WO2018225369A1 - Ship propulsion device - Google Patents

Ship propulsion device Download PDF

Info

Publication number
WO2018225369A1
WO2018225369A1 PCT/JP2018/014901 JP2018014901W WO2018225369A1 WO 2018225369 A1 WO2018225369 A1 WO 2018225369A1 JP 2018014901 W JP2018014901 W JP 2018014901W WO 2018225369 A1 WO2018225369 A1 WO 2018225369A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
propeller
gear
output
clutch
Prior art date
Application number
PCT/JP2018/014901
Other languages
French (fr)
Japanese (ja)
Inventor
真澄 冨田
拓郎 畑本
Original Assignee
新潟原動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新潟原動機株式会社 filed Critical 新潟原動機株式会社
Priority to CN201880037550.7A priority Critical patent/CN110740930B/en
Publication of WO2018225369A1 publication Critical patent/WO2018225369A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously

Definitions

  • the present invention relates to an electric propulsion ship propulsion apparatus using a motor (electric motor) as a drive source, and in particular, includes two motors that drive a propeller via a planetary gear mechanism, and can perform efficient drive control.
  • the present invention relates to an inexpensive ship propulsion device.
  • Patent Document 1 discloses an invention of a ship propulsion device.
  • the marine vessel propulsion device of the present invention includes an internal combustion engine and a motor generator as marine vessel propulsion devices each having an input shaft, and a propeller provided on an output shaft, and connects these two input / output shafts and an output shaft.
  • a gear box of a planetary gear mechanism is provided.
  • the load torque is compared with the reference value, and the amount of power generated by the generator motor is controlled according to the result, and the assist output of the generator motor is controlled.
  • this invention it is supposed that the effect of improving the fuel consumption by keeping the output torque of the internal combustion engine propelling the ship constant can be obtained.
  • Patent Document 2 discloses the invention of the variable side device.
  • the variable side device of the present invention is a variable speed device in a general industrial machine such as a pump, and a configuration example of two input shafts and one output shaft using a planetary gear and a configuration example of one input shaft and two output shafts are disclosed.
  • the rotation speed of each shaft is variable, and a fluid coupling is provided as a speed change mechanism.
  • the efficiency can be improved by combining a planetary gear and a fluid coupling.
  • a clutch capable of controlling the slip ratio is provided to change the rotation speed range. According to the present invention, it is possible to facilitate optimum design and increase efficiency more than in the past.
  • Patent Document 3 discloses an invention of a ship propulsion device.
  • the marine apparatus of the present invention has two electric motors: a sub-motor that controls rotation by an inverter and an electric motor that controls rotation by a slip clutch.
  • the propeller rotational speed is less than the predetermined rotational speed
  • the propeller is rotated by controlling the low-power auxiliary motor with a small-capacity general-purpose inverter.
  • the rotation is not transmitted to the slip clutch input shaft by disconnecting the on-off clutch.
  • the main motor is switched from the sub-motor to the drive motor, the on-off clutch is connected, the rotation speed is controlled by the slip clutch, and the propeller is rotated.
  • the propulsive force can be varied by controlling the propeller rotation speed in the entire range from 0 to the rated rotation.
  • the electric propulsion by the electric motor drive as described in Patent Document 3 is known.
  • the electric motor needs to be controlled at a variable speed in order to change the rotation speed of the propeller, and an inverter is required for that purpose.
  • a harmonic suppression means such as a filter is necessary.
  • the inverter it has is not handled as a general-purpose product and must be acquired as a custom-made product and is expensive. For this reason, there was a current situation that demand for electric propulsion is less than that of a ship propulsion device in which a propeller and an internal combustion engine are directly connected.
  • the marine vessel propulsion apparatus described in Patent Document 1 uses an internal combustion engine, and the internal combustion engine can arbitrarily change speed, whereas a planetary gear of a speed change mechanism is interposed between the internal combustion engine and the propeller. As a result, the efficiency is reduced by the amount of the gear.
  • This document does not describe a method for efficiently controlling the entire rotation speed of the propeller by using planetary gears for the internal combustion engine and the motor.
  • variable speed device when only the planetary gear is adopted as the speed change mechanism, the efficiency of the propeller can be reduced in all regions from 0 to the rated speed when the input shaft is set to a constant speed. Since it cannot be controlled well, a fluid coupling or a slip clutch that can control the slip rate is used as the speed change mechanism. However, slip loss occurs in both the fluid coupling and the slip clutch, so efficient control can be performed. There wasn't.
  • the present invention solves the problems in the prior art described above, and employs a structure in which two motors that do not require expensive custom-made inverters are used as drive sources and the propeller is driven via a planetary gear mechanism. It aims at providing the cheap ship propulsion apparatus which can perform efficient drive control by this.
  • the marine vessel propulsion device described in claim 1 is: A planetary gear mechanism having a ring gear engaging with each other, a sun gear, and a planet gear mounted on a carrier; A first motor connected to any of the ring gear, the sun gear, and the carrier and driven by an inverter; A second motor connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and is driven at a constant speed; A propeller connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and the second motor; It is characterized by comprising.
  • the ship propulsion device described in claim 2 is the ship propulsion device according to claim 1,
  • the first motor is connected to the ring gear, the second motor is connected to the sun gear, and the propeller is connected to the carrier.
  • the ship propulsion device described in claim 3 is the ship propulsion device according to claim 2, It has a clutch provided in the second motor, and a brake provided between the clutch and the sun gear.
  • the ship propulsion apparatus described in claim 4 is the ship propulsion apparatus according to claim 2, It has a clutch provided in the second motor, and a reverse rotation prevention mechanism provided between the clutch and the sun gear.
  • a ship propulsion device is the ship propulsion device according to any one of claims 1 to 4, In the low output region where the output of the propeller is relatively small, the propeller is driven only by the first motor, and in the large output region where the output of the propeller is relatively large, the first motor and the second motor are driven. It has the control part which controls so that the said propeller may be driven with this motor.
  • a custom-made inverter having harmonic suppression means such as a filter is large in size and needs to secure a corresponding installation space.
  • a special-purpose inverter is not necessary for the second motor driven at a constant speed. For this reason, it is not necessary to secure a space, and the space can be used for other purposes (for example, a space for placing luggage in a work boat).
  • the fuel consumption of the power generation engine that drives the electric motor can be reduced.
  • the clutch is provided in the second motor and the brake is provided between the clutch and the sun gear, the driving power of the propeller is not interrupted and stable navigation is possible.
  • the clutch is provided in the second motor and the reverse rotation prevention mechanism is provided between the clutch and the sun gear, the driving power of the propeller is not interrupted and stable navigation is possible. At the same time, the propeller can be driven only in the direction of forward rotation.
  • the propeller is driven only by the first motor in the low output region and the propeller is driven by the first motor and the second motor in the high output region. Efficient control according to the output can be performed, and the fuel consumption of the power generation engine that drives the electric motor can be further reduced.
  • FIG. 5 is a schematic diagram showing structures of a solar planetary gear mechanism, a planetary planetary gear mechanism, and a differential planetary gear mechanism that is a combination of a solar planetary gear mechanism and a planetary planetary gear mechanism.
  • a ship propulsion apparatus 1 relates to a so-called azimuth thruster that sets a propulsion direction by turning a horizontal propeller shaft 3 around a vertical shaft 2 that transmits power, and in particular, two units.
  • Motors (electric motors) A and B are connected to the propeller shaft 3 via the planetary gear mechanism 5 in the gear box 4 and the motors A and B are switched according to the output of the propeller 6 for efficient control.
  • the present invention relates to a ship propulsion device 1 that can be used.
  • a speed reducer 8 is attached to the upper surface of a stern base 7 of the ship. Inside the speed reducer 8, a horizontal transmission shaft 9, a vertical shaft provided below a substantially central portion of the transmission shaft 9, one end side (upper end side) of the vertical shaft 2, and the transmission shaft 9 are coupled to each other. A reduction gear 10 is provided.
  • a strut 11 and a casing 12 are attached to the lower surface side of the bed 7 so as to be able to turn under the ship.
  • the strut 11 and the casing 12 can be turned by a turning drive mechanism (not shown).
  • the vertical shaft 2 passes through the floor 7 and the bottom of the ship and is disposed in the strut 11 and the casing 12, and the other end side (lower end side) of the vertical shaft 2 is not changed.
  • One end side of the horizontal propeller shaft 3 is connected via the direction mechanism 13.
  • the other end side of the propeller shaft 3 protrudes outside the casing 12, and a propeller 6 is attached to the other end side of the propeller shaft 3.
  • the propeller 6 is a fixed pitch propeller.
  • a substantially cylindrical duct 14 surrounding the propeller 6 is attached to the casing 12.
  • a gear box 4 is provided inside the ship so that the first input shaft 21, the second input shaft 22, and the output shaft 23 protrude outward.
  • the output shaft 23 is connected to the end of the transmission shaft 9 of the speed reducer 8.
  • a planetary gear mechanism 5 as shown in FIGS. 2 and 3 is accommodated in the gear box 4 shown in FIG.
  • the planetary gear mechanism 5 includes a ring gear R, a sun gear S, and a planet gear P mounted on a carrier C, and these three types of gears mesh with each other.
  • the ring gear R is provided with external teeth, and the drive gear D is engaged with the external teeth.
  • one end of the first input shaft 21 is connected to the drive gear D.
  • One end of the second input shaft 22 is connected to the sun gear S.
  • One end of the output shaft 23 is connected to a carrier C on which a planet gear P is mounted.
  • the other end of the first input shaft 21 is connected to a motor A as a first motor.
  • the other end of the second input shaft 22 is connected to a motor B as a second motor via a clutch 15.
  • the second input shaft 22 is provided with a brake 16 between the clutch 15 and the sun gear S.
  • the clutch 15 and the brake 16 shown in FIGS. 2 and 3 are provided inside the gear box 4 shown in FIG.
  • the planetary gear mechanism 5 is a differential type in which the ring gear R, sun gear S, planet gear P, and carrier C can all operate.
  • FIG. 2 when the clutch 15 is turned off and the brake 16 is turned on and the sun gear S is fixed, if the motor A rotates the ring gear R via the drive gear D, the planet gear P and the carrier C rotate. Then, the output shaft 23 provided with the propeller 6 rotates.
  • FIG. 3 in a state where the clutch 15 is turned on and the brake 16 is turned off, the motor A rotates the ring gear R by the drive gear D and the motor B rotates the sun gear S. The planet gear P and the carrier C are rotated, and the output shaft 23 provided with the propeller 6 is rotated.
  • the motor A At low speed, the motor A is operated only as shown in FIG. 2, and at high speed, the rotation speed of the motor A is decreased, the brake 16 is released and the clutch 15 is connected, and the motor B is operated at a constant speed. And the driving speed is adjusted by the motor A.
  • the motor A is connected to the first input shaft 21 of the gear box 4.
  • the motor A is an inverter motor controlled by a general-purpose inverter 17 including a filter that is a countermeasure against harmonics.
  • the general-purpose inverter 17 is an inverter provided as a standard product by an inverter manufacturer, and a inverter having a capacity that is generally available can be used.
  • the motor A is controlled by the inverter, the general-purpose inverter 17 may be used, so the price is low, the filter is small, the panel size is relatively small, and the installation space is small.
  • a resistor 18 is connected to the inverter 17, and the propeller 6 acts as a brake 16, and when the motor A generates power, the resistor 18 absorbs energy.
  • the inverter 17 is connected to a switchboard 19, and the switchboard 19 is connected to a power supply system to which one or more main power generation engines 20 are connected.
  • the motor B is connected to the second input shaft 22 of the gear box 4.
  • the motor B includes an starter 25 (starter switch) as shown in FIGS. 2 and 3, and is an AC motor that is driven at a constant speed by three-phase AC when started by the starter 25.
  • the marine vessel propulsion apparatus 1 includes a control unit 30.
  • the control unit 30 is connected to a rotation speed sensor (not shown) that directly or indirectly measures the propeller rotation speed, and is configured to acquire a measured value of the propeller rotation speed from the rotation speed sensor.
  • control unit 30 is connected to the inverter 17 of the motor A, the starter 25 of the motor B, the brake 16 and the clutch 15, and controls these based on the acquired propeller rotational speed. can do.
  • FIG. 4 is a schematic diagram showing structures of a solar planetary gear mechanism 5a, a planetary planetary gear mechanism 5b, and a differential planetary gear mechanism 5.
  • the differential planetary gear mechanism 5 is shown in FIG.
  • FIG. 4 shows that the solar planetary gear mechanism 5a and the planetary planetary gear mechanism 5b are combined by using a mathematical expression of addition figuratively.
  • FIG. 4 only one planet gear P is shown, but usually there are a plurality of, for example, 3 to 4, planet gears. 4 indicates the direction of operation.
  • the carrier C on which the planet gear P is mounted is not shown, but the revolution (rotation of the carrier C) is indicated by an arrow extending from the center of the planet gear P. ).
  • the solar type planetary gear mechanism 5a has the sun gear S fixed, and the ring gear R, the planet gear P, and the carrier C (see FIGS. 2 and 3) can operate. It is. In this state, only the motor A drives the ring gear R, the second input shaft 22 connected to the sun gear S is fixed by the brake 16, the clutch 15 is disconnected, and the motor B is stopped.
  • the form corresponds to a low-speed state in which only the motor A is driven.
  • the planetary planetary gear mechanism 5b has a fixed ring gear R, a sun gear S, a planet gear P, and a carrier C (see FIGS. 2 and 3). It is possible to operate. In this state, the motor A stops and the ring gear R is fixed, and the motor B drives the sun gear S to drive the planet gear P and the carrier C (see FIGS. 2 and 3). In the embodiment, this corresponds to a state at the time of switching from low speed to high speed at which the driving of the motor B is started.
  • the ring gear R, the sun gear S, the planet gear P, and the carrier C can all be operated.
  • the ring gear R is driven by the motor A
  • the sun gear S is driven by the motor B
  • the output shaft 23 is rotated by the rotation of the carrier C (see FIGS. 2 and 3). Is driven at a constant speed, and the speed is adjusted by the motor A.
  • FIG. 5 illustrates the number of teeth of each of the solar type and planetary type planetary gear mechanisms 5a, 5b in the differential planetary gear mechanism 5 of the present embodiment, and based on this number of teeth example, two motors A, The ratio of power shared by the ring gear R and the sun gear S connected to B is calculated and shown as an example.
  • the number of teeth of each of the solar and planetary gears is, for example, 70 sun gears, 30 planet gears, and 130 ring gears. If the speed is calculated from the number of teeth, in the case of the solar type, the sun gear S is 0, the planet gear P carrier C is 588 min-1, and the ring gear R is 904 min-1. In the case of the planet type, the sun gear S is 1750 min-1, the carrier C of the planet gear P is 612 min-1, and the ring gear R is 0. Therefore, in the differential type planetary gear mechanism 5 of the embodiment combining the solar type and the planet type, the speed of the carrier C of the planet gear P which is the output shaft 23 is the planetary gear mechanism 5a of each of the solar type and the planet type.
  • the desired output is assumed to be 100 kW
  • the power of the ring gear R of the solar planetary gear mechanism 5a is 49 kW
  • the power of the sun gear S of the planetary planetary gear mechanism 5b is 51 kW. Therefore, the power of the motor A that drives the ring gear R of the differential planetary gear mechanism 5 of the embodiment is 49 kW
  • the power of the motor B that drives the sun gear S is 51 kW
  • the power of the motor B that drives the sun gear S is slightly larger.
  • FIG. 6 is a graph showing the relationship between the propeller output and the shaft rotation speed in the marine vessel propulsion apparatus of the embodiment.
  • the control unit 30 drives the motor A with an inverter as shown by a thick solid line in FIG. To promote the ship. During this time, the clutch 15 is disengaged and the motor B is stopped, and the brake 16 is activated to fix the second input shaft 22 so that the sun gear S does not rotate.
  • the control unit 30 reduces the rotation and output of the motor A to a predetermined value, and the motor B started by the starter 25 is As shown by a thin solid line in FIG. 6, the motor is driven at a predetermined constant rotational speed (1750 min ⁇ 1 in the embodiment), and the motor B is controlled so as to bear the reduced output. And in the high output area
  • the motor A does not act as the brake 16 for driving the motor B.
  • the planetary gear mechanism 5 employed in the present embodiment depending on the output of the propeller or the shaft rotational speed, the propeller cannot be rotated in the forward direction unless the motor A is driven in the opposite direction to the motor B.
  • the motor type / combination used in the low output region and the high output region is appropriately switched and driven, The total output of the motor B is the output of the propeller.
  • switching of the motors A and B in the transition from the low output region to the high output region can be stably performed by appropriately controlling the brake 16 and the clutch 15 as described below. That is, if there is no clutch 15, the motor B is always connected to the sun gear S. Then, when shifting from the low output region to the high output region, the motor B connected to the stopped sun gear S must start against a large inertia. Therefore, as compared with a state in which a load is not connected to the output shaft 23 of the motor B, more power is required for the motor B connected to the sun gear S to rise to a predetermined constant rotational speed.
  • FIG. 7 is a graph showing a relationship between the propeller rotational speed and the propeller output in the marine propulsion device of the embodiment, showing a graph of the propeller output with respect to the propeller rotational speed, the outputs of the motor A and the motor B, and the efficiency. Yes.
  • the control unit 30 drives the motor A with an inverter to control the propeller output.
  • the motor B is driven at a constant rotational speed, and the motor A is regulated by an inverter to control the propeller output.
  • the propeller output has a so-called cubic characteristic relationship with the propeller rotational speed, and the efficiency of the planetary gear becomes a high value of around 98% in all regions from the propeller rotational speed to the rated rotational speed, and the fuel consumption rate is high. improves.
  • FIG. 8 is a graph showing the relationship between the propeller rotation speed and the generator electric energy in the ship propulsion devices of the embodiment and the comparative example.
  • the comparative example corresponds to the marine vessel propulsion device described in “Background Art”, and includes a sub-motor that controls rotation by an inverter and an electric motor that controls rotation by a slip clutch. It is a type of device having an electric motor.
  • the slip loss increases, so that the amount of power generation increases. Further, there is a discontinuous region where the power generation amount rapidly increases at an intermediate rotational speed. Therefore, the smoothness of operation control is lacking.
  • the loss is small and the efficiency is higher than that of the comparative example, and the amount of fuel consumed by the power generation engine that generates electric power for driving the motor can be reduced.
  • FIG. 9 is a diagram showing a schematic configuration of a marine vessel propulsion apparatus according to the second embodiment of the present invention.
  • a gear box 4 containing the planetary gear mechanism 5 is provided on the platform 7 and the output shaft 23 of the planetary gear mechanism 5 is connected to the vertical shaft 2.
  • Other configurations are the same as those of the first embodiment.
  • the drive mechanism is arranged vertically, it is possible to save the space of the devices arranged on the ship.
  • FIG. 10 is a configuration diagram showing an outline of a drive system of the marine vessel propulsion apparatus according to the third embodiment of the present invention.
  • This figure is a figure which shows the driving force transmission condition at the time of low speed, Comprising: It is a figure corresponded in FIG. 2 of 1st Embodiment.
  • a one-way clutch 40 as a reverse rotation prevention mechanism is provided instead of the brake 16 of the first embodiment.
  • one motor B is driven as a general-purpose AC electric motor at a constant speed.
  • the speed of the other motor A is controlled as an AC electric motor driven by a small general-purpose inverter 17, and a planetary gear mechanism 5 including a brake 16 and a clutch 15 for connecting the motors A and B and the propeller 6 is used.
  • This eliminates the need for a custom-made expensive inverter enables the installation space to be saved, and prevents the motor A, through the stable operation without interrupting the driving power of the propeller 6 and the efficient control according to the propeller output.
  • the fuel consumption of the power generation engine that drives B can be reduced.
  • the motor A is connected to the ring gear R
  • the motor B is connected to the sun gear S
  • the propeller 6 is connected to the carrier C.
  • this configuration is not necessarily required. I can't say that. Any of the ring gear R of the planetary gear mechanism 5, the sun gear S, and the carrier C on which the planet gear P is mounted may be connected to the propeller, and the remaining two may be connected to the motor A and the motor B.

Abstract

[Problem] To provide an inexpensive ship propulsion device that uses two motors without the need for a dedicated inverter and that can perform efficient drive control. [Solution] In this ship propulsion device 1, a motor A is linked to a ring gear of a planetary gearing mechanism 5, a motor B is linked to a sun gear via a clutch 15, and a propeller 6 is linked to a carrier C of a planetary gear P. A control unit 30 performs control so that the propeller is driven by only the motor A in a low-output region of the propeller, and is driven by both the motor A and the motor B in a high-output region. Performing efficient control that obviates the need for a large dedicated inverter and enables installation space to be effectively utilized, the control being performed in accordance with the output of the propeller by the two motors, makes it possible to conserve the amount of fuel consumed by a power-generating machine that drives an electric motor.

Description

船舶推進装置Ship propulsion device
 本発明は、モータ(電動機)を駆動源とする電気推進の船舶推進装置に係り、特に遊星歯車機構を介してプロペラを駆動する2台のモータを備え、効率的な駆動制御を行うことができる安価な船舶推進装置に関するものである。 The present invention relates to an electric propulsion ship propulsion apparatus using a motor (electric motor) as a drive source, and in particular, includes two motors that drive a propeller via a planetary gear mechanism, and can perform efficient drive control. The present invention relates to an inexpensive ship propulsion device.
 下記特許文献1には船舶推進装置の発明が開示されている。この発明の船舶推進装置は、それぞれ入力軸を有する船舶用の推進装置としての内燃機関及びモータジェネレータと、出力軸に設けられたプロペラを有し、これら2本の入出軸と出力軸を接続する遊星歯車機構のギヤボックスを備えている。この発明によれば、負荷トルクと基準値を比較し、その結果に応じてジェネレータモータによる発電量を制御し、またジェネレータモータのアシスト出力を制御する。この発明によれば、船舶を推進する内燃機関の出力トルクを一定に保持して燃費を向上する効果が得られるものとされている。 Patent Document 1 below discloses an invention of a ship propulsion device. The marine vessel propulsion device of the present invention includes an internal combustion engine and a motor generator as marine vessel propulsion devices each having an input shaft, and a propeller provided on an output shaft, and connects these two input / output shafts and an output shaft. A gear box of a planetary gear mechanism is provided. According to the present invention, the load torque is compared with the reference value, and the amount of power generated by the generator motor is controlled according to the result, and the assist output of the generator motor is controlled. According to this invention, it is supposed that the effect of improving the fuel consumption by keeping the output torque of the internal combustion engine propelling the ship constant can be obtained.
 下記特許文献2には可変側装置の発明が開示されている。この発明の可変側装置は、ポンプなどの一般産業機械における可変速装置であり、遊星歯車を用いて2入力軸、1出力軸の構成例や、1入力軸、2出力軸の構成例が開示されている。各軸とも回転速度が可変であり、変速機構として流体継手を備えており、遊星歯車と流体継手を組合わせることにより効率を向上させることができるものとされている。また、回転速度範囲を変えるために滑り率を制御可能なクラッチを設けている。この発明によれば、最適設計を容易にし、従来以上に効率を高めることが可能とされている。 Patent Document 2 below discloses the invention of the variable side device. The variable side device of the present invention is a variable speed device in a general industrial machine such as a pump, and a configuration example of two input shafts and one output shaft using a planetary gear and a configuration example of one input shaft and two output shafts are disclosed. Has been. The rotation speed of each shaft is variable, and a fluid coupling is provided as a speed change mechanism. The efficiency can be improved by combining a planetary gear and a fluid coupling. In addition, a clutch capable of controlling the slip ratio is provided to change the rotation speed range. According to the present invention, it is possible to facilitate optimum design and increase efficiency more than in the past.
 特許文献3には船舶推進装置の発明が開示されている。この発明の船舶装置は、プロペラを駆動するため、インバータにより回転制御する副電動機と、スリップクラッチにより回転制御を行う電動機の2つの電動機を有する。プロペラ回転速度が所定回転速度未満の場合には、低出力の副電動機を小容量の汎用インバータにより制御してプロペラを回転させる。その際、主電動機駆動系統において、on-offクラッチを遮断することでスリップクラッチ入力軸には回転を伝達しない。プロペラ回転速度が所定回転速度以上になった場合には、駆動源を副電動機ら主電動機切り換えてon-offクラッチを連結し、回転速度をスリップクラッチより制御してプロペラを回転させる。 Patent Document 3 discloses an invention of a ship propulsion device. In order to drive the propeller, the marine apparatus of the present invention has two electric motors: a sub-motor that controls rotation by an inverter and an electric motor that controls rotation by a slip clutch. When the propeller rotational speed is less than the predetermined rotational speed, the propeller is rotated by controlling the low-power auxiliary motor with a small-capacity general-purpose inverter. At this time, in the main motor drive system, the rotation is not transmitted to the slip clutch input shaft by disconnecting the on-off clutch. When the propeller rotation speed exceeds a predetermined rotation speed, the main motor is switched from the sub-motor to the drive motor, the on-off clutch is connected, the rotation speed is controlled by the slip clutch, and the propeller is rotated.
 また、従来の船舶推進装置において、可変ピッチプロペラと比べて制御が不要で安価な固定ピッチプロペラを採用した場合、プロペラの回転速度を0から定格回転までの全領域で制御して推進力を可変とする技術としては、上述した特許文献3のような電動機駆動による電気推進が知られていた。電動機駆動による電気推進においては、プロペラの回転速度を変えるために電動機を可変速制御する必要があり、そのためにはインバータが必要となる。船舶のプロペラを駆動できるような大出力を得ることができ、且つ船舶の船内電源を安定化する為には、フィルタのような高調波抑制手段が必要であり、このような高調波抑制手段を有するインバータは汎用品としては取り扱われておらず、特注品として取得せざるを得ず高価である。このため、プロペラと内燃機関を直結した船舶推進装置に比して、電気推進の需要は少ないという現状があった。 In addition, when a fixed pitch propeller that does not require control and is cheaper than a variable pitch propeller is used in a conventional marine propulsion device, the propulsive force can be varied by controlling the propeller rotation speed in the entire range from 0 to the rated rotation. As the technique, the electric propulsion by the electric motor drive as described in Patent Document 3 is known. In electric propulsion driven by an electric motor, the electric motor needs to be controlled at a variable speed in order to change the rotation speed of the propeller, and an inverter is required for that purpose. In order to obtain a large output capable of driving the propeller of the ship and to stabilize the ship's inboard power supply, a harmonic suppression means such as a filter is necessary. The inverter it has is not handled as a general-purpose product and must be acquired as a custom-made product and is expensive. For this reason, there was a current situation that demand for electric propulsion is less than that of a ship propulsion device in which a propeller and an internal combustion engine are directly connected.
特許第5830309号公報Japanese Patent No. 5830309 特許第5778844号公報Japanese Patent No. 5778844 特許第5942061号公報Japanese Patent No. 5942061
 特許文献1に記載された船舶推進装置は内燃機関を用いており、この内燃機関は任意に変速することが可能であるのに対して、内燃機関とプロペラの間に変速機構の遊星歯車を介することにより歯車の分だけ効率が悪くなる。本文献では内燃機関とモータに遊星歯車を用いることで、プロペラの回転速度の全領域で効率よく制御する手法が記されていない。 The marine vessel propulsion apparatus described in Patent Document 1 uses an internal combustion engine, and the internal combustion engine can arbitrarily change speed, whereas a planetary gear of a speed change mechanism is interposed between the internal combustion engine and the propeller. As a result, the efficiency is reduced by the amount of the gear. This document does not describe a method for efficiently controlling the entire rotation speed of the propeller by using planetary gears for the internal combustion engine and the motor.
 特許文献2に記載された可変速装置によれば、変速機構として遊星歯車のみを採用した場合には、入力軸を一定速とするとプロペラの回転速度を0から定格回転速度までの全領域において効率よく制御することができないため、変速機構として、流体継手や、滑り率が制御できるスリップクラッチを用いているが、流体継手もスリップクラッチもスリップロスが発生するため効率の良い制御を行うことはできなかった。 According to the variable speed device described in Patent Document 2, when only the planetary gear is adopted as the speed change mechanism, the efficiency of the propeller can be reduced in all regions from 0 to the rated speed when the input shaft is set to a constant speed. Since it cannot be controlled well, a fluid coupling or a slip clutch that can control the slip rate is used as the speed change mechanism. However, slip loss occurs in both the fluid coupling and the slip clutch, so efficient control can be performed. There wasn't.
 特許文献3に記載された船舶推進装置によれば、電動機駆動による電気推進であるが、前述したような特注品のインバータは必要ではないが、運転時には高負荷領域で主電動機の回転速度をスリップクラッチで制御してプロペラに伝える構造であるため、スリップロスが発生して効率が悪くなるという問題があった。 According to the marine vessel propulsion apparatus described in Patent Document 3, electric propulsion is driven by an electric motor. However, a custom-made inverter as described above is not necessary, but during operation, the rotational speed of the main motor is slipped in a high load region. Since the structure is controlled by the clutch and transmitted to the propeller, there is a problem that slip loss occurs and efficiency is deteriorated.
 本発明は以上説明した先行技術における課題を解決するものであり、高価な特注品のインバータを必要としない2台のモータを駆動源とし、遊星歯車機構を介してプロペラを駆動する構造を採用することにより効率的な駆動制御が行える安価な船舶推進装置を提供することを目的としている。 The present invention solves the problems in the prior art described above, and employs a structure in which two motors that do not require expensive custom-made inverters are used as drive sources and the propeller is driven via a planetary gear mechanism. It aims at providing the cheap ship propulsion apparatus which can perform efficient drive control by this.
 請求項1に記載された船舶推進装置は、
 互いに係合するリングギアと、サンギアと、キャリアに搭載されたプラネットギアとを有する遊星歯車機構と、
 前記リングギアと前記サンギアと前記キャリアの何れかに接続されてインバータで駆動される第1のモータと、
 前記リングギアと前記サンギアと前記キャリアのうち、前記第1のモータに接続されていないものに接続されて一定速度で駆動される第2のモータと、
 前記リングギアと前記サンギアと前記キャリアのうち、前記第1のモータ及び前記第2のモータに接続されていないものに接続されたプロペラと、
 を具備することを特徴としている。
The marine vessel propulsion device described in claim 1 is:
A planetary gear mechanism having a ring gear engaging with each other, a sun gear, and a planet gear mounted on a carrier;
A first motor connected to any of the ring gear, the sun gear, and the carrier and driven by an inverter;
A second motor connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and is driven at a constant speed;
A propeller connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and the second motor;
It is characterized by comprising.
 請求項2に記載された船舶推進装置は、請求項1記載の船舶推進装置において、
 前記第1のモータは前記リングギアに接続されており、前記第2のモータは前記サンギアに接続されており、前記プロペラは前記キャリアに接続されていることを特徴としている。
The ship propulsion device described in claim 2 is the ship propulsion device according to claim 1,
The first motor is connected to the ring gear, the second motor is connected to the sun gear, and the propeller is connected to the carrier.
 請求項3に記載された船舶推進装置は、請求項2記載の船舶推進装置において、
 前記第2のモータに設けられたクラッチと、前記クラッチと前記サンギアの間に設けられたブレーキとを有することを特徴としている。
The ship propulsion device described in claim 3 is the ship propulsion device according to claim 2,
It has a clutch provided in the second motor, and a brake provided between the clutch and the sun gear.
 請求項4に記載された船舶推進装置は、請求項2記載の船舶推進装置において、
 前記第2のモータに設けられたクラッチと、前記クラッチと前記サンギアの間に設けられた逆転防止機構とを有することを特徴としている。
The ship propulsion apparatus described in claim 4 is the ship propulsion apparatus according to claim 2,
It has a clutch provided in the second motor, and a reverse rotation prevention mechanism provided between the clutch and the sun gear.
 請求項5に記載された船舶推進装置は、請求項1乃至4の何れか一つに記載の船舶推進装置において、
 前記プロペラの出力が相対的に小さい低出力領域では、前記第1のモータのみで前記プロペラを駆動し、前記プロペラの出力が相対的に大きい大出力領域では、前記第1のモータ及び前記第2のモータで前記プロペラを駆動するように制御を行う制御部を有することを特徴としている。
A ship propulsion device according to claim 5 is the ship propulsion device according to any one of claims 1 to 4,
In the low output region where the output of the propeller is relatively small, the propeller is driven only by the first motor, and in the large output region where the output of the propeller is relatively large, the first motor and the second motor are driven. It has the control part which controls so that the said propeller may be driven with this motor.
 請求項1及び2に記載された船舶推進装置によれば、次のような効果が得られる。すなわち、フィルタ等の高調波抑制手段を有する特注品のインバータはサイズが大きく、相応の設置スペースを確保する必要があるが、一定速度で駆動する第2のモータについては特注品のインバータは不要であり、このためスペース確保が不要となり、そのスペースを他の用途(例えば作業船であれば荷物を置くスペースなど)に使える。また、2つのモータを使用し、プロペラ出力に応じた効率的な制御を行うことにより、電動機を駆動する発電機関の燃料消費量が削減出来る。 According to the ship propulsion device described in claims 1 and 2, the following effects can be obtained. That is, a custom-made inverter having harmonic suppression means such as a filter is large in size and needs to secure a corresponding installation space. However, a special-purpose inverter is not necessary for the second motor driven at a constant speed. For this reason, it is not necessary to secure a space, and the space can be used for other purposes (for example, a space for placing luggage in a work boat). Also, by using two motors and performing efficient control according to the propeller output, the fuel consumption of the power generation engine that drives the electric motor can be reduced.
 請求項3に記載された船舶推進装置によれば、第2のモータにクラッチを設け、クラッチとサンギアの間にブレーキを設けたため、プロペラの駆動動力が途切れず、安定的な航行が可能である。 According to the marine vessel propulsion device described in claim 3, since the clutch is provided in the second motor and the brake is provided between the clutch and the sun gear, the driving power of the propeller is not interrupted and stable navigation is possible. .
 請求項4に記載された船舶推進装置は、第2のモータにクラッチを設け、クラッチとサンギアの間に逆転防止機構を設けたため、プロペラの駆動動力が途切れず、安定的な航行が可能であるとともに、プロペラを正回転の方向にのみ駆動することができる。 In the marine vessel propulsion device described in claim 4, since the clutch is provided in the second motor and the reverse rotation prevention mechanism is provided between the clutch and the sun gear, the driving power of the propeller is not interrupted and stable navigation is possible. At the same time, the propeller can be driven only in the direction of forward rotation.
 請求項5に記載された船舶推進装置によれば、低出力領域では第1のモータのみでプロペラを駆動し、大出力領域では第1のモータと第2のモータでプロペラを駆動するため、プロペラ出力に応じた効率的な制御を行うことが可能となり、電動機を駆動する発電機関の燃料消費量を一層削減できる。 According to the marine vessel propulsion device described in claim 5, the propeller is driven only by the first motor in the low output region and the propeller is driven by the first motor and the second motor in the high output region. Efficient control according to the output can be performed, and the fuel consumption of the power generation engine that drives the electric motor can be further reduced.
本発明の実施形態である船舶推進装置の概略構成図である。It is a schematic block diagram of the ship propulsion apparatus which is embodiment of this invention. 実施形態の船舶推進装置の駆動系統の概略構成図であり、低速時の駆動力伝達状況を示す図である。It is a schematic structure figure of the drive system of the vessel propulsion device of an embodiment, and is a figure showing the driving force transmission situation at the time of low speed. 実施形態の船舶推進装置の駆動系統の概略構成図であり、高速時の駆動力伝達状況を示す図である。It is a schematic structure figure of the drive system of the vessel propulsion device of an embodiment, and is a figure showing the driving force transmission situation at the time of high speed. ソラー型の遊星歯車機構と、プラネット型の遊星歯車機構と、ソラー型の遊星歯車機構とプラネット型の遊星歯車機構を組み合わせた差動型の遊星歯車機構の各構造を示す模式図である。FIG. 5 is a schematic diagram showing structures of a solar planetary gear mechanism, a planetary planetary gear mechanism, and a differential planetary gear mechanism that is a combination of a solar planetary gear mechanism and a planetary planetary gear mechanism. 差動型の遊星歯車機構においてリングギアとサンギアが分担する動力の比率を一例として示すために、数値例におけるソラー型の遊星歯車機構のリングギアが分担する動力等と、プラネット型の遊星歯車機構のサンギアが負担する動力等を一例として示した計算例の表図である。In order to show as an example the ratio of power shared by the ring gear and sun gear in the differential planetary gear mechanism, the power shared by the ring gear of the solar type planetary gear mechanism in the numerical example and the planetary planetary gear mechanism It is a table | surface figure of the example of calculation which showed the motive power etc. which the sun gear bears as an example. 実施形態の舶推進装置におけるプロペラ出力と軸回転速度の関係を示すグラフである。It is a graph which shows the relationship between the propeller output and shaft rotational speed in the ship propulsion apparatus of embodiment. 実施形態の舶推進装置におけるプロペラ回転速度とプロペラ出力の関係等を示すグラフである。It is a graph which shows the relationship etc. of the propeller rotational speed and propeller output in the ship propulsion apparatus of embodiment. 実施形態の舶推進装置と比較例の船舶推進装置におけるプロペラ回転速度と発電機電力量の関係を示すグラフである。It is a graph which shows the relationship between the propeller rotational speed and generator electric energy in the ship propulsion apparatus of embodiment and the ship propulsion apparatus of a comparative example. 本発明の第2の実施形態である船舶推進装置の概略構成図である。It is a schematic block diagram of the ship propulsion apparatus which is the 2nd Embodiment of this invention. 本発明の第3の実施形態である船舶推進装置の駆動系統の概略構成図であり、低速時の駆動力伝達状況を示す図である。It is a schematic block diagram of the drive system of the ship propulsion apparatus which is the 3rd Embodiment of this invention, and is a figure which shows the driving force transmission condition at the time of low speed.
 本発明の実施形態を図1~図10を参照して説明する。
 図1に示すように、本実施形態の船舶推進装置1は、動力を伝達する垂直軸2を中心に水平なプロペラ軸3を旋回させて推進方向を設定する所謂アジマススラスターに係り、特に2台のモータ(電動機)A、Bをギアボックス4内の遊星歯車機構5を介してプロペラ軸3に接続し、プロペラ6の出力に応じてモータA、Bを切り替えて効率的な制御を行うことができる船舶推進装置1に関するものである。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a ship propulsion apparatus 1 according to the present embodiment relates to a so-called azimuth thruster that sets a propulsion direction by turning a horizontal propeller shaft 3 around a vertical shaft 2 that transmits power, and in particular, two units. Motors (electric motors) A and B are connected to the propeller shaft 3 via the planetary gear mechanism 5 in the gear box 4 and the motors A and B are switched according to the output of the propeller 6 for efficient control. The present invention relates to a ship propulsion device 1 that can be used.
 主として図1~図5を参照して本実施形態の船舶推進装置1の構成を説明する。
 図1に示すように、船舶の船尾の台床7の上面には減速機8が取り付けられている。減速機8の内部には、水平な伝達軸9と、伝達軸9の略中央部分の下方に設けられた垂直軸と、垂直軸2の一端側(上端側)と伝達軸9を連動連結する減速ギア10が設けられている。
The configuration of the marine vessel propulsion apparatus 1 of the present embodiment will be described mainly with reference to FIGS.
As shown in FIG. 1, a speed reducer 8 is attached to the upper surface of a stern base 7 of the ship. Inside the speed reducer 8, a horizontal transmission shaft 9, a vertical shaft provided below a substantially central portion of the transmission shaft 9, one end side (upper end side) of the vertical shaft 2, and the transmission shaft 9 are coupled to each other. A reduction gear 10 is provided.
 図1に示すように、台床7の下面側には、船舶の下方で旋回可能となるようにストラット11とケーシング12が取り付けられている。ストラット11及びケーシング12は図示しない旋回駆動機構で旋回させることができる。 As shown in FIG. 1, a strut 11 and a casing 12 are attached to the lower surface side of the bed 7 so as to be able to turn under the ship. The strut 11 and the casing 12 can be turned by a turning drive mechanism (not shown).
 図1に示すように、垂直軸2は台床7及び船舶の船底を貫通してストラット11及びケーシング12内に配設されており、垂直軸2の他端側(下端側)には、変向機構13を介して水平なプロペラ軸3の一端側が連結されている。プロペラ軸3の他端側はケーシング12の外に突出しており、プロペラ軸3の他端側にはプロペラ6が取り付けられている。プロペラ6は固定ピッチプロペラである。なお、ケーシング12にはプロペラ6を囲む略円筒形のダクト14が取り付けられている。 As shown in FIG. 1, the vertical shaft 2 passes through the floor 7 and the bottom of the ship and is disposed in the strut 11 and the casing 12, and the other end side (lower end side) of the vertical shaft 2 is not changed. One end side of the horizontal propeller shaft 3 is connected via the direction mechanism 13. The other end side of the propeller shaft 3 protrudes outside the casing 12, and a propeller 6 is attached to the other end side of the propeller shaft 3. The propeller 6 is a fixed pitch propeller. A substantially cylindrical duct 14 surrounding the propeller 6 is attached to the casing 12.
 図1に示すように、船舶の内部には、第1入力軸21、第2入力軸22及び出力軸23を外方に突出させたギアボックス4が設けられている。出力軸23は減速機8の伝達軸9の端部に連結されている。 As shown in FIG. 1, a gear box 4 is provided inside the ship so that the first input shaft 21, the second input shaft 22, and the output shaft 23 protrude outward. The output shaft 23 is connected to the end of the transmission shaft 9 of the speed reducer 8.
 図1に示したギアボックス4の内部には、図2及び図3に示すような遊星歯車機構5が収納されている。遊星歯車機構5は、リングギアRと、サンギアSと、キャリアCに搭載されたプラネットギアPとを備えており、これら3種類のギアが互いに噛み合っている。また、リングギアRには外歯が設けられており、外歯には駆動ギアDが噛み合っている。 A planetary gear mechanism 5 as shown in FIGS. 2 and 3 is accommodated in the gear box 4 shown in FIG. The planetary gear mechanism 5 includes a ring gear R, a sun gear S, and a planet gear P mounted on a carrier C, and these three types of gears mesh with each other. The ring gear R is provided with external teeth, and the drive gear D is engaged with the external teeth.
 図2及び図3に示すように、第1入力軸21の一端は駆動ギアDに連結されている。また、第2入力軸22の一端はサンギアSに連結されている。また、出力軸23の一端は、プラネットギアPが搭載されたキャリアCに連結されている。第1入力軸21の他端は、第1のモータとしてのモータAに連結されている。また、第2入力軸22の他端は、第2のモータとしてのモータBにクラッチ15を介して連結されている。第2入力軸22には、クラッチ15とサンギアSの間にブレーキ16が設けられている。図2及び図3に示すクラッチ15とブレーキ16は、図1に示したギアボックス4の内部に設けられている。 2 and 3, one end of the first input shaft 21 is connected to the drive gear D. One end of the second input shaft 22 is connected to the sun gear S. One end of the output shaft 23 is connected to a carrier C on which a planet gear P is mounted. The other end of the first input shaft 21 is connected to a motor A as a first motor. The other end of the second input shaft 22 is connected to a motor B as a second motor via a clutch 15. The second input shaft 22 is provided with a brake 16 between the clutch 15 and the sun gear S. The clutch 15 and the brake 16 shown in FIGS. 2 and 3 are provided inside the gear box 4 shown in FIG.
 図2及び図3に示すように、この遊星歯車機構5は、リングギアRと、サンギアSと、プラネットギアPと、キャリアCがすべて動作可能な差動型である。図2に示すように、クラッチ15をOFF、ブレーキ16をONとしてサンギアSを固定すると、モータAが駆動ギアDを介してリングギアRを回動すれば、プラネットギアP及びキャリアCが回動して、プロペラ6が設けられた出力軸23が回動する。また、図3に示すように、クラッチ15をON、ブレーキ16をOFFとした状態では、モータAが駆動ギアDによりリングギアRを回動し、モータBがサンギアSを回動することにより、プラネットギアP及びキャリアCが回動して、プロペラ6が設けられた出力軸23が回動する。運転の詳細は後述するが、低速時には図2に示すようにモータAのみで運転し、高速時にはモータAの回転速度を下げるとともに、ブレーキ16を解除してクラッチ15を繋ぎ、モータBを一定速度で運転するとともに、モータAによって運転速度を調整する。 2 and 3, the planetary gear mechanism 5 is a differential type in which the ring gear R, sun gear S, planet gear P, and carrier C can all operate. As shown in FIG. 2, when the clutch 15 is turned off and the brake 16 is turned on and the sun gear S is fixed, if the motor A rotates the ring gear R via the drive gear D, the planet gear P and the carrier C rotate. Then, the output shaft 23 provided with the propeller 6 rotates. Further, as shown in FIG. 3, in a state where the clutch 15 is turned on and the brake 16 is turned off, the motor A rotates the ring gear R by the drive gear D and the motor B rotates the sun gear S. The planet gear P and the carrier C are rotated, and the output shaft 23 provided with the propeller 6 is rotated. The details of the operation will be described later. At low speed, the motor A is operated only as shown in FIG. 2, and at high speed, the rotation speed of the motor A is decreased, the brake 16 is released and the clutch 15 is connected, and the motor B is operated at a constant speed. And the driving speed is adjusted by the motor A.
 図1に示すように、ギアボックス4の第1入力軸21には、モータAが連結されている。モータAは、高調波対策であるフィルタを含む汎用のインバータ17で制御されるインバータモータである。ここで汎用のインバータ17とは、インバータメーカーより標準的な製品として提供されるインバータであり、一般に入手可能な容量の範囲内のものが利用可能である。モータAはインバータ制御ではあるが、汎用のインバータ17でよいので価格は安くなり、フィルタも小さいため盤サイズは比較的小さく、設置スペースも小さくて済む。 As shown in FIG. 1, the motor A is connected to the first input shaft 21 of the gear box 4. The motor A is an inverter motor controlled by a general-purpose inverter 17 including a filter that is a countermeasure against harmonics. Here, the general-purpose inverter 17 is an inverter provided as a standard product by an inverter manufacturer, and a inverter having a capacity that is generally available can be used. Although the motor A is controlled by the inverter, the general-purpose inverter 17 may be used, so the price is low, the filter is small, the panel size is relatively small, and the installation space is small.
 図1に示すように、インバータ17には抵抗器18が接続されており、プロペラ6がブレーキ16として作用し、モータAが発電する場合は抵抗器18でエネルギーを吸収する。 As shown in FIG. 1, a resistor 18 is connected to the inverter 17, and the propeller 6 acts as a brake 16, and when the motor A generates power, the resistor 18 absorbs energy.
 図1に示すように、インバータ17は配電盤19に接続されており、配電盤19は1台以上の主発電機関20が接続された給電系統に接続されている。 As shown in FIG. 1, the inverter 17 is connected to a switchboard 19, and the switchboard 19 is connected to a power supply system to which one or more main power generation engines 20 are connected.
 図1に示すように、ギアボックス4の第2入力軸22には、モータBが連結されている。モータBは、図2及び図3に示すように起動器25(スタータースイッチ)を備えており、この起動器25で起動すると三相交流により一定速度で駆動される交流モータである。 As shown in FIG. 1, the motor B is connected to the second input shaft 22 of the gear box 4. The motor B includes an starter 25 (starter switch) as shown in FIGS. 2 and 3, and is an AC motor that is driven at a constant speed by three-phase AC when started by the starter 25.
 図2及び図3に示すように、本実施形態の船舶推進装置1は制御部30を備えている。この制御部30は、プロペラ回転速度を直接的または間接的に計測する図示しない回転速度センサに接続されており、回転速度センサからプロペラ回転速度の計測値を取得するように構成されている。 2 and 3, the marine vessel propulsion apparatus 1 according to this embodiment includes a control unit 30. The control unit 30 is connected to a rotation speed sensor (not shown) that directly or indirectly measures the propeller rotation speed, and is configured to acquire a measured value of the propeller rotation speed from the rotation speed sensor.
 図2及び図3に示すように、制御部30は、モータAのインバータ17、モータBの起動器25、ブレーキ16及びクラッチ15に接続されており、取得したプロペラ回転速度に基づいてこれらを制御することができる。 As shown in FIGS. 2 and 3, the control unit 30 is connected to the inverter 17 of the motor A, the starter 25 of the motor B, the brake 16 and the clutch 15, and controls these based on the acquired propeller rotational speed. can do.
 図4は、ソラー型の遊星歯車機構5aと、プラネット型の遊星歯車機構5bと、差動型の遊星歯車機構5の各構造を示す模式図であり、特に、差動型の遊星歯車機構5が、ソラー型の遊星歯車機構5aとプラネット型の遊星歯車機構5bを組み合わせたものであることを、加算の数式を比喩的に用いて示している。図4では、プラネットギアPは1個のみを図示しているが、通常は複数個、例えば3~4個である。また、図4中の矢印は作動の方向を示しており、図4ではプラネットギアPを搭載するキャリアCは図示していないが、プラネットギアPの中心から伸ばした矢印で公転(キャリアCの回転)を示している。 FIG. 4 is a schematic diagram showing structures of a solar planetary gear mechanism 5a, a planetary planetary gear mechanism 5b, and a differential planetary gear mechanism 5. In particular, the differential planetary gear mechanism 5 is shown in FIG. However, it shows that the solar planetary gear mechanism 5a and the planetary planetary gear mechanism 5b are combined by using a mathematical expression of addition figuratively. In FIG. 4, only one planet gear P is shown, but usually there are a plurality of, for example, 3 to 4, planet gears. 4 indicates the direction of operation. In FIG. 4, the carrier C on which the planet gear P is mounted is not shown, but the revolution (rotation of the carrier C) is indicated by an arrow extending from the center of the planet gear P. ).
 図4の数式の左辺に示すように、ソラー型の遊星歯車機構5aは、サンギアSが固定であり、リングギアRと、プラネットギアPと、キャリアC(図2及び図3参照)が動作可能である。この状態は、モータAのみがリングギアRを駆動し、サンギアSに連結された第2入力軸22がブレーキ16で固定され、クラッチ15が切り離されてモータBが停止した状態であり、本実施形態ではモータAのみを駆動する低速時の状態に相当する。 As shown on the left side of the mathematical formula in FIG. 4, the solar type planetary gear mechanism 5a has the sun gear S fixed, and the ring gear R, the planet gear P, and the carrier C (see FIGS. 2 and 3) can operate. It is. In this state, only the motor A drives the ring gear R, the second input shaft 22 connected to the sun gear S is fixed by the brake 16, the clutch 15 is disconnected, and the motor B is stopped. The form corresponds to a low-speed state in which only the motor A is driven.
 また、図4の数式の左辺に示すように、プラネット型の遊星歯車機構5bは、リングギアRが固定であり、サンギアSと、プラネットギアPと、キャリアC(図2及び図3参照)が動作可能である。この状態は、モータAが停止してリングギアRが固定され、モータBがサンギアSを駆動してプラネットギアPとキャリアC(図2及び図3参照)を駆動しようとする状態であり、本実施形態ではモータBの駆動を開始する低速から高速への切り替え時の状態に相当する。 4, the planetary planetary gear mechanism 5b has a fixed ring gear R, a sun gear S, a planet gear P, and a carrier C (see FIGS. 2 and 3). It is possible to operate. In this state, the motor A stops and the ring gear R is fixed, and the motor B drives the sun gear S to drive the planet gear P and the carrier C (see FIGS. 2 and 3). In the embodiment, this corresponds to a state at the time of switching from low speed to high speed at which the driving of the motor B is started.
 図4の数式の右辺に示すように、本実施形態の差動型の遊星歯車機構5は、リングギアRと、サンギアSと、プラネットギアPと、キャリアCがすべて動作可能である。この状態は、モータAでリングギアRを駆動し、モータBでサンギアSを駆動し、キャリアC(図2及び図3参照)の回転によって出力軸23を回転させている状態であり、モータBを一定速度で駆動し、モータAで速度を調整している高速時に相当する。 4, in the differential planetary gear mechanism 5 of the present embodiment, the ring gear R, the sun gear S, the planet gear P, and the carrier C can all be operated. In this state, the ring gear R is driven by the motor A, the sun gear S is driven by the motor B, and the output shaft 23 is rotated by the rotation of the carrier C (see FIGS. 2 and 3). Is driven at a constant speed, and the speed is adjusted by the motor A.
 図5は、本実施形態の差動型の遊星歯車機構5において、ソラー型とプラネット型の各遊星歯車機構5a,5bの歯数を例示し、この歯数例に基づき、2つのモータA、Bに接続されたリングギアRとサンギアSがそれぞれ分担する動力の比率を算出して一例として示したものである。 FIG. 5 illustrates the number of teeth of each of the solar type and planetary type planetary gear mechanisms 5a, 5b in the differential planetary gear mechanism 5 of the present embodiment, and based on this number of teeth example, two motors A, The ratio of power shared by the ring gear R and the sun gear S connected to B is calculated and shown as an example.
 図5に示すように、ソラー型及びプラネット型の各ギアの歯数を、一例としてサンギアS70枚、プラネットギアP30枚、リングギアR130枚とする。これらの歯数から速度を算出すると、ソラー型の場合、サンギアSが0、プラネットギアPのキャリアCが588min-1、リングギアRが904min-1となる。また、プラネット型の場合、サンギアSが1750min-1、プラネットギアPのキャリアCが612min-1、リングギアRが0となる。従って、ソラー型とプラネット型を組み合わせた実施形態の差動型の遊星歯車機構5では、出力軸23であるプラネットギアPのキャリアCの速度は、ソラー型及びプラネット型の各遊星歯車機構5a,5bの各プラネットギアPのキャリアCの速度の合計であり、588min-1+612min-1=1200min-1となる。そして、所望の出力を仮に100kWとした場合、この例では、ソラー型の遊星歯車機構5aのリングギアRの動力は49kWとなり、プラネット型の遊星歯車機構5bのサンギアSの動力は51kWとなる。従って、実施形態の差動型の遊星歯車機構5のリングギアRを駆動するモータAの動力は49kWとなり、サンギアSを駆動するモータBの動力は51kWとなり、サンギアSを駆動するモータBの動力の方がやや大きい。 As shown in FIG. 5, the number of teeth of each of the solar and planetary gears is, for example, 70 sun gears, 30 planet gears, and 130 ring gears. If the speed is calculated from the number of teeth, in the case of the solar type, the sun gear S is 0, the planet gear P carrier C is 588 min-1, and the ring gear R is 904 min-1. In the case of the planet type, the sun gear S is 1750 min-1, the carrier C of the planet gear P is 612 min-1, and the ring gear R is 0. Therefore, in the differential type planetary gear mechanism 5 of the embodiment combining the solar type and the planet type, the speed of the carrier C of the planet gear P which is the output shaft 23 is the planetary gear mechanism 5a of each of the solar type and the planet type. The sum of the speeds of the carriers C of the planet gears P of 5b is 588 min <-1> +612 min <-1> = 1200 min <-1>. If the desired output is assumed to be 100 kW, in this example, the power of the ring gear R of the solar planetary gear mechanism 5a is 49 kW, and the power of the sun gear S of the planetary planetary gear mechanism 5b is 51 kW. Therefore, the power of the motor A that drives the ring gear R of the differential planetary gear mechanism 5 of the embodiment is 49 kW, the power of the motor B that drives the sun gear S is 51 kW, and the power of the motor B that drives the sun gear S. Is slightly larger.
 図6~図8を参照して本実施形態の船舶推進装置1の作用を説明する。
 図6は、実施形態の船舶推進装置におけるプロペラ出力と軸回転速度の関係を示すグラフである。図6に示すように、実施形態の船舶推進装置では、プロペラ出力が始動時の0kWから低出力領域では、図6中に太実線で示すように、制御部30がモータAをインバータで駆動して船舶を推進する。この間、クラッチ15を切ってモータBは停止しており、ブレーキ16は作動してサンギアSが回動しないように第2入力軸22が固定されている。
The operation of the marine vessel propulsion apparatus 1 according to the present embodiment will be described with reference to FIGS.
FIG. 6 is a graph showing the relationship between the propeller output and the shaft rotation speed in the marine vessel propulsion apparatus of the embodiment. As shown in FIG. 6, in the marine vessel propulsion apparatus of the embodiment, the control unit 30 drives the motor A with an inverter as shown by a thick solid line in FIG. To promote the ship. During this time, the clutch 15 is disengaged and the motor B is stopped, and the brake 16 is activated to fix the second input shaft 22 so that the sun gear S does not rotate.
 図6に示すように、プロペラ出力の低出力領域と高出力領域の境界に達すると、制御部30は、モータAの回転と出力を所定値まで落とすと共に、起動器25で始動したモータBを、図6中に細実線で示すように所定の一定回転速度(実施形態では1750min-1)で駆動し、モータAの低下した出力をモータBに負担させるように制御する。そして、高出力領域において、制御部30は、太実線で示すようにモータAをインバータで制御することにより、太破線で示すようにプロペラ出力を調整する。 As shown in FIG. 6, when the boundary between the low output region and the high output region of the propeller output is reached, the control unit 30 reduces the rotation and output of the motor A to a predetermined value, and the motor B started by the starter 25 is As shown by a thin solid line in FIG. 6, the motor is driven at a predetermined constant rotational speed (1750 min −1 in the embodiment), and the motor B is controlled so as to bear the reduced output. And in the high output area | region, the control part 30 adjusts a propeller output as shown with a thick broken line by controlling the motor A with an inverter as shown with a thick continuous line.
 本実施形態によれば、モータBが駆動を開始した後において、モータAは、モータBの駆動に対してブレーキ16として作用することがない。本実施形態で採用した遊星歯車機構5によれば、プロペラの出力または軸回転速度によっては、モータAをモータBと反対方向に駆動しないと、プロペラが正方向に回転を上げていくことができない領域が生じてしまう場合があるが、本実施形態によれば、低出力領域と高出力領域で使用するモータの種類・組合せを適切に切り替えて駆動しているため、全回転領域においてモータAとモータBの出力の合計がプロペラの出力となっている。 According to the present embodiment, after the motor B starts driving, the motor A does not act as the brake 16 for driving the motor B. According to the planetary gear mechanism 5 employed in the present embodiment, depending on the output of the propeller or the shaft rotational speed, the propeller cannot be rotated in the forward direction unless the motor A is driven in the opposite direction to the motor B. However, according to the present embodiment, since the motor type / combination used in the low output region and the high output region is appropriately switched and driven, The total output of the motor B is the output of the propeller.
 なお、低出力領域から高出力領域への移行におけるモータA,Bの切り替えは、以下に説明するように、ブレーキ16とクラッチ15を適切に制御することにより、安定的に行うことができる。すなわち、仮にクラッチ15がないとすると、モータBは常時サンギアSに連結されていることとなる。そうすると、低出力領域から高出力領域へ移行する際には、停止しているサンギアSに連結されたモータBが大きな慣性に抗して始動しなければならない。従って、モータBの出力軸23に負荷が連結されていない状態に比べれば、サンギアSに連結されたモータBが所定の一定回転速度にまで立ち上がるためには、より大きな電力を要する。ところが、本実施形態では、モータBの出力軸23とサンギアSの間にはクラッチ15がある。このため、低出力領域から高出力領域へ移行する際には、移行前に、クラッチ15を切った状態でモータBを必要最小限の電力で始動させ、必要な回転速度にまで立ち上げておくことができる。そして、移行のタイミングでブレーキ16を解除し、クラッチ15を接続して、モータA、Bからプロペラへ動力を円滑に伝達することができる。 In addition, switching of the motors A and B in the transition from the low output region to the high output region can be stably performed by appropriately controlling the brake 16 and the clutch 15 as described below. That is, if there is no clutch 15, the motor B is always connected to the sun gear S. Then, when shifting from the low output region to the high output region, the motor B connected to the stopped sun gear S must start against a large inertia. Therefore, as compared with a state in which a load is not connected to the output shaft 23 of the motor B, more power is required for the motor B connected to the sun gear S to rise to a predetermined constant rotational speed. However, in the present embodiment, there is a clutch 15 between the output shaft 23 of the motor B and the sun gear S. For this reason, when shifting from the low output region to the high output region, before the transfer, the motor B is started with the minimum necessary power while the clutch 15 is disengaged, and is started up to the necessary rotational speed. be able to. And the brake 16 is cancelled | released at the timing of transfer, the clutch 15 is connected, and motive power can be smoothly transmitted to the propeller from the motors A and B.
 図7は、実施形態の舶推進装置におけるプロペラ回転速度とプロペラ出力の関係等を示すグラフであって、プロペラ回転速度に対するプロペラ出力のグラフと、モータAとモータBの出力と、効率を示している。プロペラ出力が始動時の0kWから低出力領域では、制御部30がモータAをインバータで駆動してプロペラ出力を制御している。プロペラ出力が低出力領域と高出力領域の境界に達すると、一定の回転速度でモータBを駆動し、モータAをインバータで調速してプロペラ出力を制御している。その結果、プロペラ出力はプロペラ回転速度に対して所謂三乗特性の関係となり、プロペラ回転速度が0から定格回転速度に至る全領域で遊星歯車の効率が98%前後の高値となり、燃料消費率が向上する。 FIG. 7 is a graph showing a relationship between the propeller rotational speed and the propeller output in the marine propulsion device of the embodiment, showing a graph of the propeller output with respect to the propeller rotational speed, the outputs of the motor A and the motor B, and the efficiency. Yes. When the propeller output is in the low output range from 0 kW at the start, the control unit 30 drives the motor A with an inverter to control the propeller output. When the propeller output reaches the boundary between the low output region and the high output region, the motor B is driven at a constant rotational speed, and the motor A is regulated by an inverter to control the propeller output. As a result, the propeller output has a so-called cubic characteristic relationship with the propeller rotational speed, and the efficiency of the planetary gear becomes a high value of around 98% in all regions from the propeller rotational speed to the rated rotational speed, and the fuel consumption rate is high. improves.
 図8は、実施形態と比較例の各船舶推進装置におけるプロペラ回転速度と発電機電力量の関係を示すグラフである。ここで、比較例とは、[背景技術]の項で説明した「特許文献3」の船舶推進装置に相当し、インバータにより回転制御する副電動機と、スリップクラッチにより回転制御を行う電動機の2つの電動機を有するタイプの装置である。図8のグラフから理解されるように、比較例の場合、プロペラ負荷が大きくなるにつれてスリップロス分が大きくなるため発電量が多くなり、しかも中途の回転速度で発電量が急増する不連続領域があって運転制御の円滑性に欠ける。しかしながら、本実施形態ではロスが少なく比較例よりも効率が良く、モータを駆動するための電力を発生させる発電機関の燃料消費量がより少なくて済む。 FIG. 8 is a graph showing the relationship between the propeller rotation speed and the generator electric energy in the ship propulsion devices of the embodiment and the comparative example. Here, the comparative example corresponds to the marine vessel propulsion device described in “Background Art”, and includes a sub-motor that controls rotation by an inverter and an electric motor that controls rotation by a slip clutch. It is a type of device having an electric motor. As understood from the graph of FIG. 8, in the case of the comparative example, as the propeller load increases, the slip loss increases, so that the amount of power generation increases. Further, there is a discontinuous region where the power generation amount rapidly increases at an intermediate rotational speed. Therefore, the smoothness of operation control is lacking. However, in this embodiment, the loss is small and the efficiency is higher than that of the comparative example, and the amount of fuel consumed by the power generation engine that generates electric power for driving the motor can be reduced.
 図9は、本発明の第2の実施形態である船舶推進装置の概略構成を示す図である。第2実施形態では、第1実施形態の減速機8に替えて、遊星歯車機構5を内蔵するギアボックス4を台床7上に設け、遊星歯車機構5の出力軸23を垂直軸2に連結した。その他の構成は第1実施形態と同様である。第2実施形態によれば、駆動機構を縦型に配置したため、船内に配置する機器類の省スペース化を図ることができる。 FIG. 9 is a diagram showing a schematic configuration of a marine vessel propulsion apparatus according to the second embodiment of the present invention. In the second embodiment, instead of the speed reducer 8 of the first embodiment, a gear box 4 containing the planetary gear mechanism 5 is provided on the platform 7 and the output shaft 23 of the planetary gear mechanism 5 is connected to the vertical shaft 2. did. Other configurations are the same as those of the first embodiment. According to the second embodiment, since the drive mechanism is arranged vertically, it is possible to save the space of the devices arranged on the ship.
 図10は、本発明の第3の実施形態である船舶推進装置の駆動系統の概略を示す構成図である。この図は、低速時の駆動力伝達状況を示す図であって、第1実施形態の図2に相当する図である。第3実施形態では、第1実施形態のブレーキ16に替えて逆転防止機構としてのワンウエイクラッチ40が設けられている。ワンウエイクラッチ40の外輪を固定とし、内輪を駆動軸とすることで、プロペラ6の正回転の方向にのみ駆動軸が回転可能となっている。 FIG. 10 is a configuration diagram showing an outline of a drive system of the marine vessel propulsion apparatus according to the third embodiment of the present invention. This figure is a figure which shows the driving force transmission condition at the time of low speed, Comprising: It is a figure corresponded in FIG. 2 of 1st Embodiment. In the third embodiment, a one-way clutch 40 as a reverse rotation prevention mechanism is provided instead of the brake 16 of the first embodiment. By fixing the outer ring of the one-way clutch 40 and using the inner ring as a drive shaft, the drive shaft can rotate only in the direction of forward rotation of the propeller 6.
 以上説明したように、本実施形態によれば、2基のモータ(電動機)A,Bで船舶を推進する船舶推進装置1において、一方のモータBを汎用の交流電動機として一定速度で駆動することとし、他方のモータAを小さい汎用のインバータ17で駆動する交流電動機として速度を制御するものとし、さらに両モータA,Bとプロペラ6の連結のためにブレーキ16とクラッチ15を含む遊星歯車機構5を用いたので、特注品の高価なインバータが不要であり、設置スペースの節約が可能となり、プロペラ6の駆動動力が途切れない安定的な運転とプロペラ出力に応じた効率的な制御によってモータA,Bを駆動する発電機関の燃料消費量を削減することができる。 As described above, according to the present embodiment, in the marine vessel propulsion apparatus 1 that propels a vessel with two motors (electric motors) A and B, one motor B is driven as a general-purpose AC electric motor at a constant speed. The speed of the other motor A is controlled as an AC electric motor driven by a small general-purpose inverter 17, and a planetary gear mechanism 5 including a brake 16 and a clutch 15 for connecting the motors A and B and the propeller 6 is used. This eliminates the need for a custom-made expensive inverter, enables the installation space to be saved, and prevents the motor A, through the stable operation without interrupting the driving power of the propeller 6 and the efficient control according to the propeller output. The fuel consumption of the power generation engine that drives B can be reduced.
 なお、以上説明した実施形態では、モータAはリングギアRに接続されており、モータBはサンギアSに接続されており、プロペラ6はキャリアCに接続されていたが、必ずしもこの構成は必須とは言えない。遊星歯車機構5のリングギアRと、サンギアSと、プラネットギアPを搭載したキャリアCの何れかをプロペラに連結し、のこりの2つをモータA及びモータBに連結してもよい。 In the embodiment described above, the motor A is connected to the ring gear R, the motor B is connected to the sun gear S, and the propeller 6 is connected to the carrier C. However, this configuration is not necessarily required. I can't say that. Any of the ring gear R of the planetary gear mechanism 5, the sun gear S, and the carrier C on which the planet gear P is mounted may be connected to the propeller, and the remaining two may be connected to the motor A and the motor B.
 1…船舶推進装置
 5…遊星歯車機構
 6…プロペラ
 15…クラッチ
 16…ブレーキ
 17…インバータ
 30…制御部
 40…逆転防止機構としてのワンウェイクラッチ
 S…サンギア
 P…プラネットギア
 R…リングギア
 C…キャリア
 A…第1のモータ
 B…第2のモータ
DESCRIPTION OF SYMBOLS 1 ... Ship propulsion apparatus 5 ... Planetary gear mechanism 6 ... Propeller 15 ... Clutch 16 ... Brake 17 ... Inverter 30 ... Control part 40 ... One-way clutch as a reverse rotation prevention mechanism S ... Sun gear P ... Planet gear R ... Ring gear C ... Carrier A ... first motor B ... second motor

Claims (5)

  1.  互いに係合するリングギアと、サンギアと、キャリアに搭載されたプラネットギアとを有する遊星歯車機構と、
     前記リングギアと前記サンギアと前記キャリアの何れかに接続されてインバータで駆動される第1のモータと、
     前記リングギアと前記サンギアと前記キャリアのうち、前記第1のモータに接続されていないものに接続されて一定速度で駆動される第2のモータと、
     前記リングギアと前記サンギアと前記キャリアのうち、前記第1のモータ及び前記第2のモータに接続されていないものに接続されたプロペラと、
     を具備することを特徴とする船舶推進装置。
    A planetary gear mechanism having a ring gear engaging with each other, a sun gear, and a planet gear mounted on a carrier;
    A first motor connected to any of the ring gear, the sun gear, and the carrier and driven by an inverter;
    A second motor connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and is driven at a constant speed;
    A propeller connected to the ring gear, the sun gear, and the carrier that is not connected to the first motor and the second motor;
    A marine vessel propulsion device comprising:
  2.  前記第1のモータは前記リングギアに接続されており、前記第2のモータは前記サンギアに接続されており、前記プロペラは前記キャリアに接続されていることを特徴とする請求項1記載の船舶推進装置。 The ship according to claim 1, wherein the first motor is connected to the ring gear, the second motor is connected to the sun gear, and the propeller is connected to the carrier. Propulsion device.
  3.  前記第2のモータに設けられたクラッチと、前記クラッチと前記サンギアの間に設けられたブレーキとを有することを特徴とする請求項2記載の船舶推進装置。 The marine vessel propulsion apparatus according to claim 2, further comprising: a clutch provided in the second motor; and a brake provided between the clutch and the sun gear.
  4.  前記第2のモータに設けられたクラッチと、前記クラッチと前記サンギアの間に設けられた逆転防止機構とを有することを特徴とする請求項2記載の船舶推進装置。 3. A marine vessel propulsion device according to claim 2, further comprising: a clutch provided in the second motor; and a reverse rotation prevention mechanism provided between the clutch and the sun gear.
  5.  前記プロペラの出力が相対的に小さい低出力領域では、前記第1のモータのみで前記プロペラを駆動し、前記プロペラの出力が相対的に大きい大出力領域では、前記第1のモータ及び前記第2のモータで前記プロペラを駆動するように制御を行う制御部を有することを特徴とする請求項1乃至4の何れか一つに記載の船舶推進装置。 In the low output region where the output of the propeller is relatively small, the propeller is driven only by the first motor, and in the large output region where the output of the propeller is relatively large, the first motor and the second motor are driven. The ship propulsion device according to any one of claims 1 to 4, further comprising a control unit that performs control so that the propeller is driven by the motor.
PCT/JP2018/014901 2017-06-05 2018-04-09 Ship propulsion device WO2018225369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880037550.7A CN110740930B (en) 2017-06-05 2018-04-09 Ship propulsion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-110857 2017-06-05
JP2017110857A JP6925596B2 (en) 2017-06-05 2017-06-05 Ship propulsion device

Publications (1)

Publication Number Publication Date
WO2018225369A1 true WO2018225369A1 (en) 2018-12-13

Family

ID=64566129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014901 WO2018225369A1 (en) 2017-06-05 2018-04-09 Ship propulsion device

Country Status (3)

Country Link
JP (1) JP6925596B2 (en)
CN (1) CN110740930B (en)
WO (1) WO2018225369A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532196A (en) * 1991-07-26 1993-02-09 Ishikawajima Harima Heavy Ind Co Ltd Differectial planetary gearing device for driving double inversive propeller of ship
JP2008515691A (en) * 2004-10-05 2008-05-15 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー Pod type ship propulsion device with fluid transmission
JP2011127726A (en) * 2009-12-21 2011-06-30 Miyoji Suzuki Power source switching device
JP2013512149A (en) * 2009-12-04 2013-04-11 許岳煌 Airplane toy
US20140155215A1 (en) * 2012-08-10 2014-06-05 Gustomsc Resources B.V. Drive apparatus or system
WO2017056186A1 (en) * 2015-09-29 2017-04-06 新潟原動機株式会社 Ship propulsion method and ship propulsion device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117009C (en) * 2001-03-12 2003-08-06 俞苗根 Ship propeller
CA2611392C (en) * 2005-06-09 2012-09-11 Schottel Gmbh & Co. Kg Ship propulsion unit and ship propulsion method
CN202226050U (en) * 2011-07-26 2012-05-23 浙江风神海洋工程技术有限公司 Three-dimensional vector propulsion device for submersible
GB2514183B (en) * 2013-05-17 2015-09-09 Perkins Engines Co Ltd A propulsion system incorporating a plurality of energy conversion machines
DE102014005516A1 (en) * 2014-04-15 2015-10-15 Renk Aktiengesellschaft Gear arrangement for a ship propulsion and ship propulsion with a gear arrangement
CN206050087U (en) * 2016-09-19 2017-03-29 中电科芜湖钻石飞机设计研究院有限公司 Hybrid power aeroplane coupled system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532196A (en) * 1991-07-26 1993-02-09 Ishikawajima Harima Heavy Ind Co Ltd Differectial planetary gearing device for driving double inversive propeller of ship
JP2008515691A (en) * 2004-10-05 2008-05-15 フォイト・ターボ・ゲーエムベーハー・ウント・コンパニー・カーゲー Pod type ship propulsion device with fluid transmission
JP2013512149A (en) * 2009-12-04 2013-04-11 許岳煌 Airplane toy
JP2011127726A (en) * 2009-12-21 2011-06-30 Miyoji Suzuki Power source switching device
US20140155215A1 (en) * 2012-08-10 2014-06-05 Gustomsc Resources B.V. Drive apparatus or system
WO2017056186A1 (en) * 2015-09-29 2017-04-06 新潟原動機株式会社 Ship propulsion method and ship propulsion device

Also Published As

Publication number Publication date
JP6925596B2 (en) 2021-08-25
CN110740930A (en) 2020-01-31
JP2018203059A (en) 2018-12-27
CN110740930B (en) 2021-08-03

Similar Documents

Publication Publication Date Title
JP5107987B2 (en) Marine propulsion device
US7276005B2 (en) Wheel drive system for independently driving right and left wheels of vehicle
US8727820B2 (en) Hybrid drive system for a ship
AU2014267034B2 (en) A propulsion system
JP5461679B1 (en) Electric propulsion device for ships
CA2823488A1 (en) Propulsion system
EP3640068A1 (en) Series-parallel hybrid power system and vehicle comprising same
AU2012203988A1 (en) Propulsion system
JP3902157B2 (en) Ship propulsion device
JP6539896B2 (en) Ship propulsion system, ship and ship propulsion method
TW201542408A (en) Hybrid power transmission integrated system and control method thereof
TWI590986B (en) Ship propulsion method and ship propulsion device
KR101465969B1 (en) Driving System For Boat and Operating Method thereof
CN112572744A (en) Double-shaft four-engine ship hybrid power system and propulsion control method thereof
WO2018225369A1 (en) Ship propulsion device
JP4792780B2 (en) Hybrid forklift
JP7142519B2 (en) marine power transmission
GB2550909A (en) A transmission system for a propulsion system
CN213323635U (en) Efficient and energy-saving hybrid power system for ship
JP6663213B2 (en) Ship power transmission
JP6681558B2 (en) Deceleration and reversing machine and ship equipped with the same
JP5606272B2 (en) Counter-rotating propeller type ship propulsion device
CN212829012U (en) Ship hybrid power propulsion device with host constant-speed operation function
JP2006273513A (en) Hybrid type fork lift
CN213393445U (en) Gear box structure with constant rotating speed input and variable power output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813288

Country of ref document: EP

Kind code of ref document: A1