WO2018225329A1 - Cell culture container, cell culture device and cell culture method - Google Patents

Cell culture container, cell culture device and cell culture method Download PDF

Info

Publication number
WO2018225329A1
WO2018225329A1 PCT/JP2018/010440 JP2018010440W WO2018225329A1 WO 2018225329 A1 WO2018225329 A1 WO 2018225329A1 JP 2018010440 W JP2018010440 W JP 2018010440W WO 2018225329 A1 WO2018225329 A1 WO 2018225329A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell culture
fluid
culture
cells
Prior art date
Application number
PCT/JP2018/010440
Other languages
French (fr)
Japanese (ja)
Inventor
優史 丸山
靖彦 多田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018225329A1 publication Critical patent/WO2018225329A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a cell culture container.
  • the cell culture container according to the present invention includes a cell support, and the cell support is composed of a fluid material at least a part of the surface in contact with the cells, and the water content of the fluid material is relatively low.
  • the cell culture using the cell culture container of the present embodiment can be handled in the same manner as a conventional solid culture container at the time of cell proliferation, and thus has high convenience and high proliferation. Furthermore, the three-dimensional mass formed by spontaneous assembly of cells has high adhesion to the surface of the cell culture container. By controlling the viscosity and surface modification of the flowable material, the configuration of the cell container can be easily customized according to the cell.
  • FIG. 1 shows a cell culture container provided according to this embodiment.
  • the cell culture vessel 1 has a cell support 2 for adhering cells, and the cell support 2 includes a fluid material 3 having fluidity on the entire surface or a part of a surface in contact with the cell.
  • cells are active in a complex environment involving multiple forces such as surface tension, polymerization / depolymerization of intracellular skeleton, cell-scaffold adhesion, cell-cell adhesion.
  • a solid scaffold such as a polystyrene culture vessel, and many culture conditions are known for obtaining high productivity.
  • fluid scaffold in which cells have fluidity (hereinafter referred to as fluid scaffold) equivalent to a solid scaffold
  • the force that the cells receive from the surface of the fluid scaffold must be equivalent to that of the solid scaffold.
  • the displacement of the scaffold is sufficiently slow relative to the force that the cell acts on the surface, so the force that the cell receives from the surface of the fluid scaffold and the cell from the surface of the solid scaffold It is thought that the power received by is equal.
  • a fluid scaffold can behave in the same manner as a solid scaffold depending on conditions.
  • the force that the cells act on the scaffold surface varies depending on the cell density. In the case of a single cell, there is no interaction between cells, but when the cell density increases and the interaction between cells increases, it tries to start movement in the direction in which the cells aggregate, The acting force increases.
  • the force generated by the cells varies depending on the cell type, phenotype, culture conditions and the like. It is also affected by the adhesion factor of the scaffold surface and the ECM. Therefore, appropriate conditions may vary depending on the subject to be cultured. Appropriate conditions mentioned here are, for example, the viscosity, surface functional group, surface state, density, etc. of the cell support having fluidity. These details will be described later.
  • the mechanobiological stimulation received by the cells differs from the conventional solid scaffold.
  • mechano-biological control may change cytoskeletal metabolism, gene expression patterns, cell migration, etc., and may change cell characteristics .
  • the fluid scaffold material according to the present embodiment can be used not for three-dimensional cell culture but for mechanobiological cell property control. is there.
  • the cell type to which the culture container of this embodiment can be applied is not limited as long as it is an adhesive cell. Moreover, there is no restriction
  • adhesive cells examples include stem cells (mesenchymal stem cells, ES cells, iPS cells, etc.), epithelial cells (vascular epithelial cells, bile duct epithelial cells, etc.), endothelial cells (intravascular non-cells, lymphatic endothelium). Cells, etc.), fibroblasts (NIH3T3, etc.), hepatocytes, pancreatic islet cells, neurons, cardiomyocytes, myoblasts, cancer cells, macrophages, HeLa cells, CHO cells, etc. It is not limited. Moreover, the cell to culture does not need to be 1 type, You may apply to a co-culture system.
  • the floating cells can be cultured while attached to the cell support.
  • the fluidity effect of the scaffold is considered to be smaller than the effect obtained in adherent cells.
  • liquidity will become small in the cell with small interaction between cells.
  • the cell support having fluidity can be realized by using a liquid or semi-solid polymer (hereinafter referred to as fluid material) which is insoluble or hardly soluble in the medium.
  • fluid material a liquid or semi-solid polymer which is insoluble or hardly soluble in the medium.
  • a flowable material that is sufficiently low in cytotoxicity, it does not necessarily need to be insoluble in the medium, but it can affect applications such as cell assays and transplants, so It is desirable that the solubility of is lower. It is also desirable that the flowable material is not emulsified by amphiphilic components that may be included in the medium.
  • hydrogels are difficult to prepare, handle due to problems such as low mechanical strength and weakness to drying.
  • the cell support having fluidity has low mechanical strength, but even if scratches, cracks, defects, etc. occur, it is repaired by the fluidity, so that it is easy to handle.
  • materials with low moisture content are easy to handle with less drying problems. From this point of view, the lower the water content, the less the problem, preferably 20% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the fluid material may be used in bulk or may be used by coating on the surface of some substrate. Further, the surface of the fluid material may be treated by a physical / chemical method. Physical / chemical methods include, for example, light irradiation, plasma treatment, corona discharge treatment, UV / O3 treatment, surfactant treatment, adsorption of chemical substances, adsorption of biomolecules, addition of particulate substances and fibrous substances, Including but not limited to patterning, any combination thereof, and the like.
  • FIG. 2 is a schematic view of a cell culture container obtained by subjecting a fluid material to a predetermined treatment. By the above treatment, a surface component 4 different from the fluid material is generated on the fluid material 3.
  • such a surface can be formed by a method of contacting a solution containing a cell adhesion factor or ECM, contacting serum, or contacting a medium.
  • the flowable material may be a single component or a mixed system of a plurality of components. Moreover, molecular weight distribution is not limited as long as fluidity is ensured.
  • a flowable material is preferable if the transparency is high because cells can be easily observed. However, it is not necessarily transparent.
  • the viscosity of the flowable material needs to satisfy the range that the cells can be extended and that the deformation is easy with respect to the cohesive force between the cells generated at a high cell density.
  • This range depends on the cell and phenotype, but according to our experimental results, it is preferably 1 ⁇ 10 3 mPa ⁇ s to 1 ⁇ 10 9 mPa ⁇ s, more preferably 2 ⁇ 10 3 mPa ⁇ s to 1 ⁇ 10 8 mPa ⁇ s.
  • it is more preferably 5 ⁇ 103 mPa ⁇ s or more and 1 ⁇ 107 mPa ⁇ s or less.
  • the flowable material may be a Newtonian fluid or a non-Newtonian fluid.
  • the movement of cells is generally very slow, and in order to obtain a sufficient effect with a non-Newtonian fluid, precise adjustment of physical properties is required so as to obtain an appropriate viscosity with respect to the movement speed of the cells.
  • the specific gravity of the flowable material may be larger than, equal to, or smaller than that of the medium.
  • the flowable material when the flowable material is coated on the surface of the substrate, it is desirable that the flowable material does not peel from the substrate, so that the affinity between the flowable material and the substrate is sufficiently high, and surface tension and It is necessary to be able to antagonize the force that can deform a fluid material such as buoyancy and gravity.
  • the specific gravity of the flowable material is heavier than that of the medium, it can be easily handled as long as it is used for a portion such as the bottom of the dish.
  • the surface of a substrate having a certain three-dimensional shape is coated and used, sufficient interaction is required between the flowable material and the substrate to prevent the coating from falling.
  • the storage energy and kinetic energy are negligible among the three components of the medium, flowable material, and substrate, and the flowable material is stable when the sum of surface energy and the sum of potential energy exist around the minimum value. It can be expressed that the coated state on the surface of the substrate is maintained. When the coating of the flowable material is unstable, the flowable material deforms and shifts to a more stable state. In this case, the mode (1) in which the contact area between the culture medium and the substrate does not change due to the deformation. , Can be classified into two modes (FIG. 3). In order for the fluid culture vessel to exist stably, it is necessary that neither of these progress.
  • mode (1) is a deformation in which, for example, when the flowable material 3 having a specific gravity smaller than the culture medium 6 is coated on the bottom surface of the dish, the flowable material 3 is deformed and a part of the coating is lifted. . The contact area between the deformed portion 7 of the fluid material and the culture medium 6 is increased.
  • the state where the fluid material is stably coated is a state where the contact area between the fluid material and the medium does not increase spontaneously. That is, in a state where the contact area between the fluid material and the culture medium increases, the total energy change is positive and energy loss occurs.
  • a state can be expressed by Equation 1. Since ⁇ V ⁇ h / ⁇ S is a term that depends on the shape of the deformed portion, and ⁇ , ⁇ , and g are constants, it can be said that this equation substantially describes the shape of the deformation that can proceed spontaneously. Qualitatively, the affinity between the flowable material and the medium is low, and the density difference between the flowable material and the medium is large, suggesting that deformation accompanied by volume change is more likely to proceed over a wide range.
  • mode (2) is a deformation in which, for example, when the flowable material having a specific gravity smaller than the medium is coated on the bottom surface of the dish, the flowable material is deformed and the base material of the coating is exposed. The contact area between the base material 5 and the culture medium 6 is increased.
  • the state where the fluid material is stably coated is a state where the contact area between the culture medium and the substrate does not increase spontaneously. That is, in a state where the contact area between the culture medium and the substrate increases, the change in total energy is positive and energy loss occurs.
  • the potential energy is the same as in Equation 1, but regarding the surface energy, there are changes in the contact area between the fluid material and the medium, the medium and the substrate, and the fluid material and the substrate. Since the increase in the contact area of the substrate is equal to the decrease in the contact area between the flowable material and the substrate, it is simplified as shown in Equation 2.
  • the lower the affinity between the fluid material and the substrate the easier the deformation proceeds.
  • examples of the shape of the fluid culture vessel in which modes (1) and (2) are difficult to proceed include, as an example, a thinly coated fluid material on a substrate having a low affinity for the culture medium.
  • Mode (1) which can be deformed only by potential energy due to the thin coating
  • mode (2) which is deformed by surface energy gain due to increased contact area between the medium and the substrate due to low affinity between the medium and the substrate. This is because it can be suppressed.
  • the metastable state is caused by some cause, if the transition to the stable state is sufficiently slow, it can be used for cell culture. Even when there is a possibility that the stable state is temporarily lost during the culture, the cell can be used for the cell culture if the transition to the stable state is sufficiently slow.
  • a simple method for judging the stability of a flowable material in water is to leave the flowable material in water at 37 ° C. for 24 hours. If the stability is insufficient, the above-described mode (1) or mode (2) deformation is observed. When it is stable or the displacement per hour is sufficiently small, no clear deformation is observed.
  • fluid materials that have low cytotoxicity and are insoluble in the culture medium include polybutene, polyisobutylene, hydrogenated polybutene, hydrogenated polyisobutylene, block copolymers containing these, hydrocarbons such as liquid paraffin, Polymer materials such as siloxanes such as silicone and halogens such as perfluorocarbon and perfluoroether can be used, but are not limited thereto. Further, the terminal functional group, the branched / crosslinked structure, the tacticity, etc. of such a polymer material are not limited as long as it exhibits fluidity.
  • the fluid material a material system in which the viscosity depends on the molecular weight and the mixing ratio of the components is desirable because it is easy to control the fluidity of the cell support, but is not limited thereto.
  • Ionic liquids that are insoluble in the culture medium can also be candidates for flowable materials, but they are not always suitable as cell supports because they need to be ionic species with low cytotoxicity and fluidity is difficult to control. Not.
  • non-linear hydrocarbon materials such as polybutene and polyisobutylene are particularly preferable as the flowable material from the viewpoint of the viscosity range and surface energy.
  • Polybutene and polyisobutylene have very low solubility in water and are almost never mixed into the medium. They can be easily removed even if they are mixed. They are used for food ingredients, cosmetic ingredients, medical adhesives, etc. It is useful because it is a very safe material that can be expected to have little adverse effects even if it is mixed in a small amount of medium.
  • Such a non-linear hydrocarbon-based material generally has a density of less than 1 g / mL.
  • the combination of the fluid material and the substrate is important.
  • polybutene is used as the flowable material
  • low density polyethylene is used as the base material
  • a polybutene layer having a thickness of 30 ⁇ m is formed on the low density polyethylene.
  • the substrate not only polyethylene but also polyalkylene other than polyethylene, such as polypropylene and polybutene copolymer, a material having a surface grafted with polyalkylene, and the like can be used, but not limited thereto.
  • the fluidity of the film may depend on the film thickness, so that the physical properties may be controlled not only by the material composition but also by the film thickness.
  • the film thickness is small, the specific surface area of the surface in contact with the base material or the culture medium with respect to the volume of the fluid material increases, so the influence of buoyancy and gravity becomes relatively large, and the layer of fluid material becomes It becomes easier to exist more stably.
  • the shape of the base material coated with the fluid material is not limited. For example, a plane, an aspect, a film, a mesh, a fiber, a cloth, a particle, a pillar, an uneven surface, and the like can be considered.
  • FIG. 4 the example of the film-like base material 8, the mesh-like base material 9, and the pillar-shaped base material 10 is shown.
  • Examples of the coating method include a method of applying a bulk fluid material, a method of applying a fluid material solution and drying a solvent, and a method of vaporizing a vaporized fluid material. Not.
  • a fluid culture container that can be handled in the same manner as a normal culture dish is obtained by coating a fluid material on a film-like base material and attaching it to the bottom of the culture dish.
  • the cell can be easily moved by peeling the film to which the cell is adhered from the bottom surface.
  • the convenience is high (FIG. 5).
  • the film-like substrate can be attached as it is to the culture dish using the flowable material, so that it can be easily produced.
  • the fluidic material layer is positively fluidized by stretching / compressing the substrate during culture. Can do.
  • mechanical stimulation can be given to the cells during the culture, and dynamic mechanobiological control can be performed.
  • the sterilization method of the flowable material should be selected according to the characteristics of the flowable material.
  • ⁇ rays, ethylene oxide gas, UV irradiation, ethanol, drying heating, saturated steam heating, and the like can be considered.
  • a general method such as introducing a cell suspension into the fluid culture vessel can be used (FIG. 7).
  • proteolytic enzyme can be used to peel off cells adhered to the surface of the fluid material (FIG. 8).
  • the surface of the flowable material is coated with something such as a stimulus-responsive molecule, cell detachment by a stimulus response can also be performed.
  • the invasiveness to the cells is low when the cells are detached by a liquid flow as compared to the case of using a solid scaffold.
  • the following describes a specific example of production on a culture vessel.
  • Example 1 a fluid culture vessel was produced using a film-like substrate using polybutene (hereinafter referred to as polybutene 1) having a viscosity of 2.0 ⁇ 10 5 mPa ⁇ s at 37 ° C. as a fluid material.
  • polybutene 1 polybutene having a viscosity of 2.0 ⁇ 10 5 mPa ⁇ s at 37 ° C.
  • the low-density polyethylene film was immersed in a 33 wt% toluene solution of the polybutene 1 and pulled up, and then air-dried to coat the film-like substrate with a fluid material.
  • the obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 1.
  • the culture vessel 1 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 1 after standing for 24 hours was 0.5% or less.
  • Example 2 a fluid culture vessel was produced with a film-like substrate using polybutene (hereinafter referred to as polybutene 2) having a viscosity of 7.5 ⁇ 10 4 mPa ⁇ s at 37 ° C. as a fluid material.
  • polybutene 2 having a viscosity of 7.5 ⁇ 10 4 mPa ⁇ s at 37 ° C.
  • a low-density polyethylene film was immersed in a 33 wt% toluene solution of the polybutene 2 and pulled up, and then air-dried to coat a fluid material on the film-like substrate.
  • the obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 2.
  • the culture vessel 2 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 2 after standing for 24 hours was 0.5% or less.
  • Example 3 a fluid culture vessel was manufactured using a mesh-like substrate using polybutene 1 as a fluid material.
  • a polypropylene mesh was immersed in a 10 wt% toluene solution of polybutene 1, pulled up, and then air-dried to coat a fluid material on the mesh substrate.
  • the obtained mesh was placed on the bottom surface of the low adhesion culture vessel and dried under reduced pressure for 1 day to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 3.
  • the culture vessel 3 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 1 after standing for 24 hours was 0.5% or less.
  • Example 4 a fluid culture container was produced with a film-like substrate using polybutene 2 as a fluid material.
  • a low-density polyethylene film was immersed in a 33 wt% hexane solution of polybutene 2, pulled up, and then air-dried to coat a fluid material on the film-like substrate.
  • the obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 4.
  • the culture vessel 4 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 2 after standing for 24 hours was 0.5% or less.
  • Example 5 a fluid culture vessel was produced with a film-like substrate using a mixture of polybutene 1 and polybutene 2 as a fluid material.
  • a low-density polyethylene film was immersed in a 33 wt% toluene solution of a 1: 1 mixture of polybutene 1 and polybutene 2, pulled up, and then air-dried to coat a fluid material on the film-like substrate.
  • the obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 5.
  • the culture vessel 5 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of the mixture of polybutene 1 and polybutene 2 after standing for 24 hours was 0.5% or less.
  • Example 6 a fluid culture vessel was produced on Teflon (registered trademark) using polybutene 1 as a fluid material.
  • a 33 wt% toluene solution of polybutene 1 was coated on a Teflon (registered trademark) container having fine irregularities on the surface, air-dried, and dried under reduced pressure for 1 day to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 6.
  • the culture vessel 6 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 1 after standing for 24 hours was 0.5% or less.
  • Example 7 the surface modification of the culture vessel 1 by molecular adsorption was examined.
  • a sodium stearate aqueous solution, a collagen aqueous solution, and a fibronectin aqueous solution were respectively added and incubated for 30 minutes. Thereafter, the solution was removed, washed with pure water, and dried. Surface analysis confirmed the presence of the acted molecules. An increase in wettability was also confirmed.
  • Example 8 the surface modification of the culture vessel 1 by adsorption of particles or the like was examined.
  • each of a dispersion solution of crosslinked agarose beads, polystyrene beads, and cellulose nanofibers was placed and incubated for 30 minutes. Thereafter, the solution was removed, washed with pure water, and dried. Surface analysis confirmed the presence of particles that were acted on.
  • Example 9 a flowable culture vessel coated with a polybutene-polyacrylic acid block copolymer having a water content of 4% as a flowable material was produced.
  • a 10 wt% THF solution of polybutene-polyacrylic acid block copolymer is coated on a Teflon (registered trademark) container with fine irregularities on the surface, air-dried, and then dried for one day under reduced pressure to remove volatile components. did.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture vessel is referred to as a culture vessel 9.
  • the culture vessel 9 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 1 after standing for 24 hours remained at 4% or less.
  • Comparative Example 1 a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 1, using Polybutene 3 having a viscosity of 7.0 ⁇ 10 2 mPa ⁇ s at 37 ° C. as the fluid material.
  • the fluid culture container is referred to as a comparative container 1.
  • Comparative container 1 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 3 after standing for 24 hours was 0.5% or less.
  • Comparative example 2 a fluid culture vessel was produced on glass using polybutene 2 as a fluid material.
  • a 33 wt% toluene solution of polybutene 2 was coated on a glass petri dish, air-dried, and then dried for one day under reduced pressure to remove volatile components.
  • the obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day.
  • the fluid culture container is referred to as a comparative container 2.
  • Comparative Example 3 a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 4 using polybutene 4 having a viscosity of 1 ⁇ 10 10 mPa ⁇ s at 37 ° C. as the fluid material.
  • the fluid culture container is referred to as a comparative container 3.
  • Comparative container 3 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed.
  • the water content of polybutene 4 after standing for 24 hours was 0.5% or less.
  • Comparative example 4 a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 4 using silicone oil 5 having a viscosity of 6 ⁇ 10 2 mPa ⁇ s at 37 ° C. as the fluid material.
  • the fluid culture container is referred to as a comparative container 4.
  • the coating peeled off.
  • the water content of the silicone oil 5 after standing for 24 hours was 1% or less.
  • Comparative Example 5 a fluid culture vessel of TCPS was manufactured using acrylamide hydrogel having a viscosity of 2 ⁇ 10 5 mPa ⁇ s at 37 ° C. and a water content of 80% as a fluid material.
  • the fluid culture container is referred to as a comparative container 5.
  • Comparative container 5 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The moisture content of the acrylamide hydrogel after standing for 24 hours remained at 80%.
  • Example 10 cell culture was performed using the culture vessels 1 to 5 and 9. Prior to cell culture, each culture container was incubated for 30 minutes with a medium to be used or a solution of an adhesion factor suitable for the cells to be cultured, thereby improving surface cell adhesion. The culture medium and seeding conditions used were recommended for the cell type to be cultured. As a result, in all cases, the behavior of the cell spreading in the early stage and the spontaneous aggregation of the cell in the later stage was observed, and the fluidity effect was recognized (FIG. 6). As shown in FIG. 6, the effect of viscosity on cell morphology is large.
  • Comparative Example 6 cell culture was performed in the same manner as in Example 10 using Comparative Containers 1, 3, 5, and TCPS. As a result, in the comparative container 1 in which the fluidity is too high, the cell extension was not observed, but in the comparative container 3 having a too low fluidity or the solid TCPS, the cells were extended, but the monolayer state was maintained, and It was confirmed that spontaneous aggregation of cells does not proceed unless the fluidity is within a range. Moreover, in the comparative container 5 having a high water content, cells infiltrated into the fluid material, and spontaneous aggregation due to fluidity was not observed.
  • Examples and comparative examples> In the case of using a base material to hold the flowable material, in order to function as a culture vessel, the viscosity is only within a predetermined range (1 ⁇ 103 mPa ⁇ s or more and 1 ⁇ 109 mPa ⁇ s or less at 37 ° C.). Instead, it is necessary that the flowable material does not peel from the substrate. As described in Comparative Example 2, even when the polybutene 2 having a viscosity in the above-described predetermined range is used, when the substrate is glass, the coated state is not near the minimum value in terms of energy in water, and is peeled off. Is energetically advantageous and the coating peels off.
  • Comparative Example 2 is a combination in which the flowable material is peeled off, and the other cases are NG because the viscosity and moisture content are outside the above-described predetermined ranges.
  • SYMBOLS 1 ... Cell culture container, 2 ... Cell support body, 3 ... Fluid material, 4 ... Surface component 5 ... Base material, 6 ... Medium, 7 ... Deformation site

Abstract

According to the present invention, convenience, proliferation ability, adhesiveness and customizability are improved in three-dimensional cell culture. The cell culture container according to the present invention is provided with a cell supporting member, wherein at least a part of a surface of the cell supporting member, said surface being to be in contact with cells, is formed of a flowable material and the flowable material has a relatively low water content.

Description

細胞培養容器、細胞培養装置及び細胞培養方法Cell culture container, cell culture apparatus and cell culture method
 本発明は、細胞培養容器に関する。 The present invention relates to a cell culture container.
 細胞培養は多くの場合ポリスチレンのような剛直な固体表面を足場(固体足場)として平面培養されて来た。しかし、このような培養環境は生体内の環境とは大きく異なるため、必ずしも細胞本来の機能が十分には発現されない。これに対して、種々の3次元培養手法や細胞凝集化手法、例えばパターニングされた表面での培養(特許文献1)、低接着表面上での培養、液滴内での培養、ハイドロゲル上での培養、積層による3次元化などが提案されている。しかし、これらの手法には、操作が煩雑である、細胞の増殖が遅く3次元化に長時間を要する、3次元化された細胞塊の接着性が悪く流出しやすい、細胞に合わせた物性制御が困難である、などの課題があり、必ずしも平面培養と同等の高い細胞の生産性は得られない。 In many cases, cell culture has been carried out on a plane using a rigid solid surface such as polystyrene as a scaffold (solid scaffold). However, since such a culture environment is greatly different from the environment in the living body, the original function of the cell is not necessarily expressed sufficiently. On the other hand, various three-dimensional culture methods and cell aggregation methods, for example, culture on a patterned surface (Patent Document 1), culture on a low adhesion surface, culture in a droplet, hydrogel Three-dimensionalization by culturing and stacking has been proposed. However, these methods involve complicated operations, slow cell growth, require a long time for three-dimensionalization, and the adhesion of the three-dimensional cell mass tends to flow out easily. However, it is not always possible to obtain high cell productivity equivalent to that of planar culture.
特開2016-63779号公報Japanese Patent Application Laid-Open No. 2016-63779
 細胞の3次元培養において簡便性、増殖性、接着性、カスタマイズ性を向上する。 ∙ Improves convenience, proliferation, adhesion, and customization in 3D cell culture.
 本発明に係る細胞培養容器は、細胞支持体を備え、前記細胞支持体は細胞と接する表面の少なくとも一部を流動性材料で構成し、流動性材料の含水率は比較的低い。 The cell culture container according to the present invention includes a cell support, and the cell support is composed of a fluid material at least a part of the surface in contact with the cells, and the water content of the fluid material is relatively low.
 本明細書は、本願の優先権の基礎となる日本国特許出願番号2017-112203号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2017-112203, which is the basis of the priority of the present application.
 細胞の3次元培養において簡便性、増殖性、接着性、カスタマイズ性を向上することが可能な細胞培養容器を提供できる。 It is possible to provide a cell culture container capable of improving convenience, proliferation, adhesion, and customization in the three-dimensional culture of cells.
細胞培養容器の模式図である。It is a schematic diagram of a cell culture container. 流動性材料に所定の処理を施した細胞培養容器の模式図である。It is a schematic diagram of the cell culture container which performed predetermined processing to the fluid material. 流動性材料が不安定である場合に進行し得る変形モードの模式図である。It is a schematic diagram of a deformation mode that can proceed when the flowable material is unstable. 流動性材料を基材にコーティングした状態の例の模式図である。It is a schematic diagram of the example of the state which coated the fluid material on the base material. 流動性材料をフィルム状基材にコーティングした例の模式図である。It is a schematic diagram of the example which coated the fluid material on the film-form base material. 実施例および比較例における細胞の培養結果の表である。It is a table | surface of the culture result of the cell in an Example and a comparative example. 流動性材料の表面に細胞を接着させる一般的な方法を示す図である。It is a figure which shows the general method to adhere | attach a cell on the surface of a fluid material. 流動性材料の表面から細胞を剥離させる一般的な方法を示す図である。It is a figure which shows the general method of peeling a cell from the surface of a fluid material.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 本実施形態の細胞培養容器を用いた細胞培養は、細胞増殖時には従来の固体培養容器と同等に扱えるため、簡便性が高く、また、増殖性も高い。さらに、細胞の自発的な集合によって形成された3次元塊は細胞培養容器の表面と接着性が高い。流動性材料の粘度や表面修飾の制御によって、細胞に応じて細胞容器の構成のカスタマイズが容易に可能である。 The cell culture using the cell culture container of the present embodiment can be handled in the same manner as a conventional solid culture container at the time of cell proliferation, and thus has high convenience and high proliferation. Furthermore, the three-dimensional mass formed by spontaneous assembly of cells has high adhesion to the surface of the cell culture container. By controlling the viscosity and surface modification of the flowable material, the configuration of the cell container can be easily customized according to the cell.
 図1は本実施形態に係る提供する細胞培養容器を示す。細胞培養容器1は、細胞を接着する細胞支持体2を有し、その細胞支持体2は細胞と接する面の全面もしくは一部に流動性を有する流動性材料3を備える。 FIG. 1 shows a cell culture container provided according to this embodiment. The cell culture vessel 1 has a cell support 2 for adhering cells, and the cell support 2 includes a fluid material 3 having fluidity on the entire surface or a part of a surface in contact with the cell.
 一般に細胞は、表面張力、細胞内骨格の重合・脱重合、細胞と足場の接着、細胞と細胞の接着、などの複数の力が関わる複雑な環境内にて活動している。従来から、ポリスチレン培養容器のような固体足場での細胞培養に関する知見は多く、高い生産性が得られる培養条件が多く知られている。 Generally, cells are active in a complex environment involving multiple forces such as surface tension, polymerization / depolymerization of intracellular skeleton, cell-scaffold adhesion, cell-cell adhesion. Conventionally, there are many knowledges about cell culture on a solid scaffold such as a polystyrene culture vessel, and many culture conditions are known for obtaining high productivity.
 細胞が流動性を有する足場(以下、流動性足場という)を固体足場と同等に感じるためには、細胞が流動性足場の表面から受ける力が固体足場と同等である必要がある。例えば粘性が十分に高い流動性足場では、細胞が表面に対して作用させる力に対して足場の変位が十分に遅いため、流動性足場の表面から細胞が受ける力と、固体足場の表面から細胞が受ける力は同等となると考えられる。このように、流動性足場でも、条件次第では固体足場と同等に振舞うことができる。 In order to feel a scaffold in which cells have fluidity (hereinafter referred to as fluid scaffold) equivalent to a solid scaffold, the force that the cells receive from the surface of the fluid scaffold must be equivalent to that of the solid scaffold. For example, in a fluid scaffold with sufficiently high viscosity, the displacement of the scaffold is sufficiently slow relative to the force that the cell acts on the surface, so the force that the cell receives from the surface of the fluid scaffold and the cell from the surface of the solid scaffold It is thought that the power received by is equal. Thus, even a fluid scaffold can behave in the same manner as a solid scaffold depending on conditions.
 一方、細胞が足場表面に対して作用する力は、細胞密度によって異なる。細胞が単一で存在する場合には細胞間の相互作用は存在しないが、細胞密度が増大して細胞間の相互作用が増えると細胞どうしが凝集する方向の運動を開始しようとし、足場表面に作用する力は増大する。 On the other hand, the force that the cells act on the scaffold surface varies depending on the cell density. In the case of a single cell, there is no interaction between cells, but when the cell density increases and the interaction between cells increases, it tries to start movement in the direction in which the cells aggregate, The acting force increases.
 流動性足場上にて細胞を培養する場合、細胞密度の増大に伴い、細胞が生じさせる力に応じた足場の変位の度合いが大きくなり、相対的に流動性の寄与が増大する。 When culturing cells on a fluid scaffold, as the cell density increases, the degree of displacement of the scaffold according to the force generated by the cells increases, and the contribution of fluidity increases relatively.
 以上より、適切な条件下では、流動性足場を用いることにより、細胞密度の低い培養初期には固体足場と同等に振る舞い、細胞密度が増大する培養後期には流動性の寄与の大きい変形可能な足場として振舞う細胞支持体を実現することができる。 From the above, under appropriate conditions, by using a fluidized scaffold, it behaves in the same way as a solid scaffold at the beginning of culture at low cell density, and can be deformed with a large contribution of fluidity at the later stage of culture when the cell density increases. A cell support that behaves as a scaffold can be realized.
 なお、細胞が生じさせる力は細胞の種類、フェノタイプ、培養条件などによっても異なる。また、足場表面の接着因子や、ECMによっても影響される。そのため、培養する対象によって適切な条件は異なる可能性がある。ここで言う適切な条件とは、例えば流動性を有する細胞支持体の粘性、表面官能基、表面状態、密度等である。これらの詳細に関しては後述する。 It should be noted that the force generated by the cells varies depending on the cell type, phenotype, culture conditions and the like. It is also affected by the adhesion factor of the scaffold surface and the ECM. Therefore, appropriate conditions may vary depending on the subject to be cultured. Appropriate conditions mentioned here are, for example, the viscosity, surface functional group, surface state, density, etc. of the cell support having fluidity. These details will be described later.
 また、足場の流動性によって、細胞が受けるメカノバイオロジカルな刺激が従来の固体足場と異なることが十分に考えられる。変形可能な足場による細胞の凝集化の促進だけでなく、メカノバイオロジカルな制御によって細胞骨格の代謝や遺伝子発現パターン、細胞の遊走性、などが変化し、細胞の特性が変化する可能性がある。これについても細胞の種類、フェノタイプ、培養条件などによって異なるが、本実施形態に係る流動性足場の材料を、細胞の3次元培養ではなくメカノバイオロジー的な細胞特性制御に用いることも可能である。 In addition, due to the fluidity of the scaffold, it is fully conceivable that the mechanobiological stimulation received by the cells differs from the conventional solid scaffold. In addition to promoting cell aggregation by deformable scaffolds, mechano-biological control may change cytoskeletal metabolism, gene expression patterns, cell migration, etc., and may change cell characteristics . Although this also differs depending on the cell type, phenotype, culture conditions, etc., the fluid scaffold material according to the present embodiment can be used not for three-dimensional cell culture but for mechanobiological cell property control. is there.
 本実施形態の培養容器を適用可能な細胞の種類は、接着性の細胞であれば制限はない。また、細胞の由来(初代細胞、培養細胞、株化細胞、遺伝子組換えされた細胞、等)や、生物種に関しても制限はない。細胞間相互作用が強い細胞や、細胞の形態変化・運動が重要な細胞であれば、特に流動性材料の影響は大きいが、これらに限定されない。接着性の細胞としては、例えば、幹細胞(間葉系幹細胞、ES細胞、iPS細胞、等)、上皮細胞(血管上皮細胞、胆管上皮細胞、等)、内皮細胞(血管内非細胞、リンパ管内皮細胞、等)、線維芽細胞(NIH3T3、等)、肝細胞、膵島細胞、神経細胞、心筋細胞、筋芽細胞、がん細胞、マクロファージ、HeLa細胞、CHO細胞、などが考えられるが、これらに限定されない。また、培養する細胞は1種類である必要はなく、共培養系に適用してもよい。 The cell type to which the culture container of this embodiment can be applied is not limited as long as it is an adhesive cell. Moreover, there is no restriction | limiting also regarding the origin of a cell (a primary cell, a cultured cell, a cell line, a cell by which gene recombination, etc.) and a biological species. The influence of the flowable material is particularly large if the cell-cell interaction is strong, or if the cell shape change / motion is important, but it is not limited to these. Examples of adhesive cells include stem cells (mesenchymal stem cells, ES cells, iPS cells, etc.), epithelial cells (vascular epithelial cells, bile duct epithelial cells, etc.), endothelial cells (intravascular non-cells, lymphatic endothelium). Cells, etc.), fibroblasts (NIH3T3, etc.), hepatocytes, pancreatic islet cells, neurons, cardiomyocytes, myoblasts, cancer cells, macrophages, HeLa cells, CHO cells, etc. It is not limited. Moreover, the cell to culture does not need to be 1 type, You may apply to a co-culture system.
 なお、細胞支持体の表面物性や表面官能基によって細胞表面分子や細胞膜と相互作用可能な場合は、浮遊性の細胞も細胞支持体に付着した状態で培養することができる。ただし、その場合には、足場の流動性の効果は、接着細胞において得られる効果よりも小さくなると考えられる。また、接着細胞であっても、細胞間の相互作用が小さい細胞では流動性の効果は小さくなると考えられる。 In addition, when the surface physical properties and surface functional groups of the cell support can interact with the cell surface molecules and the cell membrane, the floating cells can be cultured while attached to the cell support. However, in that case, the fluidity effect of the scaffold is considered to be smaller than the effect obtained in adherent cells. Moreover, even if it is an adherent cell, the effect of fluidity | liquidity will become small in the cell with small interaction between cells.
 流動性を有する細胞支持体は、培地に対して不溶性もしくは難溶性の液状もしくは半固体状の高分子(以下、流動性材料) を用いることで実現可能できる。細胞毒性が十分に低い流動性材料を用いる場合には、培地に対して必ずしも不溶性である必要はないが、細胞アッセイや移植のような用途の際に影響が出る可能性があるため、培地への溶解度は低い方が望ましい。また、流動性材料は培地中に含まれる場合のある両親媒性成分によって乳化されないことが望ましい。 The cell support having fluidity can be realized by using a liquid or semi-solid polymer (hereinafter referred to as fluid material) which is insoluble or hardly soluble in the medium. When using a flowable material that is sufficiently low in cytotoxicity, it does not necessarily need to be insoluble in the medium, but it can affect applications such as cell assays and transplants, so It is desirable that the solubility of is lower. It is also desirable that the flowable material is not emulsified by amphiphilic components that may be included in the medium.
 低弾性率のハイドロゲルを用いた細胞培養の研究は多く知られているが、含水率の高いハイドロゲルでは表面が親水的過ぎて、一般に接着因子を化学結合によって導入しなければ細胞が接着しにくいため取り扱いやカスタマイズ性に難がある。また、ハイドロゲルは調製に手間がかかる、機械的強度が低い、乾燥に弱い、などの問題からも製造・輸送・培養時の取り扱いなどに難がある。 Many researches on cell culture using low-elastic modulus hydrogels are known, but the surface of a hydrogel with a high water content is too hydrophilic, and generally cells do not adhere unless an adhesive factor is introduced by chemical bonding. Because it is difficult, handling and customization are difficult. In addition, hydrogels are difficult to prepare, handle due to problems such as low mechanical strength and weakness to drying.
 これに対し、流動性を有する細胞支持体は、機械的強度は低いものの、傷、割れ、欠損などが発生してもその流動性によって修復されるため、取り扱いが容易である。 On the other hand, the cell support having fluidity has low mechanical strength, but even if scratches, cracks, defects, etc. occur, it is repaired by the fluidity, so that it is easy to handle.
 また、含水率の低い材料では、乾燥の問題が少なく取り扱いが容易である。このような観点からは、含水率は低いほど問題は少なく、好ましくは20%以下、より好ましくは5%以下、さらに好ましくは1%以下、である。 Also, materials with low moisture content are easy to handle with less drying problems. From this point of view, the lower the water content, the less the problem, preferably 20% or less, more preferably 5% or less, and even more preferably 1% or less.
 流動性材料はバルクで使用しても構わないし、何らかの基材の表面にコーティングして使用しても構わない。また、流動性材料の表面を物理・化学的手法によって処理しても構わない。物理・化学的手法とは、例えば、光照射、プラズマ処理、コロナ放電処理、UV/O3処理、界面活性剤処理、化学物質の吸着、生体分子の吸着、粒子状物質やファイバー状物質の添加、パターニング、それらの任意の組み合わせ、等を含むが、それらに限定されない。 The fluid material may be used in bulk or may be used by coating on the surface of some substrate. Further, the surface of the fluid material may be treated by a physical / chemical method. Physical / chemical methods include, for example, light irradiation, plasma treatment, corona discharge treatment, UV / O3 treatment, surfactant treatment, adsorption of chemical substances, adsorption of biomolecules, addition of particulate substances and fibrous substances, Including but not limited to patterning, any combination thereof, and the like.
 図2は流動性材料に所定の処理を施した細胞培養容器の模式図である。上記処理により、流動性材料3の上側に流動性材料とは異なる表面成分4が生じる。 FIG. 2 is a schematic view of a cell culture container obtained by subjecting a fluid material to a predetermined treatment. By the above treatment, a surface component 4 different from the fluid material is generated on the fluid material 3.
 流動性材料の表面に、細胞の接着を助ける官能基や成分、もしくは細胞の接着を助ける成分の吸着を助ける官能基や成分が存在している場合、細胞の接着に対して有利に働く。例えば、細胞接着因子やECMを含む溶液を接触させる、血清を接触させる、培地を接触させる、などの手法により、そのような表面とすることができる。 When a functional group or component that assists cell adhesion or a functional group or component that assists adsorption of a component that assists cell adhesion is present on the surface of the flowable material, it is advantageous for cell adhesion. For example, such a surface can be formed by a method of contacting a solution containing a cell adhesion factor or ECM, contacting serum, or contacting a medium.
 流動性材料は、単一成分であってもよいし、複数成分の混合系であってもよい。また、分子量分布も流動性が担保される限り、限定されない。 The flowable material may be a single component or a mixed system of a plurality of components. Moreover, molecular weight distribution is not limited as long as fluidity is ensured.
 流動性材料は透明度が高ければ細胞を観察しやすいため好ましい。しかし、必ずしも透明である必要はない。 A flowable material is preferable if the transparency is high because cells can be easily observed. However, it is not necessarily transparent.
 流動性材料の粘度は、細胞が伸展可能であること、細胞密度が高い状態で発生する細胞間の凝集力に対して変形が容易であること、という範囲を満たす必要がある。この範囲は、細胞やフェノタイプにも依存するが、我々の実験結果によると、好ましくは1×103mPa・s以上1×109mPa・s以下、より好ましくは2×103mPa・s以上1×108mPa・s以下、さらに好ましくは5×103mPa・s以上1×107mPa・s以下、である。 The viscosity of the flowable material needs to satisfy the range that the cells can be extended and that the deformation is easy with respect to the cohesive force between the cells generated at a high cell density. This range depends on the cell and phenotype, but according to our experimental results, it is preferably 1 × 10 3 mPa · s to 1 × 10 9 mPa · s, more preferably 2 × 10 3 mPa · s to 1 × 10 8 mPa · s. Hereinafter, it is more preferably 5 × 103 mPa · s or more and 1 × 107 mPa · s or less.
 流動性材料は、ニュートン流体であっても、非ニュートン流体であっても構わない。しかし、細胞の運動は一般に非常に遅く、非ニュートン流体で十分な効果を得るためには、細胞の運動速度に対して適切な粘度となるように物性の精密な調整が必要となる。 The flowable material may be a Newtonian fluid or a non-Newtonian fluid. However, the movement of cells is generally very slow, and in order to obtain a sufficient effect with a non-Newtonian fluid, precise adjustment of physical properties is required so as to obtain an appropriate viscosity with respect to the movement speed of the cells.
 流動性材料の比重は培地より大きくても、同等でも、小さくても構わない。しかし、流動性材料を基材の表面にコーティングして用いる場合には、流動性材料が基材から剥離しないことが望ましいので、流動性材料と基材の親和性が十分に高く、表面張力や浮力・重力のような流動性材料を変形させ得る力に対して拮抗できる必要がある。流動性材料の比重が培地よりも重い場合は、ディッシュ底面のような部位に用いる限り、容易に取り扱える。ただし、何らかの立体的な形状を有する基材の表面にコーティングして用いる場合には、コーティングの落下を防ぐために流動性材料と基材の間に十分な相互作用が必要となる。 The specific gravity of the flowable material may be larger than, equal to, or smaller than that of the medium. However, when the flowable material is coated on the surface of the substrate, it is desirable that the flowable material does not peel from the substrate, so that the affinity between the flowable material and the substrate is sufficiently high, and surface tension and It is necessary to be able to antagonize the force that can deform a fluid material such as buoyancy and gravity. When the specific gravity of the flowable material is heavier than that of the medium, it can be easily handled as long as it is used for a portion such as the bottom of the dish. However, when the surface of a substrate having a certain three-dimensional shape is coated and used, sufficient interaction is required between the flowable material and the substrate to prevent the coating from falling.
 培地、流動性材料、基材の3つの成分の間において、貯蔵エネルギーや運動エネルギーは無視できるとして、表面エネルギーの和とポテンシャルエネルギーの和が極小値周りに存在する場合に流動性材料が安定に基材表面にコーティングされた状態が保たれると表現することができる。流動性材料のコーティングが不安定である場合、流動性材料が変形してより安定な状態に移行するが、その際には、変形によって培地と基材の接触面積が変化しないモード(1)と、増大するモード(2)の2つに分類することができる(図3)。流動性培養容器が安定に存在できるためには、これらのどちらも進行しないことが必要となる。 The storage energy and kinetic energy are negligible among the three components of the medium, flowable material, and substrate, and the flowable material is stable when the sum of surface energy and the sum of potential energy exist around the minimum value. It can be expressed that the coated state on the surface of the substrate is maintained. When the coating of the flowable material is unstable, the flowable material deforms and shifts to a more stable state. In this case, the mode (1) in which the contact area between the culture medium and the substrate does not change due to the deformation. , Can be classified into two modes (FIG. 3). In order for the fluid culture vessel to exist stably, it is necessary that neither of these progress.
 まず、モード(1)は、一例としてディッシュ底面に比重が培地6より小さい流動性材料3がコーティングされている場合、流動性材料3が変形して、コーティングの一部が浮き上がるような変形である。流動性材料の変形部位7と、培地6の接触面積が増加している。 First, mode (1) is a deformation in which, for example, when the flowable material 3 having a specific gravity smaller than the culture medium 6 is coated on the bottom surface of the dish, the flowable material 3 is deformed and a part of the coating is lifted. . The contact area between the deformed portion 7 of the fluid material and the culture medium 6 is increased.
 モード(1)に対して、流動性材料が安定にコーティングされている状態とは、流動性材料と培地の接触面積が自発的に増加しない状態である。すなわち、流動性材料と培地の接触面積が増大する変形に対して、全エネルギーの変化が正でありエネルギー的な損失が発生する状態である。このような状態は式1にて表現できる。ΔVΔh/ΔSは変形部位の形状に依存する項であり、εやρやgは定数であるため、この式は実質的に、自発的に進行し得る変形の形状について記述したものと言える。定性的には、流動性材料と培地の親和性が低く、流動性材料と培地の密度差が大きく、広い範囲で体積変化を伴う変形の方が進行しやすいことを示唆している。 In the mode (1), the state where the fluid material is stably coated is a state where the contact area between the fluid material and the medium does not increase spontaneously. That is, in a state where the contact area between the fluid material and the culture medium increases, the total energy change is positive and energy loss occurs. Such a state can be expressed by Equation 1. Since ΔVΔh / ΔS is a term that depends on the shape of the deformed portion, and ε, ρ, and g are constants, it can be said that this equation substantially describes the shape of the deformation that can proceed spontaneously. Qualitatively, the affinity between the flowable material and the medium is low, and the density difference between the flowable material and the medium is large, suggesting that deformation accompanied by volume change is more likely to proceed over a wide range.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、モード(2)は、一例としてディッシュ底面に比重が培地より小さい流動性材料がコーティングされている場合、流動性材料が変形して、コーティングの基材が露出するような変形である。基材5と、培地6の接触面積が増加している。 Next, mode (2) is a deformation in which, for example, when the flowable material having a specific gravity smaller than the medium is coated on the bottom surface of the dish, the flowable material is deformed and the base material of the coating is exposed. The contact area between the base material 5 and the culture medium 6 is increased.
 モード(2)に対して、流動性材料が安定にコーティングされている状態とは、培地と基材の接触面積が自発的に増加しない状態である。すなわち、培地と基材の接触面積が増大する変形に対して、全エネルギーの変化が正でありエネルギー的な損失が発生する状態である。このような状態は式2にて表現できる。ポテンシャルエネルギーに関しては式1と同様であるが、表面エネルギーに関しては、流動性材料と培地、培地と基材、流動性材料と基材の接触面積の変化があり3つの項から成るが、培地と基材の接触面積の増加分は、流動性材料と基材の接触面積の減少分に等しいため式2のように単純化される。定性的には、式1の議論に加えて、流動性材料と基材の親和性が低い方が変形が進行しやすいことを示唆している。 In the mode (2), the state where the fluid material is stably coated is a state where the contact area between the culture medium and the substrate does not increase spontaneously. That is, in a state where the contact area between the culture medium and the substrate increases, the change in total energy is positive and energy loss occurs. Such a state can be expressed by Equation 2. The potential energy is the same as in Equation 1, but regarding the surface energy, there are changes in the contact area between the fluid material and the medium, the medium and the substrate, and the fluid material and the substrate. Since the increase in the contact area of the substrate is equal to the decrease in the contact area between the flowable material and the substrate, it is simplified as shown in Equation 2. Qualitatively, in addition to the discussion of Formula 1, it is suggested that the lower the affinity between the fluid material and the substrate, the easier the deformation proceeds.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 これらを踏まえ、モード(1)も(2)も進行しにくい流動性培養容器の形状としては、一例として培地と親和性の低い基材に流動性材料を薄くコーティングしたものが挙げられる。コーティングが薄いことでポテンシャルエネルギーのみによって変形するモード(1)を抑制でき、培地と基材の親和性が低いことで培地と基材の接触面積増加による表面エネルギー利得によって変形するモード(2)を抑制できるためである。 Based on these, examples of the shape of the fluid culture vessel in which modes (1) and (2) are difficult to proceed include, as an example, a thinly coated fluid material on a substrate having a low affinity for the culture medium. Mode (1), which can be deformed only by potential energy due to the thin coating, and mode (2), which is deformed by surface energy gain due to increased contact area between the medium and the substrate due to low affinity between the medium and the substrate. This is because it can be suppressed.
 なお、式1、式2が成り立たない範囲においても、流動性材料の粘度が非常に高く、浮力や表面張力などによる時間当たりの変位が十分に小さい場合、厳密には安定状態でなかったとしても細胞培養期間の中で流動性材料の変形が十分に小さいため、細胞培養に使用できる。これは例えばコーティングが十分に薄くないためモード(1)を完全には抑制できないものの、浮力が小さいため変位が十分に遅い状態などである。このような状態は、流動性培養容器の製造時のコーティングのムラや品質のブレなどによって発生し得る。また、別の例として、流動性材料と基材の親和性が十分に高くない場合においても表面張力の寄与が小さく変位が十分に遅い状態も考えられる。 Even in the range where Formulas 1 and 2 do not hold, if the viscosity of the flowable material is very high and the displacement per hour due to buoyancy, surface tension, etc. is sufficiently small, Since the deformation of the flowable material is sufficiently small during the cell culture period, it can be used for cell culture. For example, the mode (1) cannot be completely suppressed because the coating is not sufficiently thin, but the displacement is sufficiently slow because the buoyancy is small. Such a state may occur due to coating unevenness or quality blurring during the production of the fluid culture vessel. As another example, even when the affinity between the flowable material and the substrate is not sufficiently high, a state where the contribution of the surface tension is small and the displacement is sufficiently slow is also conceivable.
 また、何らかの原因によって準安定状態になっている場合も、安定状態への遷移が十分に遅い場合は、細胞培養に使用できる。培養中に一時的に安定状態でなくなる可能性がある場合なども、安定状態への遷移が十分に遅い場合は、細胞培養に使用できる。 Also, even if the metastable state is caused by some cause, if the transition to the stable state is sufficiently slow, it can be used for cell culture. Even when there is a possibility that the stable state is temporarily lost during the culture, the cell can be used for the cell culture if the transition to the stable state is sufficiently slow.
 他にも、培地成分の流動性材料表面への吸着、細胞の運動や流動性材料への沈み込みによる変位、などによって、培養開始時には最安定状態であったものが、培養の経過とともに最安定状態でなくなることも考えられる。このような場合においても、細胞培養期間の中で流動性材料の変形が十分に小さい場合は、細胞培養に十分に使用できる。 In addition, what was in the most stable state at the start of culture due to adsorption of medium components to the surface of the flowable material, displacement due to cell movement and sinking into the flowable material, etc. It is also possible that the condition will disappear. Even in such a case, if the deformation of the flowable material is sufficiently small during the cell culture period, it can be sufficiently used for cell culture.
 水中での流動性材料の安定性を判断する簡便な方法は、37℃において流動性材料を水中で24時間静置することである。安定性が不十分であれば、上述のモード(1)やモード(2)の変形が観察される。安定な場合や、時間当たりの変位が十分に小さい場合には明確な変形は観察されない。 A simple method for judging the stability of a flowable material in water is to leave the flowable material in water at 37 ° C. for 24 hours. If the stability is insufficient, the above-described mode (1) or mode (2) deformation is observed. When it is stable or the displacement per hour is sufficiently small, no clear deformation is observed.
 培地成分や流動性材料の表面の組成は時間とともに変化するので、長期間の安定な培養には、予想される物性変化の幅に対してロバストなデザインを考える必要がある。 Since the composition of the medium components and the surface of the flowable material change with time, it is necessary to consider a robust design for the expected range of changes in physical properties for long-term stable culture.
 細胞毒性が低く、培地に対して不溶性の流動性材料としては、例えば、ポリブテン、ポリイソブチレン、水添ポリブテン、水添ポリイソブチレン、これらを含むブロック共重合体、流動パラフィンのような炭化水素系、シリコーンのようなシロキサン系、ペルフルオロカーボンやペルフルオロエーテルのようなハロゲン系、等の高分子材料を用いることが出来るが、これらに限定されない。また、このような高分子材料の末端官能基や分岐・架橋構造、タクティシティ等は流動性を示す限り限定されない。流動性材料としては、粘度が分子量や成分の混合比に依存する材料系が、細胞支持体の流動性の制御が容易であるため望ましいが、それらに限定されない。培地に対して不溶性のイオン液体も流動性材料の候補となり得るが、細胞毒性の低いイオン種である必要があること、流動性の制御が困難であること、などから必ずしも細胞支持体としては適していない。 Examples of fluid materials that have low cytotoxicity and are insoluble in the culture medium include polybutene, polyisobutylene, hydrogenated polybutene, hydrogenated polyisobutylene, block copolymers containing these, hydrocarbons such as liquid paraffin, Polymer materials such as siloxanes such as silicone and halogens such as perfluorocarbon and perfluoroether can be used, but are not limited thereto. Further, the terminal functional group, the branched / crosslinked structure, the tacticity, etc. of such a polymer material are not limited as long as it exhibits fluidity. As the fluid material, a material system in which the viscosity depends on the molecular weight and the mixing ratio of the components is desirable because it is easy to control the fluidity of the cell support, but is not limited thereto. Ionic liquids that are insoluble in the culture medium can also be candidates for flowable materials, but they are not always suitable as cell supports because they need to be ionic species with low cytotoxicity and fluidity is difficult to control. Not.
 我々の検討によると、粘度範囲や表面エネルギーの観点から、ポリブテン、ポリイソブチレンのような非直鎖の炭化水素系材料が、流動性材料として特に好ましいことが判明している。ポリブテン、ポリイソブチレンは、水に対する溶解性が非常に低く、培地への混入がほぼないこと、混入があったとしても除去が容易であること、食品原料、化粧品原料
、医療用粘着剤などに用いられる非常に安全性の高い素材であり、たとえ微小量の培地への混入があっても悪影響が少ないと期待できること、からも有用である。なお、このような非直鎖の炭化水素系材料は一般に密度が1g/mL未満である。
According to our study, it has been found that non-linear hydrocarbon materials such as polybutene and polyisobutylene are particularly preferable as the flowable material from the viewpoint of the viscosity range and surface energy. Polybutene and polyisobutylene have very low solubility in water and are almost never mixed into the medium. They can be easily removed even if they are mixed. They are used for food ingredients, cosmetic ingredients, medical adhesives, etc. It is useful because it is a very safe material that can be expected to have little adverse effects even if it is mixed in a small amount of medium. Such a non-linear hydrocarbon-based material generally has a density of less than 1 g / mL.
 流動性材料を基材の表面にコーティングして使用する場合、流動性材料と基材の組み合わせが重要になる。一例として、流動性材料としてポリブテンを用い、基材として低密度ポリエチレンを用い、厚さ30μmのポリブテン層を低密度ポリエチレン上に形成することで、式1および式2を満たすことができるが、それらに限定されない。基材としては、ポリエチレンだけでなく、ポリプロピレンやポリブテン共重合体のようなポリエチレン以外のポリアルキレン、ポリアルキレンがグラフトされた表面を有する材料、なども使用できるが、これらに限定されない。 When using a fluid material coated on the surface of a substrate, the combination of the fluid material and the substrate is important. As an example, polybutene is used as the flowable material, low density polyethylene is used as the base material, and a polybutene layer having a thickness of 30 μm is formed on the low density polyethylene. It is not limited to. As the substrate, not only polyethylene but also polyalkylene other than polyethylene, such as polypropylene and polybutene copolymer, a material having a surface grafted with polyalkylene, and the like can be used, but not limited thereto.
 流動性材料をコーティングする場合、膜の流動性は膜厚にも依存する場合があるため、材料組成だけでなく膜厚によって物性を制御できる可能性がある。また、膜厚が薄い場合には、流動性材料の体積に対する基材や培地と接触する面の比表面積が大きくなるため、浮力や重力の影響が相対的に大きくなり、流動性材料の層がより安定に存在しやすくなる。 When coating a fluid material, the fluidity of the film may depend on the film thickness, so that the physical properties may be controlled not only by the material composition but also by the film thickness. In addition, when the film thickness is small, the specific surface area of the surface in contact with the base material or the culture medium with respect to the volume of the fluid material increases, so the influence of buoyancy and gravity becomes relatively large, and the layer of fluid material becomes It becomes easier to exist more stably.
 流動性材料をコーティングする基材の形状は問わない。例えば、平面、局面、フィルム、メッシュ、ファイバー、布、粒子、ピラー、凹凸のある面、等が考えられる。図4ではフィルム状基材8、メッシュ状基材9、ピラー状基材10の例を示す。 基材 The shape of the base material coated with the fluid material is not limited. For example, a plane, an aspect, a film, a mesh, a fiber, a cloth, a particle, a pillar, an uneven surface, and the like can be considered. In FIG. 4, the example of the film-like base material 8, the mesh-like base material 9, and the pillar-shaped base material 10 is shown.
 コーティング方法としては、バルクの流動性材料を塗布する手法や、流動性材料の溶液を塗布し溶媒を乾燥する手法、気化された流動性材料を蒸着させる手法、等が考えられるが、これらに限定されない。 Examples of the coating method include a method of applying a bulk fluid material, a method of applying a fluid material solution and drying a solvent, and a method of vaporizing a vaporized fluid material. Not.
 一例として、流動性材料をフィルム状の基材にコーティングして、それを培養ディッシュ底面に貼り付けることで、通常の培養ディッシュと同様の取り扱いが出来る流動性培養容器となる。このようなケースでは、細胞が接着したフィルムを底面から剥離することで、細胞の移動を容易に行うことが出来る。また、フィルムの切断による細胞の分割、観察用切片の調製が容易であることから、利便性が高い(図5)。流動性材料に十分な粘着性がある場合には、流動性材料を用いてフィルム状基材を培養ディッシュにそのまま貼り付けることができるため、簡便に製造可能である。 As an example, a fluid culture container that can be handled in the same manner as a normal culture dish is obtained by coating a fluid material on a film-like base material and attaching it to the bottom of the culture dish. In such a case, the cell can be easily moved by peeling the film to which the cell is adhered from the bottom surface. Moreover, since the division of the cells by cutting the film and the preparation of the observation sections are easy, the convenience is high (FIG. 5). When the flowable material has sufficient adhesiveness, the film-like substrate can be attached as it is to the culture dish using the flowable material, so that it can be easily produced.
 また、別の例として、伸縮性を有するフィルム状の基材にコーティングした場合、培養中に基材を伸縮・圧縮などすることで、流動性材料の層に対して積極的に流動を与えることができる。それによって細胞にも力学的な刺激を培養中に与えることができ、動的にメカノバイオロジカルな制御をすることもできる。 As another example, when a stretchable film-like substrate is coated, the fluidic material layer is positively fluidized by stretching / compressing the substrate during culture. Can do. As a result, mechanical stimulation can be given to the cells during the culture, and dynamic mechanobiological control can be performed.
 さらに、別の例として、流動性材料と低接着性表面がパターニングされた形状のディッシュを用いることで、再現性よく細胞塊のサイズを揃えた3次元培養をすることができる。 Furthermore, as another example, by using a dish having a shape in which a flowable material and a low-adhesive surface are patterned, it is possible to perform three-dimensional culture with uniform cell mass sizes with high reproducibility.
 流動性材料の滅菌方法は、流動性材料の特性によって選ばれるべきである。滅菌方法としては、γ線、エチレンオキサイドガス、UV照射、エタノール、乾燥加熱、飽和水蒸気加熱、などが考えられる。 The sterilization method of the flowable material should be selected according to the characteristics of the flowable material. As the sterilization method, γ rays, ethylene oxide gas, UV irradiation, ethanol, drying heating, saturated steam heating, and the like can be considered.
 流動性材料の表面に細胞を接着させる際には、細胞の懸濁液を流動性培養容器に導入するなどの一般的な方法を用いることができる(図7)。 When the cells are adhered to the surface of the fluid material, a general method such as introducing a cell suspension into the fluid culture vessel can be used (FIG. 7).
 流動性材料の表面に接着した状態の細胞を剥離する際には、一般に用いられるタンパク分解酵素を用いることができる(図8)。また、流動性材料の表面が刺激応答性分子のようなもので被覆されている場合には、刺激応答による細胞剥離もできる。また、固体足場を用いる場合と比較して、流動性材料を用いる場合には、液流によって細胞を剥離した際に細胞への侵襲性が低い。 Generally used proteolytic enzyme can be used to peel off cells adhered to the surface of the fluid material (FIG. 8). In addition, when the surface of the flowable material is coated with something such as a stimulus-responsive molecule, cell detachment by a stimulus response can also be performed. In addition, in the case of using a fluid material, the invasiveness to the cells is low when the cells are detached by a liquid flow as compared to the case of using a solid scaffold.
 以下で培養容器上で製造の具体例について説明する The following describes a specific example of production on a culture vessel.
 実施例1では、粘度が37℃において2.0×105mPa・sであるポリブテン(以下、ポリブテン1という)を流動性材料として用いて、フィルム状基材にて流動性培養容器を製造した。 In Example 1, a fluid culture vessel was produced using a film-like substrate using polybutene (hereinafter referred to as polybutene 1) having a viscosity of 2.0 × 10 5 mPa · s at 37 ° C. as a fluid material.
 上記ポリブテン1の33wt%トルエン溶液に、低密度ポリエチレンフィルムを浸漬し、引き上げた後に風乾することで、フィルム状基材に流動性材料をコーティングした。得られたフィルムをTCPS培養容器の底面に貼り付け、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器1とする。 The low-density polyethylene film was immersed in a 33 wt% toluene solution of the polybutene 1 and pulled up, and then air-dried to coat the film-like substrate with a fluid material. The obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 1.
 培養容器1は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン1の含水率は0.5%以下であった。 The culture vessel 1 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 1 after standing for 24 hours was 0.5% or less.
 実施例2では、粘度が37℃において7.5×104mPa・sであるポリブテン(以下、ポリブテン2という)を流動性材料として用いて、フィルム状基材にて流動性培養容器を製造した。 In Example 2, a fluid culture vessel was produced with a film-like substrate using polybutene (hereinafter referred to as polybutene 2) having a viscosity of 7.5 × 10 4 mPa · s at 37 ° C. as a fluid material.
 上記ポリブテン2の33wt%トルエン溶液に、低密度ポリエチレンフィルムを浸漬し、引き上げた後に風乾することで、フィルム状基材に流動性材料をコーティングした。得られたフィルムをTCPS培養容器の底面に貼り付け、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器2とする。 A low-density polyethylene film was immersed in a 33 wt% toluene solution of the polybutene 2 and pulled up, and then air-dried to coat a fluid material on the film-like substrate. The obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 2.
 培養容器2は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン2の含水率は0.5%以下であった。 The culture vessel 2 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 2 after standing for 24 hours was 0.5% or less.
 実施例3では、ポリブテン1を流動性材料として用いて、メッシュ状基材にて流動性培養容器を製造した。 In Example 3, a fluid culture vessel was manufactured using a mesh-like substrate using polybutene 1 as a fluid material.
 ポリブテン1の10wt%トルエン溶液に、ポリプロピレンメッシュを浸漬し、引き上げた後に風乾することで、メッシュ状基材に流動性材料をコーティングした。得られたメッシュを低接着性培養容器の底面に設置し、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器3とする。 A polypropylene mesh was immersed in a 10 wt% toluene solution of polybutene 1, pulled up, and then air-dried to coat a fluid material on the mesh substrate. The obtained mesh was placed on the bottom surface of the low adhesion culture vessel and dried under reduced pressure for 1 day to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 3.
 培養容器3は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン1の含水率は0.5%以下であった。 The culture vessel 3 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 1 after standing for 24 hours was 0.5% or less.
 実施例4では、ポリブテン2を流動性材料として用いて、フィルム状基材にて流動性培養容器を製造した。 In Example 4, a fluid culture container was produced with a film-like substrate using polybutene 2 as a fluid material.
 ポリブテン2の33wt%ヘキサン溶液に、低密度ポリエチレンフィルムを浸漬し、引き上げた後に風乾することで、フィルム状基材に流動性材料をコーティングした。得られたフィルムをTCPS培養容器の底面に貼り付け、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器4とする。 A low-density polyethylene film was immersed in a 33 wt% hexane solution of polybutene 2, pulled up, and then air-dried to coat a fluid material on the film-like substrate. The obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 4.
 培養容器4は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン2の含水率は0.5%以下であった。 The culture vessel 4 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 2 after standing for 24 hours was 0.5% or less.
 実施例5では、ポリブテン1とポリブテン2の混合物を流動性材料として用いて、フィルム状基材にて流動性培養容器を製造した。 In Example 5, a fluid culture vessel was produced with a film-like substrate using a mixture of polybutene 1 and polybutene 2 as a fluid material.
 ポリブテン1とポリブテン2の1:1混合物の33wt%トルエン溶液に、低密度ポリエチレンフィルムを浸漬し、引き上げた後に風乾することで、フィルム状基材に流動性材料をコーティングした。得られたフィルムをTCPS培養容器の底面に貼り付け、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器5とする。 A low-density polyethylene film was immersed in a 33 wt% toluene solution of a 1: 1 mixture of polybutene 1 and polybutene 2, pulled up, and then air-dried to coat a fluid material on the film-like substrate. The obtained film was affixed to the bottom of the TCPS culture vessel and dried for 1 day under reduced pressure to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 5.
 培養容器5は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン1とポリブテン2の混合物の含水率は0.5%以下であった。 The culture vessel 5 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of the mixture of polybutene 1 and polybutene 2 after standing for 24 hours was 0.5% or less.
 実施例6では、ポリブテン1を流動性材料として用いて、テフロン(登録商標)上に流動性培養容器を製造した。 In Example 6, a fluid culture vessel was produced on Teflon (registered trademark) using polybutene 1 as a fluid material.
 ポリブテン1の33wt%トルエン溶液を表面に微細な凹凸を有するテフロン(登録商標)容器にコーティングし、風乾した後に、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器6とする。 A 33 wt% toluene solution of polybutene 1 was coated on a Teflon (registered trademark) container having fine irregularities on the surface, air-dried, and dried under reduced pressure for 1 day to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 6.
 培養容器6は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン1の含水率は0.5%以下であった。 The culture vessel 6 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 1 after standing for 24 hours was 0.5% or less.
 実施例7では、分子の吸着による培養容器1の表面修飾を検討した。 In Example 7, the surface modification of the culture vessel 1 by molecular adsorption was examined.
 培養容器1に、ステアリン酸ナトリウム水溶液、コラーゲン水溶液、フィブロネクチン水溶液をそれぞれ入れ、30分間インキュベートした。その後、溶液を取り除き、純水で洗浄した後に乾燥させた。表面分析によって、作用させた分子の存在が確認された。また濡れ性の増大も確認された。 In the culture vessel 1, a sodium stearate aqueous solution, a collagen aqueous solution, and a fibronectin aqueous solution were respectively added and incubated for 30 minutes. Thereafter, the solution was removed, washed with pure water, and dried. Surface analysis confirmed the presence of the acted molecules. An increase in wettability was also confirmed.
 実施例8では、粒子等の吸着による培養容器1の表面修飾を検討した。 In Example 8, the surface modification of the culture vessel 1 by adsorption of particles or the like was examined.
 培養容器1に、架橋アガロースビーズ、ポリスチレンビーズ、セルロースナノファイバーの分散溶液をそれぞれ入れ、30分間インキュベートした。その後、溶液を取り除き、純水で洗浄した後に乾燥させた。表面分析によって、作用させた粒子等の存在が確認された。 In the culture vessel 1, each of a dispersion solution of crosslinked agarose beads, polystyrene beads, and cellulose nanofibers was placed and incubated for 30 minutes. Thereafter, the solution was removed, washed with pure water, and dried. Surface analysis confirmed the presence of particles that were acted on.
 実施例9では、含水率が4%のポリブテン-ポリアクリル酸ブロック共重合体を流動性材料としてコーティングした流動性培養容器を製造した。ポリブテン-ポリアクリル酸ブロック共重合体の10wt%THF溶液を表面に微細な凹凸を有するテフロン(登録商標)容器にコーティングし、風乾した後に、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を培養容器9とする。 In Example 9, a flowable culture vessel coated with a polybutene-polyacrylic acid block copolymer having a water content of 4% as a flowable material was produced. A 10 wt% THF solution of polybutene-polyacrylic acid block copolymer is coated on a Teflon (registered trademark) container with fine irregularities on the surface, air-dried, and then dried for one day under reduced pressure to remove volatile components. did. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture vessel is referred to as a culture vessel 9.
 培養容器9は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン1の含水率は4%以下のままであった。 The culture vessel 9 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 1 after standing for 24 hours remained at 4% or less.
 <比較例1>
 比較例1では、粘度が37℃において7・0×102mPa・sであるポリブテン3を流動性材料として用いて、実施例1と同様にしてフィルム状基材にて流動性培養容器を製造した。上記流動性培養容器を比較容器1とする。
<Comparative Example 1>
In Comparative Example 1, a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 1, using Polybutene 3 having a viscosity of 7.0 × 10 2 mPa · s at 37 ° C. as the fluid material. The fluid culture container is referred to as a comparative container 1.
 比較容器1は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン3の含水率は0.5%以下であった。 Comparative container 1 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 3 after standing for 24 hours was 0.5% or less.
 <比較例2>
 比較例2では、ポリブテン2を流動性材料として用いて、ガラス上に流動性培養容器を製造した。
<Comparative example 2>
In Comparative Example 2, a fluid culture vessel was produced on glass using polybutene 2 as a fluid material.
 ポリブテン2の33wt%トルエン溶液をガラスシャーレにコーティングし、風乾した後に、減圧下で1日乾燥することで揮発性成分を除去した。得られた流動性培養容器を大気圧に戻し、室温で1日もしくは40℃で半日静置することで表面をアニーリングした。上記流動性培養容器を比較容器2とする。 A 33 wt% toluene solution of polybutene 2 was coated on a glass petri dish, air-dried, and then dried for one day under reduced pressure to remove volatile components. The obtained fluid culture vessel was returned to atmospheric pressure, and the surface was annealed by allowing it to stand at room temperature for one day or at 40 ° C. for half a day. The fluid culture container is referred to as a comparative container 2.
 比較容器2を水中37℃にて24時間静置したところ、コーティングが剥離した。24時間静置後のポリブテン2の含水率は0.5%以下であった。 When the comparative container 2 was allowed to stand at 37 ° C. in water for 24 hours, the coating peeled off. The water content of polybutene 2 after standing for 24 hours was 0.5% or less.
 <比較例3>
 比較例3では、粘度が37℃において1×1010mPa・sであるポリブテン4を流動性材料として用いて、実施例4と同様にしてフィルム状基材にて流動性培養容器を製造した。上記流動性培養容器を比較容器3とする。
<Comparative Example 3>
In Comparative Example 3, a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 4 using polybutene 4 having a viscosity of 1 × 10 10 mPa · s at 37 ° C. as the fluid material. The fluid culture container is referred to as a comparative container 3.
 比較容器3は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のポリブテン4の含水率は0.5%以下であった。 Comparative container 3 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The water content of polybutene 4 after standing for 24 hours was 0.5% or less.
 <比較例4>
 比較例4では、粘度が37℃において6×102mPa・sあるシリコーンオイル5を流動性材料として用いて、実施例4と同様にしてフィルム状基材にて流動性培養容器を製造した。上記流動性培養容器を比較容器4とする。
<Comparative example 4>
In Comparative Example 4, a fluid culture vessel was produced using a film-like substrate in the same manner as in Example 4 using silicone oil 5 having a viscosity of 6 × 10 2 mPa · s at 37 ° C. as the fluid material. The fluid culture container is referred to as a comparative container 4.
 比較容器4を水中37℃にて24時間静置したところ、コーティングが剥離した。24時間静置後のシリコーンオイル5の含水率は1%以下であった。 When the comparative container 4 was allowed to stand at 37 ° C. in water for 24 hours, the coating peeled off. The water content of the silicone oil 5 after standing for 24 hours was 1% or less.
 <比較例5>
 比較例5では、粘度が37℃において2×105mPa・sであり含水率が80%であるアクリルアミドハイドロゲルを流動性材料として用いて、TCPSの流動性培養容器を製造した。上記流動性培養容器を比較容器5とする。
<Comparative Example 5>
In Comparative Example 5, a fluid culture vessel of TCPS was manufactured using acrylamide hydrogel having a viscosity of 2 × 10 5 mPa · s at 37 ° C. and a water content of 80% as a fluid material. The fluid culture container is referred to as a comparative container 5.
 比較容器5は水中37℃にて24時間静置したが、コーティングは安定であり、剥離等は見られなかった。24時間静置後のアクリルアミドハイドロゲルの含水率は80%のままであった。 Comparative container 5 was allowed to stand at 37 ° C. in water for 24 hours, but the coating was stable and no peeling or the like was observed. The moisture content of the acrylamide hydrogel after standing for 24 hours remained at 80%.
 以下で流動性培養容器上での細胞培養について説明する。 Hereinafter, cell culture on a fluid culture vessel will be described.
 実施例10では、培養容器1~5、9を用いて細胞培養を実施した。細胞培養に先立ち、各培養容器は使用する培地もしくは培養する細胞に適した接着因子の溶液を入れて30分間インキュベートすることで、表面の細胞接着性を向上させた。培地や播種条件は培養する細胞種に推奨されているものを用いた。その結果、いずれの例でも、初期には細胞が伸展し、後期には細胞が自発的に凝集する挙動が観察され、流動性の効果が認められた(図6)。図6に示す通り、粘度が細胞形態に与える影響は大きい。 In Example 10, cell culture was performed using the culture vessels 1 to 5 and 9. Prior to cell culture, each culture container was incubated for 30 minutes with a medium to be used or a solution of an adhesion factor suitable for the cells to be cultured, thereby improving surface cell adhesion. The culture medium and seeding conditions used were recommended for the cell type to be cultured. As a result, in all cases, the behavior of the cell spreading in the early stage and the spontaneous aggregation of the cell in the later stage was observed, and the fluidity effect was recognized (FIG. 6). As shown in FIG. 6, the effect of viscosity on cell morphology is large.
 <比較例6>
 比較例6では、比較容器1、3、5、TCPSを用いて実施例10と同様に細胞培養を実施した。その結果、流動性が高過ぎる比較容器1では細胞の伸展が見られなかった一方で、流動性が低すぎる比較容器3や固体であるTCPSでは細胞が伸展するものの単層状態が維持され、適切な流動性の範囲内でなければ細胞の自発的な凝集は進行しないことが確認された。また、含水率の高い比較容器5では、細胞が流動性材料内に浸潤し、流動性に起因する自発的な凝集は観察されなかった。
<Comparative Example 6>
In Comparative Example 6, cell culture was performed in the same manner as in Example 10 using Comparative Containers 1, 3, 5, and TCPS. As a result, in the comparative container 1 in which the fluidity is too high, the cell extension was not observed, but in the comparative container 3 having a too low fluidity or the solid TCPS, the cells were extended, but the monolayer state was maintained, and It was confirmed that spontaneous aggregation of cells does not proceed unless the fluidity is within a range. Moreover, in the comparative container 5 having a high water content, cells infiltrated into the fluid material, and spontaneous aggregation due to fluidity was not observed.
 <実施例と比較例>
 流動性材料を保持するために基材を用いる場合は、培養容器として機能するためには粘度が所定の範囲内(37℃において1×103mPa・s以上1×109mPa・s以下)であることだけではなく、流動性材料が基材から剥離しない必要がある。比較例2に記載した通り、粘度が上述の所定の範囲内にあるポリブテン2を用いても基材がガラスである場合にはコーティングされた状態が水中でエネルギー的に極小値付近になく、剥離がエネルギー的に有利であり、コーティングは剥離する。このように流動性材料と基材の材質の組合せ(材質に由来する表面エネルギーの組合せ)が重要であり、実施例では流動性材料が剥離しない組合せを例示するために複数の事例を記載した。比較例においては、比較例2が流動性材料が剥離する組合せ、それ以外が粘度や含水率が上述の所定の範囲外のためNGとなる事例である。
<Examples and comparative examples>
In the case of using a base material to hold the flowable material, in order to function as a culture vessel, the viscosity is only within a predetermined range (1 × 103 mPa · s or more and 1 × 109 mPa · s or less at 37 ° C.). Instead, it is necessary that the flowable material does not peel from the substrate. As described in Comparative Example 2, even when the polybutene 2 having a viscosity in the above-described predetermined range is used, when the substrate is glass, the coated state is not near the minimum value in terms of energy in water, and is peeled off. Is energetically advantageous and the coating peels off. Thus, the combination of the fluid material and the material of the base material (combination of the surface energy derived from the material) is important, and in the examples, a plurality of examples have been described in order to exemplify combinations in which the fluid material does not peel. In the comparative example, Comparative Example 2 is a combination in which the flowable material is peeled off, and the other cases are NG because the viscosity and moisture content are outside the above-described predetermined ranges.
 本明細書で引用した全ての刊行物、特許文献はそのまま引用により本明細書に組み入れられるものとする。 All publications and patent documents cited in this specification shall be incorporated herein by reference as they are.
 1…細胞培養容器、2…細胞支持体、3…流動性材料、4…表面成分
 5…基材、6…培地、7…流動性材料の変形部位、
 8…フィルム状基材、9…メッシュ状基材、10…ピラー状基材
 11…細胞、12…フィルム移動先の支持体
DESCRIPTION OF SYMBOLS 1 ... Cell culture container, 2 ... Cell support body, 3 ... Fluid material, 4 ... Surface component 5 ... Base material, 6 ... Medium, 7 ... Deformation site | part of fluid material,
DESCRIPTION OF SYMBOLS 8 ... Film-shaped base material, 9 ... Mesh-shaped base material, 10 ... Pillar-shaped base material 11 ... Cell, 12 ... Support body of film transfer destination

Claims (11)

  1.  細胞支持体を備えた細胞培養容器であって、
     前記細胞支持体は細胞と接する表面の少なくとも一部を、流動性を有する流動性材料で構成し、
     前記流動性材料の粘度が37℃において1×10mPa・s以上1×10mPa・s以下であり、
     前記流動性材料の含水率が20%以下であることを特徴とする細胞培養容器。
    A cell culture vessel comprising a cell support,
    The cell support comprises at least a part of the surface in contact with the cell with a fluid material having fluidity,
    The flowable material has a viscosity of 1 × 10 3 mPa · s to 1 × 10 9 mPa · s at 37 ° C.,
    A cell culture container, wherein the water content of the fluid material is 20% or less.
  2.  請求項1に記載の細胞培養容器であって、
     前記流動性材料の粘度が37℃において2×10mPa・s以上1×10mPa・s以下であることを特徴とする細胞培養容器。
    The cell culture container according to claim 1,
    A cell culture container, wherein the fluid material has a viscosity of 2 × 10 3 mPa · s to 1 × 10 8 mPa · s at 37 ° C.
  3.  請求項1に記載の細胞培養容器であって、
     前記流動性材料の粘度が37℃において5×10mPa・s以上1×10mPa・s以下であることを特徴とする細胞培養容器。
    The cell culture container according to claim 1,
    A cell culture container having a viscosity of the flowable material of 5 × 10 3 mPa · s to 1 × 10 7 mPa · s at 37 ° C.
  4.  請求項1乃至3のいずれか一項に記載の細胞培養容器であって、
     前記流動性材料の含水率が10%以下であることを特徴とする細胞培養容器。
    The cell culture container according to any one of claims 1 to 3,
    A cell culture container having a water content of the flowable material of 10% or less.
  5.  請求項4に記載の細胞培養容器であって、
     前記流動性材料の含水率が5%以下であることを特徴とする細胞培養容器。
    The cell culture container according to claim 4, wherein
    A cell culture container, wherein the water content of the fluid material is 5% or less.
  6.  請求項1乃至5に記載の細胞培養容器であって、
     前記流動性材料の比重1g/mL未満であることを特徴とする細胞培養容器。
    The cell culture container according to any one of claims 1 to 5,
    A cell culture vessel having a specific gravity of the fluid material of less than 1 g / mL.
  7.  請求項6に記載の細胞培養容器であって、
     前記流動性材料は、ポリブテン、ポリイソブチレン、水添ポリブテン、水添ポリイソブチレンのうちのいずれかを含むことを特徴とする細胞培養容器。
    The cell culture container according to claim 6,
    The cell culture container, wherein the fluid material contains any one of polybutene, polyisobutylene, hydrogenated polybutene, and hydrogenated polyisobutylene.
  8.  請求項7に記載の細胞培養容器であって、
     基材を有し、
     前記流動性材料を前記基材の表面にコーティングし、
     前記基材は、ポリアルキレンを含むことを特徴とする細胞培養容器。
    The cell culture container according to claim 7,
    Having a substrate,
    Coating the flowable material on the surface of the substrate;
    The cell culture container, wherein the base material contains polyalkylene.
  9.  請求項1乃至8のいずれか一項に記載の細胞培養容器を備えることを特徴とする細胞培養装置。 A cell culture apparatus comprising the cell culture container according to any one of claims 1 to 8.
  10.  細胞支持体を備えた細胞培養容器を用いて細胞を培養する細胞培養方法であって、
     前記細胞支持体に細胞を接着させて細胞を培養する工程を有し、
     前記細胞支持体は細胞と接する表面の少なくとも一部を、流動性を有する流動性材料で構成し、
     前記流動性材料の粘度が37℃において1×10mPa・s以上1×10mPa・s以下であり、
     前記流動性材料の含水率が20%以下であることを特徴とする細胞培養方法。
    A cell culture method for culturing cells using a cell culture vessel provided with a cell support,
    Having the step of attaching the cells to the cell support and culturing the cells,
    The cell support comprises at least a part of the surface in contact with the cell with a fluid material having fluidity,
    The flowable material has a viscosity of 1 × 10 3 mPa · s to 1 × 10 9 mPa · s at 37 ° C.,
    A cell culture method, wherein the water content of the fluid material is 20% or less.
  11.  請求項10に記載の細胞培養方法であって、
     前記細胞支持体から細胞を剥離する工程を有し
     前記細胞培養容器は基材を有し、
     前記流動性材料を前記基材の表面にコーティングし、
     前記基材は、ポリアルキレンを含むことを特徴とする細胞培養方法。
    The cell culture method according to claim 10, wherein
    Having a step of peeling cells from the cell support, the cell culture vessel has a substrate,
    Coating the flowable material on the surface of the substrate;
    The cell culture method, wherein the base material contains polyalkylene.
PCT/JP2018/010440 2017-06-07 2018-03-16 Cell culture container, cell culture device and cell culture method WO2018225329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-112203 2017-06-07
JP2017112203A JP2018201440A (en) 2017-06-07 2017-06-07 Cell culture vessel, cell culture device and cell culture method

Publications (1)

Publication Number Publication Date
WO2018225329A1 true WO2018225329A1 (en) 2018-12-13

Family

ID=64565796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010440 WO2018225329A1 (en) 2017-06-07 2018-03-16 Cell culture container, cell culture device and cell culture method

Country Status (2)

Country Link
JP (1) JP2018201440A (en)
WO (1) WO2018225329A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190267A (en) * 2000-01-07 2001-07-17 Mitsui Chemicals Inc Culture container comprising polyolefin resin composition
JP2013099285A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Method for producing cell culture container
WO2016043488A1 (en) * 2014-09-19 2016-03-24 (주)세포바이오 Method for inducing three-dimensional osteogenic differentiation of stem cells using hydrogel
JP2016111988A (en) * 2014-12-17 2016-06-23 株式会社リコー Three-dimensional cell aggregates, as well as production method thereof and formation solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190267A (en) * 2000-01-07 2001-07-17 Mitsui Chemicals Inc Culture container comprising polyolefin resin composition
JP2013099285A (en) * 2011-11-08 2013-05-23 Dainippon Printing Co Ltd Method for producing cell culture container
WO2016043488A1 (en) * 2014-09-19 2016-03-24 (주)세포바이오 Method for inducing three-dimensional osteogenic differentiation of stem cells using hydrogel
JP2016111988A (en) * 2014-12-17 2016-06-23 株式会社リコー Three-dimensional cell aggregates, as well as production method thereof and formation solution

Also Published As

Publication number Publication date
JP2018201440A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
Lee et al. Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer
JP5324750B2 (en) Cell culture support and production method thereof
EP1970439B1 (en) Cell culture support and manufacture thereof
JP6312613B2 (en) Temperature-responsive substrate, method for producing the same, and method for evaluating the same
Axente et al. Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts
WO2020080364A1 (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
WO1993003139A1 (en) Cell culture support, production thereof, and production of cell cluster using same
JP2021532740A (en) Cell culture substrate
Gantumur et al. Inkjet micropatterning through horseradish peroxidase-mediated hydrogelation for controlled cell immobilization and microtissue fabrication
EP3561042A1 (en) Cell culture scaffold material
WO2018225329A1 (en) Cell culture container, cell culture device and cell culture method
JP5752164B2 (en) Cell culture support and production method thereof
Deng et al. Programming Colloidal Self-Assembled Patterns (cSAPs) into Thermo-Responsible Hybrid Surfaces for Controlling Human Stem Cells and Macrophages
JP2006271252A (en) Substrate for cell culture and method for cell culture
WO2019035436A1 (en) Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell
JP5657744B2 (en) Method for producing cell culture support
KR20230049009A (en) Polymer-coated Composition for Enzyme-free long-term Culture of Stem Cells and the Uses thereof
JP2019033742A (en) Culture base for pluripotent stem cells and method for producing pluripotent stem cells
Kawabata et al. Two-Dimensional Cellular Patterning on a Polymer Film Based on Interfacial Stiffness
JP7348281B2 (en) Cell culture substrate
JP7183612B2 (en) Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells
JP6349638B2 (en) Method for producing cell culture substrate
Martinez et al. Wrinkled Hydrogel Formation by Interfacial Swelling on Thermoplastic Surfaces
EP4190891A1 (en) Method for manufacturing cell mass
JP6953863B2 (en) A method for adjusting the peelability of a cell sheet, a method for producing a cell sheet, and a method for producing a cell culture container.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813524

Country of ref document: EP

Kind code of ref document: A1