WO2018225479A1 - High-pressure fuel pump - Google Patents

High-pressure fuel pump Download PDF

Info

Publication number
WO2018225479A1
WO2018225479A1 PCT/JP2018/019239 JP2018019239W WO2018225479A1 WO 2018225479 A1 WO2018225479 A1 WO 2018225479A1 JP 2018019239 W JP2018019239 W JP 2018019239W WO 2018225479 A1 WO2018225479 A1 WO 2018225479A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pressure
fuel
pressure fuel
fuel pump
Prior art date
Application number
PCT/JP2018/019239
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 根本
山田 裕之
悟史 臼井
高橋 由起夫
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018225479A1 publication Critical patent/WO2018225479A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • the present invention relates to a high-pressure fuel pump that pumps fuel to a fuel injection valve of an internal combustion engine, and more particularly, to a high-pressure fuel pump that includes an electromagnetic intake valve mechanism that adjusts the amount of fuel to be discharged.
  • a high-pressure fuel pump having an electromagnetic intake valve mechanism for increasing the pressure of the fuel and discharging a desired fuel flow rate is widely used. It is used.
  • Patent Document 1 a damper as a pressure pulsation reducing mechanism for reducing low pressure pulsation in a high pressure fuel pump, and a check valve provided on the upstream side of the damper to prevent the pressure pulsation from spreading to the low pressure pipe are disclosed. Disclosure.
  • the pressure pulsation on the low pressure side is generated by a reciprocating sliding movement of the pressurizing member (plunger) in the cylinder.
  • a low pressure pipe that connects the fuel tank of the vehicle and the inlet (intake joint) of the high pressure fuel pump and a low pressure passage that houses the pressure pulsation reducing mechanism are always hydraulically connected. Therefore, the pressure pulsation reducing mechanism cannot absorb all the pressure pulsations in the low pressure passage, and in order to prevent the pressure pulsation from propagating in the low pressure pipe, the fuel flow in one direction ( There is provided a check valve that restricts the direction from the low-pressure pump side to the inside of the high-pressure fuel pump.
  • Patent Document 1 there is a problem that the check valve has a large volume and cannot be installed depending on the shape and size of the suction joint.
  • the check pipe cannot be installed in the case where the metal pipe part and the rubber hose or the resin hose are used together in the low pressure pipe, the strength of the connection part may not be able to withstand pressure pulsation. Or in order to ensure the intensity
  • An object of the present invention is to provide a high-pressure fuel pump that reduces pressure pulsation generated in low-pressure piping with an inexpensive structure.
  • a pressurizing chamber that pressurizes fuel
  • an electromagnetic suction valve mechanism that is disposed upstream of the pressurizing chamber and controls a flow rate supplied to the pressurizing chamber
  • an intake A high-pressure fuel pump including a pump housing provided with a pipe, disposed on the upstream side of the electromagnetic suction valve mechanism, and attached to an outlet surface of a low-pressure flow path through which the fuel flowing in from the suction pipe flows. And a valve configured to allow fuel to flow.
  • 1 is a longitudinal sectional view of a high-pressure fuel pump according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of a high-pressure fuel pump according to a first embodiment of the present invention. It is another longitudinal cross-sectional view of the high pressure fuel pump by the 1st Example of this invention, and has shown the state which the check valve is closed. It is another longitudinal cross-sectional view of the high pressure fuel pump by the 1st Example of this invention, and has shown the state in which the non-return valve is open.
  • 1 is an overall configuration diagram of a high-pressure fuel system to which a high-pressure fuel pump according to the present embodiment is applied. 1 is an example of a reed valve according to a first embodiment of the present invention.
  • FIG. 5 shows an overall configuration diagram of a high-pressure fuel system to which the high-pressure fuel pump of this embodiment is applied.
  • the configuration and operation of the high pressure fuel system will be described with reference to FIG.
  • the portion surrounded by a broken line indicates a main body of a high-pressure fuel pump (hereinafter referred to as a high-pressure fuel pump), and the mechanisms and components shown in the broken line indicate that they are incorporated in the pump housing 1.
  • the fuel in the fuel tank 20 is pumped up by the feed pump 21 based on a signal from the engine control unit 27 (hereinafter referred to as ECU), pressurized to an appropriate feed pressure, and passed through the suction pipe 28 to the low pressure fuel inlet of the high pressure fuel pump. 10a.
  • the fuel that has passed through the suction joint 10a reaches the suction port 31b of the electromagnetic suction valve 300 constituting the variable capacity mechanism via the damper chamber (10b, 10c) formed by the pressure pulsation reduction mechanism 9 and the suction passage 10d.
  • the fuel that has flowed into the electromagnetic suction valve 300 passes through the suction valve 30 and flows into the pressurizing chamber 11.
  • the reciprocating power of the plunger 2 is given to the plunger 2 by the cam mechanism 93 of the engine, and the reciprocating motion of the plunger 2 sucks fuel from the suction valve 30 part during the downward stroke of the plunger 2 and pressurizes the fuel during the upward stroke.
  • the fuel is pumped through the discharge valve mechanism 8 to the common rail 23 to which the pressure sensor 26 is mounted, and the injector 24 injects the fuel into the engine based on a signal from the ECU 27.
  • FIG. 1 is a longitudinal sectional view of the fuel supply pump
  • FIG. 2 is a horizontal sectional view of the fuel supply pump as viewed from above
  • FIG. 3 is a longitudinal sectional view of the fuel supply pump as viewed from a different direction from FIG. 1 and shows a state where the check valve is closed.
  • FIG. 4 is the same cross section as FIG. 3, but shows a state where the check valve is open.
  • the fuel supply pump is attached to a metal damper 9, a pump housing 1 (pump main body) in which a damper chamber (10 b, 10 c) that houses the metal damper 9 is formed, and the pump body 1.
  • the damper cover 14 that covers the damper chamber (10b, 10c) and holds the metal damper 9 between the pump body 1 and the holder that is fixed to the damper cover 14 and holds the metal damper 9 from the opposite side of the damper cover 14 And a member 9a.
  • the holding member 9 a is disposed between the metal damper 9 and the pump body 1, and holds the metal damper 9 from the pump body 1 side.
  • a high-pressure fuel pump is in close contact with the plane of a cylinder head 90 of an internal combustion engine using a flange 1e provided in the pump housing 1, and is fixed with a plurality of bolts (not shown).
  • an O-ring 61 is fitted into the pump housing 1 for sealing between the cylinder head 90 and the pump housing 1 to prevent engine oil from leaking to the outside.
  • the pump housing 1 is provided with a cylinder 6 which guides the reciprocating motion of the plunger 2 and has an end formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein. Further, the pressurizing chamber 11 is annularly formed on the outer peripheral side so as to communicate with an electromagnetic suction valve mechanism 300 (see FIG. 2) for supplying fuel and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage. And a plurality of communicating holes 6b for communicating the annular groove and the pressurizing chamber.
  • the cylinder 6 is press-fitted with the pump housing 1 on the outer peripheral side thereof, and is sealed so that the fuel pressurized in the pressurizing chamber 11 does not leak to the low pressure side. Further, the pump housing 1 is deformed radially inward so as to come into contact with the large-diameter portion bottom surface 6a of the large-diameter portion from the lower side, and the cylinder 6 is pressed upward in the drawing to fix the cylinder 6.
  • a tappet 92 that converts the rotational motion of the cam mechanism 93 attached to the camshaft of the internal combustion engine into vertical motion and transmits it to the plunger 2.
  • the plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 can be reciprocated up and down with the rotational movement of the cam mechanism 93.
  • the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a state in which the plunger 2 is slidably in contact with the outer periphery of the plunger 2 in the lower part of the cylinder 6 in the figure, and the plunger 2 has slid.
  • the fuel in the sub chamber 7a is sealed to prevent the fuel from flowing into the internal combustion engine.
  • lubricating oil including engine oil for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump housing 1.
  • a suction joint 51 is attached to the pump housing 1.
  • the suction joint 51 is connected to a low-pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high-pressure fuel pump.
  • the suction filter 52 in the suction joint 51 or the pump housing 1 serves to prevent foreign matter existing between the fuel tank 20 and the low pressure fuel inlet 10a from being absorbed into the high pressure fuel pump by the flow of fuel.
  • the electromagnetic suction valve mechanism 300 includes a coil 43 through which a drive current flows when energized from a terminal 46.
  • a magnetic circuit is formed by the magnetic core 39 and the anchor portion 36, and a magnetic attractive force is generated between the magnetic core 39 and the anchor portion 36, thereby generating a force attracted to each other.
  • the movable part rod 35 and the anchor part 36 are configured as separate members.
  • the rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35.
  • the anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
  • a rod urging spring 40 is disposed on the inner peripheral side of the fixed core 39 and urges the rod 35 in the valve opening direction (right direction in FIGS. 1 and 2). Since the rod 35 contacts the suction valve 30 on the side opposite to the rod biasing spring 40, a biasing force is applied in the direction in which the suction valve is pulled away from the suction valve seat portion 31a, that is, in the valve opening direction of the suction valve.
  • the anchor portion biasing spring 41 is inserted into a central bearing portion having a cylindrical diameter provided on the center side of the rod guide, and is arranged to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion while maintaining the same axis.
  • the fuel that has passed through the low pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 via the pressure pulsation reducing mechanism 9 and the low pressure fuel flow path 10d.
  • a discharge valve mechanism 8 is provided at the outlet of the pressurizing chamber 11.
  • the discharge valve mechanism 8 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, a discharge valve spring 8c that biases the discharge valve 8b toward the discharge valve sheet 8a, a discharge valve 8b, and a discharge valve sheet 8a.
  • the discharge valve seat 8a and the discharge valve holder 8d are joined by welding at a contact portion 8e to form an integral discharge valve mechanism 8.
  • a stepped portion for forming a stopper for regulating the stroke of the discharge valve 8b is provided inside the discharge valve holder 8d.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 has a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve 8b toward the discharge valve sheet 8a. And a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.
  • the discharge valve stopper 8d and the pump housing 1 are joined by welding at the contact portion 8e to shut off the fuel and the outside.
  • the discharge valve 8b When there is no fuel differential pressure in the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12.
  • the discharge valve 8b When the discharge valve 8b is opened, it comes into contact with the discharge valve stopper 8d, and the stroke is limited. Accordingly, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d. As a result, the stroke is too large, and it is possible to prevent the fuel discharged at high pressure into the discharge valve chamber 12a from flowing back into the pressurization chamber 11 again due to the delay in closing the discharge valve 8b. Can be suppressed. Further, when the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so that the discharge valve 8b moves only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel.
  • the pressurizing chamber 11 includes a pump housing 1 (pump body 1), an electromagnetic suction valve mechanism 300, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
  • the rod biasing spring 40 is set to have a biasing force necessary and sufficient to keep the suction valve 30 open in a non-energized state.
  • the volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 passes through the opening of the intake valve 30 in the valve opening state again, and the suction passage 10 d. Therefore, the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • the ascending stroke while the plunger 2 moves from the lower starting point to the upper starting point includes a returning stroke and a discharging stroke.
  • the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the coil 43 of the electromagnetic suction valve 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return stroke during the compression stroke is small and the ratio of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the energization timing is delayed, the ratio of the return stroke during the compression stroke is large and the ratio of the discharge stroke is small.
  • the energization timing to the electromagnetic coil 43 is controlled by a command from the ECU 27.
  • the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the energization timing to the electromagnetic coil 43.
  • a pressure pulsation reducing mechanism 9 for reducing and reducing the pressure pulsation generated in the high pressure fuel pump from spreading to the fuel pipe 28 is installed.
  • the fuel flowing into the pressurizing chamber 11 is returned to the suction passage 10d (suction port 31b) again through the opened valve body 30 for capacity control, the fuel returned to the suction passage 10d causes the damper chamber ( 10b, 10c) pressure pulsations occur.
  • the pressure pulsation reduction mechanism 9 provided in the damper chamber (10b, 10c) is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced by the expansion and contraction of the metal damper.
  • the holder 9 a is a mounting bracket for fixing the metal damper to the inner peripheral portion of the pump housing 1.
  • the plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub chamber 7a increases or decreases as the plunger reciprocates.
  • the sub chamber 7a communicates with the damper chamber (10b, 10c) through the fuel passage 1d.
  • low pressure pressure pulsation generation mechanism of the pulsation (hereinafter referred to as low pressure pressure pulsation) on the low pressure side (low pressure side and upstream from the pressurizing chamber 11) generated along with the reciprocating motion of the plunger 2 and the mechanism for reducing it will be described in detail. To do.
  • the volume of the pressurizing chamber 11 is increased by the downward movement of the plunger 2, and the volume of the sub chamber 7a is decreased. Therefore, the fuel flows into the pressurizing chamber 11 and flows out from the sub chamber 7a.
  • the high-pressure fuel pump must inhale fuel by this difference.
  • the return stroke / discharge stroke pressurization stroke
  • the volume of the pressurizing chamber 11 decreases and the volume of the sub chamber 7a increases due to the upward movement of the plunger 2.
  • a part of the fuel flowing out from the pressurizing chamber 11 flows into the sub chamber 7a, and the high pressure fuel pump must return the rest.
  • the discharge stroke pressurization stroke
  • the fuel in the pressurizing chamber 11 is pressurized and discharged. Since the fuel flows into the sub chamber 7a, the high-pressure fuel pump must suck in the fuel for the inflow.
  • the pressure pulsation reducing mechanism 9 has a function of reducing the low pressure pulsation generated by the above three strokes. However, since the pressure pulsation reducing mechanism 9 and the low pressure fuel inlet 10a are completely hydraulically connected, the pressure pulsation reducing mechanism 9 is low in pressure. Part or most of the pressure pulsation propagates to the vehicle side via the low-pressure fuel inlet 10a.
  • a reed valve 71 is disposed in the suction joint 51 through which the fuel flowing in from the fuel pipe 28 flows, and the low pressure flow path 73 to which the suction joint 51 is connected.
  • a pressure pulsation propagation preventing mechanism including a pin 72 for fixing the reed valve is provided.
  • the high-pressure fuel pump of this embodiment includes the pressurizing chamber 11 that pressurizes the fuel, and the electromagnetic suction valve mechanism 300 that is disposed upstream of the pressurizing chamber 11 and controls the flow rate supplied to the pressurizing chamber 11. And a pump housing 1 provided with a suction pipe (suction joint 51).
  • the high-pressure fuel pump is disposed on the upstream side of the electromagnetic suction valve mechanism 300, and is attached to the outlet surface 73a of the low-pressure channel 73 through which the fuel flowing in from the suction pipe (suction joint 51) flows, so that the fuel flows in the downstream direction. Equipped with a valve.
  • the reed valve 71 is employed as a valve, but the present invention is not necessarily limited to this.
  • the reed valve 71 is preferably arranged so as to be flush with the bottom surface of the pump housing 1 that forms the damper chamber (10b, 10c).
  • FIG. 6 is a view for explaining the structure of the reed valve 71 of this embodiment.
  • the reed valve 71 provided with a fixing hole 71c is fixed to a recess (1b, 1d) provided in the pump housing 1 by a pin 72 in FIGS. In the fixed state, the reed valve is pressed against the pump housing 1.
  • the valve of the present embodiment is made of a thin plate having elasticity, and one end 71d is fixed to an outlet surface 73a of a low-pressure channel 73 formed inside the pump housing 1, so that the other end 71b opens and closes. It is. More specifically, the above-described valve is a reed valve 71 that includes a first circular portion 71d and a second circular portion 71b, and the second circular portion 71b opens and closes when the first circular portion 71d is fixed. It is desirable.
  • the above-described valve is a reed valve 71 in which the first circular portion 71d and the second circular portion 71b are formed of an integral member, and the second circular portion 71b is opened and closed by fixing the first circular portion 71d.
  • the first circular portion 71d and the second circular portion 71b are formed as an integral member, and a fixing portion (pin 72) is inserted into a hole portion 71c formed in the central portion of the first circular portion 71d. Therefore, the reed valve 71 is preferably fixed.
  • the pin 72 is adopted as the fixing portion, but a screw may be used instead, or the pin 72 may be fixed by a method such as welding.
  • this valve is fixed by the fixing portion (pin 72) being disposed in the recess portion 1b formed in the pump housing 1, and the protrusion of the fixing portion (pin 72) being inserted into the recess portion 1d. It is desirable that the reed valve 71 be used. 3 and 4, the recesses (1b, 1d) are formed so as to be recessed downward on the upper surface (bottom surface) of the pump housing 1. Specifically, the recesses (1b, 1d) are formed to be recessed downward with respect to the upper end 1c of the pump housing 1.
  • the recesses (1 b, 1 d) are formed so as to be recessed downward on the upper surface (bottom surface) of the pump housing 1, and the flow path of the low pressure flow path 73 in which the second circular portion 71 b is formed inside the pump housing 1. It is desirable that they be arranged so as to overlap the center and the low-pressure channel axis direction.
  • the valve structure is composed of the reed valve 71, the pin 72, and the pump housing 1, the pump housing 1 also serves as a seat portion necessary for constituting the valve structure. Therefore, it is not necessary to increase the number of parts, and the pulsation reducing mechanism can be configured at low cost. Further, since the open / close valve of the reed valve 71 is regulated by the valve itself, a valve guide mechanism is not required, and since the reed valve 71 itself is a thin plate, the valve structure can be configured compactly.
  • the reed valve 71 When the fuel tries to flow from the low pressure fuel inlet 10a toward the pressure pulsation reducing mechanism 9, the reed valve 71 is opened and the fuel flows into the high pressure fuel pump. At this time, if the elasticity of the reed valve is excessive, the reed valve 71 does not open or the pressure loss may increase even if the reed valve is opened.
  • the valve opening pressure is determined by the elasticity of the reed valve, but it is desirable that the valve opening pressure be small. Therefore, the shape and material must be set so that the elastic force matches the valve opening pressure.
  • the reed valve 71 When fuel is about to flow from the pressure pulsation reducing mechanism 9 toward the low pressure fuel inlet 10a, the reed valve 71 comes into contact with the pump housing 1 and closes the outlet 73 of the low pressure flow path serving as a fuel passage provided in the pump housing 1. To do. With such a structure, the reed valve 71 functions as a check valve that allows the flow of fuel only from the low-pressure fuel intake port 10a toward the pressure pulsation reducing mechanism 9.
  • the reed valve 71 which is a pressure pulsation propagation preventing mechanism is opened.
  • fuel tends to flow out from the low-pressure fuel inlet 10a to the low-pressure pipe outside the high-pressure fuel pump.
  • the reed valve 71 closes due to its elastic force, thus preventing the fuel from flowing out.
  • the fuel that could not flow out is absorbed by the pressure pulsation reducing mechanism 9.
  • the fuel in the low-pressure fuel inlet 10a and the low-pressure pipe flows in the direction of flowing into the high-pressure fuel pump. Have momentum. Therefore, immediately after the start of the return stroke (immediately after the plunger 2 starts to move up), the fuel still flows from the low-pressure fuel suction port 10a toward the pressure pulsation reducing mechanism 9.
  • the valve closing force is only the elastic force of the valve, there is a time delay in shifting from the valve opening state to the valve closing state.
  • the fuel flows into the high-pressure fuel pump from the low-pressure fuel inlet 10a.
  • the present inventors have found a problem that if the fuel flows in at such an unintended timing, the low pressure pulsation inside the high pressure fuel pump becomes too large after the reed valve 71 is closed. This tendency is particularly noticeable during high-speed operation of the internal combustion engine, that is, when the reciprocating speed of the plunger 2 is high. This is because when the speed of the reciprocating motion of the plunger 2 is large, the momentum of the fuel immediately after the start of the return stroke is increased.
  • the reed valve 71 of the present embodiment is made of a thin metal plate having elasticity, and is configured such that the other end 71b is opened and closed by fixing one end 71d, and the other end 71b is always in communication with the hole. (Not shown) is formed.
  • the hole formed in the other end 71b is located at the center of the other end 71b and has a smaller diameter than the fixing hole 71c.
  • the pressure pulsation generated in the low-pressure pipe is reliably reduced while maintaining the downsizing of the high-pressure fuel pump by effectively installing the check valve in a limited space, and It is possible to keep the quietness of the combustion system.
  • the low-pressure pipe can be configured so that the strength of the connecting portion can sufficiently withstand pressure pulsation when the metal pipe portion and the rubber hose or the resin hose are used in combination.
  • the cost for securing the strength of the connecting portion can be kept low.
  • the quietness of the vehicle can be maintained without causing the low-pressure piping to vibrate due to pressure pulsation to generate abnormal noise.
  • Example 2 of the present invention will be described with reference to FIGS. Since the basic configuration is the same as that of the first embodiment, only differences from the first embodiment will be described here.
  • the suction joint 51 is attached to the upper part of the damper cover 14 (pump housing cover). That is, in this embodiment, the fuel that has flowed into the high-pressure fuel pump from the low-pressure fuel suction port 10a passes through the suction joint 51 and the damper cover 14 to which the suction joint 51 is connected, and enters the low-pressure fuel chambers (damper chambers 10b and 10c). Directly supplied without going through the pump housing 1.
  • the damper cover 14 is provided with a recess 14 a for fixing the reed valve 71.
  • the reed valve 71 is disposed on the housing cover 14 and is fixed to the reed valve 71 by a pin 72 that fixes the reed valve. The rest is the same as the first embodiment.
  • the high-pressure fuel pump of this embodiment includes a valve 71 attached to the surface 14b opposite to the suction pipe (suction joint 51) of the pump housing cover 14. is there.
  • the reed valve 71 is disposed in the low pressure flow path 73 to which the suction joint 51 is connected, but is not limited to the reed valve.
  • the reed valve 71 is disposed so as to be flush with the lower surface 14b (bottom surface) of the damper cover 14 forming the damper chamber (10b, 10c). Is desirable.
  • the first circular portion 71d and the second circular portion 71b are formed as an integral member, and the fixed portion is fixed to the hole portion 71c formed in the central portion of the first circular portion 71d.
  • the reed valve 71 is fixed by inserting the (pin 72) and inserting the protrusion of the fixing portion (pin 72) into the recess 14a formed in the pump housing cover 14. Further, the recessed portion 14 a is formed so as to be recessed upward in the lower surface of the upper portion of the pump housing cover 14.
  • the recessed portion 14a is formed to be recessed upward on the lower surface of the upper portion of the pump housing cover 14, and the second circular portion 71b overlaps with the flow path center of the suction pipe (suction joint 51) in the suction pipe axial direction. Placed in.

Abstract

The purpose of the present invention is to provide a high-pressure fuel pump configured so that pressure pulsation occurring in low-pressure piping can be reduced using a low-cost structure. This high-pressure fuel pump comprises: a pressurizing chamber for pressurizing fuel; an electromagnetic suction valve mechanism disposed upstream of the pressurizing chamber and regulating the rate of flow supplied to the pressurizing chamber; and a pump housing provided with suction piping. The high-pressure fuel pump further comprises a valve which is disposed upstream of the electromagnetic suction valve mechanism, is mounted to the outlet surface of a low-pressure flow passage for allowing fuel flowing thereinto from the suction piping to flow therethrough, and is configured so that the fuel flows in the downstream direction.

Description

高圧燃料ポンプHigh pressure fuel pump
 本発明は、内燃機関の燃料噴射弁に燃料を圧送する高圧燃料ポンプに関し、特には、吐出する燃料の量を調節する電磁吸入弁機構を備えた高圧燃料ポンプに関する。 The present invention relates to a high-pressure fuel pump that pumps fuel to a fuel injection valve of an internal combustion engine, and more particularly, to a high-pressure fuel pump that includes an electromagnetic intake valve mechanism that adjusts the amount of fuel to be discharged.
 自動車等の内燃機関の内、燃焼室へ直接的に燃料を燃焼室内部へ噴射する直接噴射タイプにおいて、燃料を高圧化し所望の燃料流量を吐出する電磁吸入弁機構を備えた高圧燃料ポンプが広く用いられている。 Among internal combustion engines such as automobiles, in a direct injection type in which fuel is directly injected into a combustion chamber, a high-pressure fuel pump having an electromagnetic intake valve mechanism for increasing the pressure of the fuel and discharging a desired fuel flow rate is widely used. It is used.
 以下の特許文献1においては、高圧燃料ポンプにおいて低圧圧力脈動を低減する圧力脈動低減機構としてダンパ、および圧力脈動が低圧配管に波及することを妨げるためにダンパの上流側に設けた逆止弁を開示している。低圧側の圧力脈動は、シリンダ内を加圧部材(プランジャ)が繰り返す摺動往復運動によって発生する。 In the following Patent Document 1, a damper as a pressure pulsation reducing mechanism for reducing low pressure pulsation in a high pressure fuel pump, and a check valve provided on the upstream side of the damper to prevent the pressure pulsation from spreading to the low pressure pipe are disclosed. Disclosure. The pressure pulsation on the low pressure side is generated by a reciprocating sliding movement of the pressurizing member (plunger) in the cylinder.
WO2016-056333号公報WO2016-056333
 しかしながら、上記従来技術においては、次のような問題がある。 
 車輌の燃料タンクと高圧燃料ポンプの入り口(吸入ジョイント)を接続する低圧配管と、圧力脈動低減機構を収納する低圧通路が常に液圧的に接続されている。よって、圧力脈動低減機構によって低圧通路内の圧力脈動を全て吸収することができずに、低圧配管内に圧力脈動が伝播するのを防止する目的で、吸入ジョイント内に燃料の流れを一方向(低圧ポンプ側から高圧燃料ポンプ内部への方向)に制限する逆止弁を設けている。
However, the above prior art has the following problems.
A low pressure pipe that connects the fuel tank of the vehicle and the inlet (intake joint) of the high pressure fuel pump and a low pressure passage that houses the pressure pulsation reducing mechanism are always hydraulically connected. Therefore, the pressure pulsation reducing mechanism cannot absorb all the pressure pulsations in the low pressure passage, and in order to prevent the pressure pulsation from propagating in the low pressure pipe, the fuel flow in one direction ( There is provided a check valve that restricts the direction from the low-pressure pump side to the inside of the high-pressure fuel pump.
 しかし特許文献1においては、この逆止弁の体積が大きく吸入ジョイントの形状・大きさによっては設置できない、と言う問題があった。ここで低圧配管は金属製のパイプ部と、ゴムホースまたは樹脂ホースが併用された場合において逆止弁を設置できないと、接続部の強度が圧力脈動に耐えられない虞がある。あるいは、接続部の強度を確保する為に、生産コストが増加する虞があった。 However, in Patent Document 1, there is a problem that the check valve has a large volume and cannot be installed depending on the shape and size of the suction joint. Here, if the check pipe cannot be installed in the case where the metal pipe part and the rubber hose or the resin hose are used together in the low pressure pipe, the strength of the connection part may not be able to withstand pressure pulsation. Or in order to ensure the intensity | strength of a connection part, there existed a possibility that production cost might increase.
 本発明は、安価な構造で低圧配管に発生する圧力脈動を低減する高圧燃料ポンプを提供することを目的とする。 An object of the present invention is to provide a high-pressure fuel pump that reduces pressure pulsation generated in low-pressure piping with an inexpensive structure.
 上記課題を解決するために本発明によれば燃料を加圧する加圧室と、前記加圧室の上流側に配置され前記加圧室に供給される流量を制御する電磁吸入弁機構と、吸入配管が設けられたポンプハウジングと、を備えた高圧燃料ポンプにおいて、前記電磁吸入弁機構の上流側に配置され、前記吸入配管から流入した燃料が流れる低圧流路の出口面に取り付けられ、下流方向に燃料が流れるように構成された弁を備えた。 In order to solve the above problems, according to the present invention, a pressurizing chamber that pressurizes fuel, an electromagnetic suction valve mechanism that is disposed upstream of the pressurizing chamber and controls a flow rate supplied to the pressurizing chamber, and an intake A high-pressure fuel pump including a pump housing provided with a pipe, disposed on the upstream side of the electromagnetic suction valve mechanism, and attached to an outlet surface of a low-pressure flow path through which the fuel flowing in from the suction pipe flows. And a valve configured to allow fuel to flow.
 このように構成した本発明によれば、安価な構造で低圧配管に発生する圧力脈動を低減する高圧燃料ポンプを提供することが可能となる。本発明の上記以外の構成、作用、効果は以下の実施例において詳細に説明する。 According to the present invention configured as described above, it is possible to provide a high-pressure fuel pump that reduces pressure pulsation generated in low-pressure piping with an inexpensive structure. Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
本発明の第一実施例による高圧燃料ポンプの縦断面図である。1 is a longitudinal sectional view of a high-pressure fuel pump according to a first embodiment of the present invention. 本発明の第一実施例による高圧燃料ポンプの横断面図である。1 is a cross-sectional view of a high-pressure fuel pump according to a first embodiment of the present invention. 本発明の第一実施例による高圧燃料ポンプの別の縦断面図であり、逆止弁が閉じている状態を示している。It is another longitudinal cross-sectional view of the high pressure fuel pump by the 1st Example of this invention, and has shown the state which the check valve is closed. 本発明の第一実施例による高圧燃料ポンプの別の縦断面図であり、逆止弁が開いている状態を示している。It is another longitudinal cross-sectional view of the high pressure fuel pump by the 1st Example of this invention, and has shown the state in which the non-return valve is open. 本実施例の高圧燃料ポンプが適用される高圧燃料システムの全体構成図を示す。1 is an overall configuration diagram of a high-pressure fuel system to which a high-pressure fuel pump according to the present embodiment is applied. 本発明の第一実施例によるリード弁の一例である。1 is an example of a reed valve according to a first embodiment of the present invention. 本発明の第二実施例による高圧燃料ポンプの縦断面図であり、逆止弁が閉じている状態を示している。It is a longitudinal cross-sectional view of the high pressure fuel pump by 2nd Example of this invention, and has shown the state which the non-return valve has closed. 本発明の第二実施例による高圧燃料ポンプの縦断面図であり、逆止弁が開いている状態を示している。It is a longitudinal cross-sectional view of the high pressure fuel pump by 2nd Example of this invention, and has shown the state in which the non-return valve is open.
 以下図面に示す実施例に基づき本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
図5には本実施例の高圧燃料ポンプが適用される高圧燃料システムの全体構成図を示す。この図5を用いて高圧燃料システムの構成と動作を説明する。 破線で囲まれた部分が高圧燃料ポンプ(以下、高圧燃料ポンプと呼ぶ)本体を示し、この破線の中に示されている機構、部品はポンプハウジング1に組み込まれていることを示す。燃料タンク20の燃料は、エンジンコントロールユニット27(以下ECUと称す)からの信号に基づきフィードポンプ21によって汲み上げられ、適切なフィード圧力に加圧されて吸入配管28を通して高圧燃料ポンプの低圧燃料吸入口10aに送られる。 吸入ジョイント10aを通過した燃料は圧力脈動低減機構9で形成されるダンパ室(10b、10c)、吸入通路10dを介して容量可変機構を構成する電磁吸入弁300の吸入ポート31bに至る。 FIG. 5 shows an overall configuration diagram of a high-pressure fuel system to which the high-pressure fuel pump of this embodiment is applied. The configuration and operation of the high pressure fuel system will be described with reference to FIG. The portion surrounded by a broken line indicates a main body of a high-pressure fuel pump (hereinafter referred to as a high-pressure fuel pump), and the mechanisms and components shown in the broken line indicate that they are incorporated in the pump housing 1. The fuel in the fuel tank 20 is pumped up by the feed pump 21 based on a signal from the engine control unit 27 (hereinafter referred to as ECU), pressurized to an appropriate feed pressure, and passed through the suction pipe 28 to the low pressure fuel inlet of the high pressure fuel pump. 10a. The fuel that has passed through the suction joint 10a reaches the suction port 31b of the electromagnetic suction valve 300 constituting the variable capacity mechanism via the damper chamber (10b, 10c) formed by the pressure pulsation reduction mechanism 9 and the suction passage 10d.
 電磁吸入弁300に流入した燃料は、吸入弁30を通過し加圧室11に流入する。エンジンのカム機構93によりプランジャ2に往復運動する動力が与えられ、プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁30部から燃料を吸入し、上昇行程には、燃料が加圧され、吐出弁機構8を介し、圧力センサ26が装着されているコモンレール23へ燃料が圧送され、ECU27からの信号に基づきインジェクタ24がエンジンへ燃料を噴射する。 The fuel that has flowed into the electromagnetic suction valve 300 passes through the suction valve 30 and flows into the pressurizing chamber 11. The reciprocating power of the plunger 2 is given to the plunger 2 by the cam mechanism 93 of the engine, and the reciprocating motion of the plunger 2 sucks fuel from the suction valve 30 part during the downward stroke of the plunger 2 and pressurizes the fuel during the upward stroke. Then, the fuel is pumped through the discharge valve mechanism 8 to the common rail 23 to which the pressure sensor 26 is mounted, and the injector 24 injects the fuel into the engine based on a signal from the ECU 27.
 高圧燃料ポンプは、ECU27から電磁吸入弁への信号により、所望の供給燃料となるよう燃料流量を吐出する。
図1~図4を用い高圧燃料ポンプの構成及び動作について述べる。図1は燃料供給ポンプの縦断面図を示し、図2は燃料供給ポンプを上方から見た水平方向断面図である。また図3は燃料供給ポンプを図1と別方向から見た縦断面図であり、逆止弁が閉じている状態を示している。図4は図3と同じ断面であるが、逆止弁が開いている状態を示している。
The high-pressure fuel pump discharges the fuel flow rate so as to obtain a desired supply fuel by a signal from the ECU 27 to the electromagnetic suction valve.
The configuration and operation of the high-pressure fuel pump will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of the fuel supply pump, and FIG. 2 is a horizontal sectional view of the fuel supply pump as viewed from above. FIG. 3 is a longitudinal sectional view of the fuel supply pump as viewed from a different direction from FIG. 1 and shows a state where the check valve is closed. FIG. 4 is the same cross section as FIG. 3, but shows a state where the check valve is open.
 図1に示すように、燃料供給ポンプは、金属ダンパ9と、金属ダンパ9を収容するダンパ室(10b、10c)が形成されるポンプホウジング1(ポンプ本体)と、ポンプボディ1に取付けられ、ダンパ室(10b、10c)を覆うと共に金属ダンパ9をポンプボディ1との間に保持するダンパカバー14と、ダンパカバー14に固定され、ダンパカバー14と反対側から金属ダンパ9を保持する保持部材9aと、を備えている。保持部材9aは金属ダンパ9とポンプボディ1との間に配置され、ポンプボディ1の側から金属ダンパ9を保持する。 As shown in FIG. 1, the fuel supply pump is attached to a metal damper 9, a pump housing 1 (pump main body) in which a damper chamber (10 b, 10 c) that houses the metal damper 9 is formed, and the pump body 1. The damper cover 14 that covers the damper chamber (10b, 10c) and holds the metal damper 9 between the pump body 1 and the holder that is fixed to the damper cover 14 and holds the metal damper 9 from the opposite side of the damper cover 14 And a member 9a. The holding member 9 a is disposed between the metal damper 9 and the pump body 1, and holds the metal damper 9 from the pump body 1 side.
 一般に高圧燃料ポンプはポンプハウジング1に設けられたフランジ1eを用い内燃機関のシリンダヘッド90の平面に密着し、複数のボルト(図示無し)で固定される。図1に示すように、シリンダヘッド90とポンプハウジング1間のシールのためにOリング61がポンプハウジング1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。 Generally, a high-pressure fuel pump is in close contact with the plane of a cylinder head 90 of an internal combustion engine using a flange 1e provided in the pump housing 1, and is fixed with a plurality of bolts (not shown). As shown in FIG. 1, an O-ring 61 is fitted into the pump housing 1 for sealing between the cylinder head 90 and the pump housing 1 to prevent engine oil from leaking to the outside.
 ポンプハウジング1にはプランジャ2の往復運動をガイドし、かつ内部に加圧室11を形成するよう端部が有底筒型状に形成されたシリンダ6が取り付けられている。さらに加圧室11は燃料を供給するための電磁吸入弁機構300(図2参照)と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8に連通するよう、外周側に環状の溝6aと、前記環状の溝と加圧室とを連通する複数個の連通穴6bが設けられている。 The pump housing 1 is provided with a cylinder 6 which guides the reciprocating motion of the plunger 2 and has an end formed in a bottomed cylindrical shape so as to form a pressurizing chamber 11 therein. Further, the pressurizing chamber 11 is annularly formed on the outer peripheral side so as to communicate with an electromagnetic suction valve mechanism 300 (see FIG. 2) for supplying fuel and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage. And a plurality of communicating holes 6b for communicating the annular groove and the pressurizing chamber.
 シリンダ6はその外周側においてポンプハウジング1と圧入され、加圧室11にて加圧された燃料が低圧側に漏れないようシールしている。さらに大径部の大径部底面6aに下側から接触するようにポンプハウジング1が径方向内側へ変形させてシリンダ6を図中上方向へ押圧しシリンダ6を固定している。 The cylinder 6 is press-fitted with the pump housing 1 on the outer peripheral side thereof, and is sealed so that the fuel pressurized in the pressurizing chamber 11 does not leak to the low pressure side. Further, the pump housing 1 is deformed radially inward so as to come into contact with the large-diameter portion bottom surface 6a of the large-diameter portion from the lower side, and the cylinder 6 is pressed upward in the drawing to fix the cylinder 6.
 プランジャ2の下端には、内燃機関のカムシャフトに取り付けられたカム機構93の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム機構93の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 At the lower end of the plunger 2, there is provided a tappet 92 that converts the rotational motion of the cam mechanism 93 attached to the camshaft of the internal combustion engine into vertical motion and transmits it to the plunger 2. The plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 can be reciprocated up and down with the rotational movement of the cam mechanism 93.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されており、プランジャ2が摺動したとき、副室7aの燃料をシールし内燃機関内部へ流入するのを防ぐ。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプハウジング1の内部に流入するのを防止する。 Further, the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a state in which the plunger 2 is slidably in contact with the outer periphery of the plunger 2 in the lower part of the cylinder 6 in the figure, and the plunger 2 has slid. At this time, the fuel in the sub chamber 7a is sealed to prevent the fuel from flowing into the internal combustion engine. At the same time, lubricating oil (including engine oil) for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump housing 1.
 ポンプハウジング1には吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの燃料を供給する低圧配管に接続されており、燃料はここから高圧燃料ポンプ内部に供給される。吸入ジョイント51内もしくはポンプハウジング1内の吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって高圧燃料ポンプ内に吸収することを防ぐ役目がある。 A suction joint 51 is attached to the pump housing 1. The suction joint 51 is connected to a low-pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high-pressure fuel pump. The suction filter 52 in the suction joint 51 or the pump housing 1 serves to prevent foreign matter existing between the fuel tank 20 and the low pressure fuel inlet 10a from being absorbed into the high pressure fuel pump by the flow of fuel.
 電磁吸入弁機構300は端子46からの通電により駆動電流が流れるコイル43を備える。コイル43が通電すると磁気コア39とアンカー部36とにより磁気回路を形成し、磁気コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。可動部であるロッド35とアンカー部36は、別部材に構成している。ロッド35はロッドガイドの内周側で軸方向に摺動自在に保持され、アンカー部36の内周側は、ロッド35の外周側で摺動自在に保持される。アンカー部36は燃料中で軸方向に自在に滑らかに動くために、部品軸方向に貫通する貫通穴36aを1つ以上有し、アンカー部前後の圧力差による動きの制限を極力排除している。 The electromagnetic suction valve mechanism 300 includes a coil 43 through which a drive current flows when energized from a terminal 46. When the coil 43 is energized, a magnetic circuit is formed by the magnetic core 39 and the anchor portion 36, and a magnetic attractive force is generated between the magnetic core 39 and the anchor portion 36, thereby generating a force attracted to each other. The movable part rod 35 and the anchor part 36 are configured as separate members. The rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. The anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
 固定コア39の内周側にはロッド付勢ばね40が配置され、ロッド35を開弁方向(図1、2の右方向)に付勢する。ロッド35はロッド付勢ばね40と反対側において吸入弁30と接触するため、吸入弁が吸入弁シート部31aから引き離す方向、すなわち吸入弁の開弁方向に付勢力を与える。 A rod urging spring 40 is disposed on the inner peripheral side of the fixed core 39 and urges the rod 35 in the valve opening direction (right direction in FIGS. 1 and 2). Since the rod 35 contacts the suction valve 30 on the side opposite to the rod biasing spring 40, a biasing force is applied in the direction in which the suction valve is pulled away from the suction valve seat portion 31a, that is, in the valve opening direction of the suction valve.
 アンカー部付勢ばね41は、ロッドガイドの中心側に設けた円筒径の中央軸受部に挿入され、同軸を保ちながら、アンカー部36にロッドつば部の方向に付勢力を与える配置としている。 The anchor portion biasing spring 41 is inserted into a central bearing portion having a cylindrical diameter provided on the center side of the rod guide, and is arranged to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion while maintaining the same axis.
 低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁300の吸入ポート31bに至る。 The fuel that has passed through the low pressure fuel suction port 10a reaches the suction port 31b of the electromagnetic suction valve 300 via the pressure pulsation reducing mechanism 9 and the low pressure fuel flow path 10d.
 図2に示すように、加圧室11の出口には吐出弁機構8が設けられている。吐出弁機構8は吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bと吐出弁シート8aとを収容する吐出弁ホルダ8dから構成され、吐出弁シート8aと吐出弁ホルダ8dとは当接部8eで溶接により接合されて一体の吐出弁機構8を形成している。なお、吐出弁ホルダ8dの内部には、吐出弁8bのストロークを規制するストッパを形成する段付部が設けられている。 As shown in FIG. 2, a discharge valve mechanism 8 is provided at the outlet of the pressurizing chamber 11. The discharge valve mechanism 8 includes a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, a discharge valve spring 8c that biases the discharge valve 8b toward the discharge valve sheet 8a, a discharge valve 8b, and a discharge valve sheet 8a. The discharge valve seat 8a and the discharge valve holder 8d are joined by welding at a contact portion 8e to form an integral discharge valve mechanism 8. A stepped portion for forming a stopper for regulating the stroke of the discharge valve 8b is provided inside the discharge valve holder 8d.
 加圧室11の出口に設けられた吐出弁機構8は、図2に示すように、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dから構成される。吐出弁ストッパ8dとポンプハウジング1は当接部8eで溶接により接合され燃料と外部を遮断している。 As shown in FIG. 2, the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 has a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve 8b toward the discharge valve sheet 8a. And a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b. The discharge valve stopper 8d and the pump housing 1 are joined by welding at the contact portion 8e to shut off the fuel and the outside.
 加圧室11と吐出弁室12aに燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cに逆らって開弁する。そして、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12b、燃料吐出口12を経てコモンレール23へと吐出される。 When there is no fuel differential pressure in the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12.
 吐出弁8bは開弁した際、吐出弁ストッパ8dと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、吐出弁室12aへ高圧吐出された燃料が、再び加圧室11内に逆流してしまうことを防止でき、燃料供給ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ストッパ8dの外周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。 When the discharge valve 8b is opened, it comes into contact with the discharge valve stopper 8d, and the stroke is limited. Accordingly, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d. As a result, the stroke is too large, and it is possible to prevent the fuel discharged at high pressure into the discharge valve chamber 12a from flowing back into the pressurization chamber 11 again due to the delay in closing the discharge valve 8b. Can be suppressed. Further, when the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so that the discharge valve 8b moves only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel.
 なお、加圧室11は、ポンプハウジング1(ポンプボディ1)、電磁吸入弁機構300、プランジャ2、シリンダ6、吐出弁機構8にて構成される。 The pressurizing chamber 11 includes a pump housing 1 (pump body 1), an electromagnetic suction valve mechanism 300, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
 カム93の回転により、プランジャ2がカム93方向に移動して吸入行程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入通路10dの圧力よりも低くなると、吸入弁30は開口状態にあるので、吸入弁30による開口部を通り、ポンプハウジング1に設けられた連通穴1aと、シリンダ外周通路6bを通過し、加圧室11に流入する。 When the plunger 2 moves in the direction of the cam 93 due to the rotation of the cam 93 and is in the suction stroke state, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. If the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction passage 10d in this process, the suction valve 30 is in an open state, and therefore the communication hole provided in the pump housing 1 passes through the opening portion of the suction valve 30. 1a passes through the cylinder outer peripheral passage 6b and flows into the pressurizing chamber 11.
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここで電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね40は、無通電状態において吸入弁30を開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度加圧室11に吸入された燃料が、再び開弁状態の吸入弁30の開口部を通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 After the plunger 2 completes the intake stroke, the plunger 2 starts to move upward and moves to the upward stroke. Here, the electromagnetic coil 43 remains in a non-energized state and no magnetic biasing force acts. The rod biasing spring 40 is set to have a biasing force necessary and sufficient to keep the suction valve 30 open in a non-energized state. The volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 passes through the opening of the intake valve 30 in the valve opening state again, and the suction passage 10 d. Therefore, the pressure in the pressurizing chamber does not increase. This process is called a return process.
 この状態で、エンジンコントロールユニット27(以下ECUと呼ぶ)からの制御信号が電磁吸入弁300に印加されると、電磁コイル43には端子46を介して電流が流れる。すると、磁気付勢力がロッド付勢ばね40の付勢力に打ち勝ってロッド35が吸入弁30から離れる方向に移動する。これにより、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して燃料の高圧吐出が行われ、コモンレール23へと供給される。この行程を吐出行程と称する。 In this state, when a control signal from the engine control unit 27 (hereinafter referred to as ECU) is applied to the electromagnetic intake valve 300, a current flows through the electromagnetic coil 43 via the terminal 46. Then, the magnetic biasing force overcomes the biasing force of the rod biasing spring 40 and the rod 35 moves away from the suction valve 30. As a result, the suction valve 30 is closed by the biasing force of the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d. After closing the valve, the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure exceeds the pressure at the fuel discharge port 12, high-pressure discharge of fuel is performed via the discharge valve mechanism 8, and to the common rail 23. Supplied. This stroke is called a discharge stroke.
 すなわち、プランジャ2が下始点から上始点まで移動する間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、圧縮行程中の、戻し行程の割合が小さく、吐出行程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮行程中の、戻し行程の割合が大きく吐出行程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、ECU27からの指令によって制御される。
以上のように構成することで、電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
That is, the ascending stroke while the plunger 2 moves from the lower starting point to the upper starting point includes a returning stroke and a discharging stroke. And the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the coil 43 of the electromagnetic suction valve 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return stroke during the compression stroke is small and the ratio of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the energization timing is delayed, the ratio of the return stroke during the compression stroke is large and the ratio of the discharge stroke is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small. The energization timing to the electromagnetic coil 43 is controlled by a command from the ECU 27.
With the configuration described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine by controlling the energization timing to the electromagnetic coil 43.
 低圧燃料室であるダンパ室(10b、10c)には高圧燃料ポンプ内で発生した圧力脈動が燃料配管28へ波及するのを低減減させる圧力脈動低減機構9が設置されている。加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体30を通して吸入通路10d(吸入ポート31b)へと戻される場合、吸入通路10dへ戻された燃料によりダンパ室(10b、10c)には圧力脈動が発生する。ダンパ室(10b、10c)に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。ホルダ9aは金属ダンパをポンプハウジング1の内周部に固定するための取付金具である。 In the damper chamber (10b, 10c), which is a low pressure fuel chamber, a pressure pulsation reducing mechanism 9 for reducing and reducing the pressure pulsation generated in the high pressure fuel pump from spreading to the fuel pipe 28 is installed. When the fuel flowing into the pressurizing chamber 11 is returned to the suction passage 10d (suction port 31b) again through the opened valve body 30 for capacity control, the fuel returned to the suction passage 10d causes the damper chamber ( 10b, 10c) pressure pulsations occur. The pressure pulsation reduction mechanism 9 provided in the damper chamber (10b, 10c) is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced by the expansion and contraction of the metal damper. The holder 9 a is a mounting bracket for fixing the metal damper to the inner peripheral portion of the pump housing 1.
 プランジャ2は、大径部2aと小径部2bを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは燃料通路1dによりダンパ室(10b、10c)と連通している。プランジャ2の下降時は、副室7aからダンパ室(10b、10c)へ、上昇時は、ダンパ室(10b、10c)から副室7aへと燃料の流れが発生する。 The plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub chamber 7a increases or decreases as the plunger reciprocates. The sub chamber 7a communicates with the damper chamber (10b, 10c) through the fuel passage 1d. When the plunger 2 descends, fuel flows from the sub chamber 7a to the damper chamber (10b, 10c), and when it rises, fuel flows from the damper chamber (10b, 10c) to the sub chamber 7a.
 このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料ポンプ内部で発生する圧力脈動を低減する機能を有している。
以下、プランジャ2の往復運動に伴って発生する低圧側(加圧室11より低圧側、上流)の脈動(以下、低圧圧力脈動と称す)の発生メカニズムと、それを低減する機構について詳細に説明する。
As a result, the flow rate of fuel into and out of the pump during the intake stroke or return stroke of the pump can be reduced, and the pressure pulsation generated inside the high-pressure fuel pump is reduced.
Hereinafter, the generation mechanism of the pulsation (hereinafter referred to as low pressure pressure pulsation) on the low pressure side (low pressure side and upstream from the pressurizing chamber 11) generated along with the reciprocating motion of the plunger 2 and the mechanism for reducing it will be described in detail. To do.
 吸入行程においては、プランジャ2の下降運動により加圧室11の体積は増加し、副室7aの体積は減少する。よって、加圧室11に燃料は流入し副室7aから流出する。高圧燃料ポンプはこの差分だけ燃料を吸入しなくてはならない。戻し行程・吐出行程(加圧行程)においては、プランジャ2の上昇運動により加圧室11の体積は減少し、副室7aの体積は増加する。戻し行程においては、加圧室11から流出した燃料の一部は副室7aに流入し、高圧燃料ポンプは残りを戻さなくてはならない。吐出行程(加圧行程)においては、加圧室11の燃料は加圧されて吐出される。副室7aには燃料が流入するので、高圧燃料ポンプはこの流入分の燃料を吸入しなくてはならない。 In the suction stroke, the volume of the pressurizing chamber 11 is increased by the downward movement of the plunger 2, and the volume of the sub chamber 7a is decreased. Therefore, the fuel flows into the pressurizing chamber 11 and flows out from the sub chamber 7a. The high-pressure fuel pump must inhale fuel by this difference. In the return stroke / discharge stroke (pressurization stroke), the volume of the pressurizing chamber 11 decreases and the volume of the sub chamber 7a increases due to the upward movement of the plunger 2. In the return stroke, a part of the fuel flowing out from the pressurizing chamber 11 flows into the sub chamber 7a, and the high pressure fuel pump must return the rest. In the discharge stroke (pressurization stroke), the fuel in the pressurizing chamber 11 is pressurized and discharged. Since the fuel flows into the sub chamber 7a, the high-pressure fuel pump must suck in the fuel for the inflow.
 圧力脈動低減機構9は上記の三つの行程により発生する低圧圧力脈動を低減する機能を有するが、圧力脈動低減機構9と低圧燃料吸入口10aは完全に液圧的に接続されているために低圧圧力脈動の一部、または大部分が低圧燃料吸入口10aを介して車両側に伝播してしまう。 The pressure pulsation reducing mechanism 9 has a function of reducing the low pressure pulsation generated by the above three strokes. However, since the pressure pulsation reducing mechanism 9 and the low pressure fuel inlet 10a are completely hydraulically connected, the pressure pulsation reducing mechanism 9 is low in pressure. Part or most of the pressure pulsation propagates to the vehicle side via the low-pressure fuel inlet 10a.
 そこで図3に示すように本実施例では、燃料配管28から流入した燃料が流れる吸入ジョイント51、吸入ジョイント51が接続される低圧流路73にリード弁71を配置し、そのリード弁71と、リード弁を固定するピン72からなる圧力脈動伝播防止機構を設けた。上記したように本実施例の高圧燃料ポンプは、燃料を加圧する加圧室11と、加圧室11の上流側に配置され加圧室11に供給される流量を制御する電磁吸入弁機構300と、吸入配管(吸入ジョイント51)が設けられたポンプハウジング1と、を備えている。そして高圧燃料ポンプは、電磁吸入弁機構300の上流側に配置され、吸入配管(吸入ジョイント51)から流入した燃料が流れる低圧流路73の出口面73aに取り付けられ、下流方向に燃料が流れるように構成された弁を備えた。本実施例では、弁としてリード弁71を採用しているが、必ずしもこれに限定されるわけではない。また高圧燃料ポンプの軸方向断面図(図3)において、リード弁71はダンパ室(10b、10c)を形成するポンプハウジング1の底面と同一平面上となるように配置されることが望ましい。 Therefore, as shown in FIG. 3, in this embodiment, a reed valve 71 is disposed in the suction joint 51 through which the fuel flowing in from the fuel pipe 28 flows, and the low pressure flow path 73 to which the suction joint 51 is connected. A pressure pulsation propagation preventing mechanism including a pin 72 for fixing the reed valve is provided. As described above, the high-pressure fuel pump of this embodiment includes the pressurizing chamber 11 that pressurizes the fuel, and the electromagnetic suction valve mechanism 300 that is disposed upstream of the pressurizing chamber 11 and controls the flow rate supplied to the pressurizing chamber 11. And a pump housing 1 provided with a suction pipe (suction joint 51). The high-pressure fuel pump is disposed on the upstream side of the electromagnetic suction valve mechanism 300, and is attached to the outlet surface 73a of the low-pressure channel 73 through which the fuel flowing in from the suction pipe (suction joint 51) flows, so that the fuel flows in the downstream direction. Equipped with a valve. In this embodiment, the reed valve 71 is employed as a valve, but the present invention is not necessarily limited to this. In the axial sectional view (FIG. 3) of the high-pressure fuel pump, the reed valve 71 is preferably arranged so as to be flush with the bottom surface of the pump housing 1 that forms the damper chamber (10b, 10c).
 図4に示すように燃料流入時にはリード弁71が開弁状態となり、ポンプ内部に燃料が供給される。また、燃料流入が終わると図3に示すようにリード弁71は閉弁状態となり、ポンプ内部から吸入ジョイント51を通り、燃料配管28へと燃料が逆流することを防止する。
ここで図6は本実施例のリード弁71の構造を説明する図である。固定用の穴71cを設けたリード弁71は図3、4のピン72によりポンプハウジング1に設けられた凹み(1b、1d)に固定されている。その固定状態でリード弁はポンプハウジング1に押し付けられている。本実施例の弁は弾力性を有する薄板で構成され、一端71dがポンプハウジング1の内部に形成された低圧流路73の出口面73aに固定されることで他端71bが開閉するリード弁71である。
より具体的には、上記した弁は第1円形部71dと第2円形部71bとで構成され、第1円形部71dが固定されることで第2円形部71bが開閉するリード弁71であることが望ましい。上記した弁は第1円形部71dと第2円形部71bとが一体の部材で構成され、第1円形部71dが固定されることで第2円形部71bが開閉するリード弁71であることが望ましい。またこの弁は第1円形部71dと第2円形部71bとが一体の部材で構成され、第1円形部71dの中央部に形成された穴部71cに固定部(ピン72)が挿入されることで固定されるリード弁71であることが望ましい。なお、ここでは固定部としてピン72を採用しているが、この代わりにねじを使ってもよく、あるいは溶接等の方法で固定しても良い。
As shown in FIG. 4, when the fuel flows in, the reed valve 71 is opened and fuel is supplied into the pump. When the fuel inflow is finished, the reed valve 71 is closed as shown in FIG. 3, and the fuel is prevented from flowing back from the inside of the pump through the suction joint 51 to the fuel pipe 28.
FIG. 6 is a view for explaining the structure of the reed valve 71 of this embodiment. The reed valve 71 provided with a fixing hole 71c is fixed to a recess (1b, 1d) provided in the pump housing 1 by a pin 72 in FIGS. In the fixed state, the reed valve is pressed against the pump housing 1. The valve of the present embodiment is made of a thin plate having elasticity, and one end 71d is fixed to an outlet surface 73a of a low-pressure channel 73 formed inside the pump housing 1, so that the other end 71b opens and closes. It is.
More specifically, the above-described valve is a reed valve 71 that includes a first circular portion 71d and a second circular portion 71b, and the second circular portion 71b opens and closes when the first circular portion 71d is fixed. It is desirable. The above-described valve is a reed valve 71 in which the first circular portion 71d and the second circular portion 71b are formed of an integral member, and the second circular portion 71b is opened and closed by fixing the first circular portion 71d. desirable. In addition, in this valve, the first circular portion 71d and the second circular portion 71b are formed as an integral member, and a fixing portion (pin 72) is inserted into a hole portion 71c formed in the central portion of the first circular portion 71d. Therefore, the reed valve 71 is preferably fixed. Here, the pin 72 is adopted as the fixing portion, but a screw may be used instead, or the pin 72 may be fixed by a method such as welding.
 また上記したようにこの弁は固定部(ピン72)がポンプハウジング1に形成された凹み部1bに配置され、また固定部(ピン72)の突起部が凹み部1dに挿入されることで固定されるリード弁71であることが望ましい。なお、図3、4に示すように凹み部(1b、1d)はポンプハウジング1の上面(底面)において下方向に凹むように形成される。具体的には凹み部(1b、1d)はポンプハウジング1の上端部1cに対して下側に凹むように形成される。凹み部(1b、1d)はポンプハウジング1の上面(底面)において下方向に凹むように形成され、かつ、第2円形部71bがポンプハウジング1の内部に形成された低圧流路73の流路中心と低圧流路軸方向において重なるように配置されることが望ましい。 Further, as described above, this valve is fixed by the fixing portion (pin 72) being disposed in the recess portion 1b formed in the pump housing 1, and the protrusion of the fixing portion (pin 72) being inserted into the recess portion 1d. It is desirable that the reed valve 71 be used. 3 and 4, the recesses (1b, 1d) are formed so as to be recessed downward on the upper surface (bottom surface) of the pump housing 1. Specifically, the recesses (1b, 1d) are formed to be recessed downward with respect to the upper end 1c of the pump housing 1. The recesses (1 b, 1 d) are formed so as to be recessed downward on the upper surface (bottom surface) of the pump housing 1, and the flow path of the low pressure flow path 73 in which the second circular portion 71 b is formed inside the pump housing 1. It is desirable that they be arranged so as to overlap the center and the low-pressure channel axis direction.
 以上のように本実施例では、弁構造がリード弁71、ピン72とポンプハウジング1で構成されるため、弁構造を構成するために必要なシート部をポンプハウジング1が兼ねている。よって、部品点数を増やす必要がなく安価に脈動低減機構を構成することが可能である。また、リード弁71の開閉弁は弁そのもので規制されるため弁のガイド機構を必要とせず、また、リード弁71自体も薄板であるため、弁構造をコンパクトに構成可能である。 As described above, in this embodiment, since the valve structure is composed of the reed valve 71, the pin 72, and the pump housing 1, the pump housing 1 also serves as a seat portion necessary for constituting the valve structure. Therefore, it is not necessary to increase the number of parts, and the pulsation reducing mechanism can be configured at low cost. Further, since the open / close valve of the reed valve 71 is regulated by the valve itself, a valve guide mechanism is not required, and since the reed valve 71 itself is a thin plate, the valve structure can be configured compactly.
 燃料が低圧燃料吸入口10aから圧力脈動低減機構9の方向へ流れようとすると、リード弁71は開弁し、燃料は高圧燃料ポンプ内部に流入する。このときリード弁の弾性が過大であるとリード弁71が開弁しない、または開弁しても圧力損失が大きくなる虞がある。リード弁の弾性によって開弁圧力が決まるが、この開弁圧力は小さい方が望ましいので、弾性力が開弁圧力に見合うよう、形状、材料を設定する必要がある。 When the fuel tries to flow from the low pressure fuel inlet 10a toward the pressure pulsation reducing mechanism 9, the reed valve 71 is opened and the fuel flows into the high pressure fuel pump. At this time, if the elasticity of the reed valve is excessive, the reed valve 71 does not open or the pressure loss may increase even if the reed valve is opened. The valve opening pressure is determined by the elasticity of the reed valve, but it is desirable that the valve opening pressure be small. Therefore, the shape and material must be set so that the elastic force matches the valve opening pressure.
 燃料が圧力脈動低減機構9から低圧燃料吸入口10aの方向へ流れようとすると、リード弁71はポンプハウジング1と接触し、ポンプハウジング1に設けた燃料通路となる低圧流路の出口73を閉塞する。このような構造により、リード弁71は燃料の流れを低圧燃料吸入口10aから圧力脈動低減機構9の方向へのみ許容するチェック弁として機能する。 When fuel is about to flow from the pressure pulsation reducing mechanism 9 toward the low pressure fuel inlet 10a, the reed valve 71 comes into contact with the pump housing 1 and closes the outlet 73 of the low pressure flow path serving as a fuel passage provided in the pump housing 1. To do. With such a structure, the reed valve 71 functions as a check valve that allows the flow of fuel only from the low-pressure fuel intake port 10a toward the pressure pulsation reducing mechanism 9.
 本実施例では、吸入行程と吐出行程において、低圧燃料吸入口10aから燃料を吸入する必要があるので、圧力脈動伝播防止機構であるリード弁71は開弁する。戻し行程においては、低圧燃料吸入口10aから高圧燃料ポンプの外部の低圧配管へ燃料が流出しようとするが、リード弁71がその弾性力によって閉弁するので燃料の流出を防止する。流出できなかった燃料は、圧力脈動低減機構9により吸収されることとなる。以上のような構成により、低圧圧力脈動の一部、または大部分が低圧燃料吸入口10aを介して高圧燃料ポンプの外部の車両側に伝播するのを防止することができる。 In this embodiment, since it is necessary to suck fuel from the low pressure fuel suction port 10a in the suction stroke and the discharge stroke, the reed valve 71 which is a pressure pulsation propagation preventing mechanism is opened. In the return stroke, fuel tends to flow out from the low-pressure fuel inlet 10a to the low-pressure pipe outside the high-pressure fuel pump. However, the reed valve 71 closes due to its elastic force, thus preventing the fuel from flowing out. The fuel that could not flow out is absorbed by the pressure pulsation reducing mechanism 9. With the configuration as described above, it is possible to prevent part or most of the low-pressure pressure pulsation from propagating to the vehicle side outside the high-pressure fuel pump through the low-pressure fuel inlet 10a.
 また、吸入行程から戻し行程へ移行するタイミング(プランジャ2が下降運動から上昇運動に移行するタイミング)には、低圧燃料吸入口10a、および低圧配管内にある燃料は高圧燃料ポンプに流入する方向に運動量を持っている。よって、戻し行程の開始直後(プランジャ2が上昇運動開始直後)には、燃料は依然として低圧燃料吸入口10aから圧力脈動低減機構9の方向へ流れようとする。一方、リード弁71では閉弁力が弁の弾性力のみであるために、開弁状態から閉弁状態へ移行するのに時間的遅れが生じる。 Further, at the timing of shifting from the suction stroke to the return stroke (timing at which the plunger 2 shifts from the downward movement to the upward movement), the fuel in the low-pressure fuel inlet 10a and the low-pressure pipe flows in the direction of flowing into the high-pressure fuel pump. Have momentum. Therefore, immediately after the start of the return stroke (immediately after the plunger 2 starts to move up), the fuel still flows from the low-pressure fuel suction port 10a toward the pressure pulsation reducing mechanism 9. On the other hand, in the reed valve 71, since the valve closing force is only the elastic force of the valve, there is a time delay in shifting from the valve opening state to the valve closing state.
 これにより、戻し行程の開始直後には、燃料は低圧燃料吸入口10aから高圧燃料ポンプ内部に流入してしまう。このように意図しないタイミングで燃料が流入してしまうと、リード弁71が閉じた後に、高圧燃料ポンプの内部の低圧圧力脈動が大きくなりすぎてしまうという問題を本発明者らは見出した。この傾向は、特に内燃機関の高速運転時、つまりプランジャ2の往復運動の速度が大きいときに顕著である。プランジャ2の往復運動の速度が大きいと、戻し行程開始直後の燃料の運動量が大きくなるためである。 Thus, immediately after the start of the return stroke, the fuel flows into the high-pressure fuel pump from the low-pressure fuel inlet 10a. The present inventors have found a problem that if the fuel flows in at such an unintended timing, the low pressure pulsation inside the high pressure fuel pump becomes too large after the reed valve 71 is closed. This tendency is particularly noticeable during high-speed operation of the internal combustion engine, that is, when the reciprocating speed of the plunger 2 is high. This is because when the speed of the reciprocating motion of the plunger 2 is large, the momentum of the fuel immediately after the start of the return stroke is increased.
 そこで本実施例では、リード弁71が閉弁しポンプハウジング1と接触した時も、低圧燃料吸入口10aと圧力脈動低減機構9との間を液圧的に完全に遮断せず、ごく僅かな燃料はリード弁71から低圧燃料吸入口10aの方向へと漏れることを許容する構造とした。つまり、本実施例のリード弁71は弾力性を有する金属製の薄板で構成され、一端71dが固定されることで他端71bが開閉する構成であり、かつ他端71bには常時連通する穴(図示無し)が形成されている。図6に図示はないが、他端71bに形成される穴は、他端71bの中心部に位置し、かつ、固定用の穴71cよりも径が小さく構成されることが望ましい。これにより戻し行程初期に燃料の運動量により流入してしまった燃料は、残りの戻し行程中に高圧燃料ポンプから流出し本問題は解決される。 Therefore, in this embodiment, even when the reed valve 71 closes and comes into contact with the pump housing 1, the low-pressure fuel suction port 10a and the pressure pulsation reducing mechanism 9 are not completely shut off hydraulically and are very slight. The fuel is allowed to leak from the reed valve 71 toward the low-pressure fuel inlet 10a. That is, the reed valve 71 of the present embodiment is made of a thin metal plate having elasticity, and is configured such that the other end 71b is opened and closed by fixing one end 71d, and the other end 71b is always in communication with the hole. (Not shown) is formed. Although not shown in FIG. 6, it is desirable that the hole formed in the other end 71b is located at the center of the other end 71b and has a smaller diameter than the fixing hole 71c. As a result, the fuel that has flowed in due to the momentum of the fuel at the beginning of the return stroke flows out of the high-pressure fuel pump during the remaining return stroke, and this problem is solved.
 具体的には、リード弁71とポンプハウジング1の接触面の面粗さを大きく設定することに、漏れを可能にする方法がある。また上記したようにリード弁71の他端71bの中心部にごく小さな穴を開ける方法もある。なお、逆止弁の質量が大きい場合は、この逆止弁の開閉弁によって発生する衝突音が大きく、これが車両の乗車者へ耳障りな騒音となる虞がある。しかし、本実施例では、上記したように軽量のリード弁71を採用したため、このように騒音が発生することを防止することが可能である。 Specifically, there is a method of enabling leakage by setting the surface roughness of the contact surface between the reed valve 71 and the pump housing 1 to be large. As described above, there is also a method of making a very small hole in the center of the other end 71b of the reed valve 71. In addition, when the mass of the check valve is large, a collision sound generated by the opening / closing valve of the check valve is large, which may cause annoying noise to the vehicle occupant. However, in this embodiment, since the lightweight reed valve 71 is employed as described above, it is possible to prevent the noise from being generated in this way.
 以上の通り本実施例によれば、限られたスペースに有効に逆止弁を設置することで高圧燃料ポンプの小型化を維持しつつ、低圧配管に発生する圧力脈動を確実に低減し、かつ燃焼システムの静粛性を保つことが可能である。 As described above, according to the present embodiment, the pressure pulsation generated in the low-pressure pipe is reliably reduced while maintaining the downsizing of the high-pressure fuel pump by effectively installing the check valve in a limited space, and It is possible to keep the quietness of the combustion system.
 低圧配管は金属製のパイプ部と、ゴムホースまたは樹脂ホースが併用されることが多い。したがって、接続部の強度が圧力脈動に耐えられない、または接続部の強度を確保する為にコストが多く必要となる問題があった。これに対して本実施例の上記のような構成とすることでこの問題を解決することができる。すなわち本実施例によれば、低圧配管は金属製のパイプ部と、ゴムホースまたは樹脂ホースが併用されたものにおいて、接続部の強度を圧力脈動に十分耐える仕様とできる。または、接続部の強度を確保する為の、コストを低く抑えることができる。さらには、低圧配管が圧力脈動によって振動して異音を発生させることなく、車輌の静粛性を保つことができる。 低 圧 Low-pressure piping often uses a metal pipe and a rubber hose or resin hose. Therefore, there has been a problem that the strength of the connecting portion cannot withstand pressure pulsation, or a high cost is required to secure the strength of the connecting portion. On the other hand, this problem can be solved by adopting the above-described configuration of the present embodiment. That is, according to the present embodiment, the low-pressure pipe can be configured so that the strength of the connecting portion can sufficiently withstand pressure pulsation when the metal pipe portion and the rubber hose or the resin hose are used in combination. Alternatively, the cost for securing the strength of the connecting portion can be kept low. Furthermore, the quietness of the vehicle can be maintained without causing the low-pressure piping to vibrate due to pressure pulsation to generate abnormal noise.
 本発明の実施例2について図7、8を用いて説明する。基本的な構成は実施例1と同様であるため、ここでは実施例1と異なる点のみ説明する。 Example 2 of the present invention will be described with reference to FIGS. Since the basic configuration is the same as that of the first embodiment, only differences from the first embodiment will be described here.
 実施例1との相違点は、吸入ジョイント51がダンパカバー14(ポンプハウジングカバー)の上部に取り付けられている点である。つまり、本実施例では低圧燃料吸入口10aから高圧燃料ポンプ内に流入した燃料が、吸入ジョイント51、吸入ジョイント51が接続されるダンパカバー14を通り、低圧燃料室(ダンパ室10b、10c)にポンプハウジング1を介さずに直接供給される。また、ダンパカバー14には、リード弁71を固定するための凹み14aを設けてある。リード弁71は、ハウジングカバー14に配置され、そのリード弁71と、リード弁を固定するピン72にて固定されるのが、実施例1との相違点となる。それ以外は、全て実施例1と同じである。 The difference from the first embodiment is that the suction joint 51 is attached to the upper part of the damper cover 14 (pump housing cover). That is, in this embodiment, the fuel that has flowed into the high-pressure fuel pump from the low-pressure fuel suction port 10a passes through the suction joint 51 and the damper cover 14 to which the suction joint 51 is connected, and enters the low-pressure fuel chambers ( damper chambers 10b and 10c). Directly supplied without going through the pump housing 1. Further, the damper cover 14 is provided with a recess 14 a for fixing the reed valve 71. The reed valve 71 is disposed on the housing cover 14 and is fixed to the reed valve 71 by a pin 72 that fixes the reed valve. The rest is the same as the first embodiment.
 したがって図7、8に示すように、本実施例の高圧燃料ポンプは、ポンプハウジングカバー14の吸入配管(吸入ジョイント51)に対して反対側の面14bに取り付けられた弁71を備えたものである。本実施例では、吸入ジョイント51が接続される低圧流路73にリード弁71を配置しているが、リード弁に限定されるわけではない。 Therefore, as shown in FIGS. 7 and 8, the high-pressure fuel pump of this embodiment includes a valve 71 attached to the surface 14b opposite to the suction pipe (suction joint 51) of the pump housing cover 14. is there. In the present embodiment, the reed valve 71 is disposed in the low pressure flow path 73 to which the suction joint 51 is connected, but is not limited to the reed valve.
 また高圧燃料ポンプの軸方向断面図(図7)において、リード弁71はダンパ室(10b、10c)を形成するダンパカバー14の下面14b(底面)と同一平面上となるように配置されることが望ましい。 In the axial sectional view of the high-pressure fuel pump (FIG. 7), the reed valve 71 is disposed so as to be flush with the lower surface 14b (bottom surface) of the damper cover 14 forming the damper chamber (10b, 10c). Is desirable.
 図7、8に示すように上記した弁は第1円形部71dと第2円形部71bとが一体の部材で構成され、第1円形部71dの中央部に形成された穴部71cに固定部(ピン72)が挿入され、かつ固定部(ピン72)の突起部がポンプハウジングカバー14に形成された凹み部14aに挿入されることで固定されるリード弁71である。また凹み部14aはポンプハウジングカバー14の上部の下面において上方向に凹むように形成されている。 As shown in FIGS. 7 and 8, in the valve described above, the first circular portion 71d and the second circular portion 71b are formed as an integral member, and the fixed portion is fixed to the hole portion 71c formed in the central portion of the first circular portion 71d. The reed valve 71 is fixed by inserting the (pin 72) and inserting the protrusion of the fixing portion (pin 72) into the recess 14a formed in the pump housing cover 14. Further, the recessed portion 14 a is formed so as to be recessed upward in the lower surface of the upper portion of the pump housing cover 14.
 また凹み部14aはポンプハウジングカバー14の上部の下面において上方向に凹むように形成され、かつ、第2円形部71bが吸入配管(吸入ジョイント51)の流路中心と吸入配管軸方向において重なるように配置される。 The recessed portion 14a is formed to be recessed upward on the lower surface of the upper portion of the pump housing cover 14, and the second circular portion 71b overlaps with the flow path center of the suction pipe (suction joint 51) in the suction pipe axial direction. Placed in.
 このような構成にしても、低圧脈動低減機構9によって吸収できない圧力脈動の低圧配管への伝播を抑えるという効果は実施例1と同じように得られる。 Even in such a configuration, the effect of suppressing the propagation of the pressure pulsation that cannot be absorbed by the low pressure pulsation reducing mechanism 9 to the low pressure piping can be obtained in the same manner as in the first embodiment.
 また、吸入行程から戻し行程へ移行する瞬間に燃料の運動量によって、高圧燃料ポンプ内部に過剰に燃料を吸入してしまい、低圧圧力脈動が大きくなってしまう問題も、実施例1と同じ方法で解決できる。 Further, the problem that the low pressure pressure pulsation increases due to excessive intake of fuel into the high pressure fuel pump due to the momentum of the fuel at the moment of transition from the intake stroke to the return stroke is solved by the same method as in the first embodiment. it can.
1…ポンプハウジング、2…プランジャ、4…ばね、6…シリンダ、7…シールホルダ、8…吐出弁機構、9…圧力脈動低減機構、10a…低圧燃料吸入口、10b・10c…低圧燃料室、10d…吸入通路、11…加圧室、12…燃料吐出口、13…プランジャシール、14…ハウジングカバー、15…リテーナ、28…吸入配管、30…吸入弁、51…吸入ジョイント、71…リード弁、72…固定部、73…低圧流路、300…電磁吸入弁機構。 DESCRIPTION OF SYMBOLS 1 ... Pump housing, 2 ... Plunger, 4 ... Spring, 6 ... Cylinder, 7 ... Seal holder, 8 ... Discharge valve mechanism, 9 ... Pressure pulsation reduction mechanism, 10a ... Low pressure fuel inlet, 10b * 10c ... Low pressure fuel chamber, DESCRIPTION OF SYMBOLS 10d ... Suction passage, 11 ... Pressurizing chamber, 12 ... Fuel discharge port, 13 ... Plunger seal, 14 ... Housing cover, 15 ... Retainer, 28 ... Suction piping, 30 ... Suction valve, 51 ... Suction joint, 71 ... Reed valve 72 ... fixed part 73 ... low pressure flow path 300 ... electromagnetic suction valve mechanism.

Claims (14)

  1.  燃料を加圧する加圧室と、前記加圧室の上流側に配置され前記加圧室に供給される流量を制御する電磁吸入弁機構と、吸入配管が設けられたポンプハウジングと、を備えた高圧燃料ポンプにおいて、
     前記電磁吸入弁機構の上流側に配置され、前記吸入配管から流入した燃料が流れる低圧流路の出口面に取り付けられ、下流方向に燃料が流れるように構成された弁を備えた高圧燃料ポンプ。
    A pressurizing chamber that pressurizes fuel; an electromagnetic suction valve mechanism that is disposed upstream of the pressurizing chamber and controls a flow rate supplied to the pressurizing chamber; and a pump housing provided with a suction pipe. In high pressure fuel pump,
    A high-pressure fuel pump provided with a valve that is arranged on the upstream side of the electromagnetic suction valve mechanism, is attached to an outlet surface of a low-pressure flow path through which fuel that flows in from the suction pipe flows, and is configured to flow in the downstream direction.
  2.  請求項1に記載の高圧燃料ポンプにおいて、
     前記弁は、前記ポンプハウジングカバーの前記吸入配管に対して反対側の面に取り付けられた高圧燃料ポンプ。
    The high-pressure fuel pump according to claim 1,
    The valve is a high-pressure fuel pump attached to a surface of the pump housing cover opposite to the suction pipe.
  3.  請求項1において、前記弁は弾力性を有する薄板で構成され、一端が前記ポンプハウジングの内部に形成された低圧流路の出口面に固定されることで他端が開閉するリード弁である高圧燃料ポンプ。 2. The high-pressure valve according to claim 1, wherein the valve is a reed valve that is configured by a thin plate having elasticity, and that one end is fixed to an outlet face of a low-pressure channel formed inside the pump housing, and the other end opens and closes. Fuel pump.
  4.  請求項1又は2において、前記弁は弾力性を有する薄板で構成され、一端が固定されることで他端が開閉するリード弁である高圧燃料ポンプ。 3. The high-pressure fuel pump according to claim 1 or 2, wherein the valve is a reed valve that is constituted by a thin plate having elasticity, and the other end is opened and closed by fixing one end.
  5.  請求項1~3の何れかにおいて、前記弁は弾力性を有する薄板で構成され、一端が固定されることで他端が開閉するリード弁であり、かつ前記他端には常時連通する穴が形成された高圧燃料ポンプ。 The valve according to any one of claims 1 to 3, wherein the valve is formed of a thin plate having elasticity, the one end is fixed, and the other end is a reed valve that opens and closes. Formed high-pressure fuel pump.
  6.  請求項1~3の何れかにおいて、前記弁は第1円形部と第2円形部とで構成され、前記第1円形部が固定されることで前記第2円形部が開閉するリード弁である高圧燃料ポンプ。 4. The reed valve according to claim 1, wherein the valve includes a first circular portion and a second circular portion, and the second circular portion is opened and closed by fixing the first circular portion. High pressure fuel pump.
  7.  請求項1~3の何れかにおいて、前記弁は第1円形部と第2円形部とが一体の部材で構成され、前記第1円形部が固定されることで前記第2円形部が開閉するリード弁である高圧燃料ポンプ。 4. The valve according to claim 1, wherein the first circular portion and the second circular portion are formed of an integral member, and the second circular portion opens and closes when the first circular portion is fixed. High pressure fuel pump that is a reed valve.
  8.  請求項1~3の何れかにおいて、前記弁は第1円形部と第2円形部とが一体の部材で構成され、前記第1円形部の中央部に形成された穴部に固定部が挿入されることで固定されるリード弁である高圧燃料ポンプ。 4. The valve according to claim 1, wherein the first circular portion and the second circular portion are formed of an integral member, and a fixed portion is inserted into a hole formed in a central portion of the first circular portion. High pressure fuel pump that is a reed valve that is fixed by being done.
  9.  請求項2において、前記弁は第1円形部と第2円形部とが一体の部材で構成され、前記第1円形部の中央部に形成された穴部に固定部が挿入され、かつ前記固定部が前記ポンプハウジングカバーに形成された凹み部に挿入されることで固定されるリード弁である高圧燃料ポンプ。 3. The valve according to claim 2, wherein the first circular portion and the second circular portion are formed of an integral member, and a fixing portion is inserted into a hole formed in a central portion of the first circular portion. A high-pressure fuel pump, which is a reed valve fixed by being inserted into a recess formed in the pump housing cover.
  10.  請求項9において、前記凹み部は前記ポンプハウジングカバーの上部の下面において上方向に凹むように形成された高圧燃料ポンプ。 10. The high-pressure fuel pump according to claim 9, wherein the recess is formed to be recessed upward on the lower surface of the upper portion of the pump housing cover.
  11.  請求項9において、前記凹み部は前記ポンプハウジングカバーの上部の下面において上方向に凹むように形成され、かつ、前記第2円形部が前記吸入配管の流路中心と吸入配管軸方向において重なるように配置された高圧燃料ポンプ。 In Claim 9, the said recessed part is formed so that it may dent upward in the lower surface of the upper part of the said pump housing cover, and the said 2nd circular part may overlap with the flow path center of the said suction piping in the suction piping axial direction. High pressure fuel pump arranged in the.
  12.  請求項3において、前記弁は第1円形部と第2円形部とが一体の部材で構成され、前記第1円形部の中央部に形成された穴部に固定部が挿入され、かつ前記固定部が前記ポンプハウジングに形成された凹み部に挿入されることで固定されるリード弁である高圧燃料ポンプ。 4. The valve according to claim 3, wherein the first circular portion and the second circular portion are formed as an integral member, a fixing portion is inserted into a hole formed in a central portion of the first circular portion, and the fixing is performed. A high pressure fuel pump which is a reed valve which is fixed by being inserted into a recess formed in the pump housing.
  13.  請求項12において、前記凹み部は前記ポンプハウジングの上面において下方向に凹むように形成された高圧燃料ポンプ。 13. The high-pressure fuel pump according to claim 12, wherein the recessed portion is formed to be recessed downward on an upper surface of the pump housing.
  14.  請求項12において、前記凹み部は前記ポンプハウジングの上面において下方向に凹むように形成され、かつ、前記第2円形部が前記ポンプハウジングの内部に形成された低圧流路の流路中心と低圧流路軸方向において重なるように配置された高圧燃料ポンプ。 13. The flow path center and low pressure of the low pressure flow path according to claim 12, wherein the recessed portion is formed to be recessed downward on the upper surface of the pump housing, and the second circular portion is formed inside the pump housing. A high-pressure fuel pump arranged so as to overlap in the flow axis direction.
PCT/JP2018/019239 2017-06-09 2018-05-18 High-pressure fuel pump WO2018225479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113933 2017-06-09
JP2017113933A JP2020128700A (en) 2017-06-09 2017-06-09 High-pressure fuel pump

Publications (1)

Publication Number Publication Date
WO2018225479A1 true WO2018225479A1 (en) 2018-12-13

Family

ID=64566532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019239 WO2018225479A1 (en) 2017-06-09 2018-05-18 High-pressure fuel pump

Country Status (2)

Country Link
JP (1) JP2020128700A (en)
WO (1) WO2018225479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705883B (en) * 2018-12-19 2020-10-01 歐特捷實業股份有限公司 Improved structure of plunger injection mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132131A (en) * 1997-10-27 1999-05-18 Mitsubishi Electric Corp Cylinder injection type high pressure fuel pump
JP2008002361A (en) * 2006-06-22 2008-01-10 Hitachi Ltd High-pressure fuel pump
JP2015063921A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Fuel injection device for internal combustion engine
WO2016056333A1 (en) * 2014-10-09 2016-04-14 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132131A (en) * 1997-10-27 1999-05-18 Mitsubishi Electric Corp Cylinder injection type high pressure fuel pump
JP2008002361A (en) * 2006-06-22 2008-01-10 Hitachi Ltd High-pressure fuel pump
JP2015063921A (en) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 Fuel injection device for internal combustion engine
WO2016056333A1 (en) * 2014-10-09 2016-04-14 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705883B (en) * 2018-12-19 2020-10-01 歐特捷實業股份有限公司 Improved structure of plunger injection mechanism

Also Published As

Publication number Publication date
JP2020128700A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2016056333A1 (en) High pressure fuel supply pump
JP6633195B2 (en) High pressure fuel supply pump
JP6470267B2 (en) High pressure fuel supply pump
WO2015163246A1 (en) High-pressure fuel supply pump
JP2016079895A (en) High pressure fuel supply pump
JP2018087548A (en) High-pressure fuel supply pump
JP6186326B2 (en) High pressure fuel supply pump
WO2018092538A1 (en) High-pressure fuel supply pump
JP7198363B2 (en) Electromagnetic intake valve and high pressure fuel supply pump
JPWO2019012970A1 (en) High pressure fuel pump
JP2019143562A (en) Discharge valve mechanism and fuel supply pump having the same
WO2018225479A1 (en) High-pressure fuel pump
JP6268279B2 (en) High pressure fuel supply pump
JP7178504B2 (en) Fuel pump
JP2017145731A (en) High pressure fuel supply pump
WO2016103945A1 (en) Valve mechanism and high-pressure fuel supply pump with same
JP6959109B2 (en) Relief valve mechanism and fuel supply pump equipped with it
JP6596304B2 (en) High pressure fuel supply pump
JP2019027355A (en) High-pressure fuel supply pump
JP7385750B2 (en) Fuel pump
JPWO2018221158A1 (en) High pressure fuel supply pump
JP7397729B2 (en) Fuel pump
JP2019090365A (en) Fuel supply pump
JP2018150911A (en) Relief valve mechanism and fuel feed pump including the same
WO2022130698A1 (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP