WO2018225741A1 - Optical member, image display device, and method for manufacturing optical member - Google Patents

Optical member, image display device, and method for manufacturing optical member Download PDF

Info

Publication number
WO2018225741A1
WO2018225741A1 PCT/JP2018/021577 JP2018021577W WO2018225741A1 WO 2018225741 A1 WO2018225741 A1 WO 2018225741A1 JP 2018021577 W JP2018021577 W JP 2018021577W WO 2018225741 A1 WO2018225741 A1 WO 2018225741A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
refractive index
low refractive
optical member
index layer
Prior art date
Application number
PCT/JP2018/021577
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 服部
諒太 森島
恒三 中村
池田 哲朗
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2019523917A priority Critical patent/JPWO2018225741A1/en
Publication of WO2018225741A1 publication Critical patent/WO2018225741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an optical member, an image display device, and a method for manufacturing the optical member.
  • a liquid crystal display device which is a typical image display device, has polarizing plates disposed on both sides of a liquid crystal cell due to its image forming method.
  • the polarizing plate typically includes a polarizer that is uniaxially stretched by adsorbing a dichroic substance on a polyvinyl alcohol (PVA) film, and protective films that are disposed on both sides of the polarizer.
  • PVA polyvinyl alcohol
  • it has been proposed to use an optical member in which a reflective polarizer and a polarizer are integrated in an image display device for example, Patent Document 1).
  • the present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an optical member that can contribute to improvement of contrast of the image display device when used in the image display device, and the optical member. Another object of the present invention is to provide a high-contrast image display device and a method for producing the optical member.
  • the optical member of the present invention has a polarizer, a reflective polarizer, and a low refractive index layer having a refractive index of 1.25 or less, and the low refractive index layer is laminated on at least one side of the polarizer.
  • the reflective polarizer, the polarizer, and the low refractive index layer are integrated in this order.
  • it has further an adhesion layer arranged on the opposite side to the above-mentioned polarizer of the above-mentioned low refractive index layer.
  • the reflective polarizer, the low refractive index layer, and the polarizer are integrated in this order.
  • an image display device is provided.
  • This image display apparatus has the optical member.
  • a method for manufacturing an optical member is provided.
  • the method for producing the optical member is a method for producing the optical member, in which the low refractive index coating liquid is applied to the surface of the polarizer or the reflective polarizer and then dried, whereby the low refractive index is obtained. Forming the layer, or applying the low refractive index coating liquid on the surface of the substrate and drying the low refractive index layer formed on the substrate, the polarizer or the reflective type Transferring to the surface of the polarizer.
  • an optical member that can contribute to an improvement in contrast of an image display device when used in an image display device, a high-contrast image display device including the optical member, and a method for manufacturing the optical member. Can be provided.
  • FIG. 1 is a cross-sectional view of an optical member according to one embodiment of the present invention.
  • the optical member 100 includes a polarizer 10, a reflective polarizer 20, and a low refractive index layer 30 laminated on at least one side of the polarizer.
  • the refractive index of the low refractive index layer is 1.25 or less.
  • the reflective polarizer 20, the polarizer 10, and the low refractive index layer 30 are integrated in this order.
  • a protective film (not shown) may be provided between the polarizer 10 and the low refractive index layer 30.
  • the optical member 100 may typically further include an adhesive layer (not shown) disposed on the opposite side of the low refractive index layer 30 from the polarizer 10.
  • the reflective polarizer 20 can function as a protective layer for the polarizer 10. Therefore, the protective layer of the polarizer 10 can be omitted, and the optical member 100 can be made thinner.
  • the optical member 100 can be typically used in an image display device, and can contribute to an improvement in contrast of the image display device.
  • FIG. 2 is a cross-sectional view of an optical member according to another embodiment of the present invention.
  • the reflective polarizer 20, the low refractive index layer 30, and the polarizer 10 are integrated in this order.
  • the optical member 101 can typically further include a protective film (not shown) disposed on the opposite side of the polarizer 10 from the low refractive index layer 30.
  • a reflective polarizer and a polarizer are integrated, light incident obliquely from the reflective polarizer side (when the angle at which the light enters the surface perpendicularly is 0 °, Even light polarized in a direction parallel to the reflection axis of the reflective polarizer may pass through the reflective polarizer without being reflected by the reflective polarizer.
  • the light transmitted through the reflective polarizer is absorbed by the polarizer, and the light utilization efficiency when the optical member is used in an image display device can be reduced. As a result, the contrast of the image display device can be reduced.
  • the optical members 100 and 101 of the present embodiment are light that is incident obliquely from the reflective polarizer side, and polarized light that vibrates in a direction parallel to the reflection axis of the reflective polarizer is reflected. It is totally reflected at the interface between the type polarizer and the low refractive index layer and can be reused. Therefore, the light utilization efficiency when the optical member is used in the image display device can be improved. As a result, the contrast of the image display device can be improved.
  • the porosity of the low refractive index layer 30 is 35% or more, and the thickness of the low refractive index layer 30 is thinner than the thickness of the polarizer 10.
  • the angle formed by the reflection axis of the reflective polarizer 20 and the absorption axis of the polarizer 10 is preferably ⁇ 5 ° to 5 °.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution.
  • the stretching ratio of the uniaxial stretching is preferably 3 to 7 times.
  • the stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye
  • the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
  • a polarizer obtained by using a laminate a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate.
  • a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it.
  • a PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution.
  • the obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate.
  • Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is, for example, 1 ⁇ m to 80 ⁇ m. In one embodiment, the thickness of the polarizer is preferably 1 ⁇ m to 15 ⁇ m, more preferably 3 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
  • the polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm.
  • the single transmittance of the polarizer is 35.0% to 46.0%, preferably 37.0% to 46.0%.
  • the polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
  • the single transmittance and the degree of polarization can be measured using a spectrophotometer.
  • the parallel transmittance (H 0 ) is a value of the transmittance of a parallel laminated polarizer prepared by superposing two identical polarizers so that their absorption axes are parallel to each other.
  • the orthogonal transmittance (H 90 ) is a value of the transmittance of an orthogonal laminated polarizer produced by superposing two identical polarizers so that their absorption axes are orthogonal to each other. Note that these transmittances are Y values obtained by correcting the visibility with the 2-degree field of view (C light source) of JlS Z 8701-1982.
  • the reflective polarizer has a function of transmitting polarized light in a specific polarization state (polarization direction) and reflecting light in other polarization states.
  • the reflective polarizer may be a linearly polarized light separation type or a circularly polarized light separation type.
  • a linearly polarized light separation type reflective polarizer will be described.
  • Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film in which cholesteric liquid crystal is fixed and a ⁇ / 4 plate.
  • FIG. 3 is a schematic perspective view of an example of a reflective polarizer.
  • the reflective polarizer is a multilayer laminate in which layers A having birefringence and layers B having substantially no birefringence are alternately laminated.
  • the total number of layers in such a multilayer stack can be 50-1000.
  • the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same. is there.
  • the difference in refractive index between the A layer and the B layer is large in the x-axis direction and is substantially zero in the y-axis direction.
  • the x-axis direction becomes the reflection axis
  • the y-axis direction becomes the transmission axis.
  • the refractive index difference in the x-axis direction between the A layer and the B layer is preferably 0.2 to 0.3.
  • the x-axis direction corresponds to the extending direction of the reflective polarizer in the manufacturing method described later.
  • the A layer is preferably made of a material that develops birefringence by stretching.
  • Representative examples of such materials include naphthalene dicarboxylic acid polyesters (for example, polyethylene naphthalate), polycarbonates, and acrylic resins (for example, polymethyl methacrylate). Polyethylene naphthalate is preferred.
  • the B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched.
  • a typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
  • the reflective polarizer transmits light having a first polarization direction (for example, p-wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s-wave). The reflected light is partially transmitted as light having the first polarization direction and partially reflected as light having the second polarization direction at the interface between the A layer and the B layer.
  • the light utilization efficiency can be increased by repeating such reflection and transmission many times inside the reflective polarizer.
  • the reflective polarizer may include a reflective layer R as the outermost layer opposite to the polarizer, as shown in FIG.
  • a reflective layer R as the outermost layer opposite to the polarizer, as shown in FIG.
  • the overall thickness of the reflective polarizer can be appropriately set according to the purpose, the total number of layers included in the reflective polarizer, and the like.
  • the total thickness of the reflective polarizer is preferably 10 ⁇ m to 150 ⁇ m.
  • the reflective polarizer is arranged so as to transmit light having a polarization direction parallel to the transmission axis of the polarizer.
  • the reflective polarizer preferably has a reflection axis in a direction substantially parallel to the absorption axis of the polarizer (the angle between the reflection axis and the absorption axis is, for example, ⁇ 5 ° to 5 °). Arranged.
  • the reflective polarizer can typically be produced by a combination of coextrusion and transverse stretching. Coextrusion can be performed in any suitable manner. For example, a feed block method or a multi-manifold method may be used. For example, the material constituting the A layer and the material constituting the B layer are extruded in a feed block, and then multilayered using a multiplier. Such a multi-layer apparatus is known to those skilled in the art. Next, the obtained long multilayer laminate is typically stretched in a direction (TD) orthogonal to the transport direction. The material constituting the A layer (for example, polyethylene naphthalate) increases the refractive index only in the stretching direction due to the transverse stretching, and as a result, develops birefringence.
  • TD direction orthogonal to the transport direction.
  • the material constituting the A layer for example, polyethylene naphthalate
  • the refractive index of the material constituting the B layer does not increase in any direction even by the transverse stretching.
  • a reflective polarizer having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction in FIG. 3 and MD is the y-axis). Corresponding to the direction).
  • stretching operation can be performed using arbitrary appropriate apparatuses.
  • the reflective polarizer for example, the one described in JP-T-9-507308 can be used.
  • a commercially available product may be used as it is, or a commercially available product may be used after secondary processing (for example, stretching).
  • 3M company brand name DBEF and 3M company brand name APF are mentioned, for example.
  • the refractive index of the low refractive index layer is 1.25 or less as described above.
  • the refractive index is preferably 1.25 to 1.10, more preferably 1.20 to 1.05.
  • the thickness of the low refractive index layer is preferably smaller than the thickness of the polarizer.
  • the thickness of the low refractive index layer is preferably 10 nm to 10000 nm, more preferably 200 nm to 2000 nm.
  • the low refractive index layer typically has voids inside.
  • the porosity of the low refractive index layer can take any appropriate value.
  • the porosity is, for example, 5% to 90%, preferably 35% to 80%. When the porosity is within the above range, the refractive index of the low refractive index layer can be sufficiently lowered, and high mechanical strength can be obtained.
  • Examples of the low refractive index layer having voids therein include a porous layer and / or a low refractive index layer having at least a part of an air layer.
  • the porous layer typically includes aerogels and / or particles (eg, hollow microparticles and / or porous particles).
  • the low refractive index layer is preferably a nanoporous layer (specifically, a porous layer having a diameter of 90% or more of fine pores in the range of 10 ⁇ 2 to 10 3 nm).
  • the low refractive index layer of the present invention may be formed of, for example, a silicon compound. Further, the low refractive index layer of the present invention may be, for example, a low refractive index layer formed by chemical bonding between microporous particles. For example, the fine pore particles may be a crushed gel.
  • the gel pulverized product may have, for example, a structure having at least one of a particle shape, a fiber shape, and a flat plate shape.
  • the particulate and flat structural units may be made of an inorganic substance, for example.
  • the constituent element of the particulate structural unit may include at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example.
  • the structure (structural unit) that forms the particles may be a real particle or a hollow particle, and specifically includes silicone particles, silicone particles having fine pores, silica hollow nanoparticles, silica hollow nanoballoons, and the like.
  • the fibrous structural unit is, for example, a nanofiber having a diameter of nanometer, and specifically includes cellulose nanofiber, alumina nanofiber, and the like.
  • the plate-like structural unit include nanoclay, and specifically, nano-sized bentonite (for example, Kunipia F [trade name]).
  • the fibrous structural unit is not particularly limited, but for example, from the group consisting of carbon nanofiber, cellulose nanofiber, alumina nanofiber, chitin nanofiber, chitosan nanofiber, polymer nanofiber, glass nanofiber, and silica nanofiber. It may be at least one fibrous material selected.
  • the gel pulverized product-containing liquid containing the gel pulverized product is, for example, a sol solution containing particles (pulverized product particles) obtained by pulverizing the gel. is there.
  • the gel is, for example, a silicon compound gel containing at least a trifunctional or lower saturated bond functional group.
  • the present invention as a functional porous body is formed by forming the coating film and chemically bonding the pulverized products in the coating film.
  • the low refractive index layer can be formed.
  • the gel pulverized product-containing liquid of the present invention for example, the low refractive index layer of the present invention can be applied to various objects. Therefore, the gel pulverized product-containing liquid and the production method thereof of the present invention are useful, for example, in the production of the low refractive index layer of the present invention.
  • the gel pulverized product-containing liquid of the present invention is, for example, coated (coated) on the substrate and further dried. It may be a gel pulverized product-containing liquid. Moreover, the gel pulverized product-containing liquid of the present invention may be, for example, a gel pulverized product-containing liquid for obtaining a high porosity porous material (large thickness or massive bulk material). The bulk body can be obtained, for example, by performing bulk film formation using the gel pulverized product-containing liquid.
  • the low refractive index layer of the present invention may be a void layer.
  • the low refractive index layer of the present invention which is a void layer may be referred to as “the void layer of the present invention”.
  • a step of producing the gel pulverized product-containing liquid of the present invention, a step of coating the gel pulverized product-containing liquid on a substrate to form a coating film, and a step of drying the coating film The void layer of the present invention having a high porosity can be produced by the production method including the above.
  • the step of producing the gel crushed product-containing liquid of the present invention, the step of feeding out the roll-shaped resin film, and the coating of the gel crushed product-containing solution on the fed out resin film A process comprising a step of forming a film, a step of drying the coating film, and a step of winding the laminated film in which the low refractive index layer of the present invention is formed on the resin film after the drying step
  • a laminated film roll can be produced by the method.
  • such a production method may be referred to as a “production method of the laminated film roll of the present invention”.
  • the laminated film roll manufactured by the manufacturing method of the laminated film roll of this invention may be called "the laminated film roll of this invention.”
  • the range of the volume average particle diameter of the pulverized product (porous gel particles) is, for example, 1 nm to 1000 nm, 10 nm to 700 nm, and 100 nm to 500 nm.
  • the said volume average particle diameter shows the particle size variation of the said ground material in the gel ground material containing liquid of this invention.
  • the volume average particle diameter is, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Can be measured.
  • the gel for example, porous gel
  • examples thereof include a silicon compound.
  • the silicon compound is not particularly limited, and examples thereof include a silicon compound containing at least a trifunctional or lower saturated bond functional group.
  • the above-mentioned “including a saturated bond functional group having 3 or less functional groups” means that the silicon compound has 3 or less functional groups, and these functional groups are saturatedly bonded to silicon (Si). Means.
  • the silicon compound is, for example, a compound represented by the following formula (1) or the following formula (2).
  • X is 2, 3 or 4
  • R 1 is a linear or branched alkyl group.
  • the carbon number of R 1 is, for example, 1-6, 1-4, 1-2.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the branched alkyl group include an isopropyl group and an isobutyl group.
  • X is, for example, 3 or 4.
  • the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3.
  • R 1 is the same as in the above formula (1), and is, for example, a methyl group.
  • the silicon compound is tris (hydroxy) methylsilane.
  • X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
  • silicon compound represented by the formula (1) examples include a compound in which X is 4.
  • the silicon compound is, for example, a tetrafunctional silane having four functional groups.
  • R 1 and R 2 are each a linear or branched alkyl group, R 1 and R 2 may be the same or different, R 1 s may be the same as or different from each other when X is 2. R 2 may be the same as or different from each other.
  • X and R 1 are, for example, the same as X and R 1 in the formula (1).
  • the said R ⁇ 2 > can use the illustration of R ⁇ 1 > in the said Formula (1), for example.
  • the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3.
  • R 1 and R 2 are the same as those in the formula (2), respectively.
  • the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
  • examples of the solvent include a dispersion medium.
  • the dispersion medium (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a gelling solvent and a grinding solvent described later, and the grinding solvent is preferable.
  • the coating solvent includes an organic solvent having a boiling point of 70 ° C. or higher and lower than 180 ° C. and a saturated vapor pressure at 20 ° C. of 15 kPa or lower.
  • organic solvent examples include carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, 1-pentyl alcohol (pentanol), Ethyl alcohol (ethanol), ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, ethylene glycol monomethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, Normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone, 1,4-dioxa , N, N-dimethylformamide, s
  • the gel pulverized material-containing liquid of the present invention includes, for example, a sol particle liquid that is the sol-like pulverized material dispersed in the dispersion medium.
  • the gel pulverized product-containing liquid of the present invention for example, continuously forms a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step described later after coating and drying on a substrate.
  • “sol” means that a three-dimensional structure of a gel is pulverized so that a pulverized product (that is, a nano-three-dimensional porous sol particle retaining a part of a void structure) is dissolved in a solvent. The state which disperse
  • the gel pulverized product-containing liquid of the present invention may contain, for example, a catalyst for chemically bonding the gel pulverized products.
  • the content of the catalyst is not particularly limited, and is 0.01% to 20% by weight, 0.05% to 10% by weight, or 0.1% by weight with respect to the weight of the pulverized product of the gel. ⁇ 5% by weight.
  • the gel pulverized product-containing liquid of the present invention may further contain, for example, a crosslinking aid for indirectly bonding the gel pulverized products.
  • a crosslinking aid for indirectly bonding the gel pulverized products.
  • the content of the cross-linking auxiliary agent is not particularly limited. For example, the content is 0.01% to 20% by weight, 0.05% to 15% by weight, or 0.1% with respect to the weight of the gel pulverized product. % By weight to 10% by weight.
  • examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
  • the silicon compound of the monomer is not particularly limited, and can be appropriately selected according to the use of the functional porous body to be produced, for example.
  • the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index property, and also has strength (for example, scratch resistance).
  • the tetrafunctional silane is preferable from the viewpoint of excellent scratch resistance.
  • the said silicon compound used as the raw material of the said silicon compound gel may use only 1 type, for example, and may use 2 or more types together.
  • the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included.
  • the ratio is not particularly limited and can be set as appropriate.
  • the gelation of the porous body such as the silicon compound can be performed, for example, by a dehydration condensation reaction between the porous bodies.
  • the dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst.
  • the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like.
  • a dehydration condensation catalyst such as a base catalyst.
  • the dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred.
  • the amount of the catalyst added to the porous body is not particularly limited, and the catalyst is, for example, 0.01 mol to 10 mol, 0.05 mol to 7 mol per mol of the porous body. Mol, 0.1 mol to 5 mol.
  • the gelation of the porous body such as the silicon compound is preferably performed in a solvent, for example.
  • the ratio of the porous body in the solvent is not particularly limited.
  • the solvent include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), ⁇ -butyllactone (GBL), acetonitrile (MeCN), ethylene Examples thereof include glycol ethyl ether (EGEE).
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • DMAc N, N-dimethylacetamide
  • DMF dimethylformamide
  • GBL ⁇ -butyllactone
  • MeCN acetonitrile
  • ethylene examples thereof include glycol ethyl ether (EGEE).
  • one type of solvent may be used, or two or more types may be used in combination.
  • the solvent used for the gelation is
  • the gelation conditions are not particularly limited.
  • the treatment temperature for the solvent containing the porous body is, for example, 20 ° C. to 30 ° C., 22 ° C. to 28 ° C., 24 ° C. to 26 ° C., and the treatment time is, for example, 1 minute to 60 minutes, 5 minutes to 40 minutes. Minutes, 10 minutes to 30 minutes.
  • the process conditions in particular are not restrict
  • the porous gel obtained by the gelation may be used, for example, as it is in the solvent replacement step and the first pulverization step, but may be subjected to an aging treatment in the aging step prior to the first pulverization step. Good.
  • the gelled porous body (porous gel) is aged in a solvent.
  • conditions for the aging treatment are not particularly limited, and for example, the porous gel may be incubated in a solvent at a predetermined temperature. According to the aging treatment, for example, the porous particles having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. is there.
  • the contact state of the neck portion where the particles are in contact can be increased from, for example, point contact to surface contact, and the contact area can be increased.
  • the porous gel subjected to the aging treatment as described above increases the strength of the gel itself, and as a result, the strength of the three-dimensional basic structure of the pulverized product after pulverization can be further improved.
  • the pore size of the void structure in which the three-dimensional basic structure is deposited It can suppress shrinking
  • the lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less.
  • the predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less.
  • the range is, for example, 5 hours to 50 hours, 10 hours to 40 hours, 15 hours to 30 hours.
  • the optimum conditions for aging are preferably set, for example, as described above, so that an increase in the size of the primary particles and an increase in the contact area of the neck portion can be obtained in the porous gel.
  • the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used.
  • the aging treatment for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there.
  • the aging treatment for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
  • a catalyst containing the fine pore particles and the catalyst is produced by adding a catalyst that chemically bonds the fine pore particles to each other. can do.
  • the amount of the catalyst to be added is not particularly limited, but is, for example, 0.01 wt% to 20 wt%, 0.05 wt% to 10 wt%, or 0. 0% by weight with respect to the weight of the pulverized product of the gel silicon compound. 1% to 5% by weight.
  • the catalyst may be, for example, a catalyst that promotes cross-linking between the microporous particles.
  • the catalyst include a photoactive catalyst and a thermally active catalyst.
  • the photoactive catalyst for example, in the void layer forming step, the microporous particles can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, in the gap layer forming step, since the shrinkage of the entire gap layer hardly occurs, a higher porosity can be maintained.
  • a substance that generates a catalyst may be used.
  • a substance that generates a catalyst by light may be used, or in addition to or instead of the thermally active catalyst
  • a substance that generates water may be used.
  • the photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a substance that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like.
  • a photobase generator is preferred.
  • Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicy
  • the trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd.
  • the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company).
  • the catalyst for chemically bonding the fine pore particles is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal active catalyst or a thermal catalyst generator, for example.
  • the catalyst that chemically bonds the fine pore particles examples include a base catalyst such as potassium hydroxide, sodium hydroxide, and ammonium hydroxide, and an acid catalyst such as hydrochloric acid, acetic acid, and oxalic acid. Of these, base catalysts are preferred.
  • the catalyst or catalyst generator that chemically bonds the fine pore particles is added to, for example, a sol particle liquid (eg, suspension) containing the pulverized product (fine pore particles) immediately before coating. Alternatively, it can be used as a mixed solution in which the catalyst or the catalyst generator is mixed with a solvent.
  • the mixed liquid is, for example, a coating liquid dissolved by directly adding to the sol particle liquid, a solution in which the catalyst or catalyst generator is dissolved in a solvent, or a dispersion in which the catalyst or catalyst generator is dispersed in a solvent.
  • the solvent is not particularly limited, and examples thereof include water and a buffer solution.
  • a crosslinking aid for indirectly bonding the crushed gels may be added to the gel-containing liquid of the present invention.
  • This crosslinking aid enters between the particles (the pulverized product), and the particles and the crosslinking aid interact or bond with each other, so that it is possible to bind particles that are slightly apart in distance. The strength can be increased efficiently.
  • a polycrosslinked silane monomer is preferable.
  • the multi-crosslinked silane monomer has, for example, an alkoxysilyl group having 2 or more and 3 or less, the chain length between alkoxysilyl groups may be 1 to 10 carbon atoms, and an element other than carbon May also be included.
  • crosslinking aid examples include bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, bis (triethoxysilyl) propane, bis (Trimethoxysilyl) propane, bis (triethoxysilyl) butane, bis (trimethoxysilyl) butane, bis (triethoxysilyl) pentane, bis (trimethoxysilyl) pentane, bis (triethoxysilyl) hexane, bis (tri Methoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) hexane, bis (trimethoxysilyl) -N-butyl-N-propyl-ethane-1
  • the addition amount of the crosslinking auxiliary agent is not particularly limited. For example, it is 0.01% to 20% by weight, 0.05% to 15% by weight, or 0% with respect to the weight of the pulverized product of the silicon compound. .1% to 10% by weight.
  • the chemical reaction in the presence of the catalyst is, for example, light irradiation or heating on the coating film containing the catalyst or the catalyst generator previously added to the gel pulverized product-containing liquid, or on the coating film. It can be carried out by light irradiation or heating after spraying the catalyst, or by light irradiation or heating while spraying the catalyst or catalyst generator.
  • the catalyst is a photoactive catalyst
  • the porous silicon body can be formed by chemically bonding the microporous particles by light irradiation.
  • the said microporous particle can be chemically combined by heating and the said silicone porous body can be formed.
  • Light irradiation amount in the irradiation (energy) is not particularly limited, @ in 360nm terms, for example, 200mJ / cm 2 ⁇ 800mJ / cm 2, 250mJ / cm 2 ⁇ 600mJ / cm 2 or 300 mJ / cm 2 ⁇ , 400 mJ / cm 2 . From the viewpoint of preventing the irradiation amount from being insufficient and the decomposition due to light absorption of the catalyst generator from proceeding and preventing the effect from becoming insufficient, an integrated light amount of 200 mJ / cm 2 or more is good.
  • the wavelength of light in the light irradiation is not particularly limited, but is, for example, 200 nm to 500 nm, 300 nm to 450 nm.
  • the light irradiation time in the light irradiation is not particularly limited, and is, for example, 0.1 minutes to 30 minutes, 0.2 minutes to 10 minutes, or 0.3 minutes to 3 minutes.
  • the conditions for the heat treatment are not particularly limited, and the heating temperature is, for example, 50 ° C. to 250 ° C., 60 ° C. to 150 ° C., 70 ° C.
  • the heating time is, for example, 0.1 minutes. 30 minutes, 0.2 minutes to 10 minutes, and 0.3 minutes to 3 minutes.
  • a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the resulting cracking phenomenon of the low refractive index layer.
  • examples thereof include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like.
  • silicon compound examples include SiO 2 (anhydrous silicic acid); SiO 2 , Na 2 O—B 2 O 3 (borosilicate), Al 2 O 3 (alumina), B 2 O 3. , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 , TiO 2 —Al 2 O 3 , TiO 2 —ZrO 2 , In 2 O 3 -SnO 2, and Sb 2 O 3 at least one compound with a compound containing a selected from the group consisting of -SnO 2 (the "-" indicates that the compound oxide.); a was in Also good.
  • the low refractive index layer may be formed of hydrolyzable silanes.
  • hydrolyzable silanes include hydrolysis containing an alkyl group which may have a substituent (for example, fluorine).
  • Silanes are preferably alkoxysilanes and silsesquioxanes.
  • the alkoxysilane may be a monomer or an oligomer.
  • the alkoxysilane monomer preferably has 3 or more alkoxyl groups.
  • alkoxysilane monomers include methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetrapropoxysilane, diethoxydimethoxysilane, dimethyldimethoxysilane, and dimethyldimethoxysilane.
  • An ethoxysilane is mentioned.
  • alkoxysilane oligomer As the alkoxysilane oligomer, a polycondensate obtained by hydrolysis and polycondensation of the above monomers is preferable. By using alkoxysilane as the material, a low refractive index layer having excellent uniformity can be obtained.
  • Silsesquioxane is a general term for network-like polysiloxanes represented by the general formula RSiO 1.5 (where R represents an organic functional group).
  • R include an alkyl group (which may be linear or branched and having 1 to 6 carbon atoms), a phenyl group, and an alkoxy group (for example, a methoxy group and an ethoxy group).
  • Examples of the structure of silsesquioxane include a ladder type and a saddle type. By using silsesquioxane as the material, a low refractive index layer having excellent uniformity, weather resistance, transparency and hardness can be obtained.
  • the particles are typically made of a silica-based compound.
  • the average particle diameter of the particles is, for example, 5 nm to 200 nm, preferably 10 nm to 200 nm.
  • a low refractive index layer having a sufficiently low refractive index can be obtained, and the transparency of the low refractive index layer can be maintained.
  • the low refractive index layer is formed by applying a coating liquid containing the above material to the surface of a reflective polarizer (or a polarizer formed on the reflective polarizer) and drying it. Can be done.
  • the low-refractive index layer is formed by applying a coating liquid containing the above-described material onto any appropriate substrate, drying, and then reflecting through any appropriate adhesive layer. It can be formed by transferring to a polarizer (or polarizer). In the case where the low refractive index layer is composed of an adhesive, the adhesive layer can be omitted.
  • the protective film is formed of any suitable film that can be used as a film for protecting the polarizer.
  • the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials.
  • transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate.
  • thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included.
  • a glassy polymer such as a siloxane polymer is also included.
  • a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used.
  • a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned.
  • the polymer film can be, for example, an extruded product of the resin composition.
  • the thickness of the protective film is preferably 10 ⁇ m to 100 ⁇ m.
  • the protective film may be laminated to the polarizer via an adhesive layer (specifically, an adhesive layer or an adhesive layer), or may be adhered to the polarizer (without an adhesive layer). Good.
  • the adhesive layer is formed of any appropriate adhesive.
  • the water-soluble adhesive agent which has a polyvinyl alcohol-type resin as a main component is mentioned, for example.
  • the water-soluble adhesive mainly composed of a polyvinyl alcohol-based resin can preferably further contain a metal compound colloid.
  • the metal compound colloid can be one in which metal compound fine particles are dispersed in a dispersion medium, and can be electrostatically stabilized due to mutual repulsion of the same kind of charge of the fine particles, and can have permanent stability. .
  • the average particle size of the fine particles forming the metal compound colloid can be any appropriate value as long as it does not adversely affect the optical properties such as polarization properties.
  • the thickness is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. This is because the fine particles can be uniformly dispersed in the adhesive layer, the adhesion can be ensured, and the nick can be suppressed.
  • the “knic” refers to a local uneven defect generated at the interface between the polarizer and the protective film.
  • the pressure-sensitive adhesive layer is composed of any appropriate pressure-sensitive adhesive.
  • the optical members described in the items A to F can be used for an image display device such as a liquid crystal display device.
  • the optical member can be used as a polarizing plate disposed on the back side of the liquid crystal cell of the liquid crystal display device by being attached to the liquid crystal cell with the reflective polarizer on the back side. Therefore, the present invention includes an image display device using the optical member.
  • the image display apparatus by embodiment of this invention is equipped with the optical member as described in said A term to F term.
  • the liquid crystal display device was made to display a full screen white, and the front luminance (white luminance) was measured with a conoscope (manufactured by AUTRONIC MELCHERS Co., Ltd.) (unit: cd / m 2 ). .
  • the liquid crystal display device was made to display full screen black, and the front luminance (black luminance) was measured with a conoscope (manufactured by AUTRONIC MELCHERS Co., Ltd.) (unit: cd / m 2 ).
  • the value of (white luminance / black luminance) was calculated and used as the front contrast.
  • a long amorphous polyethylene terephthalate (A-PET) film (manufactured by Mitsubishi Plastics, trade name “Novaclear”, thickness: 100 ⁇ m) is prepared as a base material, and polyvinyl alcohol (PVA) is provided on one side of the base material.
  • An aqueous solution of resin product name “GOHSENOL (registered trademark) NH-26” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • aqueous solution of resin product name “GOHSENOL (registered trademark) NH-26” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • an insolubilizing bath having a liquid temperature of 30 ° C. for 30 seconds (insolubilizing step).
  • ⁇ Production Example 2> (Adjustment of low refractive index coating solution) 0.5 g of 0.01 mol / L oxalic acid aqueous solution was added to a mixed solution in which 0.95 g of methyltrimethoxysilane (MTMS), which is a silicon compound precursor, was dissolved in 2.2 g of dimethyl sulfoxide (DMSO). MTMS was hydrolyzed by stirring at room temperature for 30 minutes to produce tris (hydroxy) methylsilane. Thereafter, after adding 0.38 g of 28% ammonia water and 0.2 g of pure water to 5.5 g of DMSO, the above hydrolyzed mixture was further added, and the mixture was stirred at room temperature for 15 minutes.
  • MTMS methyltrimethoxysilane
  • DMSO dimethyl sulfoxide
  • the gelatinous silicon compound in the said liquid mixture was grind
  • a homogenizer (trade name “UH-50”, manufactured by SMT Co., Ltd.) was used, and 1.85 g of gel and 1.14 g of IBA were weighed into a 5 cm 3 screw bottle, then 2 under the conditions of 50 W and 20 kHz. Minute grinding was performed.
  • the gel-like silicon compound in the mixed solution was pulverized. As a result, the mixed solution became a sol solution of a pulverized product.
  • Example 1 Production of Optical Member
  • the polarizer-side surface of the laminate obtained in Production Example 1 was bonded to a reflective polarizer (manufactured by 3M, product name “DBEF”) via an adhesive.
  • DBEF reflective polarizer
  • the base material is peeled from the polarizer of the laminate
  • the low refractive index coating liquid obtained in Production Example 2 is applied to the peeled surface, dried at 80 ° C. for 20 seconds, and then 300 mJ / cm 2 UV. Irradiation was performed to form a low refractive index layer on the surface of the polarizer, thereby obtaining an optical member having a configuration of reflective polarizer / polarizer / low refractive index layer.
  • the low refractive index layer had a thickness of 800 nm, a porosity of 59%, and a refractive index of 1.16.
  • the polarizer was bonded so that the absorption axis of the polarizer of the optical member was orthogonal to the absorption axis of the polarizer of the polarizing plate on the viewing side.
  • a liquid crystal display device of this example was obtained.
  • the liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
  • Example 2 The surface of a reflective polarizer (manufactured by 3M, product name “DBEF”) is coated with the low refractive index coating liquid obtained in Production Example 2, dried at 80 ° C. for 20 seconds, and then 300 mJ / cm 2 . UV irradiation was performed to form a low refractive index layer on the surface of the reflective polarizer.
  • the low refractive index layer had a thickness of 800 nm, a porosity of 59%, and a refractive index of 1.16.
  • the surface of the laminate obtained in Production Example 1 on the side opposite to the reflective polarizer of the low refractive index layer was bonded via an adhesive.
  • Example 1 A liquid crystal display device was obtained in the same manner as in Example 1 except that the surface on the polarizer side of the optical member obtained above was attached to the lower side of the liquid crystal cell. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
  • Example 3 An acrylic protective film (thickness 40 ⁇ m) was bonded to the surface of the laminate obtained in Production Example 1 via a UV curable adhesive, and the substrate was peeled from the polarizer side of the laminate. . Next, the acrylic protective film surface was coated with the low refractive index coating solution obtained in Production Example 2, dried at 80 ° C. for 20 seconds, and then irradiated with UV at 300 mJ / cm 2 to obtain the acrylic protective film. A low refractive index layer was formed on the surface. Next, a reflective polarizer (product name “DBEF”, manufactured by 3M Co.) is bonded to the surface of the polarizer via an acrylic optical adhesive (12 ⁇ m), thereby reflecting the polarizer / polarizer / acrylic.
  • DBEF product name “DBEF”, manufactured by 3M Co.
  • An optical member having a configuration of protective film / low refractive index layer was obtained.
  • a liquid crystal display device was obtained in the same manner as in Example 1 except that the surface of the optical member obtained above was bonded to the lower side of the liquid crystal cell.
  • the liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
  • Example 1 An optical member having a reflective polarizer / polarizer configuration was obtained in the same manner as in Example 1 except that the low refractive index layer was not formed.
  • a liquid crystal display device was obtained in the same manner as in Example 1 except that the surface on the polarizer side of the optical member obtained above was attached to the lower side of the liquid crystal cell. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
  • the liquid crystal display devices of Examples 1 to 3 have higher contrast than the liquid crystal display device of the comparative example.
  • the optical member of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices.

Abstract

Provided is an optical member capable of contributing to improvement of contrast of an image display device when used in the image display device. The optical member according to the present invention has a polarizer, a reflective polarizer, and a low-refractive-index layer with a refractive index of 1.25 or less. The low-refractive-index layer is stacked on at least one side of the polarizer. In the optical member, the reflective polarizer, the polarizer, and the low-refractive-index layer are typically integrated together in this order.

Description

光学部材、画像表示装置、および光学部材の製造方法OPTICAL MEMBER, IMAGE DISPLAY DEVICE, AND OPTICAL MEMBER MANUFACTURING METHOD
 本発明は、光学部材、画像表示装置、および光学部材の製造方法に関する。 The present invention relates to an optical member, an image display device, and a method for manufacturing the optical member.
 代表的な画像表示装置である液晶表示装置は、その画像形成方式に起因して、液晶セルの両側に偏光板が配置されている。偏光板は、代表的には、ポリビニルアルコール(PVA)系フィルムに二色性物質を吸着させて一軸延伸した偏光子と、当該偏光子の両側に配置された保護フィルムとを有する。また、画像表示装置に、反射型偏光子と偏光子とを一体化した光学部材を用いることが提案されている(例えば、特許文献1)。 A liquid crystal display device, which is a typical image display device, has polarizing plates disposed on both sides of a liquid crystal cell due to its image forming method. The polarizing plate typically includes a polarizer that is uniaxially stretched by adsorbing a dichroic substance on a polyvinyl alcohol (PVA) film, and protective films that are disposed on both sides of the polarizer. In addition, it has been proposed to use an optical member in which a reflective polarizer and a polarizer are integrated in an image display device (for example, Patent Document 1).
特表平9-507308号公報JP-T 9-507308
 しかしながら、上記のような光学部材を用いた画像表示装置はコントラストが不十分であるという問題がある。本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、画像表示装置に用いた場合に画像表示装置のコントラストの向上に寄与し得る光学部材、上記光学部材を備えた高コントラストの画像表示装置、および上記光学部材の製造方法を提供することにある。 However, the image display device using the optical member as described above has a problem that the contrast is insufficient. The present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an optical member that can contribute to improvement of contrast of the image display device when used in the image display device, and the optical member. Another object of the present invention is to provide a high-contrast image display device and a method for producing the optical member.
 本発明の光学部材は、偏光子と、反射型偏光子と、屈折率が1.25以下である低屈折率層と、を有し、上記低屈折率層が上記偏光子の少なくとも片側に積層されている。
 1つの実施形態においては、上記反射型偏光子と上記偏光子と上記低屈折率層とがこの順に一体化されている。
 1つの実施形態においては、上記低屈折率層の上記偏光子とは反対側に配置された粘着層をさらに有する。
 1つの実施形態においては、上記反射型偏光子と上記低屈折率層と上記偏光子とがこの順に一体化されている。
 1つの実施形態においては、上記偏光子の上記低屈折率層とは反対側に配置された保護フィルムをさらに有する。
 1つの実施形態においては、上記低屈折率層の空隙率が35%以上であり、上記低屈折率層の厚みが上記偏光子の厚みよりも薄い。
 本発明の別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記光学部材を有する。
 本発明のさらに別の局面によれば、光学部材の製造方法が提供される。この光学部材の製造方法は、上記光学部材の製造方法であって、上記偏光子または上記反射型偏光子の表面に低屈折率塗工液を塗工して乾燥させることにより、上記低屈折率層を形成すること、または、基材の表面に低屈折率塗工液を塗工して乾燥させることにより上記基材上に形成された上記低屈折率層を、上記偏光子または上記反射型偏光子の表面に転写すること、を含む。
The optical member of the present invention has a polarizer, a reflective polarizer, and a low refractive index layer having a refractive index of 1.25 or less, and the low refractive index layer is laminated on at least one side of the polarizer. Has been.
In one embodiment, the reflective polarizer, the polarizer, and the low refractive index layer are integrated in this order.
In one embodiment, it has further an adhesion layer arranged on the opposite side to the above-mentioned polarizer of the above-mentioned low refractive index layer.
In one embodiment, the reflective polarizer, the low refractive index layer, and the polarizer are integrated in this order.
In one embodiment, it further has a protective film disposed on the opposite side of the polarizer from the low refractive index layer.
In one embodiment, the porosity of the low refractive index layer is 35% or more, and the thickness of the low refractive index layer is thinner than the thickness of the polarizer.
According to another aspect of the present invention, an image display device is provided. This image display apparatus has the optical member.
According to still another aspect of the present invention, a method for manufacturing an optical member is provided. The method for producing the optical member is a method for producing the optical member, in which the low refractive index coating liquid is applied to the surface of the polarizer or the reflective polarizer and then dried, whereby the low refractive index is obtained. Forming the layer, or applying the low refractive index coating liquid on the surface of the substrate and drying the low refractive index layer formed on the substrate, the polarizer or the reflective type Transferring to the surface of the polarizer.
 本発明によれば、画像表示装置に用いた場合に画像表示装置のコントラストの向上に寄与し得る光学部材、および上記光学部材を備えた高コントラストの画像表示装置、および上記光学部材の製造方法を提供し得る。 According to the present invention, an optical member that can contribute to an improvement in contrast of an image display device when used in an image display device, a high-contrast image display device including the optical member, and a method for manufacturing the optical member. Can be provided.
本発明の1つの実施形態に係る偏光板の断面図である。It is sectional drawing of the polarizing plate which concerns on one Embodiment of this invention. 本発明の別の実施形態による光学部材の断面図である。It is sectional drawing of the optical member by another embodiment of this invention. 本発明の実施形態において用いられ得る反射型偏光子の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the reflection type polarizer which can be used in embodiment of this invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these embodiments.
A.光学部材の全体構成
 図1は、本発明の1つの実施形態による光学部材の断面図である。図1に示すように、光学部材100は、偏光子10と、反射型偏光子20と、偏光子の少なくとも片側に積層された低屈折率層30とを有する。低屈折率層の屈折率は1.25以下である。図1に示すように、1つの実施形態の光学部材100においては、反射型偏光子20と偏光子10と低屈折率層30とがこの順に一体化されている。偏光子10と低屈折率層30との間には保護フィルム(図示せず)が設けられていてもよい。すなわち、偏光子10と低屈折率層30とは、間に保護フィルムを挟んで一体化されていてもよい。光学部材100は、代表的には、低屈折率層30の偏光子10とは反対側に配置された粘着層(図示せず)をさらに有し得る。反射型偏光子20は偏光子10の保護層として機能し得る。したがって、偏光子10の保護層を省略することができ、光学部材100の薄型化に寄与し得る。光学部材100は、代表的には画像表示装置に用いられ得、画像表示装置のコントラストの向上に寄与し得る。
A. Overall Configuration of Optical Member FIG. 1 is a cross-sectional view of an optical member according to one embodiment of the present invention. As shown in FIG. 1, the optical member 100 includes a polarizer 10, a reflective polarizer 20, and a low refractive index layer 30 laminated on at least one side of the polarizer. The refractive index of the low refractive index layer is 1.25 or less. As shown in FIG. 1, in the optical member 100 of one embodiment, the reflective polarizer 20, the polarizer 10, and the low refractive index layer 30 are integrated in this order. A protective film (not shown) may be provided between the polarizer 10 and the low refractive index layer 30. That is, the polarizer 10 and the low refractive index layer 30 may be integrated with a protective film interposed therebetween. The optical member 100 may typically further include an adhesive layer (not shown) disposed on the opposite side of the low refractive index layer 30 from the polarizer 10. The reflective polarizer 20 can function as a protective layer for the polarizer 10. Therefore, the protective layer of the polarizer 10 can be omitted, and the optical member 100 can be made thinner. The optical member 100 can be typically used in an image display device, and can contribute to an improvement in contrast of the image display device.
 図2は、本発明の別の実施形態による光学部材の断面図である。本実施形態の光学部材101においては、反射型偏光子20と低屈折率層30と偏光子10とがこの順に一体化されている。光学部材101は、代表的には、偏光子10の低屈折率層30とは反対側に配置された保護フィルム(図示せず)をさらに有し得る。反射型偏光子と偏光子とを一体化した従来の光学部材では、反射型偏光子側から斜め方向に入射する光(光が面に垂直に入る角度を0゜とした場合、極角方向に40゜以上傾いた光)は、反射型偏光子の反射軸に平行な方向に振動する偏光であっても、反射型偏光子で反射されずに反射型偏光子を透過する場合がある。反射型偏光子を透過した上記光は偏光子によって吸収され、光学部材を画像表示装置に用いた場合の光の利用効率が低下し得る。その結果、画像表示装置のコントラストが低下し得る。これに対して、本実施形態の光学部材100・101は、反射型偏光子側から斜め方向に入射する光であって、反射型偏光子の反射軸に平行な方向に振動する偏光は、反射型偏光子と低屈折率層との界面で全反射され、再利用され得る。したがって、光学部材を画像表示装置に用いた場合の光の利用効率が向上し得る。その結果、画像表示装置のコントラストが向上し得る。 FIG. 2 is a cross-sectional view of an optical member according to another embodiment of the present invention. In the optical member 101 of the present embodiment, the reflective polarizer 20, the low refractive index layer 30, and the polarizer 10 are integrated in this order. The optical member 101 can typically further include a protective film (not shown) disposed on the opposite side of the polarizer 10 from the low refractive index layer 30. In a conventional optical member in which a reflective polarizer and a polarizer are integrated, light incident obliquely from the reflective polarizer side (when the angle at which the light enters the surface perpendicularly is 0 °, Even light polarized in a direction parallel to the reflection axis of the reflective polarizer may pass through the reflective polarizer without being reflected by the reflective polarizer. The light transmitted through the reflective polarizer is absorbed by the polarizer, and the light utilization efficiency when the optical member is used in an image display device can be reduced. As a result, the contrast of the image display device can be reduced. On the other hand, the optical members 100 and 101 of the present embodiment are light that is incident obliquely from the reflective polarizer side, and polarized light that vibrates in a direction parallel to the reflection axis of the reflective polarizer is reflected. It is totally reflected at the interface between the type polarizer and the low refractive index layer and can be reused. Therefore, the light utilization efficiency when the optical member is used in the image display device can be improved. As a result, the contrast of the image display device can be improved.
 好ましくは、低屈折率層30の空隙率が35%以上であり、低屈折率層30の厚みが偏光子10の厚みよりも薄い。反射型偏光子20の反射軸と偏光子10の吸収軸とのなす角度は、好ましくは-5°~5°である。 Preferably, the porosity of the low refractive index layer 30 is 35% or more, and the thickness of the low refractive index layer 30 is thinner than the thickness of the polarizer 10. The angle formed by the reflection axis of the reflective polarizer 20 and the absorption axis of the polarizer 10 is preferably −5 ° to 5 °.
B.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizer Any appropriate polarizer may be adopted as the polarizer. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of polarizers composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and ethylene / vinyl acetate copolymer partially saponified films. In addition, there may be mentioned polyene-based oriented films such as those subjected to dyeing treatment and stretching treatment with dichroic substances such as iodine and dichroic dyes, PVA dehydrated products and polyvinyl chloride dehydrochlorinated products. Preferably, a polarizer obtained by dyeing a PVA film with iodine and uniaxially stretching is used because of excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing a PVA film in an aqueous iodine solution. The stretching ratio of the uniaxial stretching is preferably 3 to 7 times. The stretching may be performed after the dyeing treatment or may be performed while dyeing. Moreover, you may dye | stain after extending | stretching. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment and the like. For example, by immersing the PVA film in water and washing it before dyeing, not only can the surface of the PVA film be cleaned of dirt and anti-blocking agents, but the PVA film can be swollen to cause uneven staining. Can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 As a specific example of a polarizer obtained by using a laminate, a laminate of a resin substrate and a PVA resin layer (PVA resin film) laminated on the resin substrate, or a resin substrate and the resin Examples thereof include a polarizer obtained by using a laminate with a PVA resin layer applied and formed on a substrate. For example, a polarizer obtained by using a laminate of a resin base material and a PVA resin layer applied and formed on the resin base material may be obtained by, for example, applying a PVA resin solution to a resin base material and drying it. A PVA-based resin layer is formed thereon to obtain a laminate of a resin base material and a PVA-based resin layer; the laminate is stretched and dyed to make the PVA-based resin layer a polarizer; obtain. In the present embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include, if necessary, stretching the laminate in the air at a high temperature (for example, 95 ° C. or higher) before stretching in the aqueous boric acid solution. The obtained resin base material / polarizer laminate may be used as it is (that is, the resin base material may be used as a protective layer of the polarizer), and the resin base material is peeled from the resin base material / polarizer laminate. Any appropriate protective layer according to the purpose may be laminated on the release surface. Details of a method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580. This publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、例えば1μm~80μmである。1つの実施形態においては、偏光子の厚みは、好ましくは1μm~15μmであり、さらに好ましくは3μm~10μmであり、特に好ましくは3μm~8μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is, for example, 1 μm to 80 μm. In one embodiment, the thickness of the polarizer is preferably 1 μm to 15 μm, more preferably 3 μm to 10 μm, and particularly preferably 3 μm to 8 μm. When the thickness of the polarizer is in such a range, curling during heating can be satisfactorily suppressed, and good appearance durability during heating can be obtained.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、35.0%~46.0%であり、好ましくは37.0%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength between 380 nm and 780 nm. The single transmittance of the polarizer is 35.0% to 46.0%, preferably 37.0% to 46.0%. The polarization degree of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, and further preferably 99.9% or more.
 上記単体透過率及び偏光度は、分光光度計を用いて測定することができる。上記偏光度の具体的な測定方法としては、上記偏光子の平行透過率(H)及び直交透過率(H90)を測定し、式:偏光度(%)={(H-H90)/(H+H90)}1/2×100より求めることができる。上記平行透過率(H)は、同じ偏光子2枚を互いの吸収軸が平行となるように重ね合わせて作製した平行型積層偏光子の透過率の値である。また、上記直交透過率(H90)は、同じ偏光子2枚を互いの吸収軸が直交するように重ね合わせて作製した直交型積層偏光子の透過率の値である。なお、これらの透過率は、JlS Z 8701-1982の2度視野(C光源)により、視感度補正を行ったY値である。 The single transmittance and the degree of polarization can be measured using a spectrophotometer. As a specific method for measuring the degree of polarization, the parallel transmittance (H 0 ) and orthogonal transmittance (H 90 ) of the polarizer are measured, and the formula: degree of polarization (%) = {(H 0 −H 90 ) / (H 0 + H 90 )} 1/2 × 100. The parallel transmittance (H 0 ) is a value of the transmittance of a parallel laminated polarizer prepared by superposing two identical polarizers so that their absorption axes are parallel to each other. The orthogonal transmittance (H 90 ) is a value of the transmittance of an orthogonal laminated polarizer produced by superposing two identical polarizers so that their absorption axes are orthogonal to each other. Note that these transmittances are Y values obtained by correcting the visibility with the 2-degree field of view (C light source) of JlS Z 8701-1982.
C.反射型偏光子
 反射型偏光子は、特定の偏光状態(偏光方向)の偏光を透過し、それ以外の偏光状態の光を反射する機能を有する。反射型偏光子は、直線偏光分離型であってもよく、円偏光分離型であってもよい。以下、一例として、直線偏光分離型の反射型偏光子について説明する。なお、円偏光分離型の反射型偏光子としては、例えば、コレステリック液晶を固定化したフィルムとλ/4板との積層体が挙げられる。
C. Reflective Polarizer The reflective polarizer has a function of transmitting polarized light in a specific polarization state (polarization direction) and reflecting light in other polarization states. The reflective polarizer may be a linearly polarized light separation type or a circularly polarized light separation type. Hereinafter, as an example, a linearly polarized light separation type reflective polarizer will be described. Examples of the circularly polarized light separation type reflective polarizer include a laminate of a film in which cholesteric liquid crystal is fixed and a λ / 4 plate.
 図3は、反射型偏光子の一例の概略斜視図である。反射型偏光子は、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとが交互に積層された多層積層体である。例えば、このような多層積層体の層の総数は、50~1000であり得る。図示例では、A層のx軸方向の屈折率nxがy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一である。したがって、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となる。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。なお、x軸方向は、後述する製造方法における反射型偏光子の延伸方向に対応する。 FIG. 3 is a schematic perspective view of an example of a reflective polarizer. The reflective polarizer is a multilayer laminate in which layers A having birefringence and layers B having substantially no birefringence are alternately laminated. For example, the total number of layers in such a multilayer stack can be 50-1000. In the illustrated example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same. is there. Accordingly, the difference in refractive index between the A layer and the B layer is large in the x-axis direction and is substantially zero in the y-axis direction. As a result, the x-axis direction becomes the reflection axis, and the y-axis direction becomes the transmission axis. The refractive index difference in the x-axis direction between the A layer and the B layer is preferably 0.2 to 0.3. The x-axis direction corresponds to the extending direction of the reflective polarizer in the manufacturing method described later.
 上記A層は、好ましくは、延伸により複屈折性を発現する材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。ポリエチレンナフタレートが好ましい。上記B層は、好ましくは、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料の代表例としては、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。 The A layer is preferably made of a material that develops birefringence by stretching. Representative examples of such materials include naphthalene dicarboxylic acid polyesters (for example, polyethylene naphthalate), polycarbonates, and acrylic resins (for example, polymethyl methacrylate). Polyethylene naphthalate is preferred. The B layer is preferably made of a material that does not substantially exhibit birefringence even when stretched. A typical example of such a material is a copolyester of naphthalenedicarboxylic acid and terephthalic acid.
 反射型偏光子は、A層とB層との界面において、第1の偏光方向を有する光(例えば、p波)を透過し、第1の偏光方向とは直交する第2の偏光方向を有する光(例えば、s波)を反射する。反射した光は、A層とB層との界面において、一部が第1の偏光方向を有する光として透過し、一部が第2の偏光方向を有する光として反射する。反射型偏光子の内部において、このような反射および透過が多数繰り返されることにより、光の利用効率を高めることができる。 The reflective polarizer transmits light having a first polarization direction (for example, p-wave) at the interface between the A layer and the B layer, and has a second polarization direction orthogonal to the first polarization direction. Reflects light (eg, s-wave). The reflected light is partially transmitted as light having the first polarization direction and partially reflected as light having the second polarization direction at the interface between the A layer and the B layer. The light utilization efficiency can be increased by repeating such reflection and transmission many times inside the reflective polarizer.
 1つの実施形態においては、反射型偏光子は、図3に示すように、偏光子と反対側の最外層として反射層Rを含んでいてもよい。反射層Rを設けることにより、最終的に利用されずに反射型偏光子の最外部に戻ってきた光をさらに利用することができるので、光の利用効率をさらに高めることができる。反射層Rは、代表的には、ポリエステル樹脂層の多層構造により反射機能を発現する。 In one embodiment, the reflective polarizer may include a reflective layer R as the outermost layer opposite to the polarizer, as shown in FIG. By providing the reflective layer R, it is possible to further use the light that has not been finally used and has returned to the outermost part of the reflective polarizer, so that the light use efficiency can be further increased. The reflective layer R typically exhibits a reflective function due to the multilayer structure of the polyester resin layer.
 反射型偏光子の全体厚みは、目的、反射型偏光子に含まれる層の合計数等に応じて適切に設定され得る。反射型偏光子の全体厚みは、好ましくは10μm~150μmである。 The overall thickness of the reflective polarizer can be appropriately set according to the purpose, the total number of layers included in the reflective polarizer, and the like. The total thickness of the reflective polarizer is preferably 10 μm to 150 μm.
 1つの実施形態においては、光学部材において、反射型偏光子は、偏光子の透過軸に平行な偏光方向の光を透過するようにして配置される。すなわち、反射型偏光子は、好ましくは、その反射軸が偏光子の吸収軸と略平行方向(上記反射軸と上記吸収軸とのなす角度が、例えば-5°~5°)となるようにして配置される。このような構成とすることにより、光学部材を画像表示装置に用いた場合に、偏光板に吸収されてしまう光を再利用することができ、利用効率をさらに高めることができ、また、輝度も向上できる。 In one embodiment, in the optical member, the reflective polarizer is arranged so as to transmit light having a polarization direction parallel to the transmission axis of the polarizer. In other words, the reflective polarizer preferably has a reflection axis in a direction substantially parallel to the absorption axis of the polarizer (the angle between the reflection axis and the absorption axis is, for example, −5 ° to 5 °). Arranged. With such a configuration, when the optical member is used in an image display device, the light absorbed by the polarizing plate can be reused, the utilization efficiency can be further increased, and the luminance is also increased. It can be improved.
 反射型偏光子は、代表的には、共押出と横延伸とを組み合わせて作製され得る。共押出は、任意の適切な方式で行われ得る。例えば、フィードブロック方式であってもよく、マルチマニホールド方式であってもよい。例えば、フィードブロック中でA層を構成する材料とB層を構成する材料とを押出し、次いで、マルチプライヤーを用いて多層化する。なお、このような多層化装置は当業者に公知である。次いで、得られた長尺状の多層積層体を代表的には搬送方向に直交する方向(TD)に延伸する。A層を構成する材料(例えば、ポリエチレンナフタレート)は、当該横延伸により延伸方向においてのみ屈折率が増大し、結果として複屈折性を発現する。B層を構成する材料(例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステル)は、当該横延伸によってもいずれの方向にも屈折率は増大しない。結果として、延伸方向(TD)に反射軸を有し、搬送方向(MD)に透過軸を有する反射型偏光子が得られ得る(TDが図3のx軸方向に対応し、MDがy軸方向に対応する)。なお、延伸操作は、任意の適切な装置を用いて行われ得る。 The reflective polarizer can typically be produced by a combination of coextrusion and transverse stretching. Coextrusion can be performed in any suitable manner. For example, a feed block method or a multi-manifold method may be used. For example, the material constituting the A layer and the material constituting the B layer are extruded in a feed block, and then multilayered using a multiplier. Such a multi-layer apparatus is known to those skilled in the art. Next, the obtained long multilayer laminate is typically stretched in a direction (TD) orthogonal to the transport direction. The material constituting the A layer (for example, polyethylene naphthalate) increases the refractive index only in the stretching direction due to the transverse stretching, and as a result, develops birefringence. The refractive index of the material constituting the B layer (for example, a copolyester of naphthalenedicarboxylic acid and terephthalic acid) does not increase in any direction even by the transverse stretching. As a result, a reflective polarizer having a reflection axis in the stretching direction (TD) and a transmission axis in the transport direction (MD) can be obtained (TD corresponds to the x-axis direction in FIG. 3 and MD is the y-axis). Corresponding to the direction). In addition, extending | stretching operation can be performed using arbitrary appropriate apparatuses.
 反射型偏光子としては、例えば、特表平9-507308号公報に記載のものが使用され得る。反射型偏光子は、市販品をそのまま用いてもよく、市販品を2次加工(例えば、延伸)して用いてもよい。市販品としては、例えば、3M社製の商品名DBEF、3M社製の商品名APFが挙げられる。 As the reflective polarizer, for example, the one described in JP-T-9-507308 can be used. As the reflective polarizer, a commercially available product may be used as it is, or a commercially available product may be used after secondary processing (for example, stretching). As a commercial item, 3M company brand name DBEF and 3M company brand name APF are mentioned, for example.
D.低屈折率層およびその製造方法
 低屈折率層の屈折率は、上記の通り1.25以下である。上記屈折率は、好ましくは1.25~1.10であり、より好ましくは1.20~1.05である。低屈折率層の厚みは、上記の通り、好ましくは偏光子の厚みよりも薄い。低屈折率層の厚みは、好ましくは10nm~10000nmであり、より好ましくは200nm~2000nmである。
D. Low refractive index layer and production method thereof The refractive index of the low refractive index layer is 1.25 or less as described above. The refractive index is preferably 1.25 to 1.10, more preferably 1.20 to 1.05. As described above, the thickness of the low refractive index layer is preferably smaller than the thickness of the polarizer. The thickness of the low refractive index layer is preferably 10 nm to 10000 nm, more preferably 200 nm to 2000 nm.
 低屈折率層は、代表的には、内部に空隙を有する。低屈折率層の空隙率は、任意の適切な値を取り得る。上記空隙率は、例えば5%~90%であり、好ましくは35%~80%である。空隙率が上記範囲内であることにより、低屈折率層の屈折率を充分低くすることができ、かつ高い機械的強度を得ることができる。 The low refractive index layer typically has voids inside. The porosity of the low refractive index layer can take any appropriate value. The porosity is, for example, 5% to 90%, preferably 35% to 80%. When the porosity is within the above range, the refractive index of the low refractive index layer can be sufficiently lowered, and high mechanical strength can be obtained.
 上記内部に空隙を有する低屈折率層としては、例えば、多孔質層、および/または空気層を少なくとも一部に有する低屈折率層が挙げられる。多孔質層は、代表的には、エアロゲル、および/または粒子(例えば、中空微粒子および/または多孔質粒子)を含む。低屈折率層は、好ましくはナノポーラス層(具体的には、90%以上の微細孔の直径が10-2~10nmの範囲内の多孔質層)である。 Examples of the low refractive index layer having voids therein include a porous layer and / or a low refractive index layer having at least a part of an air layer. The porous layer typically includes aerogels and / or particles (eg, hollow microparticles and / or porous particles). The low refractive index layer is preferably a nanoporous layer (specifically, a porous layer having a diameter of 90% or more of fine pores in the range of 10 −2 to 10 3 nm).
 本発明の低屈折率層は、例えば、ケイ素化合物により形成されていてもよい。また、本発明の低屈折率層は、例えば、微細孔粒子同士の化学結合により形成された低屈折率層であってもよい。例えば、前記微細孔粒子が、ゲルの粉砕物であってもよい。 The low refractive index layer of the present invention may be formed of, for example, a silicon compound. Further, the low refractive index layer of the present invention may be, for example, a low refractive index layer formed by chemical bonding between microporous particles. For example, the fine pore particles may be a crushed gel.
 本発明において、前記ゲル粉砕物は、例えば、粒子状、繊維状、平板状の少なくとも一つの形状を有する構造からなっていても良い。前記粒子状および平板状の構成単位は、例えば、無機物からなっていても良い。また、前記粒子状構成単位の構成元素は、例えば、Si、Mg、Al、Ti、ZnおよびZrからなる群から選択される少なくとも一つの元素を含んでいても良い。粒子状を形成する構造体(構成単位)は、実粒子でも中空粒子でもよく、具体的にはシリコーン粒子や微細孔を有するシリコーン粒子、シリカ中空ナノ粒子やシリカ中空ナノバルーン等が挙げられる。前記繊維状の構成単位は、例えば、直径がナノサイズのナノファイバーであり、具体的にはセルロースナノファイバーやアルミナナノファイバー等が挙げられる。平板状の構成単位は、例えば、ナノクレイが挙げられ、具体的にはナノサイズのベントナイト(例えばクニピアF[商品名])等が挙げられる。前記繊維状の構成単位は、特に限定されないが、例えば、カーボンナノファイバー、セルロースナノファイバー、アルミナナノファイバー、キチンナノファイバー、キトサンナノファイバー、ポリマーナノファイバー、ガラスナノファイバー、およびシリカナノファイバーからなる群から選択される少なくとも一つの繊維状物質であっても良い。 In the present invention, the gel pulverized product may have, for example, a structure having at least one of a particle shape, a fiber shape, and a flat plate shape. The particulate and flat structural units may be made of an inorganic substance, for example. In addition, the constituent element of the particulate structural unit may include at least one element selected from the group consisting of Si, Mg, Al, Ti, Zn, and Zr, for example. The structure (structural unit) that forms the particles may be a real particle or a hollow particle, and specifically includes silicone particles, silicone particles having fine pores, silica hollow nanoparticles, silica hollow nanoballoons, and the like. The fibrous structural unit is, for example, a nanofiber having a diameter of nanometer, and specifically includes cellulose nanofiber, alumina nanofiber, and the like. Examples of the plate-like structural unit include nanoclay, and specifically, nano-sized bentonite (for example, Kunipia F [trade name]). The fibrous structural unit is not particularly limited, but for example, from the group consisting of carbon nanofiber, cellulose nanofiber, alumina nanofiber, chitin nanofiber, chitosan nanofiber, polymer nanofiber, glass nanofiber, and silica nanofiber. It may be at least one fibrous material selected.
 本発明の低屈折率層の製造方法において、前記ゲル粉砕物を含有するゲル粉砕物含有液は、例えば、前記ゲルを粉砕して得られた粒子(粉砕物の粒子)を含有したゾル液である。 In the method for producing a low refractive index layer of the present invention, the gel pulverized product-containing liquid containing the gel pulverized product is, for example, a sol solution containing particles (pulverized product particles) obtained by pulverizing the gel. is there.
 本発明の低屈折率層の製造方法において、前記ゲルが、例えば、3官能以下の飽和結合官能基を少なくとも含むケイ素化合物のゲルである。 In the method for producing a low refractive index layer of the present invention, the gel is, for example, a silicon compound gel containing at least a trifunctional or lower saturated bond functional group.
 本発明のゲル粉砕物含有液によれば、例えば、その塗工膜を形成し、前記塗工膜中の前記粉砕物同士を化学的に結合することで、機能性多孔体としての前記本発明の低屈折率層を形成できる。本発明のゲル粉砕物含有液によれば、例えば、前記本発明の低屈折率層を、様々な対象物に付与することができる。したがって、本発明のゲル粉砕物含有液およびその製造方法は、例えば、前記本発明の低屈折率層の製造において有用である。 According to the gel pulverized product-containing liquid of the present invention, for example, the present invention as a functional porous body is formed by forming the coating film and chemically bonding the pulverized products in the coating film. The low refractive index layer can be formed. According to the gel pulverized product-containing liquid of the present invention, for example, the low refractive index layer of the present invention can be applied to various objects. Therefore, the gel pulverized product-containing liquid and the production method thereof of the present invention are useful, for example, in the production of the low refractive index layer of the present invention.
 本発明のゲル粉砕物含有液は、例えば、前記ゲル粉砕物含有液を基板上に塗工(コーティング)し、さらに乾燥することで、高い空隙率を有する層(低屈折率層)を得るための、ゲル粉砕物含有液であっても良い。また、本発明のゲル粉砕物含有液は、例えば、高空隙率多孔体(厚みが大きい、または塊状のバルク体)を得るためのゲル粉砕物含有液であっても良い。前記バルク体は、例えば、前記ゲル粉砕物含有液を用いてバルク製膜を行うことで得ることができる。 In order to obtain the layer (low refractive index layer) having a high porosity, the gel pulverized product-containing liquid of the present invention is, for example, coated (coated) on the substrate and further dried. It may be a gel pulverized product-containing liquid. Moreover, the gel pulverized product-containing liquid of the present invention may be, for example, a gel pulverized product-containing liquid for obtaining a high porosity porous material (large thickness or massive bulk material). The bulk body can be obtained, for example, by performing bulk film formation using the gel pulverized product-containing liquid.
 前述のとおり、本発明の低屈折率層は、空隙層であってもよい。以下において、空隙層である本発明の低屈折率層を「本発明の空隙層」という場合がある。例えば、前記本発明のゲル粉砕物含有液を製造する工程と、前記ゲル粉砕物含有液を基板上に塗工して塗工膜を形成する工程と、前記塗工膜を乾燥させる工程とを含む製造方法により、高い空隙率を有する前記本発明の空隙層を製造することができる。 As described above, the low refractive index layer of the present invention may be a void layer. Hereinafter, the low refractive index layer of the present invention which is a void layer may be referred to as “the void layer of the present invention”. For example, a step of producing the gel pulverized product-containing liquid of the present invention, a step of coating the gel pulverized product-containing liquid on a substrate to form a coating film, and a step of drying the coating film The void layer of the present invention having a high porosity can be produced by the production method including the above.
 また、例えば、前記本発明のゲル粉砕物含有液を製造する工程と、ロール状の前記樹脂フィルムを繰り出す工程と、繰り出された前記樹脂フィルムに前記ゲル粉砕物含有液を塗工して塗工膜を形成する工程と、前記塗工膜を乾燥させる工程と、前記乾燥させる工程後に、前記本発明の低屈折率層が前記樹脂フィルム上に形成された積層フィルムを巻き取る工程とを含む製造方法により、積層フィルムロールを製造することができる。このような製造方法を、以下において「本発明の積層フィルムロールの製造方法」ということがある。また、以下において、本発明の積層フィルムロールの製造方法により製造される積層フィルムロールを「本発明の積層フィルムロール」ということがある。 Also, for example, the step of producing the gel crushed product-containing liquid of the present invention, the step of feeding out the roll-shaped resin film, and the coating of the gel crushed product-containing solution on the fed out resin film A process comprising a step of forming a film, a step of drying the coating film, and a step of winding the laminated film in which the low refractive index layer of the present invention is formed on the resin film after the drying step A laminated film roll can be produced by the method. Hereinafter, such a production method may be referred to as a “production method of the laminated film roll of the present invention”. Moreover, below, the laminated film roll manufactured by the manufacturing method of the laminated film roll of this invention may be called "the laminated film roll of this invention."
 本発明のゲル粉砕物含有液において、粉砕物(多孔体ゲルの粒子)の体積平均粒子径の範囲は、例えば、1nm~1000nmであり、10nm~700nmであり、100nm~500nmである。前記体積平均粒子径は、本発明のゲル粉砕物含有液における前記粉砕物の粒度バラツキを示す。前記体積平均粒子径は、前述のとおり、例えば、動的光散乱法、レーザー回折法等の粒度分布評価装置、および走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等の電子顕微鏡等により測定することができる。 In the gel pulverized product-containing liquid of the present invention, the range of the volume average particle diameter of the pulverized product (porous gel particles) is, for example, 1 nm to 1000 nm, 10 nm to 700 nm, and 100 nm to 500 nm. The said volume average particle diameter shows the particle size variation of the said ground material in the gel ground material containing liquid of this invention. As described above, the volume average particle diameter is, for example, a particle size distribution evaluation apparatus such as a dynamic light scattering method or a laser diffraction method, and an electron microscope such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Can be measured.
 本発明のゲル粉砕物含有液において、前記ゲル(例えば、多孔体ゲル)は、特に制限されず、例えば、ケイ素化合物等が挙げられる。 In the gel pulverized product-containing liquid of the present invention, the gel (for example, porous gel) is not particularly limited, and examples thereof include a silicon compound.
 前記ケイ素化合物は、特に制限されないが、例えば、少なくとも3官能以下の飽和結合官能基を含むケイ素化合物が挙げられる。前記「3官能基以下の飽和結合官能基を含む」とは、ケイ素化合物が、3つ以下の官能基を有し、且つ、これらの官能基が、ケイ素(Si)と飽和結合していることを意味する。 The silicon compound is not particularly limited, and examples thereof include a silicon compound containing at least a trifunctional or lower saturated bond functional group. The above-mentioned “including a saturated bond functional group having 3 or less functional groups” means that the silicon compound has 3 or less functional groups, and these functional groups are saturatedly bonded to silicon (Si). Means.
 前記ケイ素化合物は、例えば、下記式(1)もしくは下記式(2)で表される化合物である。 The silicon compound is, for example, a compound represented by the following formula (1) or the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記式(1)中、例えば、Xは、2、3または4であり、Rは、直鎖もしくは分枝アルキル基、である。前記Rの炭素数は、例えば、1~6、1~4、1~2である。前記直鎖アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、前記分枝アルキル基は、例えば、イソプロピル基、イソブチル基等が挙げられる。前記Xは、例えば、3または4である。 In the formula (1), for example, X is 2, 3 or 4, and R 1 is a linear or branched alkyl group. The carbon number of R 1 is, for example, 1-6, 1-4, 1-2. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the branched alkyl group include an isopropyl group and an isobutyl group. X is, for example, 3 or 4.
 前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(1’)に示す化合物が挙げられる。下記式(1’)において、Rは、前記式(1)と同様であり、例えば、メチル基である。Rがメチル基の場合、前記ケイ素化合物は、トリス(ヒドロキシ)メチルシランである。前記Xが3の場合、前記ケイ素化合物は、例えば、3つの官能基を有する3官能シランである。 Specific examples of the silicon compound represented by the formula (1) include a compound represented by the following formula (1 ′) in which X is 3. In the following formula (1 ′), R 1 is the same as in the above formula (1), and is, for example, a methyl group. When R 1 is a methyl group, the silicon compound is tris (hydroxy) methylsilane. When X is 3, the silicon compound is, for example, a trifunctional silane having three functional groups.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 また、前記式(1)で表されるケイ素化合物の具体例としては、例えば、Xが4である化合物が挙げられる。この場合、前記ケイ素化合物は、例えば、4つの官能基を有する4官能シランである。 Further, specific examples of the silicon compound represented by the formula (1) include a compound in which X is 4. In this case, the silicon compound is, for example, a tetrafunctional silane having four functional groups.
 前記式(2)中、例えば、Xは、2、3または4であり、
 RおよびRは、それぞれ、直鎖もしくは分枝アルキル基であり、
 RおよびRは、同一でも異なっていても良く、
 Rは、Xが2の場合、互いに同一でも異なっていても良く、
 Rは、互いに同一でも異なっていても良い。
In the formula (2), for example, X is 2, 3 or 4,
R 1 and R 2 are each a linear or branched alkyl group,
R 1 and R 2 may be the same or different,
R 1 s may be the same as or different from each other when X is 2.
R 2 may be the same as or different from each other.
 前記XおよびRは、例えば、前記式(1)におけるXおよびRと同じである。また、前記Rは、例えば、前記式(1)におけるRの例示が援用できる。 Wherein X and R 1 are, for example, the same as X and R 1 in the formula (1). Moreover, the said R < 2 > can use the illustration of R < 1 > in the said Formula (1), for example.
 前記式(2)で表されるケイ素化合物の具体例としては、例えば、Xが3である下記式(2’)に示す化合物が挙げられる。下記式(2’)において、RおよびRは、それぞれ、前記式(2)と同様である。RおよびRがメチル基の場合、前記ケイ素化合物は、トリメトキシ(メチル)シラン(以下、「MTMS」ともいう)である。 Specific examples of the silicon compound represented by the formula (2) include a compound represented by the following formula (2 ′) in which X is 3. In the following formula (2 ′), R 1 and R 2 are the same as those in the formula (2), respectively. When R 1 and R 2 are methyl groups, the silicon compound is trimethoxy (methyl) silane (hereinafter also referred to as “MTMS”).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 本発明のゲル粉砕物含有液において、前記溶媒としては、例えば、分散媒等が挙げられる。前記分散媒(以下、「塗工用溶媒」ともいう)は、特に制限されず、例えば、後述するゲル化溶媒および粉砕用溶媒があげられ、好ましくは前記粉砕用溶媒である。前記塗工用溶媒としては、沸点が70℃以上180℃未満であり、かつ、20℃での飽和蒸気圧が15kPa以下である有機溶媒を含む。 In the gel pulverized product-containing liquid of the present invention, examples of the solvent include a dispersion medium. The dispersion medium (hereinafter also referred to as “coating solvent”) is not particularly limited, and examples thereof include a gelling solvent and a grinding solvent described later, and the grinding solvent is preferable. The coating solvent includes an organic solvent having a boiling point of 70 ° C. or higher and lower than 180 ° C. and a saturated vapor pressure at 20 ° C. of 15 kPa or lower.
 前記有機溶媒としては、例えば、四塩化炭素、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、トリクロロエチレン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、1-ペンチルアルコール(ペンタノール)、エチルアルコール(エタノール)、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノメチルエーテル、キシレン、クレゾール、クロロベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ノルマル-ブチル、酢酸ノルマル-プロピル、酢酸ノルマル-ペンチル、シクロヘキサノール、シクロヘキサノン、1,4-ジオキサン、N,N-ジメチルホルムアミド、スチレン、テトラクロロエチレン、1,1,1-トリクロロエタン、トルエン、1-ブタノール、2-ブタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチル-ノルマル-ブチルケトン、イソペンタノール、等が挙げられる。また、前記分散媒中には、表面張力を低下させるペルフルオロ系界面活性剤やシリコン系界面活性剤等を適量含んでもよい。 Examples of the organic solvent include carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, 1-pentyl alcohol (pentanol), Ethyl alcohol (ethanol), ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol mono-normal-butyl ether, ethylene glycol monomethyl ether, xylene, cresol, chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, Normal-butyl acetate, normal-propyl acetate, normal-pentyl acetate, cyclohexanol, cyclohexanone, 1,4-dioxa , N, N-dimethylformamide, styrene, tetrachloroethylene, 1,1,1-trichloroethane, toluene, 1-butanol, 2-butanol, methyl isobutyl ketone, methyl ethyl ketone, methyl cyclohexanol, methyl cyclohexanone, methyl normal butyl ketone, iso And pentanol. The dispersion medium may contain an appropriate amount of a perfluoro-based surfactant, a silicon-based surfactant or the like that lowers the surface tension.
 本発明のゲル粉砕物含有液は、例えば、前記分散媒に分散させたゾル状の前記粉砕物であるゾル粒子液等が挙げられる。本発明のゲル粉砕物含有液は、例えば、基材上に塗工・乾燥した後に、後述する結合工程により化学架橋を行うことで、一定レベル以上の膜強度を有する空隙層を、連続成膜することが可能である。なお、本発明における「ゾル」とは、ゲルの三次元構造を粉砕することで、粉砕物(つまり、空隙構造の一部を保持したナノ三次元構造の多孔体ゾルの粒子)が、溶媒中に分散して流動性を示す状態をいう。 The gel pulverized material-containing liquid of the present invention includes, for example, a sol particle liquid that is the sol-like pulverized material dispersed in the dispersion medium. The gel pulverized product-containing liquid of the present invention, for example, continuously forms a void layer having a film strength of a certain level or more by performing chemical crosslinking by a bonding step described later after coating and drying on a substrate. Is possible. In the present invention, “sol” means that a three-dimensional structure of a gel is pulverized so that a pulverized product (that is, a nano-three-dimensional porous sol particle retaining a part of a void structure) is dissolved in a solvent. The state which disperse | distributes to and shows fluidity.
 本発明のゲル粉砕物含有液は、例えば、前記ゲルの粉砕物同士を化学的に結合させるための触媒を含んでいても良い。前記触媒の含有率は、特に限定されないが、前記ゲルの粉砕物の重量に対し、例えば、0.01重量%~20重量%、0.05重量%~10重量%、または0.1重量%~5重量%である。 The gel pulverized product-containing liquid of the present invention may contain, for example, a catalyst for chemically bonding the gel pulverized products. The content of the catalyst is not particularly limited, and is 0.01% to 20% by weight, 0.05% to 10% by weight, or 0.1% by weight with respect to the weight of the pulverized product of the gel. ~ 5% by weight.
 また、本発明のゲル粉砕物含有液は、例えば、さらに、前記ゲルの粉砕物同士を間接的に結合させるための架橋補助剤を含んでいても良い。前記架橋補助剤の含有率は、特に限定されないが、例えば、前記ゲルの粉砕物の重量に対して0.01重量%~20重量%、0.05重量%~15重量%、または0.1重量%~10重量%である。 The gel pulverized product-containing liquid of the present invention may further contain, for example, a crosslinking aid for indirectly bonding the gel pulverized products. The content of the cross-linking auxiliary agent is not particularly limited. For example, the content is 0.01% to 20% by weight, 0.05% to 15% by weight, or 0.1% with respect to the weight of the gel pulverized product. % By weight to 10% by weight.
 本発明において、前記ケイ素化合物は、例えば、トリメトキシ(メチル)シランの加水分解物が例示できる。 In the present invention, examples of the silicon compound include a hydrolyzate of trimethoxy (methyl) silane.
 前記モノマーのケイ素化合物は、特に制限されず、例えば、製造する機能性多孔体の用途に応じて、適宜選択できる。前記機能性多孔体の製造において、前記ケイ素化合物は、例えば、低屈折率性を重視する場合、低屈折率性に優れる点から、前記3官能シランが好ましく、また、強度(例えば、耐擦傷性)を重視する場合は、耐擦傷性に優れる点から、前記4官能シランが好ましい。また、前記ケイ素化合物ゲルの原料となる前記ケイ素化合物は、例えば、一種類のみを使用してもよいし、二種類以上を併用してもよい。具体例として、前記ケイ素化合物として、例えば、前記3官能シランのみを含んでもよいし、前記4官能シランのみを含んでもよいし、前記3官能シランと前記4官能シランの両方を含んでもよいし、さらに、その他のケイ素化合物を含んでもよい。前記ケイ素化合物として、二種類以上のケイ素化合物を使用する場合、その比率は、特に制限されず、適宜設定できる。 The silicon compound of the monomer is not particularly limited, and can be appropriately selected according to the use of the functional porous body to be produced, for example. In the production of the functional porous body, for example, when the low refractive index property is important, the silicon compound is preferably the trifunctional silane from the viewpoint of excellent low refractive index property, and also has strength (for example, scratch resistance). ) Is preferred, the tetrafunctional silane is preferable from the viewpoint of excellent scratch resistance. Moreover, the said silicon compound used as the raw material of the said silicon compound gel may use only 1 type, for example, and may use 2 or more types together. As a specific example, the silicon compound may include, for example, only the trifunctional silane, may include only the tetrafunctional silane, may include both the trifunctional silane and the tetrafunctional silane, Furthermore, other silicon compounds may be included. When two or more types of silicon compounds are used as the silicon compound, the ratio is not particularly limited and can be set as appropriate.
 前記ケイ素化合物等の多孔体のゲル化は、例えば、前記多孔体間の脱水縮合反応により行うことができる。前記脱水縮合反応は、例えば、触媒存在下で行うことが好ましく、前記触媒としては、例えば、塩酸、シュウ酸、硫酸等の酸触媒、およびアンモニア、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒等の、脱水縮合触媒が挙げられる。前記脱水縮合触媒は、酸触媒でも塩基触媒でも良いが、塩基触媒が好ましい。前記脱水縮合反応において、前記多孔体に対する前記触媒の添加量は、特に制限されず、前記多孔体1モルに対して、触媒は、例えば、0.01モル~10モル、0.05モル~7モル、0.1モル~5モルである。 The gelation of the porous body such as the silicon compound can be performed, for example, by a dehydration condensation reaction between the porous bodies. The dehydration condensation reaction is preferably performed, for example, in the presence of a catalyst. Examples of the catalyst include acid catalysts such as hydrochloric acid, oxalic acid, and sulfuric acid, and ammonia, potassium hydroxide, sodium hydroxide, ammonium hydroxide, and the like. And a dehydration condensation catalyst such as a base catalyst. The dehydration condensation catalyst may be an acid catalyst or a base catalyst, but a base catalyst is preferred. In the dehydration condensation reaction, the amount of the catalyst added to the porous body is not particularly limited, and the catalyst is, for example, 0.01 mol to 10 mol, 0.05 mol to 7 mol per mol of the porous body. Mol, 0.1 mol to 5 mol.
 前記ケイ素化合物等の多孔体のゲル化は、例えば、溶媒中で行うことが好ましい。前記溶媒における前記多孔体の割合は、特に制限されない。前記溶媒は、例えば、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、アセトニトリル(MeCN)、エチレングリコールエチルエーテル(EGEE)等が挙げられる。前記溶媒は、例えば、1種類でもよいし、2種類以上を併用してもよい。前記ゲル化に使用する溶媒を、以下、「ゲル化用溶媒」ともいう。 The gelation of the porous body such as the silicon compound is preferably performed in a solvent, for example. The ratio of the porous body in the solvent is not particularly limited. Examples of the solvent include dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyllactone (GBL), acetonitrile (MeCN), ethylene Examples thereof include glycol ethyl ether (EGEE). For example, one type of solvent may be used, or two or more types may be used in combination. Hereinafter, the solvent used for the gelation is also referred to as “gelling solvent”.
 前記ゲル化の条件は、特に制限されない。前記多孔体を含む前記溶媒に対する処理温度は、例えば、20℃~30℃、22℃~28℃、24℃~26℃であり、処理時間は、例えば、1分~60分、5分~40分、10分~30分である。前記脱水縮合反応を行う場合、その処理条件は、特に制限されず、これらの例示を援用できる。前記ゲル化を行うことで、前記多孔体がケイ素化合物である場合、例えば、シロキサン結合が成長し、前記ケイ素化合物の一次粒子が形成され、さらに反応が進行することで、前記一次粒子同士が、数珠状に連なり三次元構造のゲルが生成される。 The gelation conditions are not particularly limited. The treatment temperature for the solvent containing the porous body is, for example, 20 ° C. to 30 ° C., 22 ° C. to 28 ° C., 24 ° C. to 26 ° C., and the treatment time is, for example, 1 minute to 60 minutes, 5 minutes to 40 minutes. Minutes, 10 minutes to 30 minutes. When performing the said dehydration condensation reaction, the process conditions in particular are not restrict | limited, These illustrations can be used. By performing the gelation, when the porous body is a silicon compound, for example, a siloxane bond grows, primary particles of the silicon compound are formed, and further the reaction proceeds, so that the primary particles are A gel with a three-dimensional structure is formed in a bead shape.
 前記ゲル化により得られた前記多孔体ゲルは、例えば、このまま溶媒置換工程および第1の粉砕段階に供してもよいが、前記第1の粉砕段階に先立ち、熟成工程において熟成処理を施してもよい。前記熟成工程は、ゲル化した前記多孔体(多孔体ゲル)を溶媒中で熟成する。前記熟成工程において、前記熟成処理の条件は、特に制限されず、例えば、前記多孔体ゲルを、溶媒中、所定温度でインキュベートすればよい。前記熟成処理によれば、例えば、ゲル化で得られた三次元構造を有する多孔体ゲルについて、前記一次粒子をさらに成長させることができ、これによって前記粒子自体のサイズを大きくすることが可能である。そして、結果的に、前記粒子同士が接触しているネック部分の接触状態を、例えば、点接触から面接触にして接触面積を増やすことができる。上記のような熟成処理を行った多孔体ゲルは、例えば、ゲル自体の強度が増加し、結果的には、粉砕を行った後の前記粉砕物の三次元基本構造の強度をより向上できる。これにより、前記本発明のゲル粉砕物含有液を用いて塗工膜を形成した場合、例えば、塗工後の乾燥工程においても、前記三次元基本構造が堆積した空隙構造の細孔サイズが、前記乾燥工程において生じる前記塗工膜中の溶媒の揮発に伴って、収縮することを抑制できる。 The porous gel obtained by the gelation may be used, for example, as it is in the solvent replacement step and the first pulverization step, but may be subjected to an aging treatment in the aging step prior to the first pulverization step. Good. In the aging step, the gelled porous body (porous gel) is aged in a solvent. In the aging step, conditions for the aging treatment are not particularly limited, and for example, the porous gel may be incubated in a solvent at a predetermined temperature. According to the aging treatment, for example, the porous particles having a three-dimensional structure obtained by gelation can further grow the primary particles, thereby increasing the size of the particles themselves. is there. As a result, the contact state of the neck portion where the particles are in contact can be increased from, for example, point contact to surface contact, and the contact area can be increased. The porous gel subjected to the aging treatment as described above, for example, increases the strength of the gel itself, and as a result, the strength of the three-dimensional basic structure of the pulverized product after pulverization can be further improved. Thereby, when forming a coating film using the gel pulverized product-containing liquid of the present invention, for example, in the drying step after coating, the pore size of the void structure in which the three-dimensional basic structure is deposited, It can suppress shrinking | contraction with the volatilization of the solvent in the said coating film which arises in the said drying process.
 前記熟成処理の温度は、その下限が、例えば、30℃以上、35℃以上、40℃以上であり、その上限が、例えば、80℃以下、75℃以下、70℃以下であり、その範囲が、例えば、30℃~80℃、35℃~75℃、40℃~70℃である。前記所定の時間は、特に制限されず、その下限が、例えば、5時間以上、10時間以上、15時間以上であり、その上限が、例えば、50時間以下、40時間以下、30時間以下であり、その範囲が、例えば、5時間~50時間、10時間~40時間、15時間~30時間である。なお、熟成の最適な条件については、例えば、前述したように、前記多孔体ゲルにおける、前記一次粒子のサイズの増大、および前記ネック部分の接触面積の増大が得られる条件に設定することが好ましい。また、前記熟成工程において、前記熟成処理の温度は、例えば、使用する溶媒の沸点を考慮することが好ましい。前記熟成処理は、例えば、熟成温度が高すぎると、前記溶媒が過剰に揮発してしまい、前記塗工液の濃縮により、三次元空隙構造の細孔が閉口する等の不具合が生じる可能性がある。一方で、前記熟成処理は、例えば、熟成温度が低すぎると、前記熟成による効果が十分に得られず、量産プロセスの経時での温度バラツキが増大することとなり、品質に劣る製品ができる可能性がある。 The lower limit of the temperature of the aging treatment is, for example, 30 ° C. or more, 35 ° C. or more, 40 ° C. or more, and the upper limit thereof is, for example, 80 ° C. or less, 75 ° C. or less, 70 ° C. or less. For example, 30 ° C. to 80 ° C., 35 ° C. to 75 ° C., 40 ° C. to 70 ° C. The predetermined time is not particularly limited, and the lower limit thereof is, for example, 5 hours or more, 10 hours or more, 15 hours or more, and the upper limit thereof is, for example, 50 hours or less, 40 hours or less, 30 hours or less. The range is, for example, 5 hours to 50 hours, 10 hours to 40 hours, 15 hours to 30 hours. The optimum conditions for aging are preferably set, for example, as described above, so that an increase in the size of the primary particles and an increase in the contact area of the neck portion can be obtained in the porous gel. . In the aging step, the temperature of the aging treatment preferably takes into account, for example, the boiling point of the solvent used. In the aging treatment, for example, if the aging temperature is too high, the solvent is excessively volatilized, and there is a possibility that problems such as closing of the pores of the three-dimensional void structure occur due to the concentration of the coating solution. is there. On the other hand, in the aging treatment, for example, if the aging temperature is too low, the effect due to the aging is not sufficiently obtained, temperature variation with time of the mass production process increases, and a product with poor quality may be produced. There is.
 さらに、前記微細孔粒子を含む液を作製した後に、または作製工程中に、前記微細孔粒子同士を化学的に結合させる触媒を加えることにより、前記微細孔粒子および前記触媒を含む含有液を作製することができる。前記触媒の添加量は、特に限定されないが、前記ゲル状ケイ素化合物の粉砕物の重量に対し、例えば、0.01重量%~20重量%、0.05重量%~10重量%、または0.1重量%~5重量%である。前記触媒は、例えば、前記微細孔粒子同士の架橋結合を促進する触媒であっても良い。前記微細孔粒子同士を化学的に結合させる化学反応としては、シリカゾル分子に含まれる残留シラノール基の脱水縮合反応を利用することが好ましい。シラノール基の水酸基同士の反応を前記触媒で促進することで、短時間で空隙構造を硬化させる連続成膜が可能である。前記触媒としては、例えば、光活性触媒および熱活性触媒が挙げられる。前記光活性触媒によれば、例えば、空隙層形成工程において、加熱によらずに前記微細孔粒子同士を化学的に結合(例えば架橋結合)させることができる。これによれば、例えば、前記空隙層形成工程において、前記空隙層全体の収縮が起こりにくいため、より高い空隙率を維持できる。また、前記触媒に加え、またはこれに代えて、触媒を発生する物質(触媒発生剤)を用いても良い。例えば、前記光活性触媒に加え、またはこれに代えて、光により触媒を発生する物質(光触媒発生剤)を用いても良いし、前記熱活性触媒に加え、またはこれに代えて、熱により触媒を発生する物質(熱触媒発生剤)を用いても良い。前記光触媒発生剤としては、特に限定されないが、例えば、光塩基発生剤(光照射により塩基性触媒を発生する物質)、光酸発生剤(光照射により酸性触媒を発生する物質)等が挙げられ、光塩基発生剤が好ましい。前記光塩基発生剤としては、例えば、9-アントリルメチル N,N-ジエチルカルバメート(9-anthrylmethyl N,N-diethylcarbamate、商品名WPBG-018)、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine、商品名WPBG-027)、1-(アントラキノン-2-イル)エチル イミダゾールカルボキシレート(1-(anthraquinon-2-yl)ethyl imidazolecarboxylate、商品名WPBG-140)、2-ニトロフェニルメチル 4-メタクリロイルオキシピペリジン-1-カルボキシラート(商品名WPBG-165)、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム 2-(3-ベンゾイルフェニル)プロピオナート(商品名WPBG-266)、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム n-ブチルトリフェニルボラート(商品名WPBG-300)、および2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(東京化成工業株式会社)、4-ピペリジンメタノールを含む化合物(商品名HDPD-PB100:ヘレウス社製)等が挙げられる。なお、前記「WPBG」を含む商品名は、いずれも和光純薬工業株式会社の商品名である。前記光酸発生剤としては、例えば、芳香族スルホニウム塩(商品名SP-170:ADEKA社)、トリアリールスルホニウム塩(商品名CPI101A:サンアプロ社)、芳香族ヨードニウム塩(商品名Irgacure250:チバ・ジャパン社)等が挙げられる。また、前記微細孔粒子同士を化学的に結合させる触媒は、前記光活性触媒および前記光触媒発生剤に限定されず、例えば、熱活性触媒または熱触媒発生剤でも良い。前記微細孔粒子同士を化学的に結合させる触媒は、例えば、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒、塩酸、酢酸、シュウ酸等の酸触媒等が挙げられる。これらの中で、塩基触媒が好ましい。前記微細孔粒子同士を化学的に結合させる触媒もしくは触媒発生剤は、例えば、前記粉砕物(微細孔粒子)を含むゾル粒子液(例えば懸濁液)に、塗工直前に添加して使用する、または前記触媒もしくは触媒発生剤を溶媒に混合した混合液として使用することができる。前記混合液は、例えば、前記ゾル粒子液に直接添加して溶解した塗工液、前記触媒もしくは触媒発生剤を溶媒に溶解した溶液、または、前記触媒もしくは触媒発生剤を溶媒に分散した分散液でもよい。前記溶媒は、特に制限されず、例えば、水、緩衝液等が挙げられる。 Furthermore, after producing the liquid containing the fine pore particles or during the production process, a catalyst containing the fine pore particles and the catalyst is produced by adding a catalyst that chemically bonds the fine pore particles to each other. can do. The amount of the catalyst to be added is not particularly limited, but is, for example, 0.01 wt% to 20 wt%, 0.05 wt% to 10 wt%, or 0. 0% by weight with respect to the weight of the pulverized product of the gel silicon compound. 1% to 5% by weight. The catalyst may be, for example, a catalyst that promotes cross-linking between the microporous particles. As a chemical reaction for chemically bonding the fine pore particles, it is preferable to use a dehydration condensation reaction of residual silanol groups contained in silica sol molecules. By promoting the reaction between the hydroxyl groups of the silanol group with the catalyst, it is possible to form a continuous film that cures the void structure in a short time. Examples of the catalyst include a photoactive catalyst and a thermally active catalyst. According to the photoactive catalyst, for example, in the void layer forming step, the microporous particles can be chemically bonded (for example, crosslinked) without being heated. According to this, for example, in the gap layer forming step, since the shrinkage of the entire gap layer hardly occurs, a higher porosity can be maintained. In addition to or instead of the catalyst, a substance that generates a catalyst (catalyst generator) may be used. For example, in addition to or instead of the photoactive catalyst, a substance that generates a catalyst by light (photocatalyst generator) may be used, or in addition to or instead of the thermally active catalyst A substance that generates water (thermal catalyst generator) may be used. The photocatalyst generator is not particularly limited, and examples thereof include a photobase generator (a substance that generates a basic catalyst by light irradiation), a photoacid generator (a substance that generates an acidic catalyst by light irradiation), and the like. A photobase generator is preferred. Examples of the photobase generator include 9-anthrylmethyl N, N-diethylcarbamate (trade name WPBG-018), (E) -1- [3- (2- Hydroxyphenyl) -2-propenoyl] piperidine ((E) -1- [3- (2-hydroxyphenyl) -2-propenoyl] piperidine, trade name WPBG-027), 1- (anthraquinone-2-yl) ethyl imidazolecarboxy Rate (1- (anthraquinon-2-yl) ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3- [bis (dimethylamino) methylene] guanidium 2- (3-benzoylphenyl) propionate (trade name WPBG-266), 1 , 2-dicyclohexyl-4,4,5,5-tetramethylbiguanidinium n-butyltriphenylborate (trade name WPBG-300) and 2- (9-oxoxanthen-2-yl) propionic acid 1, 5,7-triazabicyclo [4.4.0] dec-5-ene (Tokyo Chemical Industry Co., Ltd.), a compound containing 4-piperidinemethanol (trade name HDPD-PB100: manufactured by Heraeus), and the like. The trade names including “WPBG” are trade names of Wako Pure Chemical Industries, Ltd. Examples of the photoacid generator include aromatic sulfonium salts (trade name SP-170: ADEKA), triarylsulfonium salts (trade name CPI101A: San Apro), and aromatic iodonium salts (trade name Irgacure 250: Ciba Japan). Company). Further, the catalyst for chemically bonding the fine pore particles is not limited to the photoactive catalyst and the photocatalyst generator, and may be a thermal active catalyst or a thermal catalyst generator, for example. Examples of the catalyst that chemically bonds the fine pore particles include a base catalyst such as potassium hydroxide, sodium hydroxide, and ammonium hydroxide, and an acid catalyst such as hydrochloric acid, acetic acid, and oxalic acid. Of these, base catalysts are preferred. The catalyst or catalyst generator that chemically bonds the fine pore particles is added to, for example, a sol particle liquid (eg, suspension) containing the pulverized product (fine pore particles) immediately before coating. Alternatively, it can be used as a mixed solution in which the catalyst or the catalyst generator is mixed with a solvent. The mixed liquid is, for example, a coating liquid dissolved by directly adding to the sol particle liquid, a solution in which the catalyst or catalyst generator is dissolved in a solvent, or a dispersion in which the catalyst or catalyst generator is dispersed in a solvent. But you can. The solvent is not particularly limited, and examples thereof include water and a buffer solution.
 また、例えば、本発明のゲル含有液には、さらに、前記ゲルの粉砕物同士を間接的に結合させるための架橋補助剤を添加してもよい。この架橋補助剤が、粒子(前記粉砕物)同士の間に入り込み、粒子と架橋補助剤が各々相互作用もしくは結合することで、距離的に多少離れた粒子同士も結合させることが可能であり、効率よく強度を上げることが可能となる。前記架橋補助剤としては、多架橋シランモノマーが好ましい。前記多架橋シランモノマーは、具体的には、例えば、2以上3以下のアルコキシシリル基を有し、アルコキシシリル基間の鎖長が炭素数1以上10以下であっても良く、炭素以外の元素も含んでもよい。前記架橋補助剤としては、例えば、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)プロパン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)ブタン、ビス(トリメトキシシリル)ブタン、ビス(トリエトキシシリル)ペンタン、ビス(トリメトキシシリル)ペンタン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)ヘキサン、ビス(トリメトキシシリル)-N-ブチル-N-プロピル-エタン-1,2-ジアミン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレート等が挙げられる。この架橋補助剤の添加量としては、特に限定されないが、例えば、前記ケイ素化合物の粉砕物の重量に対して0.01重量%~20重量%、0.05重量%~15重量%、または0.1重量%~10重量%である。 Further, for example, a crosslinking aid for indirectly bonding the crushed gels may be added to the gel-containing liquid of the present invention. This crosslinking aid enters between the particles (the pulverized product), and the particles and the crosslinking aid interact or bond with each other, so that it is possible to bind particles that are slightly apart in distance. The strength can be increased efficiently. As the crosslinking aid, a polycrosslinked silane monomer is preferable. Specifically, the multi-crosslinked silane monomer has, for example, an alkoxysilyl group having 2 or more and 3 or less, the chain length between alkoxysilyl groups may be 1 to 10 carbon atoms, and an element other than carbon May also be included. Examples of the crosslinking aid include bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, bis (triethoxysilyl) propane, bis (Trimethoxysilyl) propane, bis (triethoxysilyl) butane, bis (trimethoxysilyl) butane, bis (triethoxysilyl) pentane, bis (trimethoxysilyl) pentane, bis (triethoxysilyl) hexane, bis (tri Methoxysilyl) hexane, bis (trimethoxysilyl) -N-butyl-N-propyl-ethane-1,2-diamine, tris- (3-trimethoxysilylpropyl) isocyanurate, tris- (3-triethoxysilylpropyl) ) Isocyanurate and the like. The addition amount of the crosslinking auxiliary agent is not particularly limited. For example, it is 0.01% to 20% by weight, 0.05% to 15% by weight, or 0% with respect to the weight of the pulverized product of the silicon compound. .1% to 10% by weight.
 前記触媒存在下での化学反応は、例えば、事前に前記ゲル粉砕物含有液に添加された前記触媒もしくは触媒発生剤を含む前記塗工膜に対し光照射もしくは加熱、または、前記塗工膜に、前記触媒を吹き付けてから光照射もしくは加熱、または、前記触媒もしくは触媒発生剤を吹き付けながら光照射もしくは加熱することによって、行うことができる。例えば、前記触媒が光活性触媒である場合は、光照射により、前記微細孔粒子同士を化学的に結合させて前記シリコーン多孔体を形成することができる。また、前記触媒が、熱活性触媒である場合は、加熱により、前記微細孔粒子同士を化学的に結合させて前記シリコーン多孔体を形成することができる。前記光照射における光照射量(エネルギー)は、特に限定されないが、@360nm換算で、例えば、200mJ/cm~800mJ/cm、250mJ/cm~600mJ/cm、または300mJ/cm~400mJ/cmである。照射量が十分でなく触媒発生剤の光吸収による分解が進まず効果が不十分となることを防止する観点からは、200mJ/cm以上の積算光量が良い。また、低屈折率層下の基材にダメージがかかり熱ジワが発生することを防止する観点からは、800mJ/cm以下の積算光量が良い。前記光照射における光の波長は、特に限定されないが、例えば、200nm~500nm、300nm~450nmである。前記光照射における光の照射時間は、特に限定されないが、例えば、0.1分~30分、0.2分~10分、0.3分~3分である。前記加熱処理の条件は、特に制限されず、前記加熱温度は、例えば、50℃~250℃、60℃~150℃、70℃~130℃であり、前記加熱時間は、例えば、0.1分~30分、0.2分~10分、0.3分~3分である。また、使用される溶媒については、例えば、乾燥時の溶媒揮発に伴う収縮応力の発生、それによる低屈折率層のクラック現象を抑える目的で、表面張力が低い溶媒が好ましい。例えば、イソプロピルアルコール(IPA)に代表される低級アルコール、ヘキサン、ペルフルオロヘキサン等が挙げられるが、これらに限定されない。 The chemical reaction in the presence of the catalyst is, for example, light irradiation or heating on the coating film containing the catalyst or the catalyst generator previously added to the gel pulverized product-containing liquid, or on the coating film. It can be carried out by light irradiation or heating after spraying the catalyst, or by light irradiation or heating while spraying the catalyst or catalyst generator. For example, when the catalyst is a photoactive catalyst, the porous silicon body can be formed by chemically bonding the microporous particles by light irradiation. Moreover, when the said catalyst is a heat active catalyst, the said microporous particle can be chemically combined by heating and the said silicone porous body can be formed. Light irradiation amount in the irradiation (energy) is not particularly limited, @ in 360nm terms, for example, 200mJ / cm 2 ~ 800mJ / cm 2, 250mJ / cm 2 ~ 600mJ / cm 2 or 300 mJ / cm 2 ~, 400 mJ / cm 2 . From the viewpoint of preventing the irradiation amount from being insufficient and the decomposition due to light absorption of the catalyst generator from proceeding and preventing the effect from becoming insufficient, an integrated light amount of 200 mJ / cm 2 or more is good. Further, from the viewpoint of preventing the base material under the low refractive index layer from being damaged and generating thermal wrinkles, an integrated light amount of 800 mJ / cm 2 or less is good. The wavelength of light in the light irradiation is not particularly limited, but is, for example, 200 nm to 500 nm, 300 nm to 450 nm. The light irradiation time in the light irradiation is not particularly limited, and is, for example, 0.1 minutes to 30 minutes, 0.2 minutes to 10 minutes, or 0.3 minutes to 3 minutes. The conditions for the heat treatment are not particularly limited, and the heating temperature is, for example, 50 ° C. to 250 ° C., 60 ° C. to 150 ° C., 70 ° C. to 130 ° C., and the heating time is, for example, 0.1 minutes. 30 minutes, 0.2 minutes to 10 minutes, and 0.3 minutes to 3 minutes. As the solvent used, for example, a solvent having a low surface tension is preferable for the purpose of suppressing the generation of shrinkage stress accompanying the solvent volatilization during drying and the resulting cracking phenomenon of the low refractive index layer. Examples thereof include, but are not limited to, lower alcohols typified by isopropyl alcohol (IPA), hexane, perfluorohexane, and the like.
 前記ケイ素化合物(シリカ系化合物)としては、例えば、SiO(無水ケイ酸);SiOと、NaO-B(ホウケイ酸)、Al(アルミナ)、B、TiO、ZrO、SnO、Ce、P、Sb、MoO、ZnO、WO、TiO-Al、TiO-ZrO、In-SnO、およびSb-SnOからなる群より選択される少なくとも1つの化合物とを含む化合物(上記「-」は、複合酸化物であることを示す。);であってもよい。 Examples of the silicon compound (silica-based compound) include SiO 2 (anhydrous silicic acid); SiO 2 , Na 2 O—B 2 O 3 (borosilicate), Al 2 O 3 (alumina), B 2 O 3. , TiO 2 , ZrO 2 , SnO 2 , Ce 2 O 3 , P 2 O 5 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 , TiO 2 —Al 2 O 3 , TiO 2 —ZrO 2 , In 2 O 3 -SnO 2, and Sb 2 O 3 at least one compound with a compound containing a selected from the group consisting of -SnO 2 (the "-" indicates that the compound oxide.); a was in Also good.
 低屈折率層は加水分解性シラン類により形成されていてもよく、前記加水分解性シラン類としては、例えば、置換基(例えば、フッ素)を有していてもよいアルキル基を含有する加水分解性シラン類が挙げられる。上記加水分解性シラン類、ならびにその部分加水分解物および脱水縮合物は、好ましくは、アルコキシシラン、およびシルセスキオキサンである。 The low refractive index layer may be formed of hydrolyzable silanes. Examples of the hydrolyzable silanes include hydrolysis containing an alkyl group which may have a substituent (for example, fluorine). Silanes. The hydrolyzable silanes, and the partial hydrolysates and dehydration condensates thereof are preferably alkoxysilanes and silsesquioxanes.
 アルコキシシランはモノマーでも、オリゴマーでも良い。アルコキシシランモノマーはアルコキシル基を3つ以上有するのが好ましい。アルコキシシランモノマーとしては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラプロポキシシラン、ジエトキシジメトキシシラン、ジメチルジメトキシシラン、およびジメチルジエトキシシランが挙げられる。アルコキシシランオリゴマーとしては、上記モノマーの加水分解及び重縮合により得られる重縮合物が好ましい。上記材料としてアルコキシシランを用いることにより、優れた均一性を有する低屈折率層が得られる。 The alkoxysilane may be a monomer or an oligomer. The alkoxysilane monomer preferably has 3 or more alkoxyl groups. Examples of alkoxysilane monomers include methyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetrapropoxysilane, diethoxydimethoxysilane, dimethyldimethoxysilane, and dimethyldimethoxysilane. An ethoxysilane is mentioned. As the alkoxysilane oligomer, a polycondensate obtained by hydrolysis and polycondensation of the above monomers is preferable. By using alkoxysilane as the material, a low refractive index layer having excellent uniformity can be obtained.
 シルセスキオキサンは、一般式RSiO1.5(ただしRは有機官能基を示す。)により表されるネットワーク状ポリシロキサンの総称である。Rとしては、例えば、アルキル基(直鎖でも分岐鎖でも良く、炭素数1~6である。)、フェニル基、およびアルコキシ基(例えば、メトキシ基、およびエトキシ基)が挙げられる。シルセスキオキサンの構造としては、例えば、ラダー型、および籠型が挙げられる。上記材料としてシルセスキオキサンを用いることにより、優れた均一性、耐候性、透明性、および硬度を有する低屈折率層が得られる。 Silsesquioxane is a general term for network-like polysiloxanes represented by the general formula RSiO 1.5 (where R represents an organic functional group). Examples of R include an alkyl group (which may be linear or branched and having 1 to 6 carbon atoms), a phenyl group, and an alkoxy group (for example, a methoxy group and an ethoxy group). Examples of the structure of silsesquioxane include a ladder type and a saddle type. By using silsesquioxane as the material, a low refractive index layer having excellent uniformity, weather resistance, transparency and hardness can be obtained.
 上記多孔質層に含まれる上記粒子としては、任意の適切な粒子を採用し得る。上記粒子は、代表的には、シリカ系化合物からなる。 Any appropriate particles can be adopted as the particles contained in the porous layer. The particles are typically made of a silica-based compound.
 上記粒子の平均粒子径は、例えば5nm~200nmであり、好ましくは10nm~200nmである。上記構成を有することにより、充分に屈折率が低い低屈折率層を得ることができ、かつ低屈折率層の透明性を維持することができる。なお、本明細書では、平均粒子径とは、窒素吸着法(BET法)により測定された比表面積(m/g)から、平均粒子径=(2720/比表面積)の式によって与えられた値を意味するものとする(特開平1-317115号参照)。 The average particle diameter of the particles is, for example, 5 nm to 200 nm, preferably 10 nm to 200 nm. By having the above configuration, a low refractive index layer having a sufficiently low refractive index can be obtained, and the transparency of the low refractive index layer can be maintained. In the present specification, the average particle diameter is given by the formula of average particle diameter = (2720 / specific surface area) from the specific surface area (m 2 / g) measured by the nitrogen adsorption method (BET method). It means a value (see JP-A-1-317115).
 1つの実施形態においては、低屈折率層は、上記材料を含む塗工液を反射型偏光子(または反射型偏光子上に形成した偏光子)の表面に塗工し、乾燥することにより形成され得る。別の実施形態においては、低屈折率層は、上記の材料を含む塗工液を任意の適切な基材上に塗工し、乾燥させた後、任意の適切な接着層を介して反射型偏光子(または偏光子)に転写することにより形成され得る。なお、低屈折率層が粘着剤で構成される場合には、接着層を省略することができる。 In one embodiment, the low refractive index layer is formed by applying a coating liquid containing the above material to the surface of a reflective polarizer (or a polarizer formed on the reflective polarizer) and drying it. Can be done. In another embodiment, the low-refractive index layer is formed by applying a coating liquid containing the above-described material onto any appropriate substrate, drying, and then reflecting through any appropriate adhesive layer. It can be formed by transferring to a polarizer (or polarizer). In the case where the low refractive index layer is composed of an adhesive, the adhesive layer can be omitted.
E.保護フィルム
 保護フィルムは、偏光子を保護するフィルムとして使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
E. Protective film The protective film is formed of any suitable film that can be used as a film for protecting the polarizer. Specific examples of the material as the main component of the film include cellulose resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based materials. And transparent resins such as polystyrene, polynorbornene, polyolefin, (meth) acryl, and acetate. Further, thermosetting resins such as (meth) acrylic, urethane-based, (meth) acrylurethane-based, epoxy-based, and silicone-based or ultraviolet curable resins are also included. In addition to this, for example, a glassy polymer such as a siloxane polymer is also included. Further, a polymer film described in JP-A-2001-343529 (WO01 / 37007) can also be used. As a material for this film, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in the side chain For example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film can be, for example, an extruded product of the resin composition.
 保護フィルムの厚みは、好ましくは10μm~100μmである。保護フィルムは、接着層(具体的には、接着剤層、粘着剤層)を介して偏光子に積層されていてもよく、偏光子に密着(接着層を介さずに)積層されていてもよい。接着剤層は、任意の適切な接着剤で形成される。接着剤としては、例えば、ポリビニルアルコール系樹脂を主成分とする水溶性接着剤が挙げられる。ポリビニルアルコール系樹脂を主成分とする水溶性接着剤は、好ましくは、金属化合物コロイドをさらに含有し得る。金属化合物コロイドは、金属化合物微粒子が分散媒中に分散しているものであり得、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定性を有するものであり得る。金属化合物コロイドを形成する微粒子の平均粒子径は、偏光特性等の光学特性に悪影響を及ぼさない限り、任意の適切な値であり得る。好ましくは1nm~100nm、さらに好ましくは1nm~50nmである。微粒子を接着剤層中に均一に分散させ得、接着性を確保し、かつクニックを抑え得るからである。なお、「クニック」とは、偏光子と保護フィルムの界面で生じる局所的な凹凸欠陥のことをいう。粘着剤層は、任意の適切な粘着剤で構成される。 The thickness of the protective film is preferably 10 μm to 100 μm. The protective film may be laminated to the polarizer via an adhesive layer (specifically, an adhesive layer or an adhesive layer), or may be adhered to the polarizer (without an adhesive layer). Good. The adhesive layer is formed of any appropriate adhesive. As an adhesive agent, the water-soluble adhesive agent which has a polyvinyl alcohol-type resin as a main component is mentioned, for example. The water-soluble adhesive mainly composed of a polyvinyl alcohol-based resin can preferably further contain a metal compound colloid. The metal compound colloid can be one in which metal compound fine particles are dispersed in a dispersion medium, and can be electrostatically stabilized due to mutual repulsion of the same kind of charge of the fine particles, and can have permanent stability. . The average particle size of the fine particles forming the metal compound colloid can be any appropriate value as long as it does not adversely affect the optical properties such as polarization properties. The thickness is preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm. This is because the fine particles can be uniformly dispersed in the adhesive layer, the adhesion can be ensured, and the nick can be suppressed. The “knic” refers to a local uneven defect generated at the interface between the polarizer and the protective film. The pressure-sensitive adhesive layer is composed of any appropriate pressure-sensitive adhesive.
F.画像表示装置
 上記A項からF項に記載の光学部材は、液晶表示装置などの画像表示装置に用いられ得る。具体的には、上記光学部材は、液晶表示装置の液晶セルの背面側に配置される偏光板として、反射型偏光子を背面側にして液晶セルに貼り合わせて用いられ得る。したがって、本発明は、上記光学部材を用いた画像表示装置を包含する。本発明の実施形態による画像表示装置は、上記A項からF項に記載の光学部材を備える。
F. Image Display Device The optical members described in the items A to F can be used for an image display device such as a liquid crystal display device. Specifically, the optical member can be used as a polarizing plate disposed on the back side of the liquid crystal cell of the liquid crystal display device by being attached to the liquid crystal cell with the reflective polarizer on the back side. Therefore, the present invention includes an image display device using the optical member. The image display apparatus by embodiment of this invention is equipped with the optical member as described in said A term to F term.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例には限定されない。実施例における試験および評価方法は以下のとおりである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。
(1)屈折率および膜厚の測定方法
 エリプソメーター(製品名「ウーラムM2000」、J.A. Woollam株式会社製)を用いて反射測定を行うことにより、屈折率および膜厚を求めた。
(2)液晶表示装置の表示特性
 液晶表示装置を全画面白表示となるようにし、コノスコープ(AUTRONIC MELCHERS株式会社製)にて正面輝度(白輝度)を測定した(単位:cd/m)。次いで、液晶表示装置を全画面黒表示となるようにし、コノスコープ(AUTRONIC MELCHERS株式会社製)にて正面輝度(黒輝度)を測定した(単位:cd/m)。(白輝度/黒輝度)の値を算出し、正面コントラストとした。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. The tests and evaluation methods in the examples are as follows. Unless otherwise specified, “parts” and “%” in the examples are based on weight.
(1) Measuring method of refractive index and film thickness The refractive index and the film thickness were determined by performing reflection measurement using an ellipsometer (product name “Woolam M2000”, manufactured by JA Woollam Co., Ltd.).
(2) Display characteristics of liquid crystal display device The liquid crystal display device was made to display a full screen white, and the front luminance (white luminance) was measured with a conoscope (manufactured by AUTRONIC MELCHERS Co., Ltd.) (unit: cd / m 2 ). . Next, the liquid crystal display device was made to display full screen black, and the front luminance (black luminance) was measured with a conoscope (manufactured by AUTRONIC MELCHERS Co., Ltd.) (unit: cd / m 2 ). The value of (white luminance / black luminance) was calculated and used as the front contrast.
<製造例1>
(偏光子の作製)
 長尺状の非晶質ポリエチレンテレフタレート(A-PET)フィルム(三菱樹脂社製、商品名「ノバクリア」、厚み:100μm)を基材として用意し、上記基材の片面に、ポリビニルアルコール(PVA)樹脂(日本合成化学工業社製、商品名「ゴーセノール(登録商標)NH-26」)の水溶液を60℃で塗布および乾燥して、基材上にPVA系樹脂層を形成した後、この積層体を液温30℃の不溶化浴に30秒間浸漬させた(不溶化工程)。次いで、液温30℃の染色浴に60秒間浸漬させた(染色工程)。次いで、液温30℃の架橋浴に30秒間浸漬させた(架橋工程)。その後、積層体を、液温60℃のホウ酸水溶液に浸漬させながら、周速の異なるロール間で縦方向(長尺方向)に一軸延伸を行った。ホウ酸水溶液への浸漬時間は120秒であり、積層体が破断する直前まで延伸した。その後、積層体を洗浄浴に浸漬させた後、60℃の温風で乾燥させた(洗浄・乾燥工程)。このようにして、基材上に厚み5μmの偏光子(単体透過率:38.1%、偏光度:99.99%)が形成された積層体を得た。
<Production Example 1>
(Production of polarizer)
A long amorphous polyethylene terephthalate (A-PET) film (manufactured by Mitsubishi Plastics, trade name “Novaclear”, thickness: 100 μm) is prepared as a base material, and polyvinyl alcohol (PVA) is provided on one side of the base material. An aqueous solution of resin (product name “GOHSENOL (registered trademark) NH-26” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is applied and dried at 60 ° C. to form a PVA resin layer on the substrate, and then the laminate Was immersed in an insolubilizing bath having a liquid temperature of 30 ° C. for 30 seconds (insolubilizing step). Subsequently, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. for 60 seconds (dyeing process). Next, it was immersed in a crosslinking bath at a liquid temperature of 30 ° C. for 30 seconds (crosslinking step). Thereafter, the laminate was uniaxially stretched in the machine direction (longitudinal direction) between rolls having different peripheral speeds while being immersed in a boric acid aqueous solution having a liquid temperature of 60 ° C. The immersion time in the boric acid aqueous solution was 120 seconds, and the laminate was stretched until just before breaking. Thereafter, the laminate was immersed in a cleaning bath and then dried with warm air of 60 ° C. (cleaning / drying step). In this way, a laminate in which a polarizer having a thickness of 5 μm (single transmittance: 38.1%, polarization degree: 99.99%) was formed on the base material was obtained.
<製造例2>
(低屈折率塗工液の調整)
 ジメチルスルホキシド(DMSO)2.2gにケイ素化合物の前駆体であるメチルトリメトキシシラン(MTMS)を0.95g溶解させた混合液に、0.01mol/Lのシュウ酸水溶液を0.5g添加し、室温で30分撹拌を行うことでMTMSを加水分解して、トリス(ヒドロキシ)メチルシランを生成した。その後、DMSO 5.5gに、28%濃度のアンモニア水0.38gおよび純水0.2gを添加した後、上記加水分解処理した混合液をさらに添加し、室温で15分撹拌することで、トリス(ヒドロキシ)メチルシランのゲル化を行い、ゲル状ケイ素化合物を得た。上記ゲル化処理を行った混合液を、そのまま40℃で20時間インキュベートして熟成処理を行った。次に、上記熟成処理したゲル状ケイ素化合物を、スパチェラを用いて数mm~数cmサイズの顆粒状に砕いた。そこに、置換溶媒として水、イソプロピルアルコール(IPA)、イソブチルアルコール(IBA)の順番で適宜ゲル体積の4倍量ずつ添加し、室温で各4時間静置して、ゲル中の溶媒を最終的にIBAに置換完了した。この時、各溶媒での置換工程を各3回ずつ実施した。そして、上記混合液中のゲル状ケイ素化合物を粉砕処理した。粉砕処理は、ホモジナイザー(商品名「UH-50」、エスエムテー社製)を使用し、5cmのスクリュー瓶に、ゲル1.85g、IBA 1.14gを秤量した後、50W、20kHzの条件で2分間の粉砕を行った。上記粉砕処理によって、上記混合液中のゲル状ケイ素化合物が粉砕され、その結果、上記混合液は粉砕物のゾル液となった。この粉砕液3gに光塩基発生剤(WPNG-266:Wako)1.5%濃度MIBK溶液0.36gと架橋補助剤であるビス(トリメトキシシリル)エタン(TCI)の5%濃度MIBK溶液0.11gを添加混合し、低屈折率層塗工液を作成した。
<Production Example 2>
(Adjustment of low refractive index coating solution)
0.5 g of 0.01 mol / L oxalic acid aqueous solution was added to a mixed solution in which 0.95 g of methyltrimethoxysilane (MTMS), which is a silicon compound precursor, was dissolved in 2.2 g of dimethyl sulfoxide (DMSO). MTMS was hydrolyzed by stirring at room temperature for 30 minutes to produce tris (hydroxy) methylsilane. Thereafter, after adding 0.38 g of 28% ammonia water and 0.2 g of pure water to 5.5 g of DMSO, the above hydrolyzed mixture was further added, and the mixture was stirred at room temperature for 15 minutes. Gelation of (hydroxy) methylsilane was performed to obtain a gel-like silicon compound. The mixed solution subjected to the gelation treatment was incubated at 40 ° C. for 20 hours as it was to be aged. Next, the aging-treated gel silicon compound was crushed into granules of several mm to several cm using a spatula. Then, as a substitution solvent, water, isopropyl alcohol (IPA), isobutyl alcohol (IBA) were added in an order of 4 times the volume of the gel, and allowed to stand at room temperature for 4 hours, and the solvent in the gel was finally added. The replacement with IBA was completed. At this time, the substitution step with each solvent was performed three times each. And the gelatinous silicon compound in the said liquid mixture was grind | pulverized. For the pulverization process, a homogenizer (trade name “UH-50”, manufactured by SMT Co., Ltd.) was used, and 1.85 g of gel and 1.14 g of IBA were weighed into a 5 cm 3 screw bottle, then 2 under the conditions of 50 W and 20 kHz. Minute grinding was performed. By the pulverization treatment, the gel-like silicon compound in the mixed solution was pulverized. As a result, the mixed solution became a sol solution of a pulverized product. To 3 g of this pulverized liquid, 0.36 g of a 1.5% concentration MIBK solution of a photobase generator (WPNG-266: Wako) and 0.5% concentration MIBK solution of bis (trimethoxysilyl) ethane (TCI) as a crosslinking aid were added. 11 g was added and mixed to prepare a low refractive index layer coating solution.
<実施例1>
1.光学部材の作製
 反射型偏光子(3M社製、製品名「DBEF」)に、製造例1で得られた積層体の偏光子側の面を、粘着剤を介して貼り合わせた。
 次いで、上記積層体の偏光子から基材を剥離し、剥離面に製造例2で得られた低屈折率塗工液を塗工し、80℃で20秒間乾燥したのち300mJ/cmのUV照射を行なって偏光子の表面に低屈折率層を形成することにより、反射型偏光子/偏光子/低屈折率層の構成を有する光学部材を得た。上記低屈折率層は、厚みが800nmであり、空隙率が59%であり、屈折率が1.16であった。
2.液晶表示装置の作製
 IPSモードの液晶表示装置(Apple株式会社製、商品名「iPad(登録商標)2」)から液晶パネルを取り出し、当該液晶パネルから下側(背面側)の偏光板を取り除いた。
 次いで、下側の偏光板の代わりに、上記で得られた光学部材の低屈折率層側の面を、アクリル系光学粘着剤(12μm)を介して液晶セルの下側に貼り付けた。このとき、光学部材の偏光子の吸収軸が、視認側の偏光板の偏光子の吸収軸と直交するように貼り付けた。
 下側の偏光板として上記光学部材を有する液晶パネルを液晶表示装置に取り付けることにより、本実施例の液晶表示装置を得た。上記液晶表示装置を、輝度およびコントラストの評価に供した。結果を表1に示す。
<Example 1>
1. Production of Optical Member The polarizer-side surface of the laminate obtained in Production Example 1 was bonded to a reflective polarizer (manufactured by 3M, product name “DBEF”) via an adhesive.
Next, the base material is peeled from the polarizer of the laminate, the low refractive index coating liquid obtained in Production Example 2 is applied to the peeled surface, dried at 80 ° C. for 20 seconds, and then 300 mJ / cm 2 UV. Irradiation was performed to form a low refractive index layer on the surface of the polarizer, thereby obtaining an optical member having a configuration of reflective polarizer / polarizer / low refractive index layer. The low refractive index layer had a thickness of 800 nm, a porosity of 59%, and a refractive index of 1.16.
2. Production of Liquid Crystal Display Device A liquid crystal panel was taken out from an IPS mode liquid crystal display device (trade name “iPad (registered trademark) 2” manufactured by Apple Inc.), and the lower (rear side) polarizing plate was removed from the liquid crystal panel. .
Next, instead of the lower polarizing plate, the surface of the optical member obtained above on the low refractive index layer side was attached to the lower side of the liquid crystal cell via an acrylic optical adhesive (12 μm). At this time, the polarizer was bonded so that the absorption axis of the polarizer of the optical member was orthogonal to the absorption axis of the polarizer of the polarizing plate on the viewing side.
By attaching a liquid crystal panel having the optical member as a lower polarizing plate to the liquid crystal display device, a liquid crystal display device of this example was obtained. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
<実施例2>
 反射型偏光子(3M社製、製品名「DBEF」)の表面に、製造例2で得られた低屈折率塗工液を塗工し、80℃で20秒間乾燥したのち300mJ/cmのUV照射を行なって反射型偏光子の表面に低屈折率層を形成した。上記低屈折率層は、厚みが800nmであり、空隙率が59%であり、屈折率が1.16であった。
 次いで、低屈折率層の反射型偏光子とは反対側に、製造例1で得られた積層体の偏光子側の面を、粘着剤を介して貼り合わせた。次いで、上記積層体の偏光子から基材を剥離することにより、反射型偏光子/低屈折率層/偏光子の構成を有する光学部材を得た。
 上記で得られた光学部材の偏光子側の面を、液晶セルの下側に貼り付けたこと以外は実施例1と同様にして液晶表示装置を得た。上記液晶表示装置を、輝度およびコントラストの評価に供した。結果を表1に示す。
<Example 2>
The surface of a reflective polarizer (manufactured by 3M, product name “DBEF”) is coated with the low refractive index coating liquid obtained in Production Example 2, dried at 80 ° C. for 20 seconds, and then 300 mJ / cm 2 . UV irradiation was performed to form a low refractive index layer on the surface of the reflective polarizer. The low refractive index layer had a thickness of 800 nm, a porosity of 59%, and a refractive index of 1.16.
Next, the surface of the laminate obtained in Production Example 1 on the side opposite to the reflective polarizer of the low refractive index layer was bonded via an adhesive. Subsequently, the base material was peeled from the polarizer of the laminate, thereby obtaining an optical member having a configuration of reflective polarizer / low refractive index layer / polarizer.
A liquid crystal display device was obtained in the same manner as in Example 1 except that the surface on the polarizer side of the optical member obtained above was attached to the lower side of the liquid crystal cell. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
<実施例3>
 製造例1で得られた積層体の偏光子側の面に、UV硬化型接着剤を介してアクリル系保護フィルム(厚み40μm)を貼り合わせ、上記積層体の偏光子側から基材を剥離した。
 次いで、アクリル系保護フィルム面に、製造例2で得られた低屈折率塗工液を塗工し、80℃で20秒間乾燥したのち300mJ/cmのUV照射を行なってアクリル系保護フィルムの表面に低屈折率層を形成した。次いで、偏光子の表面に、アクリル系光学粘着剤(12μm)を介して反射型偏光子(3M社製、製品名「DBEF」)を貼り合わせることにより、反射型偏光子/偏光子/アクリル系保護フィルム/低屈折率層の構成を有する光学部材を得た。
 上記で得られた光学部材の低屈折率層側の面を、液晶セルの下側に貼り付けたこと以外は実施例1と同様にして液晶表示装置を得た。上記液晶表示装置を、輝度およびコントラストの評価に供した。結果を表1に示す。
<Example 3>
An acrylic protective film (thickness 40 μm) was bonded to the surface of the laminate obtained in Production Example 1 via a UV curable adhesive, and the substrate was peeled from the polarizer side of the laminate. .
Next, the acrylic protective film surface was coated with the low refractive index coating solution obtained in Production Example 2, dried at 80 ° C. for 20 seconds, and then irradiated with UV at 300 mJ / cm 2 to obtain the acrylic protective film. A low refractive index layer was formed on the surface. Next, a reflective polarizer (product name “DBEF”, manufactured by 3M Co.) is bonded to the surface of the polarizer via an acrylic optical adhesive (12 μm), thereby reflecting the polarizer / polarizer / acrylic. An optical member having a configuration of protective film / low refractive index layer was obtained.
A liquid crystal display device was obtained in the same manner as in Example 1 except that the surface of the optical member obtained above was bonded to the lower side of the liquid crystal cell. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
<比較例1>
 低屈折率層を形成しなかったこと以外は実施例1と同様にして、反射型偏光子/偏光子の構成を有する光学部材を得た。
 上記で得られた光学部材の偏光子側の面を、液晶セルの下側に貼り付けたこと以外は実施例1と同様にして液晶表示装置を得た。上記液晶表示装置を、輝度およびコントラストの評価に供した。結果を表1に示す。
<Comparative Example 1>
An optical member having a reflective polarizer / polarizer configuration was obtained in the same manner as in Example 1 except that the low refractive index layer was not formed.
A liquid crystal display device was obtained in the same manner as in Example 1 except that the surface on the polarizer side of the optical member obtained above was attached to the lower side of the liquid crystal cell. The liquid crystal display device was subjected to evaluation of luminance and contrast. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、比較例の液晶表示装置に比べて、実施例1~3の液晶表示装置はコントラストが高い。 As is clear from Table 1, the liquid crystal display devices of Examples 1 to 3 have higher contrast than the liquid crystal display device of the comparative example.
 本発明の光学部材は、液晶表示装置、有機EL表示装置等の画像表示装置に好適に用いられる。 The optical member of the present invention is suitably used for image display devices such as liquid crystal display devices and organic EL display devices.
 10    偏光子
 20    反射型偏光子
 30    低屈折率層
 100   光学部材
101   光学部材
DESCRIPTION OF SYMBOLS 10 Polarizer 20 Reflective polarizer 30 Low refractive index layer 100 Optical member 101 Optical member

Claims (9)

  1.  偏光子と、反射型偏光子と、屈折率が1.25以下である低屈折率層と、を有し、
     前記低屈折率層が前記偏光子の少なくとも片側に積層されている、光学部材。
    A polarizer, a reflective polarizer, and a low refractive index layer having a refractive index of 1.25 or less,
    An optical member in which the low refractive index layer is laminated on at least one side of the polarizer.
  2.  前記反射型偏光子と前記偏光子と前記低屈折率層とがこの順に一体化された、請求項1に記載の光学部材。 The optical member according to claim 1, wherein the reflective polarizer, the polarizer, and the low refractive index layer are integrated in this order.
  3.  前記低屈折率層の前記偏光子とは反対側に配置された粘着層をさらに有する、請求項2に記載の光学部材。 The optical member according to claim 2, further comprising an adhesive layer disposed on the side of the low refractive index layer opposite to the polarizer.
  4.  前記反射型偏光子と前記低屈折率層と前記偏光子とがこの順に一体化された、請求項1に記載の光学部材。 The optical member according to claim 1, wherein the reflective polarizer, the low refractive index layer, and the polarizer are integrated in this order.
  5.  前記偏光子の前記低屈折率層とは反対側に配置された保護フィルムをさらに有する、請求項4に記載の光学部材。 The optical member according to claim 4, further comprising a protective film disposed on the opposite side of the polarizer from the low refractive index layer.
  6.  前記低屈折率層の空隙率が35%以上であり、
     前記低屈折率層の厚みが前記偏光子の厚みよりも薄い、請求項1から5のいずれかに記載の光学部材。
    The porosity of the low refractive index layer is 35% or more,
    The optical member according to claim 1, wherein a thickness of the low refractive index layer is thinner than a thickness of the polarizer.
  7.  前記反射型偏光子の反射軸と前記偏光子の吸収軸とのなす角度が-5°~5°である、請求項1から6のいずれかに記載の光学部材。 The optical member according to any one of claims 1 to 6, wherein an angle formed between a reflection axis of the reflective polarizer and an absorption axis of the polarizer is -5 ° to 5 °.
  8.  請求項1から7のいずれかに記載の光学部材を有する、画像表示装置。 An image display device comprising the optical member according to any one of claims 1 to 7.
  9.  請求項1から7のいずれかに記載の光学部材の製造方法であって、
     前記偏光子または前記反射型偏光子の表面に低屈折率塗工液を塗工して乾燥させることにより、前記低屈折率層を形成すること、または、
     基材の表面に低屈折率塗工液を塗工して乾燥させることにより前記基材上に形成された前記低屈折率層を、前記偏光子または前記反射型偏光子の表面に転写すること、を含む、光学部材の製造方法。
    It is a manufacturing method of the optical member according to any one of claims 1 to 7,
    Forming the low refractive index layer by applying and drying a low refractive index coating liquid on the surface of the polarizer or the reflective polarizer, or
    Transfer the low refractive index layer formed on the base material by applying a low refractive index coating solution on the surface of the base material and drying the liquid onto the surface of the polarizer or the reflective polarizer. The manufacturing method of the optical member containing these.
PCT/JP2018/021577 2017-06-07 2018-06-05 Optical member, image display device, and method for manufacturing optical member WO2018225741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523917A JPWO2018225741A1 (en) 2017-06-07 2018-06-05 Optical member, image display device, and method of manufacturing optical member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112388 2017-06-07
JP2017-112388 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225741A1 true WO2018225741A1 (en) 2018-12-13

Family

ID=64566146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021577 WO2018225741A1 (en) 2017-06-07 2018-06-05 Optical member, image display device, and method for manufacturing optical member

Country Status (3)

Country Link
JP (1) JPWO2018225741A1 (en)
TW (1) TW201910824A (en)
WO (1) WO2018225741A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079838A (en) * 2018-12-26 2020-07-06 삼성에스디아이 주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
CN113009614A (en) * 2020-09-07 2021-06-22 住华科技股份有限公司 Reflection type polarizer group and display device using same
WO2021131377A1 (en) * 2019-12-23 2021-07-01 住友化学株式会社 Optical laminate
JP7470206B2 (en) 2020-10-29 2024-04-17 日東電工株式会社 Whiteboard film, whiteboard and anti-peeping system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614594B (en) * 2019-03-29 2023-10-10 株式会社Lg化学 Anti-reddening layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004464A (en) * 2002-04-19 2004-01-08 Casio Comput Co Ltd Liquid crystal display
JP2008225155A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Liquid crystal device
US20110182050A1 (en) * 2008-03-19 2011-07-28 I2Ic Corporation Polarized Linear Light Source
JP2013109869A (en) * 2011-11-18 2013-06-06 Konica Minolta Advanced Layers Inc Organic electroluminescent display device
JP2015200866A (en) * 2014-03-31 2015-11-12 日東電工株式会社 Optical member, polarizing plate set and liquid crystal display apparatus
JP2016500161A (en) * 2012-11-30 2016-01-07 スリーエム イノベイティブ プロパティズ カンパニー Light-emitting display with reflective polarizer
JP2016109994A (en) * 2014-12-10 2016-06-20 日東電工株式会社 Liquid crystal display device
JP2017502330A (en) * 2013-12-06 2017-01-19 スリーエム イノベイティブ プロパティズ カンパニー Multilayer reflective polarizer with built-in absorber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004464A (en) * 2002-04-19 2004-01-08 Casio Comput Co Ltd Liquid crystal display
JP2008225155A (en) * 2007-03-14 2008-09-25 Seiko Epson Corp Liquid crystal device
US20110182050A1 (en) * 2008-03-19 2011-07-28 I2Ic Corporation Polarized Linear Light Source
JP2013109869A (en) * 2011-11-18 2013-06-06 Konica Minolta Advanced Layers Inc Organic electroluminescent display device
JP2016500161A (en) * 2012-11-30 2016-01-07 スリーエム イノベイティブ プロパティズ カンパニー Light-emitting display with reflective polarizer
JP2017502330A (en) * 2013-12-06 2017-01-19 スリーエム イノベイティブ プロパティズ カンパニー Multilayer reflective polarizer with built-in absorber
JP2015200866A (en) * 2014-03-31 2015-11-12 日東電工株式会社 Optical member, polarizing plate set and liquid crystal display apparatus
JP2016109994A (en) * 2014-12-10 2016-06-20 日東電工株式会社 Liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200079838A (en) * 2018-12-26 2020-07-06 삼성에스디아이 주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
KR102387480B1 (en) * 2018-12-26 2022-04-15 삼성에스디아이 주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
WO2021131377A1 (en) * 2019-12-23 2021-07-01 住友化学株式会社 Optical laminate
CN113009614A (en) * 2020-09-07 2021-06-22 住华科技股份有限公司 Reflection type polarizer group and display device using same
JP7470206B2 (en) 2020-10-29 2024-04-17 日東電工株式会社 Whiteboard film, whiteboard and anti-peeping system

Also Published As

Publication number Publication date
TW201910824A (en) 2019-03-16
JPWO2018225741A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018225741A1 (en) Optical member, image display device, and method for manufacturing optical member
JP5045823B2 (en) Optical laminated film, polarizing plate and optical product
JP5052900B2 (en) Liquid crystal display
JP6606518B2 (en) Optical sheet for light guide plate type liquid crystal display, backlight unit for light guide plate type liquid crystal display, and light guide plate type liquid crystal display
JP2017054111A (en) Low refractive index layer, laminated film, manufacturing method of low refractive index layer, manufacturing method of laminated film, optical member, and image display device
KR102169533B1 (en) Void layer, laminate, manufacturing method of void layer, optical member and optical device
JP2017068250A (en) Optical member, and set of polarizing plates using the optical member and liquid crystal display
JP2013037362A (en) Antiglare and antireflection coating composition, and antiglare and antireflection film, polarizing plate and display device using the same
JP2017047677A (en) Optical laminate, method for manufacturing optical laminate, optical member, image display device, method for manufacturing optical member and method for manufacturing image display device
WO2018008534A1 (en) Optical laminate manufacturing method and optical laminate intermediate body
JP2017047678A (en) Laminate film, method for manufacturing laminate film, optical member, image display device, method for manufacturing optical member and method for manufacturing image display device
WO2018142813A1 (en) Low refractive index layer-containing adhesive sheet, method for producing low refractive index layer-containing adhesive sheet, and optical device
WO2017022690A1 (en) Optical laminate, optical laminate manufacturing method, optical member, and image display device
CN110234720A (en) The manufacturing method and optical device of adhesive/bonding sheet containing low-index layer, the adhesive/bonding sheet containing low-index layer
JP2018123233A (en) Void layer, void layer-containing adhesive sheet, method for producing void layer, method for producing void layer-containing adhesive sheet, and optical device
JPWO2006054695A1 (en) Liquid crystal display
WO2017043496A1 (en) Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device
TW202200726A (en) Optical laminate with double-sided adhesive layer, and optical device
CN112771413B (en) Optical laminate with adhesive layer on both sides
JP2007065191A (en) Polarizing plate and liquid crystal display device
JP2006018089A (en) Polarizing plate and liquid crystal display device
JP2010223985A (en) Metal oxide fine particle, coating material, optical laminate, and manufacturing method thereof
JP2006181731A (en) Antireflection laminate
JP2017064954A (en) Method for producing laminated film and method for producing image display device
JPWO2006019086A1 (en) N3204PCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814122

Country of ref document: EP

Kind code of ref document: A1