WO2018225613A1 - Imaging optical system and endoscope - Google Patents

Imaging optical system and endoscope Download PDF

Info

Publication number
WO2018225613A1
WO2018225613A1 PCT/JP2018/020919 JP2018020919W WO2018225613A1 WO 2018225613 A1 WO2018225613 A1 WO 2018225613A1 JP 2018020919 W JP2018020919 W JP 2018020919W WO 2018225613 A1 WO2018225613 A1 WO 2018225613A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
imaging optical
imaging
optical systems
obj
Prior art date
Application number
PCT/JP2018/020919
Other languages
French (fr)
Japanese (ja)
Inventor
菅武志
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018563650A priority Critical patent/JP6501995B1/en
Publication of WO2018225613A1 publication Critical patent/WO2018225613A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording

Definitions

  • the present invention relates to an imaging optical system and an endoscope.
  • a stereoscopic observation system uses a method in which two images with different parallax are imaged on an imaging surface of an imaging element on substantially the same plane for stereoscopic viewing. And in the structure of a prior art, in order to obtain two images from which parallax differs, it has two different optical systems (for example, refer patent document 1, 2).
  • flare may occur in the area between the two imaging optical systems. Such flare is undesirable because it degrades the quality of the observed image.
  • the present invention has been made in view of the above, and is an endoscope application for stereoscopic vision, and has an imaging optical system and a channel that achieve both high pixel count and flare reduction, and has reduced flare.
  • An object is to provide an endoscope.
  • the present invention has two imaging optical systems arranged in parallel, and the configuration of the flare stop of the two imaging optical systems is different. It is an imaging optical system.
  • two imaging optical systems are arranged in parallel, and the diameter of the lens closest to the image side of one of the two imaging optical systems is the other optical system.
  • the present invention according to still another aspect includes two imaging optical systems used for imaging for stereoscopic observation and a channel through which a treatment tool is inserted, and the optical axes of the two imaging optical systems. Is 2 mm or less, and the angle between the line segment connecting the center of the line segment connecting the centers of the most object side lenses of the two imaging optical systems and the center of the channel, and the line segment is ⁇ An endoscope characterized by being within 45 degrees.
  • the present invention is an endoscope application for stereoscopic vision, can provide an imaging optical system that achieves both high pixel count and flare reduction, and provides an endoscope having a channel and reduced flare. There is an effect that can be.
  • FIG. 1 shows the lens cross-sectional structure of the imaging optical system which concerns on 1st Embodiment. It is a figure which shows the lens cross-sectional structure of the imaging optical system which concerns on 2nd Embodiment.
  • (A) is a figure which shows the lens cross-sectional structure of the imaging optical system which concerns on 3rd Embodiment.
  • (B) is a figure which shows the front structure of the one part lens of the imaging optical system which concerns on 3rd Embodiment.
  • (A) is a figure which shows the front-end
  • (B) is a figure which shows the whole endoscope apparatus. It is a figure which shows the lens cross-sectional structure of the optical system for imaging which concerns on each embodiment. It is a figure which shows the flare which generate
  • FIG. 1 is a diagram illustrating a lens cross-sectional configuration of the imaging optical system 100 according to the first embodiment.
  • This embodiment has two imaging optical systems OBJ-R and OBJ-L arranged in parallel, and the configuration of the flare stop of the two imaging optical systems OBJ-R and OBJ-L is different.
  • the optical system OBJ-R is an imaging optical system for the right eye.
  • the optical system OBJ-L is an imaging optical system for the left eye.
  • the present embodiment and all of the second and third embodiments described below are imaging optical systems used for endoscope imaging for stereoscopic observation, and the lens L1 closest to the object side has two concave surface portions. This is one optical member having L11 and L12.
  • the optical system for stereoscopic observation is an optical system OBJ-R and an optical system OBJ-L that generate two optical images having parallax with each other.
  • the optical system OBJ-R forms an image for the right eye
  • the optical system OBJ-L forms an image for the left eye.
  • the distance between the two optical axes Ax1 and Ax2 is 2 mm or less.
  • the two imaging optical systems OBJ-R and OBJ-L have the same configuration of the flare stop FS.
  • the flare stop FS3 is disposed only on the image side of the lens L5 closest to the image side of one optical system OBJ-L.
  • FIG. 6 is a diagram showing flare generated in a conventional imaging optical system.
  • the optical system OBJ-R for the right eye and the optical system OBJ-L for the left eye light rays RAY-R and RAY-L indicated by solid lines from an object (not shown) are incident on the imaging surface I to form an image.
  • the light ray RAYf indicated by the broken line is reflected by the side surface of the lens L5 and causes flare.
  • the flare stop FS3 is disposed only on the image side of the lens L5 closest to the image side of one optical system OBJ-L. Therefore, flare generated by reflection on the side surface of the lens L5 can be reduced. Therefore, the quality of the observation image can be improved.
  • FIG. 2 is a diagram illustrating a lens cross-sectional configuration of the imaging optical system according to the second embodiment.
  • one optical system OBJ-R and the other optical system OBJ-L of the two optical systems OBJ-L and OBJ-R are the same in the optical system.
  • Flare stops FS1 and FS2 are provided at the respective positions.
  • the opening diameter (opening diameter) ⁇ 1 of the flare stop FS1 included in one optical system OBJ-L is preferably smaller than the opening diameter ⁇ 2 of the flare stop FS2 included in the other optical system OBJ-R.
  • Flare stop FS1 opening diameter ⁇ 1 0.5 (mm)
  • Flare stop FS2 opening diameter ⁇ 2 0.7 (mm)
  • the brightness of the image of the optical system having the smaller aperture diameter is reduced. For this reason, the brightness differs between the right eye image and the left eye image. Therefore, it is preferable to adjust the gain by electrically increasing the dark image. That is, if both the aperture diameters ⁇ 1 and ⁇ 2 are reduced, it is necessary to increase the electrical gain for both images, which causes a problem of increasing electrical noise. In this embodiment, this problem is avoided.
  • FIG. 3A is a diagram illustrating a lens cross-sectional configuration of the imaging optical system 300 according to the third embodiment.
  • the present embodiment includes two imaging optical systems OBJ-R and OBJ-L in parallel, and one of the two imaging optical systems OBJ-R and OBJ-L.
  • the diameter LL1 of the lens L5 closest to the image side is larger than the diameter LL2 of the lens L5 closest to the image side of the other optical system OBJ-L.
  • FIG. 3B is a diagram illustrating a front configuration of a part of lenses of the imaging optical system according to the third embodiment.
  • the most image-side lens L5 of the two imaging optical systems OBJ-R and OBJ-L has a circularly symmetric shape with respect to the optical axes Ax1 and Ax2.
  • the diameter of the lens L5 closest to the image side of the two imaging optical systems OBJ-R and OBJ-L is the distance LL from the optical axes Ax1 and Ax2 to the linear part D.
  • the diameter LL1 is made larger than the diameter LL2.
  • FIG. 4A is a diagram illustrating a distal end configuration viewed from the distal end side of an endoscope 400 according to the fourth embodiment.
  • the present embodiment includes two imaging optical systems OBJ-L and OBJ-R used for imaging for stereoscopic observation, a channel CH through which a treatment tool is inserted, and illumination optical systems IL1 and IL2.
  • FIG. 4B is a diagram illustrating a schematic configuration of the endoscope apparatus 10 having the imaging optical system according to the embodiment.
  • the endoscope apparatus 10 includes an endoscope 400 and an in vitro apparatus 7.
  • the endoscope 400 includes an insertion unit 3, an operation unit 2, a connection cord unit 5, and a connector unit 6.
  • the extracorporeal device 7 includes a power supply device, a video processor (not shown) that processes a video signal from the endoscope 400, and a display unit 8 that monitors and displays the video signal from the video processor.
  • the insertion portion 3 is an elongated and flexible member that can be inserted into a body cavity of a patient, and the distal end portion is a rigid distal rigid portion 1.
  • a user (not shown) can perform various operations using an angle knob or the like provided in the operation unit 2.
  • a connection cord portion 5 is extended from the operation portion 2. The connection cord portion 5 is connected to the in vitro device 7 via the connector 6.
  • the connection cord unit 5 communicates a power supply voltage signal from a power supply device or a video processor, a drive signal from an image sensor, and the like to an imaging system (not shown) built in the distal end rigid unit 1 and from the imaging system.
  • the video signal is communicated to the video processor.
  • the video processor in the in-vitro device 7 can be connected to peripheral devices (not shown) such as a video printer and a recording device.
  • the video processor can perform predetermined signal processing on the video signal from the imaging system and display an endoscopic image on the display screen (monitor) of the display unit 8.
  • the endoscope 400 according to the present embodiment is not limited to the configuration in which the insertion portion 3 has flexibility. For example, a rigid endoscope in which the insertion portion 3 is not bent may be used.
  • a bright spot is generated when the treatment tool is irradiated with illumination light from the illumination optical systems IL1 and IL2.
  • the treatment tool is made of a metal such as silver, and has a very high light reflectance as compared to the digestive tract tissue. For this reason, when a treatment tool such as a forceps is inserted and removed from the channel CH, the reflected light from the forceps becomes a strong luminescent spot. Therefore, a horizontal streaky flare occurs only in the left-eye imaging close to the forceps.
  • the imaging optical system OBJ-L close to the channel CH has a flare prevention unit. Preferably it is.
  • the flare prevention unit is a configuration for reducing flare described in the first embodiment, the second embodiment, and the third embodiment.
  • each of the above-described embodiments has an effect that the parallax is short, the pixel size is increased, and flare can be reduced. That is, when the parallax is shortened, it is necessary to reduce the diameter (LL1 and LL2 in FIG. 3) of the lens L5 closest to the image side. However, when the lens diameter is reduced, as shown in FIG. 6, light is reflected from the side surface of the lens L5 and flare occurs.
  • FIG. 5 is a diagram showing a lens cross-sectional configuration of the imaging optical system according to each of the embodiments.
  • the imaging optical system includes, in order from the object side, a plano-concave first lens L1 having a negative refractive power with a concave surface facing the image side and a meniscus-shaped first lens having a negative refractive power with a concave surface facing the object side.
  • the YAG laser cut coating is applied to the object side of the infrared absorption filter F1, and the LD laser cut coating is applied to the image side. Further, the cover glass F2 and the CCD cover glass CG are joined. d16 is an adhesive layer.
  • the numerical data of each of the above examples is shown below. Symbols r are the radii of curvature of the lens surfaces, d is the spacing between the lens surfaces, ne is the refractive index of the e-line of each lens, ⁇ d is the Abbe number of each lens, and Fno is the F number.
  • the diaphragm is a brightness diaphragm.
  • the above-described imaging optical system may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good imaging optical system and endoscope. Moreover, the combination of a preferable structure is arbitrary.
  • various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and may be implemented by appropriately combining the configurations of these embodiments without departing from the spirit of the present invention. The form is also within the scope of the present invention.
  • the optical system can be variously modified.
  • the optical system may be a zoom optical system having a movable part.
  • the lens L1 is formed by one optical member, but the two optical systems may be formed by separate members.
  • the lenses L1 to L3 may be a common lens in the two optical systems. In that case, the distance between the optical axes of the lens L4 and the lens L5 may be set to 2 mm or less.
  • the present invention is an endoscope application for stereoscopic vision, and is useful for an endoscope that has an imaging optical system and a channel that achieve both high pixel count and flare reduction, and has reduced flare. .
  • Imaging optical system 400 Endoscope L1-L5 Lens Ax1, Ax2 Optical axis S Brightness diaphragm F1 Filter F2 Cover glass CG CCD cover glass L11, L12 Concave surface FS, FS1, FS2, FS3 Flare diaphragm OBJ- R, OBJ-L Optical system for imaging IL1, IL2 Illumination optical system CH channel ⁇ 1, ⁇ 2 Aperture diameter LL1, LL2 Diameter

Abstract

Provided are an imaging optical system that is for endoscope applications for steropsis and achieves both increased pixels and reduced flare, and an endoscope that has channels and achieves reduced flare. The imaging optical system is characterized by having two parallel optical systems OBJ-R, OBJ-L for imaging, and in that the flare aperture constitutions of the two optical systems OBJ-R, OBJ-L for imaging are different. In addition, the present invention is characterized by having the two optical systems OBJ-R, OBJ-L for imaging used for imaging for stereo viewing and a channel CH through which a treatment tool passes, and in that the gap between the optical axes Ax1, Ax2 for the two optical systems for imaging is 2 mm or less and the angle formed by a line joining the center of a line segment joining the centers of the lenses on the object side of the two optical systems for imaging and the centers of the channels and the line segment is within ±45°.

Description

撮像光学系及び内視鏡Imaging optical system and endoscope
 本発明は、撮像光学系及び内視鏡に関するものである。 The present invention relates to an imaging optical system and an endoscope.
 従来、立体観察システムが知られている。立体観察システムは、立体視用に視差の異なる2つの画像を略同一の平面上の撮像素子の撮像面に結像させて撮像する方法を用いている。そして、従来技術の構成では、視差の異なる2つの画像を得るために、2つの異なる光学系(例えば、特許文献1、2参照)を有している。 Conventionally, a stereoscopic observation system is known. The stereoscopic observation system uses a method in which two images with different parallax are imaged on an imaging surface of an imaging element on substantially the same plane for stereoscopic viewing. And in the structure of a prior art, in order to obtain two images from which parallax differs, it has two different optical systems (for example, refer patent document 1, 2).
特開2014-046075号公報JP 2014-046075 A 特開2006-288821号公報JP 2006-288821 A
 従来技術の構成では、2つの撮像用の光学系の間の領域においてフレアが発生することがある。このようなフレアは、観察画像の質を劣化させるため好ましくない。 In the configuration of the prior art, flare may occur in the area between the two imaging optical systems. Such flare is undesirable because it degrades the quality of the observed image.
 本発明は、上記に鑑みてなされたものであって、立体視用の内視鏡用途であり、高画素化とフレア低減を両立させる撮像光学系、及びチャンネルを有し、フレアを低減した内視鏡を提供することを目的とする。 The present invention has been made in view of the above, and is an endoscope application for stereoscopic vision, and has an imaging optical system and a channel that achieve both high pixel count and flare reduction, and has reduced flare. An object is to provide an endoscope.
 上述した課題を解決し、目的を達成するために、本発明は、並列する2つの撮像用の光学系を有し、2つの撮像用の光学系のフレア絞りの構成が異なることを特徴とする撮像光学系である。 In order to solve the above-described problems and achieve the object, the present invention has two imaging optical systems arranged in parallel, and the configuration of the flare stop of the two imaging optical systems is different. It is an imaging optical system.
 また、他の側面に従う本発明は、並列する2つの撮像用の光学系を有し、2つの撮像用の光学系のうちの一方の光学系の最も像側のレンズの径は、他方の光学系の最も像側のレンズの径より大きいことを特徴とする撮像光学系である。 According to another aspect of the present invention, two imaging optical systems are arranged in parallel, and the diameter of the lens closest to the image side of one of the two imaging optical systems is the other optical system. An imaging optical system having a diameter larger than that of the lens closest to the image side of the system.
 また、さらに他の側面に従う本発明は、立体観察用の撮像に使用する2つの撮像用の光学系と、処置具を挿通するチャンネルと、を有し、2つの撮像用の光学系の光軸の間隔は2mm以下であり、2つ撮像用の光学系の最も物体側のレンズの中心どうしを結ぶ線分の中心とチャンネルの中心とを結ぶ直線と、線分と、のなす角度は、±45度以内であることを特徴とする内視鏡である。 The present invention according to still another aspect includes two imaging optical systems used for imaging for stereoscopic observation and a channel through which a treatment tool is inserted, and the optical axes of the two imaging optical systems. Is 2 mm or less, and the angle between the line segment connecting the center of the line segment connecting the centers of the most object side lenses of the two imaging optical systems and the center of the channel, and the line segment is ± An endoscope characterized by being within 45 degrees.
 本発明は、立体視用の内視鏡用途であり、高画素化とフレア低減を両立させる撮像光学系を提供することができ、及びチャンネルを有し、フレアを低減した内視鏡を提供することができるという効果を奏する。 The present invention is an endoscope application for stereoscopic vision, can provide an imaging optical system that achieves both high pixel count and flare reduction, and provides an endoscope having a channel and reduced flare. There is an effect that can be.
第1実施形態に係る撮像光学系のレンズ断面構成を示す図である。It is a figure which shows the lens cross-sectional structure of the imaging optical system which concerns on 1st Embodiment. 第2実施形態に係る撮像光学系のレンズ断面構成を示す図である。It is a figure which shows the lens cross-sectional structure of the imaging optical system which concerns on 2nd Embodiment. (a)は第3実施形態に係る撮像光学系のレンズ断面構成を示す図である。(b)は第3実施形態に係る撮像光学系の一部のレンズの正面構成を示す図である。(A) is a figure which shows the lens cross-sectional structure of the imaging optical system which concerns on 3rd Embodiment. (B) is a figure which shows the front structure of the one part lens of the imaging optical system which concerns on 3rd Embodiment. (a)は第4実施形態に係る内視鏡の先端側から見た先端構成を示す図である。(b)は内視鏡装置全体を示す図である。(A) is a figure which shows the front-end | tip structure seen from the front end side of the endoscope which concerns on 4th Embodiment. (B) is a figure which shows the whole endoscope apparatus. 各実施形態に係る撮像用の光学系のレンズ断面構成を示す図である。It is a figure which shows the lens cross-sectional structure of the optical system for imaging which concerns on each embodiment. 従来の撮像光学系において発生するフレアを示す図である。It is a figure which shows the flare which generate | occur | produces in the conventional imaging optical system.
 以下に、実施形態に係る図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。 Hereinafter, a detailed description will be given based on the drawings according to the embodiment. In addition, this invention is not limited by this embodiment.
(第1実施形態)
 図1は、第1実施形態に係る撮像光学系100のレンズ断面構成を示す図である。本実施形態は、並列する2つの撮像用の光学系OBJ-R、OBJ-Lを有し、2つの撮像用の光学系OBJ-R、OBJ-Lのフレア絞りの構成が異なることを特徴とする。例えば、光学系OBJ-Rは、右目用の撮像用の光学系である。光学系OBJ-Lは、左目用の撮像用の光学系である。
(First embodiment)
FIG. 1 is a diagram illustrating a lens cross-sectional configuration of the imaging optical system 100 according to the first embodiment. This embodiment has two imaging optical systems OBJ-R and OBJ-L arranged in parallel, and the configuration of the flare stop of the two imaging optical systems OBJ-R and OBJ-L is different. To do. For example, the optical system OBJ-R is an imaging optical system for the right eye. The optical system OBJ-L is an imaging optical system for the left eye.
 本実施形態及び以下に説明する全ての第2実施形態、第3実施形態は、立体観察用の内視鏡用撮像に使用する撮像光学系であり、最も物体側のレンズL1は2つの凹面部L11、L12を有する1つの光学部材である。 The present embodiment and all of the second and third embodiments described below are imaging optical systems used for endoscope imaging for stereoscopic observation, and the lens L1 closest to the object side has two concave surface portions. This is one optical member having L11 and L12.
 立体観察用の光学系は、互いに視差を有する2つの光学像を生成する、光学系OBJ-Rと光学系OBJ-Lである。例えば、光学系OBJ-Rは右目用の画像を結像し、光学系OBJ-Lは左目用の画像を結像する。2つの光軸Ax1、Ax2間の距離は、2mm以下である。 The optical system for stereoscopic observation is an optical system OBJ-R and an optical system OBJ-L that generate two optical images having parallax with each other. For example, the optical system OBJ-R forms an image for the right eye, and the optical system OBJ-L forms an image for the left eye. The distance between the two optical axes Ax1 and Ax2 is 2 mm or less.
 また、本実施形態の好ましい態様によれば、まず、2つの撮像用の光学系OBJ-R、OBJ-Lは、同じ構成のフレア絞りFSを有している。さらに、一方の光学系OBJ-Lの最も像側のレンズL5の像側にのみにフレア絞りFS3が配置されている。 Also, according to a preferred aspect of the present embodiment, first, the two imaging optical systems OBJ-R and OBJ-L have the same configuration of the flare stop FS. Further, the flare stop FS3 is disposed only on the image side of the lens L5 closest to the image side of one optical system OBJ-L.
 ここで、従来の撮像光学系におけるフレアの発生について、説明する。図6は、従来の撮像光学系において発生するフレアを示す図である。右目用の光学系OBJ-Rと、左目用の光学系OBJ-Lと、において、不図示の物体からの実線で示す光線RAY-R、RAY-Lは、撮像面Iに入射して像を形成する。
 ここで、例えば、左目用の光学系OBJ-Lにおいて、破線で示す光線RAYfは、レンズL5の側面で反射して、フレアを発生させてしまう。特に、撮像素子の高画素化により、多くの画素を使うことで高画質化を進める場合、撮像素子面のより広い範囲に光学像を結像させる必要があり、結像光線RAY-L、RAY-Rの像面での位置が高くなる。それに伴い、レンズL5での光線高が高くなるため、レンズ側面において光が反射してフレアとなる。
Here, generation of flare in the conventional imaging optical system will be described. FIG. 6 is a diagram showing flare generated in a conventional imaging optical system. In the optical system OBJ-R for the right eye and the optical system OBJ-L for the left eye, light rays RAY-R and RAY-L indicated by solid lines from an object (not shown) are incident on the imaging surface I to form an image. Form.
Here, for example, in the optical system OBJ-L for the left eye, the light ray RAYf indicated by the broken line is reflected by the side surface of the lens L5 and causes flare. In particular, when image quality is improved by using a large number of pixels by increasing the number of pixels in the image sensor, it is necessary to form an optical image in a wider range of the image sensor surface, and the image light rays RAY-L, RAY The position on the image plane of −R becomes high. Along with this, the height of the light beam at the lens L5 increases, so that the light is reflected on the side surface of the lens and becomes flare.
 これに対して、本実施形態では、図1に示すように、一方の光学系OBJ-Lの最も像側のレンズL5の像側にのみにフレア絞りFS3が配置されている。これにより、レンズL5の側面において反射して発生するフレアを低減できる。従って、観察画像の質を向上できる。 In contrast, in the present embodiment, as shown in FIG. 1, the flare stop FS3 is disposed only on the image side of the lens L5 closest to the image side of one optical system OBJ-L. Thereby, flare generated by reflection on the side surface of the lens L5 can be reduced. Therefore, the quality of the observation image can be improved.
(第2実施形態)
 図2は、第2実施形態に係る撮像光学系のレンズ断面構成を示す図である。第2実施形態に係る撮像光学系200は、2つの光学系OBJ-L、OBJ-Rのうちの、一方の光学系OBJ-Rと、他方の光学系OBJ-Lは、光学系内の同じ位置にそれぞれフレア絞りFS1、FS2を有している。そして、一方の光学系OBJ-Lが有するフレア絞りFS1の開口径(開口直径)φ1は、他方の光学系OBJ-Rが有するフレア絞りFS2の開口径φ2より小さいことが好ましい。
(Second Embodiment)
FIG. 2 is a diagram illustrating a lens cross-sectional configuration of the imaging optical system according to the second embodiment. In the imaging optical system 200 according to the second embodiment, one optical system OBJ-R and the other optical system OBJ-L of the two optical systems OBJ-L and OBJ-R are the same in the optical system. Flare stops FS1 and FS2 are provided at the respective positions. The opening diameter (opening diameter) φ1 of the flare stop FS1 included in one optical system OBJ-L is preferably smaller than the opening diameter φ2 of the flare stop FS2 included in the other optical system OBJ-R.
 開口径の値を以下に示す。
 フレア絞りFS1の開口径φ1=0.5(mm)
 フレア絞りFS2の開口径φ2=0.7(mm)
The value of the opening diameter is shown below.
Flare stop FS1 opening diameter φ1 = 0.5 (mm)
Flare stop FS2 opening diameter φ2 = 0.7 (mm)
 このようなフレア絞りの構成により、本来フレアとなる像高の高い光線は、より小さい開口径φ1を有するフレア絞りFS1により遮光される。これにより、フレアの発生を低減できる。 With such a configuration of the flare stop, a light beam having a high image height that is originally a flare is shielded by the flare stop FS1 having a smaller aperture diameter φ1. Thereby, generation | occurrence | production of flare can be reduced.
 なお、本実施形態では、開口径の小さい方の光学系の像の明るさが低下する。このため、右目像と左目像とで明るさが異なる。従って、暗い方の像に対して電気的にゲインを上げて調整することが好ましい。すなわち、両方の開口径φ1、φ2を小さくすると、両方の像に対して電気的ゲインを上げる必要があるため、電気的ノイズが増えるという課題が発生する。本実施例では、この課題を回避している。 In this embodiment, the brightness of the image of the optical system having the smaller aperture diameter is reduced. For this reason, the brightness differs between the right eye image and the left eye image. Therefore, it is preferable to adjust the gain by electrically increasing the dark image. That is, if both the aperture diameters φ1 and φ2 are reduced, it is necessary to increase the electrical gain for both images, which causes a problem of increasing electrical noise. In this embodiment, this problem is avoided.
 (第3実施形態)
 図3(a)は第3実施形態に係る撮像光学系300のレンズ断面構成を示す図である。
(Third embodiment)
FIG. 3A is a diagram illustrating a lens cross-sectional configuration of the imaging optical system 300 according to the third embodiment.
 本実施形態は、並列する2つの撮像用の光学系OBJ-R、OBJ-Lを有し、2つの撮像用の光学系OBJ-R、OBJ-Lのうちの一方の光学系OBJ-Rの最も像側のレンズL5の径LL1は、他方の光学系OBJ-Lの最も像側のレンズL5の径LL2より大きいことを特徴とする。 The present embodiment includes two imaging optical systems OBJ-R and OBJ-L in parallel, and one of the two imaging optical systems OBJ-R and OBJ-L. The diameter LL1 of the lens L5 closest to the image side is larger than the diameter LL2 of the lens L5 closest to the image side of the other optical system OBJ-L.
 図3(b)は第3実施形態に係る撮像光学系の一部のレンズの正面構成を示す図である。2つの撮像用の光学系OBJ-R、OBJ-Lの最も像側のレンズL5は、光軸Ax1、Ax2に対して円形対称である形状のうち、視差方向yの円弧部分を直線的にカットした直線部Dを有し、2つの撮像用の光学系OBJ-R、OBJ-Lの最も像側のレンズL5の径とは、光軸Ax1、Ax2から直線部Dまでの距離LLをいう。 FIG. 3B is a diagram illustrating a front configuration of a part of lenses of the imaging optical system according to the third embodiment. The most image-side lens L5 of the two imaging optical systems OBJ-R and OBJ-L has a circularly symmetric shape with respect to the optical axes Ax1 and Ax2. The diameter of the lens L5 closest to the image side of the two imaging optical systems OBJ-R and OBJ-L is the distance LL from the optical axes Ax1 and Ax2 to the linear part D.
 レンズL5において径LL1を径LL2よりも大きくする。これにより、高画素化によりレンズL5において光線高が高くなっても、光線がレンズL5の側面で反射することを低減できる。この結果、フレアを低減できる。 In the lens L5, the diameter LL1 is made larger than the diameter LL2. Thereby, even if the height of the light beam at the lens L5 increases due to the increase in the number of pixels, it is possible to reduce the reflection of the light beam on the side surface of the lens L5. As a result, flare can be reduced.
(第4実施形態)
 図4(a)は第4実施形態に係る内視鏡400の先端側から見た先端構成を示す図である。本実施形態は、立体観察用の撮像に使用する2つの撮像用の光学系OBJ-L、OBJ-Rと、処置具を挿通するチャンネルCHと、照明光学系IL1、IL2と、を有し、2つの撮像用の光学系OBJ-L、OBJ-Rの光軸Ax1、Ax2の間隔は2mm以下であり、2つ撮像用の光学系OBJ-R、OBJ-Lの最も物体側のレンズの中心どうしを結ぶ線分の中心C1とチャンネルCHの中心C2とを結ぶ直線と、線分と、のなす角度αは、±45度以内であることを特徴とする。
 (内視鏡説明)
 図4(b)は、実施形態に係る撮像光学系を有する内視鏡装置10の概略構成を示す図である。内視鏡装置10は、内視鏡400と生体外装置7とから構成されている。内視鏡400は、挿入部3、操作部2、接続コード部5及びコネクタ部6を有する。また、生体外装置7は、電源装置と、内視鏡400からの映像信号を処理するビデオプロセッサ(不図示)と、ビデオプロセッサからの映像信号をモニター表示する表示ユニット8と、を有する。
 挿入部3は、細長で患者の体腔内へ挿入可能な可撓性を有する部材で構成されており、先端部は硬性の先端硬性部1となっている。使用者(不図示)は、操作部2に設けられているアングルノブ等により、諸操作を行うことができる。
 また、操作部2からは、接続コード部5が延設されている。接続コード部5は、コネクタ6を介して生体外装置7に接続されている。
 また、接続コード部5は、電源装置やビデオプロセッサからの電源電圧信号及び撮像素子からの駆動信号等を先端硬性部1に内蔵される撮像系(不図示)に通信すると共に、撮像系からの映像信号をビデオプロセッサに通信する。なお、生体外装置7内のビデオプロセッサは、図示しないビデオプリンタ、記録装置等の周辺機器に接続可能である。ビデオプロセッサは、撮像系からの映像信号に対して所定の信号処理を施して、表示ユニット8の表示画面(モニター)上に内視鏡画像を表示できる。
 また、本実施形態の内視鏡400は、挿入部3が可撓性を有する構成に限られない。例えば、挿入部3が曲がらない硬性内視鏡でも良い。
(Fourth embodiment)
FIG. 4A is a diagram illustrating a distal end configuration viewed from the distal end side of an endoscope 400 according to the fourth embodiment. The present embodiment includes two imaging optical systems OBJ-L and OBJ-R used for imaging for stereoscopic observation, a channel CH through which a treatment tool is inserted, and illumination optical systems IL1 and IL2. The distance between the optical axes Ax1 and Ax2 of the two imaging optical systems OBJ-L and OBJ-R is 2 mm or less, and the center of the lens closest to the object of the two imaging optical systems OBJ-R and OBJ-L An angle α formed by a straight line connecting the center C1 of the line segment connecting the lines and the center C2 of the channel CH and the line segment is within ± 45 degrees.
(Endoscope explanation)
FIG. 4B is a diagram illustrating a schematic configuration of the endoscope apparatus 10 having the imaging optical system according to the embodiment. The endoscope apparatus 10 includes an endoscope 400 and an in vitro apparatus 7. The endoscope 400 includes an insertion unit 3, an operation unit 2, a connection cord unit 5, and a connector unit 6. The extracorporeal device 7 includes a power supply device, a video processor (not shown) that processes a video signal from the endoscope 400, and a display unit 8 that monitors and displays the video signal from the video processor.
The insertion portion 3 is an elongated and flexible member that can be inserted into a body cavity of a patient, and the distal end portion is a rigid distal rigid portion 1. A user (not shown) can perform various operations using an angle knob or the like provided in the operation unit 2.
Further, a connection cord portion 5 is extended from the operation portion 2. The connection cord portion 5 is connected to the in vitro device 7 via the connector 6.
The connection cord unit 5 communicates a power supply voltage signal from a power supply device or a video processor, a drive signal from an image sensor, and the like to an imaging system (not shown) built in the distal end rigid unit 1 and from the imaging system. The video signal is communicated to the video processor. Note that the video processor in the in-vitro device 7 can be connected to peripheral devices (not shown) such as a video printer and a recording device. The video processor can perform predetermined signal processing on the video signal from the imaging system and display an endoscopic image on the display screen (monitor) of the display unit 8.
Further, the endoscope 400 according to the present embodiment is not limited to the configuration in which the insertion portion 3 has flexibility. For example, a rigid endoscope in which the insertion portion 3 is not bent may be used.
 上部消化管内視鏡では、画面横から斜め下の位置から、チャンネルCHを通して処置具を挿脱することが一般的である。これは、処置具の操作性や、内視鏡径の小型化を考慮してのことである。そして、図4(a)と図6に示すように、視差方向yに輝点が存在すると、輝点に近い方の光学系のみでフレアが発生する。 In the upper gastrointestinal endoscope, it is common to insert and remove the treatment tool through the channel CH from a position obliquely below the screen side. This is in consideration of the operability of the treatment tool and the reduction of the endoscope diameter. As shown in FIGS. 4A and 6, when a bright spot exists in the parallax direction y, flare occurs only in the optical system closer to the bright spot.
 輝点は、処置具に照明用光学系IL1、IL2からの照明光が照射されることで発生する。すなわち、処置具は銀色等の金属で構成されており、消化管の組織に比べて、光の反射率が非常に高い。このため、チャンネルCHから処置具、例えば鉗子を挿脱すると、鉗子からの反射光が強い輝点となる。従って、鉗子に近い左目撮像のみ、横筋状のフレアが発生する。 A bright spot is generated when the treatment tool is irradiated with illumination light from the illumination optical systems IL1 and IL2. In other words, the treatment tool is made of a metal such as silver, and has a very high light reflectance as compared to the digestive tract tissue. For this reason, when a treatment tool such as a forceps is inserted and removed from the channel CH, the reflected light from the forceps becomes a strong luminescent spot. Therefore, a horizontal streaky flare occurs only in the left-eye imaging close to the forceps.
 また、本実施形態の好ましい態様によれば、2つの撮像用の光学系OBJ-R、OBJ-Lのうち、チャンネルCHに近い撮像用の光学系OBJ-Lは、フレア防止部を有していることが好ましい。 Also, according to a preferred aspect of the present embodiment, of the two imaging optical systems OBJ-R and OBJ-L, the imaging optical system OBJ-L close to the channel CH has a flare prevention unit. Preferably it is.
 ここで、フレア防止部とは、上記第1実施形態、第2実施形態、第3実施形態で述べた、フレアを低減するための構成である。 Here, the flare prevention unit is a configuration for reducing flare described in the first embodiment, the second embodiment, and the third embodiment.
 これにより、上述の撮像光学系を有する内視鏡では、処置具等における輝点によるフレアを低減できるという効果を奏する。また、上記各実施形態は、いずれも、視差が短く、高画素化に対応し、フレアを低減できるという作用効果を奏する。すなわち、視差を短くすると、最も像側のレンズL5の視差方向の径(図3のLL1とLL2)を小さくする必要がある。しかし、レンズ径を小さくすると図6に示すように、レンズL5の側面で光が反射しフレアが発生する。本実施形態では、フレアの原因となるような輝点(強い光)は処置具の反射で発生することに着目し、処置具を挿脱するチャンネルと、フレア防止部を特定の光学系のみに配置することで、上述の作用効果を実現している。 Thereby, in the endoscope having the above-described imaging optical system, there is an effect that flare caused by a bright spot in the treatment instrument or the like can be reduced. In addition, each of the above-described embodiments has an effect that the parallax is short, the pixel size is increased, and flare can be reduced. That is, when the parallax is shortened, it is necessary to reduce the diameter (LL1 and LL2 in FIG. 3) of the lens L5 closest to the image side. However, when the lens diameter is reduced, as shown in FIG. 6, light is reflected from the side surface of the lens L5 and flare occurs. In this embodiment, attention is paid to the fact that bright spots (strong light) that cause flare are generated by the reflection of the treatment tool, and the channel for inserting / removing the treatment tool and the flare prevention unit are provided only in a specific optical system. By arranging, the above-mentioned operational effects are realized.
 以下、各実施例について説明する。図5は、上記各実施形態に係る撮像用の光学系のレンズ断面構成を示す図である。 Hereinafter, each example will be described. FIG. 5 is a diagram showing a lens cross-sectional configuration of the imaging optical system according to each of the embodiments.
(撮像用の光学系の数値実施例)
 第1実施形態から第4実施形態における2つの撮像用の光学系OBJ-R、OBJ-Lのレンズデータは同一である。このため、2つの撮像用の光学系OBJ-R、OBJ-Lの一方のデータを代表例として以下に示す。
(Numerical example of optical system for imaging)
The lens data of the two imaging optical systems OBJ-R and OBJ-L in the first to fourth embodiments are the same. For this reason, data of one of the two imaging optical systems OBJ-R and OBJ-L is shown as a representative example below.
 撮像用の光学系は、物体側から順に、像側に凹面を向けた負屈折力を有する平凹形状の第1レンズL1と、物体側に凹面を向けた負屈折力を有するメニスカス形状の第2レンズL2と、像側に平面を向けた正屈折力を有する平凸形状の第3レンズL3と、平行平板であるフィルタF1と、明るさ絞りSと、物体側に平面を向けた正屈折力を有する平凸形状の第4レンズL4と、両凸正レンズと像側に凸面を向けた負メニスカスレンズとが接合された正屈折力を有する接合レンズである第5レンズL5と、カバーガラスF2と、CCDカバーガラスCGと、を有する。 The imaging optical system includes, in order from the object side, a plano-concave first lens L1 having a negative refractive power with a concave surface facing the image side and a meniscus-shaped first lens having a negative refractive power with a concave surface facing the object side. Two lenses L2, a plano-convex third lens L3 having a positive refractive power with the plane facing the image side, a filter F1 that is a parallel plate, an aperture stop S, and a positive refraction with the plane facing the object side A fourth lens L4 having a planoconvex shape having power, a fifth lens L5 which is a cemented lens having a positive refractive power in which a biconvex positive lens and a negative meniscus lens having a convex surface facing the image side are cemented, and a cover glass F2 and a CCD cover glass CG.
 また、赤外吸収フィルタF1の物体側に、YAGレーザーカットのコーティング、像側にLDレーザーカットのコーティングを施している。また、カバーガラスF2とCCDカバーガラスCGとは接合されている。d16は接着層である。 Also, the YAG laser cut coating is applied to the object side of the infrared absorption filter F1, and the LD laser cut coating is applied to the image side. Further, the cover glass F2 and the CCD cover glass CG are joined. d16 is an adhesive layer.
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数、FnoはFナンバー、である。また、絞りは、明るさ絞りである。 The numerical data of each of the above examples is shown below. Symbols r are the radii of curvature of the lens surfaces, d is the spacing between the lens surfaces, ne is the refractive index of the e-line of each lens, νd is the Abbe number of each lens, and Fno is the F number. The diaphragm is a brightness diaphragm.
数値実施例1
単位    mm 
 
面データ
  面番号        r        d          ne         νd
      1        ∞      0.35      1.88815      40.76
      2       0.592    0.564     1      
      3      -1.522    0.46      1.85504      23.78
      4      -2.406    0.04      1      
      5       4.079    0.63      1.85504      23.78
      6        ∞      0.03      1      
      7        ∞      0.4       1.49557      75.00
      8        ∞      0.38      1      
      9(絞り)  ∞      0.03      1      
     10        ∞      0.42      1.75453      35.33
     11      -1.717    0.437     1      
     12       1.381    0.82      1.69979      55.53
     13      -0.907    0.36      1.93429      18.90
     14      -4.334    0.38      1      
     15        ∞      0.5       1.51825      64.14
     16        ∞      0.01      1.515        64.00
     17        ∞      0.35      1.507        63.26
   像面        ∞
 
各種データ
焦点距離      0.43
最大像高      0.429                  
画角        163.4                  
Fno           3.77                  
物体距離      7.25               
Numerical example 1
Unit mm

Surface data Surface number r d ne νd
1 ∞ 0.35 1.88815 40.76
2 0.592 0.564 1
3 -1.522 0.46 1.85504 23.78
4 -2.406 0.04 1
5 4.079 0.63 1.85504 23.78
6 ∞ 0.03 1
7 ∞ 0.4 1.49557 75.00
8 ∞ 0.38 1
9 (Aperture) ∞ 0.03 1
10 ∞ 0.42 1.75453 35.33
11 -1.717 0.437 1
12 1.381 0.82 1.69979 55.53
13 -0.907 0.36 1.93429 18.90
14 -4.334 0.38 1
15 ∞ 0.5 1.51825 64.14
16 ∞ 0.01 1.515 64.00
17 ∞ 0.35 1.507 63.26
Image plane ∞

Various data focal length 0.43
Maximum image height 0.429
Angle of View 163.4
Fno 3.77
Object distance 7.25
 なお、上述の撮像光学系は、複数の構成を同時に満足してもよい。このようにすることが、良好な撮像光学系、及び内視鏡を得る上で好ましい。また、好ましい構成の組み合わせは任意である。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。例えば、光学系は様々の変形が可能である。光学系は、可動部を有するズーム光学系でも良い。また、本実施例はレンズL1を1つの光学部材で構成しているが、2つの光学系を別部材で構成しても良い。また、レンズL1からレンズL3を2つの光学系で共通のレンズにしてもよい。その場合、レンズL4、レンズL5の光軸の間隔を2mm以下にすれば良い。
Note that the above-described imaging optical system may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good imaging optical system and endoscope. Moreover, the combination of a preferable structure is arbitrary.
Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and may be implemented by appropriately combining the configurations of these embodiments without departing from the spirit of the present invention. The form is also within the scope of the present invention. For example, the optical system can be variously modified. The optical system may be a zoom optical system having a movable part. In this embodiment, the lens L1 is formed by one optical member, but the two optical systems may be formed by separate members. Further, the lenses L1 to L3 may be a common lens in the two optical systems. In that case, the distance between the optical axes of the lens L4 and the lens L5 may be set to 2 mm or less.
 以上のように、本発明は、立体視用の内視鏡用途であり、高画素化とフレア低減を両立させる撮像光学系、及びチャンネルを有し、フレアを低減した内視鏡に有用である。 As described above, the present invention is an endoscope application for stereoscopic vision, and is useful for an endoscope that has an imaging optical system and a channel that achieve both high pixel count and flare reduction, and has reduced flare. .
 100、200、300 撮像光学系
 400 内視鏡
 L1~L5 レンズ
 Ax1、Ax2 光軸
 S 明るさ絞り
 F1 フィルタ
 F2 カバーガラス
 CG CCDカバーガラス
 L11、L12 凹面部
 FS、FS1、FS2、FS3 フレア絞り
 OBJ-R、OBJ-L 撮像用の光学系 
 IL1、IL2 照明光学系
 CH チャンネル
 φ1、φ2 開口径
 LL1、LL2 径
100, 200, 300 Imaging optical system 400 Endoscope L1-L5 Lens Ax1, Ax2 Optical axis S Brightness diaphragm F1 Filter F2 Cover glass CG CCD cover glass L11, L12 Concave surface FS, FS1, FS2, FS3 Flare diaphragm OBJ- R, OBJ-L Optical system for imaging
IL1, IL2 Illumination optical system CH channel φ1, φ2 Aperture diameter LL1, LL2 Diameter

Claims (7)

  1.  並列する2つの撮像用の光学系を有し、
     前記2つの撮像用の光学系のフレア絞りの構成が異なることを特徴とする撮像光学系。
    Having two imaging optical systems in parallel;
    An imaging optical system, wherein the two imaging optical systems have different flare aperture configurations.
  2.  一方の前記光学系の最も像側のレンズの像側にのみにフレア絞りが配置されていることを特徴とする請求項1に記載の撮像光学系。 2. The imaging optical system according to claim 1, wherein a flare stop is disposed only on the image side of the lens closest to the image side of one of the optical systems.
  3.  一方の前記光学系と、他方の前記光学系は、前記光学系内の同じ位置にそれぞれフレア絞りを有し、
     一方の前記光学系が有する前記フレア絞りの開口径は、他方の前記光学系が有する前記フレア絞りの開口径より小さいことを特徴とする請求項1に記載の撮像光学系。
    The one optical system and the other optical system each have a flare stop at the same position in the optical system,
    The imaging optical system according to claim 1, wherein an aperture diameter of the flare stop included in one of the optical systems is smaller than an aperture diameter of the flare stop included in the other optical system.
  4.  並列する2つの撮像用の光学系を有し、
     前記2つの撮像用の光学系のうちの一方の前記光学系の最も像側のレンズの径は、他方の前記光学系の最も像側のレンズの径より大きいことを特徴とする撮像光学系。
    Having two imaging optical systems in parallel;
    An imaging optical system, wherein a diameter of a lens closest to the image side of one of the two optical systems for imaging is larger than a diameter of a lens closest to the image side of the other optical system.
  5.  前記2つの撮像用の光学系の最も像側のレンズは、光軸に対して円形対称である形状のうち、視差方向の円弧部分を直線的にカットした直線部を有し、
     前記2つの撮像用の光学系の最も像側の前記レンズの径は、光軸から前記直線部までの距離であることを特徴とする請求項4に記載の撮像光学系。
    The most image-side lens of the two imaging optical systems has a linear portion obtained by linearly cutting a circular arc portion in the parallax direction among shapes that are circularly symmetric with respect to the optical axis,
    The imaging optical system according to claim 4, wherein the diameter of the lens closest to the image side of the two imaging optical systems is a distance from an optical axis to the linear portion.
  6.  立体観察用の撮像に使用する2つの撮像用の光学系と、
     処置具を挿通するチャンネルと、を有し、
     前記2つの撮像用の光学系の光軸の間隔は2mm以下であり、
     前記2つの撮像用の光学系の最も物体側のレンズの中心どうしを結ぶ線分の中心と前記チャンネルの中心とを結ぶ直線と、前記線分と、のなす角度は、±45度以内であることを特徴とする内視鏡。
    Two imaging optical systems used for imaging for stereoscopic observation;
    A channel through which the treatment tool is inserted,
    The distance between the optical axes of the two imaging optical systems is 2 mm or less,
    The angle formed by the straight line connecting the center of the line segment connecting the centers of the most object side lenses of the two imaging optical systems and the center of the channel and the line segment is within ± 45 degrees. An endoscope characterized by that.
  7.  前記2つの撮像用の光学系のうち、前記チャンネルに近い撮像用の前記光学系は、フレア防止部を有することを特徴とする請求項6に記載の内視鏡。
     
    The endoscope according to claim 6, wherein, of the two imaging optical systems, the imaging optical system close to the channel includes a flare prevention unit.
PCT/JP2018/020919 2017-06-07 2018-05-31 Imaging optical system and endoscope WO2018225613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018563650A JP6501995B1 (en) 2017-06-07 2018-05-31 Imaging optical system and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112838 2017-06-07
JP2017-112838 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225613A1 true WO2018225613A1 (en) 2018-12-13

Family

ID=64566653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020919 WO2018225613A1 (en) 2017-06-07 2018-05-31 Imaging optical system and endoscope

Country Status (2)

Country Link
JP (1) JP6501995B1 (en)
WO (1) WO2018225613A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027738A1 (en) * 2003-09-19 2005-03-31 Olympus Corporation Endoscope
JP2006288821A (en) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
JP2014046075A (en) * 2012-09-03 2014-03-17 Konica Minolta Inc Optical unit, and endoscope device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027738A1 (en) * 2003-09-19 2005-03-31 Olympus Corporation Endoscope
JP2006288821A (en) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
JP2014046075A (en) * 2012-09-03 2014-03-17 Konica Minolta Inc Optical unit, and endoscope device

Also Published As

Publication number Publication date
JP6501995B1 (en) 2019-04-17
JPWO2018225613A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US9106848B2 (en) Optical unit and endoscope including the optical unit
JP5558058B2 (en) Endoscopic endoscope
WO2017146021A1 (en) Variable power optical system for endoscopes, endoscope, and endoscope system
EP3540495A1 (en) Optical systems for multi-sensor endoscopes
JPH0910170A (en) Objective optical system of endoscope
JP2001083400A (en) Image pickup optical system
JP2019056722A (en) Oblique-viewing endoscope and imaging system
JP4290923B2 (en) Endoscope device
WO2018211595A1 (en) Optical system for stereoscopic viewing and imaging device equipped with same
JPH06317744A (en) Optical system for endoscopic objective lens
JP6072392B1 (en) Endoscope device
US11249299B2 (en) Stereoscopic vision optical system and endoscope using the same
WO2018225613A1 (en) Imaging optical system and endoscope
US11119306B2 (en) Image pickup optical system, endoscope, and image pickup apparatus
JP6560799B2 (en) Endoscope
JP2014191222A (en) Endoscope lens unit and endoscope having the same
US11933961B2 (en) Stereoscopic vision endoscope objective optical system and endoscope using the same
WO2021214873A1 (en) Imaging optical system, endoscope, and imaging device
US20230273404A1 (en) Objective optical system, image pickup apparatus, and endoscope
KR20150010281A (en) Design and Fabrication of Ultra Small Camera System for Endoscope and Catheter
CN116616686A (en) Objective optical system for paranasal sinus endoscope
CN116908947A (en) Prism assembly and endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563650

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812934

Country of ref document: EP

Kind code of ref document: A1