WO2018225520A1 - Liquid crystal compound, and composition thereof - Google Patents

Liquid crystal compound, and composition thereof Download PDF

Info

Publication number
WO2018225520A1
WO2018225520A1 PCT/JP2018/019964 JP2018019964W WO2018225520A1 WO 2018225520 A1 WO2018225520 A1 WO 2018225520A1 JP 2018019964 W JP2018019964 W JP 2018019964W WO 2018225520 A1 WO2018225520 A1 WO 2018225520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
carbon atoms
atom
compound
Prior art date
Application number
PCT/JP2018/019964
Other languages
French (fr)
Japanese (ja)
Inventor
宗矩 櫻井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201880033191.8A priority Critical patent/CN110650948A/en
Priority to JP2019523443A priority patent/JP6681035B2/en
Publication of WO2018225520A1 publication Critical patent/WO2018225520A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring

Definitions

  • the present invention relates to a compound having a condensed ring that is useful as an organic electronic material, medical pesticide, or a liquid crystal display element material, and a liquid crystal composition using these compounds.
  • Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, clocks, advertisement display boards, etc., including watches and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type using TFT (thin film transistor), and IPS (in-plane switching) type.
  • There is a drive system such as.
  • the liquid crystal compositions used in these liquid crystal display elements are stable against external factors such as moisture, air, heat, and light, and the liquid crystal phase (nematic phase, smectic phase) in the widest possible temperature range centering on room temperature. Phase, blue phase, etc.), low viscosity, and low driving voltage.
  • the liquid crystal composition is selected from several to several tens of kinds of compounds in order to optimize the dielectric anisotropy ( ⁇ ) and the refractive index anisotropy ( ⁇ n) according to the individual display elements, It
  • the liquid crystal composition When the liquid crystal composition is used as a display element or the like, it is required to exhibit a stable nematic phase in a wide temperature range. In order to maintain a nematic phase in a wide temperature range, it is required that individual components constituting the liquid crystal composition have high miscibility with other components and have a high clearing point (T ni ). . Moreover, when using a liquid crystal composition as a display element etc., it is calculated
  • R 1 and R 2 each independently represents an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkynyl group having 2 to 15 carbon atoms, Each independently represents 0 or 1)
  • the problem to be solved by the present invention is to provide a compound having a high T ni and having a large ⁇ , and a liquid crystal composition and a liquid crystal display device comprising the compound as a constituent member.
  • the present invention has the general formula (i)
  • X i1 and X i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a trifluoromethoxy group
  • Y i1 and Y i2 each independently represent —O—, —S—, —SO—, —SOO—, —CF 2 —, —CO—, —CX i3 X i4 —, wherein Y i1 and Y any one or more of i2 represents —O—, —S—, —SO—, —SOO—;
  • X i3 and X i4 each independently represent the same meaning as X i1 ,
  • the dashed line indicates that the bond may or may not exist, If W i1 is the absence of broken lines, -CL i6 L i7 -CL i8 L i9 -, - CL i6 L i7 -
  • R i1 represents a hydrogen atom, a bromine atom, an iodine atom, a hydroxyl group, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms
  • a i1 represents (a) a 1,4-cyclohexylene group (one —CH 2 — present in this group or two or more non-adjacent —CH 2 — represents —O— or —S—).
  • (B) 1,4-phenylene group (one —CH ⁇ present in this group or two or more non-adjacent —CH ⁇ may be replaced by —N ⁇ , present in this group)
  • One hydrogen atom may be substituted with a fluorine atom.
  • a hydrogen atom present in these groups may be substituted with a fluorine atom, or present in a naphthalene-2,6-diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group.
  • n i1 represents 1 or 2, but when n i1 represents 2 and a plurality of A i1 and Z i1 exist, they may be the same or different.
  • the compound represented by the general formula (i) provided by the present invention has a high clearing point (T ni ). Therefore, a stable nematic phase can be exhibited in a wide temperature range by using the compound represented by the general formula (i) as a component of the liquid crystal composition.
  • the compound represented by the general formula (i) provided by the present invention exhibits a large
  • X i1 and X i2 each independently preferably represent a fluorine atom, and in order to exhibit a more negative ⁇ , it is more preferable that both X i1 and X i2 represent a fluorine atom.
  • Y i1 and Y i2 each independently preferably represent an oxygen atom or a sulfur atom, and it is more preferable that both Y i1 and Y i2 represent an oxygen atom or a sulfur atom in order to exhibit a more negative ⁇ .
  • both are preferably oxygen atoms.
  • Y i2 is -CH 2 - - either Y i1 and Y i2 is -CH 2 in the case of emphasizing gamma 1 and more preferably from.
  • both are preferably sulfur atoms.
  • —CH 2 CH 2 —, —CH ⁇ CH—, —CH 2 —CH ⁇ is more preferable.
  • —CH 2 CH 2 — It is more preferable that —CH ⁇ CH— and —CH 2 —CH ⁇ are more preferable for showing a large ⁇ n.
  • W i2 preferably represents a single bond or —CH 2 CH 2 —.
  • L i1 and L i2 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms.
  • An alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is particularly preferable.
  • L i1 and L i2 are preferably different, and the alkoxy group or alkenyloxy group is preferably one of L i1 and L i2 , Alternatively, the alkenyloxy group is particularly preferably L i1 .
  • the hydrogen atom present in L i1 and L i2 may be substituted with a fluorine atom, but is preferably not substituted with a fluorine atom.
  • R i1 is preferably an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms in order to reduce ⁇ 1, and an alkyl group having 1 to 5 carbon atoms or the number of carbon atoms Particularly preferred are 2 to 5 alkenyl groups. Moreover, it is preferable that it is linear. In order to increase
  • R i1s are different from each other, and any one of R i1s having a plurality of alkoxy groups or alkenyloxy groups exists.
  • the alkoxy group or alkenyloxy group is particularly preferably R i1 in L i1 .
  • the hydrogen atom present in R i1 may be substituted with a fluorine atom, but is preferably not substituted with a fluorine atom.
  • a 1 is a trans-1,4-cyclohexylene group, an unsubstituted 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, or a 3-fluoro group for decreasing ⁇ 1.
  • a 1,4-phenylene group is preferred, and a trans-1,4-cyclohexylene group is particularly preferred.
  • it may be a trans-1,4-cyclohexylene group, a 2-fluoro-1,4-phenylene group or a 3-fluoro-1,4-phenylene group. preferable.
  • an unsubstituted 1,4-phenylene group, an unsubstituted 1,4-cyclohexylene group, a 1,4-cyclohexenylene group, or an unsubstituted naphthalene-2,6-diyl group It is preferable that In order to exhibit negatively large ⁇ , a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, or a 2,3-difluoro-1,4-phenylene group is preferable.
  • the total number of fluorine atoms present in A i1 is preferably 1 to 4, preferably 1 to 3. It is particularly preferred.
  • Z i1 is preferably a single bond, —CH 2 CH 2 —, —CH 2 O— or —OCH 2 —, and preferably a single bond or —CH 2 CH 2 — in order to decrease ⁇ 1. Is more preferable.
  • a single bond, —COO—, —OCO—, —CH ⁇ CH— or —C ⁇ C— is preferable, and a single bond, —CH ⁇ CH— or —C ⁇ C— -Is more preferable.
  • a single bond, —CH 2 CH 2 —, —CH 2 O— or —OCH 2 — is preferable.
  • a single bond is preferable.
  • n i1 When n i1 represents 2, it is preferable that any one or more of a plurality of Z i1 represent a single bond. n i1 is preferably 1 when ⁇ 1 is important. When importance is attached to Tni , it is preferably 2.
  • L i3 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkenyloxy group having 2 to 15 carbon atoms.
  • an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or 2 carbon atoms is preferable.
  • Particularly preferred is an alkenyl group of ⁇ 5. Moreover, it is preferable that it is linear.
  • L i1 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkenyloxy group having 2 to 15 carbon atoms.
  • L i3 is
  • L i4 and L i5 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms, and more preferably a hydrogen atom.
  • L i6 and L i7 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or 2 to 15 carbon atoms.
  • an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and 1 to 5 carbon atoms are preferable.
  • an alkyl group or an alkenyl group having 2 to 5 carbon atoms is particularly preferred.
  • L i8 and L i9 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or 2 to 15 carbon atoms.
  • an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and 1 to 5 carbon atoms are preferable.
  • an alkyl group or an alkenyl group having 2 to 5 carbon atoms is particularly preferred.
  • L i2 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms, either L i8 or L i9 is
  • L i10 and L i11 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, preferably represents an alkenyl group having 2 to 15 carbon atoms, and more preferably represents a hydrogen atom.
  • the number of the groups is preferably 2 or less in order to increase the miscibility with other liquid crystal components.
  • it is preferably present at the positions of L i1 and L i2 , L i1 and L i8 , L i3 and L i2 , or L i3 and L i8.
  • two groups exist in the general formula (i) it is preferably present at the positions of L i1 and L i2 .
  • it does not become a structure where hetero atoms are directly bonded.
  • compounds represented by the following general formulas (i-1) to (i-1000) are preferable.
  • particularly preferred compounds are (i-1), (i-2), (i-3), (i-4), (i-5), (i-6), (i-7), (I-8), (i-9), (i-10), (i-11), (i-12), (i-895), (i-896), (i-897), (i -898), (i-899), (i-900).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • R i1 and R i2 are the general formula (i) represents the same meaning as R i1.
  • the compound represented by the general formula (i) is, for example, the general formula (i-r1)
  • X i2 , Y i2 , W i1 , L i2 and L i5 represent the same meaning as X i2 , Y i2 , W i1 , L i2 and L i5 in general formula (i), respectively, but a plurality of X i2 may be different even in the same
  • R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
  • a broken line indicates that a bond may not exist or may exist.
  • X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 represent the same meanings as X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 in general formula (i), respectively.
  • X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, or a trifluoromethanesulfonyloxy group.
  • X i1 , X i2 , Y i1 , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 are X i1 , X i2 , Y i1 in the general formula (i)).
  • Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 each represent the same meaning, but a plurality of X i2 may be the same or different
  • a broken line indicates that a bond may not exist or may exist.
  • R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
  • X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesul
  • the compound represented by the general formula (S-2) can be obtained by boronizing the compound represented by the general formula (S-1). This boronation can be performed by deprotonation with an organometallic reagent and then reacting with a trialkyl borate to form a boron compound.
  • Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether.
  • hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
  • organometallic reagents examples include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide.
  • N-Butyllithium, sec-butyllithium and lithium diisopropylamide are preferred from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide capable of efficient deprotonation are more preferred.
  • a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent.
  • the reaction temperature for deprotonation is preferably from ⁇ 100 ° C. to ⁇ 20 ° C., more preferably from ⁇ 78 ° C. to ⁇ 40 ° C.
  • trialkyl borate trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling.
  • combination of trialkyl borate and organometallic reagent any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred.
  • the reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C.
  • a compound represented by general formula (S-4) is obtained by reacting a compound represented by general formula (S-2) with a compound represented by (S-3) in the presence of a transition metal catalyst and a base. Can do. Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably.
  • the reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
  • ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether
  • alcohol solvents such as methanol, ethanol and propanol
  • Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
  • water may be used as necessary in order to allow the reaction to proceed
  • Any base can be used as long as it allows the reaction to proceed suitably.
  • Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
  • the reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
  • the compound represented by the general formula (S-5) can be obtained by intramolecular reaction of the compound represented by the general formula (S-4). This intramolecular reaction can be carried out by deprotonating —Y i3 —H of the general formula (S-4) with a base to generate an anion.
  • Examples of the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals. Phosphate, alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred.
  • Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
  • reaction solvent Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether
  • chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane
  • examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene
  • examples of polar solvents include N, N-dimethylformamide
  • Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • polar solvents such as N, N-dimethylformamide are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be in the range from the freezing point of the solvent to the reflux temperature, preferably from 0 ° C to 150 ° C, more preferably from 30 ° C to 120 ° C.
  • the compound represented by the general formula (S-6) can be obtained by halogenating the compound represented by the general formula (S-5). This halogenation can be performed by deprotonation with an organometallic reagent and then reacting with bromine or iodine to form a halogen compound.
  • Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents.
  • ether solvents examples include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
  • organometallic reagents examples include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide.
  • N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable.
  • a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent.
  • the reaction temperature for deprotonation is preferably from ⁇ 100 ° C. to ⁇ 20 ° C., more preferably from ⁇ 78 ° C. to ⁇ 40 ° C.
  • a compound represented by general formula (S-8) is obtained by reacting a compound represented by general formula (S-6) with a compound represented by (S-7) in the presence of a transition metal catalyst and a base. Can do. Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably.
  • the reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
  • ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether
  • alcohol solvents such as methanol, ethanol and propanol
  • Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
  • water may be used as necessary in order to allow the reaction to proceed
  • Any base can be used as long as it allows the reaction to proceed suitably.
  • Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
  • the reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
  • L i2, X i1, X i2 , Y i2 and W i1 represent the same meaning in the general formula (i) and L i2, X i1, X i2 , Y i2 and W i1, X i5 represents chlorine, bromine, iodine, benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group or trifluoromethanesulfonyloxy group; Y i3 represents —O— or —S—, R i2 represents an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms.
  • the compound represented by the general formula (S-9) can be obtained by oxidizing the compound represented by the general formula (S-5). This oxidation can be carried out by deprotonation with an organometallic reagent, reaction with a trialkyl borate to form a boron compound, and subsequent action of an oxidizing agent.
  • Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
  • organometallic reagent examples include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramerpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable.
  • a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent.
  • the reaction temperature for deprotonation is preferably from ⁇ 100 ° C. to ⁇ 20 ° C., more preferably from ⁇ 78 ° C. to ⁇ 40 ° C.
  • trialkyl borate trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling.
  • combination of trialkyl borate and organometallic reagent any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred.
  • the reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C.
  • the obtained boron compound may be isolated once or may be reacted with an oxidizing agent without isolation. Further, the obtained boron compound may be hydrolyzed and converted into a boric acid compound and then reacted with an oxidizing agent.
  • the oxidizing agent hydrogen peroxide water, peracetic acid or performic acid is preferably used.
  • the reaction temperature is preferably -78 ° C to 70 ° C, more preferably 0 ° C to 50 ° C.
  • water may be contained in the solvent at the time of reaction with an oxidizing agent.
  • the compound represented by the general formula (S-11) can be obtained by reacting the compound represented by the general formula (S-9) with the compound represented by the general formula (S-10). This reaction can be carried out by reacting the hydroxyl group of general formula (S-9) with phenol as a phenolate with general formula (S-10).
  • the base used in this case is a metal hydride, metal carbonate, metal Mention may be made of phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides, alkali metal phosphates, alkali metal phosphates, alkali metal carbonates, alkali metals Hydroxides, alkali metal amides and alkali metals are preferred, and alkali metal phosphates, alkali metal hydrides and alkali metal carbonates are more preferred.
  • Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
  • Any reaction solvent may be used as long as it allows the reaction to proceed suitably.
  • Ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane
  • examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene
  • examples of polar solvents include N, N-dimethylformamide
  • Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • polar solvents such as N, N-dimethylformamide are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be in the range from the freezing point of the solvent to the reflux temperature, preferably from 0 ° C to 150 ° C, more preferably from 30 ° C to 120 ° C.
  • the generated phenolate may be isolated once and then reacted with the compound represented by the general formula (S-5), or may be reacted without isolation, but it is not isolated for ease of work. It is better to react. (Manufacturing method 3)
  • a compound represented by general formula (S-12) can be obtained by reacting a compound represented by general formula (S-5) with a compound represented by general formula (S-11). This reaction can be carried out by deprotonation with an organometallic reagent and reaction with general formula (S-11).
  • reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether.
  • hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
  • organometallic reagents include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide.
  • N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable.
  • a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent.
  • the reaction temperature for deprotonation is preferably from ⁇ 100 ° C. to ⁇ 20 ° C., more preferably from ⁇ 78 ° C. to ⁇ 40 ° C.
  • a compound represented by the general formula (S-13) can be obtained by dehydrating the compound represented by the general formula (S-12).
  • the dehydration method include a method of heating in the presence of an acid.
  • the acid include inorganic acids such as hydrochloric acid, sulfuric acid, and potassium bisulfate, organic acids such as acetic acid, trifluoroacetic acid, and p-toluenesulfonic acid, and Lewis acids such as boron trifluoride.
  • the hydroxyl group can be reacted with p-toluenesulfonic acid chloride, trifluoromethanesulfonic acid chloride, triphosgene, etc. to convert it to a leaving group, and then dehydrated by performing an elimination reaction.
  • the compound represented by the general formula (S-14) can be obtained by reacting the compound represented by the general formula (S-13) with hydrogen gas in an organic solvent in the presence of a metal catalyst.
  • Any organic solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents such as diisopropyl ether, diethyl ether, 1,4-dioxane or tetrahydrofuran, hexane, heptane, toluene or xylene, etc.
  • Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol or butanol, and ester solvents such as ethyl acetate or butyl acetate are preferred, and tetrahydrofuran, hexane, heptane, toluene, ethanol or ethyl acetate are preferred.
  • acids such as hydrochloric acid, acetic acid, or a sulfuric acid, as needed.
  • the reaction temperature may be any temperature that allows the reaction to proceed suitably, but is preferably 0 ° C. to 80 ° C., more preferably room temperature to 60 ° C.
  • the metal catalyst to be used may be any metal catalyst that allows the reaction to proceed suitably, but is preferably palladium carbon, ruthenium carbon, platinum black or platinum oxide, and more preferably palladium carbon.
  • the hydrogen pressure at the time of reaction may be any as long as it allows the reaction to proceed suitably, but is preferably from atmospheric pressure to 0.5 MPa, and more preferably from 0.2 MPa to 0.5 MPa.
  • R i3 represents an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms, and one —CH 2 — or two or more non-adjacent ones present in the alkyl group or alkenyl group.
  • —CH 2 — may be replaced by —C ⁇ C—, —O—, —S—, —COO—, —OCO— or —CO—, and the hydrogen atom present in the alkyl or alkenyl group is fluorine.
  • the compound represented by the general formula (S-16) can be obtained by reacting the compound represented by the general formula (S-6) with the compound represented by (S-15) in the presence of a transition metal catalyst. .
  • Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably.
  • phosphine-type ligands such as a triphenylphosphine, as needed.
  • the reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
  • ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether
  • alcohol solvents such as methanol, ethanol and propanol
  • Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
  • the reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred. (Manufacturing method 5)
  • R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
  • X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesulfonyloxy group
  • X i4 represents a chlorine atom
  • a compound represented by general formula (S-19) is obtained by reacting a compound represented by general formula (S-17) with a compound represented by (S-18) in the presence of a transition metal catalyst and a base. Can do. Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably.
  • the reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
  • ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether
  • alcohol solvents such as methanol, ethanol and propanol
  • Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
  • water may be used as necessary in order to allow the reaction to proceed
  • Any base can be used as long as it allows the reaction to proceed suitably.
  • Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
  • the reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
  • the compound represented by the general formula (S-20) can be obtained by intramolecular reaction of the compound represented by the general formula (S-19). This intramolecular reaction can be performed by deprotonating —Y i3 —H of the general formula (S-19) with a base to generate an anion.
  • Examples of the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals. Phosphate, alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred.
  • Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
  • reaction solvent Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether
  • chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane
  • examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene
  • examples of polar solvents include N, N-dimethylformamide
  • Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • polar solvents such as N, N-dimethylformamide are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 30 ° C to 120 ° C.
  • a compound represented by the general formula (S-21) can be obtained by oxidizing the compound represented by the general formula (S-20). This oxidation can be carried out by deprotonation with an organometallic reagent, reaction with a trialkyl borate to form a boron compound, and subsequent action of an oxidizing agent.
  • Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
  • organometallic reagent examples include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramerpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable.
  • a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent.
  • the reaction temperature for deprotonation is preferably from ⁇ 100 ° C. to ⁇ 20 ° C., more preferably from ⁇ 78 ° C. to ⁇ 40 ° C.
  • trialkyl borate trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling.
  • combination of trialkyl borate and organometallic reagent any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred.
  • the reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C.
  • the obtained boron compound may be isolated once or may be reacted with an oxidizing agent without isolation. Further, the obtained boron compound may be hydrolyzed and converted into a boric acid compound and then reacted with an oxidizing agent.
  • the oxidizing agent hydrogen peroxide water, peracetic acid or performic acid is preferably used.
  • the reaction temperature is preferably -78 ° C to 70 ° C, more preferably 0 ° C to 50 ° C.
  • water may be contained in the solvent at the time of reaction with an oxidizing agent.
  • the compound represented by the general formula (S-23) is obtained by reacting the compound represented by the general formula (S-21) with the compound represented by the general formula (S-22). Several reactions can be used depending on the choice of substituents for X i4 in -22).
  • the hydroxyl group of the general formula (S-21) is phenolated with a base.
  • a method of reacting with general formula (S-22) can be used.
  • the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals.
  • alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred.
  • Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
  • reaction solvent Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether
  • chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane, and octane
  • examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene
  • examples of polar solvents include N, N-dimethylformamide
  • Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane.
  • ether solvents such as tetrahydrofuran and diethyl ether
  • polar solvents such as N, N-dimethylformamide are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 30 ° C to 120 ° C.
  • the phenolate produced may be isolated once and then reacted with the compound represented by the general formula (S-22), or it may be reacted without isolation, but it is not isolated for ease of work. It is better to react.
  • Mitsunobu reaction is a reaction in which alcohol and a wide variety of nucleophiles having active protons are dehydrated, and uses a combination of triphenylphosphine and an azodicarboxylic acid derivative or maleic acid derivative.
  • the compound represented by the general formula (S-21) and the alcohol derivative represented by the general formula (S-22) are reacted in the presence of a trisubstituted phosphine derivative and an azodicarboxylic acid derivative.
  • a compound represented by (S-23) is obtained.
  • trisubstituted phosphine derivative examples include trialkylphosphine and triphenylphosphine, but triphenylphosphine is preferable.
  • Various compounds are used as azodicarboxylic acid derivatives, and it is possible to use maleic acid derivatives instead of azodicarboxylic acid derivatives, but the combination of triphenylphosphine and azodicarboxylic acid derivatives is easier to handle. Is desirable.
  • azodicarboxylic acid derivative examples include diethyl azodicarboxylate, diisopropyl azodicarboxylate, tetramethyl azodicarboxyamide, tetrapropyl azodicarboxamide, 1,1 ′-(azodicarbonyl) dipiperidine. Diethyl azodicarboxylate and diisopropyl azodicarboxylate are preferred for ease of handling, and diisopropyl azodicarboxylate is more preferred for ease of handling.
  • reaction solvent Any reaction solvent may be used as long as it allows the reaction to proceed appropriately, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether
  • chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvent examples include pentane, hexane, cyclohexane, heptane and octane
  • aromatic solvent examples include benzene, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene.
  • ether solvents such as tetrahydrofuran and aromatic solvents such as toluene are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 0 ° C to 30 ° C.
  • the compound represented by the general formula (S-24) can be obtained by sigmatropic rearrangement of the compound represented by the general formula (S-23).
  • reaction solvent Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used.
  • ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether
  • chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride.
  • hydrocarbon solvents examples include pentane, hexane, cyclohexane, heptane and octane
  • aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene
  • polar solvents include N, N-diethylaniline
  • Preferable examples include N, N-dimethylaniline, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and sulfolane.
  • polar solvents such as N, N-diethylaniline and N, N-dimethylaniline are more preferable.
  • each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
  • the reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 100 ° C to 250 ° C, more preferably 150 ° C to 250 ° C.
  • the compound represented by the general formula (S-25) can be obtained by reacting the compound represented by the general formula (S-24) with hydrogen gas in an organic solvent in the presence of a metal catalyst.
  • Any organic solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents such as diisopropyl ether, diethyl ether, 1,4-dioxane or tetrahydrofuran, hexane, heptane, toluene or xylene, etc.
  • Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol or butanol, and ester solvents such as ethyl acetate or butyl acetate are preferred, and tetrahydrofuran, hexane, heptane, toluene, ethanol or ethyl acetate are preferred.
  • acids such as hydrochloric acid, acetic acid, or a sulfuric acid, as needed.
  • the reaction temperature may be any temperature that allows the reaction to proceed suitably, but is preferably 0 ° C. to 80 ° C., more preferably room temperature to 60 ° C.
  • the metal catalyst to be used may be any metal catalyst that allows the reaction to proceed suitably, but is preferably palladium carbon, ruthenium carbon, platinum black or platinum oxide, and more preferably palladium carbon.
  • the hydrogen pressure at the time of reaction may be any as long as it allows the reaction to proceed suitably, but is preferably from atmospheric pressure to 0.5 MPa, and more preferably from 0.2 MPa to 0.5 MPa.
  • the general formula (i) At least one compound represented by formula (1), but it is preferable to contain at least one of the following second to fourth components as other components.
  • the second component is a so-called n-type liquid crystal compound having a negative dielectric anisotropy, and examples thereof include compounds represented by the following general formulas (LC3) to (LC5).
  • R LC31, R LC32, R LC41 , R LC42, R LC51 and R LC52 is 1 to 15 carbon atoms independently, one in the alkyl group or two or more —CH 2 — may be substituted with —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO— or —C ⁇ C— so that the oxygen atom is not directly adjacent.
  • one or more hydrogen atoms in the group may be optionally substituted by a halogen atom, a LC31, a LC32, a LC41, a LC42, a LC51 and a LC52 each independently any of the following Structure
  • one or more —CH 2 — in the cyclohexylene group may be substituted with an oxygen atom
  • one or more —CH— in the 1,4-phenylene group is Any one of which may be substituted with a nitrogen atom
  • one or more hydrogen atoms in the structure may be substituted with a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ).
  • Z LC31, Z LC32, Z LC41, Z LC42, Z LC51 and Z LC51 each independently represent a single bond
  • -CH CH -, - C ⁇ C -, - CH 2 CH 2 -, - ( CH 2 ) 4 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—
  • Z 5 represents —CH 2 — or an oxygen atom
  • X LC41 represents Represents a hydrogen atom or a fluorine atom
  • m LC31 , m L C32, m LC41, m LC42, m LC51 and m LC52 each independently represent 0 ⁇ 3, m LC31 + m LC32, m LC41 + m LC42 and m LC51 + m LC52 is 1, 2 or 3,
  • a LC31 ⁇ When a plurality of A LC52 and Z
  • R LC31 to R LC52 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms. Most preferably,
  • a LC31 to A LC52 each independently preferably has the following structure:
  • Z LC31 to Z LC51 each independently has a single bond, —CH 2 O—, —COO—, —OCO— , —CH 2 CH 2 —, —CF 2 O—, —OCF 2 — or —OCH 2 —. preferable.
  • LC3 is the following general formula (LC3-a) and general formula (LC3-b)
  • R LC31 , R LC32 , A LC31 and Z LC31 each independently represent the same meaning as R LC31 , R LC32 , A LC31 and Z LC31 in the general formula (LC3)
  • X LC3b1 to X LC3b6 are Represents a hydrogen atom or a fluorine atom
  • at least one of X LC3b1 and X LC3b2 or X LC3b3 and X LC3b4 represents a fluorine atom
  • m LC3a1 is 1, 2 or 3
  • m LC3b1 is 0 or
  • a plurality of A LC31 and Z LC31 may be the same or different, provided that they are represented by the general formula (LC3-b) in the general formula (LC3-a)
  • a compound selected from the group of compounds represented by the formula: Rukoto is preferable.
  • R LC31 and R LC32 each independently represents an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, or an alkenyloxy group having 2 to 7 carbon atoms. Is preferably represented.
  • a LC31 preferably represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group, a tetrahydropyran-2,5-diyl group, or a 1,3-dioxane-2,5-diyl group.
  • 4-phenylene group and trans-1,4-cyclohexylene group are more preferable.
  • Z LC31 is a single bond, -CH 2 O -, - COO -, - OCO -, - CH 2 CH 2 - is preferred to represent, and more preferably a single bond.
  • the general formula (LC3-a) preferably represents the following general formula (LC3-a1) to general formula (LC3-a4).
  • R LC31 and R LC32 each independently represent the same meaning as R LC31 and R LC32 in General Formula (LC3).
  • R LC31 and R LC32 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and R LC31 has 1 carbon atom. More preferably, it represents an alkyl group of ⁇ 7 , and R LC32 represents an alkoxy group of 1 to 7 carbon atoms.
  • the general formula (LC3-b) is preferably represented by the following general formula (LC3-b1) to general formula (LC3-b12).
  • the general formula (LC3-b1), the general formula (LC3-b6), the general formula (LC3-b8) and general formula (LC3-b11) are more preferable, general formula (LC3-b1) and general formula (LC3-b6) are more preferable, and general formula (LC3-b1) is Most preferably it represents.
  • R LC31 and R LC32 each independently represent the same meaning as R LC31 and R LC32 in General Formula (LC3).
  • R LC31 and R LC32 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and R LC31 has 2 carbon atoms. Or an alkyl group having 3 carbon atoms, and more preferably R LC32 represents an alkyl group having 2 carbon atoms.
  • LC4 is general formula (LC4-a) to general formula (LC4-c)
  • general formula (LC5) is general formula (LC5-a) to general formula (LC5-c).
  • R LC41, R LC42 and X LC41 each independently represent the same meaning as R LC41, R LC42 and X LC41 in the general formula (LC4)
  • R LC51 and R LC52 is the general independently It represents the same meaning as R LC51 and R LC52 in formula (LC5)
  • R LC41, R LC42, R LC51 and R LC52 each independently represents an alkyl group of 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, the number alkenyl group or a carbon atom of 2 to 7 carbon atoms 2 It preferably represents ⁇ 7 alkenyloxy groups.
  • Z LC4a1 to Z LC5c1 each independently preferably represents a single bond, —CH 2 O—, —COO—, —OCO— , —CH 2 CH 2 —, and more preferably represents a single bond.
  • the third component is a so-called nonpolar liquid crystal compound having a dielectric anisotropy of about 0, and examples thereof include compounds represented by the following general formula (LC6).
  • R LC61 and R LC62 each independently represents an alkyl group having 1 to 15 carbon atoms, and one or more of —CH 2 — in the alkyl group is not directly adjacent to an oxygen atom. And may be substituted with —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO— or —C ⁇ C—, and one or more hydrogen atoms in the alkyl group May be optionally halogen-substituted, and A LC61 to A LC63 each independently represent
  • one or more —CH 2 CH 2 — in the cyclohexylene group may be substituted with —CH ⁇ CH—, —CF 2 O—, —OCF 2 —, -One or two or more CH groups in the phenylene group may be substituted with a nitrogen atom
  • Z LC61 and Z LC62 each independently represent a single bond, —CH ⁇ CH—, Represents —C ⁇ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—
  • m Lc6 represents 0-3.
  • R LC61 and R LC62 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms. Most preferably,
  • a LC61 to A LC63 each independently preferably has the following structure:
  • Z LC61 and Z LC62 are each independently preferably a single bond, —CH 2 CH 2 —, —COO— , —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—.
  • R LC61 and R LC62 are each independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, or 2 to 7 carbon atoms) It is more preferable that it is 1 type, or 2 or more types of compounds chosen from the group which consists of a compound represented by this.
  • the fourth component is a so-called p-type liquid crystal compound having a positive dielectric anisotropy, and examples thereof include compounds represented by the following general formulas (LC1) and (LC2).
  • R LC11 and R LC21 each independently represents an alkyl group having 1 to 15 carbon atoms, and one or more of —CH 2 — in the alkyl group is not directly adjacent to an oxygen atom. And may be substituted with —O—, —CH ⁇ CH—, —CO—, —OCO—, —COO— or —C ⁇ C—, and one or more hydrogen atoms in the alkyl group May be optionally substituted with a halogen atom, and A LC11 and A LC21 are each independently any one of the following structures:
  • one or more —CH 2 — in the cyclohexylene group may be substituted with an oxygen atom, and one or more —CH— in the 1,4-phenylene group may be substituted. May be substituted with a nitrogen atom, and one or more hydrogen atoms in the structure may be substituted with a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ).
  • X LC11, X LC12, X LC21 ⁇ X LC23 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a -CF 3 or -OCF 3
  • Y LC11 and Y LC21 are each independently a hydrogen atom, fluorine atom, a chlorine atom, a cyano group, -CF 3
  • LC11 and m LC21 each independently represents an integer of 1 to 4, and when there are
  • R LC11 and R LC21 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and an alkyl group having 1 to 5 carbon atoms.
  • Group, an alkoxy group having 1 to 5 carbon atoms, and an alkenyl group having 2 to 5 carbon atoms are more preferable, and a straight chain is more preferable, and the alkenyl group most preferably represents the following structure.
  • a LC11 and A LC21 each independently preferably have the following structure.
  • Y LC11 and Y LC21 are each independently preferably a fluorine atom, a cyano group, —CF 3 or —OCF 3 , preferably a fluorine atom or —OCF 3 , and particularly preferably a fluorine atom.
  • Z LC11 and Z LC21 are preferably a single bond, —CH 2 CH 2 —, —COO—, —OCO— , —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O— , —CH 2 CH 2 —, —OCH 2 —, —OCF 2 — or —CF 2 O— are preferred, and a single bond, —OCH 2 — or —CF 2 O— is more preferred.
  • m LC11 and m LC21 are preferably 1, 2 or 3, preferably 1 or 2 when emphasizing storage stability at low temperature and response speed, and 2 or 3 for improving the upper limit of the nematic phase upper limit temperature. Is preferred.
  • LC1 is represented by the following general formula (LC1-a) to general formula (LC1-c)
  • R LC11, Y LC11, X LC11 and X LC12 each independently represent the same meaning as R LC11, Y LC11, X LC11 and X LC12 in the general formula (LC1)
  • a LC1a1, A LC1a2 and A LC1b1 represents a trans-1,4-cyclohexylene group, a tetrahydropyran-2,5-diyl group, or a 1,3-dioxane-2,5-diyl group
  • XLC1b1 , XLC1b2 , XLC1c1 to XLC1c4 Are each independently a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ), and are preferably one or more compounds selected from the group consisting of compounds represented by:
  • R LC11 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
  • X LC11 to X LC1c4 are each independently preferably a hydrogen atom or a fluorine atom.
  • Y LC11 is preferably independently a fluorine atom, —CF 3 or —OCF 3 .
  • the general formula (LC1) is changed from the following general formula (LC1-d) to the general formula (LC1-m).
  • R LC11, Y LC11, X LC11 and X LC12 each independently represent the same meaning as R LC11, Y LC11, X LC11 and X LC12 in the general formula (LC1), A LC1d1, A LC1f1, A LC1g1 , A LC1j1 , A LC1k1 , A LC1k2 , A LC1m1 to A LC1m3 are 1,4-phenylene group, trans-1,4-cyclohexylene group, tetrahydropyran-2,5-diyl group, 1,3- It represents dioxane-2,5-diyl group, X LC1d1, X LC1d2, X LC1f1, X LC1f2, X LC1g1, X LC1g2, X LC1h1, X LC1h2, X LC1i1, X LC1i2, X LC1 LC1
  • R LC11 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
  • X LC11 to X LC1m2 are each independently preferably a hydrogen atom or a fluorine atom.
  • Y LC11 is preferably independently a fluorine atom, —CF 3 or —OCF 3 .
  • Z LC1d1 to Z LC1m1 are each independently preferably —CF 2 O— or —OCH 2 —.
  • the general formula (LC2) is changed from the following general formula (LC2-a) to the general formula (LC2-g).
  • R LC21 , Y LC21 , X LC21 to X LC23 each independently represents the same meaning as R LC21 , Y LC21 , X LC21 to X LC23 in the general formula (LC2), and X LC2d1 to X LC2d4 , X LC2e1 to X LC2e4 , X LC2f1 to X LC2f4 and X LC2g1 to X LC2g4 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 , and Z LC2a1 , Z LC2b1 , Z LC2c1 , Z LC2d1 , Z LC2e1 , Z LC2f1 and Z LC2g1 are each independently a single bond, —CH ⁇ CH—, —CF ⁇ CF— , —C ⁇ C— , —CH
  • R LC21 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
  • X LC21 to X LC2g4 are each independently preferably a hydrogen atom or a fluorine atom
  • Y LC21 is preferably each independently a fluorine atom, —CF 3 or —OCF 3 .
  • Z LC2a1 to Z LC2g4 are each independently preferably —CF 2 O— or —OCH 2 —.
  • the composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
  • the content of the compound having a carbonyl group is preferably 5% or less, more preferably 3% or less with respect to the total mass of the composition. Preferably, it is more preferably 1% or less, and most preferably not substantially contained.
  • the content of the compound substituted with chlorine atoms is preferably 15% or less, preferably 10% or less, based on the total mass of the composition. % Or less, preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
  • the content of the compound having a cyclohexenylene group as a ring structure, and the content of the compound having a cyclohexenylene group as the total mass of the composition is preferably 10% or less, preferably 8% or less, more preferably 5% or less, preferably 3% or less, and still more preferably not contained.
  • a hydrogen atom to reduce the content of the compound having the optionally substituted 2-methyl-1,4-diyl group halogen in the molecule is preferably 10% or less, more preferably 8% or less with respect to the total mass of the composition. It is preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
  • substantially not contained in the present application means that it is not contained except for an unintentionally contained product.
  • the alkenyl group when the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms.
  • the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
  • the average elastic constant (K AVG ) of the liquid crystal composition used in the present invention is preferably 10 to 25, and the lower limit thereof is preferably 10, preferably 10.5, preferably 11 and preferably 11.5.
  • 12 is preferable, 12.3 is preferable, 12.5 is preferable, 12.8 is preferable, 13 is preferable, 13.3 is preferable, 13.5 is preferable, 13.8 is preferable, 14 is preferable, 14 .3 is preferred, 14.5 is preferred, 14.8 is preferred, 15 is preferred, 15.3 is preferred, 15.5 is preferred, 15.8 is preferred, 16 is preferred, 16.3 is preferred, 16 .5, 16.8 is preferable, 17 is preferable, 17.3 is preferable, 17.5 is preferable, 17.8 is preferable, and 18 is preferable.
  • 25 is preferable, 24.5 is preferable, 24 is preferable, 23.5 is preferable, 23 is preferable, 22.8 is preferable, 22.5 is preferable, 22.3 is preferable, 22 is preferable, and 21.8 is 21.5 is preferred, 21.3 is preferred, 21 is preferred, 20.8 is preferred, 20.5 is preferred, 20.3 is preferred, 20 is preferred, 19.8 is preferred, 19.5 is preferred 19.3 is preferred, 19 is preferred, 18.8 is preferred, 18.5 is preferred, 18.3 is preferred, 18 is preferred, 17.8 is preferred, 17.5 is preferred, 17.3 is preferred 17 is preferable. When importance is placed on reducing power consumption, it is effective to reduce the amount of light from the backlight, and it is preferable to improve the light transmittance of the liquid crystal display element.
  • the liquid crystal composition of the present invention has a refractive index anisotropy ( ⁇ n) at 20 ° C. of 0.08 to 0.14, more preferably 0.09 to 0.13, and 0.09 to 0.12. Particularly preferred. More specifically, it is preferably 0.10 to 0.13 when dealing with a thin cell gap, and preferably 0.08 to 0.10 when dealing with a thick cell gap.
  • the liquid crystal composition of the present invention has a viscosity ( ⁇ ) at 20 ° C. of 10 to 30 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 22 mPa ⁇ s.
  • the liquid crystal composition of the present invention has a rotational viscosity ( ⁇ 1 ) at 20 ° C. of 60 to 200 mPa ⁇ s, more preferably 60 to 120 mPa ⁇ s, and particularly preferably 60 to 100 mPa ⁇ s. .
  • the liquid crystal composition of the present invention has a nematic phase-isotropic liquid phase transition temperature (T ni ) of 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and particularly preferably 70 ° C. to 85 ° C. In addition, it is preferable to show a nematic liquid crystal at 20 ° C.
  • T ni nematic phase-isotropic liquid phase transition temperature
  • the liquid crystal composition of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, an infrared absorber, a polymerizable monomer, or a light stabilizer in addition to the above-described compounds. Good.
  • the liquid crystal display device using the liquid crystal composition containing the compound of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving.
  • the present invention can be applied to liquid crystal display elements in various modes such as a mode, a PSVA mode, a PSA mode, an IPS mode, an FFS mode, or an ECB mode.
  • % in the compositions of the following Examples and Comparative Examples means “% by mass”.
  • the phase transition temperature was measured using a polarizing microscope equipped with a temperature control stage and a differential scanning calorimeter (DSC).
  • T n-i nematic phase - represents the transition temperature of the isotropic phase.
  • reaction mixture was warmed to 0 ° C., 10% hydrochloric acid (120 ml) was added and stirred, and the organic layer was separated. Further, the aqueous layer was extracted with toluene (100 ml). The obtained organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The obtained solution was concentrated to obtain a crude product of compound 2 (31.0 g). Recrystallization was performed using a hexane / ethyl acetate mixed solvent to obtain compound 1-2-5 (16.4 g).
  • Example 2 Synthesis of Compound 1-2-0 to Compound 4-2-8 Using the same reaction as in Example 1 and, if necessary, a method based on a known method, Example 2 ( Compound 1-2-0) to Example 18 (Compound 3-2-8) were synthesized.
  • diisopropylamine (3.3 g) and THF (30 ml) were added to a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, and cooled to ⁇ 10 ° C.
  • a 1.6M butyllithium / hexane solution (17.7 ml) was added dropwise at ⁇ 10 ° C., stirred for 1 hour, and then compound 1-5-5 (7.2 g) previously dissolved in THF (25 ml).
  • triisopropyl borate (6.1 g) were simultaneously added dropwise at -10 ° C. and stirred for 1 hour.
  • the reaction mixture was warmed to 0 ° C., 10% hydrochloric acid (100 ml) was added and stirred, and the organic layer was separated.
  • the organic layer was added to a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, and 30% aqueous hydrogen peroxide (10 ml) was added dropwise. After stirring at room temperature for 1 hour, the solution temperature was cooled to 0 ° C., and a 15% aqueous sodium thiosulfate solution (100 ml) was added.
  • the organic layer was separated and the aqueous layer was extracted with toluene (50 ml). The obtained organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate.
  • the resulting solution was concentrated to give compound 1-6-5 (7.3 g).
  • Example 1-7-205 (1.0 g) was obtained by repeating recrystallization using an acetone / methanol mixed solvent.
  • the phase transition temperature is Cr87Iso.
  • Example 21 to 181 Synthesis of compounds 1-5-0 to 3-7-808 Using reactions similar to those in Examples 19 and 20 and, if necessary, methods based on known methods, Example 21 (Compound 1-5-0) to Example 351 (Compound 4-7-808) were synthesized.
  • T n-i (nematic phase - isotropic liquid phase transition temperature): 73.8 ° C. ⁇ (dielectric anisotropy at 25 ° C.): ⁇ 2.79 ⁇ n (refractive index anisotropy at 25 ° C.): 0.101 ⁇ 1 (rotational viscosity coefficient at 25 ° C.): 118
  • a liquid crystal composition (MA) comprising 97% of the base liquid crystal (H) and 3% of the compound (1-7-205) obtained in Example 1 was prepared. The value of T n ⁇ i , ⁇ , ⁇ n and ⁇ 1 of this composition (MA) was measured, and based on the amount of change from the base liquid crystal, the compound (1-7-205) obtained in Example 1 was used. The extrapolated value of each physical property value of) was as follows.
  • the prepared liquid crystal composition (MA) maintained a uniform nematic liquid crystal state for one month or more at room temperature.
  • liquid crystal display device manufactured using the liquid crystal composition (MA) showed excellent display characteristics, maintained stable display characteristics for a long time, and showed high reliability.
  • Example 353 Preparation of Liquid Crystal Composition-2
  • a liquid crystal composition (MB) comprising 95% of the base liquid crystal (H) and 5% of the compound (1-7-405) obtained in Example 60 was prepared. From this composition (M-B), the extrapolated T n-i of the compound obtained in Example 60 (1-7-405), extrapolated [Delta] [epsilon], extrapolation [Delta] n, the extrapolation gamma 1 values below It is as follows.
  • Extrapolation T n-i 21.8 °C Extrapolation ⁇ : -14.0
  • Extrapolation ⁇ n 0.158 Extrapolation ⁇ 1 : 360 mPa ⁇ s
  • the prepared liquid crystal composition (MB) maintained a uniform nematic liquid crystal state for one month or more at room temperature.
  • liquid crystal display device manufactured using the liquid crystal composition (MB) exhibited excellent display characteristics, maintained stable display characteristics over a long period of time, and exhibited high reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal Substances (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

Provided are: a compound represented by general formula (i); and a composition and a liquid crystal display element which use said compound. The compound represented by general formula (i) is obtained by reacting a compound represented by general formula (i-r2) with a compound represented by general formula (i-r1) in the presence of a transition metal catalyst and a base to obtain a compound represented by general formula (i-r3), and subsequently inducing an intramolecular reaction by using the base to deprotonate -Yi3-H in the compound represented by general formula (i-r3) to generate an anion. According to the present invention, a compound which exhibits a high Tni, and a large Δε, and a composition and a liquid crystal display element which use said compound can be provided. Furthermore, a method for producing the compound and a production intermediate of the compound can also be provided.

Description

液晶化合物及びその組成物Liquid crystal compound and composition thereof
 本発明は有機電子材料や医農薬、特に液晶表示素子用材料として有用な縮合環を有する化合物及びこれらを用いた液晶組成物に関する。 The present invention relates to a compound having a condensed ring that is useful as an organic electronic material, medical pesticide, or a liquid crystal display element material, and a liquid crystal composition using these compounds.
 液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ、時計、広告表示板等に用いられている。液晶表示方式としては、その代表的なものにTN(ツイステッド・ネマチック)型、STN(スーパー・ツイステッド・ネマチック)型、TFT(薄膜トランジスタ)を用いた垂直配向型やIPS(イン・プレーン・スイッチング)型等の駆動方式がある。これらの液晶表示素子に用いられる液晶組成物は水分、空気、熱、光などの外的要因に対して安定であること、また、室温を中心としてできるだけ広い温度範囲で液晶相(ネマチック相、スメクチック相及びブルー相等)を示し、低粘性であり、かつ駆動電圧が低いことが求められる。更に液晶組成物は個々の表示素子にあわせて誘電率異方性(Δε)及び屈折率異方性(Δn)等を最適な値とするために、数種類から数十種類の化合物を選択し、構成されている。 Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, clocks, advertisement display boards, etc., including watches and calculators. Typical liquid crystal display methods include TN (twisted nematic) type, STN (super twisted nematic) type, vertical alignment type using TFT (thin film transistor), and IPS (in-plane switching) type. There is a drive system such as. The liquid crystal compositions used in these liquid crystal display elements are stable against external factors such as moisture, air, heat, and light, and the liquid crystal phase (nematic phase, smectic phase) in the widest possible temperature range centering on room temperature. Phase, blue phase, etc.), low viscosity, and low driving voltage. Furthermore, the liquid crystal composition is selected from several to several tens of kinds of compounds in order to optimize the dielectric anisotropy (Δε) and the refractive index anisotropy (Δn) according to the individual display elements, It is configured.
 液晶組成物を表示素子等として使用する際には、広い温度範囲において安定なネマチック相を示すことが求められる。広い温度範囲にてネマチック相を維持するためには、液晶組成物を構成する個々の成分が他の成分との高い混和性を持つこと、及び高い透明点(Tni)を持つ事が求められる。 また、液晶組成物を表示素子等として使用する際には、可能な限り回転粘性係数(γ)が低いことが求められる。γの低い液晶組成物を得るためには様々な方法があるが、その一つとして大きな|Δε|(外挿値)を有する化合物を用いる事が知られている。この理由について以下に説明する。液晶組成物のγを低下させるためには、|Δε|(外挿値)がほぼ0であり低いγ(外挿値)を示す非極性化合物の使用量を可能な限り増やすことが有効である。一般的に必要とされる組成物のΔεは液晶パネルごとに決まっており、Δεを付与するためにγ(外挿値)の大きな極性化合物を添加している。したがって、大きな|Δε|(外挿値)を示す化合物に置き換える事で、非極性化合物の使用量を増やすことが出来るため、結果として液晶組成物のγ低下を達成することが出来る。 When the liquid crystal composition is used as a display element or the like, it is required to exhibit a stable nematic phase in a wide temperature range. In order to maintain a nematic phase in a wide temperature range, it is required that individual components constituting the liquid crystal composition have high miscibility with other components and have a high clearing point (T ni ). . Moreover, when using a liquid crystal composition as a display element etc., it is calculated | required that a rotational viscosity coefficient ((gamma) 1 ) is as low as possible. In order to obtain a low gamma 1 liquid crystal composition There are various ways, big as one | [Delta] [epsilon] | It is known that a compound having a (extrapolated value). The reason for this will be described below. In order to reduce γ 1 of the liquid crystal composition, it is effective to increase as much as possible the use amount of a nonpolar compound having | Δε | (extrapolated value) of almost 0 and showing a low γ 1 (extrapolated value). It is. The Δε of the composition that is generally required is determined for each liquid crystal panel, and a polar compound having a large γ 1 (extrapolated value) is added to give Δε. Therefore, by replacing the compound with a large | Δε | (extrapolated value), the amount of the nonpolar compound used can be increased, and as a result, a decrease in γ 1 of the liquid crystal composition can be achieved.
 このように、高いTniを示し、また、大きな|Δε|(外挿値)を示す化合物の開発が求められている。これまで、ジベンゾフラン構造を有する下記のような化合物が報告されているが、Tniが十分に大きくないという課題があった(特許文献1及び特許文献2)。 Thus, there is a demand for the development of a compound that exhibits a high T ni and a large | Δε | (extrapolated value). So far, the following compounds having a dibenzofuran structure have been reported, but there has been a problem that T ni is not sufficiently large (Patent Documents 1 and 2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R及びRは各々独立して炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルキニル基を表し、m及びnは各々独立して0又は1を表す。) Wherein R 1 and R 2 each independently represents an alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkynyl group having 2 to 15 carbon atoms, Each independently represents 0 or 1)
独国特許出願公開第102015002298号明細書German Patent Application Publication No. 102015002298 独国特許出願公開第102015003411号明細書German Patent Application Publication No. 102015003411
 本発明が解決しようとする課題は、高いTniを示し、また、大きなΔεを有する化合物を提供し、併せて当該化合物を構成部材とする液晶組成物及び液晶表示素子を提供することである。 The problem to be solved by the present invention is to provide a compound having a high T ni and having a large Δε, and a liquid crystal composition and a liquid crystal display device comprising the compound as a constituent member.
 前記課題を解決するため、本願発明者らは種々の化合物の検討を行った結果、下記縮合環を有する化合物が効果的に課題を解決できることを見出し、本願発明の完成に至った。 In order to solve the above problems, the present inventors have studied various compounds, and as a result, have found that a compound having the following condensed ring can effectively solve the problems, and have completed the present invention.
 本願発明は、一般式(i) The present invention has the general formula (i)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Xi1及びXi2はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、トリフルオロメトキシ基を表し、
i1及びYi2はそれぞれ独立して-O-、-S-、-SO-、-SOO-、-CF-、-CO-、-CXi3i4-を表し、ただし、Yi1及びYi2のいずれか一つ以上は-O-、-S-、-SO-、-SOO-を表し、
i3、Xi4はそれぞれ独立してXi1と同じ意味を表し、
破線は結合が存在しなくても良く、存在しても良いことを表し、
i1は破線が存在しない場合、-CLi6i7-CLi8i9-、-CLi6i7-O-、-O-CLi8i9-、-CLi6i7-S-、-S-CLi8i9-、又は-CLi6=CLi8-を表し、
破線が存在する場合、-CLi6i7-CLi8=、-O-CLi8=、-S-CLi8=を表し、
i2は単結合又は-CLi10i11-を表し、
i1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11はそれぞれ独立して水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基又は
( Wherein , X i1 and X i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a trifluoromethoxy group,
Y i1 and Y i2 each independently represent —O—, —S—, —SO—, —SOO—, —CF 2 —, —CO—, —CX i3 X i4 —, wherein Y i1 and Y any one or more of i2 represents —O—, —S—, —SO—, —SOO—;
X i3 and X i4 each independently represent the same meaning as X i1 ,
The dashed line indicates that the bond may or may not exist,
If W i1 is the absence of broken lines, -CL i6 L i7 -CL i8 L i9 -, - CL i6 L i7 -O -, - O-CL i8 L i9 -, - CL i6 L i7 -S -, - S -CL i8 L i9 -, or -CL i6 = CL i8 - represents,
When a broken line exists, -CL i6 L i7 -CL i8 =, -O-CL i8 =, -S-CL i8 =
W i2 represents a single bond or —CL i10 L i11 —,
L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11 are each independently a hydrogen atom, bromine atom, iodine atom, hydroxyl group, carbon An alkyl group having 1 to 15 atoms, an alkenyl group having 2 to 15 carbon atoms, or
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、Ri1は水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表し、
i1
(a)1,4-シクロへキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられても良い。)
(b)1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良く、この基中に存在する1つの水素原子はフッ素原子に置換されても良い。)
(c)1,4-シクロヘキセニレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基(これらの基中に存在する水素原子はフッ素原子に置換されても良く、また、ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
からなる群より選ばれる基を表し、
i1は、-CHO-、-OCH-、-CFO-、-OCF-、-COO-、-OCO-、-CHCH-、-CFCF-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表し、
i1は1又は2を表すが、ni1が2を表しAi1及びZi1が複数存在する場合、それらは同一であっても異なっていてもよい。)
で表される基を表し、Li1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-C≡C-、-O-、-S-、-COO-、-OCO-又は-CO-により置き換えられても良く、また、アルキル基又はアルケニル基中に存在する水素原子はフッ素原子に置換されても良い。)
で表される基を表す。)
で表される化合物を提供し、併せて当該化合物を含有する液晶組成物及び当該液晶組成物を用いた液晶表示素子、並びに当該化合物の製造方法及びその中間体を提供する。
(Wherein R i1 represents a hydrogen atom, a bromine atom, an iodine atom, a hydroxyl group, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms,
A i1 represents (a) a 1,4-cyclohexylene group (one —CH 2 — present in this group or two or more non-adjacent —CH 2 — represents —O— or —S—). May be replaced.)
(B) 1,4-phenylene group (one —CH═ present in this group or two or more non-adjacent —CH═ may be replaced by —N═, present in this group) One hydrogen atom may be substituted with a fluorine atom.)
(C) 1,4-cyclohexenylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group ( A hydrogen atom present in these groups may be substituted with a fluorine atom, or present in a naphthalene-2,6-diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group. One -CH = or two or more non-adjacent -CH = may be replaced by -N =.)
Represents a group selected from the group consisting of
Z i1 represents —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —COO—, —OCO—, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ═CH—, —CF═CF—, —C≡C— or a single bond,
n i1 represents 1 or 2, but when n i1 represents 2 and a plurality of A i1 and Z i1 exist, they may be the same or different. )
1 —CH 2 present in L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11. — Or two or more non-adjacent —CH 2 — may be replaced by —C≡C—, —O—, —S—, —COO—, —OCO— or —CO—, and A hydrogen atom present in the group or alkenyl group may be substituted with a fluorine atom. )
Represents a group represented by )
In addition, a liquid crystal composition containing the compound, a liquid crystal display device using the liquid crystal composition, a method for producing the compound, and an intermediate thereof are provided.
 本発明により提供される、一般式(i)で表される化合物は、高い透明点(Tni)を有する。従って、一般式(i)で表される化合物を液晶組成物の成分として用いる事により、広い温度範囲において安定なネマチック相を示すことができる。また、本発明により提供される、一般式(i)で表される化合物は、大きな|Δε|を示しさらに化学的に高い安定性を併せ持つ。従って、一般式(i)で表される化合物を液晶組成物の成分として用いる事により、低いγを示す液晶組成物を得ることができる。このため、高速応答が求められる液晶表示素子用の液晶組成物の構成成分として非常に有用である。 The compound represented by the general formula (i) provided by the present invention has a high clearing point (T ni ). Therefore, a stable nematic phase can be exhibited in a wide temperature range by using the compound represented by the general formula (i) as a component of the liquid crystal composition. In addition, the compound represented by the general formula (i) provided by the present invention exhibits a large | Δε | and also has a high chemical stability. Therefore, by using the compound represented by the general formula (i) as a component of the liquid crystal composition, a liquid crystal composition exhibiting a low γ 1 can be obtained. For this reason, it is very useful as a component of a liquid crystal composition for a liquid crystal display element that requires a high-speed response.
 Xi1及びXi2はそれぞれ独立して、フッ素原子を表すことが好ましく、より負に大きなΔεを示すにはXi1及びXi2が共にフッ素原子を表すことがより好ましい。 X i1 and X i2 each independently preferably represent a fluorine atom, and in order to exhibit a more negative Δε, it is more preferable that both X i1 and X i2 represent a fluorine atom.
 Yi1及びYi2はそれぞれ独立して、酸素原子または硫黄原子を表すことが好ましく、より負に大きなΔεを示すにはYi1及びYi2が共に酸素原子または硫黄原子を表すことがより好ましい。負に大きなΔεを示しつつ液晶表示素子とした際の長期信頼性を向上させるには共に酸素原子であることが好ましい。γを重視する場合にはYi1及びYi2のいずれかが-CH-であることが好ましく、Yi2が-CH-であることがより好ましい。より大きなΔnを示すには共に硫黄原子であることが好ましい。 Y i1 and Y i2 each independently preferably represent an oxygen atom or a sulfur atom, and it is more preferable that both Y i1 and Y i2 represent an oxygen atom or a sulfur atom in order to exhibit a more negative Δε. In order to improve long-term reliability when a liquid crystal display element is produced while exhibiting a large negative Δε, both are preferably oxygen atoms. is preferably, Y i2 is -CH 2 - - either Y i1 and Y i2 is -CH 2 in the case of emphasizing gamma 1 and more preferably from. In order to show a larger Δn, both are preferably sulfur atoms.
 Wi1は-CHO-、-OCH-、-CHCH-、-CH=CH-、-CH-CH=、-OCH=であることが好ましく、Tni及びγを重視する場合には-CHCH-、-CH=CH-、-CH-CH=であることがより好ましく、他の液晶成分との混和性を上昇させるためには-CHCH-であることがより好ましく、大きなΔnを示すには-CH=CH-、-CH-CH=であることがより好ましい。 W i1 is preferably —CH 2 O—, —OCH 2 —, —CH 2 CH 2 —, —CH═CH—, —CH 2 —CH═, —OCH =, with emphasis on T ni and γ 1 In this case, —CH 2 CH 2 —, —CH═CH—, —CH 2 —CH═ is more preferable. In order to increase the miscibility with other liquid crystal components, —CH 2 CH 2 — It is more preferable that —CH═CH— and —CH 2 —CH═ are more preferable for showing a large Δn.
 Wi2は単結合又は-CHCH-を表すことが好ましい。 W i2 preferably represents a single bond or —CH 2 CH 2 —.
 Li1及びLi2はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、γを低下させる為には、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基であることが好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。|Δε|を大きくさせるためには、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基であることが好ましく、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基であることが特に好ましい。他の液晶成分との混和性を上昇させるためには、Li1及びLi2が異なることが好ましく、アルコキシ基又はアルケニルオキシ基はLi1及びLi2のいずれか一方であることが好ましく、アルコキシ基又はアルケニルオキシ基はLi1であることが特に好ましい。Li1及びLi2中に存在する水素原子はフッ素原子に置換されていても良いが、フッ素原子に置換されていないことが好ましい。 L i1 and L i2 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms. In order to reduce γ 1 , An alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 2 to 5 carbon atoms is particularly preferable. Moreover, it is preferable that it is linear. In order to increase | Δε |, it is preferably an alkoxy group having 1 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms or 2 carbon atoms. Particularly preferred is an alkenyloxy group of 5 to 5. In order to increase the miscibility with other liquid crystal components, L i1 and L i2 are preferably different, and the alkoxy group or alkenyloxy group is preferably one of L i1 and L i2 , Alternatively, the alkenyloxy group is particularly preferably L i1 . The hydrogen atom present in L i1 and L i2 may be substituted with a fluorine atom, but is preferably not substituted with a fluorine atom.
 また、Li1及びLi2L i1 and L i2 are
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
を表すことが好ましい。 Is preferably represented.
 Ri1はγを低下させる為には、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基であることが好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。|Δε|を大きくさせるためには、炭素原子数1~8のアルコキシ基又は炭素原子数2~8のアルケニルオキシ基であることが好ましく、炭素原子数1~5のアルコキシ基又は炭素原子数2~5のアルケニルオキシ基であることが特に好ましい。Ri1が複数存在する場合、他の液晶成分との混和性を上昇させるためには、Ri1が互いに異なることが好ましく、アルコキシ基又はアルケニルオキシ基は複数存在するRi1のうちいずれか一つであることが好ましく、アルコキシ基又はアルケニルオキシ基はLi1中のRi1であることが特に好ましい。Ri1中に存在する水素原子はフッ素原子に置換されていても良いが、フッ素原子に置換されていないことが好ましい。 R i1 is preferably an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms in order to reduce γ 1, and an alkyl group having 1 to 5 carbon atoms or the number of carbon atoms Particularly preferred are 2 to 5 alkenyl groups. Moreover, it is preferable that it is linear. In order to increase | Δε |, it is preferably an alkoxy group having 1 to 8 carbon atoms or an alkenyloxy group having 2 to 8 carbon atoms, and an alkoxy group having 1 to 5 carbon atoms or 2 carbon atoms. Particularly preferred is an alkenyloxy group of 5 to 5. When there are a plurality of R i1 s, in order to increase the miscibility with other liquid crystal components, it is preferable that R i1s are different from each other, and any one of R i1s having a plurality of alkoxy groups or alkenyloxy groups exists. And the alkoxy group or alkenyloxy group is particularly preferably R i1 in L i1 . The hydrogen atom present in R i1 may be substituted with a fluorine atom, but is preferably not substituted with a fluorine atom.
 Ai1A i1 is
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
から選ばれる基を表すことが好ましい。具体的には、Aはγを低下させる為にはトランス-1,4-シクロヘキシレン基、無置換の1,4-フェニレン基、2-フルオロ-1,4-フェニレン基又は3-フルオロ-1,4-フェニレン基であることが好ましく、トランス-1,4-シクロヘキシレン基であることが特に好ましい。他の液晶成分との混和性を向上させる為には、トランス-1,4-シクロヘキシレン基、2-フルオロ-1,4-フェニレン基又は3-フルオロ-1,4-フェニレン基であることが好ましい。Tniを上昇させる為には、無置換の1,4-フェニレン基、無置換の1,4-シクロヘキシレン基、1,4-シクロヘキセニレン基又は無置換のナフタレン-2,6-ジイル基であることが好ましい。負に大きなΔεを示すためには、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基又は2,3-ジフルオロー1,4-フェニレン基であることが好ましい。負に大きなΔεを示しながら、他の液晶成分との混和性を両立させるためには、Ai1中に存在するフッ素原子の数の合計は、1~4であることが好ましく、1~3であることが特に好ましい。 It is preferable to represent a group selected from: Specifically, A 1 is a trans-1,4-cyclohexylene group, an unsubstituted 1,4-phenylene group, a 2-fluoro-1,4-phenylene group, or a 3-fluoro group for decreasing γ 1. A 1,4-phenylene group is preferred, and a trans-1,4-cyclohexylene group is particularly preferred. In order to improve miscibility with other liquid crystal components, it may be a trans-1,4-cyclohexylene group, a 2-fluoro-1,4-phenylene group or a 3-fluoro-1,4-phenylene group. preferable. In order to increase T ni , an unsubstituted 1,4-phenylene group, an unsubstituted 1,4-cyclohexylene group, a 1,4-cyclohexenylene group, or an unsubstituted naphthalene-2,6-diyl group It is preferable that In order to exhibit negatively large Δε, a 2-fluoro-1,4-phenylene group, a 3-fluoro-1,4-phenylene group, or a 2,3-difluoro-1,4-phenylene group is preferable. In order to achieve both miscibility with other liquid crystal components while exhibiting a negative Δε, the total number of fluorine atoms present in A i1 is preferably 1 to 4, preferably 1 to 3. It is particularly preferred.
 Zi1は、γを低下させる為には単結合、-CHCH-、-CHO-又は-OCH-であることが好ましく、単結合又は-CHCH-であることが更に好ましい。Tniを上昇させるためには、単結合、-COO-,-OCO-、-CH=CH-又は-C≡C-であることが好ましく、単結合、-CH=CH-又は-C≡C-であることが更に好ましい。他の液晶成分との混和性を向上させる為には、単結合、-CHCH-、-CHO-又は-OCH-であることが好ましい。液晶表示素子とした際の長期信頼性を向上させるには単結合であることが好ましい。 Z i1 is preferably a single bond, —CH 2 CH 2 —, —CH 2 O— or —OCH 2 —, and preferably a single bond or —CH 2 CH 2 — in order to decrease γ 1. Is more preferable. In order to increase T ni , a single bond, —COO—, —OCO—, —CH═CH— or —C≡C— is preferable, and a single bond, —CH═CH— or —C≡C— -Is more preferable. In order to improve miscibility with other liquid crystal components, a single bond, —CH 2 CH 2 —, —CH 2 O— or —OCH 2 — is preferable. In order to improve long-term reliability when a liquid crystal display device is used, a single bond is preferable.
 ni1が2を表す場合、複数存在するZi1のいずれか一つ以上が単結合を表すことが好ましい。ni1はγを重視する場合には1であることが好ましい。Tniを重視する場合には2であることが好ましい。 When n i1 represents 2, it is preferable that any one or more of a plurality of Z i1 represent a single bond. n i1 is preferably 1 when γ 1 is important. When importance is attached to Tni , it is preferably 2.
 Li3は水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表すことが好ましく、γを低下させる為には、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基であることが好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。 L i3 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkenyloxy group having 2 to 15 carbon atoms. In order to reduce γ 1 , an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms or 2 carbon atoms is preferable. Particularly preferred is an alkenyl group of ˜5. Moreover, it is preferable that it is linear.
 また、Li1が水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表す場合、Li3L i1 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or an alkenyloxy group having 2 to 15 carbon atoms. L i3 is
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
を表すことが好ましい。 Is preferably represented.
 Li4及びLi5はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、水素原子を表すことがより好ましい。 L i4 and L i5 each independently represent a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms, and more preferably a hydrogen atom.
 Li6及びLi7はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表すことが好ましく、γを低下させる為には、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基であることが好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。 L i6 and L i7 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or 2 to 15 carbon atoms. In order to reduce γ 1 , an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and 1 to 5 carbon atoms are preferable. Of these, an alkyl group or an alkenyl group having 2 to 5 carbon atoms is particularly preferred. Moreover, it is preferable that it is linear.
 Li8又はLi9はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表すことが好ましく、γを低下させる為には、炭素原子数1~8のアルキル基又は炭素原子数2~8のアルケニル基であることが好ましく、炭素原子数1~5のアルキル基又は炭素原子数2~5のアルケニル基であることが特に好ましい。また、直鎖状であることが好ましい。 L i8 and L i9 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or 2 to 15 carbon atoms. In order to reduce γ 1 , an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2 to 8 carbon atoms is preferable, and 1 to 5 carbon atoms are preferable. Of these, an alkyl group or an alkenyl group having 2 to 5 carbon atoms is particularly preferred. Moreover, it is preferable that it is linear.
 また、Li2が水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表す場合、Li8又はLi9のいずれか一方が、 Further, when L i2 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms, either L i8 or L i9 is
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
を表すことが好ましい。 Is preferably represented.
 Li10及びLi11はそれぞれ独立して、水素原子、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基を表すことが好ましく、水素原子を表すことがより好ましい。 L i10 and L i11 are each independently a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, preferably represents an alkenyl group having 2 to 15 carbon atoms, and more preferably represents a hydrogen atom.
 一般式(i)で表される化合物において In the compound represented by the general formula (i)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
で表される基が存在する場合、他の液晶成分との混和性を高くする為に、当該基の数は2つ以下であることが好ましい。一般式(i)中に当該基の数が2つ存在する場合、Li1及びLi2、Li1及びLi8、Li3及びLi2、又はLi3及びLi8の位置に存在することが好ましい。一般式(i)中に当該基の数が2つ存在する場合、Li1及びLi2の位置に存在することが好ましい。 なお、一般式(i)で表される化合物において、ヘテロ原子同士が直接結合する構造となることはない。
一般式(i)の中では以下の一般式(i-1)~一般式(i-1000)で表される各化合物が好ましい。その中で特に好ましい化合物は、(i-1)、(i-2)、(i-3)、(i-4)、(i-5)、(i-6)、(i-7)、(i-8)、(i-9)、(i-10)、(i-11)、(i-12)、(i-895)、(i-896)、(i-897)、(i-898)、(i-899)、(i-900)である。
In the case where a group represented by the formula (1) is present, the number of the groups is preferably 2 or less in order to increase the miscibility with other liquid crystal components. When there are two such groups in general formula (i), it is preferably present at the positions of L i1 and L i2 , L i1 and L i8 , L i3 and L i2 , or L i3 and L i8. . When two groups exist in the general formula (i), it is preferably present at the positions of L i1 and L i2 . In addition, in the compound represented by general formula (i), it does not become a structure where hetero atoms are directly bonded.
Of the general formula (i), compounds represented by the following general formulas (i-1) to (i-1000) are preferable. Among them, particularly preferred compounds are (i-1), (i-2), (i-3), (i-4), (i-5), (i-6), (i-7), (I-8), (i-9), (i-10), (i-11), (i-12), (i-895), (i-896), (i-897), (i -898), (i-899), (i-900).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (In the formula, R i1 and R i2 represent the same meaning as R i1 in the general formula (i)).
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
(式中、Ri1及びRi2は、一般式(i)におけるRi1と同じ意味を表す。) (Wherein, R i1 and R i2 are the general formula (i) represents the same meaning as R i1.)
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
本発明において、一般式(i)で表される化合物は、例えば、一般式(i-r1) In the present invention, the compound represented by the general formula (i) is, for example, the general formula (i-r1)
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
(式中Xi2、Yi2、Wi1、Li2及びLi5は一般式(i)におけるXi2、Yi2、Wi1、Li2及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり-CH-CH-、-CH-CH-CH-、又は-CH-C(CH-CH-を表し、
破線は結合が存在しなくても良く、存在しても良いことを表す。)
で表される化合物と、一般式(i-r2)
( Wherein X i2 , Y i2 , W i1 , L i2 and L i5 represent the same meaning as X i2 , Y i2 , W i1 , L i2 and L i5 in general formula (i), respectively, but a plurality of X i2 may be different even in the same,
R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
A broken line indicates that a bond may not exist or may exist. )
And a compound of the general formula (ir-2)
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
(式中Xi1、Yi1、Li1、Li3、Li4及びWi2は一般式(i)におけるXi1、Yi1、Li1、Li3、Li4及びWi2とそれぞれ同じ意味を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表す。)
で表される化合物を遷移金属触媒及び塩基存在下反応させることにより、一般式(i-r3)
( Wherein X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 represent the same meanings as X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 in general formula (i), respectively. ,
X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, or a trifluoromethanesulfonyloxy group. )
Is reacted in the presence of a transition metal catalyst and a base to give a compound of the general formula (ir-3)
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
(式中Xi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
破線は結合が存在しなくても良く、存在しても良いことを表す。)
で表される化合物を得た後、該一般式(i-r3)中の-Yi1-Hを塩基により脱プロトン化しアニオンを生成することで分子内反応させることによって得られる。より具体的には、以下のようにして製造することができる。勿論本発明の趣旨及び適用範囲は、これら製造例により制限されるものではない。
(製造方法1)
( Wherein X i1 , X i2 , Y i1 , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 are X i1 , X i2 , Y i1 in the general formula (i)). , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 each represent the same meaning, but a plurality of X i2 may be the same or different,
A broken line indicates that a bond may not exist or may exist. )
Is obtained by deprotonating —Y i1 —H in the general formula (i-r3) with a base to generate an anion, thereby causing an intramolecular reaction. More specifically, it can be produced as follows. Of course, the spirit and scope of the present invention are not limited by these production examples.
(Manufacturing method 1)
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
(式中、Li1、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi1、Li2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり-CH-CH-、-CH-CH-CH-、又は-CH-C(CH-CH-を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表し、
i4は臭素原子又はよう素原子を表し、
i3は-O-又は-S-を表す。)
 一般式(S-1)で表される化合物をほう素化することにより一般式(S-2)で表される化合物を得ることができる。このほう素化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とすることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
(Wherein, L i1, L i2, X i1 , X i2, Y i2 and W i1 are the same meaning in the general formula (i) and L i1, L i2, X i1 , X i2, Y i2 and W i1 Represent,
R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesulfonyloxy group,
X i4 represents a bromine atom or an iodine atom,
Y i3 represents —O— or —S—. )
The compound represented by the general formula (S-2) can be obtained by boronizing the compound represented by the general formula (S-1). This boronation can be performed by deprotonation with an organometallic reagent and then reacting with a trialkyl borate to form a boron compound.
Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
 有機金属試薬としてはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4-テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn-ブチルリチウム、sec-ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec-ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム-t-ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。 Examples of organometallic reagents include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide. N-Butyllithium, sec-butyllithium and lithium diisopropylamide are preferred from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide capable of efficient deprotonation are more preferred. In the deprotonation, a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent. The reaction temperature for deprotonation is preferably from −100 ° C. to −20 ° C., more preferably from −78 ° C. to −40 ° C.
 ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec-ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。
一般式(S-2)で表される化合物を(S-3)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S-4)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
As the trialkyl borate, trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling. As the combination of trialkyl borate and organometallic reagent, any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred. The reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C.
A compound represented by general formula (S-4) is obtained by reacting a compound represented by general formula (S-2) with a compound represented by (S-3) in the presence of a transition metal catalyst and a base. Can do.
Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably. Tetrakis (triphenylphosphine) palladium (0), palladium (II) acetate, bis (triphenylphosphine) palladium dichloride (II), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] palladium (II) dichloride is preferred, Tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] dichloride More preferably, it is palladium (II). Moreover, in order to advance reaction suitably, you may add phosphine-type ligands, such as a triphenylphosphine, as needed.
 使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。 The reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
 使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。 Any base can be used as long as it allows the reaction to proceed suitably. Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
 反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
一般式(S-4)で表される化合物を分子内反応させることによって一般式(S-5)で表される化合物を得ることができる。この分子内反応は一般式(S-4)の-Yi3-Hを塩基により脱プロトン化しアニオンを生成することで行うことができる。
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属りん酸塩、アルカリ金属りん酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属りん酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属りん酸塩としてはりん酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
The reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
The compound represented by the general formula (S-5) can be obtained by intramolecular reaction of the compound represented by the general formula (S-4). This intramolecular reaction can be carried out by deprotonating —Y i3 —H of the general formula (S-4) with a base to generate an anion.
Examples of the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals. Phosphate, alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred. Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
 反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N-ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。 Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane, examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene, and examples of polar solvents include N, N-dimethylformamide, Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane. Of these, ether solvents such as tetrahydrofuran and diethyl ether and polar solvents such as N, N-dimethylformamide are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。
一般式(S-5)で表される化合物をハロゲン化することにより一般式(S-6)で表される化合物を得ることができる。このハロゲン化は、有機金属試薬により脱プロトン化した後、臭素又はよう素と反応させてハロゲン化合物とすることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
The reaction temperature can be in the range from the freezing point of the solvent to the reflux temperature, preferably from 0 ° C to 150 ° C, more preferably from 30 ° C to 120 ° C.
The compound represented by the general formula (S-6) can be obtained by halogenating the compound represented by the general formula (S-5). This halogenation can be performed by deprotonation with an organometallic reagent and then reacting with bromine or iodine to form a halogen compound.
Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
 有機金属試薬としてはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4-テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn-ブチルリチウム、sec-ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec-ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム-t-ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。
一般式(S-6)で表される化合物を(S-7)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S-8)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
Examples of organometallic reagents include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable. In the deprotonation, a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent. The reaction temperature for deprotonation is preferably from −100 ° C. to −20 ° C., more preferably from −78 ° C. to −40 ° C.
A compound represented by general formula (S-8) is obtained by reacting a compound represented by general formula (S-6) with a compound represented by (S-7) in the presence of a transition metal catalyst and a base. Can do.
Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably. Tetrakis (triphenylphosphine) palladium (0), palladium (II) acetate, bis (triphenylphosphine) palladium dichloride (II), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] palladium (II) dichloride is preferred, Tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] dichloride More preferably, it is palladium (II). Moreover, in order to advance reaction suitably, you may add phosphine-type ligands, such as a triphenylphosphine, as needed.
 使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。 The reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
 使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。 Any base can be used as long as it allows the reaction to proceed suitably. Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
 反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
(製造方法2)
The reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
(Manufacturing method 2)
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
(式中、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i5は塩素、臭素、よう素、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基又はトリフルオロメタンスルホニルオキシ基を表し、
i3は-O-又は-S-を表し、
i2は炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表す。)
 一般式(S-5)で表される化合物を酸化することにより一般式(S-9)で表される化合物を得ることができる。この酸化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とし、その後酸化剤を作用させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。有機金属試薬としてはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4-テトラメルピペリジド等を挙げることができ、入手および取り扱いの容易さからn-ブチルリチウム、sec-ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec-ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム-t-ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。
(Wherein, L i2, X i1, X i2 , Y i2 and W i1 represent the same meaning in the general formula (i) and L i2, X i1, X i2 , Y i2 and W i1,
X i5 represents chlorine, bromine, iodine, benzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy group or trifluoromethanesulfonyloxy group;
Y i3 represents —O— or —S—,
R i2 represents an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms. )
The compound represented by the general formula (S-9) can be obtained by oxidizing the compound represented by the general formula (S-5). This oxidation can be carried out by deprotonation with an organometallic reagent, reaction with a trialkyl borate to form a boron compound, and subsequent action of an oxidizing agent.
Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred. Examples of the organometallic reagent include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramerpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable. In the deprotonation, a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent. The reaction temperature for deprotonation is preferably from −100 ° C. to −20 ° C., more preferably from −78 ° C. to −40 ° C.
 ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec-ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。得られたほう素化合物は一度単離してもよく、単離せずそのまま酸化剤と反応させてもよい。また、得られたほう素化合物を加水分解してほう酸化合物へと変換した後に酸化剤と反応させても構わない。 As the trialkyl borate, trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling. As the combination of trialkyl borate and organometallic reagent, any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred. The reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C. The obtained boron compound may be isolated once or may be reacted with an oxidizing agent without isolation. Further, the obtained boron compound may be hydrolyzed and converted into a boric acid compound and then reacted with an oxidizing agent.
 酸化剤としては、過酸化水素水、過酢酸または過ギ酸を用いるのが好ましい。反応温度は-78℃から70℃が好ましく、0℃から50℃がより好ましい。また、酸化剤との反応時には、溶媒に水が含まれていても構わない。 As the oxidizing agent, hydrogen peroxide water, peracetic acid or performic acid is preferably used. The reaction temperature is preferably -78 ° C to 70 ° C, more preferably 0 ° C to 50 ° C. Moreover, water may be contained in the solvent at the time of reaction with an oxidizing agent.
 一般式(S-9)で表される化合物に一般式(S-10)で表される化合物を反応させることによって一般式(S-11)で表される化合物を得ることができる。この反応は一般式(S-9)の水酸基を塩基によりフェノラートとして一般式(S-10)と反応させることで行うことができる
 この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属リン酸塩、アルカリ金属リン酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属リン酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属リン酸塩としてはリン酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。 
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N-ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。
The compound represented by the general formula (S-11) can be obtained by reacting the compound represented by the general formula (S-9) with the compound represented by the general formula (S-10). This reaction can be carried out by reacting the hydroxyl group of general formula (S-9) with phenol as a phenolate with general formula (S-10). The base used in this case is a metal hydride, metal carbonate, metal Mention may be made of phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides, alkali metal phosphates, alkali metal phosphates, alkali metal carbonates, alkali metals Hydroxides, alkali metal amides and alkali metals are preferred, and alkali metal phosphates, alkali metal hydrides and alkali metal carbonates are more preferred. Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
Any reaction solvent may be used as long as it allows the reaction to proceed suitably. Ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane, examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene, and examples of polar solvents include N, N-dimethylformamide, Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane. Of these, ether solvents such as tetrahydrofuran and diethyl ether and polar solvents such as N, N-dimethylformamide are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。なお、生成したフェノラートを一度単離してから一般式(S-5)で表される化合物と反応させてもよく、単離せずに反応させてもよいが、作業の容易さから単離せずに反応させたほうがよい。
(製造方法3)
The reaction temperature can be in the range from the freezing point of the solvent to the reflux temperature, preferably from 0 ° C to 150 ° C, more preferably from 30 ° C to 120 ° C. The generated phenolate may be isolated once and then reacted with the compound represented by the general formula (S-5), or may be reacted without isolation, but it is not isolated for ease of work. It is better to react.
(Manufacturing method 3)
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
(式中、Li1、Li2、Xi1、Xi2、Yi2及びWi11は、一般式(i)におけるLi1、Li2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3は-O-又は-S-を表す。)
一般式(S-5)で表される化合物を一般式(S-11)で表される化合物と反応させることにより一般式(S-12)で表される化合物を得ることができる。この反応は、有機金属試薬により脱プロトン化した後、一般式(S-11)と反応させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。
有機金属試薬としてはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4-テトラメチルピペリジド等を挙げることができ、入手および取り扱いの容易さからn-ブチルリチウム、sec-ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec-ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム-t-ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。
(In the formula, L i1 , L i2 , X i1 , X i2 , Y i2 and W i11 have the same meaning as L i1 , L i2 , X i1 , X i2 , Y i2 and W i1 in the general formula (i)). Represent,
Y i3 represents —O— or —S—. )
A compound represented by general formula (S-12) can be obtained by reacting a compound represented by general formula (S-5) with a compound represented by general formula (S-11). This reaction can be carried out by deprotonation with an organometallic reagent and reaction with general formula (S-11).
Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred.
Examples of organometallic reagents include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramethylpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable. In the deprotonation, a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent. The reaction temperature for deprotonation is preferably from −100 ° C. to −20 ° C., more preferably from −78 ° C. to −40 ° C.
 一般式(S-12)で表される化合物を脱水することにより一般式(S-13)で表される化合物を得ることができる。脱水の方法としては、酸の存在下で加熱する方法が挙げられる。酸としては、例えば塩酸、硫酸、重硫酸カリウムなどの無機酸や、酢酸、トリフルオロ酢酸、p-トルエンスルホン酸などの有機酸、トリフッ化ホウ素などのルイス酸が挙げられる。あるいは、脱水の方法として、水酸基をp-トルエンスルホン酸クロリド、トリフルオロメタンスルホン酸クロリド、トリホスゲンなどと反応させて脱離基に変換した後、脱離反応を行うことで脱水することもできる。
一般式(S-13)で表される化合物を有機溶媒中、金属触媒存在下、水素ガスと反応させる事で一般式(S-14)で表される化合物を得ることが出来る。
A compound represented by the general formula (S-13) can be obtained by dehydrating the compound represented by the general formula (S-12). Examples of the dehydration method include a method of heating in the presence of an acid. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, and potassium bisulfate, organic acids such as acetic acid, trifluoroacetic acid, and p-toluenesulfonic acid, and Lewis acids such as boron trifluoride. Alternatively, as a dehydration method, the hydroxyl group can be reacted with p-toluenesulfonic acid chloride, trifluoromethanesulfonic acid chloride, triphosgene, etc. to convert it to a leaving group, and then dehydrated by performing an elimination reaction.
The compound represented by the general formula (S-14) can be obtained by reacting the compound represented by the general formula (S-13) with hydrogen gas in an organic solvent in the presence of a metal catalyst.
 使用する有機溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、ジイソプロピルエーテル、ジエチルエーテル、1,4-ジオキサン又はテトラヒドロフラン等のエーテル系溶媒、ヘキサン、ヘプタン、トルエン又はキシレン等の炭化水素系溶媒、メタノール、エタノール、プロパノール、イソプロピルアルコール又はブタノール等のアルコール系溶媒、酢酸エチル又は酢酸ブチル等のエステル系溶媒が好ましく、テトラヒドロフラン、ヘキサン、ヘプタン、トルエン、エタノール又は酢酸エチルが好ましい。また、必要に応じて塩酸、酢酸又は硫酸等の酸を添加する事も好ましい。 Any organic solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents such as diisopropyl ether, diethyl ether, 1,4-dioxane or tetrahydrofuran, hexane, heptane, toluene or xylene, etc. Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol or butanol, and ester solvents such as ethyl acetate or butyl acetate are preferred, and tetrahydrofuran, hexane, heptane, toluene, ethanol or ethyl acetate are preferred. Moreover, it is also preferable to add acids, such as hydrochloric acid, acetic acid, or a sulfuric acid, as needed.
 反応温度としては、反応を好適に進行させる温度であればいずれでも構わないが、0℃から80℃が好ましく、室温から60℃が更に好ましい。 The reaction temperature may be any temperature that allows the reaction to proceed suitably, but is preferably 0 ° C. to 80 ° C., more preferably room temperature to 60 ° C.
 使用する金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、パラジウム炭素、ルテニウム炭素、白金黒又は酸化白金が好ましく、パラジウム炭素が更に好ましい。 The metal catalyst to be used may be any metal catalyst that allows the reaction to proceed suitably, but is preferably palladium carbon, ruthenium carbon, platinum black or platinum oxide, and more preferably palladium carbon.
 反応する際の水素圧は、反応を好適に進行させるものであればいずれでも構わないが、大気圧から0.5MPaであることが好ましく、0.2MPaから0.5MPaであることが更に好ましい。
(製造方法4)
The hydrogen pressure at the time of reaction may be any as long as it allows the reaction to proceed suitably, but is preferably from atmospheric pressure to 0.5 MPa, and more preferably from 0.2 MPa to 0.5 MPa.
(Manufacturing method 4)
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
(式中、Li2、Xi1、Xi2、Yi2及びWi1は、一般式(i)におけるLi2、Xi1、Xi2、Yi2及びWi1と同じ意味を表し、
i3は炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表し、アルキル基又はアルケニル基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-C≡C-、-O-、-S-、-COO-、-OCO-又は-CO-により置き換えられても良く、アルキル基又はアルケニル基中に存在する水素原子はフッ素原子に置換されても良く、
i4は臭素原子又はよう素原子を表し、
i5は塩素原子又は臭素原子を表し、
i3は-O-又は-S-を表す。)
一般式(S-6)で表される化合物を(S-15)で表される化合物と遷移金属触媒存在下反応させることにより一般式(S-16)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、二塩化ビス(トリフェニルホスフィン)ニッケル(II)、二塩化[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)、二塩化[1,2-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)、トリス(ジベンジリデンアセトン)パラジウム(0)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
(Wherein, L i2, X i1, X i2 , Y i2 and W i1 represent the same meaning in the general formula (i) and L i2, X i1, X i2 , Y i2 and W i1,
R i3 represents an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms, and one —CH 2 — or two or more non-adjacent ones present in the alkyl group or alkenyl group. —CH 2 — may be replaced by —C≡C—, —O—, —S—, —COO—, —OCO— or —CO—, and the hydrogen atom present in the alkyl or alkenyl group is fluorine. May be substituted with atoms,
X i4 represents a bromine atom or an iodine atom,
X i5 represents a chlorine atom or a bromine atom,
Y i3 represents —O— or —S—. )
The compound represented by the general formula (S-16) can be obtained by reacting the compound represented by the general formula (S-6) with the compound represented by (S-15) in the presence of a transition metal catalyst. .
Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably. Bis (triphenylphosphine) nickel (II) dichloride, [1,2-bis (diphenylphosphino) dichloride, Ethane] nickel (II), dichloride [1,2-bis (diphenylphosphino) propane] nickel (II), [1,1′-bis (diphenylphosphino) ferrocene] nickel (II), tetrakis ( Triphenylphosphine) palladium (0), palladium (II) acetate, bis (triphenylphosphine) palladium (II) dichloride, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) or dichloride Bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] palladium (II) chloride is preferred. Tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II), tris (dibenzylideneacetone) palladium (0) or bis [dichloride More preferred is -tert-butyl (4-dimethylaminophenyl) phosphine] palladium (II). Moreover, in order to advance reaction suitably, you may add phosphine-type ligands, such as a triphenylphosphine, as needed.
 使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。 The reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred.
 反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
(製造方法5)
The reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
(Manufacturing method 5)
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(式中、Li1、Li2、Xi1及びXi2は、一般式(i)におけるLi1、Li2、Xi1及びXi2と同じ意味を表し、
i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり-CH-CH-、-CH-CH-CH-、又は-CH-C(CH-CH-を表し、
i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表し、
i4は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基または水酸基を表し、
i3は-O-又は-S-を表す。)
一般式(S-17)で表される化合物を(S-18)で表される化合物と遷移金属触媒及び塩基存在下反応させることにより一般式(S-19)で表される化合物を得ることができる。
使用する遷移金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラキス(トリフェニルホスフィン)パラジウム(0)、酢酸パラジウム(II)、二塩化ビス(トリフェニルホスフィン)パラジウム(II)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)が好ましく、テトラキス(トリフェニルホスフィン)パラジウム(0)、二塩化[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)又は二塩化ビス[ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン]パラジウム(II)であることが更に好ましい。また、反応を好適に進行させるため、必要に応じてトリフェニルホスフィン等のホスフィン系配位子を添加しても良い。
( Wherein L i1 , L i2 , X i1 and X i2 represent the same meaning as L i1 , L i2 , X i1 and X i2 in the general formula (i),
R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesulfonyloxy group,
X i4 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, a trifluoromethanesulfonyloxy group or a hydroxyl group,
Y i3 represents —O— or —S—. )
A compound represented by general formula (S-19) is obtained by reacting a compound represented by general formula (S-17) with a compound represented by (S-18) in the presence of a transition metal catalyst and a base. Can do.
Any transition metal catalyst may be used as long as it allows the reaction to proceed suitably. Tetrakis (triphenylphosphine) palladium (0), palladium (II) acetate, bis (triphenylphosphine) palladium dichloride (II), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] palladium (II) dichloride is preferred, Tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) or bis [di-tert-butyl (4-dimethylaminophenyl) phosphine] dichloride More preferably, it is palladium (II). Moreover, in order to advance reaction suitably, you may add phosphine-type ligands, such as a triphenylphosphine, as needed.
 使用する反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、テトラヒドロフラン、ジエチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒が好ましく、テトラヒドロフラン、エタノール、トルエンが更に好ましい。また、反応を好適に進行させるため、必要に応じて水を用いても良い。 The reaction solvent to be used may be any as long as it allows the reaction to proceed suitably, but ether solvents such as tetrahydrofuran, diethyl ether and tert-butyl methyl ether, alcohol solvents such as methanol, ethanol and propanol, Aromatic solvents such as benzene, toluene and xylene are preferred, and tetrahydrofuran, ethanol and toluene are more preferred. Further, water may be used as necessary in order to allow the reaction to proceed appropriately.
 使用する塩基としては、反応を好適に進行させるものであればいずれでも構わないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム等の炭酸塩、りん酸三カリウム、りん酸二水素カリウム等のりん酸塩が好ましく、炭酸カリウム、炭酸セシウム、りん酸三カリウムが更に好ましい。 Any base can be used as long as it allows the reaction to proceed suitably. Carbonates such as potassium carbonate, sodium carbonate and cesium carbonate; phosphates such as tripotassium phosphate and potassium dihydrogen phosphate; Are preferable, and potassium carbonate, cesium carbonate, and tripotassium phosphate are more preferable.
 反応温度としては、反応を好適に進行させるものであれば何度でも構わないが、室温から使用している溶媒が還流する温度までが好ましく、40℃から溶媒が還流するまでの温度が更に好ましく、60℃から溶媒が還流するまでの温度であることが特に好ましい。
一般式(S-19)で表される化合物を分子内反応させることによって一般式(S-20)で表される化合物を得ることができる。この分子内反応は一般式(S-19)の-Yi3-Hを塩基により脱プロトン化しアニオンを生成することで行うことができる。
この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属りん酸塩、アルカリ金属りん酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属りん酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属りん酸塩としてはりん酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。
The reaction temperature may be any number of times as long as the reaction proceeds suitably, but is preferably from room temperature to the temperature at which the solvent used is refluxed, more preferably from 40 ° C to the temperature at which the solvent is refluxed. A temperature from 60 ° C. to the reflux of the solvent is particularly preferred.
The compound represented by the general formula (S-20) can be obtained by intramolecular reaction of the compound represented by the general formula (S-19). This intramolecular reaction can be performed by deprotonating —Y i3 —H of the general formula (S-19) with a base to generate an anion.
Examples of the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals. Phosphate, alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred. Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
 反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N-ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。 Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane, examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene, and examples of polar solvents include N, N-dimethylformamide, Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane. Of these, ether solvents such as tetrahydrofuran and diethyl ether and polar solvents such as N, N-dimethylformamide are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。 The reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 30 ° C to 120 ° C.
 一般式(S-20)で表される化合物を酸化することにより一般式(S-21)で表される化合物を得ることができる。この酸化は、有機金属試薬により脱プロトン化した後、ほう酸トリアルキルと反応させてほう素化合物とし、その後酸化剤を作用させることによって行うことができる。
反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒および炭化水素系溶媒等を挙げることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等が挙げられ、中でもテトラヒドロフランが好ましい。有機金属試薬としてはn-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、メチルリチウム、リチウム ジイソプロピルアミドおよびリチウム 2,2,4,4-テトラメルピペリジド等を挙げることができ、入手および取り扱いの容易さからn-ブチルリチウム、sec-ブチルリチウムおよびリチウム ジイソプロピルアミドが好ましく、効率的に脱プロトン化が可能であるsec-ブチルリチウムおよびリチウム ジイソプロピルアミドがより好ましい。また、脱プロトン化の際には、上記有機金属試薬と共にカリウム-t-ブトキシド、テトラメチルエチレンジアミン等の塩基を添加剤として用いてもよい。脱プロトン化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。
A compound represented by the general formula (S-21) can be obtained by oxidizing the compound represented by the general formula (S-20). This oxidation can be carried out by deprotonation with an organometallic reagent, reaction with a trialkyl borate to form a boron compound, and subsequent action of an oxidizing agent.
Any reaction solvent may be used as long as it allows the reaction to proceed suitably, and examples thereof include ether solvents and hydrocarbon solvents. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether, and t-butyl methyl ether. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane. Of these, tetrahydrofuran is preferred. Examples of the organometallic reagent include n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, lithium diisopropylamide and lithium 2,2,4,4-tetramerpiperidide. N-Butyllithium, sec-butyllithium, and lithium diisopropylamide are preferable from the viewpoint of ease of handling, and sec-butyllithium and lithium diisopropylamide that can be efficiently deprotonated are more preferable. In the deprotonation, a base such as potassium tert-butoxide or tetramethylethylenediamine may be used as an additive together with the organometallic reagent. The reaction temperature for deprotonation is preferably from −100 ° C. to −20 ° C., more preferably from −78 ° C. to −40 ° C.
 ほう酸トリアルキルとしては、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリプロピルおよびほう酸トリイソプロピルを用いるのが好ましいが、入手および取り扱いの容易さからほう酸トリメチルおよびほう酸トリイソプロピルがより好ましい。ほう酸トリアルキルと有機金属試薬の組み合わせとしては、上記で挙げたいずれの組み合わせも可能であるが、sec-ブチルリチウムとほう酸トリメチルの組み合わせ、およびリチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせが好ましく、リチウム ジイソプロピルアミドとほう酸トリイソプロピルの組み合わせがより好ましい。ほう素化の際の反応温度は-100℃から-20℃が好ましく、-78℃から-40℃がより好ましい。得られたほう素化合物は一度単離してもよく、単離せずそのまま酸化剤と反応させてもよい。また、得られたほう素化合物を加水分解してほう酸化合物へと変換した後に酸化剤と反応させても構わない。 As the trialkyl borate, trimethyl borate, triethyl borate, tripropyl borate and triisopropyl borate are preferably used, but trimethyl borate and triisopropyl borate are more preferred from the viewpoint of availability and handling. As the combination of trialkyl borate and organometallic reagent, any of the above-mentioned combinations are possible, but the combination of sec-butyl lithium and trimethyl borate, and the combination of lithium diisopropylamide and triisopropyl borate are preferable, and lithium diisopropyl A combination of amide and triisopropyl borate is more preferred. The reaction temperature during boriding is preferably -100 ° C to -20 ° C, more preferably -78 ° C to -40 ° C. The obtained boron compound may be isolated once or may be reacted with an oxidizing agent without isolation. Further, the obtained boron compound may be hydrolyzed and converted into a boric acid compound and then reacted with an oxidizing agent.
 酸化剤としては、過酸化水素水、過酢酸または過ギ酸を用いるのが好ましい。反応温度は-78℃から70℃が好ましく、0℃から50℃がより好ましい。また、酸化剤との反応時には、溶媒に水が含まれていても構わない。 As the oxidizing agent, hydrogen peroxide water, peracetic acid or performic acid is preferably used. The reaction temperature is preferably -78 ° C to 70 ° C, more preferably 0 ° C to 50 ° C. Moreover, water may be contained in the solvent at the time of reaction with an oxidizing agent.
 一般式(S-21)で表される化合物に一般式(S-22)で表される化合物を反応させることによって一般式(S-23)で表される化合物を得るが、一般式(S-22)におけるXi4の置換基の選択により幾つかの反応を用いることが可能である。 The compound represented by the general formula (S-23) is obtained by reacting the compound represented by the general formula (S-21) with the compound represented by the general formula (S-22). Several reactions can be used depending on the choice of substituents for X i4 in -22).
 Xi4が塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表す化合物を用いた場合、一般式(S-21)の水酸基を塩基によりフェノラートとして一般式(S-22)と反応させる方法を用いることができる。この場合に使用する塩基としては金属水素化物、金属炭酸塩、金属リン酸塩、金属水酸化物、金属カルボン酸塩、金属アミド及び金属等を挙げることができ、中でもアルカリ金属水素化物、アルカリ金属リン酸塩、アルカリ金属リン酸塩、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属アミド及びアルカリ金属が好ましく、アルカリ金属リン酸塩、アルカリ金属水素化物及びアルカリ金属炭酸塩は更に好ましい。アルカリ金属水素化物としては水素化リチウム、水素化ナトリウム及び水素化カリウムを、アルカリ金属リン酸塩としてはリン酸三カリウムを、アルカリ金属炭酸塩としては炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、炭酸カリウム及び炭酸水素カリウムをそれぞれ好ましく挙げることができる。 When a compound in which X i4 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, or a trifluoromethanesulfonyloxy group is used, the hydroxyl group of the general formula (S-21) is phenolated with a base. A method of reacting with general formula (S-22) can be used. Examples of the base used in this case include metal hydrides, metal carbonates, metal phosphates, metal hydroxides, metal carboxylates, metal amides and metals, among which alkali metal hydrides and alkali metals. Phosphate, alkali metal phosphate, alkali metal carbonate, alkali metal hydroxide, alkali metal amide and alkali metal are preferred, and alkali metal phosphate, alkali metal hydride and alkali metal carbonate are more preferred. Lithium hydride, sodium hydride and potassium hydride as alkali metal hydrides, tripotassium phosphate as alkali metal phosphates, sodium carbonate, sodium bicarbonate, cesium carbonate, potassium carbonate as alkali metal carbonates And potassium hydrogen carbonate can be preferably mentioned.
 反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、テトラヒドロフラン、ジエチルエーテル等のエーテル系溶媒及びN,N-ジメチルホルムアミド等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。 Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane, and octane, examples of aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene, and dichlorobenzene, and examples of polar solvents include N, N-dimethylformamide, Preferable examples include N-methylpyrrolidone, dimethyl sulfoxide, and sulfolane. Of these, ether solvents such as tetrahydrofuran and diethyl ether and polar solvents such as N, N-dimethylformamide are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、30℃から120℃がより好ましい。なお、生成したフェノラートを一度単離してから一般式(S-22)で表される化合物と反応させてもよく、単離せずに反応させてもよいが、作業の容易さから単離せずに反応させたほうがよい。 The reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 30 ° C to 120 ° C. The phenolate produced may be isolated once and then reacted with the compound represented by the general formula (S-22), or it may be reacted without isolation, but it is not isolated for ease of work. It is better to react.
 Xi4が水酸基を表す場合、光延反応を用いることが可能である。光延反応はアルコールと活性プロトンを持つ多種多様な求核剤とを脱水的に縮合させる反応であり、トリフェニルホスフィンと、アゾジカルボン酸誘導体又はマレイン酸誘導体を組み合わせて用いる。具体的には、一般式(S-21)で表される化合物と一般式(S-22)で表されるアルコール誘導体を三置換ホスフィン誘導体及びアゾジカルボン酸誘導体存在下に反応させることにより一般式(S-23)で表される化合物を得る。 When X i4 represents a hydroxyl group, Mitsunobu reaction can be used. The Mitsunobu reaction is a reaction in which alcohol and a wide variety of nucleophiles having active protons are dehydrated, and uses a combination of triphenylphosphine and an azodicarboxylic acid derivative or maleic acid derivative. Specifically, the compound represented by the general formula (S-21) and the alcohol derivative represented by the general formula (S-22) are reacted in the presence of a trisubstituted phosphine derivative and an azodicarboxylic acid derivative. A compound represented by (S-23) is obtained.
 三置換ホスフィン誘導体としては、トリアルキルホスフィン、トリフェニルホスフィン等が挙げられるがトリフェニルホスフィンが好ましい。又、アゾジカルボン酸誘導体としては種々の化合物が用いられており、アゾジカルボン酸誘導体に替えてマレイン酸誘導体を用いることが可能であるが、取り扱いの容易さよりトリフェニルホスフィンとアゾジカルボン酸誘導体の組み合わせが望ましい。アゾジカルボン酸誘導体としてはジエチル アゾジカルボキシレート、ジイソプロピル アゾジカルボキシレート、テトラメチル アゾジカルボキシアミド、テトラプロピル アゾジカルボキシアミド、1,1‘-(アゾジカルボニル)ジピペリジンが挙げられるが、入手の容易さよりジエチル アゾジカルボキシレートおよびジイソプロピル アゾジカルボキシレートが好ましく、取り扱いの容易さよりジイソプロピル アゾジカルボキシレートがより好ましい。 Examples of the trisubstituted phosphine derivative include trialkylphosphine and triphenylphosphine, but triphenylphosphine is preferable. Various compounds are used as azodicarboxylic acid derivatives, and it is possible to use maleic acid derivatives instead of azodicarboxylic acid derivatives, but the combination of triphenylphosphine and azodicarboxylic acid derivatives is easier to handle. Is desirable. Examples of the azodicarboxylic acid derivative include diethyl azodicarboxylate, diisopropyl azodicarboxylate, tetramethyl azodicarboxyamide, tetrapropyl azodicarboxamide, 1,1 ′-(azodicarbonyl) dipiperidine. Diethyl azodicarboxylate and diisopropyl azodicarboxylate are preferred for ease of handling, and diisopropyl azodicarboxylate is more preferred for ease of handling.
 反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒および芳香族系溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテルおよびt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタンおよび四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタンおよびオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼンおよびジクロロベンゼン等を好例として挙げることができる。中でも、テトラヒドロフラン等のエーテル系溶媒およびトルエン等の芳香族系溶媒等がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。 Any reaction solvent may be used as long as it allows the reaction to proceed appropriately, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Preferable examples of the hydrocarbon solvent include pentane, hexane, cyclohexane, heptane and octane, and examples of the aromatic solvent include benzene, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene. Of these, ether solvents such as tetrahydrofuran and aromatic solvents such as toluene are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、0℃から150℃が好ましく、0℃から30℃がより好ましい。 The reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 0 ° C to 150 ° C, more preferably 0 ° C to 30 ° C.
 一般式(S-23)で表される化合物をシグマトロピー転位させることによって一般式(S-24)で表される化合物を得ることができる。 The compound represented by the general formula (S-24) can be obtained by sigmatropic rearrangement of the compound represented by the general formula (S-23).
 反応溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、エーテル系溶媒、塩素系溶媒、炭化水素系溶媒、芳香族系溶媒及び極性溶媒等を好ましく用いることができる。エーテル系溶媒としては、1,4-ジオキサン、1,3-ジオキサン、テトラヒドロフラン、ジエチルエーテル及びt-ブチルメチルエーテル等を、塩素系溶媒としてはジクロロメタン、1,2-ジクロロエタン及び四塩化炭素等を、炭化水素系溶媒としてはペンタン、ヘキサン、シクロヘキサン、ヘプタン及びオクタン等を、芳香族系溶媒としてはベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン及びジクロロベンゼン等を、極性溶媒としてはN,N-ジエチルアニリン、N,N-ジメチルアニリン、N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキシド及びスルホラン等を好例として挙げることができる。中でも、N,N-ジエチルアニリン、N,N-ジメチルアニリン等の極性溶媒がより好ましい。また、前記の各溶媒を単独で使用しても、2種もしくはそれ以上の溶媒を混合して使用してもよい。 Any reaction solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents, chlorine solvents, hydrocarbon solvents, aromatic solvents, polar solvents, and the like can be preferably used. Examples of ether solvents include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran, diethyl ether and t-butyl methyl ether, and examples of chlorine solvents include dichloromethane, 1,2-dichloroethane and carbon tetrachloride. Examples of hydrocarbon solvents include pentane, hexane, cyclohexane, heptane and octane, aromatic solvents include benzene, toluene, xylene, mesitylene, chlorobenzene and dichlorobenzene, and polar solvents include N, N-diethylaniline, Preferable examples include N, N-dimethylaniline, N, N-dimethylformamide, N-methylpyrrolidone, dimethyl sulfoxide and sulfolane. Of these, polar solvents such as N, N-diethylaniline and N, N-dimethylaniline are more preferable. Moreover, each said solvent may be used independently, or 2 or more types of solvents may be mixed and used.
 反応温度は溶媒の凝固点から還流温度範囲で行うことができるが、100℃から250℃が好ましく、150℃から250℃がより好ましい。 The reaction temperature can be from the freezing point of the solvent to the reflux temperature range, but is preferably 100 ° C to 250 ° C, more preferably 150 ° C to 250 ° C.
 一般式(S-24)で表される化合物を有機溶媒中、金属触媒存在下、水素ガスと反応させることにより一般式(S-25)で表される化合物を得ることができる。 The compound represented by the general formula (S-25) can be obtained by reacting the compound represented by the general formula (S-24) with hydrogen gas in an organic solvent in the presence of a metal catalyst.
 使用する有機溶媒としては、反応を好適に進行させるものであればいずれでも構わないが、ジイソプロピルエーテル、ジエチルエーテル、1,4-ジオキサン又はテトラヒドロフラン等のエーテル系溶媒、ヘキサン、ヘプタン、トルエン又はキシレン等の炭化水素系溶媒、メタノール、エタノール、プロパノール、イソプロピルアルコール又はブタノール等のアルコール系溶媒、酢酸エチル又は酢酸ブチル等のエステル系溶媒が好ましく、テトラヒドロフラン、ヘキサン、ヘプタン、トルエン、エタノール又は酢酸エチルが好ましい。また、必要に応じて塩酸、酢酸又は硫酸等の酸を添加する事も好ましい。 Any organic solvent may be used as long as it allows the reaction to proceed suitably, but ether solvents such as diisopropyl ether, diethyl ether, 1,4-dioxane or tetrahydrofuran, hexane, heptane, toluene or xylene, etc. Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol or butanol, and ester solvents such as ethyl acetate or butyl acetate are preferred, and tetrahydrofuran, hexane, heptane, toluene, ethanol or ethyl acetate are preferred. Moreover, it is also preferable to add acids, such as hydrochloric acid, acetic acid, or a sulfuric acid, as needed.
 反応温度としては、反応を好適に進行させる温度であればいずれでも構わないが、0℃から80℃が好ましく、室温から60℃が更に好ましい。 The reaction temperature may be any temperature that allows the reaction to proceed suitably, but is preferably 0 ° C. to 80 ° C., more preferably room temperature to 60 ° C.
 使用する金属触媒としては、反応を好適に進行させるものであればいずれでも構わないが、パラジウム炭素、ルテニウム炭素、白金黒又は酸化白金が好ましく、パラジウム炭素が更に好ましい。 The metal catalyst to be used may be any metal catalyst that allows the reaction to proceed suitably, but is preferably palladium carbon, ruthenium carbon, platinum black or platinum oxide, and more preferably palladium carbon.
 反応する際の水素圧は、反応を好適に進行させるものであればいずれでも構わないが、大気圧から0.5MPaであることが好ましく、0.2MPaから0.5MPaであることが更に好ましい。 The hydrogen pressure at the time of reaction may be any as long as it allows the reaction to proceed suitably, but is preferably from atmospheric pressure to 0.5 MPa, and more preferably from 0.2 MPa to 0.5 MPa.
 このように、一般式(i)で表される化合物と混合して使用することのできる化合物の好ましい代表例としては、本発明の提供する組成物においては、その第一成分として一般式(i)で表される化合物を少なくとも1種含有するが、その他の成分として特に以下の第二から第四成分から少なくとも1種含有することが好ましい。 Thus, as a preferable representative example of the compound that can be used by mixing with the compound represented by the general formula (i), in the composition provided by the present invention, as the first component, the general formula (i At least one compound represented by formula (1), but it is preferable to contain at least one of the following second to fourth components as other components.
 即ち、第二成分は誘電率異方性が負のいわゆるn型液晶化合物であって、以下の一般式(LC3)~一般式(LC5)で示される化合物を挙げることができる。 That is, the second component is a so-called n-type liquid crystal compound having a negative dielectric anisotropy, and examples thereof include compounds represented by the following general formulas (LC3) to (LC5).
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(式中、RLC31、RLC32、RLC41、RLC42、RLC51及びRLC52はそれぞれ独立して炭素原子数1~15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-又は-C≡C-で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン原子によって置換されていてもよく、ALC31、ALC32、ALC41、ALC42、ALC51及びALC52はそれぞれ独立して下記の何れかの構造 (Wherein, represents an alkyl group of R LC31, R LC32, R LC41 , R LC42, R LC51 and R LC52 is 1 to 15 carbon atoms independently, one in the alkyl group or two or more —CH 2 — may be substituted with —O—, —CH═CH—, —CO—, —OCO—, —COO— or —C≡C— so that the oxygen atom is not directly adjacent. one or more hydrogen atoms in the group may be optionally substituted by a halogen atom, a LC31, a LC32, a LC41, a LC42, a LC51 and a LC52 each independently any of the following Structure
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
(該構造中シクロヘキシレン基中の1つ又は2つ以上の-CH-は酸素原子で置換されていてもよく、1,4-フェニレン基中の1つ又は2つ以上の-CH-は窒素原子で置換されていてもよく、また、該構造中の1つ又は2つ以上の水素原子はフッ素原子、塩素原子、-CF又は-OCFで置換されていてもよい。)のいずれかを表し、ZLC31、ZLC32、ZLC41、ZLC42、ZLC51及びZLC51はそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、Zは-CH-又は酸素原子を表し、XLC41は水素原子又はフッ素原子を表し、mLC31、mLC32、mLC41、mLC42、mLC51及びmLC52はそれぞれ独立して0~3を表し、mLC31+mLC32、mLC41+mLC42及びmLC51+mLC52は1、2又は3であり、ALC31~ALC52、ZLC31~ZLC52が複数存在する場合は、それらは同一であっても異なっていても良い。)
 RLC31~RLC52は、それぞれ独立して、炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、アルケニル基としては下記構造を表すことが最も好ましく、
(In the structure, one or more —CH 2 — in the cyclohexylene group may be substituted with an oxygen atom, and one or more —CH— in the 1,4-phenylene group is Any one of which may be substituted with a nitrogen atom, and one or more hydrogen atoms in the structure may be substituted with a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ). indicates whether, Z LC31, Z LC32, Z LC41, Z LC42, Z LC51 and Z LC51 each independently represent a single bond, -CH = CH -, - C≡C -, - CH 2 CH 2 -, - ( CH 2 ) 4 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—, Z 5 represents —CH 2 — or an oxygen atom, and X LC41 represents Represents a hydrogen atom or a fluorine atom, m LC31 , m L C32, m LC41, m LC42, m LC51 and m LC52 each independently represent 0 ~ 3, m LC31 + m LC32, m LC41 + m LC42 and m LC51 + m LC52 is 1, 2 or 3, A LC31 ~ When a plurality of A LC52 and Z LC31 to Z LC52 are present, they may be the same or different. )
R LC31 to R LC52 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms. Most preferably,
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
(式中、環構造へは右端で結合するものとする。)
 ALC31~ALC52はそれぞれ独立して下記の構造が好ましく、
(In the formula, it shall be bonded to the ring structure at the right end.)
A LC31 to A LC52 each independently preferably has the following structure:
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 ZLC31~ZLC51はそれぞれ独立して単結合、-CHO-、-COO-、-OCO-、-CHCH-、-CFO-、-OCF-又は-OCH-が好ましい。 Z LC31 to Z LC51 each independently has a single bond, —CH 2 O—, —COO—, —OCO— , —CH 2 CH 2 —, —CF 2 O—, —OCF 2 — or —OCH 2 —. preferable.
 一般式(LC3)は、下記一般式(LC3-a)及び一般式(LC3-b) General formula (LC3) is the following general formula (LC3-a) and general formula (LC3-b)
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
(式中、RLC31、RLC32、ALC31及びZLC31はそれぞれ独立して前記一般式(LC3)におけるRLC31、RLC32、ALC31及びZLC31と同じ意味を表し、XLC3b1~XLC3b6は水素原子又はフッ素原子を表すが、XLC3b1及びXLC3b2又はXLC3b3及びXLC3b4のうちの少なくとも一方の組み合わせは共にフッ素原子を表し、mLC3a1は1、2又は3であり、mLC3b1は0又は1を表し、ALC31及びZLC31が複数存在する場合は、それらは同一であっても異なっていても良い。ただし、一般式(LC3-a)において一般式(LC3-b)で表される群より選ばれる化合物を除く。)で表される化合物群から選ばれる1種又は2種以上の化合物であることが好ましい。
LC31及びRLC32はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基又は炭素原子数2~7のアルケニルオキシ基を表すことが好ましい。
(Wherein R LC31 , R LC32 , A LC31 and Z LC31 each independently represent the same meaning as R LC31 , R LC32 , A LC31 and Z LC31 in the general formula (LC3), and X LC3b1 to X LC3b6 are Represents a hydrogen atom or a fluorine atom, and at least one of X LC3b1 and X LC3b2 or X LC3b3 and X LC3b4 represents a fluorine atom, m LC3a1 is 1, 2 or 3, and m LC3b1 is 0 or In the case where a plurality of A LC31 and Z LC31 are present, they may be the same or different, provided that they are represented by the general formula (LC3-b) in the general formula (LC3-a) Or a compound selected from the group of compounds represented by the formula: Rukoto is preferable.
R LC31 and R LC32 each independently represents an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, or an alkenyloxy group having 2 to 7 carbon atoms. Is preferably represented.
 ALC31は、1,4-フェニレン基、トランス-1,4-シクロヘキシレン基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基を表すことが好ましく、1,4-フェニレン基、トランス-1,4-シクロヘキシレン基を表すことがより好ましい。 A LC31 preferably represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group, a tetrahydropyran-2,5-diyl group, or a 1,3-dioxane-2,5-diyl group. , 4-phenylene group and trans-1,4-cyclohexylene group are more preferable.
 ZLC31は単結合、-CHO-、-COO-、-OCO-、-CHCH-を表すことが好ましく、単結合を表すことがより好ましい。 Z LC31 is a single bond, -CH 2 O -, - COO -, - OCO -, - CH 2 CH 2 - is preferred to represent, and more preferably a single bond.
 一般式(LC3-a)としては、下記一般式(LC3-a1)~一般式(LC3-a4)を表すことが好ましい。 The general formula (LC3-a) preferably represents the following general formula (LC3-a1) to general formula (LC3-a4).
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
(式中、RLC31及びRLC32はそれぞれ独立して前記一般式(LC3)におけるRLC31及びRLC32と同じ意味を表す。)
 RLC31及びRLC32はそれぞれ独立して、炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、RLC31が炭素原子数1~7のアルキル基を表し、RLC32が炭素原子数1~7のアルコキシ基を表すことがより好ましい。
(In the formula, R LC31 and R LC32 each independently represent the same meaning as R LC31 and R LC32 in General Formula (LC3).)
R LC31 and R LC32 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and R LC31 has 1 carbon atom. More preferably, it represents an alkyl group of ˜7 , and R LC32 represents an alkoxy group of 1 to 7 carbon atoms.
 一般式(LC3-b)としては、下記一般式(LC3-b1)~一般式(LC3-b12)を表すことが好ましく、一般式(LC3-b1)、一般式(LC3-b6)、一般式(LC3-b8)、一般式(LC3-b11)を表すことがより好ましく、一般式(LC3-b1)及び一般式(LC3-b6)を表すことがさらに好ましく、一般式(LC3-b1)を表すことが最も好ましい。 The general formula (LC3-b) is preferably represented by the following general formula (LC3-b1) to general formula (LC3-b12). The general formula (LC3-b1), the general formula (LC3-b6), the general formula (LC3-b8) and general formula (LC3-b11) are more preferable, general formula (LC3-b1) and general formula (LC3-b6) are more preferable, and general formula (LC3-b1) is Most preferably it represents.
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
(式中、RLC31及びRLC32はそれぞれ独立して前記一般式(LC3)におけるRLC31及びRLC32と同じ意味を表す。)
 RLC31及びRLC32はそれぞれ独立して、炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、RLC31が炭素原子数2又は3のアルキル基を表し、RLC32が炭素原子数2のアルキル基を表すことがより好ましい。
(In the formula, R LC31 and R LC32 each independently represent the same meaning as R LC31 and R LC32 in General Formula (LC3).)
R LC31 and R LC32 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and R LC31 has 2 carbon atoms. Or an alkyl group having 3 carbon atoms, and more preferably R LC32 represents an alkyl group having 2 carbon atoms.
 一般式(LC4)は下記一般式(LC4-a)から一般式(LC4-c)、一般式(LC5)は下記一般式(LC5-a)から一般式(LC5-c) General formula (LC4) is general formula (LC4-a) to general formula (LC4-c), and general formula (LC5) is general formula (LC5-a) to general formula (LC5-c).
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
(式中、RLC41、RLC42及びXLC41はそれぞれ独立して前記一般式(LC4)におけるRLC41、RLC42及びXLC41と同じ意味を表し、RLC51及びRLC52はそれぞれ独立して前記一般式(LC5)におけるRLC51及びRLC52と同じ意味を表し、ZLC4a1、ZLC4b1、ZLC4c1、ZLC5a1、ZLC5b1及びZLC5c1はそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのがより好ましい。 (Wherein, R LC41, R LC42 and X LC41 each independently represent the same meaning as R LC41, R LC42 and X LC41 in the general formula (LC4), R LC51 and R LC52 is the general independently It represents the same meaning as R LC51 and R LC52 in formula (LC5), Z LC4a1, Z LC4b1, Z LC4c1, Z LC5a1, Z LC5b1 and Z LC5c1 each independently represent a single bond, -CH = CH -, - C≡ C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—. More preferably, it is one or more compounds selected from the group consisting of the following compounds.
 RLC41、RLC42、RLC51及びRLC52はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基又は炭素原子数2~7のアルケニルオキシ基を表すことが好ましい。 R LC41, R LC42, R LC51 and R LC52 each independently represents an alkyl group of 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, the number alkenyl group or a carbon atom of 2 to 7 carbon atoms 2 It preferably represents ˜7 alkenyloxy groups.
 ZLC4a1~ZLC5c1はそれぞれ独立して単結合、-CHO-、-COO-、-OCO-、-CHCH-を表すことが好ましく、単結合を表すことがより好ましい。 Z LC4a1 to Z LC5c1 each independently preferably represents a single bond, —CH 2 O—, —COO—, —OCO— , —CH 2 CH 2 —, and more preferably represents a single bond.
 第三成分は誘電率異方性が0程度である、いわゆる非極性液晶化合物であり、以下の一般式(LC6)で示される化合物を挙げることができる。 The third component is a so-called nonpolar liquid crystal compound having a dielectric anisotropy of about 0, and examples thereof include compounds represented by the following general formula (LC6).
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
(式中、RLC61及びRLC62はそれぞれ独立して炭素原子数1~15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-又は-C≡C-で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン置換されていてもよく、ALC61~ALC63はそれぞれ独立して下記 ( Wherein R LC61 and R LC62 each independently represents an alkyl group having 1 to 15 carbon atoms, and one or more of —CH 2 — in the alkyl group is not directly adjacent to an oxygen atom. And may be substituted with —O—, —CH═CH—, —CO—, —OCO—, —COO— or —C≡C—, and one or more hydrogen atoms in the alkyl group May be optionally halogen-substituted, and A LC61 to A LC63 each independently represent
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
(該構造中シクロヘキシレン基中の1つ又は2つ以上の-CHCH-は-CH=CH-、-CFO-、-OCF-で置換されていてもよく、1,4-フェニレン基中1つ又は2つ以上のCH基は窒素原子で置換されていてもよい。)のいずれかを表し、ZLC61及びZLC62はそれぞれ独立して単結合、-CH=CH-、-C≡C-、-CHCH-、-(CH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-を表し、mLc6は0~3を表す。ただし、一般式(LC1)~一般式(LC5)で表される化合物、及び一般式(i)を除く。)
 RLC61及びRLC62は、それぞれ独立して、炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、アルケニル基としては下記構造を表すことが最も好ましく、
(In the structure, one or more —CH 2 CH 2 — in the cyclohexylene group may be substituted with —CH═CH—, —CF 2 O—, —OCF 2 —, -One or two or more CH groups in the phenylene group may be substituted with a nitrogen atom), and Z LC61 and Z LC62 each independently represent a single bond, —CH═CH—, Represents —C≡C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —COO—, —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—, m Lc6 represents 0-3. However, the compounds represented by general formula (LC1) to general formula (LC5) and general formula (i) are excluded. )
R LC61 and R LC62 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms. Most preferably,
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
(式中、環構造へは右端で結合するものとする。)
 ALC61~ALC63はそれぞれ独立して下記の構造が好ましく、
(In the formula, it shall be bonded to the ring structure at the right end.)
A LC61 to A LC63 each independently preferably has the following structure:
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 ZLC61及びZLC62はそれぞれ独立して単結合、-CHCH-、-COO-、-OCH-、-CHO-、-OCF-又は-CFO-が好ましい。 Z LC61 and Z LC62 are each independently preferably a single bond, —CH 2 CH 2 —, —COO— , —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O—.
 一般式(LC6)は、一般式(LC6-a)から一般式(LC6-m) General formula (LC6) is changed from general formula (LC6-a) to general formula (LC6-m)
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
(式中、RLC61及びRLC62はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基又は炭素原子数2~7のアルケニルオキシ基を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのがより好ましい。 ( Wherein R LC61 and R LC62 are each independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, or 2 to 7 carbon atoms) It is more preferable that it is 1 type, or 2 or more types of compounds chosen from the group which consists of a compound represented by this.
 第四成分は誘電率異方性が正のいわゆるp型液晶化合物であって、以下の一般式(LC1)及び一般式(LC2)で示される化合物を挙げることができる。 The fourth component is a so-called p-type liquid crystal compound having a positive dielectric anisotropy, and examples thereof include compounds represented by the following general formulas (LC1) and (LC2).
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
(式中、RLC11及びRLC21はそれぞれ独立して炭素原子数1~15のアルキル基を表し、該アルキル基中の1つ又は2つ以上の-CH-は、酸素原子が直接隣接しないように、-O-、-CH=CH-、-CO-、-OCO-、-COO-又は-C≡C-で置換されてよく、該アルキル基中の1つ又は2つ以上の水素原子は任意にハロゲン原子によって置換されていてもよく、ALC11、及びALC21はそれぞれ独立して下記の何れかの構造 ( Wherein R LC11 and R LC21 each independently represents an alkyl group having 1 to 15 carbon atoms, and one or more of —CH 2 — in the alkyl group is not directly adjacent to an oxygen atom. And may be substituted with —O—, —CH═CH—, —CO—, —OCO—, —COO— or —C≡C—, and one or more hydrogen atoms in the alkyl group May be optionally substituted with a halogen atom, and A LC11 and A LC21 are each independently any one of the following structures:
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
(該構造中、シクロヘキシレン基中の1つ又は2つ以上の-CH-は酸素原子で置換されていてもよく、1,4-フェニレン基中の1つ又は2つ以上の-CH-は窒素原子で置換されていてもよく、また、該構造中の1つ又は2つ以上の水素原子はフッ素原子、塩素原子、-CF又は-OCFで置換されていてもよい。)を表し、XLC11、XLC12、XLC21~XLC23はそれぞれ独立して水素原子、フッ素原子、塩素原子、-CF又は-OCFを表し、YLC11及びYLC21はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、-CF、-OCHF、-OCHF又は-OCFを表し、ZLC11及びZLC21はそれぞれ独立して単結合、-CH=CH-、-CF=CF-、-C≡C-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-又は-OCO-を表し、mLC11及びmLC21はそれぞれ独立して1~4の整数を表し、ALC11、ALC21、ZLC11及びZLC21が複数存在する場合は、それらは同一であっても異なっていても良い。)
 RLC11及びRLC21はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基がより好ましく、直鎖状であることが更に好ましく、アルケニル基としては下記構造を表すことが最も好ましい。
(In the structure, one or more —CH 2 — in the cyclohexylene group may be substituted with an oxygen atom, and one or more —CH— in the 1,4-phenylene group may be substituted. May be substituted with a nitrogen atom, and one or more hydrogen atoms in the structure may be substituted with a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ). represents, X LC11, X LC12, X LC21 ~ X LC23 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a -CF 3 or -OCF 3, Y LC11 and Y LC21 are each independently a hydrogen atom, fluorine atom, a chlorine atom, a cyano group, -CF 3, represents -OCH 2 F, -OCHF 2 or -OCF 3, Z LC11 and Z LC21 each independently represent a single bond, -CH = CH -, - CF = CF- -C≡C -, - CH 2 CH 2 -, - (CH 2) 4 -, - OCH 2 -, - CH 2 O -, - OCF 2 -, - CF 2 O -, - COO- or -OCO- M LC11 and m LC21 each independently represents an integer of 1 to 4, and when there are a plurality of A LC11 , A LC21 , Z LC11 and Z LC21 , they may be the same or different. good. )
R LC11 and R LC21 are each independently preferably an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, or an alkenyl group having 2 to 7 carbon atoms, and an alkyl group having 1 to 5 carbon atoms. Group, an alkoxy group having 1 to 5 carbon atoms, and an alkenyl group having 2 to 5 carbon atoms are more preferable, and a straight chain is more preferable, and the alkenyl group most preferably represents the following structure.
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
(式中、環構造へは右端で結合するものとする。)
 ALC11及びALC21はそれぞれ独立して下記の構造が好ましい。
(In the formula, it shall be bonded to the ring structure at the right end.)
A LC11 and A LC21 each independently preferably have the following structure.
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 YLC11及びYLC21はそれぞれ独立してフッ素原子、シアノ基、-CF又は-OCFが好ましく、フッ素原子又は-OCFが好ましく、フッ素原子が特に好ましい。 Y LC11 and Y LC21 are each independently preferably a fluorine atom, a cyano group, —CF 3 or —OCF 3 , preferably a fluorine atom or —OCF 3 , and particularly preferably a fluorine atom.
 ZLC11及びZLC21は単結合、-CHCH-、-COO-、-OCO-、-OCH-、-CHO-、-OCF-又は-CFO-が好ましく、単結合、-CHCH-、-OCH-、-OCF-又は-CFO-が好ましく、単結合、-OCH-又は-CFO-がより好ましい。 Z LC11 and Z LC21 are preferably a single bond, —CH 2 CH 2 —, —COO—, —OCO— , —OCH 2 —, —CH 2 O—, —OCF 2 — or —CF 2 O— , —CH 2 CH 2 —, —OCH 2 —, —OCF 2 — or —CF 2 O— are preferred, and a single bond, —OCH 2 — or —CF 2 O— is more preferred.
 mLC11及びmLC21は1、2又は3が好ましく、低温での保存安定性、応答速度を重視する場合には1又は2が好ましく、ネマチック相上限温度の上限値を改善するには2又は3が好ましい。 m LC11 and m LC21 are preferably 1, 2 or 3, preferably 1 or 2 when emphasizing storage stability at low temperature and response speed, and 2 or 3 for improving the upper limit of the nematic phase upper limit temperature. Is preferred.
 一般式(LC1)は、下記一般式(LC1-a)から一般式(LC1-c) General formula (LC1) is represented by the following general formula (LC1-a) to general formula (LC1-c)
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
(式中、RLC11、YLC11、XLC11及びXLC12はそれぞれ独立して前記一般式(LC1)におけるRLC11、YLC11、XLC11及びXLC12と同じ意味を表し、ALC1a1、ALC1a2及びALC1b1は、トランス-1,4-シクロヘキシレン基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基を表し、XLC1b1、XLC1b2、XLC1c1~XLC1c4はそれぞれ独立して水素原子、フッ素原子、塩素原子、-CF又は-OCFを表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であることが好ましい。 (Wherein, R LC11, Y LC11, X LC11 and X LC12 each independently represent the same meaning as R LC11, Y LC11, X LC11 and X LC12 in the general formula (LC1), A LC1a1, A LC1a2 and A LC1b1 represents a trans-1,4-cyclohexylene group, a tetrahydropyran-2,5-diyl group, or a 1,3-dioxane-2,5-diyl group, and XLC1b1 , XLC1b2 , XLC1c1 to XLC1c4 Are each independently a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 ), and are preferably one or more compounds selected from the group consisting of compounds represented by:
 RLC11はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基がより好ましい。 R LC11 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
 XLC11~XLC1c4はそれぞれ独立して水素原子又はフッ素原子が好ましい。 X LC11 to X LC1c4 are each independently preferably a hydrogen atom or a fluorine atom.
 YLC11はそれぞれ独立してフッ素原子、-CF又は-OCFが好ましい。 Y LC11 is preferably independently a fluorine atom, —CF 3 or —OCF 3 .
 また、一般式(LC1)は、下記一般式(LC1-d)から一般式(LC1-m) The general formula (LC1) is changed from the following general formula (LC1-d) to the general formula (LC1-m).
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
(式中、RLC11、YLC11、XLC11及びXLC12はそれぞれ独立して前記一般式(LC1)におけるRLC11、YLC11、XLC11及びXLC12と同じ意味を表し、ALC1d1、ALC1f1、ALC1g1、ALC1j1、ALC1k1、ALC1k2、ALC1m1~ALC1m3は、1,4-フェニレン基、トランス-1,4-シクロヘキシレン基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基を表し、XLC1d1、XLC1d2、XLC1f1、XLC1f2、XLC1g1、XLC1g2、XLC1h1、XLC1h2、XLC1i1、XLC1i2、XLC1j1~XLC1j4、XLC1k1、XLC1k2、XLC1m1及びXLC1m2はそれぞれ独立して水素原子、フッ素原子、塩素原子、-CF又は-OCFを表し、ZLC1d1、ZLC1e1、ZLC1j1、ZLC1k1、ZLC1m1はそれぞれ独立して単結合、-CH=CH-、-CF=CF-、-C≡C-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-又は-OCO-を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのが好ましい。 (Wherein, R LC11, Y LC11, X LC11 and X LC12 each independently represent the same meaning as R LC11, Y LC11, X LC11 and X LC12 in the general formula (LC1), A LC1d1, A LC1f1, A LC1g1 , A LC1j1 , A LC1k1 , A LC1k2 , A LC1m1 to A LC1m3 are 1,4-phenylene group, trans-1,4-cyclohexylene group, tetrahydropyran-2,5-diyl group, 1,3- It represents dioxane-2,5-diyl group, X LC1d1, X LC1d2, X LC1f1, X LC1f2, X LC1g1, X LC1g2, X LC1h1, X LC1h2, X LC1i1, X LC1i2, X LC1j1 ~ X LC1j4, X LC1k1, X LC1k2, X LC1 Each 1 and X LC1m2 independently a hydrogen atom, a fluorine atom, a chlorine atom, a -CF 3 or -OCF 3, Z LC1d1, Z LC1e1 , Z LC1j1, Z LC1k1, Z LC1m1 each independently represent a single bond, —CH═CH—, —CF═CF—, —C≡C—, —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, — CF 2 O—, —COO— or —OCO— is preferred), and it is preferably one or more compounds selected from the group consisting of compounds represented by:
 RLC11はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基がより好ましい。 R LC11 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
 XLC11~XLC1m2はそれぞれ独立して水素原子又はフッ素原子が好ましい。 X LC11 to X LC1m2 are each independently preferably a hydrogen atom or a fluorine atom.
 YLC11はそれぞれ独立してフッ素原子、-CF又は-OCFが好ましい。 Y LC11 is preferably independently a fluorine atom, —CF 3 or —OCF 3 .
 ZLC1d1~ZLC1m1はそれぞれ独立して-CFO-、-OCH-が好ましい。
一般式(LC2)は、下記一般式(LC2-a)から一般式(LC2-g)
Z LC1d1 to Z LC1m1 are each independently preferably —CF 2 O— or —OCH 2 —.
The general formula (LC2) is changed from the following general formula (LC2-a) to the general formula (LC2-g).
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
(式中、RLC21、YLC21、XLC21~XLC23はそれぞれ独立して前記一般式(LC2)におけるRLC21、YLC21、XLC21~XLC23と同じ意味を表し、XLC2d1~XLC2d4、XLC2e1~XLC2e4、XLC2f1~XLC2f4及びXLC2g1~XLC2g4はそれぞれ独立して水素原子、フッ素原子、塩素原子、-CF又は-OCFを表し、ZLC2a1、ZLC2b1、ZLC2c1、ZLC2d1、ZLC2e1、ZLC2f1及びZLC2g1はそれぞれ独立して単結合、-CH=CH-、-CF=CF-、-C≡C-、-CHCH-、-(CH-、-OCH-、-CHO-、-OCF-、-CFO-、-COO-又は-OCO-を表す。)で表される化合物からなる群より選ばれる1種又は2種以上の化合物であるのが好ましい。 ( Wherein R LC21 , Y LC21 , X LC21 to X LC23 each independently represents the same meaning as R LC21 , Y LC21 , X LC21 to X LC23 in the general formula (LC2), and X LC2d1 to X LC2d4 , X LC2e1 to X LC2e4 , X LC2f1 to X LC2f4 and X LC2g1 to X LC2g4 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 or —OCF 3 , and Z LC2a1 , Z LC2b1 , Z LC2c1 , Z LC2d1 , Z LC2e1 , Z LC2f1 and Z LC2g1 are each independently a single bond, —CH═CH—, —CF═CF— , —C≡C— , —CH 2 CH 2 —, — (CH 2 ) 4 —, —OCH 2 —, —CH 2 O—, —OCF 2 —, —CF 2 O—, —COO— or Represents —OCO—, and is preferably one or more compounds selected from the group consisting of compounds represented by:
 RLC21はそれぞれ独立して炭素原子数1~7のアルキル基、炭素原子数1~7のアルコキシ基、炭素原子数2~7のアルケニル基が好ましく、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基、炭素原子数2~5のアルケニル基がより好ましい。 R LC21 is preferably independently an alkyl group having 1 to 7 carbon atoms, an alkoxy group having 1 to 7 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, an alkyl group having 1 to 5 carbon atoms, carbon An alkoxy group having 1 to 5 atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable.
 XLC21~XLC2g4はそれぞれ独立して水素原子又はフッ素原子が好ましく、
 YLC21はそれぞれ独立してフッ素原子、-CF又は-OCFが好ましい。
X LC21 to X LC2g4 are each independently preferably a hydrogen atom or a fluorine atom,
Y LC21 is preferably each independently a fluorine atom, —CF 3 or —OCF 3 .
 ZLC2a1~ZLC2g4はそれぞれ独立して-CFO-、-OCH-が好ましい。 本発明の組成物は、分子内に過酸(-CO-OO-)構造等の酸素原子同士が結合した構造を持つ化合物を含有しないことが好ましい。 Z LC2a1 to Z LC2g4 are each independently preferably —CF 2 O— or —OCH 2 —. The composition of the present invention preferably does not contain a compound having a structure in which oxygen atoms such as a peracid (—CO—OO—) structure are bonded in the molecule.
 組成物の信頼性及び長期安定性を重視する場合にはカルボニル基を有する化合物の含有量を前記組成物の総質量に対して5%以下とすることが好ましく、3%以下とすることがより好ましく、1%以下とすることが更に好ましく、実質的に含有しないことが最も好ましい。 When emphasizing the reliability and long-term stability of the composition, the content of the compound having a carbonyl group is preferably 5% or less, more preferably 3% or less with respect to the total mass of the composition. Preferably, it is more preferably 1% or less, and most preferably not substantially contained.
 UV照射による安定性を重視する場合、塩素原子が置換している化合物の含有量を前記組成物の総質量に対して15%以下とすることが好ましく、10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 When importance is attached to the stability by UV irradiation, the content of the compound substituted with chlorine atoms is preferably 15% or less, preferably 10% or less, based on the total mass of the composition. % Or less, preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
 組成物の酸化による劣化を抑えるためには、環構造としてシクロヘキセニレン基を有する化合物の含有量を少なくすることが好ましく、シクロヘキセニレン基を有する化合物の含有量を前記組成物の総質量に対して10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 In order to suppress deterioration due to oxidation of the composition, it is preferable to reduce the content of the compound having a cyclohexenylene group as a ring structure, and the content of the compound having a cyclohexenylene group as the total mass of the composition. On the other hand, it is preferably 10% or less, preferably 8% or less, more preferably 5% or less, preferably 3% or less, and still more preferably not contained.
 粘度の改善及びTNIの改善を重視する場合には、水素原子がハロゲンに置換されていてもよい2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を少なくすることが好ましく、前記2-メチルベンゼン-1,4-ジイル基を分子内に持つ化合物の含有量を前記組成物の総質量に対して10%以下とすることが好ましく、8%以下とすることが好ましく、5%以下とすることがより好ましく、3%以下とすることが好ましく、実質的に含有しないことが更に好ましい。 When emphasizing improvements of improvement and T NI viscosity, that a hydrogen atom to reduce the content of the compound having the optionally substituted 2-methyl-1,4-diyl group halogen in the molecule The content of the compound having a 2-methylbenzene-1,4-diyl group in the molecule is preferably 10% or less, more preferably 8% or less with respect to the total mass of the composition. It is preferably 5% or less, more preferably 3% or less, and still more preferably substantially not contained.
 本願において実質的に含有しないとは、意図せずに含有する物を除いて含有しないという意味である。 “Substantially not contained” in the present application means that it is not contained except for an unintentionally contained product.
 本発明の第一実施形態の組成物に含有される化合物が、側鎖としてアルケニル基を有する場合、前記アルケニル基がシクロヘキサンに結合している場合には当該アルケニル基の炭素原子数は2~5であることが好ましく、前記アルケニル基がベンゼンに結合している場合には当該アルケニル基の炭素原子数は4~5であることが好ましく、前記アルケニル基の不飽和結合とベンゼンは直接結合していないことが好ましい。 When the compound contained in the composition of the first embodiment of the present invention has an alkenyl group as a side chain, when the alkenyl group is bonded to cyclohexane, the alkenyl group has 2 to 5 carbon atoms. When the alkenyl group is bonded to benzene, the number of carbon atoms of the alkenyl group is preferably 4 to 5, and the unsaturated bond of the alkenyl group and benzene are directly bonded. Preferably not.
 本発明に使用される液晶組成物の平均弾性定数(KAVG)は10から25が好ましいが、その下限値としては、10が好ましく、10.5が好ましく、11が好ましく、11.5が好ましく、12が好ましく、12.3が好ましく、12.5が好ましく、12.8が好ましく、13が好ましく、13.3が好ましく、13.5が好ましく、13.8が好ましく、14が好ましく、14.3が好ましく、14.5が好ましく、14.8が好ましく、15が好ましく、15.3が好ましく、15.5が好ましく、15.8が好ましく、16が好ましく、16.3が好ましく、16.5が好ましく、16.8が好ましく、17が好ましく、17.3が好ましく、17.5が好ましく、17.8が好ましく、18が好ましく、その上限値としては、25が好ましく、24.5が好ましく、24が好ましく、23.5が好ましく、23が好ましく、22.8が好ましく、22.5が好ましく、22.3が好ましく、22が好ましく、21.8が好ましく、21.5が好ましく、21.3が好ましく、21が好ましく、20.8が好ましく、20.5が好ましく、20.3が好ましく、20が好ましく、19.8が好ましく、19.5が好ましく、19.3が好ましく、19が好ましく、18.8が好ましく、18.5が好ましく、18.3が好ましく、18が好ましく、17.8が好ましく、17.5が好ましく、17.3が好ましく、17が好ましい。消費電力削減を重視する場合にはバックライトの光量を抑えることが有効であり、液晶表示素子は光の透過率を向上させることが好ましく、そのためにはKAVGの値を低めに設定することが好ましい。応答速度の改善を重視する場合にはKAVGの値を高めに設定することが好ましい。 本発明の液晶組成物は、20℃における屈折率異方性(Δn)が0.08から0.14であるが、0.09から0.13がより好ましく、0.09から0.12が特に好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10から0.13であることが好ましく、厚いセルギャップに対応する場合は0.08から0.10であることが好ましい。 The average elastic constant (K AVG ) of the liquid crystal composition used in the present invention is preferably 10 to 25, and the lower limit thereof is preferably 10, preferably 10.5, preferably 11 and preferably 11.5. , 12 is preferable, 12.3 is preferable, 12.5 is preferable, 12.8 is preferable, 13 is preferable, 13.3 is preferable, 13.5 is preferable, 13.8 is preferable, 14 is preferable, 14 .3 is preferred, 14.5 is preferred, 14.8 is preferred, 15 is preferred, 15.3 is preferred, 15.5 is preferred, 15.8 is preferred, 16 is preferred, 16.3 is preferred, 16 .5, 16.8 is preferable, 17 is preferable, 17.3 is preferable, 17.5 is preferable, 17.8 is preferable, and 18 is preferable. 25 is preferable, 24.5 is preferable, 24 is preferable, 23.5 is preferable, 23 is preferable, 22.8 is preferable, 22.5 is preferable, 22.3 is preferable, 22 is preferable, and 21.8 is 21.5 is preferred, 21.3 is preferred, 21 is preferred, 20.8 is preferred, 20.5 is preferred, 20.3 is preferred, 20 is preferred, 19.8 is preferred, 19.5 is preferred 19.3 is preferred, 19 is preferred, 18.8 is preferred, 18.5 is preferred, 18.3 is preferred, 18 is preferred, 17.8 is preferred, 17.5 is preferred, 17.3 is preferred 17 is preferable. When importance is placed on reducing power consumption, it is effective to reduce the amount of light from the backlight, and it is preferable to improve the light transmittance of the liquid crystal display element. For this purpose, the value of K AVG should be set low. preferable. It is preferable to set a higher value of K AVG in the case of emphasizing improved response speed. The liquid crystal composition of the present invention has a refractive index anisotropy (Δn) at 20 ° C. of 0.08 to 0.14, more preferably 0.09 to 0.13, and 0.09 to 0.12. Particularly preferred. More specifically, it is preferably 0.10 to 0.13 when dealing with a thin cell gap, and preferably 0.08 to 0.10 when dealing with a thick cell gap.
 本発明の液晶組成物は、20℃における粘度(η)が10から30mPa・sであるが、10から25mPa・sであることがより好ましく、10から22mPa・sであることが特に好ましい。 The liquid crystal composition of the present invention has a viscosity (η) at 20 ° C. of 10 to 30 mPa · s, more preferably 10 to 25 mPa · s, and particularly preferably 10 to 22 mPa · s.
 本発明の液晶組成物は、20℃における回転粘性(γ)が60から200mPa・sであるが、60から120mPa・sであることがより好ましく、60から100mPa・sであることが特に好ましい。 The liquid crystal composition of the present invention has a rotational viscosity (γ 1 ) at 20 ° C. of 60 to 200 mPa · s, more preferably 60 to 120 mPa · s, and particularly preferably 60 to 100 mPa · s. .
 本発明の液晶組成物は、ネマチック相-等方性液体相転移温度(Tni)が60℃から120℃であるが、70℃から100℃がより好ましく、70℃から85℃が特に好ましい。加えて、20℃においてネマチック液晶を示す事が好ましい。 The liquid crystal composition of the present invention has a nematic phase-isotropic liquid phase transition temperature (T ni ) of 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and particularly preferably 70 ° C. to 85 ° C. In addition, it is preferable to show a nematic liquid crystal at 20 ° C.
 本発明の液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶、酸化防止剤、紫外線吸収剤、赤外線吸収剤、重合性モノマー又は光安定剤等を含有してもよい。 本発明の化合物を含有する液晶組成物を用いた液晶表示素子は、高速応答と表示不良の抑制を両立させた有用なものであり、特に、アクティブマトリックス駆動用液晶表示素子に有用であり、VAモード、PSVAモード、PSAモード、IPSモード、FFSモード又はECBモード用等の種々のモードの液晶表示素子に適用できる。 The liquid crystal composition of the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal, an antioxidant, an ultraviolet absorber, an infrared absorber, a polymerizable monomer, or a light stabilizer in addition to the above-described compounds. Good. The liquid crystal display device using the liquid crystal composition containing the compound of the present invention is useful for achieving both high-speed response and suppression of display failure, and is particularly useful for a liquid crystal display device for active matrix driving. The present invention can be applied to liquid crystal display elements in various modes such as a mode, a PSVA mode, a PSA mode, an IPS mode, an FFS mode, or an ECB mode.
 以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。相転移温度の測定は温度調節ステージを備えた偏光顕微鏡及び示差走査熱量計(DSC)を併用して行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Further, “%” in the compositions of the following Examples and Comparative Examples means “% by mass”. The phase transition temperature was measured using a polarizing microscope equipped with a temperature control stage and a differential scanning calorimeter (DSC).
 Tn-iはネマチック相-等方相の転移温度を表す。 T n-i nematic phase - represents the transition temperature of the isotropic phase.
 化合物記載に下記の略号を使用する。
THF:テトラヒドロフラン
LDA:リチウム ジイソプロピルアミド
  Me:メチル基、Et:エチル基、Pr:n-プロピル基、Bu:n-ブチル基、
  Pent:n-ペンチル基
(実施例1)化合物1-2-5の合成
The following abbreviations are used in compound descriptions.
THF: tetrahydrofuran LDA: lithium diisopropylamide Me: methyl group, Et: ethyl group, Pr: n-propyl group, Bu: n-butyl group,
Pent: n-pentyl group (Example 1) Synthesis of compound 1-2-5
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
(化合物1-2-5の合成)
 窒素雰囲気下、撹拌装置、温度計、滴下ロートを備えた反応容器に、LDA(15.8g)およびTHF(120ml)を加え、-15℃に冷却した。1.6Mブチルリチウム/ヘキサン溶液(86.7ml)を-15℃にて滴下し、1時間攪拌し、次にあらかじめTHF(25ml)に溶解しておいた化合物1-1-5(25.0g)およびホウ酸トリイソプロピル(29.4g)を-5℃にて同時に滴下し、1時間攪拌した。この反応混合物を0℃に昇温した後、10%塩酸(120ml)を加えて攪拌し、有機層を分けとった。さらに水層をトルエン(100ml)で抽出した。得られた有機層を合わせた後、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、化合物2の粗体(31.0g)を得た。ヘキサン/酢酸エチル混合溶媒を用いて再結晶を行うことで、化合物1-2-5(16.4g)を得た。
(実施例2~18)化合物1-2-0~化合物4-2-8の合成
 実施例1と同様の反応、および必要に応じて公知の方法に準拠した方法を用いて、実施例2(化合物1-2-0)~実施例18(化合物3-2-8)を合成した。
(Synthesis of Compound 1-2-5)
Under a nitrogen atmosphere, LDA (15.8 g) and THF (120 ml) were added to a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, and cooled to −15 ° C. A 1.6 M butyl lithium / hexane solution (86.7 ml) was added dropwise at −15 ° C., stirred for 1 hour, and then compound 1-1-5 (25.0 g) previously dissolved in THF (25 ml). ) And triisopropyl borate (29.4 g) were simultaneously added dropwise at -5 ° C. and stirred for 1 hour. The reaction mixture was warmed to 0 ° C., 10% hydrochloric acid (120 ml) was added and stirred, and the organic layer was separated. Further, the aqueous layer was extracted with toluene (100 ml). The obtained organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The obtained solution was concentrated to obtain a crude product of compound 2 (31.0 g). Recrystallization was performed using a hexane / ethyl acetate mixed solvent to obtain compound 1-2-5 (16.4 g).
Examples 2 to 18 Synthesis of Compound 1-2-0 to Compound 4-2-8 Using the same reaction as in Example 1 and, if necessary, a method based on a known method, Example 2 ( Compound 1-2-0) to Example 18 (Compound 3-2-8) were synthesized.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
(実施例19)化合物1-5-5の合成 Example 19 Synthesis of Compound 1-5-5
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 (化合物1-4-5の合成)
 窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、3-フルオロ-2-ヒドロキシクロロベンゼン(6.1g)、ビス(ジターシャリーブチル(4-ジメチルアミノフェニル)ホスフィン)塩化パラジウム(II)錯体(0.88g)、THF(50ml)および2M炭酸セシウム水溶液(40ml)を加え、攪拌しながら60℃に昇温した。反応混合物にあらかじめTHF(45ml)に溶解しておいた化合物1-3-5(15.2g)を滴下した。60℃で7時間攪拌後、加熱を止め溶液温度を室温に戻した。その後、10%塩酸(50ml)を加えた。有機層を分けとり、さらに水層をトルエン(50ml)で再抽出した。得られた有機層を合わせた後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮後、トルエン(40ml)を加えて溶解した溶液を、シリカゲル(10g)を詰めたカラムを通過させ、さらにトルエン(60ml)を通過させた。得られたカラム通過溶液を濃縮し、化合物1-4-5(17.6g)を得た。
(Synthesis of Compound 1-4-5)
Under a nitrogen atmosphere, in a reaction vessel equipped with a stirrer, thermometer, dropping funnel, and condenser, 3-fluoro-2-hydroxychlorobenzene (6.1 g), bis (ditertiary butyl (4-dimethylaminophenyl) phosphine) Palladium (II) chloride complex (0.88 g), THF (50 ml) and 2M aqueous cesium carbonate solution (40 ml) were added, and the temperature was raised to 60 ° C. with stirring. Compound 1-3-5 (15.2 g) previously dissolved in THF (45 ml) was added dropwise to the reaction mixture. After stirring at 60 ° C. for 7 hours, heating was stopped and the solution temperature was returned to room temperature. Then 10% hydrochloric acid (50 ml) was added. The organic layer was separated and the aqueous layer was re-extracted with toluene (50 ml). The combined organic layers were washed with water and saturated brine in that order, dried over anhydrous sodium sulfate. After concentrating the obtained solution, the solution dissolved by adding toluene (40 ml) was passed through a column packed with silica gel (10 g), and further passed through toluene (60 ml). The obtained column passage solution was concentrated to obtain compound 1-4-5 (17.6 g).
 (化合物1-5-5の合成)
 窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、水素化ナトリウム(60%ミネラルオイル分散)(2.5g)およびDMF(30ml)を加え、攪拌しながら氷冷した。そこにあらかじめDMF(90ml)に溶解しておいた化合物1-4-5(17.6g)を滴下した。その後室温に戻し、1時間かけて溶液温度を50℃に加熱した。その後さらに1.5時間かけて溶液温度を105℃まで加熱した。105℃で8時間攪拌後、溶液温度を10℃以下まで冷却した。反応溶液に水(250ml)を加えた。結晶をろ過し、メタノールで洗浄し、真空乾燥した。得られた結晶にトルエン(17ml)を加えて溶解した溶液を、シリカゲル(10g)を詰めたカラムを通過させ、さらにトルエン(60ml)を通過させた。得られたカラム通過溶液を濃縮し、化合物1-5-5(7.2g)を得た。
(実施例20)化合物1-7-205の合成
(Synthesis of Compound 1-5-5)
Under a nitrogen atmosphere, sodium hydride (60% mineral oil dispersion) (2.5 g) and DMF (30 ml) were added to a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel and a condenser, and ice-cooled while stirring. did. Thereto was added dropwise compound 1-4-5 (17.6 g) which had been previously dissolved in DMF (90 ml). Thereafter, the temperature was returned to room temperature, and the solution temperature was heated to 50 ° C. over 1 hour. Thereafter, the solution temperature was further heated to 105 ° C. over 1.5 hours. After stirring at 105 ° C. for 8 hours, the solution temperature was cooled to 10 ° C. or lower. Water (250 ml) was added to the reaction solution. The crystals were filtered, washed with methanol and dried in vacuo. A solution in which toluene (17 ml) was added to the obtained crystals and dissolved was passed through a column packed with silica gel (10 g), and further toluene (60 ml) was passed. The obtained column passage solution was concentrated to obtain compound 1-5-5 (7.2 g).
Example 20 Synthesis of Compound 1-7-205
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 (化合物1-6-5の合成)
 実施例19と同様の方法で、化合物1-5-5を得た。
(Synthesis of Compound 1-6-5)
Compound 1-5-5 was obtained in the same manner as in Example 19.
 窒素雰囲気下、撹拌装置、温度計、滴下ロートを備えた反応容器に、ジイソプロピルアミン(3.3g)およびTHF(30ml)を加え、-10℃に冷却した。1.6Mブチルリチウム/ヘキサン溶液(17.7ml)を-10℃にて滴下し、1時間攪拌し、次にあらかじめTHF(25ml)に溶解しておいた化合物1-5-5(7.2g)およびホウ酸トリイソプロピル(6.1g)を-10℃にて同時に滴下し、1時間攪拌した。この反応混合物を0℃に昇温した後、10%塩酸(100ml)を加えて攪拌し、有機層を分けとった。撹拌装置、温度計、滴下ロートを備えた反応容器に該有機層を加え、30%過酸化水素水(10ml)を滴下した。室温で1時間攪拌後、溶液温度を0℃に冷却し、15%チオ硫酸ナトリウム水溶液(100ml)を加えた。有機層を分け取り、さらに水層をトルエン(50ml)で抽出した。得られた有機層を合わせた後、水と飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮し、化合物1-6-5(7.3g)を得た。 In a nitrogen atmosphere, diisopropylamine (3.3 g) and THF (30 ml) were added to a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, and cooled to −10 ° C. A 1.6M butyllithium / hexane solution (17.7 ml) was added dropwise at −10 ° C., stirred for 1 hour, and then compound 1-5-5 (7.2 g) previously dissolved in THF (25 ml). ) And triisopropyl borate (6.1 g) were simultaneously added dropwise at -10 ° C. and stirred for 1 hour. The reaction mixture was warmed to 0 ° C., 10% hydrochloric acid (100 ml) was added and stirred, and the organic layer was separated. The organic layer was added to a reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel, and 30% aqueous hydrogen peroxide (10 ml) was added dropwise. After stirring at room temperature for 1 hour, the solution temperature was cooled to 0 ° C., and a 15% aqueous sodium thiosulfate solution (100 ml) was added. The organic layer was separated and the aqueous layer was extracted with toluene (50 ml). The obtained organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The resulting solution was concentrated to give compound 1-6-5 (7.3 g).
 (化合物1-7-205の合成)
 窒素雰囲気下、撹拌装置、温度計、滴下ロート、冷却管を備えた反応容器に、化合物1-6-5(5.0g)、ヨウ化エチル(2.5g)、炭酸セシウム(5.4g)およびDMF(15ml)を加え、攪拌しながら60℃に加熱した。60℃で1.5時間攪拌後、溶液温度を10℃以下まで冷却した。反応溶液に水(50ml)およびトルエン(30ml)を加えた。有機層を分けとり、さらに水層をトルエン(30ml)で再抽出した。得られた有機層を合わせた後、水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムを加えて乾燥した。得られた溶液を濃縮後、ヘキサン/トルエン混合溶媒(体積比1/1)(20ml)を加えて50℃で溶解した溶液を、シリカゲル(5.5g)を詰め50℃に加温したカラムを通過させ、ヘキサン/トルエン混合溶媒(体積比1/1)(30ml)を通過させた。得られたカラム通過溶液を濃縮し、化合物1-7-205の粗体(5.0g)を得た。アセトン/メタノール混合溶媒を用いて再結晶を繰り返すことで、化合物1-7-205(1.0g)を得た。相転移温度はCr87Iso。
(実施例21~181)化合物1-5-0~化合物3-7-808の合成
 実施例19、実施例20と同様の反応、および必要に応じて公知の方法に準拠した方法を用いて、実施例21(化合物1-5-0)~実施例351(化合物4-7-808)を合成した。
(Synthesis of Compound 1-7-205)
In a reaction vessel equipped with a stirrer, a thermometer, a dropping funnel, and a condenser under a nitrogen atmosphere, compound 1-6-5 (5.0 g), ethyl iodide (2.5 g), cesium carbonate (5.4 g) And DMF (15 ml) was added and heated to 60 ° C. with stirring. After stirring at 60 ° C. for 1.5 hours, the solution temperature was cooled to 10 ° C. or lower. Water (50 ml) and toluene (30 ml) were added to the reaction solution. The organic layer was separated and the aqueous layer was re-extracted with toluene (30 ml). The combined organic layers were washed with water and saturated brine in that order, dried over anhydrous sodium sulfate. After concentrating the obtained solution, a column prepared by adding a hexane / toluene mixed solvent (volume ratio 1/1) (20 ml) and dissolving at 50 ° C. was packed with silica gel (5.5 g) and heated to 50 ° C. Then, a hexane / toluene mixed solvent (volume ratio 1/1) (30 ml) was passed therethrough. The obtained column passing solution was concentrated to obtain a crude product (5.0 g) of compound 1-7-205. Compound 1-7-205 (1.0 g) was obtained by repeating recrystallization using an acetone / methanol mixed solvent. The phase transition temperature is Cr87Iso.
(Examples 21 to 181) Synthesis of compounds 1-5-0 to 3-7-808 Using reactions similar to those in Examples 19 and 20 and, if necessary, methods based on known methods, Example 21 (Compound 1-5-0) to Example 351 (Compound 4-7-808) were synthesized.
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000116

Figure JPOXMLDOC01-appb-I000117

Figure JPOXMLDOC01-appb-I000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000121
 (実施例352)液晶組成物の調製-1
 以下の物性値を示すホスト液晶(H)
を調製した。値はいずれも実測値である。
(Example 352) Preparation of liquid crystal composition-1
Host liquid crystal (H) showing the following physical properties
Was prepared. All the values are actually measured values.
  Tn-i(ネマチック相-等方性液体相転移温度):73.8℃
  Δε(25℃における誘電率異方性) :-2.79
  Δn(25℃における屈折率異方性) :0.101
 γ (25℃における回転粘性係数):118
この母体液晶(H)97%と、実施例1で得られた化合物(1-7-205)3%からなる液晶組成物(M-A)を調製した。この組成物(M-A)のTn-i、Δε、Δn及びγの値を測定し母体液晶からの変化量をもとに、実施例1で得られた化合物(1-7-205)の各物性値の外挿値を求めると、以下のとおりであった。
T n-i (nematic phase - isotropic liquid phase transition temperature): 73.8 ° C.
Δε (dielectric anisotropy at 25 ° C.): −2.79
Δn (refractive index anisotropy at 25 ° C.): 0.101
γ 1 (rotational viscosity coefficient at 25 ° C.): 118
A liquid crystal composition (MA) comprising 97% of the base liquid crystal (H) and 3% of the compound (1-7-205) obtained in Example 1 was prepared. The value of T n−i , Δε, Δn and γ 1 of this composition (MA) was measured, and based on the amount of change from the base liquid crystal, the compound (1-7-205) obtained in Example 1 was used. The extrapolated value of each physical property value of) was as follows.
  外挿Tn-i:23.8℃
  外挿Δε:-14.6
  外挿Δn:0.167
  外挿γ:376mPa・s
 また、調製した液晶組成物(M-A)は、室温にて一ヶ月間以上均一なネマチック液晶状態を維持した。
Extrapolation T n−i : 23.8 ° C.
Extrapolation Δε: -14.6
Extrapolation Δn: 0.167
Extrapolation γ 1 : 376 mPa · s
Further, the prepared liquid crystal composition (MA) maintained a uniform nematic liquid crystal state for one month or more at room temperature.
 さらに、液晶組成物(M-A)を用いて作製した液晶表示装置は、優れた表示特性を示し、長期にわたり安定な表示特性を保ち、高い信頼性を示した。 Furthermore, the liquid crystal display device manufactured using the liquid crystal composition (MA) showed excellent display characteristics, maintained stable display characteristics for a long time, and showed high reliability.
 (実施例353)液晶組成物の調製―2
母体液晶(H)95%と、実施例60で得られた化合物(1-7-405)5%からなる液晶組成物(M-B)を調製した。この組成物(M-B)より、実施例60で得られた化合物(1-7-405)の外挿Tn-i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。
Example 353 Preparation of Liquid Crystal Composition-2
A liquid crystal composition (MB) comprising 95% of the base liquid crystal (H) and 5% of the compound (1-7-405) obtained in Example 60 was prepared. From this composition (M-B), the extrapolated T n-i of the compound obtained in Example 60 (1-7-405), extrapolated [Delta] [epsilon], extrapolation [Delta] n, the extrapolation gamma 1 values below It is as follows.
  外挿Tn-i:21.8℃
  外挿Δε:-14.0
  外挿Δn:0.158
  外挿γ:360mPa・s
 また、調製した液晶組成物(M-B)は、室温にて一ヶ月間以上均一なネマチック液晶状態を維持した。
Extrapolation T n-i: 21.8 ℃
Extrapolation Δε: -14.0
Extrapolation Δn: 0.158
Extrapolation γ 1 : 360 mPa · s
Further, the prepared liquid crystal composition (MB) maintained a uniform nematic liquid crystal state for one month or more at room temperature.
 さらに、液晶組成物(M-B)を用いて作製した液晶表示装置は、優れた表示特性を示し、長期にわたり安定な表示特性を保ち、高い信頼性を示した。 Furthermore, the liquid crystal display device manufactured using the liquid crystal composition (MB) exhibited excellent display characteristics, maintained stable display characteristics over a long period of time, and exhibited high reliability.
 (比較例1)液晶組成物の調製―3
母体液晶(H)85%と、以下に示す化合物(A)15%からなる液晶組成物(M-C)を調製した。
Comparative Example 1 Preparation of Liquid Crystal Composition-3
A liquid crystal composition (MC) comprising 85% of the base liquid crystal (H) and 15% of the following compound (A) was prepared.
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000122
この組成物(M-C)より、上記化合物(A)の外挿Tn-i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。 From this composition (M-C), extrapolated T n-i, extrapolated [Delta] [epsilon], extrapolation [Delta] n, the extrapolation gamma 1 value of the compound (A) is as follows.
  外挿Tn-i:18.3℃
  外挿Δε:-15.7
  外挿Δn:0.184
  外挿γ:241mPa・s
 上記結果を実施例352および実施例353と比較するとΔεは同程度でありながら、Tn-iが低いことが分かる。
Extrapolation T n-i: 18.3 ℃
Extrapolation Δε: −15.7
Extrapolation Δn: 0.184
Extrapolation γ 1 : 241 mPa · s
Comparing the above results with Example 352 and Example 353, it can be seen that Δn is similar but T n−i is low.
 (比較例2)液晶組成物の調製―4
母体液晶(H)85%と、以下に示す化合物(B)15%からなる液晶組成物(M-D)を調製した。
Comparative Example 2 Preparation of Liquid Crystal Composition-4
A liquid crystal composition (MD) comprising 85% of the base liquid crystal (H) and 15% of the following compound (B) was prepared.
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000123
この組成物(M-D)より、上記化合物(B)の外挿Tn-i、外挿Δε、外挿Δn、外挿γの値は以下のとおりである。 From this composition (M-D), the extrapolated T n-i, extrapolated [Delta] [epsilon], extrapolation [Delta] n, the extrapolation gamma 1 value of the compound (B) is as follows.
  外挿Tn-i:3.2℃
  外挿Δε:-9.7
  外挿Δn:0.073
  外挿γ:94mPa・s
 上記結果を実施例352および実施例353と比較すると|Δε|が大幅に小さくなり、Tn-iも大幅に低いことが分かる。
Extrapolation T n−i : 3.2 ° C.
Extrapolation Δε: -9.7
Extrapolation Δn: 0.073
Extrapolation γ 1 : 94 mPa · s
Comparing the above results with Example 352 and Example 353, it can be seen that | Δε | is significantly smaller and T n−i is also significantly lower.

Claims (14)

  1. 一般式(i)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xi1及びXi2はそれぞれ独立して水素原子、フッ素原子、塩素原子、シアノ基、トリフルオロメチル基、トリフルオロメトキシ基を表し、
    i1及びYi2はそれぞれ独立して-O-、-S-、-SO-、-SOO-、-CF-、-CO-、-CXi3i4-を表し、ただし、Yi1及びYi2のいずれか一つ以上は-O-、-S-、-SO-、-SOO-を表し、
    i3、Xi4はそれぞれ独立してXi1と同じ意味を表し、
    破線は結合が存在しなくても良く、存在しても良いことを表し、
    i1は破線が存在しない場合、-CLi6i7-CLi8i9-、-CLi6i7-O-、-O-CLi8i9-、-CLi6i7-S-、-S-CLi8i9-、又は-CLi6=CLi8-を表し、
    破線が存在する場合、-CLi6i7-CLi8=、-O-CLi8=、-S-CLi8=を表し、
    i2は単結合又は-CLi10i11-を表し、
    i1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11はそれぞれ独立して水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基、炭素原子数2から15のアルケニル基又は
    Figure JPOXMLDOC01-appb-C000002
    (式中、Ri1は水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基又は炭素原子数2から15のアルケニル基を表し、
    i1
    (a)1,4-シクロへキシレン基(この基中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-O-又は-S-に置き換えられても良い。)
    (b)1,4-フェニレン基(この基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良く、この基中に存在する1つの水素原子はフッ素原子に置換されても良い。)
    (c)1,4-シクロヘキセニレン基、ナフタレン-2,6-ジイル基、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、デカヒドロナフタレン-2,6-ジイル基(これらの基中に存在する水素原子はフッ素原子に置換されても良く、また、ナフタレン-2,6-ジイル基又は1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基中に存在する1個の-CH=又は隣接していない2個以上の-CH=は-N=に置き換えられても良い。)
    からなる群より選ばれる基を表し、
    i1は、-CHO-、-OCH-、-CFO-、-OCF-、-COO-、-OCO-、-CHCH-、-CFCF-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表し、
    i1は1又は2を表すが、ni1が2を表しAi1及びZi1が複数存在する場合、それらは同一であっても異なっていてもよい。)
    で表される基を表し、Li1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11中に存在する1個の-CH-又は隣接していない2個以上の-CH-は-C≡C-、-O-、-S-、-COO-、-OCO-又は-CO-により置き換えられても良く、また、アルキル基又はアルケニル基中に存在する水素原子はフッ素原子に置換されても良い。)
    で表される基を表す。)
    で表される化合物。
    Formula (i)
    Figure JPOXMLDOC01-appb-C000001
    ( Wherein , X i1 and X i2 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a cyano group, a trifluoromethyl group, a trifluoromethoxy group,
    Y i1 and Y i2 each independently represent —O—, —S—, —SO—, —SOO—, —CF 2 —, —CO—, —CX i3 X i4 —, wherein Y i1 and Y any one or more of i2 represents —O—, —S—, —SO—, —SOO—;
    X i3 and X i4 each independently represent the same meaning as X i1 ,
    The dashed line indicates that the bond may or may not exist,
    If W i1 is the absence of broken lines, -CL i6 L i7 -CL i8 L i9 -, - CL i6 L i7 -O -, - O-CL i8 L i9 -, - CL i6 L i7 -S -, - S -CL i8 L i9 -, or -CL i6 = CL i8 - represents,
    When a broken line exists, -CL i6 L i7 -CL i8 =, -O-CL i8 =, -S-CL i8 =
    W i2 represents a single bond or —CL i10 L i11 —,
    L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11 are each independently a hydrogen atom, bromine atom, iodine atom, hydroxyl group, carbon An alkyl group having 1 to 15 atoms, an alkenyl group having 2 to 15 carbon atoms, or
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R i1 represents a hydrogen atom, a bromine atom, an iodine atom, a hydroxyl group, an alkyl group having 1 to 15 carbon atoms, or an alkenyl group having 2 to 15 carbon atoms,
    A i1 represents (a) a 1,4-cyclohexylene group (one —CH 2 — present in this group or two or more non-adjacent —CH 2 — represents —O— or —S—). May be replaced.)
    (B) 1,4-phenylene group (one —CH═ present in this group or two or more non-adjacent —CH═ may be replaced by —N═, present in this group) One hydrogen atom may be substituted with a fluorine atom.)
    (C) 1,4-cyclohexenylene group, naphthalene-2,6-diyl group, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, decahydronaphthalene-2,6-diyl group ( A hydrogen atom present in these groups may be substituted with a fluorine atom, or present in a naphthalene-2,6-diyl group or a 1,2,3,4-tetrahydronaphthalene-2,6-diyl group. One -CH = or two or more non-adjacent -CH = may be replaced by -N =.)
    Represents a group selected from the group consisting of
    Z i1 represents —CH 2 O—, —OCH 2 —, —CF 2 O—, —OCF 2 —, —COO—, —OCO—, —CH 2 CH 2 —, —CF 2 CF 2 —, —CH ═CH—, —CF═CF—, —C≡C— or a single bond,
    n i1 represents 1 or 2, but when n i1 represents 2 and a plurality of A i1 and Z i1 exist, they may be the same or different. )
    1 —CH 2 present in L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11. — Or two or more non-adjacent —CH 2 — may be replaced by —C≡C—, —O—, —S—, —COO—, —OCO— or —CO—, and A hydrogen atom present in the group or alkenyl group may be substituted with a fluorine atom. )
    Represents a group represented by )
    A compound represented by
  2. 一般式(i)において、Li1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11の少なくとも1つ以上が
    Figure JPOXMLDOC01-appb-C000003
    を表し、Ai1
    Figure JPOXMLDOC01-appb-C000004
    から選ばれる基を表す、請求項1に記載の化合物。
    In the general formula (i), at least one of L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11 is
    Figure JPOXMLDOC01-appb-C000003
    And A i1 is
    Figure JPOXMLDOC01-appb-C000004
    The compound according to claim 1, which represents a group selected from:
  3. 一般式(i)において、Li1、Li2、Li3、Li4、Li5、Li6、Li7、Li8、Li9、Li10及びLi11の少なくとも1つ以上が
    Figure JPOXMLDOC01-appb-C000005
    を表し、Zi1の少なくとも1つ以上がが-CHO-、-OCH-、-CHCH-、又は単結合を表す請求項1又は2に記載の化合物。
    In the general formula (i), at least one of L i1 , L i2 , L i3 , L i4 , L i5 , L i6 , L i7 , L i8 , L i9 , L i10 and L i11 is
    Figure JPOXMLDOC01-appb-C000005
    The compound according to claim 1 , wherein at least one of Z i1 represents —CH 2 O—, —OCH 2 —, —CH 2 CH 2 —, or a single bond.
  4. 一般式(i)において、Yi1及びYi2が互いに-O-を表す請求項1~3に記載の化合物。 The compound according to claims 1 to 3, wherein in the general formula (i), Y i1 and Y i2 each represent -O-.
  5. 一般式(i)において、Xi1及びXi2が互いにフッ素原子を表す請求項1~4に記載の化合物。 The compound according to claims 1 to 4, wherein, in the general formula (i), X i1 and X i2 each represent a fluorine atom.
  6. 一般式(i)において、Li1、Li2、Li3i8及びLi9はそれぞれ独立して水素原子、臭素原子、よう素原子、水酸基、炭素原子数1から15のアルキル基、炭素原子数1から15のアルコキシ基、炭素原子数2から15のアルケニル基、炭素原子数2から15のアルケニルオキシ基を表し、Li4、Li5、Li6、Li7、Li10及びLi11はそれぞれ独立して水素原子を表す請求項1~5に記載の化合物。 In the general formula (i), L i1 , L i2 , L i3 L i8 and L i9 are each independently a hydrogen atom, a bromine atom, an iodine atom, a hydroxyl group, an alkyl group having 1 to 15 carbon atoms, or a carbon atom number. Represents an alkoxy group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, and an alkenyloxy group having 2 to 15 carbon atoms, and L i4 , L i5 , L i6 , L i7 , L i10 and L i11 are independent of each other. The compound according to claim 1, which represents a hydrogen atom.
  7. 一般式(i)において、Wi1が-CHCH-を表す請求項1~6に記載の化合物。 The compound according to claims 1 to 6, wherein in formula (i), W i1 represents -CH 2 CH 2- .
  8. 一般式(i)において、Wi2が単結合を表す請求項1~7に記載の化合物。 The compound according to any one of claims 1 to 7, wherein in formula (i), W i2 represents a single bond.
  9. 請求項1~8に記載の化合物を一種又は二種以上含有する組成物。 A composition comprising one or more of the compounds according to claims 1 to 8.
  10. 請求項9記載の組成物を使用した液晶表示素子。 A liquid crystal display device using the composition according to claim 9.
  11. 一般式(i-r3)
    Figure JPOXMLDOC01-appb-C000006
    (式中Xi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
    破線は結合が存在しなくても良く、存在しても良いことを表す。)
    で表される化合物中の-Yi1-Hを塩基により脱プロトン化しアニオンを生成することで分子内反応させることによる、一般式(i)で表される化合物の製造方法。
    Formula (i-r3)
    Figure JPOXMLDOC01-appb-C000006
    ( Wherein X i1 , X i2 , Y i1 , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 are X i1 , X i2 , Y i1 in the general formula (i)). , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 each represent the same meaning, but a plurality of X i2 may be the same or different,
    A broken line indicates that a bond may not exist or may exist. )
    A method for producing a compound represented by the general formula (i), wherein —Y i1 —H in the compound represented by formula (1) is deprotonated with a base to generate an anion to cause an intramolecular reaction.
  12. 一般式(i-r1)
    Figure JPOXMLDOC01-appb-C000007
    (式中Xi2、Yi2、Wi1、Li2及びLi5は一般式(i)におけるXi2、Yi2、Wi1、Li2及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
    i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり-CH-CH-、-CH-CH-CH-、又は-CH-C(CH-CH-を表し、
    破線は結合が存在しなくても良く、存在しても良いことを表す。)
    で表される化合物と、一般式(i-r2)
    Figure JPOXMLDOC01-appb-C000008
    (式中Xi1、Yi1、Li1、Li3、Li4及びWi2は一般式(i)におけるXi1、Yi1、Li1、Li3、Li4及びWi2とそれぞれ同じ意味を表し、
    i3は塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基を表す。)
    で表される化合物を遷移金属触媒及び塩基存在下反応させることにより、一般式(i-r3)で表される化合物を得る、請求項11に記載の製造方法。
    Formula (i-r1)
    Figure JPOXMLDOC01-appb-C000007
    ( Wherein X i2 , Y i2 , W i1 , L i2 and L i5 represent the same meaning as X i2 , Y i2 , W i1 , L i2 and L i5 in general formula (i), respectively, but a plurality of X i2 may be different even in the same,
    R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
    A broken line indicates that a bond may not exist or may exist. )
    And a compound of the general formula (ir-2)
    Figure JPOXMLDOC01-appb-C000008
    ( Wherein X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 represent the same meanings as X i1 , Y i1 , L i1 , L i3 , L i4 and W i2 in general formula (i), respectively. ,
    X i3 represents a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, or a trifluoromethanesulfonyloxy group. )
    The production method according to claim 11, wherein the compound represented by general formula (i-r3) is obtained by reacting the compound represented by general formula (i-r3) in the presence of a transition metal catalyst and a base.
  13. 一般式(i-r3)
    Figure JPOXMLDOC01-appb-C000009
    (式中Xi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5は一般式(i)におけるXi1、Xi2、Yi1、Yi2、Wi1、Wi2、Li1、Li2、Li3、Li4及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
    破線は結合が存在しなくても良く、存在しても良いことを表す。)
    で表される化合物。
    Formula (i-r3)
    Figure JPOXMLDOC01-appb-C000009
    ( Wherein X i1 , X i2 , Y i1 , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 are X i1 , X i2 , Y i1 in the general formula (i)). , Y i2 , W i1 , W i2 , L i1 , L i2 , L i3 , L i4 and L i5 each represent the same meaning, but a plurality of X i2 may be the same or different,
    A broken line indicates that a bond may not exist or may exist. )
    A compound represented by
  14. 一般式(i-r1)
    Figure JPOXMLDOC01-appb-C000010
    (式中Xi2、Yi2、Wi1、Li2及びLi5は一般式(i)におけるXi2、Yi2、Wi1、Li2及びLi5とそれぞれ同じ意味を表すが、複数存在するXi2は同一であっても異なっていてもよく、
    i3及びRi4はそれぞれ独立に水素原子、メチル基、エチル基、もしくはプロピル基を表すか、またはRi3及びRi4は互いに結合して環状の構造となり-CH-CH-、-CH-CH-CH-、又は-CH-C(CH-CH-を表し、
    破線は結合が存在しなくても良く、存在しても良いことを表す。)
    で表される化合物。
    Formula (i-r1)
    Figure JPOXMLDOC01-appb-C000010
    ( Wherein X i2 , Y i2 , W i1 , L i2 and L i5 represent the same meaning as X i2 , Y i2 , W i1 , L i2 and L i5 in general formula (i), respectively, but a plurality of X i2 may be different even in the same,
    R i3 and R i4 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a propyl group, or R i3 and R i4 are bonded to each other to form a cyclic structure —CH 2 —CH 2 —, —CH 2 -CH 2 -CH 2- or -CH 2 -C (CH 3 ) 2 -CH 2-
    A broken line indicates that a bond may not exist or may exist. )
    A compound represented by
PCT/JP2018/019964 2017-06-06 2018-05-24 Liquid crystal compound, and composition thereof WO2018225520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880033191.8A CN110650948A (en) 2017-06-06 2018-05-24 Liquid crystal compound and composition thereof
JP2019523443A JP6681035B2 (en) 2017-06-06 2018-05-24 Liquid crystal compound and composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111615 2017-06-06
JP2017-111615 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225520A1 true WO2018225520A1 (en) 2018-12-13

Family

ID=64566563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019964 WO2018225520A1 (en) 2017-06-06 2018-05-24 Liquid crystal compound, and composition thereof

Country Status (3)

Country Link
JP (1) JP6681035B2 (en)
CN (1) CN110650948A (en)
WO (1) WO2018225520A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370610A (en) * 2018-12-19 2019-02-22 西安瑞立电子材料有限公司 Liquid-crystal composition and its application containing dibenzofurans and six ring class of an oxygen
CN111334310A (en) * 2018-12-18 2020-06-26 Dic株式会社 Liquid crystal composition and liquid crystal display element
CN112980459A (en) * 2019-12-13 2021-06-18 北京八亿时空液晶科技股份有限公司 Liquid crystal compound containing dibenzothiophene structure and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097258A (en) * 2003-08-01 2005-04-14 Clariant Internatl Ltd Fluorinated polycyclic compound and its use in liquid crystal mixture
JP2005097259A (en) * 2003-08-01 2005-04-14 Clariant Internatl Ltd Fluorinated polycyclic compound and its use in liquid crystal mixture
JP2005290349A (en) * 2003-06-30 2005-10-20 Dainippon Ink & Chem Inc Chroman derivative and liquid crystal composition containing this compound
JP2010006742A (en) * 2008-06-26 2010-01-14 Dic Corp Method for producing fluorochromanol derivative
JP2016199543A (en) * 2015-04-13 2016-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Fluorinated dibenzofuran and dibenzothiophene derivatives
CN106479514A (en) * 2016-08-30 2017-03-08 北京云基科技有限公司 A kind of 7,8 difluoro, 5 methyl 1,2,3,4- tetrahydronaphthalene liquid-crystal compoundss and preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE478933T1 (en) * 2003-06-30 2010-09-15 Dainippon Ink & Chemicals CHROMEAND DERIVATIVE AND LIQUID CRYSTALLINE COMPOSITION CONTAINING IT

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290349A (en) * 2003-06-30 2005-10-20 Dainippon Ink & Chem Inc Chroman derivative and liquid crystal composition containing this compound
JP2005097258A (en) * 2003-08-01 2005-04-14 Clariant Internatl Ltd Fluorinated polycyclic compound and its use in liquid crystal mixture
JP2005097259A (en) * 2003-08-01 2005-04-14 Clariant Internatl Ltd Fluorinated polycyclic compound and its use in liquid crystal mixture
JP2010006742A (en) * 2008-06-26 2010-01-14 Dic Corp Method for producing fluorochromanol derivative
JP2016199543A (en) * 2015-04-13 2016-12-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Fluorinated dibenzofuran and dibenzothiophene derivatives
CN106479514A (en) * 2016-08-30 2017-03-08 北京云基科技有限公司 A kind of 7,8 difluoro, 5 methyl 1,2,3,4- tetrahydronaphthalene liquid-crystal compoundss and preparation method and application

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAMPAIGNE, ERNEST ET AL.: "Some Methyl substituted benzo[b]naphtho[2,3-d]thiophenes", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 6, no. 6, 1969, pages 885 - 889, XP002010604 *
GOURIER, JACQUES ET AL.: "Intramolecular cyclization of 1-(4-pentaen)yldibenzothiophenes and of bis[2, 3-(2-methy 1-4- penten)yl]dibenzothiophene", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, 1973, pages 3110 - 3115 *
GUNDERMANN, KARL D. ET AL.: "Contributions to the chemistry of dibenzothiophene. Dibenzothiophene, a model substance for organic sulfur groupings in coal", ERDOEL UND KOHLE, ERDGAS, PETROCHEMIE VEREINIGT MIT BRENNSTOFF-CHEMIE, vol. 29, no. 1, April 1976 (1976-04-01), pages 23 - 27 *
ROBINSON, RICHARD A. ET AL.: "Amino ketones derived from tetrahydrobenzo[b]naphtho[2, 3- d]furan", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 61, no. 5, May 1939 (1939-05-01), pages 1148 - 1151, XP055561244 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111334310A (en) * 2018-12-18 2020-06-26 Dic株式会社 Liquid crystal composition and liquid crystal display element
CN109370610A (en) * 2018-12-19 2019-02-22 西安瑞立电子材料有限公司 Liquid-crystal composition and its application containing dibenzofurans and six ring class of an oxygen
CN112980459A (en) * 2019-12-13 2021-06-18 北京八亿时空液晶科技股份有限公司 Liquid crystal compound containing dibenzothiophene structure and preparation method and application thereof

Also Published As

Publication number Publication date
JP6681035B2 (en) 2020-04-15
CN110650948A (en) 2020-01-03
JPWO2018225520A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6635228B2 (en) Liquid crystal compound and composition thereof
TWI697552B (en) Liquid crystal composition and liquid crystal display element using the same
JP6137419B2 (en) Nematic liquid crystal composition and liquid crystal display device using the same
JP2019112607A (en) Polymerizable compound and liquid crystal composition containing the same
WO2018230322A1 (en) Polymerizable compound and liquid-crystal composition
JP2016183349A (en) Nematic liquid crystal composition and liquid crystal display element using the same
JP6681035B2 (en) Liquid crystal compound and composition thereof
JP2019218303A (en) Liquid crystal compound and composition of the same
TWI707944B (en) Liquid crystal composition and liquid crystal display element using the same
JP5622066B2 (en) Compound having fluorinated naphthalene structure and liquid crystal composition thereof
JP4887605B2 (en) Chroman derivative and liquid crystal composition containing the compound
JP7027850B2 (en) Liquid crystal compound and its composition
JP2020083761A (en) Liquid crystal compound
JP2020079215A (en) Liquid crystal compound
CN114231294B (en) Negative liquid crystal composition and application thereof
WO2005095311A9 (en) Benzene derivative, liquid crystal composition and liquid crystal display
JP2007039642A (en) Difluorobenzene derivative and liquid crystal composition by using the same
JP5696874B2 (en) Fluorobenzene derivative and liquid crystal composition containing the compound
JP2018002670A (en) Liquid crystal compound
JP6801245B2 (en) Method for producing liquid crystal compound and its compound
CN114231293B (en) Negative dielectric liquid crystal composition and application thereof
JPWO2017090384A1 (en) Liquid crystal compound, liquid crystal composition and display element
JP2018021153A (en) Liquid crystal composition and liquid crystal display element prepared therewith
JP2020083842A (en) Liquid crystal compound
JP2020011937A (en) Liquid crystal compound, liquid crystal composition and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813636

Country of ref document: EP

Kind code of ref document: A1