WO2018225406A1 - Method for determining configuration of surface defect inspection device, configuration determination device, configuration determination program, and recording medium - Google Patents

Method for determining configuration of surface defect inspection device, configuration determination device, configuration determination program, and recording medium Download PDF

Info

Publication number
WO2018225406A1
WO2018225406A1 PCT/JP2018/016391 JP2018016391W WO2018225406A1 WO 2018225406 A1 WO2018225406 A1 WO 2018225406A1 JP 2018016391 W JP2018016391 W JP 2018016391W WO 2018225406 A1 WO2018225406 A1 WO 2018225406A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
arrangement
information
defect
illumination
Prior art date
Application number
PCT/JP2018/016391
Other languages
French (fr)
Japanese (ja)
Inventor
将人 柏原
泰三 脇村
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019523387A priority Critical patent/JPWO2018225406A1/en
Publication of WO2018225406A1 publication Critical patent/WO2018225406A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a surface defect inspection apparatus arrangement determination method, an arrangement determination apparatus, an arrangement determination program, and a recording medium on which the arrangement determination program is recorded, for determining the arrangement of each component constituting the surface defect inspection apparatus.
  • Patent Document 1 surface defect inspection apparatuses that detect defects on a painted surface in a vehicle body by image processing are known, and are disclosed in, for example, Patent Document 1 and Patent Document 2.
  • the defect is, for example, unevenness or the like on the painted surface referred to as so-called “bump”, “sag”, “repellency” or the like.
  • the surface defect inspection apparatus disclosed in Patent Document 1 irradiates a surface to be inspected with light of a bright and dark pattern, creates a light reception image based on reflected light from the surface to be inspected, and this light reception image Is a device for inspecting a defect on a surface to be inspected based on the above.
  • the coating inspection apparatus disclosed in Patent Document 2 is an apparatus in which an illumination unit and a CCD camera unit constituting such a surface defect inspection apparatus are mounted on the tip of a robot.
  • the surface to be inspected is generated by the positional relationship between the illumination unit that irradiates the inspection surface with light of a light and dark pattern and the imaging unit that images the surface to be inspected with respect to the surface to be inspected.
  • the imaging unit that images the surface to be inspected with respect to the surface to be inspected.
  • the width of the bright part of the light / dark pattern becomes too large, and the defective part becomes an image substantially similar to the normal part, and the defect is difficult to detect.
  • a portion that becomes a shadow when viewed from the imaging unit cannot be inspected.
  • it is necessary to verify with an actual machine by changing the position and orientation in the illumination unit and the position and orientation in the imaging unit in various ways. Man-hours).
  • the present invention is an invention made in view of the above-described circumstances, and the object thereof is the arrangement of the surface defect inspection apparatus that can determine the arrangement of each component constituting the surface defect inspection apparatus with less labor (man-hours). It is to provide a determination method, an arrangement determination apparatus and an arrangement determination program, and a recording medium on which the arrangement determination program is recorded.
  • the surface defect inspection apparatus arrangement determination method, arrangement determination apparatus, and arrangement determination program reflecting one aspect of the present invention determine the arrangement position and the optical axis direction of each of the illumination unit and the imaging unit.
  • First and second arrangement information is set as the second arrangement by illuminating the inspected object with the illuminating unit based on the first arrangement information based on information obtained by quantifying the appearance of the inspected object including the illumination unit, the imaging unit, and the defect.
  • An image obtained by imaging the inspection area by the imaging unit based on information is obtained by numerical calculation, and a defect is detected based on this image.
  • the arrangement determination method, the arrangement determination apparatus, and the arrangement determination program of the surface defect inspection apparatus execute the above process a plurality of times while changing at least one of the first and second arrangement information, and the first and first detection results of the best detection result. 2 Arrangement information is obtained as an optimum arrangement.
  • a recording medium reflecting one aspect of the present invention records the above-described arrangement determination program.
  • the arrangement determining apparatus and the arrangement determining method in the present embodiment are, for example, an arrangement determining apparatus for a surface defect inspection apparatus that determines the arrangement of each component (each component apparatus) constituting the surface defect inspection apparatus, such as an illumination apparatus or an imaging apparatus. And an arrangement determination method.
  • This surface defect inspection apparatus arrangement determination apparatus and method synthesize the defect model information obtained by numerically modeling the defect with the inspection object model information obtained by numerically modeling the inspection object, thereby detecting the inspection object having the defect.
  • the numerical model is created as defect-containing inspection object model information, and the defect-containing inspection object model information represented by the defect-containing inspection object model information is set as illumination unit arrangement information in the numerically modeled illumination unit.
  • Illumination light is irradiated from the arrangement position of the illumination unit and its optical axis direction, and the inspection object is imaged from the arrangement position of the imaging unit and the optical axis direction set as the imaging unit arrangement information in the numerically modeled imaging unit
  • an image is obtained by numerical calculation, the defect is detected from the obtained image, and the set illumination unit arrangement information and imaging unit arrangement information are evaluated based on the detection result.
  • this arrangement determination apparatus and method of the surface defect inspection apparatus tried this with various illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging part which gave the best detection result in the trial Arrangement information is obtained as optimal illumination unit arrangement information and imaging unit arrangement information.
  • the apparatus and method for determining the arrangement of the surface defect inspection apparatus can determine the arrangement of the components constituting the surface defect inspection apparatus with less effort (man-hours) by a numerical experiment (simulation).
  • the arrangement determination apparatus for the surface defect inspection apparatus, the arrangement determination method and arrangement determination program for the surface defect inspection apparatus mounted thereon, and the recording medium on which the arrangement determination program is recorded will be described more specifically. To do.
  • FIG. 1 is a block diagram illustrating a configuration of an arrangement determining apparatus according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a surface defect.
  • FIG. 2A is a photograph showing a drawing showing an example of a surface defect called “butsu”
  • FIG. 2B is a schematic diagram further showing the drawing shown in FIG. 2A.
  • FIG. 2C is a photograph showing a drawing showing an example of a surface defect called “sag”
  • FIG. 2D is a schematic diagram further showing the drawing shown in FIG. 2C.
  • FIG. 2E is a drawing of a photograph showing an example of a surface defect referred to as a so-called “repellency”
  • FIG. 2F is a schematic view further illustrating the drawing of the drawing shown in FIG. 2E.
  • FIG. 3 is a diagram for explaining a model of a surface defect called a “butsu”.
  • FIG. 4 is a block diagram showing a configuration of a computer in which the arrangement
  • the arrangement determination apparatus D in the embodiment includes, for example, an input unit 1, an output unit 2, an interface unit 3, a control processing unit 4, and a storage unit 5, as shown in FIG.
  • the input unit 1 is connected to the control processing unit 4 and, for example, various commands such as a command for instructing the start of a trial, and for example, inspection object model information, defect model information, illumination unit model information, imaging unit model information, and the like Is a device that inputs various data necessary for the trial to the arrangement determining device D, for example, a plurality of input switches, a keyboard, a mouse, and the like assigned with a predetermined function.
  • the output unit 2 is connected to the control processing unit 4, and is optimal among a plurality of trials obtained by the command and data input from the input unit 1 and the placement determination device D according to the control of the control processing unit 4.
  • a display device such as a CRT display, an LCD (liquid crystal display device) and an organic EL display, a printing device such as a printer, and the like.
  • a touch panel may be configured from the input unit 1 and the output unit 2.
  • the input unit 1 is a position input device that detects and inputs an operation position such as a resistive film method or a capacitance method
  • the output unit 2 is a display device.
  • a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the arrangement determining device D as the operation input content of the user.
  • the arrangement determination device D that is easy for the user to handle is provided.
  • the IF unit 3 is a circuit that is connected to the control processing unit 4 and inputs / outputs data to / from an external device according to the control of the control processing unit 4, for example, an RS-232C interface circuit that is a serial communication system An interface circuit using the Bluetooth (registered trademark) standard, an interface circuit performing infrared communication such as an IrDA (Infrared Data Association) standard, and an interface circuit using the USB (Universal Serial Bus) standard.
  • the IF unit 3 is a circuit that performs communication with an external device.
  • the IF unit 3 may be a data communication card, a communication interface circuit that conforms to the IEEE 802.11 standard, or the like.
  • the storage unit 5 is a circuit that is connected to the control processing unit 4 and stores various predetermined programs and various predetermined data under the control of the control processing unit 4.
  • the various predetermined programs include a control program, a defect setting program, a synthesis program, a case setting program, an image numerical calculation generation program, a surface defect detection program, a simulation control program, and an arrangement determination program.
  • the control program is a program for controlling each of the units 1 to 3 and 5 of the arrangement determining apparatus D according to the function of each unit.
  • the defect setting program executes a defect setting process in which an inspection area is set on the surface of a predetermined inspection object, and one or a plurality of defect placement positions are set randomly (randomly) in the set inspection area. It is a program.
  • the synthesis program is stored in an inspection object model information stored in an inspection object model information storage unit 54, which will be described later, in a defect model information storage unit 53, which will be described later, at a defect arrangement position set by the defect setting program.
  • This is a program for executing a synthesis process for generating defect-containing inspection object model information by synthesizing the defect model information.
  • the case setting program randomly sets the arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, and sets the arrangement position in the imaging unit and its optical axis direction randomly as image pickup unit arrangement information
  • the image numerical calculation generation program includes illumination unit model information stored in an illumination unit model information storage unit 51 described later, imaging unit model information stored in an imaging unit model information storage unit 52 described later, and the synthesis program.
  • the imaging unit arrangement information set by the case setting program by illuminating the inspection object with the illumination unit according to the illumination unit arrangement information set by the case setting program Is a program for executing a numerical calculation process for calculating an image generated by imaging the inspection area set by the defect setting program by the numerical calculation.
  • the surface defect detection program detects a defect based on the image obtained by the image numerical calculation generation program, and detects the detected result and the illumination unit arrangement information and the imaging unit arrangement information set by the case setting program.
  • This is a program that executes detection processing stored in a simulation result storage unit 56 described later as one set in association with each other.
  • the simulation control program causes the case setting program to execute the case setting program to change each of the numerical calculation process and the detection process while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information. It is a program that executes trial processing that causes an image numerical calculation generation program and the surface defect detection program to be executed a plurality of times.
  • the arrangement determination program determines a group having the best detection result from a plurality of groups stored in the simulation result storage unit 56, and sets the plurality of illumination unit arrangement information and imaging unit arrangement information of the determined group. This is a program for executing an arrangement determination process to be obtained as the optimum illumination unit arrangement information and image pickup unit arrangement information.
  • the various kinds of predetermined data include data necessary for executing each program such as illumination unit model information, imaging unit model information, defect model information, and inspection object model information.
  • the storage unit 5 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like.
  • the storage unit 5 includes a RAM (Random Access Memory) that serves as a working memory of the so-called control processing unit 4 that stores data generated during execution of the predetermined program.
  • the storage unit 5 includes the illumination unit model information, the imaging unit model information, the defect model information, the inspection object model information, and the defect-containing inspection object generated by combining the defect model information with the inspection object model information.
  • an illumination unit model information storage unit 51, an imaging unit model information storage unit 52, a defect model information storage unit 53, and an inspection object model information storage unit 54 The defect-containing inspection object model information storage unit 55 and the simulation result storage unit 56 are functionally provided.
  • Such various predetermined programs and various predetermined data are connected to a communication network, and from the server device that stores and manages these various predetermined programs and various predetermined data, the communication network and It may be downloaded via the IF unit 3 and stored in the storage unit 5.
  • these various predetermined programs and various predetermined data may be read from a recording medium such as a USB memory, which is recorded (stored), via the IF unit 3 and stored in the storage unit 5.
  • the arrangement determining device D further includes a drive device such as a DVD-ROM drive device or a CD-ROM drive device, for example, which stores various predetermined programs and various predetermined data, such as a DVD-ROM or CD. It may be read from the ROM or the like via the IF unit 3 and stored in the storage unit 5.
  • Various predetermined data may be input from the input unit 1 and stored in the storage unit 5.
  • the illuminator model information storage unit 51 stores the illuminator model information, which is information representing an illuminator model that quantifies the illuminator that irradiates the object to be inspected with illumination light, which constitutes the surface defect inspection apparatus. is there.
  • the illumination unit model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the illumination unit model information storage unit 51.
  • the illumination unit model information includes luminance distribution information representing the luminance distribution in the light emission part of the illumination unit, shape information representing the shape in the light emission part of the illumination unit, and light distribution representing the light distribution characteristics in the light emission part of the illumination unit.
  • One or more of the characteristic information including at least the luminance distribution information is included.
  • the luminance distribution may include not only a distribution in which the luminance varies depending on the position but also a distribution in which the luminance is uniform regardless of the position.
  • the shape of the light emitting portion of the illumination unit is defined by the width and height of the light emitting portion, the surface shape of the light emitting surface (plane, curved surface, etc.) and the like.
  • the shape may include a bright / dark pattern, and may include a bright part width and a spacing between bright parts in the bright / dark pattern.
  • the light / dark pattern may be configured by setting a plurality of illumination units. In this case, the bright part width in the bright / dark pattern is set by setting the shape of each illumination part, and the interval between bright parts in the bright / dark pattern is set by setting the interval between the illumination parts.
  • the illumination unit may be of one type, and accordingly the illumination unit model information may be of one type.
  • the illumination unit may be of a plurality of types, and accordingly the illumination unit model information may be of a plurality of types.
  • the plurality of types of illumination units are different from each other in at least one of luminance distribution (luminance distribution information), shape (shape information), and light distribution characteristics (light distribution characteristic information).
  • luminance distribution information luminance distribution information
  • shape shape
  • light distribution characteristics light distribution characteristic information
  • the imaging unit model information storage unit 52 stores the imaging unit model information, which is information representing an imaging unit model that quantifies the imaging unit that images the inspection object, which constitutes the surface defect inspection apparatus.
  • the imaging unit model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the imaging unit model information storage unit 52.
  • the imaging unit model information includes imaging element information indicating the pixel size (pixel size) and the number of pixels (imaging element size) of the imaging element in the imaging unit, optical characteristic information indicating the optical characteristics of the imaging optical system in the imaging unit, And one or a plurality of spectral sensitivity characteristic information representing spectral sensitivity characteristics of the imaging element in the imaging unit including at least the imaging element information.
  • the optical characteristic information may include construction data of an optical element forming the imaging optical system, glass material data of the optical element and a surface coat of the optical element, and an F number of the imaging optical system.
  • the imaging unit may be of one type, and according to this, the imaging unit model information may be of one type.
  • the imaging unit may be of a plurality of types, and the imaging unit model information may be of a plurality of types accordingly.
  • the plurality of types of imaging units includes at least one of a pixel size and a number of pixels (imaging element information), an optical characteristic (optical characteristic information), and a spectral sensitivity characteristic (spectral sensitivity characteristic information). One is different from each other.
  • the imaging unit (imaging unit model information) is composed of a plurality of types, one of the plurality of types is randomly selected by receiving the designation from the input unit 1 or by the simulation control unit 47 described later. Thus, the imaging unit (imaging unit model information) used for the trial is set.
  • the defect model information storage unit 53 stores the defect model information, which is information representing a defect model obtained by quantifying a predetermined defect that may occur in the inspection object.
  • the defect model information is input in advance from the input unit 1, the IF unit 3, etc., and is stored in the defect model information storage unit 53.
  • the defect may be a so-called “slip” shown as an example in FIGS. 2A and 2B, or a so-called “sag” shown as an example in FIGS. 2C and 2D.
  • so-called “repellency” shown as an example in FIGS. 2E and 2F.
  • FIG. 3 shows, as an example, one cross-sectional line in the outer contour surface of the “Butsu”.
  • a defect (defect model information) to be used for trial is set by accepting designation of one of the plurality of types from the input unit 1 or by random selection by the simulation control unit 47 described later.
  • the defect model depends on the size, height, shape in plan view, and the like.
  • Information may consist of a plurality.
  • different defect model information such as the size, height, and shape in plan view may be generated by enlargement, reduction, or deformation.
  • a defect (defect model information) used for a trial is set when one of the plurality receives the designation from the input unit 1 or is randomly selected by the simulation control unit 47 described later.
  • the size of the defect is a limit that can be detected by the surface defect inspection apparatus. Size.
  • the inspection object model information storage unit 54 stores the inspection object model information, which is information representing an inspection object model in which the appearance of the inspection object to be inspected by the surface defect inspection apparatus is quantified.
  • the inspection object model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the inspection object model information storage unit 54.
  • the inspection object model information represents inspection object position information indicating the arrangement position of the inspection object, inspection object contour shape information indicating the outer contour surface shape of the inspection object, and reflection characteristics outside the inspection object. Includes inspection object reflection characteristic information.
  • the inspection object position information is represented by the position of a predetermined point of the inspection object in a space (virtual space) in which the inspection object is inspected by the surface defect inspection apparatus.
  • the inspected object contour shape information is numerical data representing the outer contour surface of the inspected object with the arrangement position of the inspected object represented by the inspected object position information as the origin.
  • the reflection characteristic may be represented by a light distribution characteristic of reflected light.
  • the object to be inspected may have a single-layer structure or a two-layer structure including a first paint layer and a second paint layer overcoated on the first paint layer.
  • the inspection object reflection characteristic information includes first coating layer reflection characteristic information indicating the reflection characteristic of the first coating layer and second coating layer reflection characteristic information indicating the reflection characteristic of the second coating layer.
  • the reflection characteristic may be a spectral reflection characteristic.
  • the inspection object may be of one type, and the inspection object model information may be one type according to this.
  • the inspection object may be of a plurality of types, and the inspection object model information may be of a plurality of types according to this.
  • the plurality of types of inspection objects is at least one of the outer contour surface shape (inspection object contour shape information) and the reflection characteristics (inspection object reflection characteristic information). Are different from each other.
  • the inspection object (inspection object model information) is composed of a plurality of types, one of the plurality of types is randomly selected by receiving the designation from the input unit 1 or by the simulation control unit 47. Thus, the inspection object (inspection object model information) used for the trial is set.
  • the inspected object may be an arbitrary object, but in the present embodiment, it is a vehicle, and the inspected object model information is vehicle model information obtained by quantifying the appearance of the vehicle.
  • the vehicle model information includes vehicle position information that represents the position of the vehicle, vehicle contour information that represents the outer contour surface shape of the vehicle (vehicle body), and vehicle reflection characteristic information that represents reflection characteristics outside the vehicle.
  • CAD Computer-aided design
  • the painting of the vehicle body may be a single layer structure or a two layer structure. In the case of a two-layer structure, the first paint layer is, for example, a metallic layer, and the second paint layer is a clear layer.
  • the vehicle model information may be one type accordingly.
  • the vehicle type may be a plurality of types, and the vehicle model information may be a plurality of types according to this.
  • the plurality of vehicle types are different from each other in at least the outer contour surface shape (inspection object contour shape information).
  • one of the plurality of vehicle types is selected by receiving the designation from the input unit 1 or randomly selected by the simulation control unit 47.
  • the vehicle type (vehicle model information) used for the trial is set.
  • the vehicle contour shape information is numerical data representing the outer contour surface shape of the entire vehicle (the entire vehicle body). For example, the right half of the vehicle body, the door portion, the bumper portion, etc. May be part.
  • the defect-containing inspection object model information storage unit 55 stores the defect-containing inspection object model information generated by combining the defect model information with the inspection object model information.
  • the simulation result storage unit 56 stores a detection result by a surface defect detection unit 46, which will be described later, the illumination unit arrangement information of the illumination unit, and the imaging unit arrangement information of the imaging unit in association with each other as a set.
  • the control processing unit 4 controls each of the units 1 to 3 and 5 of the arrangement determining device D according to the function of each unit, and determines the arrangement of each component constituting the surface defect inspection apparatus by trial using a numerical model. It is a circuit for doing.
  • the control processing unit 4 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits.
  • the control processing unit 4 includes a control unit 41, a defect setting unit 42, a synthesis unit 43, a case setting unit 44, an image numerical value calculation generation unit 45, a surface defect detection unit 46, and simulation control.
  • the unit 47 and the arrangement determining unit 48 are functionally provided.
  • the control unit 41 controls each of the units 1 to 3 and 5 of the arrangement determining device D according to the function of each unit, and controls the entire arrangement determining device D.
  • the defect setting unit 42 executes a defect setting process for setting an inspection area on the surface of the inspection object and setting one or a plurality of defect arrangement positions in the set inspection area.
  • the inspection area may be designated by the user (operator) from the input unit 1 at, for example, a door portion or a bonnet portion, and may be set by the defect setting unit 42 according to this designation. Alternatively, the inspection area may be set randomly (randomly) by the defect setting unit 42.
  • the number of defects may be specified from the input unit 1 by the user, for example, or may be set at random by the defect setting unit 42.
  • the arrangement position may be designated from the input unit 1 by the user, for example, and may be set by the defect setting unit 42 according to this designation.
  • the arrangement position may be set randomly by the defect setting unit 42.
  • the defect arrangement position is detected by the surface defect inspection apparatus. It is a position that is assumed to be difficult.
  • the synthesis unit 43 adds the defect model information stored in the defect model information storage unit 53 to the inspection object model information stored in the inspection object model information storage unit 54 at the defect placement position set by the defect setting unit 42. Is combined to generate defect-containing inspection object model information. More specifically, the synthesis unit 43 superimposes the defect model information on the inspection object model information at the defect placement position set by the defect setting unit 42, so that the defect model information is included in the inspection object model information. Is synthesized. More specifically, the synthesis unit 43 adds the numerical data of the defect model information to the numerical data of the inspection object model information at the defect arrangement position set by the defect setting unit 42, thereby inspecting the object model information. The defect model information is synthesized. The combining unit 43 stores the generated defect-containing inspection object model information in the defect-containing inspection object model information storage unit 55.
  • the case setting unit 44 executes case setting processing for setting the arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, and setting the arrangement position in the image pickup unit and its optical axis direction as image pickup unit arrangement information. It is.
  • the arrangement position of the illumination unit and the arrangement position of the imaging unit are each represented by coordinate values of a coordinate system having the arrangement position of the inspection object represented by the inspection object position information as the origin.
  • the world coordinate system is set (virtual) in a space (virtual space) in which the inspection object is inspected by the surface defect inspection apparatus, and the arrangement position of the inspection object, the arrangement position of the illumination unit, and the arrangement position of the imaging unit are respectively It is expressed by the coordinate value of this world coordinate system.
  • the illumination unit arrangement information and the imaging unit arrangement information may each be designated by the user (operator) from the input unit 1 and set by the case setting unit 44 according to this designation.
  • the illumination unit arrangement information and the imaging unit arrangement information may be set randomly (randomly) by the case setting unit 44, respectively.
  • each of the illumination unit arrangement information and the imaging unit arrangement information is designated by a user as a range (designated range) from the input unit 1, and is randomly set by the case setting unit 44 within the designated designated range. good. In the actual (actual) place where the surface defect inspection apparatus is installed, there may be a range in which the components constituting the surface defect inspection apparatus cannot be arranged.
  • the user can designate the designated range by excluding the range where each component constituting the surface defect inspection apparatus cannot be arranged, and even in such a case, the arrangement determining apparatus D in the present embodiment
  • the illumination unit arrangement information and the imaging unit arrangement information can be set by excluding a range in which the components constituting the surface defect inspection apparatus cannot be arranged.
  • the image numerical calculation generation unit 45 includes the illumination unit model information stored in the illumination unit model information storage unit 51, the imaging unit model information stored in the imaging unit model information storage unit 52, and the defect containing Based on the defect-containing inspection object model information stored in the inspection object model information storage unit 55, the inspection object is illuminated by the illumination unit based on the illumination unit arrangement information set by the case setting unit 44, and the case setting unit 44 A numerical calculation process is performed in which an image generated by imaging the inspection area set by the defect setting unit by the imaging unit based on the set imaging unit arrangement information is obtained by numerical calculation.
  • the image numerical value calculation generation unit 45 has a plurality of tens of thousands to hundreds of millions necessary for forming the image in the illumination unit represented by the illumination unit model information. Is set. Next, the image numerical calculation generation unit 45 performs forward ray tracing for each of the plurality of light rays by using a predetermined optical simulator on the light propagation path from the illumination unit to the imaging unit via the inspection object. Next, the image numerical calculation generation unit 45 converts the light intensity emitted from the illumination unit based on the illumination unit model information, on the light propagation path, for each of a plurality of light beams from the illumination unit to the imaging unit via the inspection object.
  • the light intensity incident on the imaging unit is obtained by multiplying the transmission surface and reflection surface of the image by the transmittance and the reflectance. Then, the image numerical calculation generation unit 45 summarizes each light intensity incident on the imaging unit for each of a plurality of light beams from the illumination unit through the inspection object to the imaging unit, for each pixel of the imaging unit. Each light intensity incident on each is obtained. At this time, the spectral sensitivity of the imaging unit may be taken into consideration. The light intensity incident on this pixel becomes the pixel value of the pixel, and an image by numerical calculation is formed and generated thereby.
  • the light propagation path from the illumination unit to the imaging unit via the object to be inspected is obtained by forward ray tracking.
  • the light propagation from the illumination unit to the imaging unit through the object to be inspected by reverse ray tracing is performed.
  • a path may be obtained (that is, a light propagation path from each pixel of the imaging unit to the illumination unit through the object to be inspected may be obtained).
  • the number of the plurality of rays can be reduced as compared with forward ray tracing.
  • the angle range of the light ray incident on the pixel is obtained from the optical characteristic information of the imaging optical system, and the light ray for tracing the reverse ray may be set within this angle range.
  • the optical simulator may be any appropriate simulator.
  • LightTools manufactured by Synopsys is available.
  • the surface defect detection unit 46 detects a defect based on the image obtained by the image numerical value calculation generation unit 45, and the detected detection result, the illumination unit arrangement information and the imaging unit arrangement information set by the case setting unit 44, and Are associated with each other, and a detection process for storing them as a set in the simulation result storage unit 56 is executed.
  • a defect detection method a known method may be used, but the method of this embodiment will be described later.
  • the simulation control unit 47 causes the case setting process to be executed by the case setting unit 44 to change each of the numerical calculation process and the detection process while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information.
  • Trial processing that causes each of the numerical calculation generation unit 45 and the surface defect detection unit 46 to execute a plurality of times is executed.
  • the arrangement determination unit 48 determines a group having the best detection result from a plurality of groups stored in the simulation result storage unit 56, and sets the plurality of illumination unit arrangement information and imaging unit arrangement information of the determined group. In this set, an arrangement determination process to be obtained as optimal illumination unit arrangement information and imaging unit arrangement information is executed.
  • the arrangement determination unit 48 outputs the obtained illumination unit arrangement information and imaging unit arrangement information from the output unit 2 to the outside. Alternatively, the arrangement determining unit 48 outputs the obtained illumination unit arrangement information and imaging unit arrangement information from the IF unit 3 to the external device.
  • such an arrangement determining apparatus D includes a CPU 11, a RAM 12, a ROM 13, a hard disk drive (HDD) 14, an LCD 16, a keyboard 17, a mouse 18, a USB interface 19, and the CPU 11, RAM 12.
  • ROM 13, HDD 14, LCD 16, keyboard 17, mouse 18, and USB interface 19 can be configured by, for example, a desktop or node type computer provided with a bus 15.
  • FIG. 5 is a flowchart illustrating the operation of the arrangement determining apparatus according to the embodiment.
  • FIG. 6 is a diagram for explaining the defect setting processing in the flowchart shown in FIG.
  • FIG. 7 is a diagram for explaining case setting processing in the flowchart shown in FIG. 5.
  • FIG. 8 is a diagram showing an example of an image generated by the numerical calculation process in the flowchart shown in FIG.
  • FIG. 9 is a diagram for explaining the defect detection processing in the flowchart shown in FIG.
  • the arrangement determining apparatus D When the power is turned on, the arrangement determining apparatus D having such a configuration executes necessary initialization of each part and starts its operation.
  • the control processing unit 4 includes a control unit 41, a defect setting unit 42, a synthesis unit 43, a case setting unit 44, an image numerical value calculation generation unit 45, a surface defect detection unit 46, and a simulation control unit 47.
  • positioning determination part 48 is comprised functionally.
  • the arrangement determining apparatus D is first input from the input unit 1 by the user (operator) by the simulation control unit 47 of the control processing unit 4.
  • the input simulation count (trial count) is received (S11).
  • the arrangement determining apparatus D performs a defect setting process for setting the defect to the inspection object by the defect setting unit 42 of the control processing unit 4 (S12). More specifically, as shown in FIG. 6 as an example, the defect setting unit 42 sets an inspection area AR on the outer surface (exterior surface) of the inspection object Ob (vehicle body Ob in the example shown in FIG. 6). In the inspection area AR thus set, one or more arrangement positions Pn of the defects DEn are set at random. In the example shown in FIG. 6, four first to fourth arrangement positions P1 to P4 for four first to fourth defects DE1 to DE4 are set in a rectangular inspection area AR.
  • the arrangement determining apparatus D performs a combining process for generating defect-containing inspection object model information by combining the defect model information with the inspection object model information by the combining unit 43 of the control processing unit 4 (S13). ). More specifically, the synthesizing unit 43 adds the defect DEn placement position Pn set by the defect setting unit 42 in step S12 to the numerical data of the inspected object model information stored in the inspected object model information storage unit 54. Then, by adding the numerical data of the defect model information stored in the defect model information storage unit 53, the defect model information is synthesized with the inspection object model information to generate defect-containing inspection object model information. Then, the synthesis unit 43 stores the generated defect-containing inspection object model information in the defect-containing inspection object model information storage unit 55 of the storage unit 5.
  • the synthesis unit 43 adds the numerical data of the defect model information in the first defect DE1 at the first arrangement position P1 to the numerical data of the vehicle model information obtained by digitizing the vehicle body Ob.
  • the numerical data of the defect model information at the second defect DE2 at the second arrangement position P2 is added to the numerical data of the vehicle model information
  • the third defect DE3 at the third arrangement position P3 is added to the numerical data of the vehicle model information.
  • the numerical data of the defect model information in the fourth defect DE4 at the fourth arrangement position P4 is added to the numerical data of the vehicle model information.
  • the arrangement determining apparatus D executes a case setting process for setting the illumination unit arrangement information and the imaging unit arrangement information by the case setting unit 44 of the control processing unit 4 (S14). More specifically, the case setting unit 44 sets the arrangement position in the illumination unit and its optical axis direction at random (randomly) as the illumination unit arrangement information, and sets the arrangement position in the imaging unit and its optical axis direction as the imaging unit. Set at random as placement information. As an example, as shown in FIG. 7, in a lighting unit having a light / dark pattern having first to sixth bright portions LS1 to LS6 having six straight rectangular planes from the side surface of the vehicle body Ob (or from the side surface of the vehicle body Ob).
  • the vehicle body Ob is illuminated by the first to sixth illuminating units LS1 to LS6 having six straight rectangular planes in a light / dark pattern, and the vehicle body Ob is imaged by the imaging unit from the side surface of the vehicle body Ob at the center position of the light / dark pattern.
  • the case setting unit 44 sets the illumination unit arrangement information and the imaging unit arrangement information.
  • the arrangement determining apparatus D performs numerical calculation processing for obtaining an image by numerical calculation by the image numerical calculation generation unit 45 of the control processing unit 4 (S15). More specifically, the image numerical value calculation generation unit 45 includes the illumination unit model information stored in the illumination unit model information storage unit 51, the imaging unit model information stored in the imaging unit model information storage unit 52, and the combining unit. Based on the defect-containing inspection object model information generated in 43 and stored in the defect-containing inspection object model information storage unit 55, the inspection object is illuminated by the illumination unit based on the illumination unit arrangement information set by the case setting unit 44 Then, an image generated by imaging the inspection area set by the defect setting unit 42 by the imaging unit based on the imaging unit arrangement information set by the case setting unit 44 is obtained by numerical calculation.
  • the angle range of the light ray incident on the pixel is obtained from the optical characteristic information of the imaging optical system.
  • a light propagation path from the illumination unit to the imaging unit via the object to be inspected is obtained by back ray tracing using an optical simulator.
  • the respective light intensities incident on the imaging unit for each of a plurality of light beams from the illumination unit through the inspection object to the imaging unit are determined.
  • the light intensity of each pixel is calculated
  • an image by numerical calculation is generated.
  • the image shown in FIG. 8 is generated by numerical calculation.
  • the entire inspection area AR set in step S12 cannot be imaged, and an image including the first to third defects DE1 to DE3 is generated.
  • the first and second defects DE1 and DE2 appear in the bright part of the light / dark pattern and appear in the image at black points, and the third defect DE3 appears in the dark part of the light / dark pattern and appear in the image at the white point.
  • the arrangement determining apparatus D performs a defect detection process for detecting the defect DEn from the image obtained by the numerical calculation by the surface defect detection unit 46 of the control processing unit 4 (S16). More specifically, the surface defect detection unit 46 determines the contrast of the defect DEn at the position Pn of the defect DEn set in step S12 from the image generated in step S15 for each defect DEn set in step S12. Ask for. For example, in the image shown in FIG. 8, the pixel value of each pixel on the row II-II passing through the first defect DE1 changes into a rectangular pulse train as shown in FIG.
  • the pixel value of the first defect DE1 is a dark pixel value y as compared to the bright pixel value x in the bright area around the first defect DE1.
  • the surface defect detection unit 46 associates each contrast of each defect DEn with the illumination unit arrangement information and the imaging unit arrangement information set in step S12 to 1
  • the result is stored in the simulation result storage unit 56 as a set.
  • the contrast of the defect DEn is set to 0 outside the imaging range of the image generated in step S15.
  • the defect hits a dark part of the light / dark pattern like the third defect DE3 in the example shown in FIG. In such a case, it is only necessary to obtain the contrast in the same manner as described above after reversing the brightness in the dark part.
  • the contrast y / x is used for the detection result, but other amounts may be used as long as the defect can be evaluated.
  • the size (area) of the image of the defect DE in the image generated in step S15 may be used.
  • the image generated in the process S15 can be three-dimensionalized by giving a height with each pixel value of each pixel.
  • a concave portion is formed in a bright portion and a convex portion is formed in a dark portion at the position of the defect DE. Part is formed.
  • the volume of this recessed part or convex part may be used. In the case where the volume of the concave portion or convex portion is used, the larger the value, the better the detection result.
  • the arrangement determining apparatus D determines whether or not the number of the sets has reached the number of simulations accepted in the process S11 by the simulation control unit 47 (S17). As a result of this determination, when the number of simulations has been reached (Yes), the simulation control unit 47 executes the next process S18. On the other hand, if the number of simulations has not been reached as a result of the determination (No), the simulation control unit 47 returns the process to step S14 in order to make the next trial. As a result, the simulation control unit 47 causes the case setting unit 44 to execute the case setting process, thereby changing the numerical value calculation while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information in the present embodiment. Each of the processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 multiple times.
  • the arrangement determining device D executes an arrangement determining process for determining the arrangement of each component constituting the surface defect inspection apparatus by the arrangement determining unit 48 of the control processing unit 4. More specifically, the arrangement determining unit 48 determines a group having the best detection result from the plurality of groups stored in the simulation result storage unit 56, and the illumination unit arrangement information and the imaging of the determined group. The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information among the plurality of sets.
  • the arrangement determining apparatus D uses the average value of the detection results for each of the plurality of groups.
  • positioning determination part 48 outputs the illumination part arrangement
  • the arrangement determination unit 48 may output the obtained illumination unit arrangement information and imaging unit arrangement information from the IF unit 3 to an external device as necessary.
  • the surface defect inspection apparatus arrangement determination device D and the arrangement determination method and arrangement determination program implemented in the present embodiment convert the illumination unit, the imaging unit, the inspection object, and the defect respectively into numerical models.
  • An image generated by illuminating the object to be inspected with the illumination unit based on the illumination unit arrangement information using a computer and imaging the inspection region with the imaging unit based on the imaging unit arrangement information is obtained by numerical calculation, and the obtained image is Based on the detection of defects.
  • positioning determination method of the said surface defect inspection apparatus performs this several times, changing at least one of illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging which gave the best detection result
  • the part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times.
  • the arrangement determining device D, the arrangement determining method, and the arrangement determining program can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information which are variously changed.
  • the arrangement of each component constituting the surface defect inspection apparatus can be determined with effort (man-hours). Since the arrangement determination device D, the arrangement determination method, and the arrangement determination program can verify the quality of defect detection by numerical calculation with respect to variously changed illumination unit arrangement information and the imaging unit arrangement information, it is possible to change the model or model It can respond flexibly to changes.
  • the simulation control unit 47 causes the case setting unit 44 to execute the case setting process in each of the processes S14 to S17 that are repeated. While changing both the arrangement information, each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times.
  • the numerical value calculation processing and the detection processing are respectively generated as image numerical value calculation while changing only the imaging portion arrangement information by fixing the illumination portion arrangement information and causing the case setting unit 44 to execute the case setting process.
  • Each of the unit 45 and the surface defect detection unit 46 may be executed a plurality of times, In each of the repeated processes S ⁇ b> 14 to S ⁇ b> 17, while changing only the illumination unit arrangement information by fixing the imaging unit arrangement information and causing the case setting unit 44 to execute the case setting process, Each of the detection processes may be executed by the image numerical meter calculation unit 45 and the surface defect detection unit 46 a plurality of times.
  • the arrangement determining unit 48 obtains a simple average value of detection results in each group, and evaluates and compares each group. However, the arrangement determining unit 48 detects that the contrast cannot be detected as 0. First, the group including the result is excluded (removed) from the plurality of groups stored in the simulation result storage unit 56, and the group having the best detection result is determined from the plurality of remaining groups. You may obtain
  • the detection positions of the defects in the bright and dark portions of the light / dark pattern are used to determine the arrangement positions of the illumination unit and the imaging unit.
  • the defect detection using only the bright part is assumed.
  • only the detection result of the defect in the bright part may be used to determine the arrangement positions of the illumination unit and the imaging unit, or the defect in the dark part is assumed assuming defect detection using only the dark part. Only the detection result may be used to determine the arrangement positions of the illumination unit and the imaging unit.
  • FIG. 10 is a diagram for explaining a modified embodiment.
  • the allowable degree of surface defect DE varies depending on the location where the defect occurs.
  • the allowable range of the surface defect DE generated in the roof is relatively wide (loose)
  • the allowable range of the surface defect DE generated in the door is relatively narrow (strict).
  • the allowable range of the surface defect DE generated in the door is relatively narrow (strict).
  • a weight boundary line ⁇ is provided for the vehicle body, and the detection result (contrast in the above example) for the defect DE set in step S12 on the roof side from the boundary line ⁇ includes the weight ⁇ 1. And the detection result (contrast in the above) for the defect DE set in step S12 below the boundary line ⁇ is assigned a weight ⁇ 2, and a weighted average value of the detection results of the set is obtained.
  • the illumination unit and the imaging unit are fixed, and at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed.
  • a plurality of trials may be executed as in the following first to fourth modes, or a combination thereof.
  • the illumination unit model information includes a variable illumination unit model parameter
  • the simulation control unit 47 performs the illumination unit arrangement information and the imaging unit arrangement information in each of the processes S14 to S17 repeated. And changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by changing the variable illumination unit model parameter or by causing the case setting unit 44 to execute the case setting process. While changing the variable illumination unit model parameter, each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times.
  • the variable illumination unit model parameter includes, for example, one or more of a luminance distribution in the light emission part of the illumination unit, a shape in the light emission part of the illumination unit, and a light distribution characteristic in the light emission part of the illumination unit. Good.
  • the variable illumination unit model parameter may be set by the user from the input unit 1 or may be set at random by the simulation control unit 47 and the parameter value in the variable illumination unit model parameter used for the trial is set. When a variable range is defined for the variable illumination unit model parameter, the variable illumination unit model parameter is varied within the variable range.
  • Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can be used for various illumination lights in the same type of illumination unit or for various types of illumination units by changing variable illumination unit model parameters.
  • the quality of defect detection can be verified by numerical calculation.
  • the imaging unit model information includes a variable imaging unit model parameter
  • the simulation control unit 47 displays the illumination unit arrangement information and the imaging unit arrangement information in each of the processes S14 to S17 repeated. While changing the variable imaging unit model parameter fixedly or by causing the case setting unit 44 to execute the case setting process, at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed. While changing the variable imaging unit model parameter, the numerical value calculation processing and the detection processing are respectively executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times.
  • variable imaging unit model parameters include, for example, the pixel size (pixel size) and the number of pixels of the imaging device in the imaging unit, the optical characteristics of the imaging optical system in the imaging unit, and the spectrum of the imaging device in the imaging unit. One or more of the sensitivity characteristics may be included.
  • the variable imaging unit model parameter may be set by the user from the input unit 1 or may be randomly set by the simulation control unit 47 to set a parameter value in the variable imaging unit model parameter used for trial. When a variable range is defined for the variable imaging unit model parameter, the variable imaging unit model parameter is varied within the variable range.
  • Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection for various types of imaging units by numerical calculation by changing variable imaging unit model parameters.
  • the illumination unit is not limited to the formation of such a light / dark pattern, but is an arbitrary free aspect. There may be a plurality.
  • the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
  • the number of illumination units may be set by the user from the input unit 1 or may be randomly set by the simulation control unit 47 to set the number of illumination units used for the trial.
  • the plurality of illumination units may be of the same type, or part or all of them may be of different types.
  • the type of the illumination unit may be set by the user from the input unit 1 for each of the plurality of illumination units, or may be randomly set by the simulation control unit 47 to set the type of the illumination unit used for the trial.
  • a variable range is defined for the number of illumination units, the number of illumination units is variable within the variable range.
  • Such an arrangement determining apparatus D, an arrangement determining method, and an arrangement determining program can verify the quality of defect detection by numerical calculation by changing the number of illumination units, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
  • the imaging section may be plural.
  • the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
  • the number of imaging units may be set by the user from the input unit 1, or is set randomly by the simulation control unit 47, and the number of imaging units used for trials is set.
  • the plurality of imaging units may be of the same type, or part or all of them may be of different types.
  • the type of the imaging unit may be set by the user from the input unit 1 for each of the plurality of imaging units, or may be randomly set by the simulation control unit 47 to set the type of the imaging unit used for the trial.
  • a variable range is defined for the number of imaging units, the number of imaging units can be varied within the variable range.
  • Such an arrangement determining device D, an arrangement determining method, and an arrangement determining program can verify the quality of defect detection by changing the number of imaging units by numerical calculation, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
  • the inspection object, the illumination unit, and the imaging unit are relatively stationary, but the inspection object, the illumination unit, and the imaging unit may move relatively. good.
  • the inspection object is a vehicle
  • the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle
  • the vehicle model information is
  • the vehicle numerical value calculation generation unit 45 includes vehicle position information representing the arrangement position, and obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
  • FIG. 11 is a diagram for explaining another modified embodiment.
  • 11A shows how the vehicle Ob has moved to the first position
  • FIG. 11B shows how the vehicle Ob has moved from the first position to the second position
  • FIG. 11C shows that the vehicle Ob has moved to the second position. The state which moved to 3rd position from is shown.
  • the image numerical value calculation generation unit 45 first arranges a vehicle (vehicle body) Ob at a predetermined first position and stores it in the storage unit 5, as shown in FIG. 11A. Based on the illumination unit model information, the imaging unit model information, and the defect-containing inspection object model information, the illumination unit illuminates the vehicle at the first position by the illumination unit arrangement information set by the case setting unit 44 in step S12. Numerical calculation of an image obtained by numerical calculation of an image generated by imaging the inspection area set by the defect setting unit 42 in processing S12 by the imaging unit based on the imaging unit arrangement information set by the case setting unit 44 in processing S12 The process is executed and stored in the storage unit 5 in association with the first position.
  • the predetermined first position is randomly generated by accepting designation by the user from the input unit 1, or by subtracting a predetermined value set in advance from the vehicle position information, or from the vehicle position information. It is set by subtracting the value obtained.
  • the image numerical value calculation generation unit 45 arranges the vehicle (vehicle body) Ob at the second position moved from the first position, and executes the same numerical value calculation processing as that described above. Then, it is stored in the storage unit 5 in association with the second position.
  • the predetermined second position is randomly received by accepting designation by the user from the input unit 1, or by adding a predetermined value set in advance to the first position, or at the first position. It is set by adding the generated value to.
  • the image numerical value calculation generation unit 45 arranges the vehicle (vehicle body) Ob at the third position moved from the second position, and executes the same numerical value calculation processing as that described above. Then, it is stored in the storage unit 5 in association with the second position.
  • the predetermined third position is set similarly to the predetermined second position described above. Each of the predetermined second and third positions may be obtained from a preset moving speed of the vehicle and an image generation interval by the image numerical value calculation generation unit 45.
  • the surface defect detection part 46 performs the process of the defect detection which detects the defect DEn from the image by the said numerical calculation with respect to each image calculated
  • Each contrast of each defect DEn at each position, the illumination unit arrangement information and the imaging unit arrangement information set in step S12 are associated with each other and stored in the simulation result storage unit 56 as one set.
  • the arrangement determining unit 48 may obtain an average value for each contrast of each defect DEn at each position of the vehicle. First, for each defect DEn, each position at each position is determined. The best contrast (maximum contrast) may be selected as the contrast of the defect from among the contrasts, and an average value may be obtained for each contrast of each of the selected defects DEn.
  • Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection by numerical calculation on the assumption that a defect of the vehicle is inspected on a production line that produces the vehicle. Arrangement of each component constituting the inspection apparatus can be determined.
  • the inspection object is one type, but may be a plurality of types. More specifically, the inspected object is a vehicle, and the inspected object model information is vehicle model information obtained by quantifying the appearance of the vehicle, and the vehicle model information is a plurality of mutually different defects.
  • the setting unit 42, the synthesis unit 43, the case setting unit 44, the image numerical value calculation generation unit 45, the surface defect detection unit 46, the simulation control unit 47, and the arrangement determination unit 48 each have the defect setting for each of the plurality of vehicle model information.
  • the process, the synthesis process, the case setting process, the numerical calculation process, the detection process, the trial process, and the arrangement determination process are executed.
  • Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
  • the method for determining the arrangement of a surface defect inspection apparatus includes an A step of setting an inspection area on the surface of a predetermined inspection object, and setting one or a plurality of defect arrangement positions in the set inspection area, A defect-containing inspection object model is obtained by synthesizing defect model information obtained by quantifying a predetermined defect at an arrangement position of the defect set in the step A with inspection object model information obtained by quantifying the appearance of the inspection object.
  • the B process for generating information C process for setting the arrangement position and the optical axis direction of the illumination unit that irradiates the inspection object with illumination light as illumination unit arrangement information, and an imaging unit for imaging the inspection object Generated in the D step of setting the arrangement position and its optical axis direction as the imaging unit arrangement information, the illumination unit model information obtained by digitizing the illumination unit, the imaging unit model information obtained by digitizing the imaging unit, and the B step was Based on the defect-containing inspected object model information, the imaging unit illuminates the inspection object with the illuminating unit according to the illuminating unit arrangement information set in the C process, and the imaging unit uses the imaging unit arrangement information set in the D process.
  • An E step for obtaining an image generated by imaging the inspection area set in the B step by numerical calculation, an F step for detecting a defect based on the image obtained in the E step, and the F step The G process for storing the detection result, the illumination unit arrangement information set in the C process and the imaging unit arrangement information set in the D process in the storage unit in association with each other, the C process, and the By changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the D steps, a plurality of the E step, the F step, and the G step are performed.
  • the inspection object model information includes inspection object position information indicating an arrangement position of the inspection object, and an object indicating an outer contour surface shape of the inspection object. It includes inspection object contour shape information and inspection object reflection characteristic information representing reflection characteristics outside the inspection object.
  • the coating of the inspection object has a two-layer structure including a first coating layer and a second coating layer overcoated on the first coating layer, and the inspection object reflection characteristic information is the first coating layer. It consists of first paint layer reflection characteristic information representing the reflection characteristics of the paint layer and second paint layer reflection characteristic information representing the reflection characteristics of the second paint layer.
  • the reflection characteristic is a spectral reflection characteristic.
  • the illumination unit model information includes luminance distribution information representing a luminance distribution in the light emission portion of the illumination unit, and a shape representing a shape in the light emission portion of the illumination unit.
  • the luminance distribution includes not only a distribution in which the luminance varies depending on the position but also a distribution in which the luminance is uniform regardless of the position.
  • the shape of the light emitting portion of the illumination unit includes a light / dark pattern, and includes a light portion width and a space between light portions in the light / dark pattern.
  • the imaging unit model information represents an imaging element representing a pixel size (pixel size) and a number of pixels (imaging element size) of the imaging element in the imaging unit.
  • the imaging element information includes construction data of an optical element forming the imaging optical system, glass material data of the optical element and a surface coat of the optical element, and an F number of the imaging optical system.
  • Such a surface defect inspection apparatus arrangement determination method includes numerically modeling an illumination unit, an imaging unit, an inspection object, and a defect, and illuminating the inspection object with an illumination unit based on the illumination unit arrangement information using a computer.
  • An image generated by imaging the inspection area by the imaging unit based on the arrangement information is obtained by numerical calculation, and a defect is detected based on the obtained image.
  • positioning determination method of the said surface defect inspection apparatus performs this several times, changing at least one of illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging which gave the best detection result
  • the part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times.
  • the method for determining the arrangement of the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information that have been variously changed, so that less labor (man-hours) is required.
  • the arrangement of the components constituting the surface defect inspection apparatus can be determined.
  • the illumination unit model information includes a variable illumination unit model parameter
  • the H step includes the illumination unit arrangement information and the imaging unit arrangement information. At least one of the illumination unit arrangement information and the imaging unit arrangement information by changing the variable illumination unit model parameter while fixing the variable, or by executing at least one of the C step and the D step
  • the E process, the F process, and the G process are executed a plurality of times while changing the variable illumination unit model parameter.
  • the variable illumination unit model parameter includes a luminance distribution in a light emission portion of the illumination unit, a shape in the light emission portion of the illumination unit, and the illumination unit.
  • Such a method for determining the arrangement of surface defect inspection devices can detect defects for various types of illumination light in the same type of illumination unit or for various types of illumination units by changing variable illumination unit model parameters. Can be verified numerically.
  • the imaging unit model information includes a variable imaging unit model parameter
  • the H step includes the illumination unit arrangement information and the imaging unit arrangement.
  • the variable imaging unit model parameters include the pixel size (pixel size) and the number of pixels of the imaging element in the imaging unit, and the imaging optical system in the imaging unit. It includes one or more of optical characteristics and spectral sensitivity characteristics of the image sensor in the imaging unit.
  • Such an arrangement determination method for the surface defect inspection apparatus can verify the quality of defect detection for various types of image pickup units by numerical calculation by changing the variable image pickup unit model parameters.
  • the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
  • Such a method for determining the arrangement of the surface defect inspection apparatus can verify the quality of defect detection by changing the number of illumination units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
  • Such an arrangement determination method of the surface defect inspection apparatus can verify the quality of defect detection by numerical calculation by changing the number of imaging units, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • the inspection object is a vehicle
  • the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle.
  • the vehicle model information includes vehicle position information representing the arrangement position of the vehicle, and the step E obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
  • Such an arrangement determination method for a surface defect inspection apparatus can verify the quality of defect detection by numerical calculation on the assumption that the defect of the vehicle is inspected on a production line for producing the vehicle, and constitutes a surface defect inspection apparatus The arrangement of each component to be performed can be determined.
  • the inspection object is a vehicle
  • the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle.
  • the vehicle model information is a plurality of different ones, and the steps A to I are executed for each of the plurality of vehicle model information.
  • Such an arrangement determination method of the surface defect inspection apparatus can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • An arrangement determining apparatus for a surface defect inspection apparatus includes an illumination unit model information storage unit that stores illumination unit model information obtained by quantifying an illumination unit that irradiates a predetermined inspection object with illumination light; An imaging unit model information storage unit that stores imaging unit model information obtained by quantifying an imaging unit that images an inspection object, a defect model information storage unit that stores defect model information obtained by quantifying a predetermined defect, and the inspection object An inspection object model information storage unit for storing inspection object model information in which the appearance of the inspection object is quantified, and an inspection area is set on the surface of the inspection object, and the placement position of the defect is set to 1 or in the set inspection area A defect setting unit that executes a plurality of defect setting processes, and the defect model information at the defect placement position set by the defect setting unit in the inspection object model information stored in the inspection object model information storage unit Storage A synthesis unit that executes a synthesis process for generating defect-containing inspection object model information by synthesizing the stored defect model information, and setting an arrangement position in the illumination unit and its optical
  • the object to be inspected is illuminated and the inspection area set by the defect setting unit is imaged by the imaging unit according to the imaging unit arrangement information set by the case setting unit
  • An image numerical calculation generation unit that executes numerical calculation processing for obtaining an image generated by the numerical calculation, a defect is detected based on the image obtained by the image numerical calculation generation unit, and the detected detection result and the
  • a surface defect detection unit that executes a detection process in which the illumination unit arrangement information and the imaging unit arrangement information set in the case setting unit are associated with each other and stored in the simulation result storage unit as a set, and the case setting process is performed in the case
  • the numerical value calculation processing and the detection processing are respectively performed on the image numerical value calculation generation unit and the surface defect detection unit while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by causing the setting unit to execute the setting unit.
  • a simulation control unit that executes trial processing to be executed a plurality of times, and a simulation result storage unit
  • a group having the best detection result is determined from the plurality of stored groups, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are set to the optimum illumination unit arrangement information and the plurality of groups.
  • An arrangement determination unit that executes an arrangement determination process to be obtained as imaging unit arrangement information.
  • Such a surface defect inspection apparatus arrangement determination apparatus numerically models an illumination unit, an imaging unit, an object to be inspected, and a defect, and illuminates the object to be inspected by the illumination unit based on the illumination unit arrangement information, and performs imaging based on the imaging unit arrangement information.
  • An image generated by imaging the inspection area by the unit is obtained by numerical calculation, and a defect is detected based on the obtained image.
  • the surface defect inspection device arrangement determination device executes this multiple times by changing at least one of the illumination unit arrangement information and the imaging unit arrangement information, and the illumination unit arrangement information and the imaging that give the best detection result.
  • the part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times.
  • the arrangement determination apparatus for the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information that have been variously changed. Thus, the arrangement of the components constituting the surface defect inspection apparatus can be determined.
  • the illumination unit model information includes a variable illumination unit model parameter
  • the simulation control unit includes the illumination unit arrangement information and the imaging unit arrangement. At least one of the illumination unit arrangement information and the imaging unit arrangement information is changed while fixing the information and changing the variable illumination unit model parameter or by causing the case setting unit to execute the case setting process. Both the numerical calculation process and the detection process are executed by the image numerical calculation generation unit and the surface defect detection unit a plurality of times while changing the variable illumination unit model parameters.
  • Such a surface defect inspection device arrangement determination device detects a defect for various illumination lights in the same type of illumination unit or for various types of illumination units by changing a variable illumination unit model parameter. Can be verified numerically.
  • the imaging unit model information includes a variable imaging unit model parameter
  • the simulation control unit includes the illumination unit arrangement information and the imaging unit. While fixing the arrangement information and changing the variable imaging unit model parameter, or by causing the case setting unit to execute the case setting process, at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed.
  • Each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation calculation portion and the surface defect detection portion a plurality of times while changing the variable imaging unit model parameter.
  • Such a surface defect inspection device arrangement determination device can verify the quality of defect detection for various types of image pickup units by numerical calculation by changing a variable image pickup unit model parameter.
  • the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
  • Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by changing the number of illumination units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
  • Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by changing the number of imaging units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • the inspection object is a vehicle
  • the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle.
  • the vehicle model information includes vehicle position information representing the arrangement position of the vehicle, and the image numerical value calculation generation unit obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
  • Such a surface defect inspection device arrangement determination device can verify the quality of defect detection by numerical calculation on the assumption that the vehicle is inspected for defects on the production line for producing the vehicle, and constitutes a surface defect inspection device The arrangement of each component to be performed can be determined.
  • the inspection object is a vehicle
  • the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle.
  • the vehicle model information is a plurality of different ones, and the defect setting unit, the synthesis unit, the case setting unit, the image numerical value calculation generation unit, the surface defect detection unit, the simulation control unit, and the arrangement determination unit
  • Each of the plurality of vehicle model information performs the defect setting process, the synthesis process, the case setting process, the numerical calculation process, the detection process, the trial process, and the placement determination process.
  • Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
  • An arrangement determination program for a surface defect inspection apparatus sets an inspection area on a surface of a predetermined inspection object in a computer and sets one or a plurality of defect arrangement positions in the set inspection area.
  • a defect is obtained by combining defect model information obtained by quantifying a predetermined defect at the position where the defect is set in the A process and the inspection object model information obtained by quantifying the appearance of the inspection object.
  • the imaging is performed by illuminating the inspection object with the illumination unit according to the illumination unit arrangement information set in the C process.
  • Step E changing the at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the step C and the step D, the step E, the step F And determining the set having the best detection result from the plurality of sets obtained in the H step and stored in the storage unit.
  • the I step for obtaining the illumination unit arrangement information and the imaging unit arrangement information as the optimum illumination unit arrangement information and the imaging unit arrangement information among the plurality of sets is executed.
  • Such an arrangement determination program for a surface defect inspection apparatus numerically models an illumination unit, an imaging unit, an inspection object, and a defect, and illuminates the inspection object with an illumination unit based on illumination unit arrangement information using a computer.
  • An image generated by imaging the inspection area by the imaging unit based on the arrangement information is obtained by numerical calculation, and a defect is detected based on the obtained image.
  • the surface defect inspection apparatus arrangement determination program executes this multiple times by changing at least one of the illumination unit arrangement information and the imaging unit arrangement information, and provides the best detection result.
  • the part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times.
  • the arrangement determination program for the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information which have been changed variously, so that less labor (man-hours) is required.
  • the arrangement of the components constituting the surface defect inspection apparatus can be determined.
  • the recording medium includes a step A for setting an inspection area on a surface of a predetermined inspection object in a computer, and setting one or a plurality of defect placement positions in the set inspection area; Defect-containing inspected object model information by combining defect model information in which a predetermined defect is quantified at the defect placement position set in the step A with the inspected object model information in which the appearance of the inspection object is quantified B process for generating the image, C process for setting the arrangement position and the optical axis direction of the illumination unit that irradiates the inspection object with illumination light as illumination unit arrangement information, and the arrangement of the imaging unit for imaging the inspection object Generated in the D step of setting the position and its optical axis direction as the imaging unit arrangement information, the illumination unit model information in which the illumination unit is digitized, the imaging unit model information in which the imaging unit is digitized, and the B step Lack Based on the contained inspected object model information, the object to be inspected is illuminated by the illuminating unit according to the illuminating unit arrangement information
  • the H process to be performed and the group having the best detection result is determined from the plurality of groups obtained in the H process and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement of the determined group are determined.
  • This is a recording of a surface defect inspection apparatus arrangement determination program for executing an I step for obtaining information as optimum illumination part arrangement information and imaging part arrangement information among the plurality of sets.
  • a surface defect inspection apparatus arrangement determination method an arrangement determination apparatus and an arrangement determination program, and a recording medium on which the arrangement determination program is recorded. Can be provided.

Abstract

In the present invention, the respective placement positions and optical axis directions of an illumination unit and imaging unit are set as first and second configuration information; arithmetic is carried out to determine an image that would be obtained by illuminating the object of inspection including a defect using the illumination unit according to the first configuration information and imaging an inspection area using the imaging unit according to the second configuration information, on the basis of information quantifying the illumination unit, imaging unit, and the appearance of the object of inspection; and the defect is detected on the basis of the image. The present invention repeatedly carries out the above processing while changing at least one from among the first and second configuration information and determines the first and second configuration information with the best detection result as the optimal configuration.

Description

表面欠陥検査装置の配置決定方法、該装置、該プログラムおよび記録媒体Method for determining arrangement of surface defect inspection apparatus, apparatus, program and recording medium
 本発明は、表面欠陥検査装置を構成する各構成部の配置を決定する表面欠陥検査装置の配置決定方法、配置決定装置および配置決定プログラム、ならびに、前記配置決定プログラムを記録した記録媒体に関する。 The present invention relates to a surface defect inspection apparatus arrangement determination method, an arrangement determination apparatus, an arrangement determination program, and a recording medium on which the arrangement determination program is recorded, for determining the arrangement of each component constituting the surface defect inspection apparatus.
 従来、車両ボディーにおける塗装表面の欠陥を画像処理によって検出する表面欠陥検査装置が知られており、例えば、特許文献1や特許文献2等に開示されている。前記欠陥は、例えばいわゆる「ブツ」、「ダレ」および「ハジキ」等と呼称される塗装面における凹凸等である。 2. Description of the Related Art Conventionally, surface defect inspection apparatuses that detect defects on a painted surface in a vehicle body by image processing are known, and are disclosed in, for example, Patent Document 1 and Patent Document 2. The defect is, for example, unevenness or the like on the painted surface referred to as so-called “bump”, “sag”, “repellency” or the like.
 この特許文献1に開示された表面欠陥検査装置は、被検査体の被検査面に明暗パターンの光を照射し、前記被検査面からの反射光に基づいて受光画像を作成し、この受光画像に基づいて被検査面上の欠陥を検査する装置である。前記特許文献2に開示された塗装検査装置は、このような表面欠陥検査装置を構成する照明部とCCDカメラ部とをロボットの先端に搭載した装置である。 The surface defect inspection apparatus disclosed in Patent Document 1 irradiates a surface to be inspected with light of a bright and dark pattern, creates a light reception image based on reflected light from the surface to be inspected, and this light reception image Is a device for inspecting a defect on a surface to be inspected based on the above. The coating inspection apparatus disclosed in Patent Document 2 is an apparatus in which an illumination unit and a CCD camera unit constituting such a surface defect inspection apparatus are mounted on the tip of a robot.
 このような表面欠陥検査装置では、被検査面に明暗パターンの光を照射する照明部と前記被検査面を撮像する撮像部との、前記被検査面に対する位置関係によって、前記被検査面に生じている欠陥が検出されない場合が生じ得る。例えば、車両ボディーの外装には、様々な曲率を持つ部分が存在し、前記曲率が大きい部分(曲率半径が小さい部分)では、前記明暗パターンが過密になった画像となり、前記欠陥が検出し難い。また、前記曲率が小さい(曲率半径が大きい部分)では、明暗パターンの明部分の幅が大きくなり過ぎ、欠陥部分も正常部分と略同様な画像となり、前記欠陥が検出し難い。また例えば、車両ボディーには、ドアミラー等が付設されているため、撮像部から見てその影となる部分は、検査することができない。このため、欠陥の見落としを少なくしてより適正に検査するために、前記照明部における位置および向きと前記撮像部における位置および向きとを様々に変えて実機で検証する必要があり、その手間(工数)がかかってしまう。また、前記影となる部分は、別途に撮像部を用意する必要があるが、コスト削減のために、最適な個数の撮像部を決定する必要があり、上記と同様な手間(工数)がかかる。さらに、車種が変更されると、再度、前記照明部および前記撮像部それぞれにおける各位置および各向きと前記撮像部の個数とを設定し直さなければならず、上記と同様な手間(工数)がかかる。 In such a surface defect inspection apparatus, the surface to be inspected is generated by the positional relationship between the illumination unit that irradiates the inspection surface with light of a light and dark pattern and the imaging unit that images the surface to be inspected with respect to the surface to be inspected. There may be a case where a defective is not detected. For example, there are portions with various curvatures on the exterior of the vehicle body, and the portion with a large curvature (the portion with a small curvature radius) becomes an image in which the light / dark pattern is overcrowded, and the defect is difficult to detect. . In addition, when the curvature is small (part where the radius of curvature is large), the width of the bright part of the light / dark pattern becomes too large, and the defective part becomes an image substantially similar to the normal part, and the defect is difficult to detect. In addition, for example, since a door mirror or the like is attached to the vehicle body, a portion that becomes a shadow when viewed from the imaging unit cannot be inspected. For this reason, in order to reduce the oversight of defects and perform a more appropriate inspection, it is necessary to verify with an actual machine by changing the position and orientation in the illumination unit and the position and orientation in the imaging unit in various ways. Man-hours). In addition, although it is necessary to prepare an image pickup unit separately for the shadowed portion, it is necessary to determine the optimum number of image pickup units in order to reduce costs, and it takes time and effort similar to the above. . Furthermore, when the vehicle type is changed, the positions and orientations of the illumination unit and the imaging unit and the number of imaging units must be set again. Take it.
特開平9-318337号公報JP 9-318337 A 特開2007-278713号公報JP 2007-278713 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる表面欠陥検査装置の配置決定方法、配置決定装置および配置決定プログラム、ならびに、前記配置決定プログラムを記録した記録媒体を提供することである。 The present invention is an invention made in view of the above-described circumstances, and the object thereof is the arrangement of the surface defect inspection apparatus that can determine the arrangement of each component constituting the surface defect inspection apparatus with less labor (man-hours). It is to provide a determination method, an arrangement determination apparatus and an arrangement determination program, and a recording medium on which the arrangement determination program is recorded.
 上述した目的を実現するために、本発明の一側面を反映した表面欠陥検査装置の配置決定方法、配置決定装置および配置決定プログラムは、照明部及び撮像部それぞれの配置位置及び光軸方向を第1及び第2配置情報として設定し、照明部、撮像部及び欠陥を含む被検査物の外観それぞれを数値化した各情報に基づき第1配置情報による照明部で被検査物を照明し第2配置情報による撮像部で検査領域を撮像して得られる画像を数値演算で求め、この画像に基づき欠陥を検出する。上記表面欠陥検査装置の配置決定方法、配置決定装置および配置決定プログラムは、上記処理を、第1及び第2配置情報の少なくとも一方を変えて複数回実行し、最良の検出結果の第1及び第2配置情報を最適配置として求める。そして、本発明の一側面を反映した記録媒体は、上記配置決定プログラムを記録する。 In order to achieve the above-described object, the surface defect inspection apparatus arrangement determination method, arrangement determination apparatus, and arrangement determination program reflecting one aspect of the present invention determine the arrangement position and the optical axis direction of each of the illumination unit and the imaging unit. First and second arrangement information is set as the second arrangement by illuminating the inspected object with the illuminating unit based on the first arrangement information based on information obtained by quantifying the appearance of the inspected object including the illumination unit, the imaging unit, and the defect. An image obtained by imaging the inspection area by the imaging unit based on information is obtained by numerical calculation, and a defect is detected based on this image. The arrangement determination method, the arrangement determination apparatus, and the arrangement determination program of the surface defect inspection apparatus execute the above process a plurality of times while changing at least one of the first and second arrangement information, and the first and first detection results of the best detection result. 2 Arrangement information is obtained as an optimum arrangement. A recording medium reflecting one aspect of the present invention records the above-described arrangement determination program.
 発明の1または複数の実施形態により与えられる利点および特徴は、以下に与えられる詳細な説明および添付図面から十分に理解される。これら詳細な説明及び添付図面は、例としてのみ与えられるものであり本発明の限定の定義として意図されるものではない。 The advantages and features afforded by one or more embodiments of the invention will be more fully understood from the detailed description and accompanying drawings provided below. The detailed description and the accompanying drawings are given by way of example only and are not intended as a definition of the limitations of the invention.
実施形態における配置決定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the arrangement | positioning determination apparatus in embodiment. 表面欠陥の一例を示す図である。It is a figure which shows an example of a surface defect. いわゆる「ブツ」と呼称される表面欠陥のモデルを説明するための図である。It is a figure for demonstrating the model of the surface defect called what is called a "butsu". 前記配置決定装置を実装したコンピュータの構成を示すブロック図である。It is a block diagram which shows the structure of the computer which mounted the said arrangement | positioning determination apparatus. 実施形態における配置決定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the arrangement | positioning determination apparatus in embodiment. 図5に示すフローチャートにおける欠陥設定処理を説明するための図である。It is a figure for demonstrating the defect setting process in the flowchart shown in FIG. 図5に示すフローチャートにおけるケース設定処理を説明するための図である。It is a figure for demonstrating the case setting process in the flowchart shown in FIG. 図5に示すフローチャートにおける数値演算処理により生成された画像の一例を示す図である。It is a figure which shows an example of the image produced | generated by the numerical calculation process in the flowchart shown in FIG. 図5に示すフローチャートにおける欠陥検出処理を説明するための図である。It is a figure for demonstrating the defect detection process in the flowchart shown in FIG. 変形形態を説明するための図である。It is a figure for demonstrating a deformation | transformation form. 他の変形形態を説明するための図である。It is a figure for demonstrating another modification.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。しかしながら、発明の範囲は、開示された実施形態に限定されない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. In this specification, when referring generically, it shows with the reference symbol which abbreviate | omitted the suffix, and when referring to an individual structure, it shows with the reference symbol which attached the suffix.
 本実施形態における配置決定装置および配置決定方法は、例えば照明装置や撮像装置等の、表面欠陥検査装置を構成する各構成部(各構成装置)の配置を決定する表面欠陥検査装置の配置決定装置および配置決定方法である。この表面欠陥検査装置の配置決定装置および方法は、被検査物を数値モデル化した被検査物モデル情報に、欠陥を数値モデル化した欠陥モデル情報を合成することによって、欠陥を持つ被検査物の数値モデルを欠陥含有被検査物モデル情報を作り、この欠陥含有被検査物モデル情報で表された、欠陥を持つ被検査物に、数値モデル化した照明部で照明部配置情報として設定された前記照明部の配置位置およびその光軸方向から照明光を照射し、数値モデル化した撮像部で撮像部配置情報として設定された前記撮像部の配置位置およびその光軸方向から前記被検査物を撮像した場合の画像を数値演算で求め、この求めた画像から前記欠陥を検出し、その検出結果に基づいて、前記設定された照明部配置情報および撮像部配置情報を評価する。そして、この表面欠陥検査装置の配置決定装置および方法は、これを様々な照明部配置情報および撮像部配置情報で試行し、試行した中で最良の検出結果を与えた照明部配置情報および撮像部配置情報を最適な照明部配置情報および撮像部配置情報として求める。これによって上記表面欠陥検査装置の配置決定装置および方法は、数値実験(シミュレーション)によって、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる。以下、このような表面欠陥検査装置の配置決定装置、これに実装された表面欠陥検査装置の配置決定方法および配置決定プログラム、ならびに、前記配置決定プログラムを記録した記録媒体について、より具体的に説明する。 The arrangement determining apparatus and the arrangement determining method in the present embodiment are, for example, an arrangement determining apparatus for a surface defect inspection apparatus that determines the arrangement of each component (each component apparatus) constituting the surface defect inspection apparatus, such as an illumination apparatus or an imaging apparatus. And an arrangement determination method. This surface defect inspection apparatus arrangement determination apparatus and method synthesize the defect model information obtained by numerically modeling the defect with the inspection object model information obtained by numerically modeling the inspection object, thereby detecting the inspection object having the defect. The numerical model is created as defect-containing inspection object model information, and the defect-containing inspection object model information represented by the defect-containing inspection object model information is set as illumination unit arrangement information in the numerically modeled illumination unit. Illumination light is irradiated from the arrangement position of the illumination unit and its optical axis direction, and the inspection object is imaged from the arrangement position of the imaging unit and the optical axis direction set as the imaging unit arrangement information in the numerically modeled imaging unit In this case, an image is obtained by numerical calculation, the defect is detected from the obtained image, and the set illumination unit arrangement information and imaging unit arrangement information are evaluated based on the detection result. And this arrangement determination apparatus and method of the surface defect inspection apparatus tried this with various illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging part which gave the best detection result in the trial Arrangement information is obtained as optimal illumination unit arrangement information and imaging unit arrangement information. As a result, the apparatus and method for determining the arrangement of the surface defect inspection apparatus can determine the arrangement of the components constituting the surface defect inspection apparatus with less effort (man-hours) by a numerical experiment (simulation). Hereinafter, the arrangement determination apparatus for the surface defect inspection apparatus, the arrangement determination method and arrangement determination program for the surface defect inspection apparatus mounted thereon, and the recording medium on which the arrangement determination program is recorded will be described more specifically. To do.
 図1は、実施形態における配置決定装置の構成を示すブロック図である。図2は、表面欠陥の一例を示す図である。図2Aは、いわゆる「ブツ」と呼称される表面欠陥の一例を示す、図面化した写真であり、図2Bは、図2Aに示す、図面化した写真をさらに模式化した模式図である。図2Cは、いわゆる「ダレ」と呼称される表面欠陥の一例を示す、図面化した写真であり、図2Dは、図2Cに示す、図面化した写真をさらに模式化した模式図である。図2Eは、いわゆる「ハジキ」と呼称される表面欠陥の一例を示す、図面化した写真であり、図2Fは、図2Eに示す、図面化した写真をさらに模式化した模式図である。図3は、いわゆる「ブツ」と呼称される表面欠陥のモデルを説明するための図である。図4は、前記配置決定装置を実装したコンピュータの構成を示すブロック図である。 FIG. 1 is a block diagram illustrating a configuration of an arrangement determining apparatus according to an embodiment. FIG. 2 is a diagram illustrating an example of a surface defect. FIG. 2A is a photograph showing a drawing showing an example of a surface defect called “butsu”, and FIG. 2B is a schematic diagram further showing the drawing shown in FIG. 2A. FIG. 2C is a photograph showing a drawing showing an example of a surface defect called “sag”, and FIG. 2D is a schematic diagram further showing the drawing shown in FIG. 2C. FIG. 2E is a drawing of a photograph showing an example of a surface defect referred to as a so-called “repellency”, and FIG. 2F is a schematic view further illustrating the drawing of the drawing shown in FIG. 2E. FIG. 3 is a diagram for explaining a model of a surface defect called a “butsu”. FIG. 4 is a block diagram showing a configuration of a computer in which the arrangement determining device is installed.
 実施形態における配置決定装置Dは、例えば、図1に示すように、入力部1と、出力部2と、インターフェース部3と、制御処理部4と、記憶部5とを備える。 The arrangement determination apparatus D in the embodiment includes, for example, an input unit 1, an output unit 2, an interface unit 3, a control processing unit 4, and a storage unit 5, as shown in FIG.
 入力部1は、制御処理部4に接続され、例えば、試行の開始を指示するコマンド等の各種コマンド、および、例えば被検査物モデル情報、欠陥モデル情報、照明部モデル情報および撮像部モデル情報等の前記試行する上で必要な各種データを配置決定装置Dに入力する装置であり、例えば、所定の機能を割り付けられた複数の入力スイッチ、キーボードおよびマウス等である。出力部2は、制御処理部4に接続され、制御処理部4の制御に従って、入力部1から入力されたコマンドやデータ、および、当該配置決定装置Dによって求められた複数の試行の中で最適な照明部配置情報および撮像部配置情報を出力する装置であり、例えばCRTディスプレイ、LCD(液晶表示装置)および有機ELディスプレイ等の表示装置やプリンタ等の印刷装置等である。 The input unit 1 is connected to the control processing unit 4 and, for example, various commands such as a command for instructing the start of a trial, and for example, inspection object model information, defect model information, illumination unit model information, imaging unit model information, and the like Is a device that inputs various data necessary for the trial to the arrangement determining device D, for example, a plurality of input switches, a keyboard, a mouse, and the like assigned with a predetermined function. The output unit 2 is connected to the control processing unit 4, and is optimal among a plurality of trials obtained by the command and data input from the input unit 1 and the placement determination device D according to the control of the control processing unit 4. Such as a display device such as a CRT display, an LCD (liquid crystal display device) and an organic EL display, a printing device such as a printer, and the like.
 なお、入力部1および出力部2からタッチパネルが構成されてもよい。このタッチパネルを構成する場合において、入力部1は、例えば抵抗膜方式や静電容量方式等の操作位置を検出して入力する位置入力装置であり、出力部2は、表示装置である。このタッチパネルでは、表示装置の表示面上に位置入力装置が設けられ、表示装置に入力可能な1または複数の入力内容の候補が表示され、ユーザが、入力したい入力内容を表示した表示位置を触れると、位置入力装置によってその位置が検出され、検出された位置に表示された表示内容がユーザの操作入力内容として配置決定装置Dに入力される。このようなタッチパネルでは、ユーザは、入力操作を直感的に理解し易いので、ユーザにとって取り扱い易い配置決定装置Dが提供される。 A touch panel may be configured from the input unit 1 and the output unit 2. In the case of configuring this touch panel, the input unit 1 is a position input device that detects and inputs an operation position such as a resistive film method or a capacitance method, and the output unit 2 is a display device. In this touch panel, a position input device is provided on the display surface of the display device, one or more input content candidates that can be input to the display device are displayed, and the user touches the display position where the input content to be input is displayed. Then, the position is detected by the position input device, and the display content displayed at the detected position is input to the arrangement determining device D as the operation input content of the user. In such a touch panel, since the user can easily understand the input operation intuitively, the arrangement determination device D that is easy for the user to handle is provided.
 IF部3は、制御処理部4に接続され、制御処理部4の制御に従って、外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS-232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Asscoiation)規格等の赤外線通信を行うインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。また、IF部3は、外部機器との間で通信を行う回路であり、例えば、データ通信カードや、IEEE802.11規格等に従った通信インターフェース回路等であっても良い。 The IF unit 3 is a circuit that is connected to the control processing unit 4 and inputs / outputs data to / from an external device according to the control of the control processing unit 4, for example, an RS-232C interface circuit that is a serial communication system An interface circuit using the Bluetooth (registered trademark) standard, an interface circuit performing infrared communication such as an IrDA (Infrared Data Association) standard, and an interface circuit using the USB (Universal Serial Bus) standard. The IF unit 3 is a circuit that performs communication with an external device. For example, the IF unit 3 may be a data communication card, a communication interface circuit that conforms to the IEEE 802.11 standard, or the like.
 記憶部5は、制御処理部4に接続され、制御処理部4の制御に従って、各種の所定のプログラムおよび各種の所定のデータを記憶する回路である。 The storage unit 5 is a circuit that is connected to the control processing unit 4 and stores various predetermined programs and various predetermined data under the control of the control processing unit 4.
 前記各種の所定のプログラムには、制御プログラム、欠陥設定プログラム、合成プログラム、ケース設定プログラム、画像数値演算生成プログラム、表面欠陥検出プログラム、シミュレーション制御プログラム、および、配置決定プログラム等が含まれる。前記制御プログラムは、配置決定装置Dの各部1~3、5を当該各部の機能に応じてそれぞれ制御するプログラムである。前記欠陥設定プログラムは、所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数、ランダム(無作為)に設定する欠陥設定処理を実行するプログラムである。前記合成プログラムは、後述の被検査物モデル情報記憶部54に記憶された被検査物モデル情報に、前記欠陥設定プログラムで設定された欠陥の配置位置で後述の欠陥モデル情報記憶部53に記憶された欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成する合成処理を実行するプログラムである。前記ケース設定プログラムは、照明部における配置位置およびその光軸方向を照明部配置情報としてランダムに設定し、撮像部における配置位置およびその光軸方向を撮像部配置情報としてランダムに設定するケース設定処理を実行するプログラムである。前記画像数値演算生成プログラムは、後述の照明部モデル情報記憶部51に記憶された照明部モデル情報、後述の撮像部モデル情報記憶部52に記憶された撮像部モデル情報、および、前記合成プログラムで生成された欠陥含有被検査物モデル情報に基づいて、前記ケース設定プログラムで設定された照明部配置情報による前記照明部で前記被検査物を照明し前記ケース設定プログラムで設定された撮像部配置情報による前記撮像部で前記欠陥設定プログラムで設定された前記検査領域を撮像することによって生成される画像を数値演算で求める数値演算処理を実行するプログラムである。前記表面欠陥検出プログラムは、画像数値演算生成プログラムで求められた画像に基づいて欠陥を検出し、この検出した検出結果と前記ケース設定プログラムで設定された照明部配置情報および撮像部配置情報とを互いに対応付けて1組として後述のシミュレーション結果記憶部56に記憶する検出処理を実行するプログラムである。前記シミュレーション制御プログラムは、前記ケース設定処理を前記ケース設定プログラムに実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記数値演算処理および前記検出処理それぞれを前記画像数値演算生成プログラムおよび前記表面欠陥検出プログラムそれぞれに複数回実行させる試行処理を実行するプログラムである。前記配置決定プログラムは、シミュレーション結果記憶部56に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、この決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求める配置決定処理を実行するプログラムである。 The various predetermined programs include a control program, a defect setting program, a synthesis program, a case setting program, an image numerical calculation generation program, a surface defect detection program, a simulation control program, and an arrangement determination program. The control program is a program for controlling each of the units 1 to 3 and 5 of the arrangement determining apparatus D according to the function of each unit. The defect setting program executes a defect setting process in which an inspection area is set on the surface of a predetermined inspection object, and one or a plurality of defect placement positions are set randomly (randomly) in the set inspection area. It is a program. The synthesis program is stored in an inspection object model information stored in an inspection object model information storage unit 54, which will be described later, in a defect model information storage unit 53, which will be described later, at a defect arrangement position set by the defect setting program. This is a program for executing a synthesis process for generating defect-containing inspection object model information by synthesizing the defect model information. The case setting program randomly sets the arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, and sets the arrangement position in the imaging unit and its optical axis direction randomly as image pickup unit arrangement information It is a program that executes The image numerical calculation generation program includes illumination unit model information stored in an illumination unit model information storage unit 51 described later, imaging unit model information stored in an imaging unit model information storage unit 52 described later, and the synthesis program. Based on the generated defect-containing inspection object model information, the imaging unit arrangement information set by the case setting program by illuminating the inspection object with the illumination unit according to the illumination unit arrangement information set by the case setting program Is a program for executing a numerical calculation process for calculating an image generated by imaging the inspection area set by the defect setting program by the numerical calculation. The surface defect detection program detects a defect based on the image obtained by the image numerical calculation generation program, and detects the detected result and the illumination unit arrangement information and the imaging unit arrangement information set by the case setting program. This is a program that executes detection processing stored in a simulation result storage unit 56 described later as one set in association with each other. The simulation control program causes the case setting program to execute the case setting program to change each of the numerical calculation process and the detection process while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information. It is a program that executes trial processing that causes an image numerical calculation generation program and the surface defect detection program to be executed a plurality of times. The arrangement determination program determines a group having the best detection result from a plurality of groups stored in the simulation result storage unit 56, and sets the plurality of illumination unit arrangement information and imaging unit arrangement information of the determined group. This is a program for executing an arrangement determination process to be obtained as the optimum illumination unit arrangement information and image pickup unit arrangement information.
 前記各種の所定のデータには、例えば照明部モデル情報、撮像部モデル情報、欠陥モデル情報、被検査物モデル情報等の、各プログラムを実行する上で必要なデータ等が含まれる。記憶部5は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。記憶部5は、前記所定のプログラムの実行中に生じるデータ等を記憶するいわゆる制御処理部4のワーキングメモリとなるRAM(Random Access Memory)等を含む。そして、記憶部5は、照明部モデル情報、撮像部モデル情報、欠陥モデル情報、被検査物モデル情報、前記被検査物モデル情報に欠陥モデル情報を合成することによって生成された欠陥含有被検査物モデル情報、および、試行の結果であるシミュレーション結果それぞれを記憶するために、照明部モデル情報記憶部51、撮像部モデル情報記憶部52、欠陥モデル情報記憶部53、被検査物モデル情報記憶部54、欠陥含有被検査物モデル情報記憶部55、および、シミュレーション結果記憶部56を機能的に備える。 The various kinds of predetermined data include data necessary for executing each program such as illumination unit model information, imaging unit model information, defect model information, and inspection object model information. The storage unit 5 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. The storage unit 5 includes a RAM (Random Access Memory) that serves as a working memory of the so-called control processing unit 4 that stores data generated during execution of the predetermined program. The storage unit 5 includes the illumination unit model information, the imaging unit model information, the defect model information, the inspection object model information, and the defect-containing inspection object generated by combining the defect model information with the inspection object model information. In order to store model information and simulation results as trial results, respectively, an illumination unit model information storage unit 51, an imaging unit model information storage unit 52, a defect model information storage unit 53, and an inspection object model information storage unit 54 The defect-containing inspection object model information storage unit 55 and the simulation result storage unit 56 are functionally provided.
 なお、このような各種の所定のプログラムや各種の所定のデータは、通信ネットワークに接続され、これら各種の所定のプログラムや各種の所定のデータを記憶し、管理するサーバ装置から、前記通信ネットワークおよびIF部3を介してダウンロードされ、記憶部5に記憶されて良い。あるいは、これら各種の所定のプログラムや各種の所定のデータを記録(記憶)した、例えばUSBメモリ等の記録媒体から、IF部3を介して読み込まれ、記憶部5に記憶されて良い。あるいは、配置決定装置Dは、例えばDVD-ROMドライブ装置やCD-ROMドライブ装置等のドライブ装置をさらに備え、これら各種の所定のプログラムや各種の所定のデータを記録した、例えばDVD-ROMやCD-ROM等からIF部3を介して読み込まれ、記憶部5に記憶されて良い。また、各種の所定のデータは、入力部1から入力され、記憶部5に記憶されても良い。 Such various predetermined programs and various predetermined data are connected to a communication network, and from the server device that stores and manages these various predetermined programs and various predetermined data, the communication network and It may be downloaded via the IF unit 3 and stored in the storage unit 5. Alternatively, these various predetermined programs and various predetermined data may be read from a recording medium such as a USB memory, which is recorded (stored), via the IF unit 3 and stored in the storage unit 5. Alternatively, the arrangement determining device D further includes a drive device such as a DVD-ROM drive device or a CD-ROM drive device, for example, which stores various predetermined programs and various predetermined data, such as a DVD-ROM or CD. It may be read from the ROM or the like via the IF unit 3 and stored in the storage unit 5. Various predetermined data may be input from the input unit 1 and stored in the storage unit 5.
 照明部モデル情報記憶部51は、表面欠陥検査装置を構成する、被検査物に照明光を照射する照明部を数値化した照明部モデルを表す情報である前記照明部モデル情報を記憶するものである。照明部モデル情報は、入力部1や、IF部3等から予め入力され、照明部モデル情報記憶部51に記憶される。照明部モデル情報は、照明部の光放射部分における輝度分布を表す輝度分布情報、照明部の光放射部分における形状を表す形状情報、および、照明部の光放射部分における配光特性を表す配光特性情報のうちの少なくとも前記輝度分布情報を含む1または複数を含む。前記輝度分布は、輝度が位置によって異なる分布だけでなく、輝度が位置にかかわらず均一である分布を含んで良い。前記照明部の光放射部分における形状は、前記光放射部分の幅、高さおよび光放射面の面形状(平面や曲面等)等によって規定される。前記形状は、明暗パターンを含み、前記明暗パターンにおける明部幅および明部間の間隔を含んで良い。なお、照明部を複数に設定することで、前記明暗パターンが構成されても良い。この場合では、各照明部の形状を設定することによって前記明暗パターンにおける明部幅が設定され、各照明部間の間隔を設定することによって前記明暗パターンにおける明部間の間隔が設定される。 The illuminator model information storage unit 51 stores the illuminator model information, which is information representing an illuminator model that quantifies the illuminator that irradiates the object to be inspected with illumination light, which constitutes the surface defect inspection apparatus. is there. The illumination unit model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the illumination unit model information storage unit 51. The illumination unit model information includes luminance distribution information representing the luminance distribution in the light emission part of the illumination unit, shape information representing the shape in the light emission part of the illumination unit, and light distribution representing the light distribution characteristics in the light emission part of the illumination unit. One or more of the characteristic information including at least the luminance distribution information is included. The luminance distribution may include not only a distribution in which the luminance varies depending on the position but also a distribution in which the luminance is uniform regardless of the position. The shape of the light emitting portion of the illumination unit is defined by the width and height of the light emitting portion, the surface shape of the light emitting surface (plane, curved surface, etc.) and the like. The shape may include a bright / dark pattern, and may include a bright part width and a spacing between bright parts in the bright / dark pattern. Note that the light / dark pattern may be configured by setting a plurality of illumination units. In this case, the bright part width in the bright / dark pattern is set by setting the shape of each illumination part, and the interval between bright parts in the bright / dark pattern is set by setting the interval between the illumination parts.
 照明部は、1種類であって良く、これに応じて照明部モデル情報は、1種類であって良い。あるいは、照明部は、複数の種類であって良く、これに応じて照明部モデル情報は、複数の種類であって良い。複数の種類の照明部(複数の種類の照明部モデル情報)は、輝度分布(輝度分布情報)、形状(形状情報)および配光特性(配光特性情報)のうちの少なくとも1つが互いに異なる。照明部(照明部モデル情報)が複数の種類から成る場合、これら複数の種類のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、後述のシミュレーション制御部47によってランダムに選択されることによって、試行に用いる照明部(照明部モデル情報)が設定される。 The illumination unit may be of one type, and accordingly the illumination unit model information may be of one type. Alternatively, the illumination unit may be of a plurality of types, and accordingly the illumination unit model information may be of a plurality of types. The plurality of types of illumination units (plural types of illumination unit model information) are different from each other in at least one of luminance distribution (luminance distribution information), shape (shape information), and light distribution characteristics (light distribution characteristic information). When the illumination unit (illumination unit model information) includes a plurality of types, one of the plurality of types is randomly selected by receiving the designation from the input unit 1 or by the simulation control unit 47 described later. Thus, the illumination unit (illumination unit model information) used for the trial is set.
 撮像部モデル情報記憶部52は、表面欠陥検査装置を構成する、被検査物を撮像する撮像部を数値化した撮像部モデルを表す情報である前記撮像部モデル情報を記憶するものである。撮像部モデル情報は、入力部1や、IF部3等から予め入力され、撮像部モデル情報記憶部52に記憶される。撮像部モデル情報は、撮像部における撮像素子の画素サイズ(画素大きさ)および画素数(撮像素子の大きさ)を表す撮像素子情報、撮像部における撮像光学系の光学特性を表す光学特性情報、および、撮像部における撮像素子の分光感度特性を表す分光感度特性情報のうちの少なくとも前記撮像素子情報を含む1または複数を含む。前記光学特性情報は、前記撮像光学系を形成する光学素子のコンストラクションデータ、前記光学素子の硝材データおよび前記光学素子の表面コート、ならびに、前記撮像光学系のFナンバーを含んで良い。 The imaging unit model information storage unit 52 stores the imaging unit model information, which is information representing an imaging unit model that quantifies the imaging unit that images the inspection object, which constitutes the surface defect inspection apparatus. The imaging unit model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the imaging unit model information storage unit 52. The imaging unit model information includes imaging element information indicating the pixel size (pixel size) and the number of pixels (imaging element size) of the imaging element in the imaging unit, optical characteristic information indicating the optical characteristics of the imaging optical system in the imaging unit, And one or a plurality of spectral sensitivity characteristic information representing spectral sensitivity characteristics of the imaging element in the imaging unit including at least the imaging element information. The optical characteristic information may include construction data of an optical element forming the imaging optical system, glass material data of the optical element and a surface coat of the optical element, and an F number of the imaging optical system.
 撮像部は、1種類であって良く、これに応じて撮像部モデル情報は、1種類であって良い。あるいは、撮像部は、複数の種類であって良く、これに応じて撮像部モデル情報は、複数の種類であって良い。複数の種類の撮像部(複数の種類の撮像部モデル情報)は、画素サイズおよび画素数(撮像素子情報)、光学特性(光学特性情報)および分光感度特性(分光感度特性情報)のうちの少なくとも1つが互いに異なる。撮像部(撮像部モデル情報)が複数の種類から成る場合、これら複数の種類のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、後述のシミュレーション制御部47によってランダムに選択されることによって、試行に用いる撮像部(撮像部モデル情報)が設定される。 The imaging unit may be of one type, and according to this, the imaging unit model information may be of one type. Alternatively, the imaging unit may be of a plurality of types, and the imaging unit model information may be of a plurality of types accordingly. The plurality of types of imaging units (plural types of imaging unit model information) includes at least one of a pixel size and a number of pixels (imaging element information), an optical characteristic (optical characteristic information), and a spectral sensitivity characteristic (spectral sensitivity characteristic information). One is different from each other. When the imaging unit (imaging unit model information) is composed of a plurality of types, one of the plurality of types is randomly selected by receiving the designation from the input unit 1 or by the simulation control unit 47 described later. Thus, the imaging unit (imaging unit model information) used for the trial is set.
 欠陥モデル情報記憶部53は、被検査物に生じ得る所定の欠陥を数値化した欠陥モデルを表す情報である前記欠陥モデル情報を記憶するものである。欠陥モデル情報は、入力部1や、IF部3等から予め入力され、欠陥モデル情報記憶部53に記憶される。前記被検査物が車両の外装面に施された塗装面である場合、前記欠陥には、図2Aおよび図2Bに一例として示すいわゆる「ブツ」、図2Cおよび図2Dに一例として示すいわゆる「ダレ」、および、図2Eおよび図2Fに一例として示すいわゆる「ハジキ」等がある。このような欠陥の外形輪郭面を表す数値データが前記欠陥モデル情報として欠陥モデル情報記憶部53に記憶される。図3には、一例として、前記「ブツ」の外形輪郭面における1つの断面線が図示されている。これら複数の種類のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、後述のシミュレーション制御部47によってランダムに選択されることによって、試行に用いる欠陥(欠陥モデル情報)が設定される。 The defect model information storage unit 53 stores the defect model information, which is information representing a defect model obtained by quantifying a predetermined defect that may occur in the inspection object. The defect model information is input in advance from the input unit 1, the IF unit 3, etc., and is stored in the defect model information storage unit 53. When the object to be inspected is a painted surface applied to the exterior surface of a vehicle, the defect may be a so-called “slip” shown as an example in FIGS. 2A and 2B, or a so-called “sag” shown as an example in FIGS. 2C and 2D. And so-called “repellency” shown as an example in FIGS. 2E and 2F. Numerical data representing the outer contour surface of such a defect is stored in the defect model information storage unit 53 as the defect model information. FIG. 3 shows, as an example, one cross-sectional line in the outer contour surface of the “Butsu”. A defect (defect model information) to be used for trial is set by accepting designation of one of the plurality of types from the input unit 1 or by random selection by the simulation control unit 47 described later. The
 なお、同種(上述の例では「ブツ」、「ダレ」および「ハジキ」のうちのいずれか1つの種類)の欠陥であっても、その大きさや高さや平面視の形状等の違いによって欠陥モデル情報が複数から成っても良い。あるいは、1つの種類の欠陥モデルから、拡大、縮小または変形によってその大きさや高さや平面視の形状等の異なる欠陥モデル情報が生成されても良い。これら複数のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、後述のシミュレーション制御部47によってランダムに選択されることによって、試行に用いる欠陥(欠陥モデル情報)が設定される。また、欠陥をより良好に検出できるか否かによって表面欠陥検査装置を構成する各構成部の配置を決定する目的から、好適には、欠陥のサイズは、前記表面欠陥検査装置で検出できる限界のサイズである。 Note that even if the defect is of the same type (in the above example, any one of “spot”, “sag”, and “repellency”), the defect model depends on the size, height, shape in plan view, and the like. Information may consist of a plurality. Alternatively, from one type of defect model, different defect model information such as the size, height, and shape in plan view may be generated by enlargement, reduction, or deformation. A defect (defect model information) used for a trial is set when one of the plurality receives the designation from the input unit 1 or is randomly selected by the simulation control unit 47 described later. In addition, for the purpose of determining the arrangement of each component constituting the surface defect inspection apparatus depending on whether or not defects can be detected better, preferably the size of the defect is a limit that can be detected by the surface defect inspection apparatus. Size.
 被検査物モデル情報記憶部54は、表面欠陥検査装置によって検査される被検査物の外観を数値化した被検査物モデルを表す情報である前記被検査物モデル情報を記憶するものである。被検査物モデル情報は、入力部1や、IF部3等から予め入力され、被検査物モデル情報記憶部54に記憶される。被検査物モデル情報は、被検査物の配置位置を表す被検査物位置情報、被検査物の外側輪郭面形状を表す被検査物輪郭形状情報、および、被検査物の外側の反射特性を表す被検査物反射特性情報を含む。前記被検査物位置情報は、被検査物を表面欠陥検査装置で検査する空間(仮想空間)における、被検査物の所定の点の位置で表される。例えば、被検査物の重心点の位置や中央点の位置で表される。前記被検査物輪郭形状情報は、前記被検査物位置情報で表される被検査物の配置位置を原点に、被検査物の外側輪郭面を表す数値データである。前記反射特性は、反射光の配光特性で表されて良い。被検査物の塗装は、単層構造であって良く、あるいは、第1塗装層および前記第1塗装層上に上塗りされた第2塗装層から成る2層構造であって良く、この場合では、前記被検査物反射特性情報は、前記第1塗装層の反射特性を表す第1塗装層反射特性情報と、前記第2塗装層の反射特性を表す第2塗装層反射特性情報とから成る。前記反射特性は、分光反射特性であって良い。 The inspection object model information storage unit 54 stores the inspection object model information, which is information representing an inspection object model in which the appearance of the inspection object to be inspected by the surface defect inspection apparatus is quantified. The inspection object model information is input in advance from the input unit 1, the IF unit 3, and the like, and is stored in the inspection object model information storage unit 54. The inspection object model information represents inspection object position information indicating the arrangement position of the inspection object, inspection object contour shape information indicating the outer contour surface shape of the inspection object, and reflection characteristics outside the inspection object. Includes inspection object reflection characteristic information. The inspection object position information is represented by the position of a predetermined point of the inspection object in a space (virtual space) in which the inspection object is inspected by the surface defect inspection apparatus. For example, it is represented by the position of the center of gravity or the position of the center point of the inspection object. The inspected object contour shape information is numerical data representing the outer contour surface of the inspected object with the arrangement position of the inspected object represented by the inspected object position information as the origin. The reflection characteristic may be represented by a light distribution characteristic of reflected light. The object to be inspected may have a single-layer structure or a two-layer structure including a first paint layer and a second paint layer overcoated on the first paint layer. The inspection object reflection characteristic information includes first coating layer reflection characteristic information indicating the reflection characteristic of the first coating layer and second coating layer reflection characteristic information indicating the reflection characteristic of the second coating layer. The reflection characteristic may be a spectral reflection characteristic.
 被検査物は、1種類であって良く、これに応じて被検査物モデル情報は、1種類であって良い。あるいは、被検査物は、複数の種類であって良く、これに応じて被検査物モデル情報は、複数の種類であって良い。複数の種類の被検査物(複数の種類の被検査物モデル情報)は、外側輪郭面形状(被検査物輪郭形状情報)、および、反射特性(被検査物反射特性情報)のうちの少なくとも1つが互いに異なる。被検査物(被検査物モデル情報)が複数の種類から成る場合、これら複数の種類のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、シミュレーション制御部47によってランダムに選択されることによって、試行に用いる被検査物(被検査物モデル情報)が設定される。 The inspection object may be of one type, and the inspection object model information may be one type according to this. Alternatively, the inspection object may be of a plurality of types, and the inspection object model information may be of a plurality of types according to this. The plurality of types of inspection objects (plural types of inspection object model information) is at least one of the outer contour surface shape (inspection object contour shape information) and the reflection characteristics (inspection object reflection characteristic information). Are different from each other. When the inspection object (inspection object model information) is composed of a plurality of types, one of the plurality of types is randomly selected by receiving the designation from the input unit 1 or by the simulation control unit 47. Thus, the inspection object (inspection object model information) used for the trial is set.
 被検査物は、任意の物体であって良いが、本実施形態では、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報である。前記車両モデル情報は、車両の配置位置を表す車両位置情報、車両(車両ボディー)の外側輪郭面形状を表す車両輪郭形状情報、および、車両の外側の反射特性を表す車両反射特性情報を含む。車両輪郭形状情報は、CAD(Computer-aided design)のデータを利用することができる。車両ボディーの塗装は、単層構造であって良く、あるいは、2層構造であって良い。2層構造である場合、第1塗装層は、例えば、メタリック層であり、第2塗装層は、クリア層である。車種は、1種類であって良く、これに応じて車両モデル情報は、1種類であって良い。あるいは、車種は、複数の種類であって良く、これに応じて車両モデル情報は、複数の種類であって良い。複数の車種(複数の種類の車両モデル情報)は、少なくとも外側輪郭面形状(被検査物輪郭形状情報)が互いに異なる。複数の車種(複数の車両モデル情報)である場合、これら複数の車種のうちの1つが、入力部1からその指定を受け付けることによって、あるいは、シミュレーション制御部47によってランダムに選択されることによって、試行に用いる車種(車両モデル情報)が設定される。なお、本実施形態では、車両輪郭形状情報は、車両全体(車両ボディ全体)の外側輪郭面形状を表す数値データであるが、例えば車両ボディの右半分や、ドア部分やバンパー部分等、その一部であっても良い。 The inspected object may be an arbitrary object, but in the present embodiment, it is a vehicle, and the inspected object model information is vehicle model information obtained by quantifying the appearance of the vehicle. The vehicle model information includes vehicle position information that represents the position of the vehicle, vehicle contour information that represents the outer contour surface shape of the vehicle (vehicle body), and vehicle reflection characteristic information that represents reflection characteristics outside the vehicle. As the vehicle contour shape information, CAD (Computer-aided design) data can be used. The painting of the vehicle body may be a single layer structure or a two layer structure. In the case of a two-layer structure, the first paint layer is, for example, a metallic layer, and the second paint layer is a clear layer. There may be one type of vehicle, and the vehicle model information may be one type accordingly. Alternatively, the vehicle type may be a plurality of types, and the vehicle model information may be a plurality of types according to this. The plurality of vehicle types (plural types of vehicle model information) are different from each other in at least the outer contour surface shape (inspection object contour shape information). In the case of a plurality of vehicle types (a plurality of vehicle model information), one of the plurality of vehicle types is selected by receiving the designation from the input unit 1 or randomly selected by the simulation control unit 47. The vehicle type (vehicle model information) used for the trial is set. In the present embodiment, the vehicle contour shape information is numerical data representing the outer contour surface shape of the entire vehicle (the entire vehicle body). For example, the right half of the vehicle body, the door portion, the bumper portion, etc. May be part.
 欠陥含有被検査物モデル情報記憶部55は、被検査物モデル情報に、欠陥モデル情報を合成することによって生成された前記欠陥含有被検査物モデル情報を記憶するものである。 The defect-containing inspection object model information storage unit 55 stores the defect-containing inspection object model information generated by combining the defect model information with the inspection object model information.
 シミュレーション結果記憶部56は、後述の表面欠陥検出部46による検出結果と照明部の照明部配置情報と撮像部の撮像部配置情報とを互いに対応付けて1組として記憶するものである。 The simulation result storage unit 56 stores a detection result by a surface defect detection unit 46, which will be described later, the illumination unit arrangement information of the illumination unit, and the imaging unit arrangement information of the imaging unit in association with each other as a set.
 制御処理部4は、配置決定装置Dの各部1~3、5を当該各部の機能に応じてそれぞれ制御し、数値モデルを用いた試行によって表面欠陥検査装置を構成する各構成部の配置を決定するための回路である。制御処理部4は、例えば、CPU(Central Processing Unit)およびその周辺回路を備えて構成される。制御処理部4は、前記制御処理プログラムが実行されることによって、制御部41、欠陥設定部42、合成部43、ケース設定部44、画像数値演算生成部45、表面欠陥検出部46、シミュレーション制御部47および配置決定部48を機能的に備える。 The control processing unit 4 controls each of the units 1 to 3 and 5 of the arrangement determining device D according to the function of each unit, and determines the arrangement of each component constituting the surface defect inspection apparatus by trial using a numerical model. It is a circuit for doing. The control processing unit 4 includes, for example, a CPU (Central Processing Unit) and its peripheral circuits. When the control processing program is executed, the control processing unit 4 includes a control unit 41, a defect setting unit 42, a synthesis unit 43, a case setting unit 44, an image numerical value calculation generation unit 45, a surface defect detection unit 46, and simulation control. The unit 47 and the arrangement determining unit 48 are functionally provided.
 制御部41は、配置決定装置Dの各部1~3、5を当該各部の機能に応じてそれぞれ制御し、配置決定装置D全体の制御を司るものである。 The control unit 41 controls each of the units 1 to 3 and 5 of the arrangement determining device D according to the function of each unit, and controls the entire arrangement determining device D.
 欠陥設定部42は、被検査物の表面に検査領域を設定し、この設定した検査領域内に欠陥の配置位置を1または複数設定する欠陥設定処理を実行するものである。前記検査領域は、例えばユーザ(オペレータ)によって例えばドア部分やボンネット部分等で入力部1から指定され、この指定に応じて欠陥設定部42によって設定されて良い。あるいは、前記検査領域は、欠陥設定部42によってランダム(無作為)に設定されて良い。欠陥の個数は、例えばユーザによって入力部1から指定されて良く、あるいは、欠陥設定部42によってランダムに設定されて良い。前記配置位置は、例えばユーザによって入力部1から指定され、この指定に応じて欠陥設定部42によって設定されて良い。あるいは、前記配置位置は、欠陥設定部42によってランダムに設定されて良い。なお、欠陥をより良好に検出できるか否かによって表面欠陥検査装置を構成する各構成部の配置を決定する目的から、好適には、欠陥の配置位置は、前記表面欠陥検査装置によって欠陥の検出が難しいと想定される位置である。 The defect setting unit 42 executes a defect setting process for setting an inspection area on the surface of the inspection object and setting one or a plurality of defect arrangement positions in the set inspection area. The inspection area may be designated by the user (operator) from the input unit 1 at, for example, a door portion or a bonnet portion, and may be set by the defect setting unit 42 according to this designation. Alternatively, the inspection area may be set randomly (randomly) by the defect setting unit 42. The number of defects may be specified from the input unit 1 by the user, for example, or may be set at random by the defect setting unit 42. The arrangement position may be designated from the input unit 1 by the user, for example, and may be set by the defect setting unit 42 according to this designation. Alternatively, the arrangement position may be set randomly by the defect setting unit 42. For the purpose of determining the arrangement of each component constituting the surface defect inspection apparatus depending on whether or not the defect can be detected better, it is preferable that the defect arrangement position is detected by the surface defect inspection apparatus. It is a position that is assumed to be difficult.
 合成部43は、被検査物モデル情報記憶部54に記憶された被検査物モデル情報に、欠陥設定部42で設定された欠陥の配置位置で欠陥モデル情報記憶部53に記憶された欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成する合成処理を実行するものである。より具体的には、合成部43は、被検査物モデル情報に、欠陥設定部42で設定された欠陥の配置位置で、欠陥モデル情報を重畳することによって、被検査物モデル情報に欠陥モデル情報を合成する。より詳しくは、合成部43は、被検査物モデル情報の数値データに、欠陥設定部42で設定された欠陥の配置位置で、欠陥モデル情報の数値データを加算することによって、被検査物モデル情報に欠陥モデル情報を合成する。合成部43は、この生成した欠陥含有被検査物モデル情報を、欠陥含有被検査物モデル情報記憶部55に記憶する。 The synthesis unit 43 adds the defect model information stored in the defect model information storage unit 53 to the inspection object model information stored in the inspection object model information storage unit 54 at the defect placement position set by the defect setting unit 42. Is combined to generate defect-containing inspection object model information. More specifically, the synthesis unit 43 superimposes the defect model information on the inspection object model information at the defect placement position set by the defect setting unit 42, so that the defect model information is included in the inspection object model information. Is synthesized. More specifically, the synthesis unit 43 adds the numerical data of the defect model information to the numerical data of the inspection object model information at the defect arrangement position set by the defect setting unit 42, thereby inspecting the object model information. The defect model information is synthesized. The combining unit 43 stores the generated defect-containing inspection object model information in the defect-containing inspection object model information storage unit 55.
 ケース設定部44は、照明部における配置位置およびその光軸方向を照明部配置情報として設定し、撮像部における配置位置およびその光軸方向を撮像部配置情報として設定するケース設定処理を実行するものである。照明部の配置位置および撮像部の配置位置は、それぞれ、前記被検査物位置情報で表される被検査物の配置位置を原点に持つ座標系の座標値で表される。あるいは、被検査物を表面欠陥検査装置で検査する空間(仮想空間)にワールド座標系が設定(仮想)され、被検査物の配置位置、照明部の配置位置および撮像部の配置位置は、それぞれ、このワールド座標系の座標値で表される。前記照明部配置情報および前記撮像部配置情報は、それぞれ、例えばユーザ(オペレータ)によって入力部1から指定され、この指定に応じてケース設定部44によって設定されて良い。あるいは、前記照明部配置情報および前記撮像部配置情報は、それぞれ、ケース設定部44によってランダム(無作為)に設定されて良い。あるいは、前記照明部配置情報および前記撮像部配置情報は、それぞれ、ユーザによって入力部1から範囲(指定範囲)が指定され、この指定された指定範囲内でケース設定部44によってランダムに設定されて良い。表面欠陥検査装置が設置される現実(実際)の場所には、表面欠陥検査装置を構成する各構成部が配置できない範囲が存在する場合が有り得る。このような場合に、ユーザは、表面欠陥検査装置を構成する各構成部が配置できない範囲を除外して前記指定範囲を指定することで、このような場合でも本実施形態における配置決定装置Dは、表面欠陥検査装置を構成する各構成部が配置できない範囲を除外して前記照明部配置情報および前記撮像部配置情報を設定できる。 The case setting unit 44 executes case setting processing for setting the arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, and setting the arrangement position in the image pickup unit and its optical axis direction as image pickup unit arrangement information. It is. The arrangement position of the illumination unit and the arrangement position of the imaging unit are each represented by coordinate values of a coordinate system having the arrangement position of the inspection object represented by the inspection object position information as the origin. Alternatively, the world coordinate system is set (virtual) in a space (virtual space) in which the inspection object is inspected by the surface defect inspection apparatus, and the arrangement position of the inspection object, the arrangement position of the illumination unit, and the arrangement position of the imaging unit are respectively It is expressed by the coordinate value of this world coordinate system. The illumination unit arrangement information and the imaging unit arrangement information may each be designated by the user (operator) from the input unit 1 and set by the case setting unit 44 according to this designation. Alternatively, the illumination unit arrangement information and the imaging unit arrangement information may be set randomly (randomly) by the case setting unit 44, respectively. Alternatively, each of the illumination unit arrangement information and the imaging unit arrangement information is designated by a user as a range (designated range) from the input unit 1, and is randomly set by the case setting unit 44 within the designated designated range. good. In the actual (actual) place where the surface defect inspection apparatus is installed, there may be a range in which the components constituting the surface defect inspection apparatus cannot be arranged. In such a case, the user can designate the designated range by excluding the range where each component constituting the surface defect inspection apparatus cannot be arranged, and even in such a case, the arrangement determining apparatus D in the present embodiment The illumination unit arrangement information and the imaging unit arrangement information can be set by excluding a range in which the components constituting the surface defect inspection apparatus cannot be arranged.
 画像数値演算生成部45は、照明部モデル情報記憶部51に記憶された照明部モデル情報、撮像部モデル情報記憶部52に記憶された撮像部モデル情報、および、合成部43で生成され欠陥含有被検査物モデル情報記憶部55に記憶された欠陥含有被検査物モデル情報に基づいて、ケース設定部44で設定された照明部配置情報による照明部で被検査物を照明しケース設定部44で設定された撮像部配置情報による撮像部で欠陥設定部で設定された検査領域を撮像することによって生成される画像を数値演算で求める数値演算処理を実行するものである。 The image numerical calculation generation unit 45 includes the illumination unit model information stored in the illumination unit model information storage unit 51, the imaging unit model information stored in the imaging unit model information storage unit 52, and the defect containing Based on the defect-containing inspection object model information stored in the inspection object model information storage unit 55, the inspection object is illuminated by the illumination unit based on the illumination unit arrangement information set by the case setting unit 44, and the case setting unit 44 A numerical calculation process is performed in which an image generated by imaging the inspection area set by the defect setting unit by the imaging unit based on the set imaging unit arrangement information is obtained by numerical calculation.
 この数値演算による画像の形成では、例えば、まず、画像数値演算生成部45は、照明部モデル情報で表される照明部に、前記画像の形成に必要な、例えば数万から数億等の複数の光線が設定される。次に、画像数値演算生成部45は、これら複数の光線それぞれについて、照明部から被検査物を介して撮像部に至る光伝播路を所定の光学シミュレーターを用いることによって順光線追跡する。次に、画像数値演算生成部45は、照明部から被検査物を介して撮像部に至る複数の光線それぞれについて、照明部モデル情報に基づく、照明部から放射される光強度に、光伝播路上に在る透過面や反射面に対しその透過率や反射率を乗算することによって、撮像部に入射する光強度を求める。そして、画像数値演算生成部45は、照明部から被検査物を介して撮像部に至る複数の光線それぞれの、撮像部に入射する各光強度を、撮像部の各画素ごとに纏め、各画素それぞれに入射する各光強度を求める。なお、この際に、撮像部の分光感度が考慮されても良い。この画素に入射する光強度が画素の画素値となり、これによって数値演算による画像が形成され、生成される。 In the image formation by this numerical calculation, for example, first, the image numerical value calculation generation unit 45 has a plurality of tens of thousands to hundreds of millions necessary for forming the image in the illumination unit represented by the illumination unit model information. Is set. Next, the image numerical calculation generation unit 45 performs forward ray tracing for each of the plurality of light rays by using a predetermined optical simulator on the light propagation path from the illumination unit to the imaging unit via the inspection object. Next, the image numerical calculation generation unit 45 converts the light intensity emitted from the illumination unit based on the illumination unit model information, on the light propagation path, for each of a plurality of light beams from the illumination unit to the imaging unit via the inspection object. The light intensity incident on the imaging unit is obtained by multiplying the transmission surface and reflection surface of the image by the transmittance and the reflectance. Then, the image numerical calculation generation unit 45 summarizes each light intensity incident on the imaging unit for each of a plurality of light beams from the illumination unit through the inspection object to the imaging unit, for each pixel of the imaging unit. Each light intensity incident on each is obtained. At this time, the spectral sensitivity of the imaging unit may be taken into consideration. The light intensity incident on this pixel becomes the pixel value of the pixel, and an image by numerical calculation is formed and generated thereby.
 また、上述では、順光線追跡によって照明部から被検査物を介して撮像部に至る光伝播路が求められたが、逆光線追跡によって、照明部から被検査物を介して撮像部に至る光伝播路が求められても良い(すなわち、撮像部の各画素から被検査物を介して照明部に至る光伝播路が求められても良い)。この逆光線追跡によれば、順光線追跡に較べ、前記複数の光線の個数が低減できる。なお、この場合において、撮像光学系の光学特性情報から、画素に入射する光線の角度範囲が求められ、この角度範囲内で、逆光線追跡するための前記光線が設定されて良い。 In the above description, the light propagation path from the illumination unit to the imaging unit via the object to be inspected is obtained by forward ray tracking. However, the light propagation from the illumination unit to the imaging unit through the object to be inspected by reverse ray tracing is performed. A path may be obtained (that is, a light propagation path from each pixel of the imaging unit to the illumination unit through the object to be inspected may be obtained). According to this reverse ray tracing, the number of the plurality of rays can be reduced as compared with forward ray tracing. In this case, the angle range of the light ray incident on the pixel is obtained from the optical characteristic information of the imaging optical system, and the light ray for tracing the reverse ray may be set within this angle range.
 光学シミュレーターは、任意の適宜なシミュレーターで良いが、一例を挙げれば、例えば、Synopsys社製のLightToolsである。 The optical simulator may be any appropriate simulator. For example, LightTools manufactured by Synopsys is available.
 表面欠陥検出部46は、画像数値演算生成部45で求められた画像に基づいて欠陥を検出し、この検出した検出結果とケース設定部44で設定された照明部配置情報および撮像部配置情報とを互いに対応付けて1組としてシミュレーション結果記憶部56に記憶する検出処理を実行するものである。欠陥の検出手法は、公知の手法が用いられて良いが、本実施形態の手法については、後述する。 The surface defect detection unit 46 detects a defect based on the image obtained by the image numerical value calculation generation unit 45, and the detected detection result, the illumination unit arrangement information and the imaging unit arrangement information set by the case setting unit 44, and Are associated with each other, and a detection process for storing them as a set in the simulation result storage unit 56 is executed. As a defect detection method, a known method may be used, but the method of this embodiment will be described later.
 シミュレーション制御部47は、前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記数値演算処理および前記検出処理それぞれを画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させる試行処理を実行するものである。 The simulation control unit 47 causes the case setting process to be executed by the case setting unit 44 to change each of the numerical calculation process and the detection process while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information. Trial processing that causes each of the numerical calculation generation unit 45 and the surface defect detection unit 46 to execute a plurality of times is executed.
 配置決定部48は、シミュレーション結果記憶部56に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、この決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求める配置決定処理を実行するものである。配置決定部48は、この求めた照明部配置情報および撮像部配置情報を出力部2から外部に出力する。あるいは、配置決定部48は、この求めた照明部配置情報および撮像部配置情報をIF部3から外部機器へ出力する。 The arrangement determination unit 48 determines a group having the best detection result from a plurality of groups stored in the simulation result storage unit 56, and sets the plurality of illumination unit arrangement information and imaging unit arrangement information of the determined group. In this set, an arrangement determination process to be obtained as optimal illumination unit arrangement information and imaging unit arrangement information is executed. The arrangement determination unit 48 outputs the obtained illumination unit arrangement information and imaging unit arrangement information from the output unit 2 to the outside. Alternatively, the arrangement determining unit 48 outputs the obtained illumination unit arrangement information and imaging unit arrangement information from the IF unit 3 to the external device.
 このような配置決定装置Dは、一例では、図4に示すように、CPU11、RAM12、ROM13、ハードディスクドライブ(HDD)14、LCD16、キーボード17、マウス18、USBインターフェース19、および、これらCPU11、RAM12、ROM13、HDD14、LCD16、キーボード17、マウス18およびUSBインターフェース19を相互に接続するバス15を備える、例えば、デスクトップ型やノード型のコンピュータによって構成可能である。 For example, as shown in FIG. 4, such an arrangement determining apparatus D includes a CPU 11, a RAM 12, a ROM 13, a hard disk drive (HDD) 14, an LCD 16, a keyboard 17, a mouse 18, a USB interface 19, and the CPU 11, RAM 12. , ROM 13, HDD 14, LCD 16, keyboard 17, mouse 18, and USB interface 19 can be configured by, for example, a desktop or node type computer provided with a bus 15.
 次に、本実施形態の動作について説明する。図5は、実施形態における配置決定装置の動作を示すフローチャートである。図6は、図5に示すフローチャートにおける欠陥設定処理を説明するための図である。図7は、図5に示すフローチャートにおけるケース設定処理を説明するための図である。図8は、図5に示すフローチャートにおける数値演算処理により生成された画像の一例を示す図である。図9は、図5に示すフローチャートにおける欠陥検出処理を説明するための図である。 Next, the operation of this embodiment will be described. FIG. 5 is a flowchart illustrating the operation of the arrangement determining apparatus according to the embodiment. FIG. 6 is a diagram for explaining the defect setting processing in the flowchart shown in FIG. FIG. 7 is a diagram for explaining case setting processing in the flowchart shown in FIG. 5. FIG. 8 is a diagram showing an example of an image generated by the numerical calculation process in the flowchart shown in FIG. FIG. 9 is a diagram for explaining the defect detection processing in the flowchart shown in FIG.
 このような構成の配置決定装置Dは、その電源が投入されると、必要な各部の初期化を実行し、その稼働を始める。その制御処理プログラムの実行によって、制御処理部4には、制御部41、欠陥設定部42、合成部43、ケース設定部44、画像数値演算生成部45、表面欠陥検出部46、シミュレーション制御部47および配置決定部48が機能的に構成される。 When the power is turned on, the arrangement determining apparatus D having such a configuration executes necessary initialization of each part and starts its operation. By executing the control processing program, the control processing unit 4 includes a control unit 41, a defect setting unit 42, a synthesis unit 43, a case setting unit 44, an image numerical value calculation generation unit 45, a surface defect detection unit 46, and a simulation control unit 47. And the arrangement | positioning determination part 48 is comprised functionally.
 そして、表面欠陥検査装置を構成する各構成部の配置の決定にあたって、図5において、配置決定装置Dは、まず、制御処理部4のシミュレーション制御部47によって、ユーザ(オペレータ)によって入力部1から入力されるシミュレーション回数(試行回数)を受け付ける(S11)。 Then, in determining the arrangement of each component constituting the surface defect inspection apparatus, in FIG. 5, the arrangement determining apparatus D is first input from the input unit 1 by the user (operator) by the simulation control unit 47 of the control processing unit 4. The input simulation count (trial count) is received (S11).
 次に、配置決定装置Dは、制御処理部4の欠陥設定部42によって、欠陥を被検査物に設定する欠陥設定処理を実行する(S12)。より具体的には、欠陥設定部42は、一例として図6に示すように、被検査物Ob(図6に示す例では車両ボディOb)の外側表面(外装面)に検査領域ARを設定し、この設定した検査領域AR内に、欠陥DEnの配置位置Pnをランダムに1または複数設定する。図6に示す例では、4個の第1ないし第4欠陥DE1~DE4それぞれに対する4個の第1ないし第4配置位置P1~P4が矩形の検査領域AR内に設定されている。 Next, the arrangement determining apparatus D performs a defect setting process for setting the defect to the inspection object by the defect setting unit 42 of the control processing unit 4 (S12). More specifically, as shown in FIG. 6 as an example, the defect setting unit 42 sets an inspection area AR on the outer surface (exterior surface) of the inspection object Ob (vehicle body Ob in the example shown in FIG. 6). In the inspection area AR thus set, one or more arrangement positions Pn of the defects DEn are set at random. In the example shown in FIG. 6, four first to fourth arrangement positions P1 to P4 for four first to fourth defects DE1 to DE4 are set in a rectangular inspection area AR.
 次に、配置決定装置Dは、制御処理部4の合成部43によって、被検査物モデル情報に欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成する合成処理を実行する(S13)。より具体的には、合成部43は、被検査物モデル情報記憶部54に記憶された被検査物モデル情報の数値データに、処理S12で欠陥設定部42によって設定された欠陥DEnの配置位置Pnで、欠陥モデル情報記憶部53に記憶された欠陥モデル情報の数値データを加算することによって、被検査物モデル情報に欠陥モデル情報を合成し、欠陥含有被検査物モデル情報を生成する。そして、合成部43は、この生成した欠陥含有被検査物モデル情報を記憶部5の欠陥含有被検査物モデル情報記憶部55に記憶する。図6に示す例では、合成部43は、車両ボディObを数値化した車両モデル情報の数値データに、第1配置位置P1で、第1欠陥DE1における欠陥モデル情報の数値データを加算し、前記車両モデル情報の数値データに、第2配置位置P2で、第2欠陥DE2における欠陥モデル情報の数値データを加算し、前記車両モデル情報の数値データに、第3配置位置P3で、第3欠陥DE3における欠陥モデル情報の数値データを加算し、そして、前記車両モデル情報の数値データに、第4配置位置P4で、第4欠陥DE4における欠陥モデル情報の数値データを加算する。これによって欠陥含有車両モデル情報が生成され、欠陥含有被検査物モデル情報記憶部55に記憶される。 Next, the arrangement determining apparatus D performs a combining process for generating defect-containing inspection object model information by combining the defect model information with the inspection object model information by the combining unit 43 of the control processing unit 4 (S13). ). More specifically, the synthesizing unit 43 adds the defect DEn placement position Pn set by the defect setting unit 42 in step S12 to the numerical data of the inspected object model information stored in the inspected object model information storage unit 54. Then, by adding the numerical data of the defect model information stored in the defect model information storage unit 53, the defect model information is synthesized with the inspection object model information to generate defect-containing inspection object model information. Then, the synthesis unit 43 stores the generated defect-containing inspection object model information in the defect-containing inspection object model information storage unit 55 of the storage unit 5. In the example shown in FIG. 6, the synthesis unit 43 adds the numerical data of the defect model information in the first defect DE1 at the first arrangement position P1 to the numerical data of the vehicle model information obtained by digitizing the vehicle body Ob. The numerical data of the defect model information at the second defect DE2 at the second arrangement position P2 is added to the numerical data of the vehicle model information, and the third defect DE3 at the third arrangement position P3 is added to the numerical data of the vehicle model information. And the numerical data of the defect model information in the fourth defect DE4 at the fourth arrangement position P4 is added to the numerical data of the vehicle model information. As a result, defect-containing vehicle model information is generated and stored in the defect-containing inspection object model information storage unit 55.
 次に、配置決定装置Dは、制御処理部4のケース設定部44によって、照明部配置情報や撮像部配置情報を設定するケース設定処理を実行する(S14)。より具体的には、ケース設定部44は、照明部における配置位置およびその光軸方向を照明部配置情報としてランダム(無作為)に設定し、撮像部における配置位置およびその光軸方向を撮像部配置情報としてランダムに設定する。一例として図7に示すように、車両ボディObの側面から6個の直状矩形平面の第1ないし第6明部LS1~LS6を持つ明暗パターンの照明部で(あるいは、車両ボディObの側面から6個の直状矩形平面の第1ないし第6照明部LS1~LS6によって明暗パターンで)車両ボディObが照明され、明暗パターンの中央位置で車両ボディObの側面から車両ボディObを撮像部で撮像するように、照明部配置情報および撮像部配置情報がケース設定部44によって設定される。 Next, the arrangement determining apparatus D executes a case setting process for setting the illumination unit arrangement information and the imaging unit arrangement information by the case setting unit 44 of the control processing unit 4 (S14). More specifically, the case setting unit 44 sets the arrangement position in the illumination unit and its optical axis direction at random (randomly) as the illumination unit arrangement information, and sets the arrangement position in the imaging unit and its optical axis direction as the imaging unit. Set at random as placement information. As an example, as shown in FIG. 7, in a lighting unit having a light / dark pattern having first to sixth bright portions LS1 to LS6 having six straight rectangular planes from the side surface of the vehicle body Ob (or from the side surface of the vehicle body Ob). The vehicle body Ob is illuminated by the first to sixth illuminating units LS1 to LS6 having six straight rectangular planes in a light / dark pattern, and the vehicle body Ob is imaged by the imaging unit from the side surface of the vehicle body Ob at the center position of the light / dark pattern. As described above, the case setting unit 44 sets the illumination unit arrangement information and the imaging unit arrangement information.
 次に、配置決定装置Dは、制御処理部4の画像数値演算生成部45によって、画像を数値演算で求める数値演算処理を実行する(S15)。より具体的には、画像数値演算生成部45は、照明部モデル情報記憶部51に記憶された照明部モデル情報、撮像部モデル情報記憶部52に記憶された撮像部モデル情報、および、合成部43で生成され欠陥含有被検査物モデル情報記憶部55に記憶された欠陥含有被検査物モデル情報に基づいて、ケース設定部44で設定された照明部配置情報による照明部で被検査物を照明しケース設定部44で設定された撮像部配置情報による撮像部で欠陥設定部42で設定された検査領域を撮像することによって生成される画像を数値演算で求める。例えば、上述したように、撮像光学系の光学特性情報から、画素に入射する光線の角度範囲が求められる。この角度範囲内で、光学シミュレーターによる逆光線追跡によって、照明部から被検査物を介して撮像部に至る光伝播路が求められる。照明部から被検査物を介して撮像部に至る複数の光線それぞれの、撮像部に入射する各光強度が求められる。そして、照明部から被検査物を介して撮像部に至る複数の光線それぞれの、撮像部に入射する各光強度を、撮像部の各画素ごとに纏めることによって、各画素の光強度が求められる。これによって数値演算による画像が生成される。例えば、上述の例では、図8に示す画像が数値演算により生成される。図8に示す例では、処理S12で設定された検査領域AR全面は、撮像できず、第1ないし第3欠陥DE1~DE3が写り込んだ画像が生成されている。第1および第2欠陥DE1、DE2は、明暗パターンの明部内に写り込み、黒点で画像に現れ、第3欠陥DE3は、明暗パターンの暗部に写り込み、白点で画像に現れている。 Next, the arrangement determining apparatus D performs numerical calculation processing for obtaining an image by numerical calculation by the image numerical calculation generation unit 45 of the control processing unit 4 (S15). More specifically, the image numerical value calculation generation unit 45 includes the illumination unit model information stored in the illumination unit model information storage unit 51, the imaging unit model information stored in the imaging unit model information storage unit 52, and the combining unit. Based on the defect-containing inspection object model information generated in 43 and stored in the defect-containing inspection object model information storage unit 55, the inspection object is illuminated by the illumination unit based on the illumination unit arrangement information set by the case setting unit 44 Then, an image generated by imaging the inspection area set by the defect setting unit 42 by the imaging unit based on the imaging unit arrangement information set by the case setting unit 44 is obtained by numerical calculation. For example, as described above, the angle range of the light ray incident on the pixel is obtained from the optical characteristic information of the imaging optical system. Within this angular range, a light propagation path from the illumination unit to the imaging unit via the object to be inspected is obtained by back ray tracing using an optical simulator. The respective light intensities incident on the imaging unit for each of a plurality of light beams from the illumination unit through the inspection object to the imaging unit are determined. And the light intensity of each pixel is calculated | required by putting together each light intensity which injects into the image pick-up part of each of several light rays which reach an image pick-up part via a to-be-inspected object from an illumination part. . As a result, an image by numerical calculation is generated. For example, in the above example, the image shown in FIG. 8 is generated by numerical calculation. In the example shown in FIG. 8, the entire inspection area AR set in step S12 cannot be imaged, and an image including the first to third defects DE1 to DE3 is generated. The first and second defects DE1 and DE2 appear in the bright part of the light / dark pattern and appear in the image at black points, and the third defect DE3 appears in the dark part of the light / dark pattern and appear in the image at the white point.
 次に、配置決定装置Dは、制御処理部4の表面欠陥検出部46によって、前記数値演算による画像から欠陥DEnを検出する欠陥検出の処理を実行する(S16)。より具体的には、表面欠陥検出部46は、処理S12で設定された各欠陥DEnそれぞれについて、処理S15で生成した画像から、処理S12で設定された欠陥DEnの配置位置Pnで欠陥DEnのコントラストを求める。例えば、図8に示す画像において、第1欠陥DE1を通る行II-II上の各画素の画素値は、明暗パターンの照明光に応じて図9に示すように矩形パルス列状に変化し、第1欠陥DE1に相当する箇所では、第1欠陥DE1の周辺における明部の明るい画素値xに較べて、第1欠陥DE1の画素値は、暗い画素値yとなる。表面欠陥検出部46は、第1欠陥DE1の周辺における明部の明るい画素値xに対する第1欠陥の画素値yの比(割合)を前記コントラストとして求める((第1欠陥DE1のコントラスト)=y/x)。前記コントラストでは、その値が大きいほど、より良い検出結果である。そして、このようなコントラストを各欠陥DEnについて求めると、表面欠陥検出部46は、各欠陥DEnの各コントラストと、処理S12で設定した照明部配置情報および撮像部配置情報とを互いに対応付けて1組としてシミュレーション結果記憶部56に記憶する。なお、図8に示す例の第4欠陥DE4のように、処理S15で生成した画像の撮像範囲から外れて欠陥DEnが写り込まない場合が有り得る。この場合では、処理S15で生成した画像の撮像範囲から外れて欠陥DEnのコントラストは、0とされる。また、図8に示す例の第3欠陥DE3のように、欠陥が明暗パターンの暗部に当たる場合が有り得る。このような場合では、暗部で明暗を反転させてから、上述と同様に、コントラストが求められればよい。 Next, the arrangement determining apparatus D performs a defect detection process for detecting the defect DEn from the image obtained by the numerical calculation by the surface defect detection unit 46 of the control processing unit 4 (S16). More specifically, the surface defect detection unit 46 determines the contrast of the defect DEn at the position Pn of the defect DEn set in step S12 from the image generated in step S15 for each defect DEn set in step S12. Ask for. For example, in the image shown in FIG. 8, the pixel value of each pixel on the row II-II passing through the first defect DE1 changes into a rectangular pulse train as shown in FIG. At a location corresponding to one defect DE1, the pixel value of the first defect DE1 is a dark pixel value y as compared to the bright pixel value x in the bright area around the first defect DE1. The surface defect detection unit 46 obtains, as the contrast, the ratio (ratio) of the pixel value y of the first defect to the bright pixel value x of the bright part around the first defect DE1 ((contrast of the first defect DE1) = y. / X). In contrast, the larger the value, the better the detection result. When such a contrast is obtained for each defect DEn, the surface defect detection unit 46 associates each contrast of each defect DEn with the illumination unit arrangement information and the imaging unit arrangement information set in step S12 to 1 The result is stored in the simulation result storage unit 56 as a set. In addition, like the fourth defect DE4 in the example illustrated in FIG. 8, there may be a case where the defect DEn does not appear outside the imaging range of the image generated in the process S15. In this case, the contrast of the defect DEn is set to 0 outside the imaging range of the image generated in step S15. Further, there may be a case where the defect hits a dark part of the light / dark pattern like the third defect DE3 in the example shown in FIG. In such a case, it is only necessary to obtain the contrast in the same manner as described above after reversing the brightness in the dark part.
 なお、上述では、検出結果にコントラストy/xが用いられたが、欠陥を評価できれば他の量が用いられても良い。例えば、処理S15で生成した画像における欠陥DEの画像の大きさ(面積)が用いられても良い。前記欠陥DEの画像の大きさ(面積)が用いられる場合では、その値が大きいほど、より良い検出結果である。処理S15で生成した画像は、各画素の各画素値で高さを与えると立体化できるが、この立体化した場合に、欠陥DEの箇所には、明部では凹部が形成され、暗部では凸部が形成される。また例えば、この凹部または凸部の体積が用いられても良い。前記凹部や凸部の体積が用いられる場合では、その値が大きいほど、より良い検出結果である。 In the above description, the contrast y / x is used for the detection result, but other amounts may be used as long as the defect can be evaluated. For example, the size (area) of the image of the defect DE in the image generated in step S15 may be used. When the size (area) of the image of the defect DE is used, the larger the value, the better the detection result. The image generated in the process S15 can be three-dimensionalized by giving a height with each pixel value of each pixel. However, when this three-dimensionalization is performed, a concave portion is formed in a bright portion and a convex portion is formed in a dark portion at the position of the defect DE. Part is formed. For example, the volume of this recessed part or convex part may be used. In the case where the volume of the concave portion or convex portion is used, the larger the value, the better the detection result.
 次に、配置決定装置Dは、シミュレーション制御部47によって、前記組の個数が処理S11で受け付けたシミュレーション回数に達したか否かを判定する(S17)。この判定の結果、シミュレーション回数に達している場合(Yes)には、シミュレーション制御部47は、次の処理S18を実行する。一方、前記判定の結果、シミュレーション回数に達していない場合(No)には、シミュレーション制御部47は、次の試行をするために、処理を処理S14に戻す。これによってシミュレーション制御部47は、前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方、本実施形態では両方を変えながら前記数値演算処理および前記検出処理それぞれを画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させる。 Next, the arrangement determining apparatus D determines whether or not the number of the sets has reached the number of simulations accepted in the process S11 by the simulation control unit 47 (S17). As a result of this determination, when the number of simulations has been reached (Yes), the simulation control unit 47 executes the next process S18. On the other hand, if the number of simulations has not been reached as a result of the determination (No), the simulation control unit 47 returns the process to step S14 in order to make the next trial. As a result, the simulation control unit 47 causes the case setting unit 44 to execute the case setting process, thereby changing the numerical value calculation while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information in the present embodiment. Each of the processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 multiple times.
 前記処理S18では、配置決定装置Dは、制御処理部4の配置決定部48によって、表面欠陥検査装置を構成する各構成部の配置を決定する配置決定処理を実行する。より具体的には、配置決定部48は、シミュレーション結果記憶部56に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、この決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求める。 In the process S18, the arrangement determining device D executes an arrangement determining process for determining the arrangement of each component constituting the surface defect inspection apparatus by the arrangement determining unit 48 of the control processing unit 4. More specifically, the arrangement determining unit 48 determines a group having the best detection result from the plurality of groups stored in the simulation result storage unit 56, and the illumination unit arrangement information and the imaging of the determined group. The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information among the plurality of sets.
 最良の検出結果を持つ組の決定では、例えば、配置決定装置Dは、複数の組それぞれについて、検出結果の平均値、上述の例では、第1ないし第4欠陥DE1~DE4の各コントラストの平均値を求め、最も大きい平均値を持つ組を、最良の検出結果を持つ組として決定する。 In determining the group having the best detection result, for example, the arrangement determining apparatus D uses the average value of the detection results for each of the plurality of groups. In the above example, the average of the contrasts of the first to fourth defects DE1 to DE4. The value is obtained, and the group having the largest average value is determined as the group having the best detection result.
 そして、配置決定部48は、このように求めた照明部配置情報および撮像部配置情報を出力部2から外部に出力し、本処理を終了する。なお、必要に応じて、配置決定部48は、この求めた照明部配置情報および撮像部配置情報をIF部3から外部機器へ出力しても良い。 And the arrangement | positioning determination part 48 outputs the illumination part arrangement | positioning information and imaging part arrangement | positioning information which were calculated | required in this way to the exterior from the output part 2, and complete | finishes this process. Note that the arrangement determination unit 48 may output the obtained illumination unit arrangement information and imaging unit arrangement information from the IF unit 3 to an external device as necessary.
 以上説明したように、本実施形態における表面欠陥検査装置の配置決定装置Dならびにこれに実装された配置決定方法および配置決定プログラムは、照明部、撮像部、被検査物および欠陥それぞれを数値モデル化し、コンピュータを用いて照明部配置情報による照明部で被検査物を照明し撮像部配置情報による撮像部で検査領域を撮像することによって生成される画像を数値演算で求め、この求められた画像に基づいて欠陥を検出する。そして、上記表面欠陥検査装置の配置決定方法は、これを照明部配置情報および撮像部配置情報のうちの少なくとも一方を変えて複数回実行し、最良の検出結果を与えた照明部配置情報および撮像部配置情報を前記複数回の中で最適な照明部配置情報および撮像部配置情報として求める。このように上記配置決定装置D、配置決定方法および配置決定プログラムは、様々に変えた照明部配置情報および前記撮像部配置情報に対し、欠陥の検出の良否を数値演算によって検証できるので、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる。上記配置決定装置D、配置決定方法および配置決定プログラムは、様々に変えた照明部配置情報および前記撮像部配置情報に対し、欠陥の検出の良否を数値演算によって検証できるので、車種の変更やモデルチェンジにも柔軟に対応できる。 As described above, the surface defect inspection apparatus arrangement determination device D and the arrangement determination method and arrangement determination program implemented in the present embodiment convert the illumination unit, the imaging unit, the inspection object, and the defect respectively into numerical models. An image generated by illuminating the object to be inspected with the illumination unit based on the illumination unit arrangement information using a computer and imaging the inspection region with the imaging unit based on the imaging unit arrangement information is obtained by numerical calculation, and the obtained image is Based on the detection of defects. And the arrangement | positioning determination method of the said surface defect inspection apparatus performs this several times, changing at least one of illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging which gave the best detection result The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times. As described above, the arrangement determining device D, the arrangement determining method, and the arrangement determining program can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information which are variously changed. The arrangement of each component constituting the surface defect inspection apparatus can be determined with effort (man-hours). Since the arrangement determination device D, the arrangement determination method, and the arrangement determination program can verify the quality of defect detection by numerical calculation with respect to variously changed illumination unit arrangement information and the imaging unit arrangement information, it is possible to change the model or model It can respond flexibly to changes.
 なお、上述の実施形態では、前記シミュレーション制御部47は、処理S14ないし処理S17の繰り返される各処理において、前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報および前記撮像部配置情報の両方を変えながら、前記数値演算処理および前記検出処理それぞれを、画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させたが、処理S14ないし処理S17の繰り返される各処理において、前記照明部配置情報を固定して前記ケース設定処理をケース設定部44に実行させることによって前記撮像部配置情報のみを変えながら、前記数値演算処理および前記検出処理それぞれを、画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させて良く、処理S14ないし処理S17の繰り返される各処理において、前記撮像部配置情報を固定して前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報のみを変えながら、前記数値演算処理および前記検出処理それぞれを、画像数値計演算成部45および表面欠陥検出部46それぞれに複数回実行させて良い。 In the above-described embodiment, the simulation control unit 47 causes the case setting unit 44 to execute the case setting process in each of the processes S14 to S17 that are repeated. While changing both the arrangement information, each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times. The numerical value calculation processing and the detection processing are respectively generated as image numerical value calculation while changing only the imaging portion arrangement information by fixing the illumination portion arrangement information and causing the case setting unit 44 to execute the case setting process. Each of the unit 45 and the surface defect detection unit 46 may be executed a plurality of times, In each of the repeated processes S <b> 14 to S <b> 17, while changing only the illumination unit arrangement information by fixing the imaging unit arrangement information and causing the case setting unit 44 to execute the case setting process, Each of the detection processes may be executed by the image numerical meter calculation unit 45 and the surface defect detection unit 46 a plurality of times.
 また、上述の実施形態では、配置決定部48は、各組における検出結果の単純平均値を求め、各組を評価、比較したが、配置決定部48は、コントラストが0のように検出できない検出結果を含む組を、シミュレーション結果記憶部56に記憶された複数の組の中から、まず、除外し(外し)、残余の複数の組の中から、最良の検出結果を持つ組を決定し、この決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めても良い。 In the above-described embodiment, the arrangement determining unit 48 obtains a simple average value of detection results in each group, and evaluates and compares each group. However, the arrangement determining unit 48 detects that the contrast cannot be detected as 0. First, the group including the result is excluded (removed) from the plurality of groups stored in the simulation result storage unit 56, and the group having the best detection result is determined from the plurality of remaining groups. You may obtain | require this illumination part arrangement | positioning information and imaging part arrangement | positioning information of this determined group as optimal illumination part arrangement | positioning information and imaging part arrangement | positioning information in said several group.
 また、上述の実施形態では、明暗パターンの明部および暗部での欠陥の検出結果が用いられて照明部および撮像部それぞれの配置位置が決定されたが、明部のみを用いた欠陥検出を想定して、明部での欠陥の検出結果のみが用いられて照明部および撮像部それぞれの配置位置が決定されても良く、あるいは、暗部のみを用いた欠陥検出を想定して、暗部での欠陥の検出結果のみが用いられて照明部および撮像部それぞれの配置位置が決定されても良い。 In the above-described embodiment, the detection positions of the defects in the bright and dark portions of the light / dark pattern are used to determine the arrangement positions of the illumination unit and the imaging unit. However, the defect detection using only the bright part is assumed. Then, only the detection result of the defect in the bright part may be used to determine the arrangement positions of the illumination unit and the imaging unit, or the defect in the dark part is assumed assuming defect detection using only the dark part. Only the detection result may be used to determine the arrangement positions of the illumination unit and the imaging unit.
 また、上述の実施形態では、配置決定部48は、各組における検出結果の単純平均値を求め、各組を評価、比較したが、単純平均値に代え、重み付き平均値が求められても良い。図10は、変形形態を説明するための図である。特に、被検査物が車両ボディーである場合、許容される表面欠陥DEの程度は、その発生箇所に応じて異なる。例えば、ルーフに生じた表面欠陥DEの許容範囲は、相対的に広く(緩く)、ドアに生じた表面欠陥DEの許容範囲は、相対的に狭い(厳しい)。例えば、図10に示すように、車両ボディに対し重みの境界線αが設けられ、境界線αよりルーフ側に処理S12で設定された欠陥DEに対する検出結果(上述ではコントラスト)には、重みβ1が付けられ、境界線α以下下側に処理S12で設定された欠陥DEに対する検出結果(上述ではコントラスト)には、重みβ2が付けられ、当該組の検出結果の重み付き平均値が求められる。 Further, in the above-described embodiment, the arrangement determining unit 48 calculates the simple average value of the detection results in each group, and evaluates and compares each group. However, the weighted average value may be calculated instead of the simple average value. good. FIG. 10 is a diagram for explaining a modified embodiment. In particular, when the object to be inspected is a vehicle body, the allowable degree of surface defect DE varies depending on the location where the defect occurs. For example, the allowable range of the surface defect DE generated in the roof is relatively wide (loose), and the allowable range of the surface defect DE generated in the door is relatively narrow (strict). For example, as shown in FIG. 10, a weight boundary line α is provided for the vehicle body, and the detection result (contrast in the above example) for the defect DE set in step S12 on the roof side from the boundary line α includes the weight β1. And the detection result (contrast in the above) for the defect DE set in step S12 below the boundary line α is assigned a weight β2, and a weighted average value of the detection results of the set is obtained.
 また、これら上述の実施形態では、複数回の試行では、照明部および撮像部が固定され、前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方が変更されたが、これに限定されず、次の第1ないし第4態様ように、あるいは、これらの組合せで、複数回の試行が実行されても良い。 Further, in the above-described embodiments, in a plurality of trials, the illumination unit and the imaging unit are fixed, and at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed. Instead, a plurality of trials may be executed as in the following first to fourth modes, or a combination thereof.
 第1態様では、照明部モデル情報は、可変の照明部モデルパラメータを含み、前記シミュレーション制御部47は、処理S14ないし処理S17の繰り返される各処理において、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の照明部モデルパラメータを変えながら、あるいは、前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の照明部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを、画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させる。 In the first aspect, the illumination unit model information includes a variable illumination unit model parameter, and the simulation control unit 47 performs the illumination unit arrangement information and the imaging unit arrangement information in each of the processes S14 to S17 repeated. And changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by changing the variable illumination unit model parameter or by causing the case setting unit 44 to execute the case setting process. While changing the variable illumination unit model parameter, each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times.
 前記可変の照明部モデルパラメータは、例えば、照明部の光放射部分における輝度分布、照明部の光放射部分における形状、および、照明部の光放射部分における配光特性のうちの1または複数を含んで良い。前記可変の照明部モデルパラメータは、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる前記可変の照明部モデルパラメータにおけるパラメータ値が設定される。なお、前記可変の照明部モデルパラメータには、可変範囲が規定されている場合には、前記可変の照明部モデルパラメータは、その可変範囲内で可変される。 The variable illumination unit model parameter includes, for example, one or more of a luminance distribution in the light emission part of the illumination unit, a shape in the light emission part of the illumination unit, and a light distribution characteristic in the light emission part of the illumination unit. Good. The variable illumination unit model parameter may be set by the user from the input unit 1 or may be set at random by the simulation control unit 47 and the parameter value in the variable illumination unit model parameter used for the trial is set. When a variable range is defined for the variable illumination unit model parameter, the variable illumination unit model parameter is varied within the variable range.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、可変の照明部モデルパラメータを変えることによって、同種の照明部で様々な照明光に対し、あるいは、様々な種類の照明部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can be used for various illumination lights in the same type of illumination unit or for various types of illumination units by changing variable illumination unit model parameters. The quality of defect detection can be verified by numerical calculation.
 第2態様では、撮像部モデル情報は、可変の撮像部モデルパラメータを含み、シミュレーション制御部47は、処理S14ないし処理S17の繰り返される各処理において、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の撮像部モデルパラメータを変えながら、あるいは、前記ケース設定処理をケース設定部44に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の撮像部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを画像数値演算生成部45および表面欠陥検出部46それぞれに複数回実行させる。 In the second aspect, the imaging unit model information includes a variable imaging unit model parameter, and the simulation control unit 47 displays the illumination unit arrangement information and the imaging unit arrangement information in each of the processes S14 to S17 repeated. While changing the variable imaging unit model parameter fixedly or by causing the case setting unit 44 to execute the case setting process, at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed. While changing the variable imaging unit model parameter, the numerical value calculation processing and the detection processing are respectively executed by the image numerical value calculation generation unit 45 and the surface defect detection unit 46 a plurality of times.
 前記可変の撮像部モデルパラメータは、例えば、前記撮像部における撮像素子の画素サイズ(画素大きさ)および画素数、前記撮像部における撮像光学系の光学特性、および、前記撮像部における撮像素子の分光感度特性のうちの1または複数を含んで良い。前記可変の撮像部モデルパラメータは、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる前記可変の撮像部モデルパラメータにおけるパラメータ値が設定される。なお、前記可変の撮像部モデルパラメータには、可変範囲が規定されている場合には、前記可変の撮像部モデルパラメータは、その可変範囲内で可変される。 The variable imaging unit model parameters include, for example, the pixel size (pixel size) and the number of pixels of the imaging device in the imaging unit, the optical characteristics of the imaging optical system in the imaging unit, and the spectrum of the imaging device in the imaging unit. One or more of the sensitivity characteristics may be included. The variable imaging unit model parameter may be set by the user from the input unit 1 or may be randomly set by the simulation control unit 47 to set a parameter value in the variable imaging unit model parameter used for trial. When a variable range is defined for the variable imaging unit model parameter, the variable imaging unit model parameter is varied within the variable range.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、可変の撮像部モデルパラメータを変えることによって、様々な種類の撮像部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection for various types of imaging units by numerical calculation by changing variable imaging unit model parameters.
 上述では、明暗パターンを形成するために、前記照明部LS1~LS6は、複数であったが、第3態様では、前記照明部は、このような明暗パターンの形成に限らず任意な自由な態様で、複数であっても良い。この場合では、前記照明部配置情報は、前記複数の照明部それぞれに対応する複数である。 In the above description, there are a plurality of the illumination units LS1 to LS6 in order to form a light / dark pattern. However, in the third aspect, the illumination unit is not limited to the formation of such a light / dark pattern, but is an arbitrary free aspect. There may be a plurality. In this case, the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
 照明部の個数は、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる照明部の個数が設定される。また、照明部が複数である場合、これら複数の照明部は、同種であって良く、また、その一部または全部が異種であっても良い。照明部の種類は、複数の照明部それぞれについて、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる照明部の種類が設定される。なお、照明部の個数に可変範囲が規定されている場合には、照明部の個数は、その可変範囲内で可変される。 The number of illumination units may be set by the user from the input unit 1 or may be randomly set by the simulation control unit 47 to set the number of illumination units used for the trial. When there are a plurality of illumination units, the plurality of illumination units may be of the same type, or part or all of them may be of different types. The type of the illumination unit may be set by the user from the input unit 1 for each of the plurality of illumination units, or may be randomly set by the simulation control unit 47 to set the type of the illumination unit used for the trial. When a variable range is defined for the number of illumination units, the number of illumination units is variable within the variable range.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、照明部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determining apparatus D, an arrangement determining method, and an arrangement determining program can verify the quality of defect detection by numerical calculation by changing the number of illumination units, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
 第4態様では、前記撮像部は、複数であっても良い。この場合では、前記撮像部配置情報は、前記複数の撮像部それぞれに対応する複数である。 In the fourth aspect, the imaging section may be plural. In this case, the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
 撮像部の個数は、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる撮像部の個数が設定される。また、撮像部が複数である場合、これら複数の撮像部は、同種であって良く、また、その一部または全部が異種であっても良い。撮像部の種類は、複数の撮像部それぞれについて、ユーザによって入力部1から設定されて良く、あるいは、シミュレーション制御部47によってランダムに設定され、試行に用いる撮像部の種類が設定される。なお、撮像部の個数に可変範囲が規定されている場合には、撮像部の個数は、その可変範囲内で可変される。 The number of imaging units may be set by the user from the input unit 1, or is set randomly by the simulation control unit 47, and the number of imaging units used for trials is set. When there are a plurality of imaging units, the plurality of imaging units may be of the same type, or part or all of them may be of different types. The type of the imaging unit may be set by the user from the input unit 1 for each of the plurality of imaging units, or may be randomly set by the simulation control unit 47 to set the type of the imaging unit used for the trial. When a variable range is defined for the number of imaging units, the number of imaging units can be varied within the variable range.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、撮像部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determining device D, an arrangement determining method, and an arrangement determining program can verify the quality of defect detection by changing the number of imaging units by numerical calculation, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
 また、これら上述の実施形態では、被検査物、照明部および撮像部は、相対的に互いに静止した状態であるが、被検査物と照明部および撮像部とは、相対的に移動しても良い。より具体的には、例えば、前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、前記車両の配置位置を表す車両位置情報を含み、前記画像数値演算生成部45は、前記車両の配置位置を移動させながら複数の画像を数値計算で求める。 In the above-described embodiments, the inspection object, the illumination unit, and the imaging unit are relatively stationary, but the inspection object, the illumination unit, and the imaging unit may move relatively. good. More specifically, for example, the inspection object is a vehicle, the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle, and the vehicle model information is The vehicle numerical value calculation generation unit 45 includes vehicle position information representing the arrangement position, and obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
 図11は、他の変形形態を説明するための図である。図11Aは、車両Obが第1位置に移動した様子を示し、図11Bは、車両Obが前記第1位置から第2位置に移動した様子を示し、図11Cは、車両Obが前記第2位置から第3位置に移動した様子を示す。 FIG. 11 is a diagram for explaining another modified embodiment. 11A shows how the vehicle Ob has moved to the first position, FIG. 11B shows how the vehicle Ob has moved from the first position to the second position, and FIG. 11C shows that the vehicle Ob has moved to the second position. The state which moved to 3rd position from is shown.
 より具体的には、上述の処理S15において、画像数値演算生成部45は、まず、図11Aに示すように、所定の第1位置に車両(車両ボディ)Obを配置し、記憶部5に記憶された照明部モデル情報、撮像部モデル情報および欠陥含有被検査物モデル情報に基づいて、処理S12でケース設定部44によって設定された照明部配置情報による照明部で第1位置の車両を照明し処理S12でケース設定部44によって設定された撮像部配置情報による撮像部で処理S12で欠陥設定部42によって設定された検査領域を撮像することによって生成される画像を数値演算で求める画像の数値演算処理を実行し、記憶部5に前記第1位置と対応付けて記憶する。前記所定の第1位置は、入力部1からそのユーザによる指定を受け付けることによって、あるいは、車両位置情報から、予め設定された所定値を減算することによって、あるいは、車両位置情報から、ランダムに生成した値を減算することによって、設定される。 More specifically, in the above-described process S15, the image numerical value calculation generation unit 45 first arranges a vehicle (vehicle body) Ob at a predetermined first position and stores it in the storage unit 5, as shown in FIG. 11A. Based on the illumination unit model information, the imaging unit model information, and the defect-containing inspection object model information, the illumination unit illuminates the vehicle at the first position by the illumination unit arrangement information set by the case setting unit 44 in step S12. Numerical calculation of an image obtained by numerical calculation of an image generated by imaging the inspection area set by the defect setting unit 42 in processing S12 by the imaging unit based on the imaging unit arrangement information set by the case setting unit 44 in processing S12 The process is executed and stored in the storage unit 5 in association with the first position. The predetermined first position is randomly generated by accepting designation by the user from the input unit 1, or by subtracting a predetermined value set in advance from the vehicle position information, or from the vehicle position information. It is set by subtracting the value obtained.
 続いて、画像数値演算生成部45は、図11Bに示すように、前記第1位置から移動した第2位置に車両(車両ボディ)Obを配置し、上述と同様な画像の数値演算処理を実行し、記憶部5に前記第2位置と対応付けて記憶する。前記所定の第2位置は、入力部1からそのユーザによる指定を受け付けることによって、あるいは、前記第1位置に、予め設定された所定値を加算することによって、あるいは、前記第1位置に、ランダムに生成した値を加算することによって、設定される。 Subsequently, as shown in FIG. 11B, the image numerical value calculation generation unit 45 arranges the vehicle (vehicle body) Ob at the second position moved from the first position, and executes the same numerical value calculation processing as that described above. Then, it is stored in the storage unit 5 in association with the second position. The predetermined second position is randomly received by accepting designation by the user from the input unit 1, or by adding a predetermined value set in advance to the first position, or at the first position. It is set by adding the generated value to.
 続いて、画像数値演算生成部45は、図11Cに示すように、前記第2位置から移動した第3位置に車両(車両ボディ)Obを配置し、上述と同様な画像の数値演算処理を実行し、記憶部5に前記第2位置と対応付けて記憶する。前記所定の第3位置は、上述の前記所定の第2位置と同様に、設定される。なお、前記所定の第2および第3位置それぞれは、予め設定された車両の移動速度と画像数値演算生成部45による前記画像の生成間隔とから求められても良い。 Subsequently, as shown in FIG. 11C, the image numerical value calculation generation unit 45 arranges the vehicle (vehicle body) Ob at the third position moved from the second position, and executes the same numerical value calculation processing as that described above. Then, it is stored in the storage unit 5 in association with the second position. The predetermined third position is set similarly to the predetermined second position described above. Each of the predetermined second and third positions may be obtained from a preset moving speed of the vehicle and an image generation interval by the image numerical value calculation generation unit 45.
 そして、上述の処理S16では、表面欠陥検出部46は、車両の各位置で求められた各画像それぞれに対し、前記数値演算による画像から欠陥DEnを検出する欠陥検出の処理を実行し、車両の各位置での各欠陥DEnの各コントラストと、処理S12で設定した照明部配置情報および撮像部配置情報と、を互いに対応付けて1組としてシミュレーション結果記憶部56に記憶する。 And in the above-mentioned process S16, the surface defect detection part 46 performs the process of the defect detection which detects the defect DEn from the image by the said numerical calculation with respect to each image calculated | required in each position of a vehicle, Each contrast of each defect DEn at each position, the illumination unit arrangement information and the imaging unit arrangement information set in step S12 are associated with each other and stored in the simulation result storage unit 56 as one set.
 なお、この場合において、処理S18では、配置決定部48は、車両の各位置での各欠陥DEnの各コントラストに対する平均値を求めて良いが、まず、各欠陥DEnそれぞれについて、各位置での各コントラストの中から最良のコントラスト(最大のコントラスト)を当該欠陥のコントラストに選定し、これら選定された各欠陥DEnの各コントラストに対し平均値を求めても良い。 In this case, in step S18, the arrangement determining unit 48 may obtain an average value for each contrast of each defect DEn at each position of the vehicle. First, for each defect DEn, each position at each position is determined. The best contrast (maximum contrast) may be selected as the contrast of the defect from among the contrasts, and an average value may be obtained for each contrast of each of the selected defects DEn.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、車両を生産する生産ラインで前記車両の欠陥を検査する場合を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection by numerical calculation on the assumption that a defect of the vehicle is inspected on a production line that produces the vehicle. Arrangement of each component constituting the inspection apparatus can be determined.
 また、これら上述の実施形態では、被検査物は、1種類であったが、複数の種類であっても良い。より具体的には、被検査物は、車両であって、被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、互いに異なる複数であり、欠陥設定部42、合成部43、ケース設定部44、画像数値演算生成部45、表面欠陥検出部46、シミュレーション制御部47および配置決定部48それぞれは、前記複数の車両モデル情報それぞれについて、前記欠陥設定処理、前記合成処理、前記ケース設定処理、前記数値演算処理、前記検出処理、前記試行処理および前記配置決定処理を実行する。例えば、セダン(サルーン)の車両モデル情報、クーペの車両モデル情報、ワンボックスの車両モデル情報およびSUV(Sport Utility Vehicle)の車両モデル情報等が挙げられる。 Further, in the above-described embodiments, the inspection object is one type, but may be a plurality of types. More specifically, the inspected object is a vehicle, and the inspected object model information is vehicle model information obtained by quantifying the appearance of the vehicle, and the vehicle model information is a plurality of mutually different defects. The setting unit 42, the synthesis unit 43, the case setting unit 44, the image numerical value calculation generation unit 45, the surface defect detection unit 46, the simulation control unit 47, and the arrangement determination unit 48 each have the defect setting for each of the plurality of vehicle model information. The process, the synthesis process, the case setting process, the numerical calculation process, the detection process, the trial process, and the arrangement determination process are executed. For example, vehicle model information of a sedan (saloon), vehicle model information of a coupe, vehicle model information of a one box, vehicle model information of a SUV (Sport Utility Vehicle), and the like can be mentioned.
 このような配置決定装置D、配置決定方法および配置決定プログラムは、複数の車種を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination device D, an arrangement determination method, and an arrangement determination program can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and determine the arrangement of each component constituting the surface defect inspection apparatus. it can.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる表面欠陥検査装置の配置決定方法は、所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、前記E工程で求められた画像に基づいて欠陥を検出するF工程と、前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを備え、前記A工程ないし前記I工程の各工程をコンピュータを用いて実行する。好ましくは、上述の表面欠陥検査装置の配置決定方法において、前記被検査物モデル情報は、前記被検査物の配置位置を表す被検査物位置情報、前記被検査物の外側輪郭面形状を表す被検査物輪郭形状情報、および、前記被検査物の外側の反射特性を表す被検査物反射特性情報を含む。好ましくは、前記被検査物の塗装は、第1塗装層および前記第1塗装層上に上塗りされた第2塗装層から成る2層構造であり、前記被検査物反射特性情報は、前記第1塗装層の反射特性を表す第1塗装層反射特性情報と、前記第2塗装層の反射特性を表す第2塗装層反射特性情報とから成る。好ましくは、前記反射特性は、分光反射特性である。好ましくは、上述の表面欠陥検査装置の配置決定方法において、前記照明部モデル情報は、前記照明部の光放射部分における輝度分布を表す輝度分布情報、前記照明部の光放射部分における形状を表す形状情報、および、前記照明部の光放射部分における配光特性を表す配光特性情報のうちの少なくとも前記輝度分布情報を含む1または複数を含む。好ましくは、前記輝度分布は、輝度が位置によって異なる分布だけでなく、輝度が位置にかかわらず均一である分布を含む。好ましくは、前記照明部の光放射部分における形状は、明暗パターンを含み、前記明暗パターンにおける明部幅および明部間の間隔を含む。好ましくは、上述の表面欠陥検査装置の配置決定方法において、前記撮像部モデル情報は、前記撮像部における撮像素子の画素サイズ(画素大きさ)および画素数(撮像素子の大きさ)を表す撮像素子情報、前記撮像部における撮像光学系の光学特性を表す光学特性情報、および、前記撮像部における撮像素子の分光感度特性を表す分光感度特性情報のうちの少なくとも前記撮像素子情報を含む1または複数を含む。好ましくは、前記光学特性情報は、前記撮像光学系を形成する光学素子のコンストラクションデータ、前記光学素子の硝材データおよび前記光学素子の表面コート、ならびに、前記撮像光学系のFナンバーを含む。 The method for determining the arrangement of a surface defect inspection apparatus according to one aspect includes an A step of setting an inspection area on the surface of a predetermined inspection object, and setting one or a plurality of defect arrangement positions in the set inspection area, A defect-containing inspection object model is obtained by synthesizing defect model information obtained by quantifying a predetermined defect at an arrangement position of the defect set in the step A with inspection object model information obtained by quantifying the appearance of the inspection object. B process for generating information, C process for setting the arrangement position and the optical axis direction of the illumination unit that irradiates the inspection object with illumination light as illumination unit arrangement information, and an imaging unit for imaging the inspection object Generated in the D step of setting the arrangement position and its optical axis direction as the imaging unit arrangement information, the illumination unit model information obtained by digitizing the illumination unit, the imaging unit model information obtained by digitizing the imaging unit, and the B step Was Based on the defect-containing inspected object model information, the imaging unit illuminates the inspection object with the illuminating unit according to the illuminating unit arrangement information set in the C process, and the imaging unit uses the imaging unit arrangement information set in the D process. An E step for obtaining an image generated by imaging the inspection area set in the B step by numerical calculation, an F step for detecting a defect based on the image obtained in the E step, and the F step The G process for storing the detection result, the illumination unit arrangement information set in the C process and the imaging unit arrangement information set in the D process in the storage unit in association with each other, the C process, and the By changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the D steps, a plurality of the E step, the F step, and the G step are performed. The H process to be executed, and a group having the best detection result is determined from a plurality of sets obtained in the H process and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement of the decided group are determined. I process for obtaining information as the optimal illumination unit arrangement information and imaging unit arrangement information in the plurality of sets, and each process of the A process to the I process is executed using a computer. Preferably, in the arrangement determination method of the surface defect inspection apparatus described above, the inspection object model information includes inspection object position information indicating an arrangement position of the inspection object, and an object indicating an outer contour surface shape of the inspection object. It includes inspection object contour shape information and inspection object reflection characteristic information representing reflection characteristics outside the inspection object. Preferably, the coating of the inspection object has a two-layer structure including a first coating layer and a second coating layer overcoated on the first coating layer, and the inspection object reflection characteristic information is the first coating layer. It consists of first paint layer reflection characteristic information representing the reflection characteristics of the paint layer and second paint layer reflection characteristic information representing the reflection characteristics of the second paint layer. Preferably, the reflection characteristic is a spectral reflection characteristic. Preferably, in the above-described surface defect inspection apparatus arrangement determination method, the illumination unit model information includes luminance distribution information representing a luminance distribution in the light emission portion of the illumination unit, and a shape representing a shape in the light emission portion of the illumination unit. Among the information and the light distribution characteristic information representing the light distribution characteristic in the light emission portion of the illumination unit, one or more including at least the luminance distribution information is included. Preferably, the luminance distribution includes not only a distribution in which the luminance varies depending on the position but also a distribution in which the luminance is uniform regardless of the position. Preferably, the shape of the light emitting portion of the illumination unit includes a light / dark pattern, and includes a light portion width and a space between light portions in the light / dark pattern. Preferably, in the arrangement determination method of the surface defect inspection apparatus described above, the imaging unit model information represents an imaging element representing a pixel size (pixel size) and a number of pixels (imaging element size) of the imaging element in the imaging unit. One or more including at least the imaging element information among information, optical characteristic information representing optical characteristics of the imaging optical system in the imaging unit, and spectral sensitivity characteristic information representing spectral sensitivity characteristics of the imaging element in the imaging unit Including. Preferably, the optical characteristic information includes construction data of an optical element forming the imaging optical system, glass material data of the optical element and a surface coat of the optical element, and an F number of the imaging optical system.
 このような表面欠陥検査装置の配置決定方法は、照明部、撮像部、被検査物および欠陥それぞれを数値モデル化し、コンピュータを用いて照明部配置情報による照明部で被検査物を照明し撮像部配置情報による撮像部で検査領域を撮像することによって生成される画像を数値演算で求め、この求められた画像に基づいて欠陥を検出する。そして、上記表面欠陥検査装置の配置決定方法は、これを照明部配置情報および撮像部配置情報のうちの少なくとも一方を変えて複数回実行し、最良の検出結果を与えた照明部配置情報および撮像部配置情報を前記複数回の中で最適な照明部配置情報および撮像部配置情報として求める。このように上記表面欠陥検査装置の配置決定方法は、様々に変えた照明部配置情報および前記撮像部配置情報に対し、欠陥の検出の良否を数値演算によって検証できるので、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such a surface defect inspection apparatus arrangement determination method includes numerically modeling an illumination unit, an imaging unit, an inspection object, and a defect, and illuminating the inspection object with an illumination unit based on the illumination unit arrangement information using a computer. An image generated by imaging the inspection area by the imaging unit based on the arrangement information is obtained by numerical calculation, and a defect is detected based on the obtained image. And the arrangement | positioning determination method of the said surface defect inspection apparatus performs this several times, changing at least one of illumination part arrangement information and imaging part arrangement information, and the illumination part arrangement information and imaging which gave the best detection result The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times. As described above, the method for determining the arrangement of the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information that have been variously changed, so that less labor (man-hours) is required. Thus, the arrangement of the components constituting the surface defect inspection apparatus can be determined.
 他の一態様では、上述の表面欠陥検査装置の配置決定方法において、前記照明部モデル情報は、可変の照明部モデルパラメータを含み、前記H工程は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の照明部モデルパラメータを変えながら、あるいは、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の照明部モデルパラメータを変えながら、前記E工程、前記F工程および前記G工程を複数回実行する。好ましくは、上述の表面欠陥検査装置の配置決定方法において、前記可変の照明部モデルパラメータは、前記照明部の光放射部分における輝度分布、前記照明部の光放射部分における形状、および、前記照明部の光放射部分における配光特性のうちの1または複数を含む。 In another aspect, in the above-described surface defect inspection apparatus arrangement determination method, the illumination unit model information includes a variable illumination unit model parameter, and the H step includes the illumination unit arrangement information and the imaging unit arrangement information. At least one of the illumination unit arrangement information and the imaging unit arrangement information by changing the variable illumination unit model parameter while fixing the variable, or by executing at least one of the C step and the D step The E process, the F process, and the G process are executed a plurality of times while changing the variable illumination unit model parameter. Preferably, in the arrangement determination method of the surface defect inspection apparatus described above, the variable illumination unit model parameter includes a luminance distribution in a light emission portion of the illumination unit, a shape in the light emission portion of the illumination unit, and the illumination unit. One or more of the light distribution characteristics in the light emitting portion of
 このような表面欠陥検査装置の配置決定方法は、可変の照明部モデルパラメータを変えることによって、同種の照明部で様々な照明光に対し、あるいは、様々な種類の照明部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such a method for determining the arrangement of surface defect inspection devices can detect defects for various types of illumination light in the same type of illumination unit or for various types of illumination units by changing variable illumination unit model parameters. Can be verified numerically.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定方法において、前記撮像部モデル情報は、可変の撮像部モデルパラメータを含み、前記H工程は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の撮像部モデルパラメータを変えながら、あるいは、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の撮像部モデルパラメータを変えながら、前記E工程、前記F工程および前記G工程を複数回実行する。好ましくは、上述の表面欠陥検査装置の配置決定方法において、前記可変の撮像部モデルパラメータは、前記撮像部における撮像素子の画素サイズ(画素大きさ)および画素数、前記撮像部における撮像光学系の光学特性、および、前記撮像部における撮像素子の分光感度特性のうちの1または複数を含む。 In another aspect, in the above-described surface defect inspection apparatus arrangement determination method, the imaging unit model information includes a variable imaging unit model parameter, and the H step includes the illumination unit arrangement information and the imaging unit arrangement. While fixing the information and changing the variable imaging unit model parameter, or by executing at least one of the C step and the D step, at least one of the illumination unit arrangement information and the imaging unit arrangement information The E process, the F process, and the G process are executed a plurality of times while changing one and changing the variable imaging unit model parameter. Preferably, in the above-described surface defect inspection apparatus arrangement determination method, the variable imaging unit model parameters include the pixel size (pixel size) and the number of pixels of the imaging element in the imaging unit, and the imaging optical system in the imaging unit. It includes one or more of optical characteristics and spectral sensitivity characteristics of the image sensor in the imaging unit.
 このような表面欠陥検査装置の配置決定方法は、可変の撮像部モデルパラメータを変えることによって、様々な種類の撮像部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such an arrangement determination method for the surface defect inspection apparatus can verify the quality of defect detection for various types of image pickup units by numerical calculation by changing the variable image pickup unit model parameters.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定方法において、前記照明部は、複数であり、前記照明部配置情報は、前記複数の照明部それぞれに対応する複数である。 In another aspect, in the above-described surface defect inspection apparatus arrangement determination method, there are a plurality of illumination units, and the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
 このような表面欠陥検査装置の配置決定方法は、照明部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such a method for determining the arrangement of the surface defect inspection apparatus can verify the quality of defect detection by changing the number of illumination units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定方法において、前記撮像部は、複数であり、前記撮像部配置情報は、前記複数の撮像部それぞれに対応する複数である。 In another aspect, in the above-described arrangement determination method for the surface defect inspection apparatus, there are a plurality of imaging units, and the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
 このような表面欠陥検査装置の配置決定方法は、撮像部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination method of the surface defect inspection apparatus can verify the quality of defect detection by numerical calculation by changing the number of imaging units, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定方法において、前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、前記車両の配置位置を表す車両位置情報を含み、前記E工程は、前記車両の配置位置を移動させながら複数の画像を数値計算で求める。 In another aspect, in the above-described surface defect inspection apparatus arrangement determination method, the inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle. In addition, the vehicle model information includes vehicle position information representing the arrangement position of the vehicle, and the step E obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
 このような表面欠陥検査装置の配置決定方法は、車両を生産する生産ラインで前記車両の欠陥を検査する場合を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination method for a surface defect inspection apparatus can verify the quality of defect detection by numerical calculation on the assumption that the defect of the vehicle is inspected on a production line for producing the vehicle, and constitutes a surface defect inspection apparatus The arrangement of each component to be performed can be determined.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定方法において、前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、互いに異なる複数であり、前記複数の車両モデル情報それぞれについて、前記A工程ないし前記I工程の各工程を実行する。 In another aspect, in the above-described surface defect inspection apparatus arrangement determination method, the inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle. Yes, the vehicle model information is a plurality of different ones, and the steps A to I are executed for each of the plurality of vehicle model information.
 このような表面欠陥検査装置の配置決定方法は、複数の車種を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination method of the surface defect inspection apparatus can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様にかかる表面欠陥検査装置の配置決定装置は、所定の被検査物に照明光を照射する照明部を数値化した照明部モデル情報を記憶する照明部モデル情報記憶部と、前記被検査物を撮像する撮像部を数値化した撮像部モデル情報を記憶する撮像部モデル情報記憶部と、所定の欠陥を数値化した欠陥モデル情報を記憶する欠陥モデル情報記憶部と、前記被検査物の外観を数値化した被検査物モデル情報を記憶する被検査物モデル情報記憶部と、前記被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定する欠陥設定処理を実行する欠陥設定部と、前記被検査物モデル情報記憶部に記憶された被検査物モデル情報に、前記欠陥設定部で設定された欠陥の配置位置で前記欠陥モデル情報記憶部に記憶された欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成する合成処理を実行する合成部と、前記照明部における配置位置およびその光軸方向を照明部配置情報として設定し、前記撮像部における配置位置およびその光軸方向を撮像部配置情報として設定するケース設定処理を実行するケース設定部と、前記照明部モデル情報記憶部に記憶された照明部モデル情報、前記撮像部モデル情報記憶部に記憶された撮像部モデル情報、および、前記合成部で生成された欠陥含有被検査物モデル情報に基づいて、前記ケース設定部で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記ケース設定部で設定された撮像部配置情報による前記撮像部で前記欠陥設定部で設定された前記検査領域を撮像することによって生成される画像を数値演算で求める数値演算処理を実行する画像数値演算生成部と、前記画像数値演算生成部で求められた画像に基づいて欠陥を検出し、前記検出した検出結果と前記ケース設定部で設定された照明部配置情報および撮像部配置情報とを互いに対応付けて1組としてシミュレーション結果記憶部に記憶する検出処理を実行する表面欠陥検出部と、前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記数値演算処理および前記検出処理それぞれを前記画像数値演算生成部および前記表面欠陥検出部それぞれに複数回実行させる試行処理を実行するシミュレーション制御部と、前記シミュレーション結果記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求める配置決定処理を実行する配置決定部とを備える。 An arrangement determining apparatus for a surface defect inspection apparatus according to another aspect includes an illumination unit model information storage unit that stores illumination unit model information obtained by quantifying an illumination unit that irradiates a predetermined inspection object with illumination light; An imaging unit model information storage unit that stores imaging unit model information obtained by quantifying an imaging unit that images an inspection object, a defect model information storage unit that stores defect model information obtained by quantifying a predetermined defect, and the inspection object An inspection object model information storage unit for storing inspection object model information in which the appearance of the inspection object is quantified, and an inspection area is set on the surface of the inspection object, and the placement position of the defect is set to 1 or in the set inspection area A defect setting unit that executes a plurality of defect setting processes, and the defect model information at the defect placement position set by the defect setting unit in the inspection object model information stored in the inspection object model information storage unit Storage A synthesis unit that executes a synthesis process for generating defect-containing inspection object model information by synthesizing the stored defect model information, and setting an arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, A case setting unit for executing a case setting process for setting an arrangement position and its optical axis direction in the imaging unit as imaging unit arrangement information; illumination unit model information stored in the illumination unit model information storage unit; and the imaging unit model Based on the imaging unit model information stored in the information storage unit and the defect-containing inspection object model information generated by the synthesis unit, the illumination unit includes the illumination unit arrangement information set by the case setting unit. The object to be inspected is illuminated and the inspection area set by the defect setting unit is imaged by the imaging unit according to the imaging unit arrangement information set by the case setting unit An image numerical calculation generation unit that executes numerical calculation processing for obtaining an image generated by the numerical calculation, a defect is detected based on the image obtained by the image numerical calculation generation unit, and the detected detection result and the A surface defect detection unit that executes a detection process in which the illumination unit arrangement information and the imaging unit arrangement information set in the case setting unit are associated with each other and stored in the simulation result storage unit as a set, and the case setting process is performed in the case The numerical value calculation processing and the detection processing are respectively performed on the image numerical value calculation generation unit and the surface defect detection unit while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by causing the setting unit to execute the setting unit. A simulation control unit that executes trial processing to be executed a plurality of times, and a simulation result storage unit A group having the best detection result is determined from the plurality of stored groups, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are set to the optimum illumination unit arrangement information and the plurality of groups. An arrangement determination unit that executes an arrangement determination process to be obtained as imaging unit arrangement information.
 このような表面欠陥検査装置の配置決定装置は、照明部、撮像部、被検査物および欠陥それぞれを数値モデル化し、照明部配置情報による照明部で被検査物を照明し撮像部配置情報による撮像部で検査領域を撮像することによって生成される画像を数値演算で求め、この求められた画像に基づいて欠陥を検出する。そして、上記表面欠陥検査装置の配置決定装置は、これを照明部配置情報および撮像部配置情報のうちの少なくとも一方を変えて複数回実行し、最良の検出結果を与えた照明部配置情報および撮像部配置情報を前記複数回の中で最適な照明部配置情報および撮像部配置情報として求める。このように上記表面欠陥検査装置の配置決定装置は、様々に変えた照明部配置情報および前記撮像部配置情報に対し、欠陥の検出の良否を数値演算によって検証できるので、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such a surface defect inspection apparatus arrangement determination apparatus numerically models an illumination unit, an imaging unit, an object to be inspected, and a defect, and illuminates the object to be inspected by the illumination unit based on the illumination unit arrangement information, and performs imaging based on the imaging unit arrangement information. An image generated by imaging the inspection area by the unit is obtained by numerical calculation, and a defect is detected based on the obtained image. Then, the surface defect inspection device arrangement determination device executes this multiple times by changing at least one of the illumination unit arrangement information and the imaging unit arrangement information, and the illumination unit arrangement information and the imaging that give the best detection result. The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times. As described above, the arrangement determination apparatus for the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information that have been variously changed. Thus, the arrangement of the components constituting the surface defect inspection apparatus can be determined.
 他の一態様では、上述の表面欠陥検査装置の配置決定装置において、前記照明部モデル情報は、可変の照明部モデルパラメータを含み、前記シミュレーション制御部は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の照明部モデルパラメータを変えながら、あるいは、前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の照明部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを、前記画像数値演算生成部および前記表面欠陥検出部それぞれに複数回実行させる。 In another aspect, in the arrangement determination apparatus for a surface defect inspection apparatus described above, the illumination unit model information includes a variable illumination unit model parameter, and the simulation control unit includes the illumination unit arrangement information and the imaging unit arrangement. At least one of the illumination unit arrangement information and the imaging unit arrangement information is changed while fixing the information and changing the variable illumination unit model parameter or by causing the case setting unit to execute the case setting process. Both the numerical calculation process and the detection process are executed by the image numerical calculation generation unit and the surface defect detection unit a plurality of times while changing the variable illumination unit model parameters.
 このような表面欠陥検査装置の配置決定装置は、可変の照明部モデルパラメータを変えることによって、同種の照明部で様々な照明光に対し、あるいは、様々な種類の照明部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such a surface defect inspection device arrangement determination device detects a defect for various illumination lights in the same type of illumination unit or for various types of illumination units by changing a variable illumination unit model parameter. Can be verified numerically.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定装置において、前記撮像部モデル情報は、可変の撮像部モデルパラメータを含み、前記シミュレーション制御部は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の撮像部モデルパラメータを変えながら、あるいは、前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の撮像部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを前記画像数値計演算成部および前記表面欠陥検出部それぞれに複数回実行させる。 In another aspect, in the arrangement determination apparatus for the surface defect inspection apparatus described above, the imaging unit model information includes a variable imaging unit model parameter, and the simulation control unit includes the illumination unit arrangement information and the imaging unit. While fixing the arrangement information and changing the variable imaging unit model parameter, or by causing the case setting unit to execute the case setting process, at least one of the illumination unit arrangement information and the imaging unit arrangement information is changed. Each of the numerical value calculation processing and the detection processing is executed by the image numerical value calculation calculation portion and the surface defect detection portion a plurality of times while changing the variable imaging unit model parameter.
 このような表面欠陥検査装置の配置決定装置は、可変の撮像部モデルパラメータを変えることによって、様々な種類の撮像部に対し、欠陥の検出の良否を数値演算によって検証できる。 Such a surface defect inspection device arrangement determination device can verify the quality of defect detection for various types of image pickup units by numerical calculation by changing a variable image pickup unit model parameter.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定装置において、前記照明部は、複数であり、前記照明部配置情報は、前記複数の照明部それぞれに対応する複数である。 In another aspect, in the above-described arrangement determination apparatus for the surface defect inspection apparatus, there are a plurality of illumination units, and the illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
 このような表面欠陥検査装置の配置決定装置は、照明部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by changing the number of illumination units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定装置において、前記撮像部は、複数であり、前記撮像部配置情報は、前記複数の撮像部それぞれに対応する複数である。 In another aspect, in the above-described arrangement determination apparatus for the surface defect inspection apparatus, there are a plurality of imaging units, and the imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
 このような表面欠陥検査装置の配置決定装置は、撮像部の個数を変えて欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by changing the number of imaging units by numerical calculation, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定装置において、前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、前記車両の配置位置を表す車両位置情報を含み、前記画像数値演算生成部は、前記車両の配置位置を移動させながら複数の画像を数値計算で求める。 In another aspect, in the arrangement determination apparatus for the surface defect inspection apparatus described above, the inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle. The vehicle model information includes vehicle position information representing the arrangement position of the vehicle, and the image numerical value calculation generation unit obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
 このような表面欠陥検査装置の配置決定装置は、車両を生産する生産ラインで前記車両の欠陥を検査する場合を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such a surface defect inspection device arrangement determination device can verify the quality of defect detection by numerical calculation on the assumption that the vehicle is inspected for defects on the production line for producing the vehicle, and constitutes a surface defect inspection device The arrangement of each component to be performed can be determined.
 他の一態様では、これら上述の表面欠陥検査装置の配置決定装置において、前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、前記車両モデル情報は、互いに異なる複数であり、前記欠陥設定部、前記合成部、前記ケース設定部、前記画像数値演算生成部、前記表面欠陥検出部、前記シミュレーション制御部および前記配置決定部それぞれは、前記複数の車両モデル情報それぞれについて、前記欠陥設定処理、前記合成処理、前記ケース設定処理、前記数値演算処理、前記検出処理、前記試行処理および前記配置決定処理を実行する。 In another aspect, in the arrangement determination apparatus for the surface defect inspection apparatus described above, the inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle. The vehicle model information is a plurality of different ones, and the defect setting unit, the synthesis unit, the case setting unit, the image numerical value calculation generation unit, the surface defect detection unit, the simulation control unit, and the arrangement determination unit Each of the plurality of vehicle model information performs the defect setting process, the synthesis process, the case setting process, the numerical calculation process, the detection process, the trial process, and the placement determination process.
 このような表面欠陥検査装置の配置決定装置は、複数の車種を想定して欠陥の検出の良否を数値演算によって検証でき、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination device for a surface defect inspection apparatus can verify the quality of defect detection by numerical calculation assuming a plurality of vehicle types, and can determine the arrangement of each component constituting the surface defect inspection apparatus.
 他の一態様にかかる表面欠陥検査装置の配置決定プログラムは、コンピュータに、所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、前記E工程で求められた画像に基づいて欠陥を検出するF工程と、前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを実行させる。 An arrangement determination program for a surface defect inspection apparatus according to another aspect sets an inspection area on a surface of a predetermined inspection object in a computer and sets one or a plurality of defect arrangement positions in the set inspection area. A defect is obtained by combining defect model information obtained by quantifying a predetermined defect at the position where the defect is set in the A process and the inspection object model information obtained by quantifying the appearance of the inspection object. B process for generating contained inspected object model information, C process for setting the arrangement position and the optical axis direction of the illumination unit for irradiating illumination light to the inspected object as illumination unit arrangement information, and the inspected object D process for setting the arrangement position of the imaging unit to be imaged and its optical axis direction as imaging unit arrangement information, illumination unit model information that digitizes the illumination unit, imaging unit model information that digitizes the imaging unit, and Based on the defect-containing inspection object model information generated in the B process, the imaging is performed by illuminating the inspection object with the illumination unit according to the illumination unit arrangement information set in the C process. Detecting a defect based on an E process obtained by numerical calculation of an image generated by imaging the inspection area set in the B process by the imaging unit based on part arrangement information, and an image obtained in the E process The F process, the detection result of the F process, the illumination unit arrangement information set in the C process, and the imaging unit arrangement information set in the D process are associated with each other and stored in the storage unit as one set. Step E, changing the at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the step C and the step D, the step E, the step F And determining the set having the best detection result from the plurality of sets obtained in the H step and stored in the storage unit. The I step for obtaining the illumination unit arrangement information and the imaging unit arrangement information as the optimum illumination unit arrangement information and the imaging unit arrangement information among the plurality of sets is executed.
 このような表面欠陥検査装置の配置決定プログラムは、照明部、撮像部、被検査物および欠陥それぞれを数値モデル化し、コンピュータを用いて照明部配置情報による照明部で被検査物を照明し撮像部配置情報による撮像部で検査領域を撮像することによって生成される画像を数値演算で求め、この求められた画像に基づいて欠陥を検出する。そして、上記表面欠陥検査装置の配置決定プログラムは、これを照明部配置情報および撮像部配置情報のうちの少なくとも一方を変えて複数回実行し、最良の検出結果を与えた照明部配置情報および撮像部配置情報を前記複数回の中で最適な照明部配置情報および撮像部配置情報として求める。このように上記表面欠陥検査装置の配置決定プログラムは、様々に変えた照明部配置情報および前記撮像部配置情報に対し、欠陥の検出の良否を数値演算によって検証できるので、より少ない手間(工数)で、表面欠陥検査装置を構成する各構成部の配置を決定できる。 Such an arrangement determination program for a surface defect inspection apparatus numerically models an illumination unit, an imaging unit, an inspection object, and a defect, and illuminates the inspection object with an illumination unit based on illumination unit arrangement information using a computer. An image generated by imaging the inspection area by the imaging unit based on the arrangement information is obtained by numerical calculation, and a defect is detected based on the obtained image. The surface defect inspection apparatus arrangement determination program executes this multiple times by changing at least one of the illumination unit arrangement information and the imaging unit arrangement information, and provides the best detection result. The part arrangement information is obtained as the optimum illumination part arrangement information and imaging part arrangement information in the plurality of times. As described above, the arrangement determination program for the surface defect inspection apparatus can verify the quality of the defect detection by numerical calculation with respect to the illumination unit arrangement information and the imaging unit arrangement information which have been changed variously, so that less labor (man-hours) is required. Thus, the arrangement of the components constituting the surface defect inspection apparatus can be determined.
 他の一態様にかかる記録媒体は、コンピュータに、所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、前記E工程で求められた画像に基づいて欠陥を検出するF工程と、前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを実行させる表面欠陥検査装置の配置決定プログラムを記録したものである。 The recording medium according to another aspect includes a step A for setting an inspection area on a surface of a predetermined inspection object in a computer, and setting one or a plurality of defect placement positions in the set inspection area; Defect-containing inspected object model information by combining defect model information in which a predetermined defect is quantified at the defect placement position set in the step A with the inspected object model information in which the appearance of the inspection object is quantified B process for generating the image, C process for setting the arrangement position and the optical axis direction of the illumination unit that irradiates the inspection object with illumination light as illumination unit arrangement information, and the arrangement of the imaging unit for imaging the inspection object Generated in the D step of setting the position and its optical axis direction as the imaging unit arrangement information, the illumination unit model information in which the illumination unit is digitized, the imaging unit model information in which the imaging unit is digitized, and the B step Lack Based on the contained inspected object model information, the object to be inspected is illuminated by the illuminating unit according to the illuminating unit arrangement information set in the C step, and the imaging unit by the imaging unit arrangement information set in the D step An E process for obtaining an image generated by imaging the inspection region set in the B process by numerical calculation, an F process for detecting a defect based on the image obtained in the E process, and the F process The G process that stores the detection result, the illumination unit arrangement information set in the C process, and the imaging unit arrangement information set in the D process in the storage unit in association with each other, the C process, and the D The E step, the F step, and the G step are performed a plurality of times while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the steps. The H process to be performed and the group having the best detection result is determined from the plurality of groups obtained in the H process and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement of the determined group are determined. This is a recording of a surface defect inspection apparatus arrangement determination program for executing an I step for obtaining information as optimum illumination part arrangement information and imaging part arrangement information among the plurality of sets.
 これによれば、前記表面欠陥検査装置の配置決定プログラムを記録した記録媒体が提供できる。 According to this, it is possible to provide a recording medium in which the arrangement determination program for the surface defect inspection apparatus is recorded.
 この出願は、2017年6月8日に出願された日本国特許出願特願2017-113293を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2017-113293 filed on June 8, 2017, the contents of which are included in this application.
 本発明の実施形態が詳細に図示され、かつ、説明されたが、それは単なる図例及び実例であって限定ではない。本発明の範囲は、添付されたクレームの文言によって解釈されるべきである。 Although embodiments of the present invention have been illustrated and described in detail, it is merely exemplary and illustrative and not limiting. The scope of the invention should be construed by the language of the appended claims.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、表面欠陥検査装置を構成する各構成部の配置を決定する表面欠陥検査装置の配置決定方法、配置決定装置および配置決定プログラム、ならびに、前記配置決定プログラムを記録した記録媒体が提供できる。
 
According to the present invention, there is provided a surface defect inspection apparatus arrangement determination method, an arrangement determination apparatus and an arrangement determination program, and a recording medium on which the arrangement determination program is recorded. Can be provided.

Claims (16)

  1.  所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、
     前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、
     前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、
     前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、
     前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、
     前記E工程で求められた画像に基づいて欠陥を検出するF工程と、
     前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、
     前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、
     前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを備え、
     前記A工程ないし前記I工程の各工程をコンピュータを用いて実行する表面欠陥検査装置の配置決定方法。
    A step of setting an inspection region on the surface of a predetermined inspection object, and setting one or a plurality of defect arrangement positions in the set inspection region;
    A defect-containing inspection object is obtained by synthesizing the defect model information obtained by quantifying a predetermined defect at the defect placement position set in the step A with the inspection object model information obtained by quantifying the appearance of the inspection object. B process for generating model information;
    C step of setting the arrangement position of the illumination unit that irradiates the inspection object with illumination light and the optical axis direction thereof as illumination unit arrangement information;
    D step of setting the arrangement position of the imaging unit that images the inspection object and the optical axis direction thereof as imaging unit arrangement information;
    Based on the illumination unit model information obtained by digitizing the illumination unit, the imaging unit model information obtained by digitizing the imaging unit, and the defect-containing inspection object model information generated in the B step, the setting is performed in the C step. It is generated by illuminating the object to be inspected by the illumination unit according to the illumination unit arrangement information and imaging the inspection region set in the B process by the imaging unit by the imaging unit arrangement information set in the D process. E process for obtaining the image by numerical calculation;
    F step of detecting defects based on the image obtained in the E step;
    G process for storing the detection result of the F process, the illumination unit arrangement information set in the C process, and the imaging unit arrangement information set in the D process in the storage unit in association with each other;
    The E step, the F step, and the G step are performed a plurality of times while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the C step and the D step. H process to be executed;
    The group having the best detection result is determined from the plurality of groups obtained in the H step and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are determined. And the I step to obtain as the optimal illumination unit arrangement information and imaging unit arrangement information in,
    A method for determining the arrangement of a surface defect inspection apparatus, wherein the steps A to I are performed using a computer.
  2.  前記照明部モデル情報は、可変の照明部モデルパラメータを含み、
     前記H工程は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の照明部モデルパラメータを変えながら、あるいは、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の照明部モデルパラメータを変えながら、前記E工程、前記F工程および前記G工程を複数回実行する、
     請求項1に記載の表面欠陥検査装置の配置決定方法。
    The illumination unit model information includes a variable illumination unit model parameter,
    In the H step, the illumination unit arrangement information and the imaging unit arrangement information are fixed and the variable illumination unit model parameter is changed, or by executing at least one of the C step and the D step. While changing at least one of the illumination unit arrangement information and the imaging unit arrangement information and changing the variable illumination unit model parameter, the E step, the F step, and the G step are executed a plurality of times.
    The arrangement | positioning determination method of the surface defect inspection apparatus of Claim 1.
  3.  前記撮像部モデル情報は、可変の撮像部モデルパラメータを含み、
     前記H工程は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の撮像部モデルパラメータを変えながら、あるいは、前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の撮像部モデルパラメータを変えながら、前記E工程、前記F工程および前記G工程を複数回実行する、
     請求項1または請求項2に記載の表面欠陥検査装置の配置決定方法。
    The imaging unit model information includes a variable imaging unit model parameter,
    In the H step, the illumination unit arrangement information and the imaging unit arrangement information are fixed and the variable imaging unit model parameter is changed, or by executing at least one of the C step and the D step. While changing at least one of the illumination unit arrangement information and the imaging unit arrangement information and changing the variable imaging unit model parameter, the E step, the F step, and the G step are executed a plurality of times.
    The arrangement | positioning determination method of the surface defect inspection apparatus of Claim 1 or Claim 2.
  4.  前記照明部は、複数であり、
     前記照明部配置情報は、前記複数の照明部それぞれに対応する複数である、
     請求項1ないし請求項3のいずれか1項に記載の表面欠陥検査装置の配置決定方法。
    There are a plurality of the illumination units,
    The illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
    The arrangement | positioning determination method of the surface defect inspection apparatus of any one of Claim 1 thru | or 3.
  5.  前記撮像部は、複数であり、
     前記撮像部配置情報は、前記複数の撮像部それぞれに対応する複数である、
     請求項1ないし請求項4のいずれか1項に記載の表面欠陥検査装置の配置決定方法。
    The imaging unit is plural,
    The imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
    The arrangement | positioning determination method of the surface defect inspection apparatus of any one of Claim 1 thru | or 4.
  6.  前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、
     前記車両モデル情報は、前記車両の配置位置を表す車両位置情報を含み、
     前記E工程は、前記車両の配置位置を移動させながら複数の画像を数値計算で求める、
     請求項1ないし請求項5のいずれか1項に記載の表面欠陥検査装置の配置決定方法。
    The inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle,
    The vehicle model information includes vehicle position information representing an arrangement position of the vehicle,
    The E step calculates a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
    The arrangement | positioning determination method of the surface defect inspection apparatus of any one of Claim 1 thru | or 5.
  7.  前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、
     前記車両モデル情報は、互いに異なる複数であり、
     前記複数の車両モデル情報それぞれについて、前記A工程ないし前記I工程の各工程を実行する、
     請求項1ないし請求項6のいずれか1項に記載の表面欠陥検査装置の配置決定方法。
    The inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle,
    The vehicle model information is a plurality of different from each other,
    For each of the plurality of vehicle model information, each of the steps A to I is executed.
    The arrangement | positioning determination method of the surface defect inspection apparatus of any one of Claim 1 thru | or 6.
  8.  所定の被検査物に照明光を照射する照明部を数値化した照明部モデル情報を記憶する照明部モデル情報記憶部と、
     前記被検査物を撮像する撮像部を数値化した撮像部モデル情報を記憶する撮像部モデル情報記憶部と、
     所定の欠陥を数値化した欠陥モデル情報を記憶する欠陥モデル情報記憶部と、
     前記被検査物の外観を数値化した被検査物モデル情報を記憶する被検査物モデル情報記憶部と、
     前記被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定する欠陥設定処理を実行する欠陥設定部と、
     前記被検査物モデル情報記憶部に記憶された被検査物モデル情報に、前記欠陥設定部で設定された欠陥の配置位置で前記欠陥モデル情報記憶部に記憶された欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成する合成処理を実行する合成部と、
     前記照明部における配置位置およびその光軸方向を照明部配置情報として設定し、前記撮像部における配置位置およびその光軸方向を撮像部配置情報として設定するケース設定処理を実行するケース設定部と、
     前記照明部モデル情報記憶部に記憶された照明部モデル情報、前記撮像部モデル情報記憶部に記憶された撮像部モデル情報、および、前記合成部で生成された欠陥含有被検査物モデル情報に基づいて、前記ケース設定部で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記ケース設定部で設定された撮像部配置情報による前記撮像部で前記欠陥設定部で設定された前記検査領域を撮像することによって生成される画像を数値演算で求める数値演算処理を実行する画像数値演算生成部と、
     前記画像数値演算生成部で求められた画像に基づいて欠陥を検出し、前記検出した検出結果と前記ケース設定部で設定された照明部配置情報および撮像部配置情報とを互いに対応付けて1組としてシミュレーション結果記憶部に記憶する検出処理を実行する表面欠陥検出部と、
     前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記数値演算処理および前記検出処理それぞれを前記画像数値演算生成部および前記表面欠陥検出部それぞれに複数回実行させる試行処理を実行するシミュレーション制御部と、
     前記シミュレーション結果記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求める配置決定処理を実行する配置決定部とを備える、
     表面欠陥検査装置の配置決定装置。
    An illumination unit model information storage unit that stores illumination unit model information obtained by quantifying the illumination unit that irradiates the predetermined inspection object with illumination light;
    An imaging unit model information storage unit that stores imaging unit model information obtained by quantifying an imaging unit that images the inspection object;
    A defect model information storage unit for storing defect model information obtained by quantifying a predetermined defect;
    Inspected object model information storage unit for storing inspected object model information in which the appearance of the inspected object is quantified,
    A defect setting unit that sets an inspection area on the surface of the inspection object, and executes a defect setting process for setting one or a plurality of defect placement positions in the set inspection area;
    By synthesizing the defect model information stored in the defect model information storage unit at the defect placement position set in the defect setting unit with the inspection object model information stored in the inspection object model information storage unit A synthesis unit for executing a synthesis process for generating defect-containing inspection object model information;
    A case setting unit that executes a case setting process for setting the arrangement position in the illumination unit and its optical axis direction as illumination unit arrangement information, and setting the arrangement position in the imaging unit and its optical axis direction as imaging unit arrangement information;
    Based on the illumination unit model information stored in the illumination unit model information storage unit, the imaging unit model information stored in the imaging unit model information storage unit, and the defect-containing inspection object model information generated by the combining unit The illumination unit illuminates the inspection object by the illumination unit arrangement information set by the case setting unit, and is set by the defect setting unit by the imaging unit by the imaging unit arrangement information set by the case setting unit. An image numerical calculation generation unit that executes numerical calculation processing for obtaining an image generated by imaging the inspection region by numerical calculation;
    A set is obtained by detecting a defect based on the image obtained by the image numerical calculation generation unit and associating the detected detection result with the illumination unit arrangement information and the imaging unit arrangement information set by the case setting unit. As a surface defect detection unit that executes a detection process stored in the simulation result storage unit,
    By causing the case setting unit to execute the case setting process, the numerical value calculation process and the detection process are respectively performed while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information. A simulation control unit for performing trial processing to be executed multiple times for each of the surface defect detection units;
    The group having the best detection result is determined from the plurality of groups stored in the simulation result storage unit, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are optimized among the plurality of groups. An arrangement determining unit that executes an arrangement determining process to be obtained as the illumination unit arrangement information and the imaging unit arrangement information.
    Arrangement determination device for surface defect inspection equipment.
  9.  前記照明部モデル情報は、可変の照明部モデルパラメータを含み、
     前記シミュレーション制御部は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の照明部モデルパラメータを変えながら、あるいは、前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の照明部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを、前記画像数値演算生成部および前記表面欠陥検出部それぞれに複数回実行させる、
     請求項8に記載の表面欠陥検査装置の配置決定装置。
    The illumination unit model information includes a variable illumination unit model parameter,
    The simulation control unit fixes the illumination unit arrangement information and the imaging unit arrangement information and changes the variable illumination unit model parameter, or causes the case setting unit to execute the case setting process. While changing at least one of the part arrangement information and the image pickup part arrangement information and changing the variable illumination unit model parameter, the numerical calculation process and the detection process are respectively performed by the image numerical calculation generation unit and the surface defect detection. Make each part run multiple times,
    The arrangement | positioning determination apparatus of the surface defect inspection apparatus of Claim 8.
  10.  前記撮像部モデル情報は、可変の撮像部モデルパラメータを含み、
     前記シミュレーション制御部は、前記照明部配置情報および前記撮像部配置情報を固定して前記可変の撮像部モデルパラメータを変えながら、あるいは、前記ケース設定処理を前記ケース設定部に実行させることによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変える共に前記可変の撮像部モデルパラメータを変えながら、前記数値演算処理および前記検出処理それぞれを前記画像数値演算生成部および前記表面欠陥検出部それぞれに複数回実行させる、
     請求項8または請求項9に記載の表面欠陥検査装置の配置決定装置。
    The imaging unit model information includes a variable imaging unit model parameter,
    The simulation control unit fixes the illumination unit arrangement information and the imaging unit arrangement information and changes the variable imaging unit model parameter or causes the case setting unit to execute the case setting process. While changing at least one of the part arrangement information and the image pickup part arrangement information and changing the variable image pickup part model parameter, the numerical value calculation process and the detection process are respectively performed by the image numerical value calculation generation part and the surface defect detection part. Let each run multiple times,
    The arrangement | positioning determination apparatus of the surface defect inspection apparatus of Claim 8 or Claim 9.
  11.  前記照明部は、複数であり、
     前記照明部配置情報は、前記複数の照明部それぞれに対応する複数である、
     請求項8ないし請求項10のいずれか1項に記載の表面欠陥検査装置の配置決定装置。
    There are a plurality of the illumination units,
    The illumination unit arrangement information is a plurality corresponding to each of the plurality of illumination units.
    The arrangement | positioning determination apparatus of the surface defect inspection apparatus of any one of Claims 8 thru | or 10.
  12.  前記撮像部は、複数であり、
     前記撮像部配置情報は、前記複数の撮像部それぞれに対応する複数である、
     請求項8ないし請求項11のいずれか1項に記載の表面欠陥検査装置の配置決定装置。
    The imaging unit is plural,
    The imaging unit arrangement information is a plurality corresponding to each of the plurality of imaging units.
    The arrangement | positioning determination apparatus of the surface defect inspection apparatus of any one of Claims 8 thru | or 11.
  13.  前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、
     前記車両モデル情報は、前記車両の配置位置を表す車両位置情報を含み、
     前記画像数値演算生成部は、前記車両の配置位置を移動させながら複数の画像を数値計算で求める、
     請求項8ないし請求項12のいずれか1項に記載の表面欠陥検査装置の配置決定装置。
    The inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle,
    The vehicle model information includes vehicle position information representing an arrangement position of the vehicle,
    The image numerical value calculation generation unit obtains a plurality of images by numerical calculation while moving the arrangement position of the vehicle.
    The arrangement | positioning determination apparatus of the surface defect inspection apparatus of any one of Claims 8 thru | or 12.
  14.  前記被検査物は、車両であって、前記被検査物モデル情報は、前記車両の外観を数値化した車両モデル情報であり、
     前記車両モデル情報は、互いに異なる複数であり、
     前記欠陥設定部、前記合成部、前記ケース設定部、前記画像数値演算生成部、前記表面欠陥検出部、前記シミュレーション制御部および前記配置決定部それぞれは、前記複数の車両モデル情報それぞれについて、前記欠陥設定処理、前記合成処理、前記ケース設定処理、前記数値演算処理、前記検出処理、前記試行処理および前記配置決定処理を実行する、
     請求項8ないし請求項13のいずれか1項に記載の表面欠陥検査装置の配置決定装置。
    The inspection object is a vehicle, and the inspection object model information is vehicle model information obtained by quantifying the appearance of the vehicle,
    The vehicle model information is a plurality of different from each other,
    The defect setting unit, the synthesizing unit, the case setting unit, the image numerical value calculation generation unit, the surface defect detection unit, the simulation control unit, and the arrangement determination unit, respectively, for each of the plurality of vehicle model information, Executing the setting process, the synthesis process, the case setting process, the numerical calculation process, the detection process, the trial process, and the placement determination process;
    The arrangement determination apparatus of the surface defect inspection apparatus of any one of Claims 8 thru | or 13.
  15.  コンピュータに、
     所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、
     前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、
     前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、
     前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、
     前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、
     前記E工程で求められた画像に基づいて欠陥を検出するF工程と、
     前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、
     前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、
     前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを実行させる表面欠陥検査装置の配置決定プログラム。
    On the computer,
    A step of setting an inspection region on the surface of a predetermined inspection object, and setting one or a plurality of defect arrangement positions in the set inspection region;
    A defect-containing inspection object is obtained by synthesizing the defect model information obtained by quantifying a predetermined defect at the defect placement position set in the step A with the inspection object model information obtained by quantifying the appearance of the inspection object. B process for generating model information;
    C step of setting the arrangement position of the illumination unit that irradiates the inspection object with illumination light and the optical axis direction thereof as illumination unit arrangement information;
    D step of setting the arrangement position of the imaging unit that images the inspection object and the optical axis direction thereof as imaging unit arrangement information;
    Based on the illumination unit model information obtained by digitizing the illumination unit, the imaging unit model information obtained by digitizing the imaging unit, and the defect-containing inspection object model information generated in the B step, the setting is performed in the C step. It is generated by illuminating the object to be inspected by the illumination unit according to the illumination unit arrangement information and imaging the inspection region set in the B process by the imaging unit by the imaging unit arrangement information set in the D process. E process for obtaining the image by numerical calculation;
    F step of detecting defects based on the image obtained in the E step;
    G process for storing the detection result of the F process, the illumination unit arrangement information set in the C process, and the imaging unit arrangement information set in the D process in the storage unit in association with each other;
    The E step, the F step, and the G step are performed a plurality of times while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the C step and the D step. H process to be executed;
    The group having the best detection result is determined from the plurality of groups obtained in the H step and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are determined. The arrangement determination program of the surface defect inspection apparatus for executing the I step obtained as the optimum illumination unit arrangement information and the imaging unit arrangement information.
  16.  コンピュータに、
     所定の被検査物の表面に検査領域を設定し、前記設定した検査領域内に欠陥の配置位置を1または複数設定するA工程と、
     前記被検査物の外観を数値化した被検査物モデル情報に、前記A工程で設定された欠陥の配置位置で、所定の欠陥を数値化した欠陥モデル情報を合成することによって欠陥含有被検査物モデル情報を生成するB工程と、
     前記被検査物に照明光を照射する照明部の配置位置およびその光軸方向を照明部配置情報として設定するC工程と、
     前記被検査物を撮像する撮像部の配置位置およびその光軸方向を撮像部配置情報として設定するD工程と、
     前記照明部を数値化した照明部モデル情報、前記撮像部を数値化した撮像部モデル情報、および、前記B工程で生成された欠陥含有被検査物モデル情報に基づいて、前記C工程で設定された照明部配置情報による前記照明部で前記被検査物を照明し前記D工程で設定された撮像部配置情報による前記撮像部で前記B工程で設定された前記検査領域を撮像することによって生成される画像を数値演算で求めるE工程と、
     前記E工程で求められた画像に基づいて欠陥を検出するF工程と、
     前記F工程の検出結果と前記C工程で設定された照明部配置情報と前記D工程で設定された撮像部配置情報とを互いに対応付けて1組として記憶部に記憶するG工程と、
     前記C工程および前記D工程のうちの少なくとも一方を実行することによって前記照明部配置情報および前記撮像部配置情報のうちの少なくとも一方を変えながら前記E工程、前記F工程および前記G工程を複数回実行するH工程と、
     前記H工程で得られ前記記憶部に記憶された複数の組の中から、最良の検出結果を持つ組を決定し、前記決定した組の照明部配置情報および撮像部配置情報を前記複数の組の中で最適な照明部配置情報および撮像部配置情報として求めるI工程とを実行させる表面欠陥検査装置の配置決定プログラムを記録した記録媒体。
     
    On the computer,
    A step of setting an inspection region on the surface of a predetermined inspection object, and setting one or a plurality of defect arrangement positions in the set inspection region;
    A defect-containing inspection object is obtained by synthesizing the defect model information obtained by quantifying a predetermined defect at the defect placement position set in the step A with the inspection object model information obtained by quantifying the appearance of the inspection object. B process for generating model information;
    C step of setting the arrangement position of the illumination unit that irradiates the inspection object with illumination light and the optical axis direction thereof as illumination unit arrangement information;
    D step of setting the arrangement position of the imaging unit that images the inspection object and the optical axis direction thereof as imaging unit arrangement information;
    Based on the illumination unit model information obtained by digitizing the illumination unit, the imaging unit model information obtained by digitizing the imaging unit, and the defect-containing inspection object model information generated in the B step, the setting is performed in the C step. It is generated by illuminating the object to be inspected by the illumination unit according to the illumination unit arrangement information and imaging the inspection region set in the B process by the imaging unit by the imaging unit arrangement information set in the D process. E process for obtaining the image by numerical calculation;
    F step of detecting defects based on the image obtained in the E step;
    G process for storing the detection result of the F process, the illumination unit arrangement information set in the C process, and the imaging unit arrangement information set in the D process in the storage unit in association with each other;
    The E step, the F step, and the G step are performed a plurality of times while changing at least one of the illumination unit arrangement information and the imaging unit arrangement information by executing at least one of the C step and the D step. H process to be executed;
    The group having the best detection result is determined from the plurality of groups obtained in the H step and stored in the storage unit, and the illumination unit arrangement information and the imaging unit arrangement information of the determined group are determined. The recording medium which recorded the arrangement | positioning determination program of the surface defect inspection apparatus which performs I process calculated | required as optimal illumination part arrangement | positioning information and imaging part arrangement | positioning information in the inside.
PCT/JP2018/016391 2017-06-08 2018-04-23 Method for determining configuration of surface defect inspection device, configuration determination device, configuration determination program, and recording medium WO2018225406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523387A JPWO2018225406A1 (en) 2017-06-08 2018-04-23 Method for determining arrangement of surface defect inspection apparatus, apparatus, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113293 2017-06-08
JP2017113293 2017-06-08

Publications (1)

Publication Number Publication Date
WO2018225406A1 true WO2018225406A1 (en) 2018-12-13

Family

ID=64566241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016391 WO2018225406A1 (en) 2017-06-08 2018-04-23 Method for determining configuration of surface defect inspection device, configuration determination device, configuration determination program, and recording medium

Country Status (2)

Country Link
JP (1) JPWO2018225406A1 (en)
WO (1) WO2018225406A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043010A (en) * 2019-09-09 2021-03-18 株式会社日立製作所 Optical condition determination system and optical condition determination method
CN113689432A (en) * 2021-10-27 2021-11-23 常州微亿智造科技有限公司 Detection method for identifying special point-like defects
EP4318394A1 (en) 2022-07-29 2024-02-07 Konica Minolta, Inc. System and method for generating training image data for supervised machine learning, and program
WO2024080087A1 (en) * 2022-10-11 2024-04-18 株式会社日立製作所 Inspection condition determination system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318337A (en) * 1996-05-31 1997-12-12 Nissan Motor Co Ltd Surface defect inspecting device
JP2002148195A (en) * 2000-11-06 2002-05-22 Sumitomo Chem Co Ltd Surface inspection apparatus and surface inspection method
JP2005030848A (en) * 2003-07-10 2005-02-03 Sumitomo Chem Co Ltd Simulation method for surface inspection and surface inspection device
JP2010243283A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
JP2013072788A (en) * 2011-09-28 2013-04-22 Hitachi High-Technologies Corp Method and device for inspecting substrate surface defect
JP2015081826A (en) * 2013-10-22 2015-04-27 株式会社ニコン Evaluation device, evaluation method, semiconductor device and computer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318337A (en) * 1996-05-31 1997-12-12 Nissan Motor Co Ltd Surface defect inspecting device
JP2002148195A (en) * 2000-11-06 2002-05-22 Sumitomo Chem Co Ltd Surface inspection apparatus and surface inspection method
JP2005030848A (en) * 2003-07-10 2005-02-03 Sumitomo Chem Co Ltd Simulation method for surface inspection and surface inspection device
JP2010243283A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Defect inspection method and defect inspection device
JP2013072788A (en) * 2011-09-28 2013-04-22 Hitachi High-Technologies Corp Method and device for inspecting substrate surface defect
JP2015081826A (en) * 2013-10-22 2015-04-27 株式会社ニコン Evaluation device, evaluation method, semiconductor device and computer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021043010A (en) * 2019-09-09 2021-03-18 株式会社日立製作所 Optical condition determination system and optical condition determination method
JP7134932B2 (en) 2019-09-09 2022-09-12 株式会社日立製作所 Optical condition determination system and optical condition determination method
CN113689432A (en) * 2021-10-27 2021-11-23 常州微亿智造科技有限公司 Detection method for identifying special point-like defects
EP4318394A1 (en) 2022-07-29 2024-02-07 Konica Minolta, Inc. System and method for generating training image data for supervised machine learning, and program
WO2024080087A1 (en) * 2022-10-11 2024-04-18 株式会社日立製作所 Inspection condition determination system

Also Published As

Publication number Publication date
JPWO2018225406A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2018225406A1 (en) Method for determining configuration of surface defect inspection device, configuration determination device, configuration determination program, and recording medium
CN1200319C (en) Method of evaluation of reticle image using aerial image simulator
CN111220582A (en) Fluorescence penetrant inspection system and method
JP2016114598A (en) Method and apparatus for digitizing appearance of real material
JP2018040649A (en) Image inspection device, image inspection method, image inspection program, computer-readable recording medium and recording apparatus
US11333876B2 (en) Method and system for mapping objects on unknown specimens
KR20130023244A (en) Projecting patterns for high resolution texture extraction
JP6054576B2 (en) Method and apparatus for generating at least one virtual image of a measurement object
CN110517259A (en) A kind of detection method, device, equipment and the medium of product surface state
CN104583904B (en) For inputting the method to the control command of automotive component
CN105424726A (en) Machine vision based light-emitting panel detection method
US11531220B2 (en) Optic system using dynamic diffuser
CN104520698A (en) Optical method for inspecting transparent or translucent containers bearing visual motifs
US20210318252A1 (en) Inspection method based on edge field and deep learning
CN113146073A (en) Vision-based laser cutting method and device, electronic equipment and storage medium
JP2023086714A (en) Three-dimensional inspection twin for remote visual inspection of vehicle
JP2011022147A (en) Display method of surface of object
US10796426B2 (en) Optimizing a computer vision inspection station
MX2008014907A (en) Method for analysing reflective properties.
CA3223417A1 (en) Modular apparatus for the inspection of industrial products and related methods
US20240037728A1 (en) System and method for generating training image data for supervised machine learning, and non-transitory recording medium
JP2007256240A (en) Surface distortion defect inspection device, inspection method, and computer program
JP2017169970A (en) Optical simulation apparatus and method, and program
JP2010281754A (en) Generating apparatus, inspection apparatus, program, and generation method
JP2020134221A (en) Scanning route generation device, scanning route generation program, scanning route generation method, and appearance inspection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813289

Country of ref document: EP

Kind code of ref document: A1