JP2018016642A - Manufacturing method of lipid particles, and nucleic acid delivery carrier having lipid particles - Google Patents

Manufacturing method of lipid particles, and nucleic acid delivery carrier having lipid particles Download PDF

Info

Publication number
JP2018016642A
JP2018016642A JP2017203224A JP2017203224A JP2018016642A JP 2018016642 A JP2018016642 A JP 2018016642A JP 2017203224 A JP2017203224 A JP 2017203224A JP 2017203224 A JP2017203224 A JP 2017203224A JP 2018016642 A JP2018016642 A JP 2018016642A
Authority
JP
Japan
Prior art keywords
nucleic acid
lipid particles
oil phase
lipid
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203224A
Other languages
Japanese (ja)
Other versions
JP6388700B2 (en
Inventor
西川 尚之
Naoyuki Nishikawa
尚之 西川
杉山 享
Susumu Sugiyama
享 杉山
貴宏 関口
Takahiro Sekiguchi
貴宏 関口
大野 誠
Makoto Ono
誠 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2017203224A priority Critical patent/JP6388700B2/en
Publication of JP2018016642A publication Critical patent/JP2018016642A/en
Application granted granted Critical
Publication of JP6388700B2 publication Critical patent/JP6388700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of lipid particles which is capable of holding nucleic acid or the like at a high inclusion ratio, and a nucleic acid delivery carrier having lipid particles.SOLUTION: A manufacturing method of lipid particles including nucleic acid includes processes (1) to (4) below: (1) a process of heating oil phase containing phospholipid, alcohol and ester; (2) a process of mixing water phase containing nucleic acid and the oil phase prepared in process (1); (3) a process of cooling liquid mixture containing the oil phase and the water phase obtained in process (2) to crystallize lipid particles; and (4) a process of removing alcohol and ester from the liquid mixture containing the oil phase and the water phase obtained in process (3).SELECTED DRAWING: None

Description

本発明は、脂質粒子の製造法および脂質粒子の用途に関し、好適には核酸を細胞内に送達するのに有用な脂質粒子の製造法および脂質粒子の用途に関する。   The present invention relates to a method for producing lipid particles and uses of lipid particles, and preferably relates to a method for producing lipid particles useful for delivering nucleic acids into cells and uses of lipid particles.

核酸医薬は、疾患に対する作用機序が明確で、副作用も少なく、次世代の医薬品として記載されている。例えば、RNA干渉(RNAi)を用いた核酸医薬は、細胞に存在する標的遺伝子のmRNAの分解を惹起し、標的遺伝子の発現を阻害することができる。その結果、特定の遺伝子または遺伝子群の異常な発現原因となって生じる疾患症状を軽減または治療することができる。このようなRNA干渉を利用した核酸医薬において、例えば、siRNAなどの核酸が利用されるが、これらの核酸に機能を発現させるためには、核酸を細胞内に送達することが必要である。   Nucleic acid drugs have a clear mechanism of action against diseases, have few side effects, and are described as next-generation drugs. For example, a nucleic acid drug using RNA interference (RNAi) can cause degradation of mRNA of a target gene present in a cell and inhibit target gene expression. As a result, it is possible to reduce or treat a disease symptom caused by abnormal expression of a specific gene or gene group. In such nucleic acid pharmaceuticals utilizing RNA interference, for example, nucleic acids such as siRNA are used. In order to express functions of these nucleic acids, it is necessary to deliver the nucleic acids into cells.

核酸を細胞内に効果的に送達する方法として一般にキャリア(ベクター)が用いられる。核酸がアニオン性であることから、キャリア(ベクター)としてカチオン脂質を用いたカチオン性のリポソーム(非特許文献1)、カチオン性とアニオン性の両方を併せもつ両性リポソーム(特許文献1、2)などの検討がなされている。   In general, a carrier (vector) is used as a method for effectively delivering a nucleic acid into a cell. Since the nucleic acid is anionic, cationic liposomes using a cationic lipid as a carrier (vector) (Non-patent Document 1), amphoteric liposomes having both cationic and anionic (Patent Documents 1 and 2), etc. Is being studied.

最も一般的なリポソームの製造法として、Bangham(バンガム)法が知られている。バンガム法とは、容器内でリン脂質をクロロホルムなどの有機溶媒に溶解させ、次いで有機溶媒を蒸発させて容器内面上に脂質薄膜を作成した後、薄膜に水を加えて薄膜を膨潤させ、さらに容器を振盪することによりリポソームを得る方法である。
その他にも、有機溶媒抽出法、界面活性剤除去法、凍結融解法などの方法が知られている。
The Bangham method is known as the most common method for producing liposomes. The bangham method is to dissolve phospholipids in an organic solvent such as chloroform in a container, then evaporate the organic solvent to create a lipid thin film on the inner surface of the container, and then add water to the thin film to swell the thin film. In this method, liposomes are obtained by shaking the container.
In addition, methods such as an organic solvent extraction method, a surfactant removal method, and a freeze-thaw method are known.

特開2011−21026号公報Japanese Unexamined Patent Publication No. 2011-21026 特表2005−517739号公報JP 2005-517739

Gene Therapy, Vol.6, p271, 1999Gene Therapy, Vol. 6, p271, 1999

キャリア(ベクター)の評価のための重要な指標として、内包率がある。内包率とは、キャリア(ベクター)の製造時に内水相に保持させるために添加した親水性物質中の何%が内水相中に保持されているかを示す指標である。
従来のキャリア(ベクター)の製造法では、例えば、核酸を高い内包率で保持することのできるキャリア(ベクター)を得るには十分ではなかった。
Inclusion rate is an important index for evaluating a carrier (vector). The encapsulation rate is an index indicating what percentage of the hydrophilic substance added to retain in the inner aqueous phase when the carrier (vector) is produced is retained in the inner aqueous phase.
Conventional methods for producing carriers (vectors) have not been sufficient to obtain carriers (vectors) that can retain nucleic acids at a high encapsulation rate, for example.

本発明は、高い内包率で核酸などを保持することが可能な脂質粒子の製造法、および脂質粒子を有する核酸送達キャリアを提供することを解決すべき課題とした。   An object of the present invention is to provide a method for producing lipid particles capable of retaining nucleic acids and the like at a high encapsulation rate, and to provide a nucleic acid delivery carrier having lipid particles.

本発明者らは、上記課題を解決すべく鋭意検討した結果、(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程と、(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程と、(3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程と、(4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程と、を含む製造法が、上記課題を解決した脂質粒子の製造法として提供できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have (1) a step of heating an oil phase containing phospholipid, alcohol and ester, (2) an aqueous phase containing nucleic acid, and step (1). A step of mixing the oil phase prepared in step (3), a step of cooling the mixed solution containing the oil phase and the aqueous phase obtained in step (2) to crystallize lipid particles, and (4) step (3). And the step of removing alcohol and ester from the mixed solution containing the oil phase and the aqueous phase obtained in step 1 above, and found that the production method of lipid particles that solves the above problems can be provided, and to complete the present invention It came.

すなわち、課題を解決するための手段は以下の通りである。
[1] 下記(1)〜(4)の工程:
(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;(3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程;および(4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程、を含む、核酸を内包した脂質粒子の製造法。
[2] アルコールが炭素数1〜6のアルコールである、[1]に記載の脂質粒子の製造法。
[3] エステルが酢酸エステルである、[1]または[2]に記載の脂質粒子の製造法。
[4] 工程(1)において、油相が、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物をさらに含む、[1]〜[3]のいずれか1つに記載の脂質粒子の製造法。
[5] 少なくzとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物が一般式(1):

Figure 2018016642
(式中、RおよびRは、同一または異なって、炭素数10〜22のアルキル基、炭素数10〜22のアルキルオキシアルキレン基、炭素数10〜22のアルカノイルオキシアルキレン基および炭素数10〜22のアルキルオキシカルボニルアルキレン基から選択される置換基である)で表される化合物である、[4]に記載の脂質粒子の製造法。
[6] 工程(1)において、リン脂質、アルコールおよびエステルを含む油相を40〜70℃で加熱する、[1]〜[5]のいずれか1つに記載の脂質粒子の製造法。
[7] 工程(3)において、油相および水相を含む混合液を10〜30℃で冷却する、[1]〜[6]のいずれか1つに記載の脂質粒子の製造法。
[8] [1]〜[7]のいずれか1つに記載の製造法によって得られる脂質粒子を有する核酸送達キャリア。 That is, the means for solving the problems are as follows.
[1] Steps (1) to (4) below:
(1) a step of heating an oil phase containing phospholipid, alcohol and ester; (2) a step of mixing an aqueous phase containing nucleic acid and an oil phase prepared in step (1); (3) in step (2) A step of cooling the liquid mixture containing the obtained oil phase and water phase to crystallize lipid particles; and (4) removing alcohol and ester from the liquid mixture containing the oil phase and water phase obtained in step (3). A process for producing lipid particles encapsulating nucleic acids.
[2] The method for producing lipid particles according to [1], wherein the alcohol is an alcohol having 1 to 6 carbon atoms.
[3] The method for producing lipid particles according to [1] or [2], wherein the ester is an acetate ester.
[4] The production of lipid particles according to any one of [1] to [3], wherein in step (1), the oil phase further comprises a compound having at least one amino group and at least one imidazolyl group. Law.
[5] A compound having at least one amino group and at least one imidazolyl group is represented by the general formula (1):
Figure 2018016642
(In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 10 to 22 carbon atoms, an alkyloxyalkylene group having 10 to 22 carbon atoms, an alkanoyloxyalkylene group having 10 to 22 carbon atoms, and 10 carbon atoms. The method for producing lipid particles according to [4], which is a compound represented by the formula (1) to a compound selected from ˜22 alkyloxycarbonylalkylene groups.
[6] The method for producing lipid particles according to any one of [1] to [5], wherein in step (1), the oil phase containing phospholipid, alcohol and ester is heated at 40 to 70 ° C.
[7] The method for producing lipid particles according to any one of [1] to [6], wherein in the step (3), the liquid mixture containing the oil phase and the aqueous phase is cooled at 10 to 30 ° C.
[8] A nucleic acid delivery carrier having lipid particles obtained by the production method according to any one of [1] to [7].

本発明の脂質粒子の製造法によれば、高い内包率で核酸などを保持することが可能な脂質粒子の製造法、および脂質粒子を有する核酸送達キャリアを提供することができる。   According to the method for producing lipid particles of the present invention, it is possible to provide a method for producing lipid particles capable of retaining nucleic acids and the like with a high encapsulation rate, and a nucleic acid delivery carrier having lipid particles.

合成例における化合物AのH−NMRの図である。It is a figure of 1 H-NMR of compound A in a synthesis example. 合成例における化合物AのMSスペクトルの図である。It is a figure of MS spectrum of compound A in a synthesis example.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。   In the present specification, “to” indicates a range including numerical values described before and after that as a minimum value and a maximum value, respectively.

(1)脂質粒子の製造法
本発明の脂質粒子の製造は、下記(1)〜(4)の工程:
(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;
(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;
(3)工程(2)で得た油相および水相を含む混合液(以下、油相−水相混合液と称することがある)を冷却し、脂質粒子を晶出する工程;および
(4)工程(3)で得られた油相および水相を含む混合液からアルコールおよびエステルを除去する工程、を含む、核酸を内包した脂質粒子の製造法(以下、本発明の製造法と称することがある)である。
(1) Method for Producing Lipid Particles The lipid particles of the present invention are produced by the following steps (1) to (4):
(1) heating an oil phase containing phospholipid, alcohol and ester;
(2) A step of mixing the aqueous phase containing nucleic acid and the oil phase prepared in step (1);
(3) a step of cooling the liquid mixture containing the oil phase and the water phase obtained in step (2) (hereinafter sometimes referred to as an oil phase-water phase mixture) to crystallize lipid particles; and (4 ) A method for producing lipid particles encapsulating nucleic acid (hereinafter referred to as the production method of the present invention), which comprises the step of removing alcohol and ester from the mixed solution containing the oil phase and aqueous phase obtained in step (3). Is).

本発明の製造法は、コアセルベーションを利用した粒子の形成方法である。コアセルベーションとは、親水コロイドに他の物質を添加したり、貧溶媒で希釈したり、pHを変化させたりするとき、コロイドに富む液相とコロイドに乏しい液相とのふたつの相に分離する現象のことである。
本発明の製造法において、リン脂質、アルコールおよびエステルを含む油相を加熱し、核酸を含む水相と、得られた油相を混合した後に、時間をかけて冷却することによって一種のコアセルベーション現象が起こり、リン脂質が核酸を内包するように自己組織化することで、高い内包率で核酸を保持したリポソームを得ることができる。
The production method of the present invention is a method for forming particles using coacervation. Coacervation separates into two phases: a colloid-rich liquid phase and a colloid-poor liquid phase when other substances are added to the hydrocolloid, diluted with a poor solvent, or when the pH is changed. It is a phenomenon that does.
In the production method of the present invention, an oil phase containing phospholipid, alcohol and ester is heated, mixed with an aqueous phase containing nucleic acid, and the obtained oil phase, and then cooled over time, a kind of core cell. By causing self-organization so that a phospholipid encapsulates the nucleic acid, a liposome that holds the nucleic acid at a high encapsulation rate can be obtained.

[工程(1)]
本発明の製造法は、工程(1)リン脂質、アルコールおよびエステルを含む油相(油相とは、リン脂質、アルコールおよびエステルを混合して得られる組成物中に含まれる油性成分を意味する)を加熱する工程を含む。
[Step (1)]
The production method of the present invention includes step (1) an oil phase containing phospholipid, alcohol and ester (an oil phase means an oily component contained in a composition obtained by mixing phospholipid, alcohol and ester) ).

本発明で用いられるリン脂質としては、特に限定されないが、例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、リゾホスファチジルコリン、スフィンゴミエリン、卵黄レシチン、大豆レシチンなどの天然リン脂質、天然由来のリン脂質の不飽和炭素鎖を水素により飽和とした水素添加リン脂質、天然由来のリン脂質に合成により修飾を加えた合成リン脂質などが挙げられ、これらを1種または2種以上組み合わせて用いてもよい。   The phospholipid used in the present invention is not particularly limited. Examples include hydrogenated phospholipids in which unsaturated carbon chains of lipids are saturated with hydrogen, and synthetic phospholipids obtained by modifying natural phospholipids by synthesis. These may be used alone or in combination of two or more. Good.

本発明におけるリン脂質の総量は、核酸に対して、モル比で10:1〜5000:1であることが好ましく、100:1〜1000:1であることがより好ましい。   The total amount of phospholipid in the present invention is preferably 10: 1 to 5000: 1, more preferably 100: 1 to 1000: 1, in terms of molar ratio to the nucleic acid.

本発明で使用されるアルコールとしては、特に限定されないが、炭素数1〜6のアルコールを用いることが好ましい。具体的には、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、3−メチル−1−ブタノールなどが挙げられる。本発明で使用されるアルコールとしては、極性の観点から、エタノールを用いることがより好ましい。   Although it does not specifically limit as alcohol used by this invention, It is preferable to use a C1-C6 alcohol. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and 3-methyl-1-butanol. As alcohol used by this invention, it is more preferable to use ethanol from a polar viewpoint.

本発明で使用されるエステルとしては、特に限定されないが、酢酸エステルを用いることが好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチルなどが挙げられる。本発明で使用されるエステルとしては、極性又は親油性の観点から、酢酸エチルを用いることがより好ましい。   Although it does not specifically limit as ester used by this invention, It is preferable to use an acetate ester. Specific examples include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, and isobutyl acetate. As ester used by this invention, it is more preferable to use ethyl acetate from a polar or lipophilic viewpoint.

本発明におけるエステルとアルコールの比率は、容量比率で90:10〜10:90であることが好ましく、80:20〜30:70であることがより好ましく、70:30〜40:60であることがさらに好ましい。   In the present invention, the ratio of ester to alcohol is preferably 90:10 to 10:90, more preferably 80:20 to 30:70, and 70:30 to 40:60 in volume ratio. Is more preferable.

本発明の製造法では、工程(1)において、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を(好ましくは脂質として)さらに含むことが好ましい。   In the production method of the present invention, in the step (1), it is preferable to further include a compound having at least one amino group and at least one imidazolyl group (preferably as a lipid).

本発明において、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を使用する際の配合量は、脂質全量に対して、10mol%〜70mol%であることが好ましく、15mol%〜60mol%であることがより好ましく、20mol%〜50mok%であることがさらに好ましい。   In the present invention, the compounding amount when using a compound having at least one amino group and at least one imidazolyl group is preferably 10 mol% to 70 mol%, and preferably 15 mol% to 60 mol% with respect to the total amount of lipid. More preferably, it is more preferably 20 mol% to 50 mok%.

本発明で用いられる、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物としては、特に限定されないが、例えば、一般式(1)で表される化合物を用いることが好ましい。

Figure 2018016642
式中、RおよびRは、同一または異なって、炭素数10〜22のアルキル基、炭素数10〜22のアルキルオキシアルキレン基、炭素数10〜22のアルカノイルオキシアルキレン基および炭素数10〜22のアルキルオキシカルボニルアルキレン基から選択される置換基である。 Although it does not specifically limit as a compound which has at least 1 amino group and at least 1 imidazolyl group used by this invention, For example, it is preferable to use the compound represented by General formula (1).
Figure 2018016642
In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 10 to 22 carbon atoms, an alkyloxyalkylene group having 10 to 22 carbon atoms, an alkanoyloxyalkylene group having 10 to 22 carbon atoms, and 10 to 10 carbon atoms. A substituent selected from 22 alkyloxycarbonylalkylene groups.

およびRは、同一または異なって、炭素数10〜22のアルキル基であることがより好ましく、炭素数14〜20のアルキル基であることがさらに好ましい。また、アルキル基中に二重結合を有していてもよい。 R 1 and R 2 are the same or different and are more preferably an alkyl group having 10 to 22 carbon atoms, and more preferably an alkyl group having 14 to 20 carbon atoms. Moreover, you may have a double bond in the alkyl group.

本発明の製造法において用いられる、一般式(1)で表される、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物は、特に限定されないが、例えば、下記の方法により合成することができる。   The compound having at least one amino group and at least one imidazolyl group represented by the general formula (1) used in the production method of the present invention is not particularly limited. For example, the compound can be synthesized by the following method. it can.

Figure 2018016642
Figure 2018016642

式中、PGは保護基を表し、Xは活性エステルを構成する脱離基を表す。RおよびRは、上記と同様である。 In the formula, PG represents a protecting group, and X represents a leaving group constituting an active ester. R 1 and R 2 are the same as described above.

すなわち、適切な保護基により保護されたヒスチジンの活性エステル(A)と、アミン誘導体(B)を塩基存在下で反応させ、化合物(C)を得た後、適切な脱保護方法によって、一般式(1)で表される化合物を合成することができる。   That is, an active ester of histidine (A) protected with an appropriate protecting group is reacted with an amine derivative (B) in the presence of a base to obtain a compound (C), and then the general formula is obtained by an appropriate deprotection method. The compound represented by (1) can be synthesized.

ここで、ヒスチジンの活性エステル(A)において使用できる保護基としては、例えば、W.グリーン(W.Greene)ら、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)第4版、第255〜265頁、2007年、ジョン・ウィリイ・アンド・サンズ社(John Wiley & Sons,INC.)に記載の保護基などが挙げられる。具体的には、Boc基(tert-ブトキシカルボニル基)、Z基(ベンジルオキシカルボニル基)などが好ましい例として挙げられる。   Here, as a protecting group that can be used in the active ester (A) of histidine, for example, W.I. W. Greene et al., Protective Groups in Organic Synthesis 4th edition, pp. 255-265, 2007, John Wiley & Sons, INC.) And the like. Specifically, preferred examples include Boc group (tert-butoxycarbonyl group), Z group (benzyloxycarbonyl group) and the like.

使用できる活性エステルの例として、フェニルエステル、トリフルオロフェニルエステル、ペンタフェニルエステル、ヒドロキシスクシンイミドエステルなどを挙げることができ、原料入手性または安定性の観点から、ヒドロキシスクシンイミドエステルが好ましい。   Examples of the active ester that can be used include phenyl ester, trifluorophenyl ester, pentaphenyl ester, and hydroxysuccinimide ester, and hydroxysuccinimide ester is preferable from the viewpoint of raw material availability or stability.

使用できる塩基としては、無機塩基、有機塩基を挙げることができる。無機塩基の例としては、炭酸水素ナトリウム、炭酸ナトリウムなどを挙げることができ、有機塩基の例としては、トリエチルアミン、ジイソプロピルアミンなどを挙げることができる。使用する塩基は、反応に用いるヒスチジンの活性エステル(A)の保護基によって、適切な塩基を用いることが好ましい。   Examples of the base that can be used include inorganic bases and organic bases. Examples of the inorganic base include sodium hydrogen carbonate and sodium carbonate. Examples of the organic base include triethylamine and diisopropylamine. The base to be used is preferably an appropriate base depending on the protecting group of the active ester (A) of histidine used in the reaction.

使用できる溶媒としては、特に限定されないが、一般的な有機溶媒を用いることができる。具体的には、エーテル系溶剤、エステル系溶剤、アミド系溶剤、ハロゲン系溶剤を用いることができ、テトラヒドロフランなどのエーテル系溶剤、ジクロロメタン、クロロホルムなどのハロゲン系溶剤が好ましい例として挙げられる。   Although it does not specifically limit as a solvent which can be used, A general organic solvent can be used. Specifically, ether solvents, ester solvents, amide solvents, and halogen solvents can be used. Preferred examples include ether solvents such as tetrahydrofuran and halogen solvents such as dichloromethane and chloroform.

使用できる脱保護反応としては、例えば、W.グリーン(W.Greene)ら、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)第4版、第255〜265頁、2007年、ジョン・ウィリイ・アンド・サンズ社(John Wiley & Sons,INC.)に記載の方法などが挙げられる。   Examples of deprotection reactions that can be used include W.S. W. Greene et al., Protective Groups in Organic Synthesis 4th edition, pp. 255-265, 2007, John Wiley & Sons, INC.).

本発明の製造法で用いられる、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物として、式(2)で表される化合物(2−アミノ−N,N−ジヘキサデシル−3−(1H−イミダゾール−5−イル)プロパンアミド)[本明細書中において化合物Aとも称する]を使用することが好ましい。   As a compound having at least one amino group and at least one imidazolyl group used in the production method of the present invention, a compound represented by the formula (2) (2-amino-N, N-dihexadecyl-3- (1H— Preference is given to using imidazol-5-yl) propanamide) [also referred to herein as compound A].

Figure 2018016642
Figure 2018016642

本発明の製造法において、式(2)で表される化合物を使用することで、高い内包率で核酸を保持することができ、且つ、標的細胞における核酸の放出性に優れた脂質粒子を得ることができる。   In the production method of the present invention, by using the compound represented by the formula (2), a nucleic acid can be retained with a high encapsulation rate and excellent in the release property of the nucleic acid in the target cell. be able to.

本発明の工程(1)において、リン脂質、アルコールおよびエステルを含む油相を加熱する際の温度は、40〜70℃であることが好ましく、45〜65℃であることがより好ましく、50〜60℃であることがさらに好ましい。
また、加熱時間は、液全体の温度が均一に所望の温度になっていることが確認できればよく、特に限定されない。
In the step (1) of the present invention, the temperature at which the oil phase containing phospholipid, alcohol and ester is heated is preferably 40 to 70 ° C, more preferably 45 to 65 ° C, and more preferably 50 to More preferably, it is 60 degreeC.
The heating time is not particularly limited as long as it can be confirmed that the temperature of the entire liquid is uniformly desired.

[他の成分]
本発明の油相には、リン脂質、アルコールおよびエステル以外に、本発明の効果を損なわない範囲において、必要に応じて、他の成分を含むことができる。
[Other ingredients]
In the oil phase of the present invention, in addition to phospholipids, alcohols and esters, other components can be included as necessary within a range not impairing the effects of the present invention.

(ステロール)
本発明の製造法は、油相にステロールを含んでもよい。本発明において、油相にステロールを含むことで、膜流動性を低下させ、脂質粒子の安定化効果を得ることができる。
ステロールとしては、特に限定されないが、コレステロール、フィトステロール(シトステロール、スチグマステロール、フコステロール、スピナステロール、ブラシカステロールなど)、エルゴステロール、コレスタノン、コレステノン、コプロスタノール、コレステリル−2’−ヒドロキシエチルエーテル。コレステリル−4’−ヒドロキシブチルエーテルなどを上げることができる。これらの中でも、コレステロールが好ましい。
本発明において、ステロールの配合量は、全脂質量に対して10mol%〜60mol%であることが好ましく、20mol%〜55mol%であることがより好ましく、25mol%〜50mol%であることがさらに好ましい。
(Sterol)
The production method of the present invention may contain sterol in the oil phase. In the present invention, by including sterol in the oil phase, the membrane fluidity can be lowered and the effect of stabilizing lipid particles can be obtained.
Although it does not specifically limit as sterol, Cholesterol, phytosterol (sitosterol, stigmasterol, fucosterol, spinasterol, brassicasterol etc.), ergosterol, cholestanone, cholestenone, coprostanol, cholesteryl-2'-hydroxyethyl ether. Cholesteryl-4′-hydroxybutyl ether can be raised. Among these, cholesterol is preferable.
In the present invention, the sterol content is preferably 10 mol% to 60 mol%, more preferably 20 mol% to 55 mol%, and even more preferably 25 mol% to 50 mol%, based on the total lipid amount. .

(ポリエチレングリコール鎖を有する脂質)
本発明の製造法は、油相にポリエチレングリコール鎖(以下、「PEG鎖」と称する。)を有する脂質を含んでもよい。本発明において、油相にPEG鎖を有する脂質を含むことで、脂質粒子の分散安定化効果を得ることができる。
PEG鎖を有する脂質としては、特に限定されないが、PEG修飾ホスホエタノールアミン、ジアシルグリセロールPEG誘導体、ジアルキルグリセロールPEG誘導体、コレステロールPEG誘導体、セラミドPEG誘導体などが挙げられる。これらの中でも、PEG修飾ホスホエタノールアミンが好ましい。
PEG鎖の重量平均分子量は、500〜5000が好ましく、750〜2000がより好ましい。
PEG鎖は分岐していてもよく、ヒドロキシメチル基のような置換基を有していてもよい。
(Lipid with polyethylene glycol chain)
The production method of the present invention may include a lipid having a polyethylene glycol chain (hereinafter referred to as “PEG chain”) in the oil phase. In the present invention, by including a lipid having a PEG chain in the oil phase, the effect of stabilizing the dispersion of lipid particles can be obtained.
The lipid having a PEG chain is not particularly limited, and examples thereof include PEG-modified phosphoethanolamine, diacylglycerol PEG derivatives, dialkylglycerol PEG derivatives, cholesterol PEG derivatives, and ceramide PEG derivatives. Among these, PEG-modified phosphoethanolamine is preferable.
The weight average molecular weight of the PEG chain is preferably 500 to 5000, and more preferably 750 to 2000.
The PEG chain may be branched and may have a substituent such as a hydroxymethyl group.

本発明おいて、PEG鎖を有する脂質の配合量は、全脂質量に対して0.5mol%〜12mol%であることが好ましく、2mol%〜10mol%であることがより好ましく、4mol%〜8mol%であることがさらに好ましい。   In the present invention, the amount of the lipid having a PEG chain is preferably 0.5 mol% to 12 mol%, more preferably 2 mol% to 10 mol%, more preferably 4 mol% to 8 mol% with respect to the total lipid amount. % Is more preferable.

[工程(2)]
本発明の製造法は、工程(2):核酸を含む水相と、工程(1)で調製した油相を混合する工程を含む。
[Step (2)]
The production method of the present invention includes a step (2): a step of mixing an aqueous phase containing a nucleic acid and an oil phase prepared in step (1).

[核酸]
本発明に用いられる核酸としては、公知の任意の形態の核酸が含まれる。核酸の具体例としては、一般的なRNA、DNA、およびそれらの誘導体を挙げることができ、一本鎖DNAもしくはRNAであってもよく、二本鎖DNAもしくはRNAであってもよく、DNA−RNAハイブリッドであってもよい。本発明に用いることのできる核酸としては、具体的には、アンチセンスDNA、アンチセンスRNA、DNAエンザイム、リボザイム、siRNA、shRNA、miRNA、aiRNA、piRNA、デコイ核酸、アプタマーなどを挙げることができる。本発明に用いられる核酸としては、siRNA、miRNA、aiRNA、アンチセンスDNA、アンチセンスRNAを使用することが好ましい。
[Nucleic acid]
The nucleic acid used in the present invention includes any known form of nucleic acid. Specific examples of the nucleic acid include general RNA, DNA, and derivatives thereof, which may be single-stranded DNA or RNA, double-stranded DNA or RNA, DNA- It may be an RNA hybrid. Specific examples of the nucleic acid that can be used in the present invention include antisense DNA, antisense RNA, DNA enzyme, ribozyme, siRNA, shRNA, miRNA, aiRNA, piRNA, decoy nucleic acid, and aptamer. As the nucleic acid used in the present invention, siRNA, miRNA, aiRNA, antisense DNA, and antisense RNA are preferably used.

本発明で用いられる核酸は、天然型に限定されるものではなく、ヌクレアーゼ耐性など、生体内における安定性を高めるために、そのヌクレオチドを構成している糖またはリン酸バックボーンなどの少なくとも一部が修飾されているような非天然型であってもよい。
糖部が修飾されている非天然型核酸としては、2’−O−メチルRNA、2’−O−(2−メトキシ)エチルRNA、2’−デオキシ−2’−フルオロアラビノ核酸、架橋型核酸(LNA/BNA)などが挙げられる。また、糖部をペプチドに置き換えたペプチド核酸(PNA)、モルフォリノに置き換えたモルフォリノ核酸なども、非天然型核酸の一例として挙げることができる。
リン酸バックボーンが修飾されている非天然型核酸としては、ホスホロチオエート体、ホスホロジチオエート体などが挙げられる。
The nucleic acid used in the present invention is not limited to the natural type, and in order to improve stability in vivo such as nuclease resistance, at least a part of the sugar or phosphate backbone constituting the nucleotide is included. The non-natural type may be modified.
Non-natural nucleic acids with modified sugar moieties include 2′-O-methyl RNA, 2′-O- (2-methoxy) ethyl RNA, 2′-deoxy-2′-fluoroarabino nucleic acid, and cross-linked type A nucleic acid (LNA / BNA) etc. are mentioned. Peptide nucleic acid (PNA) in which the sugar moiety is replaced with a peptide, morpholino nucleic acid in which morpholino is replaced, and the like can also be given as examples of non-natural nucleic acids.
Examples of the non-natural nucleic acid in which the phosphate backbone is modified include phosphorothioate and phosphorodithioate.

本発明の製造法における水相(水相とは、水性成分を意味する)は、例えば、核酸を水などの水性成分に溶解させることで得られる。   The aqueous phase (the aqueous phase means an aqueous component) in the production method of the present invention can be obtained, for example, by dissolving nucleic acid in an aqueous component such as water.

本発明の工程(2)では、水相と、工程(1)で得られる油相とを混合する。水相と油相とを混合する比率(質量比)は、3.0:1.0〜1.0:1.0が好ましく、1.6:1.0〜1.1:1.0がより好ましい。   In the step (2) of the present invention, the aqueous phase and the oil phase obtained in the step (1) are mixed. The ratio (mass ratio) of mixing the water phase and the oil phase is preferably 3.0: 1.0 to 1.0: 1.0, and 1.6: 1.0 to 1.1: 1.0. More preferred.

水相と油相とを混合する際の温度は、40〜70℃であることが好ましく、45〜65℃であることがより好ましく、50〜60℃であることがさらに好ましい。
また、混合する時間は、液全体が均一になっていることが確認できればよく、特に限定されない。また、加熱時間は、液全体の温度が均一に所望の温度になっていることが確認できればよく、特に限定されない。
The temperature at the time of mixing the water phase and the oil phase is preferably 40 to 70 ° C, more preferably 45 to 65 ° C, and further preferably 50 to 60 ° C.
The mixing time is not particularly limited as long as it can be confirmed that the entire liquid is uniform. The heating time is not particularly limited as long as it can be confirmed that the temperature of the entire liquid is uniformly desired.

[工程(3)]
本発明の製造法は、工程(3):工程(2)で得た油相−水相混合液を冷却し、脂質粒子を晶出する工程を含む。
[Step (3)]
The production method of the present invention includes a step (3): a step of cooling the oil phase-water phase mixture obtained in step (2) to crystallize lipid particles.

本発明の工程(3)において、油相−水相混合液の冷却条件は10〜30℃が好ましく、15〜25℃がより好ましい。
また、冷却時間は、特に限定されないが、冷却速度は−3℃/分以下であることが好ましい。
In the step (3) of the present invention, the cooling condition of the oil phase-water phase mixture is preferably 10 to 30 ° C, more preferably 15 to 25 ° C.
The cooling time is not particularly limited, but the cooling rate is preferably −3 ° C./min or less.

[工程(4)]
本発明の製造法は、工程(4):工程(3)で得た油相−水相混合液からアルコールおよびエステルを除去する工程を含む
[Step (4)]
The production method of the present invention includes a step (4): a step of removing alcohol and ester from the oil phase-water phase mixture obtained in step (3).

本発明の工程(4)において、油相−水相混合液からアルコールおよびエステルを除去する方法としては、特に限定されず、一般的な手法により除去することができる。   In the step (4) of the present invention, the method for removing alcohol and ester from the oil phase-water phase mixed solution is not particularly limited, and can be removed by a general method.

[その他の工程]
本発明の製造法によって得られる脂質粒子は、必要に応じてサイジングを施すことができる。サイジングには、槽内超音波処理またはプローブ超音波処理のいずれかにより脂質粒子を含む液(懸濁液)を超音波処理することにより、粒子径を小さくすることができる。
また、本発明の製造法によって得られる脂質粒子は、必要に応じて濃縮することができる。濃縮には種々の既知の方法を採用することができ、例えば、限外ろ過膜を用いた濃縮方法を挙げることができる。
[Other processes]
The lipid particles obtained by the production method of the present invention can be sized as necessary. In sizing, the particle diameter can be reduced by ultrasonically treating a liquid (suspension) containing lipid particles by either in-tank ultrasonic treatment or probe ultrasonic treatment.
Moreover, the lipid particle obtained by the manufacturing method of this invention can be concentrated as needed. Various known methods can be employed for the concentration, and examples thereof include a concentration method using an ultrafiltration membrane.

(2)脂質粒子について
本発明において、脂質粒子とは、脂質から構成される粒子を意味し、特に限定されない。本発明の脂質粒子には、脂質二分子膜より構成される閉鎖小胞体であるラメラ構造を持つリポソームが含まれる。リポソームとしては、多重リポソーム(MLV)、小さな一枚膜リポソーム(SUV)、巨大一枚膜リポソームなどの構造が知られているが、特に限定されるものではない。本発明の脂質粒子には、前述のリポソームのような脂質二分子膜構造(ラメラ構造)を持たない、粒子内部も構成成分が詰まった構造を持つ粒子も含まれる。
(2) About lipid particle In this invention, a lipid particle means the particle | grains comprised from a lipid, and is not specifically limited. Lipid particles of the present invention include liposomes having lamellar structures that are closed vesicles composed of lipid bilayers. As the liposome, structures such as multi-liposome (MLV), small unilamellar liposome (SUV), and giant unilamellar liposome are known, but are not particularly limited. The lipid particles of the present invention also include particles that do not have a lipid bilayer structure (lamellar structure) like the above-mentioned liposome and that have a structure filled with constituent components inside the particle.

脂質形成の形態は、電子顕微鏡観察またはエックス線を用いた構造解析などにより確認できる。例えば、Cryo透過型電子顕微鏡観察(CryoTEM法)を用いた方法により、リポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)、内水層を持つ構造、またはリポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持たず、粒子内部に電子密度が高いコアを持っていることから、脂質をはじめとする構成成分が詰まった構造を有していることなどが確認できる。エックス線小角散乱(SAXS)測定によっても、脂質粒子が脂質二分子膜構造(ラメラ構造)の有無を確認できる。   The form of lipid formation can be confirmed by electron microscope observation or structural analysis using X-rays. For example, by a method using Cryo transmission electron microscope observation (CryoTEM method), lipid particles like lipids have a lipid bilayer structure (lamella structure), a structure having an inner water layer, or lipid particles like liposomes. It does not have a lipid bilayer structure (lamella structure) and inner water layer, and has a core with high electron density inside the particle, so it has a structure packed with components such as lipids, etc. Can be confirmed. The presence or absence of lipid bilayer structure (lamella structure) can also be confirmed by lipid X-ray scattering (SAXS) measurement.

本発明の脂質粒子の粒子径は特に限定されないが、好ましくは10〜1000nmであり、より好ましくは50〜500nmであり、さらに好ましくは75〜350nmである。脂質粒子の粒子径は、一般的な方法(例えば、動的光散乱法、レーザー回折法など)により測定することができる。   Although the particle diameter of the lipid particle of the present invention is not particularly limited, it is preferably 10 to 1000 nm, more preferably 50 to 500 nm, and further preferably 75 to 350 nm. The particle diameter of the lipid particles can be measured by a general method (for example, dynamic light scattering method, laser diffraction method, etc.).

(3)脂質粒子の利用
本発明の製造法によって得られる脂質粒子の一例としては、脂質粒子をin vitroで細胞に導入することによって、細胞に核酸など(例えば、遺伝子など)を導入することができる。また、本発明の製造法によって得られる脂質粒子に、医薬用途を有する核酸を含む場合、脂質粒子は核酸医薬として生体に投与することができる。
(3) Utilization of lipid particles As an example of lipid particles obtained by the production method of the present invention, a nucleic acid or the like (for example, a gene or the like) may be introduced into a cell by introducing the lipid particle into the cell in vitro. it can. Moreover, when the nucleic acid obtained by the manufacturing method of this invention contains the nucleic acid which has a pharmaceutical use, a lipid particle can be administered to a biological body as a nucleic acid pharmaceutical.

本発明の製造法によって得られる脂質粒子を核酸医薬として使用する場合には、本発明の脂質粒子は単独でまたは薬学的に許容される投与媒体(例えば、生理食塩水またはリン酸緩衝液)と混合して、生体に投与することができる。
薬学的に許容される担体との混合物中における脂質粒子の濃度は、特に限定されず、一般的には0.05質量%から90質量%とすることができる。また、本発明の脂質粒子を含む核酸医薬は、薬学的に許容される他の添加物質、例えば、pH調整緩衝剤、浸透圧調整剤などを添加してもよい。
When the lipid particles obtained by the production method of the present invention are used as a nucleic acid drug, the lipid particles of the present invention are used alone or with a pharmaceutically acceptable administration medium (for example, physiological saline or phosphate buffer). It can be mixed and administered to a living body.
The concentration of the lipid particles in the mixture with the pharmaceutically acceptable carrier is not particularly limited, and can generally be 0.05% by mass to 90% by mass. Moreover, the nucleic acid medicine containing the lipid particles of the present invention may contain other pharmaceutically acceptable additive substances such as a pH adjusting buffer and an osmotic pressure adjusting agent.

本発明の脂質粒子を含む核酸医薬をin vivoで投与する際の投与経路は、特に限定されず、任意の方法で投与することができる。投与方法としては、経口投与、非経口投与(関節内投与、静脈内投与、腹腔内投与、筋肉投与など)が挙げられる。本発明の脂質粒子を含む核酸医薬は、疾患部位に直接注射することにより投与することもできる。   The administration route when administering the nucleic acid drug containing the lipid particles of the present invention in vivo is not particularly limited, and can be administered by any method. Examples of the administration method include oral administration and parenteral administration (intra-articular administration, intravenous administration, intraperitoneal administration, intramuscular administration, etc.). The nucleic acid medicament containing the lipid particles of the present invention can also be administered by direct injection at the disease site.

本発明の脂質粒子の剤形は、特に限定されないが、経口投与を行う場合には、本発明の脂質粒子は、適当な賦形剤と組み合わせて、錠剤、トローチ剤、カプセル剤、丸剤、懸濁剤、シロップ剤などの形態で使用することができる。また、非経口投与に適した製剤には、酸化防止剤、緩衝剤、静菌薬、および等張滅菌注射剤、懸濁化剤、溶解補助剤、粘稠化剤、安定化剤または保存料などの添加剤を適宜含めることができる。   The dosage form of the lipid particles of the present invention is not particularly limited, but when oral administration is performed, the lipid particles of the present invention are combined with an appropriate excipient in combination with tablets, troches, capsules, pills, It can be used in the form of a suspension, syrup and the like. In addition, preparations suitable for parenteral administration include antioxidants, buffers, bacteriostats, and isotonic sterile injections, suspending agents, solubilizing agents, thickening agents, stabilizers or preservatives. Additives such as can be included as appropriate.

(4)核酸送達キャリア
本発明の製造法によって得られる脂質粒子は、高い内包率で核酸を保持することが可能であるため、核酸送達キャリアとして非常に有用である。本発明の核酸送達キャリアは、例えば、得られた脂質粒子を核酸などと混合して、細胞にin vitroでトランスフェクションをすることにより、細胞に核酸などを導入することができる。また、本発明の核酸送達キャリアは、核酸医薬における核酸送達キャリアとしても有用である。
(4) Nucleic acid delivery carrier The lipid particles obtained by the production method of the present invention are very useful as a nucleic acid delivery carrier because they can hold nucleic acids at a high encapsulation rate. The nucleic acid delivery carrier of the present invention can introduce a nucleic acid or the like into a cell by mixing the obtained lipid particles with a nucleic acid or the like and transfecting the cell in vitro. The nucleic acid delivery carrier of the present invention is also useful as a nucleic acid delivery carrier in nucleic acid medicine.

以下の実施例により本発明を具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
また、本発明において、コレステロールは、ディッシュマン社製コレステロールHPを、DPPC(ジパルミトイルホスファチジルコリン)は、日油社製COATSOME MC6060を、DSPE−PEG(ポリエチレングリコール修飾ホスホエタノールアミン、PEG鎖分子量:2000)は、日油社製SUNBRIGHT DSPE−020CNを、レシチンは、日油社製COATSOME NC−50を、使用した。
The present invention is specifically described by the following examples, but the scope of the present invention is not limited to the following examples.
In the present invention, the cholesterol is Dishman's cholesterol HP, DPPC (dipalmitoylphosphatidylcholine) is NOF COATSOME MC6060, DSPE-PEG (polyethylene glycol-modified phosphoethanolamine, PEG chain molecular weight: 2000). NOF used SUNBRIGHT DSPE-020CN, and lecithin used NOF COATSOME NC-50.

[合成例:式(2)で表される化合物(以下、化合物A)の合成]
第一工程
テトラヒドロフラン230mLに、ジヘキサデシルアミン23gおよびトリエチルアミン5.52gを加え、攪拌しながらBoc-His(1-Boc)-OSU 24.6gを添加し、室温で1時間攪拌し、50℃で5時間攪拌した。その後、テトラヒドロフランを減圧留去し、反応物にクロロホルム450mLおよび水200mLを加えた。有機層を分取し、飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1〜3/1)で精製し、油状物の保護体24gを得た。

Figure 2018016642
[Synthesis Example: Synthesis of Compound Represented by Formula (2) (hereinafter, Compound A)]
First Step: Add 230 g of dihexadecylamine and 5.52 g of triethylamine to 230 mL of tetrahydrofuran, add 24.6 g of Boc-His (1-Boc) -OSU with stirring, stir at room temperature for 1 hour, and at 50 ° C. for 5 hours. Stir. Thereafter, tetrahydrofuran was distilled off under reduced pressure, and 450 mL of chloroform and 200 mL of water were added to the reaction product. The organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 5/1 to 3/1) to obtain 24 g of an oily product.
Figure 2018016642

第二工程
トリフルオロ酢酸35mLに、第一工程で得られた保護体21.7gを少しずつ加え、室温で24時間攪拌した。その後、飽和炭酸水素ナトリウム40gを含む水溶液600mLに徐々に添加し、1時間攪拌した。得られた反応液にクロロホルム500mLを加え、有機層を分取し、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。残留物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1)で精製し、無色固体の化合物Aを11.6g得た。化合物の同定は、NMRおよびMSにより行った。
Second Step 21.7 g of the protector obtained in the first step was added little by little to 35 mL of trifluoroacetic acid and stirred at room temperature for 24 hours. Thereafter, the mixture was gradually added to 600 mL of an aqueous solution containing 40 g of saturated sodium bicarbonate, and stirred for 1 hour. Chloroform 500 mL was added to the resulting reaction solution, the organic layer was separated, washed successively with a saturated aqueous sodium bicarbonate solution and a saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (chloroform / methanol = 10/1) to obtain 11.6 g of colorless solid compound A. The compound was identified by NMR and MS.

[実施例1]
(コアセルベーション法)
油相の調製
L−α―ジパルミトイルホスファチジルコリン、レシチン、コレステロール、N−(カルボニル−メトキシポリエチレングリコール2000)−1,2−ジステアロイル−sn−グリセロ−3−ホスホエタノールアミンナトリウム塩(以下、DSPE−PEG)を、61/15/20/4のモル比となるように、それぞれ80mg、20mg、14mg、20mg量り取り、エタノールを0.3mL、酢酸エチルを0.7mL加えて溶解させ、油相を得た。
核酸保持脂質粒子の調製
上述の工程で得た油相に、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、さらに滅菌水を1.0mL添加し、55℃で10分間加熱した。その後攪拌しながら室温で放冷した。つづいて100mMヒスチジン溶液を用いて室温で透析し、エタノール/酢酸エチル混合溶液を除去した。得られた溶液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[Example 1]
(Coacervation method)
Preparation of oil phase L-α-dipalmitoylphosphatidylcholine, lecithin, cholesterol, N- (carbonyl-methoxypolyethyleneglycol 2000) -1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (hereinafter DSPE- PEG) is weighed out to give a molar ratio of 61/15/20/4, 80 mg, 20 mg, 14 mg, and 20 mg, respectively, and 0.3 mL of ethanol and 0.7 mL of ethyl acetate are added and dissolved. Obtained.
Preparation of nucleic acid-retaining lipid particles To the oil phase obtained in the above step, 0.25 mL of a nucleic acid aqueous solution in which 5 mg of siRNA described below is dissolved in 0.263 mL of sterilized water and 1.0 mL of sterilized water are added and heated at 55 ° C. for 10 minutes. did. Thereafter, the mixture was allowed to cool at room temperature with stirring. Subsequently, the mixture was dialyzed with a 100 mM histidine solution at room temperature to remove the ethanol / ethyl acetate mixed solution. The obtained solution was sized by passing it through a 0.4 μm filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acids.

[実施例2]
(コアセルベーション法)
200mMヒスチジン溶液の調製
L−ヒスチジン15.5gを量り取り、500mLの滅菌水で溶解した。pH7となるように200mM HClを添加し、200mMヒスチジン溶液を得た。
油相の調製
L−α―ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE−PEGを、26/26/44/4のモル比となるように、それぞれ37mg、30mg、33mg、20mg量り取り、エタノールを0.3mL、酢酸エチルを0.7mL加えて溶解させ、油相を得た。
核酸保持脂質粒子の調製
上述の工程で得た油相に、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、200mMヒスチジン溶液0.625mL、さらに滅菌水を0.375mL添加し、55℃で10分間加熱した。つづいて100mMヒスチジン溶液を用いて室温で透析し、エタノール/酢酸エチル混合溶液を除去した。得られた溶液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[Example 2]
(Coacervation method)
Preparation of 200 mM histidine solution 15.5 g of L-histidine was weighed and dissolved in 500 mL of sterile water. 200 mM HCl was added so that the pH was 7 to obtain a 200 mM histidine solution.
Preparation of oil phase L-α-dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out to give a molar ratio of 26/26/44/4, respectively 37 mg, 30 mg, 33 mg and 20 mg, and ethanol was added. 0.3 mL and 0.7 mL of ethyl acetate were added and dissolved to obtain an oil phase.
Preparation of Nucleic Acid-Retaining Lipid Particles To the oil phase obtained in the above step, 0.25 mL of a nucleic acid aqueous solution in which 5 mg of siRNA described below was dissolved in 0.263 mL of sterile water, 0.625 mL of 200 mM histidine solution, and 0.375 mL of sterile water were added. And heated at 55 ° C. for 10 minutes. Subsequently, the mixture was dialyzed with a 100 mM histidine solution at room temperature to remove the ethanol / ethyl acetate mixed solution. The obtained solution was sized by passing through a 0.4 μm filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.

[実施例3]
(コアセルベーション法)
油相の調製において、L−α−ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE−PEGを、26/22/44/8のモル比となるように、それぞれ31mg、31mg、33mg、44mg量り取った以外は、実施例2と同様に調製し、核酸を保持する脂質粒子を得た。
[Example 3]
(Coacervation method)
In the preparation of the oil phase, L-α-dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out to a molar ratio of 26/22/44/8, respectively 31 mg, 31 mg, 33 mg, and 44 mg. Except for the above, it was prepared in the same manner as in Example 2 to obtain lipid particles retaining nucleic acid.

比較例1
(バンガム法)
油相の調製
L−α−ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE−PEGを、26/26/44/4のモル比となるように、それぞれ37mg、30mg、33mg、20mg量り取り、エタノール0.3mL、酢酸エチル0.7mLを加えて溶解させ、油相を得た。
脂質膜の形成
上述の工程で得た油相をナスフラスコに入れ、エバポレーターでエタノールと酢酸エチルを留去することで脂質膜を得た。
核酸保持脂質粒子の調製
上述のナスフラスコに、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、200mMヒスチジン溶液0.625mL、さらに滅菌水0.375mLを添加し、ボルテックスミキサーを用いて55℃で攪拌しながら水和した。得られた液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
Comparative Example 1
(Bangham method)
Preparation of oil phase L-α-dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out to give a molar ratio of 26/26/44/4, respectively 37 mg, 30 mg, 33 mg, 20 mg, ethanol 0 .3 mL and 0.7 mL of ethyl acetate were added and dissolved to obtain an oil phase.
Formation of Lipid Membrane The oil phase obtained in the above step was placed in a recovery flask, and ethanol and ethyl acetate were distilled off with an evaporator to obtain a lipid membrane.
Preparation of Nucleic Acid-Retaining Lipid Particles To the above-mentioned eggplant flask, add 0.25 mL of a nucleic acid solution prepared by dissolving 5 mg of siRNA described below with 0.263 mL of sterile water, 0.625 mL of 200 mM histidine solution, and 0.375 mL of sterile water, and vortex mixer. And hydrated with stirring at 55 ° C. The obtained liquid was sized by passing through a 0.4 μm filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.

[比較例2]
(コアセルベーション法)
油相の調製において、エタノール0.3mLおよび酢酸エチル0.7mLの混合液を、エタノール1mLに替えて溶解した以外は、実施例2と同様に調製し、核酸を保持する脂質粒子を得た。
[Comparative Example 2]
(Coacervation method)
In the preparation of the oil phase, lipid particles retaining nucleic acids were prepared in the same manner as in Example 2 except that a mixed solution of 0.3 mL of ethanol and 0.7 mL of ethyl acetate was dissolved instead of 1 mL of ethanol.

[比較例3]
(バンガム法)
油相の調製
L−α−ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE−PEGを、61/15/20/4のモル比となるように、それぞれ80mg、20mg、14mg、20mg量り取り、クロロホルム1.0mLを加えて溶解させ、油相を得た。
脂質膜の形成
上述の工程で得た油相をナスフラスコに入れ、エバポレーターでエタノールと酢酸エチルを留去することで脂質膜を得た。
核酸保持脂質粒子の調製
上述のナスフラスコに、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、さらに滅菌水1.0mLを添加し、ボルテックスミキサーを用いて55℃で攪拌しながら水和した。得られた液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[Comparative Example 3]
(Bangham method)
Preparation of oil phase L-α-dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out to give a molar ratio of 61/15/20/4, respectively 80 mg, 20 mg, 14 mg, 20 mg, chloroform 1 0.0 mL was added and dissolved to obtain an oil phase.
Formation of Lipid Membrane The oil phase obtained in the above step was placed in a recovery flask, and ethanol and ethyl acetate were distilled off with an evaporator to obtain a lipid membrane.
Preparation of Nucleic Acid-Retaining Lipid Particles To the above-mentioned eggplant flask, 0.25 mL of a nucleic acid aqueous solution prepared by dissolving 5 mg of siRNA described below in 0.263 mL of sterilized water and 1.0 mL of sterilized water are added and stirred at 55 ° C. using a vortex mixer. While hydrated. The obtained liquid was sized by passing through a 0.4 μm filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.

siRNAは以下の配列のものを使用した。
5’−GUUCAGACCACUUCAGCUU−3’(sense鎖)(配列番号1)
3’−CAAGUCUGGUGAAGUCGAA−5’(antisense鎖)(配列番号2)
The siRNA having the following sequence was used.
5′-GUUCAGACCACUUCAGCUU-3 ′ (sense chain) (SEQ ID NO: 1)
3′-CAAGUCUUGGUGAAGUCGAA-5 ′ (antisense chain) (SEQ ID NO: 2)

脂質粒子の粒径測定
脂質粒子の粒径は、脂質粒子分散液を、大塚電子(株)製のゼータ電位・粒径測定システムELS−Z2を用いて、原液のまま測定した。
Measurement of Lipid Particle Size The particle size of the lipid particles was measured as the undiluted solution using a lipid particle dispersion using a zeta potential / particle size measurement system ELS-Z2 manufactured by Otsuka Electronics Co., Ltd.

siRNAの内包率の評価
(総核酸濃度定量)
核酸を保持する脂質粒子0.02mLに、3M酢酸アンモニウム水溶液0.01mLとグリコーゲン0.003mLを添加し、つづいてエタノール0.5mLを添加することで、脂質を溶解し、核酸のみを沈殿させた。−20℃で2時間静置後、14000×g、4℃の条件で15分間遠心し、上清を除去した。15分以上風乾させた後、水を加えて再溶解させ、ナノドロップNF1000(Thermo Fisher Scientific社)を用いて濃度測定することで、総核酸濃度を定量した。
Evaluation of siRNA encapsulation rate (quantification of total nucleic acid concentration)
To 0.02 mL of lipid particles holding nucleic acid, 0.01 mL of 3M ammonium acetate solution and 0.003 mL of glycogen were added, and then 0.5 mL of ethanol was added to dissolve the lipid and precipitate only the nucleic acid. . After standing at −20 ° C. for 2 hours, the mixture was centrifuged at 14000 × g and 4 ° C. for 15 minutes to remove the supernatant. After air-drying for 15 minutes or more, water was added to redissolve, and the total nucleic acid concentration was quantified by measuring the concentration using Nanodrop NF1000 (Thermo Fisher Scientific).

(外水相における核酸濃度の定量)
Quant−iT RiboGreen RNA Assay Kit(Invitrogen)を用い、マニュアル&プロトコルに記載のlow−range assayに従って定量した。まず、上述のキットに含まれる20×TEバッファーを水で希釈し、1×TEバッファーとした。外水相の核酸のみを定量するため、核酸を保持する脂質粒子0.005mLに1×TEバッファーを0.095mL添加し、20倍希釈液を調整した。つづいて、20倍希釈液0.1mLに1×TEバッファーを1.99mL添加することで、核酸を保持する脂質粒子を破壊せず、TEバッファーで4000倍に希釈したサンプルを得た。
RiboGreen試薬原液0.009mLに、1×TEバッファー1.791mLを添加し、200倍希釈液を調整し、つづいて200倍希釈液0.22mLに1×TEバッファー1.98mLを添加することで、2000倍に希釈したRiboGreen試薬を得た。
4000倍に希釈したサンプル0.1mLを、96ウェルプレートに入れ、つづいて2000倍に希釈したRiboGreen試薬0.1mLをサンプルに加え、プレートリーダーInfinit EF200(TECAN)を用いて蛍光(励起波長 485nm、蛍光波長 535nm)を測定することで、外水相における核酸濃度を定量した。
(Quantification of nucleic acid concentration in the external water phase)
Quantification was performed using Quant-iT RiboGreen RNA Assay Kit (Invitrogen) according to the low-range assay described in the manual & protocol. First, 20 × TE buffer contained in the above-described kit was diluted with water to obtain 1 × TE buffer. In order to quantify only the nucleic acid in the outer aqueous phase, 0.095 mL of 1 × TE buffer was added to 0.005 mL of lipid particles holding nucleic acid to prepare a 20-fold diluted solution. Subsequently, 1.99 mL of 1 × TE buffer was added to 0.1 mL of a 20-fold diluted solution to obtain a sample diluted 4000 times with TE buffer without destroying the lipid particles holding the nucleic acid.
By adding 1.791 mL of 1 × TE buffer to 0.009 mL of RiboGreen reagent stock solution, adjusting the 200-fold dilution, and then adding 1.98 mL of 1 × TE buffer to 0.22 mL of the 200-fold dilution, RiboGreen reagent diluted 2000 times was obtained.
Place 0.1 mL of a sample diluted 4000 times in a 96-well plate, then add 0.1 mL of RiboGreen reagent diluted 2000 times to the sample, and use a plate reader Infinit EF200 (TECAN) to detect fluorescence (excitation wavelength: 485 nm, The nucleic acid concentration in the outer aqueous phase was quantified by measuring the fluorescence wavelength (535 nm).

(内包率の算出)
上述の工程で得られた総核酸濃度および外水相での濃度の定量結果を用いて、下記式に従って、実施例1〜3、比較例1〜3の核酸を保持する脂質粒子の内包率を算出した。
内包率(%)=(総核酸濃度−外水相における核酸濃度)÷総核酸濃度×100
(Calculation of inclusion rate)
Using the quantification results of the total nucleic acid concentration and the concentration in the outer aqueous phase obtained in the above steps, the inclusion rate of the lipid particles holding the nucleic acids of Examples 1 to 3 and Comparative Examples 1 to 3 was determined according to the following formula. Calculated.
Inclusion rate (%) = (total nucleic acid concentration−nucleic acid concentration in the outer aqueous phase) ÷ total nucleic acid concentration × 100

結果を表1に表す。   The results are shown in Table 1.

Figure 2018016642
Figure 2018016642

表1に示すように、コアセルベーション法により調整した脂質粒子は、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を使用しなくても、従来の調整法であるバンガム法に比べて、予想外に内包率が向上することが判明した。また、実施例2および3のように、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を用いて、コアセルベーション法により得られた核酸を保持する脂質粒子は、非常に高い内包率を有することが分かった。   As shown in Table 1, the lipid particles prepared by the coacervation method are compared with the conventional preparation method Bangham method without using a compound having at least one amino group and at least one imidazolyl group. It was found that the inclusion rate was unexpectedly improved. In addition, as in Examples 2 and 3, lipid particles retaining nucleic acids obtained by a coacervation method using a compound having at least one amino group and at least one imidazolyl group have a very high encapsulation rate. It was found to have

Claims (4)

下記(1)〜(4)の工程:
(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;
(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;
(3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程;および
(4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程、
を含む、核酸を内包した脂質粒子の製造法であって、
アルコールがエタノールであり、エステルが酢酸エチルであり、
工程(1)において、油相が、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物をさらに含み、
少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物が一般式(1):
Figure 2018016642
(式中、RおよびRは、同一または異なって、炭素数10〜22のアルキル基、炭素数10〜22のアルキルオキシアルキレン基、炭素数10〜22のアルカノイルオキシアルキレン基および炭素数10〜22のアルキルオキシカルボニルアルキレン基から選択される置換基である)で表される化合物である、
脂質粒子の製造法。
The following steps (1) to (4):
(1) heating an oil phase containing phospholipid, alcohol and ester;
(2) A step of mixing the aqueous phase containing nucleic acid and the oil phase prepared in step (1);
(3) a step of cooling the liquid mixture containing the oil phase and the water phase obtained in step (2) to crystallize lipid particles; and (4) a mixture containing the oil phase and the water phase obtained in step (3). Removing alcohol and esters from the liquid,
A method for producing a nucleic acid-containing lipid particle comprising:
The alcohol is ethanol, the ester is ethyl acetate,
In step (1), the oil phase further comprises a compound having at least one amino group and at least one imidazolyl group,
A compound having at least one amino group and at least one imidazolyl group has the general formula (1):
Figure 2018016642
(In the formula, R 1 and R 2 are the same or different and each represents an alkyl group having 10 to 22 carbon atoms, an alkyloxyalkylene group having 10 to 22 carbon atoms, an alkanoyloxyalkylene group having 10 to 22 carbon atoms, and 10 carbon atoms. Is a substituent selected from an alkyloxycarbonylalkylene group of ˜22),
A method for producing lipid particles.
工程(1)において、リン脂質、アルコールおよびエステルを含む油相を40〜70℃で加熱する、請求項1に記載の脂質粒子の製造法。 The manufacturing method of the lipid particle of Claim 1 which heats the oil phase containing a phospholipid, alcohol, and ester at 40-70 degreeC in a process (1). 工程(3)において、油相および水相を含む混合液を10〜30℃で冷却する、請求項1または2に記載の脂質粒子の製造法。 The method for producing lipid particles according to claim 1 or 2, wherein in step (3), the mixed liquid containing the oil phase and the aqueous phase is cooled at 10 to 30 ° C. 工程(2)において、水相と油相が質量比で1.6:1.0〜1.1:1.0となるように混合する、請求項1〜3のいずれか1項に記載の製造法。 In a process (2), it mixes so that a water phase and an oil phase may be 1.6: 1.0-1.1: 1.0 by mass ratio. Manufacturing method.
JP2017203224A 2017-10-20 2017-10-20 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles Active JP6388700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017203224A JP6388700B2 (en) 2017-10-20 2017-10-20 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203224A JP6388700B2 (en) 2017-10-20 2017-10-20 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014146809A Division JP2016023148A (en) 2014-07-17 2014-07-17 Manufacturing method of lipid particles, and nucleic acid delivery carrier having lipid particles

Publications (2)

Publication Number Publication Date
JP2018016642A true JP2018016642A (en) 2018-02-01
JP6388700B2 JP6388700B2 (en) 2018-09-12

Family

ID=61075119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203224A Active JP6388700B2 (en) 2017-10-20 2017-10-20 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles

Country Status (1)

Country Link
JP (1) JP6388700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123847A1 (en) * 2020-12-11 2022-06-16 Kabushiki Kaisha Toshiba Method for manufacturing lipid particle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049723A1 (en) * 1996-06-27 1997-12-31 Gilead Sciences, Inc. Cationic lipids for delivery of nucleic acid to cells
JPH10504021A (en) * 1994-05-16 1998-04-14 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン Hepatocyte-selective oil-in-water emulsion
JP2002501511A (en) * 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション High rate encapsulation of charged therapeutic agents in lipid vesicles
JP2013517265A (en) * 2010-01-19 2013-05-16 ポリピッド リミテッド Sustained release nucleic acid matrix composition
JP2013537518A (en) * 2010-07-06 2013-10-03 ノバルティス アーゲー Liposomes containing lipids with pKa values advantageous for RNA delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504021A (en) * 1994-05-16 1998-04-14 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン Hepatocyte-selective oil-in-water emulsion
WO1997049723A1 (en) * 1996-06-27 1997-12-31 Gilead Sciences, Inc. Cationic lipids for delivery of nucleic acid to cells
JP2002501511A (en) * 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション High rate encapsulation of charged therapeutic agents in lipid vesicles
JP2013517265A (en) * 2010-01-19 2013-05-16 ポリピッド リミテッド Sustained release nucleic acid matrix composition
JP2013537518A (en) * 2010-07-06 2013-10-03 ノバルティス アーゲー Liposomes containing lipids with pKa values advantageous for RNA delivery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123847A1 (en) * 2020-12-11 2022-06-16 Kabushiki Kaisha Toshiba Method for manufacturing lipid particle

Also Published As

Publication number Publication date
JP6388700B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
CN110325511B (en) Ionizable cationic lipids for RNA delivery
TWI594767B (en) Lipid nano particles comprising cationic lipid for drug delivery system
TW201330874A (en) Lipid nano particles comprising combination of cationic lipid
EP3733647B1 (en) Cationic lipid
JP6887020B2 (en) Compositions and kits containing biodegradable compounds, lipid particles, lipid particles
WO2018225871A1 (en) Compound serving as cationic lipid
CA3203294A1 (en) Nanomaterials comprising carbonates
AU2018359904A1 (en) Fusogenic compounds for delivery of biologically active molecules
US9974862B2 (en) Lipid particles and nucleic acid delivery carrier
JP6388700B2 (en) Method for producing lipid particles and nucleic acid delivery carrier having lipid particles
JP5914418B2 (en) Lipid particle, nucleic acid delivery carrier, composition for producing nucleic acid delivery carrier, lipid particle production method and gene introduction method
JP6774965B2 (en) Compounds as cationic lipids
WO2016010111A1 (en) Method for producing lipid particle and nucleic acid delivery carrier comprising lipid particle
TW201625310A (en) Ckap5-gene-silencing rnai pharmaceutical composition
WO2022159463A1 (en) Nanomaterials
JP7043411B2 (en) Compounds as cationic lipids
JP6495995B2 (en) Lipid particles and nucleic acid delivery carriers
WO2018225873A1 (en) Nucleic-acid-containing nanoparticles
WO2022159475A1 (en) Nanomaterials comprising an ionizable lipid
CN117500819A (en) Lipid and composition

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180814

R150 Certificate of patent or registration of utility model

Ref document number: 6388700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250