。
 糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤は、分子の一部が本発明の組成物中の他の構成成分と例えば疎水性親和力または静電的相互作用等で結合する性質をもち、他の部分が組成物の製造時の溶媒と例えば親水性親和力または静電的相互作用等で結合する性質をもつ、2面性をもつ物質であるのが好ましい。
The lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or the surfactant is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferably, it is a lipid derivative or fatty acid derivative of a water-soluble polymer.
A lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant is a part of the molecule that is, for example, hydrophobic with other components in the composition of the present invention. It has the property of binding by affinity or electrostatic interaction, etc., and other parts have the property of binding to the solvent at the time of production of the composition, for example, hydrophilic affinity or electrostatic interaction, etc. A substance is preferred.
 糖、ペプチドまたは核酸の脂質誘導体または脂肪酸誘導体としては、例えばショ糖、ソルビトールおよび乳糖等の糖、例えばカゼイン由来ペプチド、卵白由来ペプチド、大豆由来ペプチドおよびグルタチオン等のペプチド、または例えばDNA、RNA、プラスミド、siRNAおよびオリゴデオキシヌクレオチド(ODN)等の核酸と、中性脂質もしくは本発明のカチオン性脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸等の脂肪酸とが結合した化合物等が挙げられる。 Examples of lipid derivatives or fatty acid derivatives of sugars, peptides or nucleic acids include sugars such as sucrose, sorbitol and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides and peptides such as glutathione, or DNA, RNA, plasmids, etc. , A compound in which a nucleic acid such as siRNA and oligodeoxynucleotide (ODN) and a neutral lipid or the cationic lipid of the present invention, or a fatty acid such as stearic acid, palmitic acid, myristic acid, lauric acid, etc. are bound. .
 糖の脂質誘導体または脂肪酸誘導体としては、例えばグリセロ糖脂質またはスフィンゴ糖脂質等も含まれる。 Examples of the sugar lipid derivative or fatty acid derivative include glyceroglycolipid and glycosphingolipid.
 水溶性高分子の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルランもしくはオリゴグリセロール等またはそれらの誘導体と、中性脂質もしくは本発明のカチオン性脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸およびラウリン酸等の脂肪酸とが結合した化合物等が挙げられ、好ましくは、ポリエチレングリコールもしくはポリグリセリンの脂質誘導体または脂肪酸誘導体であり、より好ましくは、ポリエチレングリコールの脂質誘導体または脂肪酸誘導体である。
 水溶性高分子の脂質誘導体または脂肪酸誘導体は、塩であってもよい。
Examples of the water-soluble polymer lipid derivative or fatty acid derivative include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan or oligoglycerol etc. or their derivatives and neutral lipids or cationic lipids of the present invention or stearic acid, palmitic acid, myristic acid And a compound in which a fatty acid such as lauric acid is bonded, preferably a lipid derivative or a fatty acid derivative of polyethylene glycol or polyglycerol, more preferably A lipid derivative or a fatty acid derivative of polyethylene glycol.
The lipid derivative or fatty acid derivative of the water-soluble polymer may be a salt.
 ポリエチレングリコールの脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール化脂質[具体的にはポリエチレングリコール-ホスファチジルエタノールアミン(より具体的には1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DSPE)および1,2-ジミリストイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DMPE)等)、ポリオキシエチレン硬化ヒマシ油60、クレモフォアイーエル(CREMOPHOR EL)等]、ポリエチレングリコールソルビタン脂肪酸エステル類(具体的にはモノオレイン酸ポリオキシエチレンソルビタン等)ならびにポリエチレングリコール脂肪酸エステル類等が挙げられ、好ましくは、ポリエチレングリコール化脂質である。 Examples of lipid derivatives or fatty acid derivatives of polyethylene glycol include polyethylene glycolated lipids [specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N- [methoxy (polyethylene glycol) -2000] (PEG-DMPE) Etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc., polyethylene glycol sorbitan fatty acid esters (specifically polyoxyethylene sorbitan monooleate, etc.) and polyethylene glycol fatty acid esters, etc. Preferably, it is a polyethylene glycolated lipid.
 ポリグリセリンの脂質誘導体または脂肪酸誘導体としては、例えばポリグリセリン化脂質(具体的にはポリグリセリン-ホスファチジルエタノールアミン等)またはポリグリセリン脂肪酸エステル類等が挙げられ、好ましくは、ポリグリセリン化脂質である。 Examples of the lipid derivative or fatty acid derivative of polyglycerin include polyglycerinized lipid (specifically, polyglycerin-phosphatidylethanolamine) or polyglycerin fatty acid esters, and the polyglycerinized lipid is preferable.
 界面活性剤としては、例えばモノオレイン酸ポリオキシエチレンソルビタン(具体的にはポリソルベート80等)、ポリオキシエチレンポリオキシプロピレングリコール(具体的にはプルロニック(登録商標)F68等)、ソルビタン脂肪酸エステル(具体的にはソルビタンモノラウレートおよびソルビタンモノオレエート等)、ポリオキシエチレン誘導体(具体的にはポリオキシエチレン硬化ヒマシ油60およびポリオキシエチレンラウリルアルコール等)、グリセリン脂肪酸エステル、ポリエチレングリコールアルキルエーテル等が挙げられ、好ましくは、ポリオキシエチレンポリオキシプロピレングリコール、グリセリン脂肪酸エステルまたはポリエチレングリコールアルキルエーテルである。 Examples of the surfactant include polyoxyethylene sorbitan monooleate (specifically polysorbate 80 and the like), polyoxyethylene polyoxypropylene glycol (specifically Pluronic (registered trademark) F68 and the like), sorbitan fatty acid ester (specifically Sorbitan monolaurate and sorbitan monooleate), polyoxyethylene derivatives (specifically polyoxyethylene hydrogenated castor oil 60 and polyoxyethylene lauryl alcohol), glycerin fatty acid ester, polyethylene glycol alkyl ether, etc. Preferably, it is polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester or polyethylene glycol alkyl ether.
 本発明の組成物中の複合体および脂質膜には、例えば水溶性高分子等による表面改質も任意に行うことができる[ラジック(D.D.Lasic)、マーティン(F.Martin)編,"ステルス・リポソームズ(Stealth Liposomes)"(米国),シーアールシー・プレス・インク(CRC Press Inc),1995年,p.93-102参照]。
 表面改質に使用し得る水溶性高分子としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルラン、オリゴグリセロール等が挙げられ、好ましくはデキストラン、プルラン、マンナン、アミロペクチンまたはヒドロキシエチルデンプンである。
 表面改質には、糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体または脂肪酸誘導体等を用いることができる。表面改質は、本発明の組成物中の複合体および脂質膜に糖、ペプチド、核酸および水溶性高分子から選ばれる1以上の物質の脂質誘導体もしくは脂肪酸誘導体、または界面活性剤を含有させる方法の1つである。
The complex and the lipid membrane in the composition of the present invention can be optionally subjected to surface modification with, for example, a water-soluble polymer [Radasic, edited by F. Martin, "Stealth liposome. Stealth Liposomes "(USA), CRC Press Inc., 1995, p. 93-102].
Examples of water-soluble polymers that can be used for surface modification include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, and polyglycerin. , Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol and the like, preferably dextran, pullulan, mannan, amylopectin or hydroxyethyl starch.
For the surface modification, lipid derivatives or fatty acid derivatives of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers can be used. The surface modification is a method in which the complex and lipid membrane in the composition of the present invention contain a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant. One of them.
 標的化リガンドを、本発明の組成物の脂質成分の極性ヘッド残基に共有結合することにより本発明の組成物の表面に直接結合させることもできる(国際公開第2006/116107号参照)。 The targeting ligand can also be directly bound to the surface of the composition of the present invention by covalently binding to the polar head residue of the lipid component of the composition of the present invention (see International Publication No. 2006/116107).
 本発明の組成物中の複合体または複合体を封入する脂質膜の平均粒子径は、所望により自由に選択できる。
 平均粒子径を調節する方法としては、例えばエクストルージョン法、大きな多重膜リポソーム(MLV)等を機械的に粉砕(具体的にはマントンゴウリンまたはマイクロフルイダイザー等を使用)する方法[ミュラー(R.H.Muller)、ベニタ(S.Benita)、ボーム(B.Bohm)編著,"エマルジョン・アンド・ナノサスペンジョンズ・フォー・ザ・フォーミュレーション・オブ・ポアリー・ソラブル・ドラッグズ(Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs)",ドイツ,サイエンティフィック・パブリッシャーズ・スチュットガルト(Scientific Publishers Stuttgart),1998年,p.267-294参照]等が挙げられる。
The average particle size of the complex or the lipid membrane encapsulating the complex in the composition of the present invention can be freely selected as desired.
As a method for adjusting the average particle size, for example, an extrusion method, a method of mechanically pulverizing large multilamellar liposomes (MLV) or the like (specifically using a manton gourin or a microfluidizer, etc.) [Müller (RHMuller ), Edited by S. Benita, B. Bohm, "Emulsion and Nanosuspensions for the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of the Formulation of Poorly Soluble Drugs) ", Scientific Publishers Stuttgart, 1998, p.267-294].
 本発明の組成物中の複合体の大きさは、平均粒子径が5 nm~200 nmであるのが好ましく、20 nm~150 nmであるのがより好ましく、20 nm~80 nmであるのがさらに好ましい。 Regarding the size of the composite in the composition of the present invention, the average particle size is preferably 5 nm to 200 nm, more preferably 20 nm to 150 nm, and 20 nm to 80 nm. Further preferred.
 本発明の組成物(複合体を封入する脂質膜)の大きさは、平均粒子径が10 nm~300 nmであるのが好ましく、30 nm~200 nmであるのがより好ましく、50 nm~150 nmであるのがさらに好ましい。 Regarding the size of the composition of the present invention (lipid membrane encapsulating the complex), the average particle size is preferably 10 nm to 300 nm, more preferably 30 nm to 200 nm, and 50 nm to 150 nm. More preferably, it is nm.
 本発明の組成物中の複合体または複合体を封入する脂質膜の平均粒子径は、例えば動的光散乱法で測定することができる。 The average particle size of the complex in the composition of the present invention or the lipid membrane encapsulating the complex can be measured, for example, by a dynamic light scattering method.
 本発明の組成物を、哺乳動物の細胞に導入することで、本発明の組成物中の核酸を細胞内に導入することができる。 The nucleic acid in the composition of the present invention can be introduced into cells by introducing the composition of the present invention into mammalian cells.
 インビボにおける本発明の組成物の哺乳動物の細胞への導入は、インビボにおいて行うことのできる公知のトランスフェクションの手順に従って行えばよい。例えば、本発明の組成物を、人を含む哺乳動物に静脈内投与することで、例えば腫瘍または炎症の生じた臓器または部位へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。腫瘍または炎症の生じた臓器または部位としては、特に限定されないが、例えば胃および大腸等の消化管、肝臓、肺、脾臓、膵臓、腎臓、膀胱、脳および脊髄等の中枢神経系、皮膚、血管ならびに眼球等が挙げられる。また、本発明の組成物を、人を含む哺乳動物に静脈内投与することで、例えば肝臓、肺、腎臓、消化管、中枢神経系および/または脾臓へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。肝臓、肺、腎臓、消化管、中枢神経系または脾臓の細胞は、正常細胞、腫瘍もしくは炎症に関連した細胞またはその他の疾患に関連した細胞のいずれでもよい。 The introduction of the composition of the present invention into mammalian cells in vivo may be performed according to known transfection procedures that can be performed in vivo. For example, the composition of the present invention is intravenously administered to a mammal, including a human, so that the composition is delivered to, for example, a tumor or an inflamed organ or site, and the cells of the delivery organ or site are contained in the composition of the present invention. Can be introduced. The organ or site where the tumor or inflammation has occurred is not particularly limited, but for example, the digestive tract such as the stomach and large intestine, the central nervous system such as the liver, lung, spleen, pancreas, kidney, bladder, brain and spinal cord, skin and blood vessels And eyeballs. In addition, the composition of the present invention can be delivered intravenously to mammals including humans, for example, to the liver, lungs, kidneys, gastrointestinal tract, central nervous system and / or spleen. The nucleic acid in the composition of the present invention can be introduced. Liver, lung, kidney, gastrointestinal tract, central nervous system or spleen cells can be normal cells, cells associated with tumors or inflammation or cells associated with other diseases.
 本発明の組成物中の核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸であれば、インビボで哺乳動物の細胞内に、標的遺伝子の発現を抑制する核酸等を導入することができ、標的遺伝子の発現の抑制ができる。
 本発明は、本発明の組成物を含有する、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制剤として使用することができる。
 投与対象は、人であることが好ましい。
If the nucleic acid in the composition of the present invention is a nucleic acid having an inhibitory effect on the expression of a target gene using RNA interference (RNAi), a nucleic acid that suppresses the expression of the target gene in vivo in a mammalian cell. Can be introduced, and the expression of the target gene can be suppressed.
The present invention can be used as a target gene expression inhibitor using RNA interference (RNAi) containing the composition of the present invention.
The administration subject is preferably a human.
 本発明における標的遺伝子が、例えば肝臓、肺または脾臓において発現する遺伝子である場合、本発明は、本発明の組成物を含有する、肝臓、肺または脾臓に関連する疾患の治療剤または予防剤として使用することができ、肺に関連する疾患の治療剤または予防剤として使用することが好ましい。また、本発明は、本発明の組成物を含有する抗腫瘍剤としても使用することができ、悪性腫瘍に用いられることが好ましく、肝臓、肺または脾臓における悪性腫瘍に用いられることがより好ましい。 When the target gene in the present invention is a gene expressed in, for example, the liver, lung, or spleen, the present invention contains the composition of the present invention as a therapeutic or prophylactic agent for a disease related to the liver, lung, or spleen. It can be used and is preferably used as a therapeutic or prophylactic agent for diseases related to the lung. The present invention can also be used as an antitumor agent containing the composition of the present invention, and is preferably used for malignant tumors, and more preferably used for malignant tumors in the liver, lung or spleen.
 肺に関連する疾患としては、例えば、気管支喘息、慢性閉塞性肺疾患、特発性間質性肺炎、過敏性肺炎、好酸球性肺炎、薬剤性肺炎、アレルギー性気管支肺アスペルギルス症、サルコイドーシス、膠原病肺、肺気腫、肺胞蛋白症、肺動脈性肺高血圧症、嚢胞性線維症、非結核性肺抗酸菌症、肺血栓塞栓症、好酸球性多発血管炎性肉芽腫症、肺水種、胸膜炎、膿胸、気胸、慢性呼吸不全等が挙げられる。 Examples of diseases related to the lung include bronchial asthma, chronic obstructive pulmonary disease, idiopathic interstitial pneumonia, hypersensitivity pneumonia, eosinophilic pneumonia, drug-induced pneumonia, allergic bronchopulmonary aspergillosis, sarcoidosis, collagen Diseased lung, emphysema, alveolar proteinosis, pulmonary arterial hypertension, cystic fibrosis, nontuberculous pulmonary mycobacterial disease, pulmonary thromboembolism, eosinophilic polyangiogenic granulomatosis, lung water species , Pleurisy, empyema, pneumothorax, chronic respiratory failure and the like.
 肝臓に関連する疾患としては、例えば、肝硬変、非アルコール性脂肪性肝炎、家族性高コレステロール血症、家族性アミロイドーシス、ウイルス性肝炎、肝ポルフィリン症、原発性高シュウ酸尿症I型、α1アンチトリプシン欠損症、高トリグリセリド血症、B型肝炎ウイルス感染症が挙げられる。 Examples of liver-related diseases include cirrhosis, nonalcoholic steatohepatitis, familial hypercholesterolemia, familial amyloidosis, viral hepatitis, hepatic porphyria, primary hyperoxaluria type I, α1 anti Examples include trypsin deficiency, hypertriglyceridemia, and hepatitis B virus infection.
 脾臓に関連する疾患としては、例えば、遺伝性球状赤血球症、特発性血小板減少性紫斑病、敗血症、突発性門脈圧亢進症、脾臓機能亢進症等が挙げられる。 Examples of diseases related to the spleen include hereditary spherocytosis, idiopathic thrombocytopenic purpura, sepsis, idiopathic portal hypertension, spleen hyperfunction and the like.
 本発明は、本発明の組成物を対象に投与する工程を含む、治療または予防方法も提供する。例えば、本発明の組成物を哺乳動物に投与する肝臓、肺または脾臓に関連する疾患の治療方法を提供する。投与対象は、人であることが好ましく、肝臓、肺または脾臓に関連する疾患に罹患している患者がより好ましい。 The present invention also provides a treatment or prevention method including the step of administering the composition of the present invention to a subject. For example, a method of treating a disease associated with the liver, lungs or spleen is provided by administering the composition of the present invention to a mammal. The administration subject is preferably a human, more preferably a patient suffering from a disease related to the liver, lungs or spleen.
 また、本発明は、本発明の組成物または抗腫瘍剤を対象に投与する工程を含む、悪性腫瘍の治療または予防方法も提供し、肝臓、肺または脾臓における悪性腫瘍に用いられることがより好ましい。 The present invention also provides a method for treating or preventing malignant tumors, comprising the step of administering the composition or antitumor agent of the present invention to a subject, and is more preferably used for malignant tumors in the liver, lung or spleen. .
 本発明の組成物は、肝臓、肺または脾臓に関連する疾患の治療剤または予防剤に関するインビボの薬効評価モデルにおいて、標的遺伝子を抑制することの有効性を検証するためのツールとして使用することもできる。 The composition of the present invention can also be used as a tool for verifying the effectiveness of suppressing a target gene in an in vivo drug efficacy evaluation model for a therapeutic or prophylactic agent for diseases related to the liver, lung or spleen. it can.
 本発明の組成物は、例えば血液成分等の生体成分(例えば血液および消化管等)中での核酸の安定化、副作用の低減または標的遺伝子の発現部位を含む組織または臓器への薬剤集積性の増大等を目的とする製剤としても使用できる。 The composition of the present invention can stabilize nucleic acids in biological components such as blood components (e.g. blood and digestive tract), reduce side effects, or accumulate drugs in tissues or organs containing target gene expression sites. It can also be used as a preparation for the purpose of increase or the like.
 本発明の組成物を、医薬品の肝臓、肺または脾臓に関連する疾患等の治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、例えば口腔内、気道内、直腸内、皮下、筋肉内または静脈内等の非経口投与または経口投与が挙げられ、好ましくは静脈内投与または気道内投与である。 When the composition of the present invention is used as a therapeutic or prophylactic agent for diseases related to the liver, lung or spleen of pharmaceuticals, it is desirable to use the most effective route for treatment as the administration route, For example, parenteral or oral administration such as intraoral, intratracheal, rectal, subcutaneous, intramuscular or intravenous administration can be mentioned, and intravenous administration or intratracheal administration is preferable.
 本発明の組成物の投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば核酸に換算した1日投与量が0.1 μg~1000 mgとなるように投与すればよい。 The dose of the composition of the present invention varies depending on the disease state, age, route of administration, etc. of the administration subject, but for example, it may be administered such that the daily dose converted to nucleic acid is 0.1 μg to 1000 μg.
 静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤が挙げられ、調製した本発明の組成物の分散液をそのまま注射剤等の形態としたものが挙げられる。
 適当な製剤としては、好ましくは、分散液から例えば濾過または遠心分離等によって溶媒を除去した製剤、分散液を凍結乾燥した製剤、ならびに例えばマンニトール、ラクトース、トレハロース、マルトースおよびグリシン等の賦形剤を加えた分散液を凍結乾燥した製剤である。
As a preparation suitable for intravenous administration or intramuscular administration, for example, an injection is exemplified, and a prepared dispersion of the composition of the present invention is directly used as an injection or the like.
Suitable preparations preferably include preparations obtained by removing the solvent from the dispersion by, for example, filtration or centrifugation, preparations obtained by lyophilizing the dispersion, and excipients such as mannitol, lactose, trehalose, maltose and glycine. It is the formulation which freeze-dried the added dispersion liquid.
 注射剤の場合、本発明の組成物の分散液または溶媒を除去または凍結乾燥した組成物に、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。例えばクエン酸、アスコルビン酸、システインおよびEDTA等の抗酸化剤またはグリセリン、ブドウ糖および塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。例えばグリセリン等の凍結保存剤を加えて凍結保存してもよい。 In the case of an injection, the dispersion or solvent of the composition of the present invention is removed or lyophilized, for example, water, acid, alkali, various buffers, physiological saline or amino acid infusion, etc. are mixed for injection. Is preferably prepared. For example, an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine and EDTA or an isotonic agent such as glycerin, glucose and sodium chloride. For example, a cryopreservation agent such as glycerin may be added for cryopreservation.
 また、本発明は、疾患の治療に使用する為の医薬組成物;疾患を治療する為の医薬組成物の使用;疾患の治療用医薬の製造におけるカチオン性脂質又は医薬組成物の使用;疾患の治療用医薬の製造に使用する為のカチオン性脂質又は医薬組成物;有効量の医薬組成物を、その必要のある対象に投与することを含む、疾患の治療または予防方法;を提供する。 The present invention also provides a pharmaceutical composition for use in the treatment of a disease; the use of a pharmaceutical composition for the treatment of a disease; the use of a cationic lipid or a pharmaceutical composition in the manufacture of a medicament for the treatment of a disease; Provided is a cationic lipid or pharmaceutical composition for use in the manufacture of a therapeutic medicament; a method of treating or preventing a disease comprising administering an effective amount of the pharmaceutical composition to a subject in need thereof.
 次に、実施例、比較例、参考例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例、比較例、参考例および試験例によって限定されるものではない。
 なお、実施例および参考例に示されたプロトン核磁気共鳴スペクトル(1H  NMR)は、400 MHzで測定されたものであり、化合物および測定条件によっては交換性プロトンが明瞭には観測されないことがある。なお、シグナルの多重度の表記としては通常用いられるものを用いている。
Next, the present invention will be specifically described with reference to Examples, Comparative Examples, Reference Examples, and Test Examples. However, the present invention is not limited to these examples, comparative examples, reference examples, and test examples.
The proton nuclear magnetic resonance spectra ( 1 H NMR) shown in the Examples and Reference Examples are those measured at 400 MHz, and exchangeable protons may not be clearly observed depending on the compound and measurement conditions. is there. In addition, what is normally used is used as the notation of the multiplicity of signals.
参考例1:(Z)-ノナ-2-エン-1-イル 10-ブロモデカノアート
 10-ブロモデカン酸 (東京化成工業社製, 4.00 g, 15.9 mmol)をジクロロメタン (250 mL)に溶解させ、cis-2-ノネン-1-オール (東京化成工業社製, 2.61 g, 18.3 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩 (東京化成工業社製, 3.51 g, 18.3 mmol)、N,N-ジメチル-4-アミノピリジン (2.24 g, 18.3 mmol)を加えて室温で終夜攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて、ジクロロメタンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/クロロホルム=95/5)で精製して、(Z)-ノナ-2-エン-1-イル 10-ブロモデカノアート (4.88 g, 収率 82%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.21-1.48 (m, 18H), 1.57-1.68 (m, 2H), 1.81-1.90 (m, 2H), 2.06-2.14 (m, 2H), 2.30 (t, J = 7.4 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 4.62 (t, J = 6.8 Hz, 2H), 5.48-5.57 (m, 1H), 5.60-5.69 (m, 1H).
Reference Example 1: (Z) -non-2-en-1-yl 10-bromodecanoate 10-bromodecanoic acid (Tokyo Chemical Industry Co., Ltd., 4.00 g, 15.9 mmol) was dissolved in dichloromethane (250 mL). cis-2-nonen-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd., 2.61 g, 18.3 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd., 3.51 g, 18.3 mmol), N, N-dimethyl-4-aminopyridine (2.24 g, 18.3 mmol) was added and stirred at room temperature overnight. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / chloroform = 95/5) to give (Z) -non-2-en-1-yl 10-bromodecanoate (4.88 g, yield 82% )
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.21-1.48 (m, 18H), 1.57-1.68 (m, 2H), 1.81-1.90 (m, 2H), 2.06 -2.14 (m, 2H), 2.30 (t, J = 7.4 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 4.62 (t, J = 6.8 Hz, 2H), 5.48-5.57 (m, 1H), 5.60-5.69 (m, 1H).
 ジ((Z)-ノナ-2-エン-1-イル) 10,10'-((3-ヒドロキシプロピル)アザンジイル)ジデカノアート(化合物1)
工程1
 参考例1で得られた (Z)-ノナ-2-エン-1-イル 10-ブロモオクタデカノアート (3.72 g, 9.90 mmol)をアセトニトリル (20 mL)に溶解させ、 2-ニトロベンゼンスルホンアミド (800 mg, 3.96 mmol)、炭酸セシウム (3.87 g, 11.9 mmol)を加えて、60℃で終夜攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて、ヘプタンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=85/15)で精製してジ((Z)-ノナ-2-エン-1-イル) 10,10'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジデカノアート の粗生成物を得た。
 得られた粗生成物をアセトニトリル (25 mL)に溶解させ、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン (東京化成工業社製, 1.41 mL, 9.43 mmol)、1-ドデカンチオール (2.25 mL, 9.43 mmol)を加えて60℃で3時間攪拌した。反応液に水を加えて、酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー (ヘプタン/クロロホルム=90/10~0/100)で精製してジ((Z)-ノナ-2-エン-1-イル) 10,10'-アザンジイルジデカノアート (2.27 g, 収率87%)を得た。
 ESI-MS m/z: 607 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.22-1.51 (m, 40H), 1.57-1.68 (m, 4H), 2.05-2.12 (m, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.57 (t, J = 7.3 Hz, 4H), 4.62 (d, J = 6.9 Hz, 4H), 5.46-5.56 (m, 2H) , 5.59-5.69 (m, 2H).
工程2
 工程1で得られたジ((Z)-ノナ-2-エン-1-イル) 10,10'-アザンジイルジデカノアート (400 mg, 0.660 mmol)をN,N-ジメチルホルムアミド (3.5 mL)に溶解させ、tert-ブチル(3-ヨードプロポキシ)ジメチルシラン (38 mg, 0.792 mmol)、炭酸セシウム (430 mg, 1.32 mmol)を加えて室温で終夜攪拌した。反応液に水を加えて、ヘプタンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=80/20)で精製してジ((Z)-ノナ2-エン-1-イル) 10,10'-((3-((tert-ブチルジメチルシリル)オキシ)プロピル)アザンジイル)ジデカノアートの粗生成物を得た。
 得られた粗生成物をテトラヒドロフラン (8 mL)に溶解させ、テトラブチルアンモニウムフルオリド (1 mol/L テトラヒドロフラン溶液, 1.07 mL, 1.07 mmol)を加えて室温で6時間攪拌した。反応液に飽和塩化ナトリウム水溶液を加えて、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=70/30)で精製して化合物1 (325 mg, 収率74%)を得た。
 ESI-MS m/z: 665 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.19-1.72 (m, 47H), 2.07-2.13 (m, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.39 (t, J = 7.8 Hz, 4H), 2.63 (t, J = 5.5 Hz, 2H) , 3.79 (t, J = 5.3 Hz, 2H), 4.62 (d, J = 6.9 Hz, 4H), 5.48-5.57 (m, 2H) , 5.59-5.69 (m, 2H).
Di ((Z) -non-2-en-1-yl) 10,10 '-((3-hydroxypropyl) azanediyl) dideanoate (compound 1)
Process 1
(Z) -Non-2-en-1-yl 10-bromooctadecanoate (3.72 g, 9.90 mmol) obtained in Reference Example 1 was dissolved in acetonitrile (20 mL), and 2-nitrobenzenesulfonamide ( 800 mg, 3.96 mmol) and cesium carbonate (3.87 g, 11.9 mmol) were added, and the mixture was stirred at 60 ° C. overnight. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the mixture was extracted with heptane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / ethyl acetate = 85/15) to obtain di ((Z) -non-2-en-1-yl) 10,10 ′-(((2-nitro A crude product of phenyl) sulfonyl) azanediyl) dicanoate was obtained.
The obtained crude product was dissolved in acetonitrile (25 mL), and 1,8-diazabicyclo [5.4.0] -7-undecene (Tokyo Chemical Industry Co., Ltd., 1.41 mL, 9.43 mmol), 1-dodecanethiol (2.25 mL, 9.43 mmol) was added and the mixture was stirred at 60 ° C. for 3 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (heptane / chloroform = 90 / 10-0 / 100) to obtain di ((Z) -non-2-en-1-yl) 10,10'-azane Irjidecanoate (2.27 g, yield 87%) was obtained.
ESI-MS m / z: 607 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.22-1.51 (m, 40H), 1.57-1.68 ( m, 4H), 2.05-2.12 (m, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.57 (t, J = 7.3 Hz, 4H), 4.62 (d, J = 6.9 Hz, 4H), 5.46-5.56 (m, 2H), 5.59-5.69 (m, 2H).
Process 2
Di ((Z) -non-2-en-1-yl) 10,10'-azanediyl didecanoate (400 mg, 0.660 mmol) obtained in step 1 was converted to N, N-dimethylformamide (3.5 mL). ), Tert-butyl (3-iodopropoxy) dimethylsilane (38 mg, 0.792 mmol) and cesium carbonate (430 mg, 1.32 mmol) were added, and the mixture was stirred at room temperature overnight. Water was added to the reaction solution and extracted with heptane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / ethyl acetate = 80/20) to obtain di ((Z) -non-2-en-1-yl) 10,10 ′-((3-((tert A crude product of -butyldimethylsilyl) oxy) propyl) azanediyl) didecanoate was obtained.
The obtained crude product was dissolved in tetrahydrofuran (8 mL), tetrabutylammonium fluoride (1 mol / L tetrahydrofuran solution, 1.07 mL, 1.07 mmol) was added, and the mixture was stirred at room temperature for 6 hr. A saturated aqueous sodium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (heptane / ethyl acetate = 70/30) to obtain Compound 1 (325 mg, yield 74%).
ESI-MS m / z: 665 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.9 Hz, 6H), 1.19-1.72 (m, 47H), 2.07-2.13 ( m, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.39 (t, J = 7.8 Hz, 4H), 2.63 (t, J = 5.5 Hz, 2H), 3.79 (t, J = 5.3 Hz, 2H), 4.62 (d, J = 6.9 Hz, 4H), 5.48-5.57 (m, 2H), 5.59-5.69 (m, 2H).
参考例2:(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアート
 12-ブロモドデカン酸 (シグマアルドリッチ社(sigma-aldrich)製, 5.00 g, 17.9 mmol)をジクロロメタン (40 mL)に溶解させ、(Z)-ノナ-2-エン-1-オール (東京化成工業社製, 3.90 mL, 23.3 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (5.15 g, 26.9 mmol)およびジメチルアミノピリジン (3.28 g, 26.9 mmol)を順次加えて、室温で終夜反応させた。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5)で精製することにより、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアート (5.00 g, 収率69%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.23-1.46 (m, 22H), 1.57-1.65 (m, 2H), 1.81-1.89 (m, 2H), 2.10 (q, J = 6.8 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.61-4.63 (m, 2H), 5.48-5.57 (m, 1H), 5.60-5.68 (m, 1H).
Reference Example 2: (Z) -non-2-en-1-yl 12-bromododecanoate 12-bromododecanoic acid (manufactured by sigma-aldrich, 5.00 g, 17.9 mmol) in dichloromethane (40 mL (Z) -non-2-en-1-ol (Tokyo Chemical Industry Co., Ltd., 3.90 mL, 23.3 mmol), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (5.15 g, 26.9 mmol) and dimethylaminopyridine (3.28 g, 26.9 mmol) were sequentially added and allowed to react at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate = 95/5) to give (Z) -non-2-en-1-yl 12-bromododecano Art (5.00 g, 69% yield) was obtained.
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.23-1.46 (m, 22H), 1.57-1.65 (m, 2H), 1.81-1.89 (m, 2H), 2.10 (q, J = 6.8 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.61-4.63 (m, 2H), 5.48-5.57 (m, 1H), 5.60-5.68 (m, 1H).
 ジ((Z)-ノナ-2-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート (化合物2)
 3-アミノプロパン-1-オール (東京化成工業社製, 0.152 mL, 2.00 mmol)をN,N-ジメチルホルムアミド (2 mL)に溶解し、参考例2で得られた、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアート (1.77 g, 4.39 mmol)、N,N-ジイソプロピルエチルアミン (3.49 mL, 20.0 mmol)を順次加えて、120℃で3時間反応させた。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をNHシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=99/1~65/35)で精製することにより、化合物2 (0.420 g, 収率29%)を得た。
 ESI-MS m/z: 720 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.22-1.39 (m, 44H), 1.39-1.48 (m, 4H), 1.58-1.70 (m, 6H), 2.10 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.36-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.62 (dt, J = 6.8, 0.5 Hz, 4H), 5.47-5.56 (m, 2H), 5.60-5.68 (m, 2H).
Di ((Z) -non-2-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (compound 2)
3-Aminopropan-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd., 0.152 mL, 2.00 mmol) was dissolved in N, N-dimethylformamide (2 mL), and (Z) -nona-obtained in Reference Example 2 was obtained. 2-en-1-yl 12-bromododecanoate (1.77 g, 4.39 mmol) and N, N-diisopropylethylamine (3.49 mL, 20.0 mmol) were sequentially added and reacted at 120 ° C. for 3 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by NH silica gel column chromatography (hexane / ethyl acetate = 99/1 to 65/35) to obtain compound 2 (0.420 g, yield 29%). It was.
ESI-MS m / z: 720 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.22-1.39 (m, 44H), 1.39-1.48 ( m, 4H), 1.58-1.70 (m, 6H), 2.10 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.36-2.42 (m, 4H), 2.63 (t , J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.62 (dt, J = 6.8, 0.5 Hz, 4H), 5.47-5.56 (m, 2H), 5.60-5.68 (m, 2H).
参考例3:ノニル 12-ブロモドデカノアート
 参考例2と同様の方法で、(Z)-ノナ-2-エン-1-オールの代わりに、ノナン-1-オール (東京化成工業社製)を用い、ノニル 12-ブロモドデカノアート (1.30 g, 収率60%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.24-1.46 (m, 26H), 1.57-1.65 (m, 4H), 1.81-1.89 (m, 2H), 2.29 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H).
Reference Example 3: Nonyl 12-bromododecanoate In the same manner as Reference Example 2, instead of (Z) -non-2-en-1-ol, nonan-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. Used to obtain nonyl 12-bromododecanoate (1.30 g, yield 60%).
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.24-1.46 (m, 26H), 1.57-1.65 (m, 4H), 1.81-1.89 (m, 2H), 2.29 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H).
 ジノニル 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物3)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例3で得られたノニル 12-ブロモドデカノアートを用い、化合物3 (1.30 g, 収率60%)を得た。
 ESI-MS m/z: 724 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.22-1.36 (m, 56H), 1.42-1.51 (m, 4H), 1.57-1.70 (m, 6H), 2.29 (t, J = 7.5 Hz, 4H), 2.40 (t, J = 7.6 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t, J = 6.7 Hz, 4H).
Dinonyl 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (compound 3)
In the same manner as in Example 2, using the nonyl 12-bromododecanoate obtained in Reference Example 3 instead of (Z) -non-2-en-1-yl 12-bromododecanoate, 3 (1.30 g, 60% yield) was obtained.
ESI-MS m / z: 724 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.22-1.36 (m, 56H), 1.42-1.51 ( m, 4H), 1.57-1.70 (m, 6H), 2.29 (t, J = 7.5 Hz, 4H), 2.40 (t, J = 7.6 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t, J = 6.7 Hz, 4H).
参考例4:(Z)-ノナ-3-エン-1-イル 12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、cis-3-ノネン-1-オール (東京化成工業社製)を用い、(Z)-ノナ-3-エン-1-イル 12-ブロモドデカノアート(1.50 g, 収率52%)を得た。
 1H-NMR (CDCl3) δ: 0.89 (t, J = 7.0 Hz, 3H), 1.24-1.45 (m, 20H), 1.57-1.65 (m, 2H), 1.81-1.89 (m, 2H), 2.04 (q, J = 6.8 Hz, 2H), 2.29 (t, J = 7.6 Hz, 2H), 2.34-2.40 (m, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.06 (t, J = 7.0 Hz, 2H), 5.29-5.39 (m, 1H), 5.46-5.55 (m, 1H).
Reference Example 4: (Z) -Non-3-en-1-yl 12-bromododecanoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol, cis-3-nonene (Z) -non-3-en-1-yl 12-bromododecanoate (1.50 g, yield 52%) was obtained using -1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.).
1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 7.0 Hz, 3H), 1.24-1.45 (m, 20H), 1.57-1.65 (m, 2H), 1.81-1.89 (m, 2H), 2.04 (q, J = 6.8 Hz, 2H), 2.29 (t, J = 7.6 Hz, 2H), 2.34-2.40 (m, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.06 (t, J = 7.0 Hz, 2H), 5.29-5.39 (m, 1H), 5.46-5.55 (m, 1H).
 ジ((Z)-ノナ-3-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物4)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例4で得られた(Z)-ノナ-3-エン-1-イル 12-ブロモドデカノアートを用い、化合物4 (0.420 g, 収率44%)を得た。
 ESI-MS m/z: 720 (M + H)+1H-NMR (CDCl3) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.19-1.42 (m, 44H), 1.42-1.72 (m, 10H), 2.04 (q, J = 6.8 Hz, 4H), 2.29 (t, J = 7.6 Hz, 4H), 2.34-2.43 (m, 4H), 2.63 (t, J = 5.7 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.06 (t, J = 7.0 Hz, 4H), 5.30-5.38 (m, 2H), 5.46-5.55 (m, 2H).
Di ((Z) -non-3-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (compound 4)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, (Z) -non-3-ene-1 obtained in Reference Example 4 was used. Compound 4 (0.420 g, 44% yield) was obtained using -yl 12-bromododecanoate.
ESI-MS m / z: 720 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 6.8 Hz, 6H), 1.19-1.42 (m, 44H), 1.42-1.72 ( m, 10H), 2.04 (q, J = 6.8 Hz, 4H), 2.29 (t, J = 7.6 Hz, 4H), 2.34-2.43 (m, 4H), 2.63 (t, J = 5.7 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.06 (t, J = 7.0 Hz, 4H), 5.30-5.38 (m, 2H), 5.46-5.55 (m, 2H).
参考例5:エチル 12-ブロモドデカノアート
 12-ブロモドデカン酸 (6.50 g, 23.3 mmol)をエタノール (70 mL)に溶解させ、塩化水素-1,4-ジオキサン溶液 (東京化成工業社製, 4.0 mol/L, 2.91 mL, 11.6 mmol)を加え、室温で2時間反応させた。反応混合物を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5)で精製することにより、エチル 12-ブロモドデカノアート (7.57 g, 収率定量的)を得た。
Reference Example 5: Ethyl 12-bromododecanoate 12-bromododecanoic acid (6.50 g, 23.3 mmol) was dissolved in ethanol (70 mL) and a hydrogen chloride-1,4-dioxane solution (Tokyo Chemical Industry Co., Ltd., 4.0 mol / L, 2.91 mL, 11.6 mmol) was added, and the mixture was reacted at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate = 95/5) to give ethyl 12-bromododecanoate (7.57 g, quantitative yield). It was.
参考例6: 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカン酸
工程1
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例5で得られたエチル 12-ブロモドデカノアートを用い、ジエチル 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(1.23 g, 収率44%)を得た。
 ESI-MS m/z:  528 (M + H)+
工程2:
 工程1で得られたジエチル 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート (1.23 g, 2.33 mmol)をエタノール (5 mL)に溶解させ、水酸化リチウム1水和物 (0.233 g, 9.32mmol)の水溶液(2 mL)を加え、室温で1時間反応させた。反応混合物を塩酸で弱酸性とした後に、さらに水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮することで、12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカン酸(1.00 g, 収率91%)を得た。
 ESI-MS m/z: 470(M - H)-
Reference Example 6: 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoic acid step 1
In the same manner as in Example 2, using ethyl 12-bromododecanoate obtained in Reference Example 5 instead of (Z) -non-2-en-1-yl 12-bromododecanoate, diethyl 12,12 ′-((3-hydroxypropyl) azanediyl) didodecanoate (1.23 g, yield 44%) was obtained.
ESI-MS m / z: 528 (M + H) +
Process 2:
Diethyl 12,12 ′-((3-hydroxypropyl) azanediyl) didodecanoate (1.23 g, 2.33 mmol) obtained in step 1 was dissolved in ethanol (5 mL), and lithium hydroxide monohydrate (0.233 g, 9.32 mmol) of an aqueous solution (2 mL) was added and allowed to react at room temperature for 1 hour. The reaction mixture was made weakly acidic with hydrochloric acid, water was further added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain 12,12 ′-((3-hydroxypropyl) azanediyl) didodecanoic acid (1.00 g, yield 91%).
ESI-MS m / z: 470 (M-H) -
 ジ((Z)-ノナ-2-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート (化合物5)
 参考例6で得られた12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカン酸 (0.200 g, 0.424 mmol)をN,N-ジメチルホルムアミド(3 mL)に溶解させ、(E)-ノナ-2-エン-1-オール (東京化成工業社製, 0.709 mL, 4.24 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート(HATU, 0.645 g, 1.70 mmol)およびN,N-ジメチルアミノピリジン (0.104 g, 0.848 mmol)を順次加え、室温で終夜反応させた。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=99/1~90/10)で精製することにより、化合物5 (0.0680 g, 収率22%)を得た。
 ESI-MS m/z: 720 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.21-1.51 (m, 48H), 1.57-1.73 (m, 6H), 2.05 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.37-2.46 (m, 4H), 2.62-2.70 (m, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.51 (dd, J = 6.6, 1.0 Hz, 4H), 5.51-5.60 (m, 2H), 5.72-5.81 (m, 2H).
Di ((Z) -non-2-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 5)
12,12 ′-((3-hydroxypropyl) azanediyl) didodecanoic acid (0.200 g, 0.424 mmol) obtained in Reference Example 6 was dissolved in N, N-dimethylformamide (3 mL), and (E) -nona -2-en-1-ol (Tokyo Chemical Industry Co., Ltd., 0.709 mL, 4.24 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium Hexafluorophosphate (HATU, 0.645 g, 1.70 mmol) and N, N-dimethylaminopyridine (0.104 g, 0.848 mmol) were sequentially added and allowed to react at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate = 99/1 to 90/10) to give compound 5 (0.0680 g, yield 22%). .
ESI-MS m / z: 720 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.21-1.51 (m, 48H), 1.57-1.73 ( m, 6H), 2.05 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.37-2.46 (m, 4H), 2.62-2.70 (m, 2H), 3.80 (t , J = 5.1 Hz, 2H), 4.51 (dd, J = 6.6, 1.0 Hz, 4H), 5.51-5.60 (m, 2H), 5.72-5.81 (m, 2H).
参考例7:ノナ-8-エン-1-イル 12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、ノナ-8-エン-1-オール (東京化成工業社製)を用い、ノナ-8-エン-1-イル 12-ブロモドデカノアート (0.900 g, 収率42%)を得た。
Reference Example 7: Nona-8-en-1-yl 12-bromododecanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol, nona-8-en-1-ol (Manufactured by Tokyo Chemical Industry Co., Ltd.) was used to obtain nona-8-en-1-yl 12-bromododecanoate (0.900 g, yield 42%).
 ジ(ノナ-8-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物6)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモデカノアートの代わりに、参考例7で得られたノナ-8-エン-1-イル 12-ブロモドデカノアートを用い、化合物6 (0.110 g, 収率14%)を得た。
 ESI-MS m/z: 720 (M + H)+1H-NMR (CDCl3) δ: 1.21-1.50 (m, 48H), 1.55-1.70 (M10H), 2.00-2.08 (m, 4H), 2.29 (t, J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t, J = 6.7 Hz, 4H), 4.90-5.05 (m, 4H), 5.73-5.88 (m, 2H).
Di (non-8-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 6)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromodecanoate, nona-8-en-1-yl 12- obtained in Reference Example 7 was used. Compound 6 (0.110 g, 14% yield) was obtained using bromododecanoate.
ESI-MS m / z: 720 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.21-1.50 (m, 48H), 1.55-1.70 (M10H), 2.00-2.08 (m, 4H), 2.29 (t, J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t, J = 6.7 Hz, 4H), 4.90-5.05 (m, 4H), 5.73-5.88 (m, 2H).
参考例8:(Z)-オクタ-5-エン-1-イル 12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、(Z)-オクタ-5-エン-1-オール(東京化成工業社製)を用い、(Z)-オクタ-5-エン-1-イル 12-ブロモドデカノアート (1.80 g, 収率86%)を得た。
Reference Example 8: (Z) -Octa-5-en-1-yl 12-bromododecanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol, (Z) -octa (Z) -oct-5-en-1-yl 12-bromododecanoate (1.80 g, yield 86%) was obtained using -5-en-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.).
 ジ((Z)-オクタ-5-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物7)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例8で得られた(Z)-オクタ-5-エン-1-イル 12-ブロモドデカノアートを用い、化合物7 (0.670 g, 収率45%)を得た。
 ESI-MS m/z: 692 (M + H)+1H-NMR (CDCl3) δ: 0.96 (t, J = 7.6 Hz, 6H), 1.22-1.33 (m, 28H), 1.37-1.50 (m, 8H), 1.57-1.70 (m, 10H), 1.98-2.10 (m, 8H), 2.29 (t, J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.07 (t, J = 6.7 Hz, 4H), 5.25-5.43 (m, 4H).
Di ((Z) -octa-5-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (compound 7)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, (Z) -oct-5-ene-1 obtained in Reference Example 8 was used. Compound 7 (0.670 g, yield 45%) was obtained using -yl 12-bromododecanoate.
ESI-MS m / z: 692 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.96 (t, J = 7.6 Hz, 6H), 1.22-1.33 (m, 28H), 1.37-1.50 ( m, 8H), 1.57-1.70 (m, 10H), 1.98-2.10 (m, 8H), 2.29 (t, J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.07 (t, J = 6.7 Hz, 4H), 5.25-5.43 (m, 4H).
参考例9:(Z)-ウンデカ-2-エン-1-イル 12-ブロモドデカノアート
工程1
 2-プロピン-1-オール (東京化成工業社製, 0.989 mL, 16.8 mmol)をテトラヒドロフラン (20 mL)に溶解した。-78℃に冷却した状態で、ヘキサメチルリン酸トリアミド (東京化成工業社製, 5.00 mL, 28.7 mmol)およびn-ブチルリチウム (東京化成工業社製, 1.6 mol/Lヘキサン溶液, 21.0 mL, 33.7 mmol)を順次添加し、-78℃で1時間撹拌した。-30℃まで昇温させ、1-ブロモオクタン (2.50 g, 12.9 mmol)を添加した。その後、室温まで徐々に昇温させた後に、室温で終夜反応させた。反応混合物に水を加え、ヘキサンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=99/1~70/30)で精製することにより、2-ウンデシン-1-オール (1.64 g, 収率75%)を得た。
 ESI-MS m/z: 168 (M + H)+
工程2
 工程1で得られた 2-ウンデシン-1-オール(0.300 g, 1.78 mmol)を酢酸エチル (15 mL)に溶解させ、キノリン (0.317 mL, 2.67 mmol)およびクロロホルム (0.144 mL, 1.78 mmol)を添加して、アルゴンにて容器内を置換した。リンドラ-触媒 (東京化成工業社製, 0.095 g, 0.891 mmol/パラジウム量として)を添加した後、水素にて容器内を置換し、2時間半室温にて反応させた。反応混合物に水を加え、ヘキサンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、(Z)-ウンデカ-2-エン-1-オール (粗生成物, 0.32 g, 定量的)を得た。
 1H-NMR (CDCl3) δ: 0.86-0.92 (m, 3H), 1.19-1.40 (m, 12H), 2.07 (q, J = 6.6 Hz, 2H), 4.20 (t, J = 5.1 Hz, 2H), 4.26 (s, 1H), 5.49-5.67 (m, 2H).
工程3
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、工程2で得られた(Z)-ウンデカ-2-エン-1-オールを用い、(Z)-ウンデカ-2-エン-1-イル 12-ブロモドデカノアート(0.285 g, 収率75%)を得た。
Reference Example 9: (Z) -Undec-2-en-1-yl 12-bromododecanoate Step 1
2-Propin-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd., 0.989 mL, 16.8 mmol) was dissolved in tetrahydrofuran (20 mL). Hexamethylphosphoric triamide (Tokyo Chemical Industry Co., Ltd., 5.00 mL, 28.7 mmol) and n-butyllithium (Tokyo Chemical Industry Co., Ltd., 1.6 mol / L hexane solution, 21.0 mL, 33.7) after cooling to -78 ° C mmol) were sequentially added, and the mixture was stirred at -78 ° C for 1 hour. The temperature was raised to −30 ° C., and 1-bromooctane (2.50 g, 12.9 mmol) was added. Thereafter, the temperature was gradually raised to room temperature, followed by reaction at room temperature overnight. Water was added to the reaction mixture, and the mixture was extracted with hexane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 99/1 to 70/30) to give 2-undecin-1-ol (1.64 g, yield 75). %).
ESI-MS m / z: 168 (M + H) +
Process 2
2-Undecin-1-ol (0.300 g, 1.78 mmol) obtained in step 1 is dissolved in ethyl acetate (15 mL), and quinoline (0.317 mL, 2.67 mmol) and chloroform (0.144 mL, 1.78 mmol) are added. Then, the inside of the container was replaced with argon. After adding Linda catalyst (manufactured by Tokyo Chemical Industry Co., Ltd., 0.095 g, 0.891 mmol / palladium amount), the inside of the container was replaced with hydrogen and reacted at room temperature for 2.5 hours. Water was added to the reaction mixture, and the mixture was extracted with hexane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure to obtain (Z) -undec-2-en-1-ol (crude product, 0.32 g, quantitative).
1 H-NMR (CDCl 3 ) δ: 0.86-0.92 (m, 3H), 1.19-1.40 (m, 12H), 2.07 (q, J = 6.6 Hz, 2H), 4.20 (t, J = 5.1 Hz, 2H ), 4.26 (s, 1H), 5.49-5.67 (m, 2H).
Process 3
In the same manner as in Reference Example 1, (Z) -undec-2-en-1-ol obtained in Step 2 was used instead of cis-2-nonen-1-ol, and (Z) -undec- 2-En-1-yl 12-bromododecanoate (0.285 g, yield 75%) was obtained.
 ジ((Z)-ウンデカ-2-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物8)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例9で得られた(Z)-ウンデカ-2-エン-1-イル 12-ブロモドデカノアートを用い、化合物8 (0.095 g, 収率46%)を得た。
 ESI-MS m/z: 776 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.24-1.46 (m, 56H), 1.58-1.69 (m, 6H), 2.09 (q, J = 6.9 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.64 (t, J = 5.4 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.62 (d, J = 6.8 Hz, 4H), 5.47-5.56 (m, 2H), 5.60-5.69 (m, 2H).
Di ((Z) -undec-2-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 8)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, (Z) -undec-2-ene-1 obtained in Reference Example 9 was used. Compound 8 (0.095 g, yield 46%) was obtained using -yl 12-bromododecanoate.
ESI-MS m / z: 776 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.24-1.46 (m, 56H), 1.58-1.69 ( m, 6H), 2.09 (q, J = 6.9 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.64 (t, J = 5.4 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.62 (d, J = 6.8 Hz, 4H), 5.47-5.56 (m, 2H), 5.60-5.69 (m, 2H).
参考例10:(Z)-トリデカ-2-エン-1-イル 12-ブロモドデカノアート
 参考例9と同様の方法で、工程1で1-ブロモオクタンの代わりに、1-ブロモデカンを用い、(Z)-トリデカ-2-エン-1-イル 12-ブロモドデカノアート (0.152 g, 3工程収率33%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.23-1.46 (m, 30H), 1.58-1.66 (m, 2H), 1.81-1.89 (m, 2H), 2.09 (t, J = 7.0 Hz, 2H), 2.30 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.48-5.56 (m, 1H), 5.60-5.68 (m, 1H).
Reference Example 10: (Z) -Tridec-2-en-1-yl 12-bromododecanoate In the same manner as in Reference Example 9, using 1-bromodecane instead of 1-bromooctane in Step 1, ( Z) -Tridec-2-en-1-yl 12-bromododecanoate (0.152 g, yield of 3 steps 33%) was obtained.
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.23-1.46 (m, 30H), 1.58-1.66 (m, 2H), 1.81-1.89 (m, 2H), 2.09 (t, J = 7.0 Hz, 2H), 2.30 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.48-5.56 (m, 1H), 5.60-5.68 (m, 1H).
 ジ((Z)-トリデカ-2-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物9)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例10で得られた(Z)-トリデカ-2-エン-1-イル 12-ブロモドデカノアートを用い、化合物9 (0.029 g, 収率26%)を得た。
 ESI-MS m/z: 832 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.20-1.50 (m, 66H), 1.56-1.70 (m, 4H), 2.09 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.62 (d, J = 6.8 Hz, 4H), 5.48-5.56 (m, 2H), 5.61-5.67 (m, 2H).
Di ((Z) -tridec-2-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 9)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, (Z) -tridec-2-ene-1 obtained in Reference Example 10 was used. Compound 9 (0.029 g, yield 26%) was obtained using -yl 12-bromododecanoate.
ESI-MS m / z: 832 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.20-1.50 (m, 66H), 1.56-1.70 ( m, 4H), 2.09 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.5 Hz, 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.62 (d, J = 6.8 Hz, 4H), 5.48-5.56 (m, 2H), 5.61-5.67 (m, 2H).
参考例11: (E)-3,7-ジメチルオクタ-2,6-ジエン-1-イル 12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、ゲラニオール (東京化成工業社製)を用い、(E)-3,7-ジメチルオクタ-2,6-ジエン-1-イル 12-ブロモドデカノアート (2.10 g, 収率94%)を得た。
 1H-NMR (CDCl3) δ: 1.25-1.34 (m, 12H), 1.37-1.45 (m, 2H), 1.58-1.65 (m, 2H), 1.60-1.61 (m, 3H), 1.67-1.69 (m, 3H), 1.69-1.71 (m, 3H), 1.81-1.89 (m, 2H), 2.01-2.15 (m, 4H), 2.30 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.59 (dd, J = 7.1, 0.8 Hz, 2H), 5.05-5.12 (m, 1H), 5.30-5.37 (m, 1H).
Reference Example 11: (E) -3,7-Dimethylocta-2,6-dien-1-yl 12-bromododecanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol (E) -3,7-dimethylocta-2,6-dien-1-yl 12-bromododecanoate (2.10 g, 94% yield) was obtained using geraniol (manufactured by Tokyo Chemical Industry Co., Ltd.) It was.
1 H-NMR (CDCl 3 ) δ: 1.25-1.34 (m, 12H), 1.37-1.45 (m, 2H), 1.58-1.65 (m, 2H), 1.60-1.61 (m, 3H), 1.67-1.69 ( m, 3H), 1.69-1.71 (m, 3H), 1.81-1.89 (m, 2H), 2.01-2.15 (m, 4H), 2.30 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.59 (dd, J = 7.1, 0.8 Hz, 2H), 5.05-5.12 (m, 1H), 5.30-5.37 (m, 1H).
 ビス((E)-3,7-ジメチルオクタ-2,6-ジエン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物10)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例11で得られた(E)-3,7-ジメチルオクタ-2,6-ジエン-1-イル 12-ブロモドデカノアートを用い、化合物10 (0.825 g, 収率49%)を得た。
 ESI-MS m/z: 744 (M + H)+1H-NMR (CDCl3) δ: 1.23-1.35 (m, 30H), 1.41-1.50 (m, 4H), 1.56-1.67 (m, 4H), 1.60 (s, 6H), 1.68 (d, J = 1.0 Hz, 6H), 1.70 (d, J = 1.0 Hz, 6H), 2.01-2.14 (m, 8H), 2.29 (t, J = 7.5 Hz, 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.59 (d, J = 7.1 Hz, 4H), 5.05-5.11 (m, 2H), 5.31-5.36 (m, 2H).
Bis ((E) -3,7-dimethylocta-2,6-dien-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 10)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, (E) -3,7-dimethylocta- obtained in Reference Example 11 was used. Compound 10 (0.825 g, yield 49%) was obtained using 2,6-dien-1-yl 12-bromododecanoate.
ESI-MS m / z: 744 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.23-1.35 (m, 30H), 1.41-1.50 (m, 4H), 1.56-1.67 (m, 4H ), 1.60 (s, 6H), 1.68 (d, J = 1.0 Hz, 6H), 1.70 (d, J = 1.0 Hz, 6H), 2.01-2.14 (m, 8H), 2.29 (t, J = 7.5 Hz , 4H), 2.40 (t, J = 7.7 Hz, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.1 Hz, 2H), 4.59 (d, J = 7.1 Hz, 4H ), 5.05-5.11 (m, 2H), 5.31-5.36 (m, 2H).
参考例12:3,7-ジメチルオクタ-6-エン-1-イル12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、3,7-ジメチル-6-オクテン-1-オール (東京化成工業社製)を用い、3,7-ジメチルオクタ-6-エン-1-イル 12-ブロモドデカノアート (3.76 g, 収率74%)を得た。
 1H-NMR (CDCl3) δ: 0.91 (d, J = 6.6 Hz, 3H), 1.14-1.24 (m, 1H), 1.25-1.49 (m, 18H), 1.49-1.75 (m, 2H), 1.60 (s, 3H), 1.67-1.69 (m, 3H), 1.81-1.90 (m, 2H), 1.92-2.06 (m, 2H), 2.28 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.05-4.16 (m, 2H), 5.04-5.13 (m, 1H).
Reference Example 12: 3,7-dimethyloct-6-en-1-yl 12-bromododecanoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol, 3,7- Using dimethyl-6-octen-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.), 3,7-dimethyloct-6-en-1-yl 12-bromododecanoate (3.76 g, yield 74%) was obtained. It was.
1 H-NMR (CDCl 3 ) δ: 0.91 (d, J = 6.6 Hz, 3H), 1.14-1.24 (m, 1H), 1.25-1.49 (m, 18H), 1.49-1.75 (m, 2H), 1.60 (s, 3H), 1.67-1.69 (m, 3H), 1.81-1.90 (m, 2H), 1.92-2.06 (m, 2H), 2.28 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.05-4.16 (m, 2H), 5.04-5.13 (m, 1H).
 ビス(3,7-ジメチルオクタ-6-エン-1-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物11)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例12で得られた3,7-ジメチルオクタ-6-エン-1-イル 12-ブロモドデカノアートを用い、化合物11 (1.62 g, 収率54%)を得た。
 ESI-MS m/z: 748 (M + H)+1H-NMR (CDCl3) δ: 0.91 (d, J = 6.6 Hz, 6H), 1.14-1.22 (m, 2H), 1.23-1.51 (m, 36H), 1.51-1.71 (m, 10H), 1.60 (d, J = 0.8 Hz, 6H), 1.68 (d, J = 1.3 Hz, 6H), 1.90-2.04 (m, 4H), 2.28 (t, J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.2 Hz, 2H), 4.03-4.17 (m, 4H), 5.05-5.12 (m, 2H).
Bis (3,7-dimethyloct-6-en-1-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (compound 11)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, 3,7-dimethyloct-6-ene- 1-yl 12-bromododecanoate was used to obtain Compound 11 (1.62 g, yield 54%).
ESI-MS m / z: 748 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.91 (d, J = 6.6 Hz, 6H), 1.14-1.22 (m, 2H), 1.23-1.51 ( m, 36H), 1.51-1.71 (m, 10H), 1.60 (d, J = 0.8 Hz, 6H), 1.68 (d, J = 1.3 Hz, 6H), 1.90-2.04 (m, 4H), 2.28 (t , J = 7.5 Hz, 4H), 2.37-2.42 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.79 (t, J = 5.2 Hz, 2H), 4.03-4.17 (m, 4H) , 5.05-5.12 (m, 2H).
参考例13:12-ブロモドデシル ノナノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールおよび10-ブロモデカン酸の代わりに、12-ブロモドデカン-1-オール (東京化成工業社製)およびノナン酸 (東京化成工業社製)を用い、12-ブロモドデシル ノナノアート (0.810 g, 収率32%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.21-1.37 (m, 24H), 1.37-1.46 (m, 2H), 1.57-1.66 (m, 4H), 1.81-1.89 (m, 2H), 2.29 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H).
Reference Example 13: 12-bromododecyl nonanoate In the same manner as Reference Example 1, instead of cis-2-nonen-1-ol and 10-bromodecanoic acid, 12-bromododecan-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) ) And nonanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 12-bromododecyl nonanoate (0.810 g, yield 32%) was obtained.
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.21-1.37 (m, 24H), 1.37-1.46 (m, 2H), 1.57-1.66 (m, 4H), 1.81 -1.89 (m, 2H), 2.29 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 7.0 Hz, 2H), 4.06 (t, J = 6.8 Hz, 2H).
 ((3-ヒドロキシプロピル)アザンジイル)ビス(ドデカン-12,1-ジイル)ジノナノアート(化合物12)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例13で得られた12-ブロモドデシル ノナノアートを用い、化合物12 (0.128 g, 収率19%)を得た。
 ESI-MS m/z: 724 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.21-1.38 (m, 50H), 1.41-1.75 (m, 16H), 2.29 (t, J = 7.6 Hz, 4H), 2.43 (brs, 4H), 2.66 (brs, 2H), 3.80 (t, J = 5.2 Hz, 2H), 4.05 (t, J = 6.8 Hz, 4H).
((3-Hydroxypropyl) azanediyl) bis (dodecane-12,1-diyl) dinonanoate (compound 12)
In the same manner as in Example 2, using 12-bromododecyl nonanoate obtained in Reference Example 13 instead of (Z) -non-2-en-1-yl 12-bromododecanoate, compound 12 ( 0.128 g, 19% yield).
ESI-MS m / z: 724 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.21-1.38 (m, 50H), 1.41-1.75 ( m, 16H), 2.29 (t, J = 7.6 Hz, 4H), 2.43 (brs, 4H), 2.66 (brs, 2H), 3.80 (t, J = 5.2 Hz, 2H), 4.05 (t, J = 6.8 Hz, 4H).
参考例14: 12-ブロモドデシル ノナ-8-エノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールおよび10-ブロモデカン酸の代わりに、12-ブロモドデカン-1-オール (東京化成工業社製)および8-ノネン酸 (東京化成工業社製)を用い、12-ブロモドデシル ノナ-8-エノアート (1.33 g, 収率52%)を得た。
 1H-NMR (CDCl3) δ: 1.27-1.44 (m, 22H), 1.58-1.67 (m, 4H), 1.81-1.89 (m, 2H), 2.00-2.07 (m, 2H), 2.29 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.05 (t, J = 6.7 Hz, 2H), 4.91-5.03 (m, 2H), 5.74-5.86 (m, 1H).
Reference Example 14: 12-bromododecyl non-8-enoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol and 10-bromodecanoic acid, 12-bromododecan-1-ol (Tokyo 12-bromododecyl nona-8-enoate (1.33 g, yield 52%) was obtained using Kasei Kogyo Co., Ltd. and 8-nonenoic acid (Tokyo Kasei Kogyo Co., Ltd.).
1 H-NMR (CDCl 3 ) δ: 1.27-1.44 (m, 22H), 1.58-1.67 (m, 4H), 1.81-1.89 (m, 2H), 2.00-2.07 (m, 2H), 2.29 (t, J = 7.6 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.05 (t, J = 6.7 Hz, 2H), 4.91-5.03 (m, 2H), 5.74-5.86 (m, 1H).
 ((3-ヒドロキシプロピル)アザンジイル)ビス(ドデカン-12,1-ジイル)ビス(ノナ-8-エノアート)(化合物13)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例13で得られた12-ブロモドデシル ノナ-8-エノアートを用い、化合物13 (0.450 g, 収率43%)を得た。
 ESI-MS m/z: 720 (M + H)+1H-NMR (CDCl3) δ: 1.22-1.51 (m, 48H), 1.57-1.70 ( m, 10H), 2.00-2.07 (m, 4H), 2.29 (t, J = 7.6 Hz, 4H), 2.36-2.43 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t, J = 6.8 Hz, 4H), 4.90-5.03 (m, 4H), 5.74-5.86 (m, 2H).
((3-hydroxypropyl) azanediyl) bis (dodecane-12,1-diyl) bis (nona-8-enoate) (compound 13)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, 12-bromododecyl nona-8-enoate obtained in Reference Example 13 was used. Compound 13 (0.450 g, 43% yield) was obtained.
ESI-MS m / z: 720 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.22-1.51 (m, 48H), 1.57-1.70 (m, 10H), 2.00-2.07 (m, 4H ), 2.29 (t, J = 7.6 Hz, 4H), 2.36-2.43 (m, 4H), 2.63 (t, J = 5.6 Hz, 2H), 3.80 (t, J = 5.1 Hz, 2H), 4.05 (t , J = 6.8 Hz, 4H), 4.90-5.03 (m, 4H), 5.74-5.86 (m, 2H).
 ジメチル 18,18’-((3-ヒドロキシプロピル)アザンジイル)ジオレアート (化合物14)
工程1
 2-ニトロベンゼンスルホンアミド (東京化成工業社製, 2.13 g, 10.3 mmol)をアセトニトリル (34 mL)に溶解させ、炭酸セシウム (10.1 g, 31.0 mmol)、10-ブロモ-1-デセン (東京化成工業社製, 4.59 mL, 21.7 mmol)を加えて、80℃で終夜攪拌した。反応液に水を加えて、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=90/10)で精製してN,N-ジ(9-デセン-1-イル)-2-ニトロベンゼンスルホンアミドの粗生成物を得た。
 得られた粗生成物に テトラヒドロフラン (32 mL)、水 (5 mL)、4-メチルモルホリン4-オキシド (シグマアルドリッチ社製, 2.41 g, 20.6 mmol)、マイクロカプセル化四酸化オスミウム (和光純薬工業社製, 10 wt%, 0.261 g, 0.103 mmol)を加えて、室温で終夜攪拌した。反応液に過よう素酸ナトリウム (5.28 g, 24.7 mmol)を加えて、室温で5時間攪拌した。反応液に飽和チオ硫酸ナトリウム水溶液を加えて、酢酸エチルで抽出した。有機層を飽和チオ硫酸ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=90/10)で精製して2-ニトロ-N,N-ビス(9-オキソノニル)ベンゼンスルホンアミド (3.11 g, 収率63%)を得た。
 ESI-MS m/z: 483 (M + H)+1H-NMR (CDCl3) δ: 1.19-1.33 (m, 16H), 1.46-1.65 (m, 8H), 2.42 (td, J = 7.4, 1.9 Hz, 4H), 3.26 (t, J = 7.7 Hz, 4H), 7.60-7.63 (m, 1H), 7.65-7.70 (m, 2H), 7.99-8.02 (m, 1H), 9.76 (t, J = 1.9 Hz, 2H).
工程2
 9-ブロモノナン酸 (東京化成工業社製, 3.04 g, 12.4 mmol)をアセトニトリル (60 mL)に溶解させ、トリフェニルホスフィン (関東化学社製, 3.26 g, 12.4 mmol)を加えて加熱還流下、終夜攪拌した。反応液を減圧下濃縮し、(8-カルボキシオクチル)トリフェニルホスホニウムブロミドの粗生成物を得た。
 得られた(8-カルボキシオクチル)トリフェニルホスホニウムブロミドの粗生成物 (0.339 g)のテトラヒドロフラン (2 mL)溶液を-18℃に冷却し、ヘキサメチルリン酸トリアミド (0.236 mL, 1.36 mmol)、リチウムビス(トリメチルシリル)アミド (シグマアルドリッチ社製, 1.0 mol/L テトラヒドロフラン溶液, 1.36 mL, 1.36 mmol)を加えて-18℃で20分攪拌した。反応液を-78℃に冷却し、工程1で得られた2-ニトロ-N,N-ビス(9-オキソノニル)ベンゼンスルホンアミド (0.109 g, 0.226 mmol)のテトラヒドロフラン (2 mL)溶液を加えて、室温で終夜攪拌した。反応液に炭酸水素ナトリウム (0.285 g, 3.39 mmol)と硫酸ジメチル (0.324 mL, 3.39 mmol)を加えて室温で2時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加えて酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=70/30)で精製してメチル 18,18'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジオレアート(0.172 g, 0.217 mmol, 収率96%)を得た。
 ESI-MS m/z: 809 (M + NH4)+1H-NMR (CDCl3) δ: 1.17-1.38 (m, 36H), 1.46-1.55 (m, 4H), 1.58-1.66 (m, 4H), 1.96-2.04 (m, 8H), 2.30 (t, J = 7.6 Hz, 4H), 3.26 (t, J = 7.7 Hz, 4H), 3.66 (s, 6H), 5.29-5.38 (m, 4H), 7.59-7.69 (m, 3H), 7.99-8.03 (m, 1H).
工程3
 メチル 18,18'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジオレアート (0.179 g, 0.217 mmol)をアセトニトリル (2 mL)に溶解させ、 1,8-ジアザビシクロ[5.4.0]-7-ウンデセン (0.0890 mL, 0.558 mmol)、1-ドデカンチオール (0.142 mL, 0.565 mmol)を加えて60℃で2時間攪拌した。反応液に1,8-ジアザビシクロ[5.4.0]-7-ウンデセン (0.0890 mL, 0.558 mmol)、1-ドデカンチオール (0.142 mL, 0.565 mmol)を加えて、60℃でさらに2時間攪拌した。反応液に飽和チオ硫酸ナトリウム水溶液を加えて酢酸エチルで抽出した。有機層を飽和チオ硫酸ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=90/10)で精製してメチル 18,18'-アザンジイルジオレアート (0.0703 g, 収率51%)を得た。
 ESI-MS m/z: 607 (M + H)+1H-NMR (CDCl3) δ: 1.23-1.38 (m, 36H), 1.43-1.52 (m, 4H), 1.59-1.65 (m, 4H), 1.96-2.05 (m, 8H), 2.30 (t, J = 7.6 Hz, 4H), 2.58 (t, J = 7.4 Hz, 4H), 3.66 (s, 6H), 5.29-5.39 (m, 4H).
工程4
 メチル 18,18'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジオレアート (0.0489 g, 0.0807 mmol)をアセトニトリル (1 mL)に溶解させ、 N, N-ジイソプロピルエチルアミン (0.0210 mL, 0.121 mmol)、3-ブロモ-1-プロパノール(0.00829 mL, 0.0887 mmol)を加えて室温で3時間攪拌した。反応液にN, N-ジイソプロピルエチルアミン (0.0210 mL, 0.121 mmol)、3-ブロモ-1-プロパノール(0.00829 mL, 0.0887 mmol)を加えて室温で3時間攪拌した。N, N-ジイソプロピルエチルアミン (0.0210 mL, 0.121 mmol)、3-ブロモ-1-プロパノール(0.00829 mL, 0.0887 mmol)を加えて、室温で終夜攪拌後、50℃で2時間攪拌した。N, N-ジイソプロピルエチルアミン (0.0210 mL, 0.121 mmol)、3-ブロモ-1-プロパノール (0.00829 mL, 0.0887 mmol)を加えて、50℃で1時間攪拌した。反応液に飽和塩化ナトリウム水溶液を加えて酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=70/30)で精製して 化合物14 (0.0345 g, 0.0520 mmol, 収率64%)を得た。
 ESI-MS m/z: 665 (M + H)+; 1H-NMR (CDCl3) δ: 1.18-1.82 (m, 46H), 1.91-2.06 (m, 9H), 2.30 (t, J = 7.6 Hz, 4H), 2.40-2.86 (m, 6H), 3.66 (s, 6H), 3.80 (t, J = 5.2 Hz, 2H), 5.29-5.39 (m, 4H).
Dimethyl 18,18 '-((3-hydroxypropyl) azanediyl) diolate (Compound 14)
Process 1
2-Nitrobenzenesulfonamide (Tokyo Chemical Industry Co., Ltd., 2.13 g, 10.3 mmol) is dissolved in acetonitrile (34 mL), cesium carbonate (10.1 g, 31.0 mmol), 10-bromo-1-decene (Tokyo Chemical Industry Co., Ltd.) Product, 4.59 mL, 21.7 mmol) was added and stirred at 80 ° C. overnight. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 90/10) to obtain a crude product of N, N-di (9-decen-1-yl) -2-nitrobenzenesulfonamide. .
Tetrahydrofuran (32 mL), water (5 mL), 4-methylmorpholine 4-oxide (Sigma Aldrich, 2.41 g, 20.6 mmol), microencapsulated osmium tetroxide (Wako Pure Chemical Industries, Ltd.) 10 wt%, 0.261 g, 0.103 mmol) was added, and the mixture was stirred at room temperature overnight. Sodium periodate (5.28 g, 24.7 mmol) was added to the reaction solution, and the mixture was stirred at room temperature for 5 hours. A saturated aqueous sodium thiosulfate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (hexane / ethyl acetate = 90/10) to give 2-nitro-N, N-bis (9-oxononyl) benzenesulfonamide (3.11 g, yield 63%). Obtained.
ESI-MS m / z: 483 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.19-1.33 (m, 16H), 1.46-1.65 (m, 8H), 2.42 (td, J = 7.4 , 1.9 Hz, 4H), 3.26 (t, J = 7.7 Hz, 4H), 7.60-7.63 (m, 1H), 7.65-7.70 (m, 2H), 7.99-8.02 (m, 1H), 9.76 (t, J = 1.9 Hz, 2H).
Process 2
9-Bromononanoic acid (Tokyo Kasei Kogyo Co., Ltd., 3.04 g, 12.4 mmol) is dissolved in acetonitrile (60 mL), and triphenylphosphine (Kanto Chemical Co., Ltd., 3.26 g, 12.4 mmol) is added to the solution. Stir. The reaction solution was concentrated under reduced pressure to obtain a crude product of (8-carboxyoctyl) triphenylphosphonium bromide.
The obtained crude product of (8-carboxyoctyl) triphenylphosphonium bromide (0.339 g) in tetrahydrofuran (2 mL) was cooled to −18 ° C., hexamethylphosphoric triamide (0.236 mL, 1.36 mmol), lithium Bis (trimethylsilyl) amide (manufactured by Sigma-Aldrich, 1.0 mol / L tetrahydrofuran solution, 1.36 mL, 1.36 mmol) was added, and the mixture was stirred at −18 ° C. for 20 minutes. The reaction solution was cooled to −78 ° C., and a solution of 2-nitro-N, N-bis (9-oxononyl) benzenesulfonamide (0.109 g, 0.226 mmol) obtained in Step 1 in tetrahydrofuran (2 mL) was added. And stirred at room temperature overnight. Sodium hydrogen carbonate (0.285 g, 3.39 mmol) and dimethyl sulfate (0.324 mL, 3.39 mmol) were added to the reaction solution, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 70/30) to obtain methyl 18,18 '-(((2-nitrophenyl) sulfonyl) azanediyl) diolate (0.172 g, 0.217 mmol, yield). 96%).
ESI-MS m / z: 809 (M + NH 4 ) + ; 1 H-NMR (CDCl 3 ) δ: 1.17-1.38 (m, 36H), 1.46-1.55 (m, 4H), 1.58-1.66 (m, 4H), 1.96-2.04 (m, 8H), 2.30 (t, J = 7.6 Hz, 4H), 3.26 (t, J = 7.7 Hz, 4H), 3.66 (s, 6H), 5.29-5.38 (m, 4H ), 7.59-7.69 (m, 3H), 7.99-8.03 (m, 1H).
Process 3
Methyl 18,18 '-(((2-nitrophenyl) sulfonyl) azanediyl) diolate (0.179 g, 0.217 mmol) was dissolved in acetonitrile (2 mL) and 1,8-diazabicyclo [5.4.0] -7-undecene was dissolved. (0.0890 mL, 0.558 mmol) and 1-dodecanethiol (0.142 mL, 0.565 mmol) were added and stirred at 60 ° C. for 2 hours. 1,8-diazabicyclo [5.4.0] -7-undecene (0.0890 mL, 0.558 mmol) and 1-dodecanethiol (0.142 mL, 0.565 mmol) were added to the reaction solution, and the mixture was further stirred at 60 ° C. for 2 hours. A saturated aqueous sodium thiosulfate solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium thiosulfate solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform / methanol = 90/10) to obtain methyl 18,18′-azanediyldiolate (0.0703 g, yield 51%).
ESI-MS m / z: 607 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.23-1.38 (m, 36H), 1.43-1.52 (m, 4H), 1.59-1.65 (m, 4H ), 1.96-2.05 (m, 8H), 2.30 (t, J = 7.6 Hz, 4H), 2.58 (t, J = 7.4 Hz, 4H), 3.66 (s, 6H), 5.29-5.39 (m, 4H) .
Process 4
Methyl 18,18 '-(((2-nitrophenyl) sulfonyl) azanediyl) diolate (0.0489 g, 0.0807 mmol) was dissolved in acetonitrile (1 mL), N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol), 3-Bromo-1-propanol (0.00829 mL, 0.0887 mmol) was added and stirred at room temperature for 3 hours. N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added to the reaction solution, and the mixture was stirred at room temperature for 3 hours. N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added, and the mixture was stirred at room temperature overnight and then at 50 ° C. for 2 hr. N, N-diisopropylethylamine (0.0210 mL, 0.121 mmol) and 3-bromo-1-propanol (0.00829 mL, 0.0887 mmol) were added, and the mixture was stirred at 50 ° C. for 1 hr. A saturated aqueous sodium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (hexane / ethyl acetate = 70/30) to obtain Compound 14 (0.0345 g, 0.0520 mmol, yield 64%).
ESI-MS m / z: 665 (M + H) +; 1 H-NMR (CDCl 3 ) δ: 1.18-1.82 (m, 46H), 1.91-2.06 (m, 9H), 2.30 (t, J = 7.6 Hz, 4H), 2.40-2.86 (m, 6H), 3.66 (s, 6H), 3.80 (t, J = 5.2 Hz, 2H), 5.29-5.39 (m, 4H).
 ジブチル 18,18'-((3-ヒドロキシプロピル)アザンジイル)ジオレアート (化合物15)
工程1 
 実施例14の工程2で得られた メチル 18,18'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジオレアート (0.0730 g, 0.0957 mmol)をエタノール (1 mL)に溶解させ、水酸化ナトリウム (2.0 mol/L 水溶液, 0.241 mL, 0.482 mmol)を加えて、室温で3時間攪拌した。反応液に塩酸 (2.0 mol/L 水溶液) をpHが2以下になるまで加えた後に、減圧下濃縮した。残渣を1-ブタノール (1 mL) 溶液に溶解させ、 O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロリン酸 (0.110 g, 0.288 mmol)、N,N-ジメチル-4-アミノピリジン (1.2 mg, 0.00982 mmol)を加えて室温で終夜攪拌した。反応液を減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=80/20)で精製して ブチル 18,18'-アザンジイルジオレアート (0.0593 g, 収率71%)を得た。
 ESI-MS m/z: 893 (M + NH4)+1H-NMR (CDCl3) δ: 0.93 (t, J = 7.4 Hz, 6H), 1.19-1.43 (m, 40H), 1.46-1.56 (m, 4H), 1.56-1.65 (m, 8H), 1.95-2.04 (m, 8H), 2.28 (t, J = 7.5 Hz, 4H), 3.26 (t, J = 7.6 Hz, 4H), 4.06 (t, J = 6.6 Hz, 4H), 5.29-5.39 (m, 4H), 7.58-7.70 (m, 3H), 7.98-8.03 (m, 1H).
工程2 
 実施例14の工程3および工程4と同様の方法で、メチル 18,18'-(((2-ニトロフェニル)スルホニル)アザンジイル)ジオレアートの代わりに 工程1で得られたブチル 18,18'-アザンジイルジオレアート (0.0510 g, 0.0583 mmol)を用いて、化合物15 (0.0115 g, 収率26%)を得た。
 ESI-MS m/z: 749 (M + H)+1H-NMR (CDCl3) δ: 0.93 (t, J = 7.4 Hz, 6H), 1.21-1.45 (m, 40H), 1.51-1.66 (m, 14H), 1.94-2.06 (m, 9H), 2.29 (t, J = 7.6 Hz, 4H), 2.55-2.66 (m, 4H), 2.75-2.86 (m, 2H), 3.81 (t, J = 5.2 Hz, 2H), 4.06 (t, J = 6.7 Hz, 4H), 5.32-5.36 (m, 4H).
Dibutyl 18,18 '-((3-hydroxypropyl) azanediyl) diolate (Compound 15)
Process 1
Methyl 18,18 ′-(((2-nitrophenyl) sulfonyl) azanediyl) diolate (0.0730 g, 0.0957 mmol) obtained in Step 2 of Example 14 was dissolved in ethanol (1 mL) and sodium hydroxide ( 2.0 mol / L aqueous solution, 0.241 mL, 0.482 mmol) was added, and the mixture was stirred at room temperature for 3 hours. Hydrochloric acid (2.0 mol / L aqueous solution) was added to the reaction solution until the pH became 2 or less, and then concentrated under reduced pressure. The residue was dissolved in 1-butanol (1 mL) solution and O- (7-azabenzotriazol-1-yl) -N, N, N ', N'-tetramethyluronium hexafluorophosphate (0.110 g, 0.288 mmol) and N, N-dimethyl-4-aminopyridine (1.2 mg, 0.00982 mmol) were added and stirred at room temperature overnight. The reaction solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 80/20) to obtain butyl 18,18′-azanediyldiolate (0.0593 g, yield 71%).
ESI-MS m / z: 893 (M + NH 4 ) + ; 1 H-NMR (CDCl 3 ) δ: 0.93 (t, J = 7.4 Hz, 6H), 1.19-1.43 (m, 40H), 1.46-1.56 (m, 4H), 1.56-1.65 (m, 8H), 1.95-2.04 (m, 8H), 2.28 (t, J = 7.5 Hz, 4H), 3.26 (t, J = 7.6 Hz, 4H), 4.06 ( t, J = 6.6 Hz, 4H), 5.29-5.39 (m, 4H), 7.58-7.70 (m, 3H), 7.98-8.03 (m, 1H).
Process 2
In the same manner as in Step 3 and Step 4 of Example 14, instead of methyl 18,18 ′-(((2-nitrophenyl) sulfonyl) azanediyl) diolate, the butyl 18,18′-acrylate obtained in Step 1 was used. Zandiyl dioleate (0.0510 g, 0.0583 mmol) was used to give compound 15 (0.0115 g, yield 26%).
ESI-MS m / z: 749 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.93 (t, J = 7.4 Hz, 6H), 1.21-1.45 (m, 40H), 1.51-1.66 ( m, 14H), 1.94-2.06 (m, 9H), 2.29 (t, J = 7.6 Hz, 4H), 2.55-2.66 (m, 4H), 2.75-2.86 (m, 2H), 3.81 (t, J = 5.2 Hz, 2H), 4.06 (t, J = 6.7 Hz, 4H), 5.32-5.36 (m, 4H).
参考例15: ノナン-2-イル 12-ブロモドデカノアート
 参考例1と同様の方法で、cis-2-ノネン-1-オールの代わりに、ノナン-2-オール (東京化成工業社製)を用い、ノナン-2-イル 12-ブロモドデカノアート(1.36 g, 収率47%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.19 (d, J = 6.3 Hz, 3H), 1.21-1.37 (m, 22H), 1.37-1.51 (m, 2H), 1.51-1.65 (m, 4H), 1.79-1.89 (m, 2H), 2.26 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.85-4.94 (m, 1H).
Reference Example 15: Nonan-2-yl 12-bromododecanoate In the same manner as in Reference Example 1, instead of cis-2-nonen-1-ol, nonan-2-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used. Used to obtain nonan-2-yl 12-bromododecanoate (1.36 g, yield 47%).
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 3H), 1.19 (d, J = 6.3 Hz, 3H), 1.21-1.37 (m, 22H), 1.37-1.51 (m, 2H ), 1.51-1.65 (m, 4H), 1.79-1.89 (m, 2H), 2.26 (t, J = 7.5 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 4.85-4.94 (m, 1H).
 ジ(ノナン-2-イル) 12,12'-((3-ヒドロキシプロピル)アザンジイル)ジドデカノアート(化合物16)
 実施例2と同様の方法で、(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、参考例14で得られたノナン-2-イル 12-ブロモドデカノアートを用い、化合物16 (0.450 g, 収率44%)を得た。
 ESI-MS m/z: 724 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.19 (d, J = 6.3 Hz, 6H), 1.22-1.35 (m, 50H), 1.41-1.73 (m, 12H), 2.26 (t, J = 7.5 Hz, 4H), 2.38-2.45 (m, 4H), 2.64 (t, J = 5.4 Hz, 2H), 3.80 (t, J = 4.7 Hz, 2H), 4.84-4.96 (m, 2H).
Di (nonan-2-yl) 12,12 '-((3-hydroxypropyl) azanediyl) didodecanoate (Compound 16)
In the same manner as in Example 2, instead of (Z) -non-2-en-1-yl 12-bromododecanoate, nonan-2-yl 12-bromododecanoate obtained in Reference Example 14 was used. To give compound 16 (0.450 g, yield 44%).
ESI-MS m / z: 724 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 6H), 1.19 (d, J = 6.3 Hz, 6H), 1.22 -1.35 (m, 50H), 1.41-1.73 (m, 12H), 2.26 (t, J = 7.5 Hz, 4H), 2.38-2.45 (m, 4H), 2.64 (t, J = 5.4 Hz, 2H), 3.80 (t, J = 4.7 Hz, 2H), 4.84-4.96 (m, 2H).
 ジ((Z)-ノナ-2-エン-1-イル) 12,12'-((1,3-ジヒドロキシプロパン-2-イル)アザンジイル)ジドデカノアート (化合物17)
 実施例2と同様の方法で、3-アミノプロパン-1-オールの代わりに、2-アミノプロパン-1,3-ジオール (東京化成工業社製)を用い、化合物17 (0.0500 g, 収率6%)を得た。
 ESI-MS m/z: 736 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.22-1.48 (m, 48H), 1.58-1.66 (m, 2H), 2.10 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.53 (t, J = 7.5 Hz, 4H), 2.92-3.00 (m, 4H), 3.59 (d, J = 6.8 Hz, 4H), 4.62 (dt, J = 6.8, 0.5 Hz, 4H), 5.49-5.57 (m, 2H), 5.60-5.68 (m, 2H).
Di ((Z) -non-2-en-1-yl) 12,12 '-((1,3-dihydroxypropan-2-yl) azanediyl) didodecanoate (compound 17)
In the same manner as in Example 2, 2-aminopropane-1,3-diol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 3-aminopropan-1-ol, and compound 17 (0.0500 g, yield 6) %).
ESI-MS m / z: 736 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.22-1.48 (m, 48H), 1.58-1.66 ( m, 2H), 2.10 (q, J = 6.8 Hz, 4H), 2.30 (t, J = 7.6 Hz, 4H), 2.53 (t, J = 7.5 Hz, 4H), 2.92-3.00 (m, 4H), 3.59 (d, J = 6.8 Hz, 4H), 4.62 (dt, J = 6.8, 0.5 Hz, 4H), 5.49-5.57 (m, 2H), 5.60-5.68 (m, 2H).
 ジノニル 12,12'-((1,3-ジヒドロキシプロパン-2-イル)アザンジイル)ジドデカノアート(化合物18)
 実施例2と同様の方法で、3-アミノプロパン-1-オールおよび(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、2-アミノプロパン-1,3-ジオールおよび参考例3で得られたノニル 12-ブロモデカノアートを用い、化合物18 (0.160 g, 収率20%)を得た。
 ESI-MS m/z: 740 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.20-1.39 (m, 52H), 1.39-1.48 (m, 4H), 1.56-1.67 (m, 8H), 2.29 (t, J = 7.6 Hz, 4H), 2.54 (t, J = 7.5 Hz, 4H), 2.92-3.00 (m, 1H), 3.59 (d, J = 7.1 Hz, 4H), 4.05 (t, J = 6.7 Hz, 4H).
Dinonyl 12,12 '-((1,3-dihydroxypropan-2-yl) azanediyl) didodecanoate (Compound 18)
In the same manner as in Example 2, instead of 3-aminopropan-1-ol and (Z) -non-2-en-1-yl 12-bromododecanoate, 2-aminopropane-1,3- Using diol and nonyl 12-bromodecanoate obtained in Reference Example 3, compound 18 (0.160 g, yield 20%) was obtained.
ESI-MS m / z: 740 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.20-1.39 (m, 52H), 1.39-1.48 ( m, 4H), 1.56-1.67 (m, 8H), 2.29 (t, J = 7.6 Hz, 4H), 2.54 (t, J = 7.5 Hz, 4H), 2.92-3.00 (m, 1H), 3.59 (d , J = 7.1 Hz, 4H), 4.05 (t, J = 6.7 Hz, 4H).
 ジ(ノナ-8-エン-1-イル) 12,12'-((1,3-ジヒドロキシプロパン-2-イル)アザンジイル)ジドデカノアート(化合物19)
 実施例2と同様の方法で、3-アミノプロパン-1-オールおよび(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、2-アミノプロパン-1,3-ジオールおよび参考例7で得られたノナ-8-エン-1-イル 12-ブロモデカノアートを用い、化合物19 (0.0350 g, 収率3%)を得た。
 ESI-MS m/z: 736 (M + H)+1H-NMR (CDCl3) δ: 1.22-1.49 (m, 48H), 1.53-1.69 (m, 8H), 2.01-2.07 (m, 4H), 2.29 (t, J = 7.6 Hz, 4H), 2.54 (t, J = 7.4 Hz, 4H), 2.92-2.99 (m, 1H), 3.59 (d, J = 7.1 Hz, 4H), 4.05 (t, J = 6.7 Hz, 4H), 4.90-5.03 (m, 4H), 5.75-5.88 (m, 2H).
Di (non-8-en-1-yl) 12,12 '-((1,3-dihydroxypropan-2-yl) azanediyl) didodecanoate (Compound 19)
In the same manner as in Example 2, instead of 3-aminopropan-1-ol and (Z) -non-2-en-1-yl 12-bromododecanoate, 2-aminopropane-1,3- Compound 19 (0.0350 g, yield 3%) was obtained using diol and nona-8-en-1-yl 12-bromodecanoate obtained in Reference Example 7.
ESI-MS m / z: 736 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.22-1.49 (m, 48H), 1.53-1.69 (m, 8H), 2.01-2.07 (m, 4H ), 2.29 (t, J = 7.6 Hz, 4H), 2.54 (t, J = 7.4 Hz, 4H), 2.92-2.99 (m, 1H), 3.59 (d, J = 7.1 Hz, 4H), 4.05 (t , J = 6.7 Hz, 4H), 4.90-5.03 (m, 4H), 5.75-5.88 (m, 2H).
 ジ(ウンデカ-10-エン-1-イル) 12,12'-((1,3-ジヒドロキシプロパン-2-イル)アザンジイル)ジドデカノアート(化合物20)
 実施例2と同様の方法で、3-アミノプロパン-1-オールおよび(Z)-ノナ-2-エン-1-イル 12-ブロモドデカノアートの代わりに、2-アミノプロパン-1,3-ジオールおよび参考例7と同様の方法で得られるウンデカ-10-エン-1-イル 12-ブロモデカノアートを用い、化合物20 (0.160 g, 収率12%)を得た。
 ESI-MS m/z: 792 (M + H)+1H-NMR (CDCl3) δ: 1.23-1.46 (m, 56H), 1.54-1.70 (m, 8H), 2.00-2.08 (m, 4H), 2.29 (t, J = 7.5 Hz, 4H), 2.54 (t, J = 7.4 Hz, 4H), 2.92-3.00 (m, 1H), 3.59 (t, J = 3.4 Hz, 4H), 4.05 (t, J = 6.8 Hz, 4H), 4.90-5.04 (m, 4H), 5.75-5.88 (m, 2H).
Di (undec-10-en-1-yl) 12,12 '-((1,3-dihydroxypropan-2-yl) azanediyl) didodecanoate (compound 20)
In the same manner as in Example 2, instead of 3-aminopropan-1-ol and (Z) -non-2-en-1-yl 12-bromododecanoate, 2-aminopropane-1,3- Compound 20 (0.160 g, 12% yield) was obtained using undeca-10-en-1-yl 12-bromodecanoate obtained in the same manner as in Reference Example 7 using diol.
ESI-MS m / z: 792 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 1.23-1.46 (m, 56H), 1.54-1.70 (m, 8H), 2.00-2.08 (m, 4H ), 2.29 (t, J = 7.5 Hz, 4H), 2.54 (t, J = 7.4 Hz, 4H), 2.92-3.00 (m, 1H), 3.59 (t, J = 3.4 Hz, 4H), 4.05 (t , J = 6.8 Hz, 4H), 4.90-5.04 (m, 4H), 5.75-5.88 (m, 2H).
 参考例16:(Z)-ノナ-2-エン-1-イル 8-ブロモオクタナート
 実施例1と同様の方法で、10-ブロモデカン酸の代わりに 8-ブロモオクタン酸 (東京化成工業社製, 2.00 g, 8.96 mmol) を用い、(Z)-ノナ-2-エン-1-イル 8-ブロモオクタナート (1.06 g, 収率34%)を得た。
 1H-NMR (CDCl3) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.24-1.48 (m, 14H), 1.57-1.67 (m, 2H), 1.79-1.89 (m, 2H), 2.05-2.14 (m, 2H), 2.31 (t, J = 7.6 Hz, 2H), 3.40 (t, J = 7.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.47-5.56 (m, 1H), 5.58-5.69 (m, 1H).
Reference Example 16: (Z) -Non-2-en-1-yl 8-bromooctanoate In the same manner as in Example 1, instead of 10-bromodecanoic acid, 8-bromooctanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd., (2.00 g, 8.96 mmol) was used to obtain (Z) -non-2-en-1-yl 8-bromooctanate (1.06 g, yield 34%).
1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 6.8 Hz, 3H), 1.24-1.48 (m, 14H), 1.57-1.67 (m, 2H), 1.79-1.89 (m, 2H), 2.05 -2.14 (m, 2H), 2.31 (t, J = 7.6 Hz, 2H), 3.40 (t, J = 7.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.47-5.56 (m, 1H), 5.58-5.69 (m, 1H).
 (Z)-ノナ-2-エン-1-イル 8-((3-ヒドロキシプロピル)((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)オクタノアート(化合物21)
工程1
 (9Z,12Z)-オクタデカ-9,12-ジエニル メタンスルホナート (ニュー・チェック・プレップ(Nu Check Prep)社製, 2.85 g, 8.27 mmol) をアセトニトリル (30 mL)に溶解させ、炭酸セシウム (6.74 g, 20.7 mmol)、テトラブチルアンモニウムヨージド (3.05 g, 8.27 mmol)、N-(tert-ブトキシカルボニル)-2-ニトロベンゼンスルホンアミド (東京化成工業社製, 2.50 g, 8.27 mmol) を加えて、加熱還流下3時間攪拌した。室温まで冷却後、水を加えて酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル = 70/30) で精製して tert-ブチル((2-ニトロフェニル)スルホニル)((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)カルバマートの粗生成物を得た。
 得られた粗生成物をジクロロメタン (25 mL) に溶解させ、トリフルオロ酢酸 (9.66 mL) を加えて室温で1時間攪拌した。反応液を減圧下濃縮した。残渣をクロロホルムと飽和重曹水で分液した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/クロロホルム = 50/50~0/100) で精製して 2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)ベンゼンスルホンアミド (2.34 g, 収率63%) を得た。
 ESI-MS m/z: 451 (M + H)+; 1H-NMR (CDCl3) δ: 0.89 (t, J = 7.0 Hz, 3H), 1.22-1.39 (m, 16H), 1.52 (m, 2H), 2.01-2.05 (m, 4H), 2.77 (dd, J = 6.0, 6.4 Hz, 2H), 3.05-3.13 (m, 2H), 5.23 (m, 1H), 5.31-5.42 (m, 4H), 7.71-7.76 (m, 2H), 7.78-7.87 (1H), 813-8.15 (m, 1H).
工程2
 工程1で得られた 2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)ベンゼンスルホンアミド (1.50 g, 3.33 mmol) をアセトニトリル (15 mL) に溶解させ、参考例16で得られた (Z)-ノナ-2-エン-1-イル 8-ブロモオクタナート(1.50 g, 4.33 mmol)、炭酸セシウム (2.17 g, 6.66 mmol)、テトラブチルアンモニウムヨージド (1.23 g, 3.33 mmol) を加えて加熱還流下2時間攪拌した。室温まで冷却後、飽和塩化アンモニウム水溶液を加えてヘプタンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル = 85/15) で精製して 、(Z)-ノナ-2-エン-1-イル 8-((2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)フェニル)スルホンアミド)オクタノアートの粗生成物を得た。
 得られた粗生成物をアセトニトリル (20 mL) に溶解させ、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン (1.12 mL, 7.50 mmol)、1-ドデカンチオール (1.79 mL, 7.50 mmol) を加えて60度で3時間攪拌した。反応液に水を加えて酢酸エチルで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール = 80/20) で精製して (Z)-ノナ2-エン-1-イル 8-(((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)オクタノアート (1.59 g,  収率90%) を得た。
 ESI-MS m/z: 533 (M + H)+1H-NMR (CDCl3) δ: 0.79-0.92 (m, 6H), 1.20-1.66 (m, 37H), 2.01-2.14 (m, 6H), 2.30 (t, J = 7.4 Hz, 2H), 2.55-2.61 (m, 4H), 2.77 (dd, J = 6.4, 6.8 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.28-5.43 (m, 4H), 5.46-5.56 (m, 1H), 5.59-5.69 (m, 1H).
工程3
 実施例1の工程2と同様の方法で、ジ((Z)-ノナ-2-エン-1-イル) 10,10'-アザンジイルジデカノアートの代わりに工程2で得られた (Z)-ノナ-2-エン-1-イル 8-(((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)オクタノアート (350 mg, 0.658 mmol) を用いて化合物21 (252 mg, 収率65%) を得た。
 ESI-MS m/z: 591 (M + H)+; 1H-NMR (CDCl3) δ: 0.83-0.94 (m, 6H), 1.19-1.69 (m, 39H), 2.00-2.14 (m, 6H), 2.30 (t, J = 7.6 Hz, 2H), 2.34-2.44 (m, 4H), 2.63 (t, J = 5.4 Hz, 2H), 2.73-2.80 (m, 2H), 3.79 (t, J = 5.2 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.27-5.42 (m, 4H), 5.47-5.57 (m, 1H), 5.59-5.68 (m, 1H).
(Z) -Non-2-en-1-yl 8-((3-hydroxypropyl) ((9Z, 12Z) -octadeca-9,12-dien-1-yl) amino) octanoate (Compound 21)
Process 1
(9Z, 12Z) -Octadeca-9,12-dienyl methanesulfonate (Nu Check Prep, 2.85 g, 8.27 mmol) was dissolved in acetonitrile (30 mL), and cesium carbonate (6.74 g, 20.7 mmol), tetrabutylammonium iodide (3.05 g, 8.27 mmol), N- (tert-butoxycarbonyl) -2-nitrobenzenesulfonamide (Tokyo Chemical Industry Co., Ltd., 2.50 g, 8.27 mmol) were added, The mixture was stirred for 3 hours with heating under reflux. After cooling to room temperature, water was added and extracted with ethyl acetate. The organic layer was dried over anhydrous sodium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / ethyl acetate = 70/30) to give tert-butyl ((2-nitrophenyl) sulfonyl) ((9Z, 12Z) -octadeca-9,12-diene- A crude product of 1-yl) carbamate was obtained.
The obtained crude product was dissolved in dichloromethane (25 mL), trifluoroacetic acid (9.66 mL) was added, and the mixture was stirred at room temperature for 1 hr. The reaction solution was concentrated under reduced pressure. The residue was partitioned between chloroform and saturated aqueous sodium bicarbonate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / chloroform = 50 / 50-0 / 100) to give 2-nitro-N-((9Z, 12Z) -octadeca-9,12-dien-1-yl ) Benzenesulfonamide (2.34 g, 63% yield) was obtained.
ESI-MS m / z: 451 (M + H) +; 1 H-NMR (CDCl 3 ) δ: 0.89 (t, J = 7.0 Hz, 3H), 1.22-1.39 (m, 16H), 1.52 (m, 2H), 2.01-2.05 (m, 4H), 2.77 (dd, J = 6.0, 6.4 Hz, 2H), 3.05-3.13 (m, 2H), 5.23 (m, 1H), 5.31-5.42 (m, 4H) , 7.71-7.76 (m, 2H), 7.78-7.87 (1H), 813-8.15 (m, 1H).
Process 2
2-Nitro-N-((9Z, 12Z) -octadeca-9,12-dien-1-yl) benzenesulfonamide (1.50 g, 3.33 mmol) obtained in step 1 was dissolved in acetonitrile (15 mL). (Z) -non-2-en-1-yl 8-bromooctanato (1.50 g, 4.33 mmol), cesium carbonate (2.17 g, 6.66 mmol), tetrabutylammonium iodide (Reference Example 16) 1.23 g, 3.33 mmol) was added, and the mixture was stirred for 2 hours with heating under reflux. After cooling to room temperature, saturated aqueous ammonium chloride solution was added, and the mixture was extracted with heptane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / ethyl acetate = 85/15) to obtain (Z) -non-2-en-1-yl 8-((2-nitro-N-((9Z , 12Z) -octadeca-9,12-dien-1-yl) phenyl) sulfonamido) octanoate crude product was obtained.
The obtained crude product was dissolved in acetonitrile (20 mL), and 1,8-diazabicyclo [5.4.0] -7-undecene (1.12 mL, 7.50 mmol) and 1-dodecanethiol (1.79 mL, 7.50 mmol) were added. In addition, the mixture was stirred at 60 degrees for 3 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and the solvent was distilled off under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform / methanol = 80/20) to give (Z) -nona-2-en-1-yl 8-(((9Z, 12Z) -octadeca-9,12- Dien-1-yl) amino) octanoate (1.59 g, yield 90%) was obtained.
ESI-MS m / z: 533 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.79-0.92 (m, 6H), 1.20-1.66 (m, 37H), 2.01-2.14 (m, 6H ), 2.30 (t, J = 7.4 Hz, 2H), 2.55-2.61 (m, 4H), 2.77 (dd, J = 6.4, 6.8 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.28 -5.43 (m, 4H), 5.46-5.56 (m, 1H), 5.59-5.69 (m, 1H).
Process 3
In the same manner as in step 2 of Example 1, di ((Z) -non-2-en-1-yl) 10,10′-azanediyl dideanoate was obtained in step 2 (Z ) -Non-2-en-1-yl 8-(((9Z, 12Z) -octadeca-9,12-dien-1-yl) amino) octanoate (350 mg, 0.658 mmol) (252 mg, 65% yield) was obtained.
ESI-MS m / z: 591 (M + H) +; 1 H-NMR (CDCl 3 ) δ: 0.83-0.94 (m, 6H), 1.19-1.69 (m, 39H), 2.00-2.14 (m, 6H ), 2.30 (t, J = 7.6 Hz, 2H), 2.34-2.44 (m, 4H), 2.63 (t, J = 5.4 Hz, 2H), 2.73-2.80 (m, 2H), 3.79 (t, J = 5.2 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.27-5.42 (m, 4H), 5.47-5.57 (m, 1H), 5.59-5.68 (m, 1H).
参考例17:(Z)-ウンデカ-2-エン-1-イル 6-ブロモヘキサノアート
 参考例1と同様の方法で、10-ブロモデカン酸の代わりに6-ブロモヘキサン酸 (東京化成工業社製, 5.11 g, 26.2 mmol)、およびcis-2-ノネン-1-オールの代わりに参考例9の工程2で得られた(Z)-ウンデカ-2-エン-1-オール (5.35 g, 31.4 mmol) を用いて (Z)-ウンデカ-2-エン-1-イル 6-ブロモヘキサノアート(8.07 g, 収率89%) を得た。
Reference Example 17: (Z) -Undec-2-en-1-yl 6-bromohexanoate In the same manner as Reference Example 1, instead of 10-bromodecanoic acid, 6-bromohexanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) , 5.11 g, 26.2 mmol), and (Z) -undec-2-en-1-ol (5.35 g, 31.4 mmol) obtained in Step 2 of Reference Example 9 instead of cis-2-nonen-1-ol ) To give (Z) -undec-2-en-1-yl 6-bromohexanoate (8.07 g, yield 89%).
 (Z)-ウンデカ-2-エン-1-イル 6-((3-ヒドロキシプロピル)((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)ヘキサノアート(化合物22)
工程1
 実施例21の工程2と同様の方法で、(Z)-ノン-2-エン-1-イル 8-ブロモオクタノアートの代わりに、参考例17で得られた (Z)-ウンデカ-2-エン-1-イル 6-ブロモヘキサノアート(2.50 g, 7.19 mmol)と、実施例21の工程1で得られた 2-ニトロ-N-((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)ベンゼンスルホンアミド (2.49 g, 5.53 mmol)を用い、(Z)-ウンデカ-2-エン-1-イル6-(((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)ヘキサノアート (2.05 g, 収率70%)を得た。
 ESI-MS m/z: 533 (M + H)+; 1H-NMR (CDCl3) δ: 0.86-0.92 (m, 6H), 1.21-1.57 (m, 34H), 1.59-1.69 (m, 2H), 2.01-2.13 (m, 6H), 2.31 (t, J = 7.5 Hz, 2H), 2.55-2.62 (m, 4H), 2.77 (dd, J = 6.4, 6.9 Hz, 2H), 4.61 (d, J = 6.9 Hz, 2H), 5.28-5.42 (m, 4H), 5.48-5.55 (m, 1H), 5.60-5.68 (m, 1H).
工程2
 工程1で得られた (Z)-ウンデカ-2-エン-1-イル 6-(((9Z,12Z)-オクタデカ-9,12-ジエン-1-イル)アミノ)ヘキサノアート (350 mg, 0.658 mmol)を N,N-ジメチルホルムアミド (4 mL)に溶解させ、(3-ブロモプロポキシ)(tert-ブチル)ジメチルシラン(200 mg, 0.790 mmol)、ヨウ化カリウム (131 mg, 0.790 mmol)、炭酸セシウム (429 mg, 1.32 mmol)を順次加えて、室温で終夜攪拌した。さらに、反応液を40℃で9時間攪拌した。反応液を室温まで冷却後、水を加えてヘプタンで抽出した。有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=80/20)で精製して ((Z)-ウンデカ-2-エン-1-イル) 6-((3-((tert-ブチルジメチルシリル)オキシ)プロピル)(9Z,12Z-オクタデカ-9,12-ジエン-1-イル)アミノ)ヘキサノアートの粗生成物を得た。
 得られた粗生成物をテトラヒドロフラン (9 mL)に溶解させ、テトラブチルアンモニウムフルオリド (1 mol/L テトラヒドロフラン溶液, 1.10 mL, 1.10 mmol)を加えて室温で終夜攪拌した。反応液に飽和塩化ナトリウム水溶液を加えて酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ろ過し、減圧下溶媒を留去した。得られた残渣をアミノシリカゲルカラムクロマトグラフィー (ヘプタン/酢酸エチル=75/25)で精製して化合物22 (292 mg, 収率75%)を得た。
 ESI-MS m/z: 591 (M + H)+; 1H-NMR (CDCl3) δ: 0.83-0.92 (m, 6H), 1.20-1.71 (m, 39H), 2.00-2.13 (m, 6H), 2.32 (t, J = 7.3 Hz, 2H), 2.35-2.43 (m, 4H), 2.63 (t, J = 5.4 Hz, 2H), 2.74-2.80 (m, 2H), 3.79 (t, J = 5.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.29-5.42 (m, 4H), 5.49-5.56 (m, 1H), 5.59-5.68 (m, 1H).
(Z) -Undec-2-en-1-yl 6-((3-hydroxypropyl) ((9Z, 12Z) -octadeca-9,12-dien-1-yl) amino) hexanoate (Compound 22)
Process 1
In the same manner as in Step 2 of Example 21, instead of (Z) -non-2-en-1-yl 8-bromooctanoate, (Z) -undec-2- En-1-yl 6-bromohexanoate (2.50 g, 7.19 mmol) and 2-nitro-N-((9Z, 12Z) -octadeca-9,12-diene obtained in Step 1 of Example 21 1-yl) benzenesulfonamide (2.49 g, 5.53 mmol) was used and (Z) -undec-2-en-1-yl 6-(((9Z, 12Z) -octadec-9,12-diene-1 -Ill) amino) hexanoate (2.05 g, 70% yield) was obtained.
ESI-MS m / z: 533 (M + H) +; 1 H-NMR (CDCl 3 ) δ: 0.86-0.92 (m, 6H), 1.21-1.57 (m, 34H), 1.59-1.69 (m, 2H ), 2.01-2.13 (m, 6H), 2.31 (t, J = 7.5 Hz, 2H), 2.55-2.62 (m, 4H), 2.77 (dd, J = 6.4, 6.9 Hz, 2H), 4.61 (d, J = 6.9 Hz, 2H), 5.28-5.42 (m, 4H), 5.48-5.55 (m, 1H), 5.60-5.68 (m, 1H).
Process 2
(Z) -Undec-2-en-1-yl 6-(((9Z, 12Z) -octadeca-9,12-dien-1-yl) amino) hexanoate (350 mg, 0.658 mmol) was dissolved in N, N-dimethylformamide (4 mL) and (3-bromopropoxy) (tert-butyl) dimethylsilane (200 mg, 0.790 mmol), potassium iodide (131 mg, 0.790 mmol), Cesium carbonate (429 mg, 1.32 mmol) was sequentially added, and the mixture was stirred at room temperature overnight. Further, the reaction solution was stirred at 40 ° C. for 9 hours. The reaction mixture was cooled to room temperature, water was added, and the mixture was extracted with heptane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over anhydrous sodium sulfate, filtered, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (heptane / ethyl acetate = 80/20) and ((Z) -undec-2-en-1-yl) 6-((3-((tert-butyldimethyl A crude product of silyl) oxy) propyl) (9Z, 12Z-octadeca-9,12-dien-1-yl) amino) hexanoate was obtained.
The obtained crude product was dissolved in tetrahydrofuran (9 mL), tetrabutylammonium fluoride (1 mol / L tetrahydrofuran solution, 1.10 mL, 1.10 mmol) was added, and the mixture was stirred at room temperature overnight. A saturated aqueous sodium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was removed under reduced pressure. The obtained residue was purified by amino silica gel column chromatography (heptane / ethyl acetate = 75/25) to obtain Compound 22 (292 mg, yield 75%).
ESI-MS m / z: 591 (M + H) +; 1 H-NMR (CDCl 3 ) δ: 0.83-0.92 (m, 6H), 1.20-1.71 (m, 39H), 2.00-2.13 (m, 6H ), 2.32 (t, J = 7.3 Hz, 2H), 2.35-2.43 (m, 4H), 2.63 (t, J = 5.4 Hz, 2H), 2.74-2.80 (m, 2H), 3.79 (t, J = 5.0 Hz, 2H), 4.62 (d, J = 6.8 Hz, 2H), 5.29-5.42 (m, 4H), 5.49-5.56 (m, 1H), 5.59-5.68 (m, 1H).
 12,12'-((3-ヒドロキシプロピル)アザンジイル)ビス(N-(Z)-ノナ-2-エン-1-イル)ドデカンアミド) (化合物23)
工程1
 cis-2-ノネン-1-オール (1.17mL, 7.03mmol)をテトラヒドロフラン (10mL)に溶解させ、トリフェニルホスフィン (2.03 g, 7.73 mmol)およびアゾジカルボン酸ジイソプロピル (東京化成工業社製, 40%トルエン溶液, 1.9mol/L, 4.07 mL, 7.73 mmol)を0℃にて添加し、室温で15分撹拌した。その後、フタルイミドカリウム (東京化成工業社製, 1.14 g, 6.14 mmol)を添加して、室温にて終夜反応させた。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5~70/30)で精製することにより、(Z)-2-(ノナ-2-エン-1-イル)イソインドリン-1,3-ジオン (0.524 g, 収率28%)を得た。
 ESI-MS m/z: 272 (M + H)+
工程2
 工程1で得られた (Z)-2-(ノナ-2-エン-1-イル)イソインドリン-1,3-ジオン(0.524 g, 1.93 mmol)をエタノール (5 mL)に溶解させ、ヒドラジン1水和物 (東京化成工業社製, 0.193 g, 3.86 mmol)を添加し、50℃で1時間反応させた。反応混合物に水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール=99/1~85/15)で精製することにより、(Z)-2-ノナ-2-エン-1-アミン (0.117 g, 収率43%)を得た。
 ESI-MS m/z: 141 (M + H)+
工程3
 実施例5と同様の方法で、cis-2-ノネン-1-オールの代わりに、工程2で得られた(Z)-2-ノナ-2-エン-1-アミンを用いることで、化合物23 (0.0450 g, 収率23%)を得た。
 ESI-MS m/z: 718 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.20-1.39 (m, 44H), 1.48-1.56 (m, 4H), 1.58-1.68 (m, 4H), 1.71-1.78 (M2H), 2.07 (q, J = 7.2 Hz, 4H), 2.16 (t, J = 7.6 Hz, 4H), 2.53 (t, J = 7.1 Hz, 4H), 2.75 (t, J = 5.2 Hz, 2H), 3.80 (t, J = 5.2 Hz, 2H), 3.89 (t, J = 5.7 Hz, 4H), 5.35-5.60 (m, 6H).
12,12 '-((3-hydroxypropyl) azanediyl) bis (N- (Z) -non-2-en-1-yl) dodecanamide) (Compound 23)
Process 1
Cis-2-nonen-1-ol (1.17 mL, 7.03 mmol) was dissolved in tetrahydrofuran (10 mL), triphenylphosphine (2.03 g, 7.73 mmol) and diisopropyl azodicarboxylate (Tokyo Chemical Industry Co., Ltd., 40% toluene) Solution, 1.9 mol / L, 4.07 mL, 7.73 mmol) was added at 0 ° C. and stirred at room temperature for 15 minutes. Thereafter, potassium phthalimide (Tokyo Kasei Kogyo Co., Ltd., 1.14 g, 6.14 mmol) was added and allowed to react overnight at room temperature. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate = 95/5 to 70/30) to give (Z) -2- (non-2-ene-1 -Ill) isoindoline-1,3-dione (0.524 g, 28% yield) was obtained.
ESI-MS m / z: 272 (M + H) +
Process 2
(Z) -2- (Non-2-en-1-yl) isoindoline-1,3-dione (0.524 g, 1.93 mmol) obtained in step 1 was dissolved in ethanol (5 mL) to give hydrazine 1 Hydrate (manufactured by Tokyo Chemical Industry Co., Ltd., 0.193 g, 3.86 mmol) was added and reacted at 50 ° C. for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with chloroform. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (chloroform / methanol = 99/1 to 85/15) to give (Z) -2-non-2-en-1-amine. (0.117 g, 43% yield) was obtained.
ESI-MS m / z: 141 (M + H) +
Process 3
In the same manner as in Example 5, by using the (Z) -2-non-2-en-1-amine obtained in Step 2 instead of cis-2-nonen-1-ol, compound 23 (0.0450 g, 23% yield) was obtained.
ESI-MS m / z: 718 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.20-1.39 (m, 44H), 1.48-1.56 ( m, 4H), 1.58-1.68 (m, 4H), 1.71-1.78 (M2H), 2.07 (q, J = 7.2 Hz, 4H), 2.16 (t, J = 7.6 Hz, 4H), 2.53 (t, J = 7.1 Hz, 4H), 2.75 (t, J = 5.2 Hz, 2H), 3.80 (t, J = 5.2 Hz, 2H), 3.89 (t, J = 5.7 Hz, 4H), 5.35-5.60 (m, 6H ).
 12,12'-((3-ヒドロキシプロピル)アザンジイル)ビス(N-ノニルドデカンアミド) (化合物24)
 実施例5と同様の方法で、cis-2-ノネン-1-オールの代わりに、ノニルアミン (東京化成工業社製)を用いることで、化合物24 (0.0200 g, 収率10%)を得た。
 ESI-MS m/z: 722 (M + H)+1H-NMR (CDCl3) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.21-1.36 (m, 52H), 1.41-1.53 (m, 8H), 1.57-1.72 (m, 8H), 2.15 (t, J = 7.6 Hz, 4H), 2.40 (t, J = 7.5 Hz, 4H), 2.64 (t, J = 5.6 Hz, 2H), 3.20-3.26 (m, 4H), 5.49 (t, J = 4.9 Hz, 2H).
12,12 '-((3-hydroxypropyl) azanediyl) bis (N-nonyldodecanamide) (Compound 24)
In the same manner as in Example 5, compound 24 (0.0200 g, yield 10%) was obtained by using nonylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of cis-2-nonen-1-ol.
ESI-MS m / z: 722 (M + H) + ; 1 H-NMR (CDCl 3 ) δ: 0.88 (t, J = 7.0 Hz, 6H), 1.21-1.36 (m, 52H), 1.41-1.53 ( m, 8H), 1.57-1.72 (m, 8H), 2.15 (t, J = 7.6 Hz, 4H), 2.40 (t, J = 7.5 Hz, 4H), 2.64 (t, J = 5.6 Hz, 2H), 3.20-3.26 (m, 4H), 5.49 (t, J = 4.9 Hz, 2H).
 実施例1で得られた化合物1 を用いて、以下のように組成物を調製した。用いた核酸は、センス鎖[5'-rGrCrCrArGrArCrUrUrUrGrUrUrGrGrArUrUrUrGrA -3'(rが付された塩基に結合する糖はリボースである)]と、アンチセンス鎖[5'-rArAmArUmCrCmArAmCrAmArAmGrUmCrUmGrGmCmUmU-3' (r、mが付された塩基に結合する糖は、それぞれリボース、2’位の水酸基がメトキシ基で置換されているリボースである)]からなる、ヒポキサンチン-グアニンホスホリボシル基転移酵素(Hypoxanthine-guanine phosphoribosyltransferase 1、以下HPRT1と表す)遺伝子の発現を抑制する抗HPRT1 siRNAであり、ジーンデザイン社から入手した(以下HPRT1 siRNAという)。核酸は蒸留水で24 mg/mLに調製して用いた。
 化合物1/PEG-DMPE N a(日油社製)=57.3/5.52 (すべての数値単位はmmol/Lである)となるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。この懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルター (GEヘルスケア・ジャパン社製)に通し、化合物1/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置(マルバーン社製、Zetasizer Nano ZS)で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、HPRT1 siRNA溶液を、リポソームの分散液: HPRT1 siRNA溶液=3:1の割合で混合し、さらに29倍量の蒸留水を加えて混合することで化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液を調製した。
 一方、化合物1/PEG-DMPE Na(日油社製) /コレステロール(日油社製)= 8.947/0.147/20.336(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液に4倍量のエタノールを追加し、脂質膜構成成分の溶液と化合物1/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液とが、2:3の割合になるように混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 得られた粗製剤はアミコンウルトラ(ミリポア社製)を用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルター(東洋濾紙社製)を用いてクリーンベンチ内でろ過した。得られた組成物のsiRNA濃度を測定し、生理食塩水を用いて適切な濃度に希釈することで 、製剤1 (化合物1およびHPRT1 siRNAを含有する組成物)を得た。
Using the compound 1 obtained in Example 1, a composition was prepared as follows. The nucleic acid used was a sense strand [5'-rGrCrCrArGrArCrUrUrUrGrUrUrGrGrArUrUrUrGrA-3 '(the sugar attached to the base to which r is attached is ribose)] and an antisense strand [5'-rArAmArUmCrCmArAmCrAmUmUmGrAm Hypoxanthine-guanine phosphoribosyltransferase 1, a sugar that binds to the attached base is ribose and ribose in which the hydroxyl group at the 2 ′ position is substituted with a methoxy group. Anti-HPRT1 siRNA that suppresses gene expression (hereinafter referred to as HPRT1) and was obtained from Gene Design (hereinafter referred to as HPRT1 siRNA). The nucleic acid was prepared to 24 mg / mL with distilled water.
Each sample is weighed so as to be compound 1 / PEG-DMPE Na (manufactured by NOF Corporation) = 57.3 / 5.52 (all numerical units are mmol / L) and suspended in an aqueous solution containing hydrochloric acid and ethanol. The mixture was made turbid and stirred and heated repeatedly with a vortex mixer to obtain a uniform suspension. The suspension was passed through a 0.05 μm polycarbonate membrane filter (manufactured by GE Healthcare Japan) at room temperature to obtain a dispersion of particles of compound 1 / PEG-DMPE Na (liposomes). The average particle size of the liposomes obtained with a particle size measuring device (Zetasizer Nano ZS, manufactured by Malvern) was measured and confirmed to be within the range of 30 nm to 100 nm. The resulting liposome dispersion and the HPRT1 siRNA solution were mixed in a ratio of liposome dispersion: HPRT1 siRNA solution = 3: 1, and further mixed with 29 times the amount of distilled water. -A dispersion of DMPE Na / HPRT1 siRNA complex was prepared.
On the other hand, each sample was weighed so that the compound 1 / PEG-DMPE Na (manufactured by NOF Corporation) / cholesterol (manufactured by NOF Corporation) = 8.947 / 0.147 / 20.336 (all numerical units are mmol / L). And dissolved in ethanol to prepare a solution of lipid membrane constituents.
Add 4-fold amount of ethanol to the resulting lipid membrane component solution, and the lipid membrane component solution and the compound 1 / PEG-DMPE Na / HPRT1 siRNA complex dispersion were in a ratio of 2: 3. The resulting mixture was further mixed with several times the amount of distilled water to obtain a crude preparation.
The obtained crude preparation was concentrated using Amicon Ultra (manufactured by Millipore), diluted with physiological saline, and filtered in a clean bench using a 0.2 μm filter (manufactured by Toyo Roshi Kaisha, Ltd.). The siRNA concentration of the obtained composition was measured, and diluted to an appropriate concentration using physiological saline to obtain Formulation 1 (composition containing Compound 1 and HPRT1 siRNA).
 実施例2~20で得られた化合物2~20をそれぞれ用いて、実施例25と同様にして製剤2~20  (化合物2~20のそれぞれ、およびHPRT1 siRNAを含有する組成物)を得た。また、製剤2の別ロットとして、同一の方法にて製剤2-2を調製した。 Using compounds 2 to 20 obtained in Examples 2 to 20, preparations 2 to 20% (compositions containing each of compounds 2 to 20 and HPRT1 siRNA) were obtained in the same manner as Example 25. In addition, as a separate lot of Formulation 2, Formulation 2-2 was prepared by the same method.
 実施例21で得られた化合物21を用いて、以下のように組成物を調製した。核酸は実施例25と同じHPRT1 siRNAを用いた。
 実施例25における化合物1を化合物21にした以外、実施例25と同様にして化合物21/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。得られたリポソームの分散液と、HPRT1 siRNA溶液を、リポソームの分散液: HPRT1 siRNA溶液=3:1の割合で混合し、さらに59倍量の蒸留水を加えて混合することで化合物21/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液を調製した。
 一方、化合物21/PEG-DMPE Na /コレステロール= 8.947/0.147/20.336(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液に9倍量のエタノールを追加し、脂質膜構成成分の溶液と化合物21/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液とが、2:3の割合となるように混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 これ以降の操作は実施例25と同様に行い、 製剤21(化合物21およびHPRT1 siRNAを含有する組成物)を得た。
 実施例25~27で得られた製剤(組成物)の平均粒子径および多分散指数を粒子径測定装置で測定し、その結果を表7に示した。
Figure JPOXMLDOC01-appb-T000023
Using the compound 21 obtained in Example 21, a composition was prepared as follows. The same HPRT1 siRNA as in Example 25 was used as the nucleic acid.
A dispersion of Compound 21 / PEG-DMPE Na particles (liposomes) was obtained in the same manner as in Example 25 except that Compound 21 was changed to Compound 21 in Example 25. The resulting liposome dispersion and the HPRT1 siRNA solution were mixed at a ratio of liposome dispersion: HPRT1 siRNA solution = 3: 1, and further mixed with 59 times the amount of distilled water. -A dispersion of DMPE Na / HPRT1 siRNA complex was prepared.
On the other hand, each sample was weighed and dissolved in ethanol so that the compound 21 / PEG-DMPE Na / cholesterol = 8.947 / 0.147 / 20.336 (all numerical units are mmol / L), and a solution of lipid membrane components Was prepared.
Nine times the amount of ethanol was added to the resulting lipid membrane component solution, and the lipid membrane component solution and the compound 21 / PEG-DMPE Na / HPRT1 siRNA complex dispersion were in a ratio of 2: 3. The mixture was further mixed with several times the amount of distilled water to obtain a crude preparation.
Subsequent operations were carried out in the same manner as in Example 25 to obtain Formulation 21 (a composition containing Compound 21 and HPRT1 siRNA).
The average particle diameter and polydispersity index of the preparations (compositions) obtained in Examples 25 to 27 were measured with a particle diameter measuring apparatus. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000023
比較例1
 国際公報第2014/007398号に記載の方法で合成した化合物Aを用いて、実施例25における化合物1を化合物Aにした以外、実施例25と同様にして製剤A-1 (化合物AおよびHPRT1 siRNAを含有する組成物)を得た。化合物Aの構造を以下の表8に示す。
Figure JPOXMLDOC01-appb-T000024
Comparative Example 1
Preparation A-1 (Compound A and HPRT1 siRNA) was carried out in the same manner as in Example 25 except that Compound A in Example 25 was changed to Compound A using Compound A synthesized by the method described in International Publication No. 2014/007398. Containing the composition). The structure of Compound A is shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000024
比較例2
 化合物Aを用いて、以下のように組成物を調製した。核酸は実施例25と同様の核酸を用いた。
 実施例25における化合物1を化合物Aにした以外、実施例25と同様にして化合物A/PEG-DMPE Naの粒子(リポソーム)の分散液を得た。
 得られたリポソームの分散液と、HPRT1 siRNA溶液を、リポソームの分散液: HPRT1  siRNA溶液=3:1の割合で混合し、さらに5倍量の蒸留水を加えて混合することで化合物A/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液を調製した。
 一方、化合物A/PEG-DMPE Na / DSPC(日油社製) /コレステロール= 8.947/0.147/5.981/14.355(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液と、化合物A/PEG-DMPE Na/ HPRT1 siRNA複合体の分散液とが、2:3の割合となるように混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 これ以降の操作は実施例25と同様に行い、製剤A-2(化合物AおよびHPRT1 siRNAを含有する組成物)を得た。
 比較例1および2で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表9に示した。
Figure JPOXMLDOC01-appb-T000025
Comparative Example 2
A composition was prepared using Compound A as follows. The same nucleic acid as in Example 25 was used as the nucleic acid.
A dispersion of Compound A / PEG-DMPE Na particles (liposomes) was obtained in the same manner as in Example 25 except that Compound 1 in Example 25 was changed to Compound A.
The resulting liposome dispersion and HPRT1 siRNA solution are mixed in a ratio of liposome dispersion: HPRT1 siRNA solution = 3: 1, and further mixed with 5 times the amount of distilled water. -A dispersion of DMPE Na / HPRT1 siRNA complex was prepared.
On the other hand, each sample was weighed so that compound A / PEG-DMPE Na / DSPC (manufactured by NOF Corporation) / cholesterol = 8.947 / 0.147 / 5.981 / 14.355 (all numerical units are mmol / L) and ethanol. To prepare a solution of lipid membrane constituents.
The resulting lipid membrane component solution and the dispersion of Compound A / PEG-DMPE Na / HPRT1 siRNA complex are mixed in a ratio of 2: 3, and then mixed with several times the amount of distilled water. Thus, a crude preparation was obtained.
Subsequent operations were performed in the same manner as in Example 25 to obtain Formulation A-2 (a composition containing Compound A and HPRT1 siRNA).
The average particle size of the preparations (compositions) obtained in Comparative Examples 1 and 2 was measured with a particle size measuring apparatus. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000025
 実施例2で得られた化合物2を用いて、以下の様に組成物を調製した。用いた核酸は、センス鎖 (5'-CCGUCGUAUUCGUGAGCAAGA-3')と、アンチセンス鎖(5' -UUGCUCACGAAUACGACGGUG-3')の塩基配列からなる、ルシフェラーゼ(以下Lucと表す)遺伝子の発現を抑制する抗Luc siRNAであり、ジーンデザイン社から入手した(以下Luc-1 siRNA という)。核酸は蒸留水で24 mg/mLに調製して用いた。
 化合物2/PEG-DSPE Na(日油社製) =57.3/5.52 (すべての数値単位はmmol/Lである)となるように、各試料を秤量し、塩酸およびエタノールを含有する水溶液に懸濁させ、vortex攪拌ミキサーで攪拌および、加温を繰り返して均一な懸濁液を得た。この懸濁液を室温下で、0.05 μmのポリカーボネートメンブランフィルターに通し、化合物2/PEG-DSPE Naの粒子(リポソーム)の分散液を得た。粒子径測定装置で得られたリポソームの平均粒子径を測定し、30 nmから100 nmの範囲内であることを確認した。得られたリポソームの分散液と、Luc-1 siRNA溶液を、リポソームの分散液: Luc-1 siRNA溶液=3:1の割合で混合し、さらに17.7倍量の蒸留水を加えて混合することで化合物2/PEG-DSPE Na/ Luc-1 siRNA複合体の分散液を調製した。
 一方、化合物2/PEG-DSPE Na/DSPC/コレステロール= 8.947/0.294/2.472/17.717(すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 得られた脂質膜構成成分の溶液に等量のエタノールを追加し、脂質膜構成成分と化合物2/PEG-DSPE Na/ Luc-1 siRNA複合体の分散液とが、3:7の割合となるように混合し、さらに数倍量の蒸留水と混合し、粗製剤を得た。
 得られた粗製剤はアミコンウルトラを用いて濃縮後、生理食塩水で希釈し、0.2 μmのフィルターを用いてクリーンベンチ内でろ過した。得られた組成物のsiRNA濃度を測定し、投与濃度にあわせて生理食塩水を用いて希釈することで、製剤2-3(化合物2およびLuc-1 siRNAを含有する組成物)を得た。
Using the compound 2 obtained in Example 2, a composition was prepared as follows. The nucleic acid used consists of a sense strand (5'-CCGUCGUAUUCGUGAGCAAGA-3 ') and an antisense strand (5'-UUGCUCACGAAUACGACGGUG-3'), an anti-luciferase (hereinafter referred to as Luc) gene that suppresses the expression of the luciferase gene. Luc siRNA was obtained from Gene Design (hereinafter referred to as Luc-1 siRNA). The nucleic acid was prepared to 24 mg / mL with distilled water.
Each sample is weighed so as to be compound 2 / PEG-DSPE Na (manufactured by NOF Corporation) = 57.3 / 5.52 (all numerical units are mmol / L) and suspended in an aqueous solution containing hydrochloric acid and ethanol. The mixture was repeatedly stirred and heated with a vortex mixer to obtain a uniform suspension. This suspension was passed through a 0.05 μm polycarbonate membrane filter at room temperature to obtain a dispersion of Compound 2 / PEG-DSPE Na particles (liposomes). The average particle size of the liposomes obtained with a particle size measuring device was measured and confirmed to be within the range of 30 nm to 100 nm. The resulting liposome dispersion and the Luc-1 siRNA solution are mixed in a ratio of liposome dispersion: Luc-1 siRNA solution = 3: 1, and 17.7 times the amount of distilled water is added and mixed. A dispersion of Compound 2 / PEG-DSPE Na / Luc-1 siRNA complex was prepared.
On the other hand, each sample was weighed and dissolved in ethanol so that the compound 2 / PEG-DSPE Na / DSPC / cholesterol = 8.947 / 0.294 / 2.472 / 17.717 (all numerical units are mmol / L), and lipid membrane A solution of the components was prepared.
An equal amount of ethanol is added to the resulting lipid membrane component solution, and the lipid membrane component and the dispersion of the compound 2 / PEG-DSPE Na / Luc-1 siRNA complex are in a ratio of 3: 7. And then mixed with several times the amount of distilled water to obtain a crude preparation.
The obtained crude preparation was concentrated using Amicon Ultra, diluted with physiological saline, and filtered in a clean bench using a 0.2 μm filter. The siRNA concentration of the obtained composition was measured, and diluted with physiological saline according to the administration concentration to obtain Formulation 2-3 (a composition containing Compound 2 and Luc-1 siRNA).
 実施例2で得られた化合物2を用いて、以下の様に組成物を調製した。核酸は実施例28と同じLuc-1 siRNAを用いた。
 実施例28と同様にして化合物2/PEG-DSPE Na/ Luc-1 siRNA複合体の分散液を調製した。一方、化合物2/PEG-DSPE Na/コレステロール= 8.947/0.294/20.189 (すべての数値単位はmmol/Lである)となるように、各試料を秤量しエタノールに溶解させ、脂質膜構成成分の溶液を調製した。
 以降の操作は実施例28と同様に行い、製剤2-4(化合物2およびLuc-1 siRNAを含有する組成物)を得た。
 実施例28、29で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表10に示した。
Figure JPOXMLDOC01-appb-T000026
Using the compound 2 obtained in Example 2, a composition was prepared as follows. The same Luc-1 siRNA as in Example 28 was used as the nucleic acid.
In the same manner as in Example 28, a dispersion of Compound 2 / PEG-DSPE Na / Luc-1 siRNA complex was prepared. On the other hand, each sample was weighed and dissolved in ethanol so that the compound 2 / PEG-DSPE Na / cholesterol = 8.947 / 0.294 / 20.189 (all numerical units are mmol / L), and the solution of lipid membrane constituents Was prepared.
The subsequent operations were carried out in the same manner as in Example 28 to obtain Formulation 2-4 (a composition containing Compound 2 and Luc-1 siRNA).
The average particle size of the preparations (compositions) obtained in Examples 28 and 29 was measured with a particle size measuring device. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000026
比較例3
 化合物Aを用いて、実施例28と同様にして製剤A-3(化合物AおよびLuc-1 siRNAを含有する組成物)を得た。
Comparative Example 3
Using compound A, preparation A-3 (composition containing compound A and Luc-1 siRNA) was obtained in the same manner as in Example 28.
比較例4
 化合物Aを用いて、実施例29と同様にして製剤A-4(化合物AおよびLuc-1 siRNAを含有する組成物)を得た。
 比較例3、4で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表11に示した。
Figure JPOXMLDOC01-appb-T000027
Comparative Example 4
Using compound A, preparation A-4 (composition containing compound A and Luc-1 siRNA) was obtained in the same manner as in Example 29.
The average particle size of the preparations (compositions) obtained in Comparative Examples 3 and 4 was measured with a particle size measuring device. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000027
 実施例2で得られた化合物2を用いて、以下のように組成物を調製した。用いた核酸は、センス鎖[ 5'- mCmUmUrAmCrGmCmUrGrArGmUrAmCmUmUmCrGrAdTdT-3' (r、m、dが付された塩基に結合する糖は、それぞれリボース、2’位の水酸基がメトキシ基で置換されているリボース、デオキシリボースであり、5’末端側から3’末端側に向って 20番目の塩基に結合するデオキシリボースと21番目の塩基に結合するデオキシリボースとの結合がホスホロチオエート結合である)]と、アンチセンス鎖[5'- rUrCrGrArArGmUrArCrUmCrArGrCrGmUrArArGdTdT-3' (r、m、dが付された塩基に結合する糖は、それぞれリボース、2’位の水酸基がメトキシ基で置換されているリボース、デオキシリボースであり、5’末端側から3’末端側に向って 20番目の塩基に結合するデオキシリボースと21番目の塩基に結合するデオキシリボースとの結合がホスホロチオエート結合である)]からなる、Luc遺伝子の発現を抑制する抗Luc siRNAであり、ジーンデザイン社から入手した(以下Luc-2 siRNAという)。 核酸は蒸留水で24 mg/mLに調製して用いた。
 実施例25における化合物1を化合物2にし、実施例25において用いた核酸HPRT1 siRNAをLuc-2 siRNAにした以外、実施例25と同様にして製剤2-5(化合物2およびLuc-2 siRNAを含有する組成物)を得た。
Using the compound 2 obtained in Example 2, a composition was prepared as follows. The nucleic acid used was a sense strand [5'-mCmUmUrAmCrGmCmUrGrArGmUrAmCmUmUmCrGrAdTdT-3 ' Deoxyribose, the bond between deoxyribose that binds to the 20th base and deoxyribose that binds to the 21st base from the 5 'end toward the 3' end is a phosphorothioate bond)] and antisense Chain [5'-rUrCrGrArArGmUrArCrUmCrArGrCrGmUrArArGdTdT-3 ' From the 'terminal side to the 3' terminal side, the deoxyribose binding to the 20th base and the deoxyribose binding to the 21st base is a phosphorothioate bond)] A suppressing anti Luc siRNA expression child, it was obtained from Gene Design Inc. (hereinafter referred to as Luc-2 siRNA). The nucleic acid was prepared to 24 mg / mL with distilled water.
Compound 2-5 (compound 2 and containing Luc-2 siRNA) was prepared in the same manner as in Example 25 except that Compound 1 in Example 25 was changed to Compound 2 and the nucleic acid HPRT1 siRNA used in Example 25 was changed to Luc-2 siRNA. Composition) was obtained.
 実施例2で得られた化合物2を用いて、以下のように組成物を調製した。用いた核酸は、センス鎖[ 5'-mGmCrArArArGrArUrArArCrArArArCrUrCrCrArCrGrUrGmGmA -3' (r、mが付された塩基に結合する糖は、それぞれリボース、2’位の水酸基がメトキシ基で置換されているリボースである)]と、アンチセンス鎖[5'- rUrCrCrArCrGrUrGrGrArGrUrUrUrGrUrUrArUrCrUrUrUrGrC -3'(rが付された塩基に結合する糖はリボースである)]からなる、トランスフォーミング増殖因子-ベータ1 (以下Tgfb-1と表す)遺伝子の発現を抑制する抗Tgfb-1 siRNAであり、ジーンデザイン社から入手した(以下Tgfb-1 siRNA という)。核酸は蒸留水で24 mg/mLに調製して用いた。
 実施例30において 用いた核酸Luc-2 siRNAをTgfb-1 siRNAにした以外、実施例30と同様にして製剤2-6(化合物2およびTgfb-1 siRNAを含有する組成物)を得た。
 実施例30、31で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表12に示した。
Figure JPOXMLDOC01-appb-T000028
Using the compound 2 obtained in Example 2, a composition was prepared as follows. The nucleic acid used is a sense strand [5'-mGmCrArArArGrArUrArArCrArArArCrUrCrCrArCrGrUrGmGmA-3 '(the sugars bound to the bases to which r and m are attached are ribose and ribose in which the hydroxyl group at the 2' position is substituted with a methoxy group, respectively) And an antisense strand [5'-rUrCrCrArCrGrUrGrGrArGrUrUrUrGrUrUrArUrCrUrUrUrGrC-3 '(the sugar attached to the base to which r is attached is ribose)], a transforming growth factor-beta1 (hereinafter referred to as Tgfb-1) gene It was an anti-Tgfb-1 siRNA that suppresses the expression of and was obtained from Gene Design (hereinafter referred to as Tgfb-1 siRNA). The nucleic acid was prepared to 24 mg / mL with distilled water.
A preparation 2-6 (composition containing Compound 2 and Tgfb-1 siRNA) was obtained in the same manner as in Example 30, except that the nucleic acid Luc-2 siRNA used in Example 30 was changed to Tgfb-1 siRNA.
The average particle size of the preparations (compositions) obtained in Examples 30 and 31 was measured with a particle size measuring device. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000028
比較例5
 化合物Aを用いて、比較例2において用いた核酸HPRT1 siRNAをLuc-2 siRNAにした以外、比較例2と同様にして製剤A-5(化合物AおよびLuc-2 siRNAを含有する組成物)を得た。
Comparative Example 5
Compound A-5 (composition containing Compound A and Luc-2 siRNA) was prepared in the same manner as in Comparative Example 2, except that the nucleic acid HPRT1 siRNA used in Comparative Example 2 was changed to Luc-2 siRNA. Obtained.
比較例6
 化合物Aを用いて、比較例2において用いた核酸HPRT1 siRNAをTgfb-1 siRNAにした以外、比較例2と同様にして製剤A-6(化合物AおよびTgfb-1 siRNAを含有する組成物)を得た。
比較例5、6で得られた製剤(組成物)の平均粒子径を粒子径測定装置で測定し、その結果を表13に示した。
Figure JPOXMLDOC01-appb-T000029
Comparative Example 6
A preparation A-6 (composition containing Compound A and Tgfb-1 siRNA) was prepared in the same manner as in Comparative Example 2, except that Compound A was used and the nucleic acid HPRT1 siRNA used in Comparative Example 2 was changed to Tgfb-1 siRNA. Obtained.
The average particle size of the preparations (compositions) obtained in Comparative Examples 5 and 6 was measured with a particle size measuring device. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000029
試験例1: 製剤のヒト肺線維芽細胞株におけるインビトロ活性評価試験
 実施例25~27および比較例1~2で得られた製剤1~13および15~21、A-1およびA-2の活性を調べるため、以下に記載の方法で評価した。
 ヒト肺線維芽細胞株Nomal Human Lung Fibroblasts(ロンザ社製、 CC-2512)を、15%ウシ胎仔血清(FBS)および1%ペニシリン-ストレプトマイシン(サーモフィッシャー社製)を含むDMEM培地(サーモフィッシャー社製)中、4000細胞数/100μL/ウェルで播種し、37℃、5%CO2条件下で22~24時間培養した。その後、実施例25~27で調製した各種製剤をsiRNA濃度として添加後濃度が5nMまたは25nMとなるように濃度を調製し、100μLを細胞に添加した。また陰性対照として、上記15%FBSおよび1%ペニシリン-ストレプトマイシンを含むDMEM培地100μLを細胞に添加した。
 各種製剤を処理した細胞を37℃の5%COインキュベーター内で24時間培養し、氷冷したPBSで洗浄し、TaqMan Fast Cells-to-CT kit (サーモフィッシャー社製、4399003)を用い、添付の使用説明書に従いtotal RNAを回収し、cDNAを作成した。
 得られたcDNAをPCR反応の鋳型に用い、アプライドバイオシステム クオントスタジオ 12K フレックス(Applied Biosystems QuantStudio 12K Flex)、TaqMan Fast Universal PCR Master Mix(2X)(アプライドバイオシステムズ社製、4352042)およびTaqMan probe (TaqMan(登録商標) Gene Expression Assays、HPRT1 : Hs02800695_m1、PPIA : Hs04194521_s1)によりHPRT1遺伝子および構成的発現遺伝子であるPPIA(peptidylprolyl isomerase A)遺伝子に特異的なPCR増幅をそれぞれ行い、mRNA量の定量を行った。PCR反応の条件はTaqMan Fast Universal PCR Master Mix(2X)添付の使用説明書に従った。検体のmRNA量は、PPIAのmRNA量に対するHPRT1のmRNA量を算出し、陰性対照処理群における当該値を1としたときの相対的な割合として算出した。HPRT1のmRNA量についての結果を表14に示す。
Figure JPOXMLDOC01-appb-T000030
Test Example 1: In vitro activity evaluation test of the preparation in human lung fibroblast cell line Preparations 1-13 and 15-21 obtained in Examples 25-27 and Comparative Examples 1-2, activities of A-1 and A-2 Was evaluated by the method described below.
Human lung fibroblast cell line Nomal Human Lung Fibroblasts (Lonza CC-2512), DMEM medium (Thermo Fischer) containing 15% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Thermo Fischer) ) Was seeded at 4000 cells / 100 μL / well and cultured at 37 ° C. under 5% CO 2 for 22-24 hours. Thereafter, the various preparations prepared in Examples 25 to 27 were added as siRNA concentrations, and the concentrations were adjusted so that the concentration became 5 nM or 25 nM, and 100 μL was added to the cells. As a negative control, 100 μL of DMEM medium containing 15% FBS and 1% penicillin-streptomycin was added to the cells.
Cells treated with various preparations are cultured for 24 hours in a 5% CO 2 incubator at 37 ° C, washed with ice-cold PBS, and attached using TaqMan Fast Cells-to-CT kit (manufactured by Thermo Fisher, 4939003) Total RNA was recovered according to the instructions for use to prepare cDNA.
Using the obtained cDNA as a template for PCR reaction, Applied Biosystems QuantStudio 12K Flex (Applied Biosystems QuantStudio 12K Flex), TaqMan Fast Universal PCR Master Mix (2X) (Applied Biosystems, 4352042) and TaqMan probe ( TaqMan (registered trademark) Gene Expression Assays, HPRT1: Hs02800695_m1, PPIA: Hs04194521_s1) were used to perform PCR amplification specific for the HPRT1 gene and the constitutively expressed gene PPIA (peptidylprolyl isomerase A) gene, respectively, and quantify the amount of mRNA. It was. The conditions for the PCR reaction were in accordance with the instruction manual attached to TaqMan Fast Universal PCR Master Mix (2X). The amount of mRNA in the specimen was calculated as a relative ratio when the amount of HPRT1 mRNA relative to the amount of PPIA mRNA was calculated, and the value in the negative control treatment group was 1. The results for the amount of mRNA of HPRT1 are shown in Table 14.
Figure JPOXMLDOC01-appb-T000030
試験例2: 気管内投与による、製剤のインビボ刺激性評価試験
 実施例26および比較例2で得られた各製剤2、2-2、3、4、6、12、13、およびA-2につき、それぞれ以下の方法によりインビボ刺激性評価試験を実施した。なお、各製剤は試験に合わせて生理食塩水で希釈して用いた。
 C57BL/6Jマウス(9週齢、メス、日本チャールズ・リバーより購入)にイソフルラン麻酔下で、siRNA重量として15 μg/mouseずつ、または20 μg/mouseずつマイクロスプレイヤー (ペン-センチュリー社製、IA-IC-M、FMJ-250)を用いて気管内投与した。投与24時間後に安楽死させ、0.75 mLのPBSを気管内に注入、回収を2回繰り返して、肺胞洗浄液(BALF)を回収した。得られた回収液を2000rpm、3min、4℃の条件で遠心分離し、上清を回収して、以下の解析に使用した。
 得られたBALF中のKC、IL-6、およびG-CSFの値を、MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel(メルクミリポア社製)およびBio-Plex 200システム(バイオラッド社製)を用いて、製品に添付された説明書に記載された方法に従い、定量した。
 各試験で測定したBALF中のKC、IL-6、およびG-CSF濃度を図1~図9に示す。
Test Example 2: In vivo irritation evaluation test of preparation by intratracheal administration For each preparation 2, 2-2, 3, 4, 6, 12, 13, and A-2 obtained in Example 26 and Comparative Example 2 The in vivo irritation evaluation test was carried out by the following methods. Each preparation was diluted with physiological saline in accordance with the test.
C57BL / 6J mice (9 weeks old, female, purchased from Charles River, Japan) under isoflurane anesthesia, siRNA weight of 15 μg / mouse each or 20 μg / mouse microspray (Pen-Century, IA -IC-M, FMJ-250). Euthanasia was performed 24 hours after administration, 0.75 mL of PBS was injected into the trachea, and collection was repeated twice to collect alveolar lavage fluid (BALF). The obtained recovered liquid was centrifuged under the conditions of 2000 rpm, 3 min, 4 ° C., and the supernatant was recovered and used for the following analysis.
Using the MILLIPLEX MAP Human Cytokine / Chemokine Magnetic Bead Panel (Merck Millipore) and Bio-Plex 200 system (BioRad), the values of KC, IL-6, and G-CSF in the obtained BALF Quantification was performed according to the method described in the instructions attached to the product.
The concentrations of KC, IL-6, and G-CSF in BALF measured in each test are shown in FIGS.
試験例3: 静脈内投与による、製剤のインビボ刺激性評価試験
 実施例28、実施例29、比較例3および比較例4で得られた各製剤2-3、2-4、A-3およびA-4につき、それぞれ以下の方法により、インビボ刺激性評価試験を実施した。なお、各製剤は試験に合わせて生理食塩水で希釈して用いた。
 各製剤をsiRNA重量として 10 mg/kgずつBalb/cA Jclマウス(7週齢、オス、日本クレアより購入)に静脈内投与した。投与24時間後の血液をマイクロティナ(BD社製、365967)に採血し、小型冷却遠心機(MX-201:TOMY製)を用いて15000 rpm、2分間、4℃で遠心分離し、血清を採取した。
 得られた血清中のKC、IL-6、およびG-CSFの値を、ビーディー シービーエー フレックスセット(BD CBA Flex Sets) (ビーディー社(BD社)製、560152(G-CSF)、558340(KC)、558301(IL-6)、558267(buffer類) )およびビーディーファックスバース(BD FACS Vers) フローサイトメーター(BD社製)を用いて、製品に添付された説明書に記載された方法に従い定量した。
 測定した血清中のKC、IL-6、およびG-CSF濃度をそれぞれ図10、図11および図12に示す。
Test Example 3: In vivo irritation evaluation test of the preparation by intravenous administration Each preparation 2-3, 2-4, A-3 and A obtained in Example 28, Example 29, Comparative Example 3 and Comparative Example 4 -4 was subjected to an in vivo stimulation evaluation test by the following method. Each preparation was diluted with physiological saline in accordance with the test.
Each preparation was intravenously administered to Balb / cA Jcl mice (7 weeks old, male, purchased from CLEA Japan, Inc.) at a siRNA weight of 10 mg / kg. Blood was collected 24 hours after administration into Microtina (BD, 365967), centrifuged at 15000 rpm for 2 minutes at 4 ° C using a small cooling centrifuge (MX-201: TOMY), and serum was collected. Collected.
The values of KC, IL-6, and G-CSF in the obtained serum were measured using the BD CBA Flex Sets (BD CBA Flex Sets), 560152 (G-CSF), 558340 (KC ), 558301 (IL-6), 558267 (buffers)) and BD Fax Bath (BD FACS Vers) using a flow cytometer (BD), according to the method described in the instructions attached to the product. Quantified.
The measured serum KC, IL-6, and G-CSF concentrations are shown in FIGS. 10, 11, and 12, respectively.
試験例4: 気管内投与による、製剤のインビボ活性評価試験
 実施例30、実施例31、比較例5および比較例6で得られた各製剤2-5、2-6、A-5およびA-6につき、それぞれ以下の方法によりインビボ活性評価試験を実施した。なお、各製剤は試験に合わせて生理食塩水で希釈して用いた。
 C57BL/6Jマウス(9週齢、メス、日本チャールズ・リバーより購入) にイソフルラン麻酔下で、ブレオマイシン(日本化薬社製)を0.012 mg / mouseの条件で気管内へ単回投与した。ブレオマイシン投与の7、10および13日後に、1 μg/mouseの各製剤を、マイクロスプレイヤーを用いて気管内投与した。最終投与の翌日に、安楽死させたマウスからBALF、BALF中の細胞および左肺を回収した。
 BALFの回収は、試験例3と同様の方法で実施した。
 左肺の回収およびmRNAの測定は以下の方法で実施した。Buffer RLT(キアゲン社製, 25 mL)に1mol/L ジチオスレイトール溶液(1 mL)を添加したものをホモジナイゼーション バッファーとして使用した。左肺を回収後、速やかにTissue lyser(キアゲン社製)を用いて、上記ホモジナイゼーション バッファー中でホモジネートした。Maxwell RSC simplyRNA Tissue Kit (プロメガ社製)の添付プロトコールに従って各ホモジネートからmRNA を回収し、SuperScript VILO cDNA Synthesis Kit(サーモフィッシャー社製)の添付プロトコールに従ってcDNAを調製した。mRNAの調製にはMaxwell RSC(プロメガ)を、cDNAの調製にはGeneAmp PCR system 9700(アプライド バイオシンセシス社製)を用いた。その後は試験例1と同様にして、Tgfb-1 mRNA を定量した。補正遺伝子としては構成的発現遺伝子であるHPRT1を用いた。
 BALF中の細胞は、1.5 mLのエッペンチューブに回収したBALFを2000 rpm、4℃、2分間の条件で遠心し、沈殿した細胞を回収した。回収したBALF中細胞のmRNAの測定は以下の方法で実施した。Buffer RLT(キアゲン社製, 25 mL)に1mol/L ジチオスレイトール溶液(1 mL)を添加したものをホモジナイゼーション バッファーとして使用した。BALF中細胞を回収後、速やかにホモジナイゼーション バッファーにてホモジネートした。その後、Maxwell RSC simplyRNA Cells Kit (プロメガ社製)の添付プロトコールに従って各ホモジネートからmRNA を回収し、SuperScript VILO cDNA Synthesis Kit(サーモフィッシャー社製)の添付プロトコールに従ってcDNAを調製した。mRNAの調製にはMaxwell RSC(プロメガ)を、cDNAの調製にはGeneAmp PCR system 9700(アプライド バイオシンセシス社製)を用いた。その後は試験例1と同様にして、Tgfb-1 mRNA を定量した。補正遺伝子としては構成的発現遺伝子であるHPRT1を用いた。
 BALF中のTgfb-1蛋白に関しては、Mouse TGF-beta 1 DuoSet(R&D Systems社製)を用いて測定した。
 左肺のmRNAの定量結果を図13に、BALF中の細胞のmRNAの定量結果を図14に、BALF中のTgfb-1蛋白濃度を図15に示す。
Test Example 4: In vivo activity evaluation test of the preparation by intratracheal administration The preparations 2-5, 2-6, A-5 and A- obtained in Example 30, Example 31, Comparative Example 5 and Comparative Example 6 Each of 6 was subjected to in vivo activity evaluation test by the following method. Each preparation was diluted with physiological saline in accordance with the test.
C57BL / 6J mice (9 weeks old, female, purchased from Charles River, Japan) were administered a single dose of bleomycin (manufactured by Nippon Kayaku Co., Ltd.) into the trachea under the condition of 0.012 mg / mouse under isoflurane anesthesia. At 7, 10 and 13 days after bleomycin administration, 1 μg / mouse of each formulation was administered intratracheally using a microsprayer. The day after the last dose, BALF, BALF cells and left lung were collected from euthanized mice.
BALF was collected in the same manner as in Test Example 3.
Collection of the left lung and measurement of mRNA were performed by the following method. Buffer RLT (Qiagen, 25 mL) added with 1 mol / L dithiothreitol solution (1 mL) was used as a homogenization buffer. After collecting the left lung, it was immediately homogenized in the above-mentioned homogenization buffer using Tissue lyser (Qiagen). MRNA was recovered from each homogenate according to the attached protocol of Maxwell RSC simplyRNA Tissue Kit (Promega), and cDNA was prepared according to the attached protocol of SuperScript VILO cDNA Synthesis Kit (Thermo Fisher). Maxwell RSC (Promega) was used for mRNA preparation, and GeneAmp PCR system 9700 (Applied Biosynthesis) was used for cDNA preparation. Thereafter, Tgfb-1 mRNA was quantified in the same manner as in Test Example 1. HPRT1, which is a constitutive expression gene, was used as a correction gene.
Cells in BALF were collected by centrifuging BALF collected in a 1.5 mL Eppendorf tube at 2000 rpm at 4 ° C. for 2 minutes to collect precipitated cells. Measurement of mRNA of the recovered BALF cells was performed by the following method. Buffer RLT (Qiagen, 25 mL) added with 1 mol / L dithiothreitol solution (1 mL) was used as a homogenization buffer. After collecting the cells in BALF, the cells were immediately homogenized with a homogenization buffer. Then, mRNA was recovered from each homogenate according to the protocol attached to Maxwell RSC simplyRNA Cells Kit (Promega), and cDNA was prepared according to the protocol attached to SuperScript VILO cDNA Synthesis Kit (Thermo Fisher). Maxwell RSC (Promega) was used for mRNA preparation, and GeneAmp PCR system 9700 (Applied Biosynthesis) was used for cDNA preparation. Thereafter, Tgfb-1 mRNA was quantified in the same manner as in Test Example 1. HPRT1, which is a constitutive expression gene, was used as a correction gene.
The Tgfb-1 protein in BALF was measured using Mouse TGF-beta 1 DuoSet (R & D Systems).
FIG. 13 shows the quantification result of left lung mRNA, FIG. 14 shows the quantification result of cellular mRNA in BALF, and FIG. 15 shows the Tgfb-1 protein concentration in BALF.
 試験例1から、本発明のカチオン性脂質を含む製剤はインビトロにおいて、核酸を細胞内に導入することが出来ることを明らかにした。
 試験例2(図1~9)から、本発明のカチオン性脂質を含む製剤をノーマルマウスに気管内投与することによって、化合物Aを含む製剤よりもインビボの刺激性を低減できることを明らかにした。
 試験例3(図10~12)から、本発明のカチオン性脂質を含む製剤をノーマルマウスに静脈内投与することによって、化合物Aを含む製剤よりもインビボの刺激性を低減できることを明らかにした。
 試験例4(図13~15)から、本発明のカチオン性脂質を含む製剤をブレオマイシンモデルマウスに気管内投与することによって、インビボにおいて、肺およびBALF中の細胞への核酸の送達を容易にし、核酸を細胞内に導入することが出来ることを明らかにした。
From Test Example 1, it was clarified that the preparation containing the cationic lipid of the present invention can introduce nucleic acid into cells in vitro.
From Test Example 2 (FIGS. 1 to 9), it was clarified that the in vivo irritancy can be reduced more than the preparation containing Compound A by intratracheally administering the preparation containing the cationic lipid of the present invention to normal mice.
From Test Example 3 (FIGS. 10 to 12), it was clarified that the in vivo irritancy can be reduced more than the preparation containing Compound A by intravenously administering the preparation containing the cationic lipid of the present invention to normal mice.
From Test Example 4 (FIGS. 13 to 15), by intratracheally administering a formulation containing the cationic lipid of the present invention to a bleomycin model mouse, it facilitates delivery of nucleic acids to cells in the lung and BALF in vivo. It was clarified that nucleic acid can be introduced into cells.
 本発明のカチオン性脂質および核酸を含有する組成物を、哺乳動物等に投与することにより、該核酸を、例えば細胞内等に容易に導入することができる。 By administering the composition containing the cationic lipid and nucleic acid of the present invention to a mammal or the like, the nucleic acid can be easily introduced into a cell, for example.
 配列番号1:ヒポキサンチン-グアニンホスホリボシル基転移酵素(HPRT1) siRNA センス鎖
 配列番号2:ヒポキサンチン-グアニンホスホリボシル基転移酵素(HPRT1) siRNA アンチセンス鎖
 配列番号3:ルシフェラーゼ(Luc-1) siRNA センス鎖
 配列番号4:ルシフェラーゼ(Luc-1) siRNA アンチセンス鎖
 配列番号5:ルシフェラーゼ(Luc-2) siRNA センス鎖
 配列番号6:ルシフェラーゼ(Luc-2) siRNA アンチセンス鎖
 配列番号7:トランスフォーミング増殖因子-ベータ1 (Tgfb-1)siRNA センス鎖
 配列番号8:トランスフォーミング増殖因子-ベータ1 (Tgfb-1)siRNA アンチセンス鎖
SEQ ID NO: 1: Hypoxanthine-guanine phosphoribosyltransferase (HPRT1) siRNA sense strand SEQ ID NO: 2: Hypoxanthine-guanine phosphoribosyltransferase (HPRT1) siRNA antisense strand SEQ ID NO: 3: Luciferase (Luc-1) siRNA Sense strand SEQ ID NO: 4: Luciferase (Luc-1) siRNA antisense strand SEQ ID NO: 5: Luciferase (Luc-2) siRNA sense strand SEQ ID NO: 6: Luciferase (Luc-2) siRNA antisense strand SEQ ID NO: 7: Transformation growth Factor-beta1 (Tgfb-1) siRNA sense strand SEQ ID NO: 8: Transforming growth factor-beta1 (Tgfb-1) siRNA antisense strand

Claims (16)

  1.  下記式(I)で表される化合物、またはその製薬上許容し得る塩。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     R1は水素原子、またはヒドロキシメチルであり、
     n1は1または2であり、
     A1およびA2は同一または異なって、直鎖状のC9-C20アルキレンまたはC9-C20アルケニレンであり、
     M1およびM2は同一または異なって、-OC(O)-、-C(O)O-または-NHC(O)-であり、
     B1およびB2は同一または異なって、直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルであり、
     R2は存在しないか、またはC1-C3のアルキルであり、
     R2が存在しない場合には、Yも存在せず、
     R2がC1-C3のアルキルである場合には、Yは製薬上許容し得る陰イオンである。)
    A compound represented by the following formula (I), or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (Where
    R1 is a hydrogen atom or hydroxymethyl,
    n1 is 1 or 2,
    A1 and A2 are the same or different and are linear C9-C20 alkylene or C9-C20 alkenylene,
    M1 and M2 are the same or different and are —OC (O) —, —C (O) O— or —NHC (O) —,
    B1 and B2 are the same or different and are linear or branched C1-C12 alkyl or C2-C13 alkenyl,
    R2 is absent or is C1-C3 alkyl;
    If R2 does not exist, Y does not exist,
    When R2 is C1-C3 alkyl, Y is a pharmaceutically acceptable anion. )
  2.  B1およびB2は同一または異なって、直鎖状のC1-C12アルキルまたはC2-C13アルケニルである、請求項1に記載の化合物、またはその製薬上許容し得る塩。 2. The compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B1 and B2 are the same or different and are linear C1-C12 alkyl or C2-C13 alkenyl.
  3.  A1およびA2は同一または異なって、直鎖状のC9-C12アルキレンである、請求項1または2に記載の化合物、またはその製薬上許容し得る塩。 The compound according to claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein A1 and A2 are the same or different and are linear C9-C12 alkylene.
  4.  B1-M1-A1およびB2-M2-A2は同一である、請求項1~3のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。 The compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein B1-M1-A1 and B2-M2-A2 are the same.
  5.  R1が水素原子であり、かつn1が2である、請求項1~4のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。 The compound according to any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, wherein R1 is a hydrogen atom and n1 is 2.
  6.  R1がヒドロキシメチルであり、かつn1が1である、請求項1~4のいずれか1項に記載の化合物、またはその製薬上許容し得る塩。 The compound according to any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, wherein R1 is hydroxymethyl and n1 is 1.
  7.  下記式(II)で表される化合物、またはその製薬上許容し得る塩。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     n2は1または2であり、
     Lは直鎖状のC12-C24アルケニルであり、
     A3は直鎖状のC5-C14アルキレンであり、
     M3は-OC(O)-、-C(O)O-または-NHC(O)-であり、
     B3は直鎖状または分岐状のC1-C12アルキルもしくはC2-C13アルケニルである。)
    A compound represented by the following formula (II) or a pharmaceutically acceptable salt thereof.
    Figure JPOXMLDOC01-appb-C000002
    (Where
    n2 is 1 or 2,
    L is a linear C12-C24 alkenyl,
    A3 is a linear C5-C14 alkylene,
    M3 is -OC (O)-, -C (O) O- or -NHC (O)-
    B3 is linear or branched C1-C12 alkyl or C2-C13 alkenyl. )
  8.  請求項1~7のいずれか1項に記載の化合物、またはその製薬上許容し得る塩、および核酸を含有する医薬組成物。 A pharmaceutical composition comprising the compound according to any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, and a nucleic acid.
  9.  前記核酸が、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用を有する核酸である、請求項8に記載の医薬組成物。 9. The pharmaceutical composition according to claim 8, wherein the nucleic acid is a nucleic acid having an action of suppressing the expression of a target gene using RNA interference (RNAi).
  10.  前記標的遺伝子が、肝臓、肺、または脾臓において発現する遺伝子である、請求項9に記載の医薬組成物。 10. The pharmaceutical composition according to claim 9, wherein the target gene is a gene expressed in the liver, lung, or spleen.
  11.  請求項10に記載の医薬組成物を含有する、肝臓、肺または脾臓に関連する疾患の治療剤または予防剤。 A therapeutic or prophylactic agent for a disease associated with the liver, lung or spleen, comprising the pharmaceutical composition according to claim 10.
  12.  請求項8~10のいずれか一項に記載の医薬組成物を対象に投与する工程を含む、肝臓、肺または脾臓に関連する疾患の治療または予防方法。 A method for treating or preventing a disease associated with the liver, lung or spleen, comprising a step of administering the pharmaceutical composition according to any one of claims 8 to 10 to a subject.
  13.  請求項8~10のいずれか一項に記載の医薬組成物を含有する、肺に関連する疾患の治療剤または予防剤。 A therapeutic or prophylactic agent for diseases related to the lung, comprising the pharmaceutical composition according to any one of claims 8 to 10.
  14.  請求項8~10のいずれか一項に記載の医薬組成物を対象に投与する工程を含む、肺に関連する疾患の治療または予防方法。 A method for treating or preventing a lung-related disease, comprising a step of administering the pharmaceutical composition according to any one of claims 8 to 10 to a subject.
  15.  請求項8~10のいずれか一項に記載の医薬組成物を含有する抗腫瘍剤。 An antitumor agent comprising the pharmaceutical composition according to any one of claims 8 to 10.
  16.  請求項8~10のいずれか一項に記載の医薬組成物を対象に投与する工程を含む、悪性腫瘍の治療または予防方法。 A method for treating or preventing a malignant tumor, comprising a step of administering the pharmaceutical composition according to any one of claims 8 to 10 to a subject.
PCT/JP2018/022220 2017-06-09 2018-06-11 Compound serving as cationic lipid WO2018225871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-114496 2017-06-09
JP2017114496 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225871A1 true WO2018225871A1 (en) 2018-12-13

Family

ID=64565976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022220 WO2018225871A1 (en) 2017-06-09 2018-06-11 Compound serving as cationic lipid

Country Status (1)

Country Link
WO (1) WO2018225871A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114728886A (en) * 2019-09-19 2022-07-08 摩登纳特斯有限公司 Carbonate-containing lipid compounds and compositions for intracellular delivery of therapeutic agents
WO2023143591A1 (en) * 2022-01-30 2023-08-03 康希诺生物股份公司 Novel ionizable lipid used for nucleic acid delivery and lnp composition thereof and vaccine
WO2023143601A1 (en) * 2022-01-30 2023-08-03 康希诺生物股份公司 Novel ionizable lipid used for nucleic acid delivery as well as lnp composition and vaccine thereof
WO2023186167A1 (en) * 2022-04-02 2023-10-05 科镁信(上海)生物医药科技有限公司 Cationic lipid, liposome, lipid nanoparticle, and use
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049245A2 (en) * 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US20170119904A1 (en) * 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017049245A2 (en) * 2015-09-17 2017-03-23 Modernatx, Inc. Compounds and compositions for intracellular delivery of therapeutic agents
US20170119904A1 (en) * 2015-10-28 2017-05-04 Acuitas Therapeutics, Inc. Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969506B2 (en) 2017-03-15 2024-04-30 Modernatx, Inc. Lipid nanoparticle formulation
CN114728886A (en) * 2019-09-19 2022-07-08 摩登纳特斯有限公司 Carbonate-containing lipid compounds and compositions for intracellular delivery of therapeutic agents
CN114728886B (en) * 2019-09-19 2024-04-12 摩登纳特斯有限公司 Lipid compounds and compositions containing carbonates for intracellular delivery of therapeutic agents
WO2023143591A1 (en) * 2022-01-30 2023-08-03 康希诺生物股份公司 Novel ionizable lipid used for nucleic acid delivery and lnp composition thereof and vaccine
WO2023143601A1 (en) * 2022-01-30 2023-08-03 康希诺生物股份公司 Novel ionizable lipid used for nucleic acid delivery as well as lnp composition and vaccine thereof
WO2023186167A1 (en) * 2022-04-02 2023-10-05 科镁信(上海)生物医药科技有限公司 Cationic lipid, liposome, lipid nanoparticle, and use

Similar Documents

Publication Publication Date Title
CN110325511B (en) Ionizable cationic lipids for RNA delivery
JP6182457B2 (en) Lipid nanoparticles for drug delivery systems containing cationic lipids
JP6226476B2 (en) Cationic lipid
WO2018225871A1 (en) Compound serving as cationic lipid
WO2013089152A1 (en) Lipid nanoparticles containing combinations of cationic lipids
EP3162794B1 (en) Alkyl substituted azetidines as cationic lipid
JP6774965B2 (en) Compounds as cationic lipids
JP6495408B2 (en) Cationic lipid
JP7043411B2 (en) Compounds as cationic lipids
WO2017010573A1 (en) β2GPI GENE-SILENCING RNAi MEDICINE COMPOSITION
WO2018225873A1 (en) Nucleic-acid-containing nanoparticles
JP2018016642A (en) Manufacturing method of lipid particles, and nucleic acid delivery carrier having lipid particles
US20140294978A1 (en) Cationic lipid
JP2016023148A (en) Manufacturing method of lipid particles, and nucleic acid delivery carrier having lipid particles
CN117534585A (en) Novel ionizable cationic lipid compound, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP