WO2018224220A1 - Verfahren zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug und vorrichtung - Google Patents

Verfahren zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug und vorrichtung Download PDF

Info

Publication number
WO2018224220A1
WO2018224220A1 PCT/EP2018/061429 EP2018061429W WO2018224220A1 WO 2018224220 A1 WO2018224220 A1 WO 2018224220A1 EP 2018061429 W EP2018061429 W EP 2018061429W WO 2018224220 A1 WO2018224220 A1 WO 2018224220A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
microwaves
state
determining
exhaust gas
Prior art date
Application number
PCT/EP2018/061429
Other languages
English (en)
French (fr)
Inventor
Katharina BURGER
Willibald Reitmeier
Markus HIEN
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2018224220A1 publication Critical patent/WO2018224220A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1606Particle filter loading or soot amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the application relates to a method for determining a state of an exhaust gas treatment element for a motor vehicle, in particular ⁇ special a method for determining a loading state of a particulate filter and / or catalyst.
  • the application further relates to a device which is designed to carry out a corresponding method.
  • Motor vehicles with petrol or diesel internal combustion engine or gas engine require various components for exhaust gas aftertreatment in order to comply with the statutory emission limits. These include, inter alia, the three-way catalyst, the diesel oxidation catalyst, the nitrogen oxide (NOx) storage catalyst, the SCR catalytic converter (selective catalytic reduction), the diesel and Otto particulate filter and other systems.
  • the individual elements can also be combined, for example a particle filter with SCR coating (SDPF).
  • the invention includes a method for determining a state of an exhaust gas treatment member for a motor vehicle as well as a corresponding device which is adapted to perform the Ver ⁇ drive.
  • microwaves are emitted.
  • the microwaves are emitted at different frequencies of a first frequency range.
  • the microwaves are emitted into a housing of the exhaust gas treatment element.
  • the microwaves are received with an amplitude curve.
  • the microwaves are received in response to the transmission of the microwaves.
  • a mathematical function is applied to the received amplitude curve. This will determine a characteristic value.
  • the state of the exhaust gas treatment element is determined as a function of the determined characteristic value.
  • the exhaust gas treatment element is in particular a filter of an exhaust gas aftertreatment system of the motor vehicle.
  • the filter is, for example, a particle filter, in particular a soot particle filter.
  • the exhaust gas treatment element is in particular a catalyst of an exhaust aftertreatment system of the motor vehicle.
  • the filter or catalyst each have in the unloaded state has a relatively low dielectric constant on ⁇ , for example less than 10, and a low electrical conductivity.
  • the received microwaves are, for example, reflections of the emitted microwaves.
  • the microwaves transmitted are microwaves that have spread along the exhaust treatment element.
  • the first frequency range includes, for example, 0.5 GHz or less, for example, 0.3 GHz or 0.2 GHz.
  • the frequency is in particular increased peri ⁇ dically and steadily from the lowest value to the highest value, or ⁇
  • the frequency of the microwave waves is changed in steps of 50 MHz. This is also called sweep. Due to the evaluation of the amplitude curve, the state of the exhaust gas treatment element can reliably be determined even with unsteady signal or not significantly formed standing waves (modes). The determination of the state is possible regardless of whether standing waves in the first frequency range and / or in the received amplitude characteristic are formed or not.
  • the determined characteristic value is compared with a predetermined reference value.
  • the state of the exhaust gas treatment element is determined as a fully loaded exhaust gas treatment element when the determined characteristic value is smaller or larger than the predetermined reference value. Subsequently, a cleaning of the exhaust gas treatment element can then be carried out.
  • the reference value is dependent, for example, on a soot emission model of the internal combustion engine of the motor vehicle, a temperature of the exhaust gas, a temperature of the exhaust gas treatment element and other influencing variables which influence the propagation of the microwaves and the absorption capacity of the exhaust gas treatment element.
  • the functional state takes into account, for example, aging effects, defects in the exhaust gas treatment element
  • Exhaust gas treatment element such as cracks or the like, which can lead to a loss of material.
  • a further reference value is predetermined which differs from the reference value for a loaded state is.
  • a different mathematical function is used for determining the functional state than for determining the loading state.
  • the mathematical function is at least one of: Integ ⁇ Center, averaging, extrapolation, statistical technique gradient.
  • the averaging can be a temporal averaging and / or an averaging over the frequencies.
  • the amplitude response of the received microwaves is laden exhaust gas treatment element and / or with a damaged exhaust gas treatment member different from a amplitude response at not loaded or less be ⁇ ladenem or fully functional exhaust gas treatment member.
  • Microwaves emitted different frequencies of a second frequency range is greater than the first frequency range, and includes the first Frequency Ranges ⁇ rich.
  • An amplitude characteristic is received in response to the transmission of the microwaves in the second frequency range.
  • the first frequency range is selected according to at least one embodiment, so that no formation of a resonance mode takes place in the first frequency range. If an area is selected in which do not form standing waves, the amplitude response is such that a simple and ⁇ reliable evaluation is possible. In particular, the Amplitude gradient linear, as if resonant modes are formed. The amplitude gain of an amplitude curve is ge ⁇ ringer than when a standing wave is formed in the amplitude response.
  • the amplitude profile in response to the emission of the microwaves of the second frequency range in such a way that a resonant mode is formed in the received amplitude characteristic.
  • the first frequency range is selected to allow easy measurement, regardless of whether standing waves are formed in the range or not.
  • Selecting the first frequency range such that a resonant mode is formed in the first frequency range for example, additionally makes it possible to determine a change in the frequency of the resonant mode formed.
  • the frequency of the formed resonance mode changes with increasing loading of the exhaust gas treatment element.
  • ⁇ the frequency of the resonance mode formed varies with the functional state of the exhaust gas treatment member, thus for example in case of damage.
  • the state of the Ab ⁇ gas treatment element is determined in addition to the characteristic value in dependence on the change in the frequency of the formed resonance mode.
  • a device for a motor vehicle is specified.
  • the device is designed to determine a state of an exhaust gas treatment element.
  • the device is designed to carry out a method according to the application in accordance with at least one embodiment. All features and advantages explained for the method according to the application apply correspondingly also to the device and vice versa. Further advantages, features and developments emerge from the following, explained in conjunction with the figures examples.
  • FIG. 1 shows a schematic representation of a filter with a device according to an embodiment
  • FIG. 2 shows a schematic representation of amplitude profiles according to an exemplary embodiment
  • FIG. 3 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 4 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 3 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 4 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 3 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 4 shows a schematic representation of amplitude curves according to an exemplary embodiment
  • FIG. 5 shows a flowchart of a method according to an embodiment.
  • FIG. 1 shows a filter 100.
  • the filter is in particular a filter of an exhaust aftertreatment system of a motor vehicle.
  • the filter is for example a particle filter, a catalyst or a corresponding combination.
  • the filter is an exhaust gas treatment element of an exhaust aftertreatment system of the motor vehicle.
  • the filter 100 has a housing 102.
  • the housing 102 is in particular a metallic housing.
  • the housing 102 forms a cavity.
  • the housing 102 is for example a hollow ⁇ raumresonator for microwave 112 or a waveguide.
  • a filter module 101 is arranged in the housing 102.
  • the filter module 101 is, for example, a channeled ceramic.
  • the filter module 101 by means of
  • the ceramic is provided with various, partially noble metal-containing coatings, so-called washcoats.
  • the filter 100 is loaded with the filter module 101 during operation with various substances, for example with NH3 at a
  • the loading state can be determined well with high-frequency measurement technology, in particular with microwaves.
  • the microwaves are for example in a range between 300 MHz and some 100 GHz.
  • a frequency range 104 (FIG. 2) of approximately 0.3 GHz to 10 GHz, for example from 1.5 GHz to 7 GHz, is used.
  • Other frequency ranges 104 are possible.
  • the loading in the filter module 101 changes the dielectric constant.
  • o propagate within the housing 102 is thus dependent on the loading state of the filter module 101.
  • the amplitude curve 103, 109 may also depend on a functional state of the filter module 101, for example, whether a defect is present or not.
  • a first transmitting and receiving device 107 and a second transmitting and receiving device 108 are provided in the embodiment shown. These are, for example, each Hochfrequenzan ⁇ tennen, which are coupled to a corresponding exciter, such as an oscillator. The coupling can be done electrically and / or inductively.
  • the microwaves are received, for example, after transmission or after reflection.
  • the device 107 transmits the microwaves 112.
  • the device 108 receives the Mik ⁇ rowellen that are transmitted through the filter module the one hundred and first
  • only a single transmitting and receiving device 107 is provided. This first emits the microwaves 112, which are reflected in the housing 102 and subsequently received again by the transmitting and receiving device 107.
  • a device 110 is provided.
  • the device 110 is part of an engine control of the motor vehicle, for example.
  • the device 110 is used for evaluating the received microwaves or for evaluating the amplitude curve 103, 109.
  • the device 110 can also be designed to control the transmitting and receiving devices 107, 108 for emitting the microwaves 112. _
  • FIG. 2 shows the frequency range 104, which is for example between about 1.5 and 6.5 GHz.
  • the Fre ⁇ frequency range used depends in particular coupling member according to the geometry and the materials to be monitored Abgasbehand- used.
  • Amplitude curve 103 and the amplitude curve 109 are shown.
  • the amplitude curve 103 corresponds to one
  • the amplitude curve 109 corresponds to the amplitude curve when the filter 100 is loaded.
  • the amplitude curve 103 is, in particular, larger than the amplitude curve 109.
  • the amplitude curve consequently decreases with increasing loading of the filter 100, in particular due to the increasing damping.
  • the amplitude curves between the amplitude curve 103 and the amplitude curve 109 korres ⁇ pondieren with partial loads of the filter 100th
  • At least one further amplitude curve 105 and / or 111 is selected from the amplitude curve 104.
  • the amplitude response is more ⁇ selects out 105 by no standing waves are formed in the associated frequency range.
  • the further frequency range 111 is selected by forming at least one standing wave 113, also called resonance mode.
  • the frequency range 111 is selected, for example, such that the resonance mode accounts for only a small part of the frequency range 111.
  • FIG. 3 shows the frequency range 105 in that no standing wave is formed.
  • the amplitude curve 103 in the unloaded state shifts to the amplitude curve 109 when the Filter 100 is loaded.
  • the amplitude curve 103, 109 in the frequency range 105 is comparatively linear.
  • the magnitude of the amplitude of a single frequency is of secondary interest. Rather, the amplitude curve 103 up to the amplitude curve 109 is used to determine the loading state.
  • the amplitude curve 103, 109 of the frequency range 105 is mathematically processed in order to be able to determine the state of the filter 100 from this. In particular, a characteristic value is calculated in each case from the amplitude curve 103, 109 of the frequency range 105.
  • the amplitude characteristic 109 is closed to a loaded filter 100th This can then be regenerated, for example.
  • Other mathematical methods for determining the characteristic value are also possible. The mathematical method used must only be a distinction between a higher
  • Amplitude curve such as the amplitude curve 103
  • a low amplitude profile such as the amplitude curve 109 allow.
  • the reference value depends on the filter 100 used, the internal combustion engine of the
  • a temperature of the filter, a temperature of the exhaust gas and / or further influencing variables are taken into account, which in particular have an influence on the dielectric constant of the filter 100 and / or of the filter module 101.
  • Figure 4 shows the frequency range 111.
  • the frequency range 111 has been selected from the large frequency range 104 so that the resonance mode 113 is formed.
  • a change in a frequency 114, 115 of the resonance mode 113 is determined according to exemplary embodiments.
  • the resonance mode 113 In the unloaded state of the filter 100 in the amplitude curve 103, the resonance mode 113 has the frequency 114.
  • the frequency of the resonance mode 113 decreases with increasing loading of the filter 100 from the frequency 114 to the frequency 115.
  • the amplitude curve 109 occurs.
  • the change in the frequency of the resonance mode 113 from the frequency 114 to the frequency 115 is used according to embodiments in addition to the amplitude curve to determine the state of the filter 100. Alternatively or additionally, it is also possible to determine a quality of the resonance mode 113 and, depending on the change in the quality, to conclude a loading state. Alternatively or additionally, it is also possible to determine the change in the amplitude of the resonance mode 113 and to deduce the loading state of the filter 100 from this. As shown in Figure 3 also found in the area 105 of
  • the reason for this is inter alia, for example, the changed attenuation in the filter 100.
  • the quality decreases. This can in particular go so far that with very strong damping the resonance mode 113 is difficult to determine or completely disappears or behaves discontinuously even in restricted areas.
  • the amplitude curve 103, 109 is used to determine the loading state, this is of secondary importance.
  • the change in the amplitude profile is tracked.
  • the amplitude curve represents the losses of the sonators. For example, it is determined how the mean value of the amplitudes of the amplitude curve 103, 109 changes.
  • Figures 2, 3 and 4 each show the example of a
  • FIG. 5 shows schematically a flowchart of a method according to the invention. The method is carried out, for example, completely or partially by the device 110.
  • the microwaves 112 are emitted.
  • the microwaves 112 are emitted in particular with the frequency range 105 and / or 111, depending on whether resonant modes 113 are desired or should be avoided.
  • step 202 microwaves with a
  • the received amplitude characteristic is evaluated by means of common mathematical methods.
  • a change in the amplitude curve over time is evaluated using conventional mathematical methods.
  • the mathematical method comprises at least one of: temporal
  • a characteristic value for the received amplitude curve is determined.
  • the characteristic value varies depending on the state of the filter, in particular in dependence on the charge state and / or thejanszu ⁇ stands.
  • the state of the filter is then determined as a function of the determined characteristic value.
  • the determined characteristic value is compared with the predetermined reference value for this purpose.
  • damage, aging of the filter and / or further parameters are determined in step 204 according to exemplary embodiments. For example, the method is carried out in particular during certain operating events in the motor vehicle.
  • the reference value can be determined and / or the characteristic value can be determined when the filter is unloaded.
  • the operating event is preferably at least one of the regeneration end of the filter, where the filter is very hot and all particles have been removed as much as possible, NH3 and / or NOx slip in the SCR catalyst, ⁇ -slip in the 3-way catalyst, or other operators - Events that define a defined framework. The same applies if a catalyst is used instead of a filter.
  • frequency and amplitude determinations are possible. This can be used, for example, to determine damage to the filter 100 and / or determine the state of charge locally.
  • the method according to the application in particular due to the consideration of the variation of amplitude curves 103, 109 in one or more frequency ranges 104, 105, independently of the formation of a resonance mode 113, reliably determines the state of the filter 100.
  • a catalyst is used instead of a filter becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Ein Verfahren zum Ermitteln eines Zustands eines Abgasbehandlungselements(100) für ein Kraftfahrzeug umfasst: -Aussenden von Mikrowellen (112) verschiedener Frequenzen eines ersten Frequenzbereichs (105, 111) in ein Gehäuse (102) des Abgasbehandlungselements (100), -Empfangen von Mikrowellen mit einem Amplitudenverlauf (103, 109) in Antwort auf das Aussenden, -Anwenden einer mathematischen Funktion auf den empfangenen Amplitudenverlauf (103, 109) und dadurch ermitteln eines Kennwerts, -Ermitteln des Zustands in Abhängigkeit von dem ermittelten Kennwert.

Description

Beschreibung
Verfahren zum Ermitteln eines Zustands eines Abgasbehand¬ lungselements für ein Kraftfahrzeug und Vorrichtung
Die Anmeldung betrifft ein Verfahren zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug, insbe¬ sondere ein Verfahren zum Ermitteln eines Beladungszustands eines Partikelfilters und/oder Katalysators. Die Anmeldung betrifft weiterhin eine Vorrichtung, die ausgebildet ist, ein entsprechendes Verfahren auszuführen.
Kraftfahrzeuge mit Otto- oder Dieselbrennkraftmaschine oder Gasmotor benötigen zur Einhaltung der gesetzlichen Emissi- onsgrenzwerte diverse Komponenten zur Abgasnachbehandlung. Hierzu zählen unter anderem der Dreiwegekatalysator, der Dieseloxidationskatalysator, der Stickoxid (NOx) -Speicherkatalysator, der SCR-Katalysator (selektive katalytische Reduktion, engl, selective catalytic reduction) , der Diesel- und Ottopartikelfilter und weitere Systeme. Die einzelnen Elemente können auch kombiniert werden, beispielsweise ein Partikelfilter mit SCR-Beschichtung (SDPF) .
Es ist wünschenswert, ein Verfahren zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug anzugeben, das eine verlässliche Ermittlung ermöglicht. Weiterhin ist es wünschenswert, eine Vorrichtung anzugeben, die ein verlässliches Ermitteln ermöglicht. Die Erfindung umfasst ein Verfahren zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug sowie eine korrespondierende Vorrichtung, die ausgebildet ist, das Ver¬ fahren durchzuführen. Gemäß zumindest einer Ausführungsform werden Mikrowellen ausgesandt. Die Mikrowellen werden mit verschiedenen Frequenzen eines ersten Frequenzbereichs ausgesendet. Die Mikrowellen werden in ein Gehäuse des Abgasbehandlungselements ausgesendet. Nachfolgend werden die Mikrowellen mit einem Amplitudenverlauf empfangen. Die Mikrowellen werden in Antwort auf das Aussenden der Mikrowellen empfangen. Eine mathematische Funktion wird auf den empfangenen Amplitudenverlauf angewendet. Dadurch wird ein Kennwert ermittelt. Der Zustand des Abgasbehandlungselements wird in Abhängigkeit von dem ermittelten Kennwert ermittelt.
Das Abgasbehandlungselement ist insbesondere ein Filter eines Abgasnachbehandlungssystems des Kraftfahrzeugs. Der Filter ist beispielsweise ein Partikelfilter, insbesondere ein Rußpar- tikelfilter.
Alternativ oder zusätzlich ist das Abgasbehandlungselement insbesondere ein Katalysator eines Abgasnachbehandlungssystems des Kraftfahrzeugs.
Der Filter beziehungsweise der Katalysator weisen jeweils im unbeladenen Zustand eine relativ niedrige Dielektrizitäts¬ konstante auf, beispielsweise kleiner 10, und eine niedrige elektrische Leitfähigkeit.
Die empfangenen Mikrowellen sind beispielsweise Reflektionen der ausgesendeten Mikrowellen. Alternativ oder zusätzlich sind die Mikrowellen transmittierte Mikrowellen, die sich entlang des Abgasbehandlungselements ausgebreitet haben.
Der erste Frequenzbereich umfasst beispielsweise 0,5 GHz oder weniger, beispielsweise 0,3 GHz oder 0,2 GHz. Innerhalb des ersten Frequenzbereichs wird die Frequenz insbesondere peri¬ odisch und stetig vom untersten Wert zum obersten Wert erhöht oder ^
vom obersten Wert zum untersten Wert verringert. Beispielsweise wird die Frequenz der Mirkowellen in Schritten von 50 MHz geändert. Dies wird auch Sweep genannt. Aufgrund der Auswertung des Amplitudenverlaufs lässt sich auch bei unstetigem Signal oder nicht signifikant ausgebildeten stehenden Wellen (Moden) verlässlich der Zustand des Abgasbehandlungselements ermitteln. Die Ermittlung des Zustands ist unabhängig davon möglich, ob stehende Wellen in dem ersten Frequenzbereich und/oder in dem empfangenen Amplitudenverlauf ausgebildet sind oder nicht.
Gemäß zumindest einer Ausführungsform wird der ermittelte Kennwert mit einem vorgegebenen Referenzwert verglichen.
Beispielsweise wird der Zustand des Abgasbehandlungselements als ein voll beladenes Abgasbehandlungselement ermittelt, wenn der ermittelte Kennwert kleiner oder größer als der vorgegebene Referenzwert ist. Nachfolgend kann dann eine Reinigung des Abgasbehandlungselements durchgeführt werden. Der Referenzwert ist beispielsweise abhängig von einem Rußemissionsmodel der Brennkraftmaschine des Kraftfahrzeugs, einer Temperatur des Abgases, einer Temperatur des Abgasbehandlungselements und weiteren Einflussgrößen, die auf die Ausbreitung der Mikrowellen und die Aufnahmefähigkeit des Abgasbehandlungselements Einfluss haben .
Alternativ oder zusätzlich zu dem Beladungszustand des Abgasbehandlungselements ist es möglich, einen Funktionszustand des Abgasbehandlungselements zu ermitteln. Der Funktionszustand berücksichtigt beispielsweise Alterungseffekte, Defekte im
Abgasbehandlungselement wie Risse oder ähnliche, die zu einem Materialverlust führen können. Insbesondere wird zum Ermitteln des Funktionszustands ein weiterer Referenzwert vorgegeben, der vom Referenzwert für einen beladenen Zustand unterschiedlich ist. Alternativ oder zusätzlich wird zum Ermitteln des Funktionszustands eine andere mathematische Funktion verwendet als zum Ermitteln des Beladungszustands. Die mathematische Funktion ist mindestens eines aus: Integ¬ rieren, Mittelwertbildung, Extrapolation, statistisches Verfahren, Gradientenbildung. Die Mittelwertbildung kann eine zeitliche Mittelwertbildung und/oder eine Mittelwertbildung über die Frequenzen sein. Insbesondere eine Integration über den Amplitudenverlauf ermöglicht ein verlässliches Ermitteln des Kennwerts. Das Anwenden der mathematischen Funktion auf den Amplitudenverlauf ermöglicht die Ermittlung des Zustands mit größeren Toleranzen, als wenn einzelne Moden betrachtet werden. Zudem ist eine Ermittlung des Zustands möglich, auch wenn sich keine Moden ausbilden. Der Amplitudenverlauf der empfangenen Mikrowellen ist bei beladenem Abgasbehandlungselement und/oder bei beschädigtem Abgasbehandlungselement unterschiedlich zu einem Amplitudenverlauf bei nicht beladenem oder weniger be¬ ladenem beziehungsweise voll funktionsfähigem Abgasbehand- lungselement .
Gemäß zumindest einer Ausführungsform werden zunächst
Mikrowellen verschiedener Frequenzen eines zweiten Frequenzbereichs ausgesendet. Der zweite Frequenzbereich ist größer als der erste Frequenzbereich und umfasst den ersten Frequenzbe¬ reich. Ein Amplitudenverlauf wird in Antwort auf das Aussenden der Mikrowellen in dem zweiten Frequenzbereich empfangen.
Der erste Frequenzbereich wird gemäß zumindest einer Ausfüh- rungsform ausgewählt, sodass in dem ersten Frequenzbereich keine Ausbildung einer Resonanzmode stattfindet. Wenn ein Bereich ausgewählt wird, in dem sich keine stehenden Wellen ausbilden, ist der Amplitudenverlauf derart, dass eine einfache und zu¬ verlässige Auswertung ermöglicht wird. Insbesondere ist der Amplitudenverlauf linearer, als wenn Resonanzmoden ausgebildet sind. Der Amplitudenzuwachs eines Amplitudenverlaufs ist ge¬ ringer als wenn in dem Amplitudenverlauf eine stehende Welle ausgebildet ist.
Alternativ ist es gemäß zumindest einer Ausführungsform möglich, den Amplitudenverlauf so in Antwort auf das Aussenden der Mikrowellen des zweiten Frequenzbereichs auszuwählen, dass in dem empfangenen Amplitudenverlauf eine Ausbildung einer Resonanzmode stattfindet. Insbesondere ist es gemäß Ausfüh¬ rungsformen unwesentlich, ob sich eine Resonanzmode ausbildet oder nicht. Der erste Frequenzbereich wird so ausgewählt, dass eine einfache Messung ermöglicht wird, unabhängig ob in dem Bereich stehende Wellen ausgebildet sind oder nicht.
Das Auswählen des ersten Frequenzbereichs so, dass sich in dem ersten Frequenzbereich eine Resonanzmode ausbildet, ermöglicht beispielsweise zusätzlich das Ermitteln einer Veränderung der Frequenz der ausgebildeten Resonanzmode. Die Frequenz der ausgebildeten Resonanzmode verändert sich mit zunehmender Beladung des Abgasbehandlungselements. Alternativ oder zu¬ sätzlich ändert sich die Frequenz der ausgebildeten Resonanzmode mit dem Funktionszustand des Abgasbehandlungselements, also beispielsweise bei einer Beschädigung. Der Zustand des Ab¬ gasbehandlungselements wird zusätzlich zu dem Kennwert auch in Abhängigkeit von der Veränderung der Frequenz der ausgebildeten Resonanzmode ermittelt.
Gemäß einem weiteren Aspekt wird eine Vorrichtung für ein Kraftfahrzeug angegeben. Die Vorrichtung ist ausgebildet einen Zustand eines Abgasbehandlungselements zu ermitteln. Die Vorrichtung ist ausgebildet, ein anmeldungsgemäßes Verfahren gemäß zumindest einer Ausführungsform auszuführen. Sämtliche für das anmeldungsgemäße Verfahren erläuterten Merkmale und Vorteile gelten korrespondierend auch für die Vorrichtung und umgekehrt. Weitere Vorteile, Merkmale und Weiterbildungen ergeben sich aus den nachfolgenden, in Verbindung mit den Figuren erläuterten Beispielen .
Es zeigen:
Figur 1 eine schematische Darstellung eines Filters mit einer Vorrichtung gemäß einem Ausführungsbeispiel,
Figur 2 eine schematische Darstellung von Amplitudenverläufen gemäß einem Ausführungsbeispiel,
Figur 3 eine schematische Darstellung von Amplitudenverläufen gemäß einem Ausführungsbeispiel, Figur 4 eine schematische Darstellung von Amplitudenverläufen gemäß einem Ausführungsbeispiel, und
Figur 5 ein Flussdiagramm eines Verfahrens gemäß einem Ausführungsbeispiel .
Gleiche, gleichwirkende oder gleichartige Elemente können figurenübergreifend mit den gleichen Bezugszeichen versehen sein . Nachfolgend wird das anmeldungsgemäße Verfahren anhand eines Filters als Abgasbehandlungselement beschrieben. Alternativ oder zusätzlich ist das Abgasbehandlungselement gemäß weiteren Ausführungsbeispielen ein Katalysator. Figur 1 zeigt einen Filter 100. Der Filter ist insbesondere ein Filter eines Abgasnachbehandlungssystems eines Kraftfahrzeugs. Der Filter ist beispielsweise ein Partikelfilter, ein Katalysator oder eine entsprechende Kombination. Der Filter ist ein Abgasbehandlungselement eines Abgasnachbehandlungssystems des Kraftfahrzeugs .
Der Filter 100 weist ein Gehäuse 102 auf. Das Gehäuse 102 ist insbesondere ein metallisches Gehäuse. Das Gehäuse 102 bildet einen Hohlraum. Das Gehäuse 102 ist beispielsweise ein Hohl¬ raumresonator für Mikrowellen 112 oder ein Wellenleiter.
In dem Gehäuse 102 ist ein Filtermodul 101 angeordnet. Das Filtermodul 101 ist beispielsweise eine mit Kanälen versehen Keramik. Beispielsweise ist das Filtermodul 101 mittels
Strangpressen hergestellt. Beispielsweise ist die Keramik mit verschiedenen, teilweise Edelmetallhaltigen Beschichtungen versehen, so genannte Washcoats. Beispielsweise wird der Filter 100 mit dem Filtermodul 101 während dem Betrieb mit verschiedenen Stoffen beladen, beispielsweise mit NH3 bei einem
CSR-Katalysator und/oder Ruß bei einem Partikelfilter.
Bei einem bestimmten Beladungszustand muss der Filter rege¬ neriert beziehungsweise gereinigt werden, beispielsweise thermisch freigebrannt werden. Der Beladungszustand kann mit Hochfrequenzmesstechnik gut ermittelt werden, insbesondere mit Mikrowellen. Die Mikrowellen liegen beispielsweise in einem Bereich zwischen 300 MHz und einigen 100 GHz. Insbesondere wird anmeldungsgemäß ein Frequenzbereich 104 (Figur 2) von etwa 0,3 GHz bis 10 GHz, beispielsweise von 1,5 GHz bis 7 GHz, verwendet. Auch andere Frequenzbereiche 104 sind möglich. Die Beladung in dem Filtermodul 101 ändert die Dielektrizitätskonstante. Ein Amplitudenverlauf 103, 109 (Figur 2) von den Mikrowellen 112, die 0
o sich innerhalb des Gehäuses 102 ausbreiten, ist somit abhängig vom Beladungszustand des Filtermoduls 101. Zusätzlich kann der Amplitudenverlauf 103, 109 auch von einem Funktionszustand des Filtermoduls 101 abhängen, beispielsweise ob ein Defekt vorliegt oder nicht.
Zum Senden und Empfangen der Mikrowellen 112 sind im gezeigten Ausführungsbeispiel eine erste Sende- und Empfangseinrichtung 107 und eine zweite Sende- und Empfangseinrichtung 108 vor- gesehen. Diese sind beispielsweise jeweils Hochfrequenzan¬ tennen, die mit einem entsprechenden Anreger gekoppelt sind, beispielsweise eine Oszillator. Die Kopplung kann elektrisch und/oder induktiv erfolgen. Die Mikrowellen werden beispielsweise nach Transmission oder nach Reflexion empfangen.
Beispielsweise sendet die Einrichtung 107 die Mikrowellen 112 aus. In Antwort darauf empfängt die Einrichtung 108 die Mik¬ rowellen, die durch das Filtermodul 101 transmittiert sind. Gemäß weiteren Ausführungsbeispielen ist nur eine einzige Sende- und Empfangseinrichtung 107 vorgesehen. Diese sendet zunächst die Mikrowellen 112 aus, die im Gehäuse 102 reflektiert werden und nachfolgend wieder von der Sende- und Empfangseinrichtung 107 empfangen werden.
Eine Vorrichtung 110 ist vorgesehen. Die Vorrichtung 110 ist beispielsweise Teil einer Motorsteuerung des Kraftfahrzeugs. Die Vorrichtung 110 dient zum Auswerten der empfangenen Mikrowellen beziehungsweise zum Auswerten des Amplitudenverlaufs 103, 109. Zusätzlich kann die Vorrichtung 110 auch dazu ausgebildet sein, die Sende- und Empfangseinrichtungen 107, 108 zum Aussenden der Mikrowellen 112 anzusteuern. _
y
Figur 2 zeigt den Frequenzbereich 104, der beispielsweise zwischen etwa 1,5 und 6,5 GHz liegt. Der verwendete Fre¬ quenzbereich richtet sich insbesondere nach der Geometrie und der verwendeten Materialien des zu überwachenden Abgasbehand- lungselements .
Zudem sind der Amplitudenverlauf 103 der empfangenen Mikrowellen sowie der Amplitudenverlauf 109 der empfangenen Mikrowellen dargestellt. Weitere Amplitudenverläufe zwischen dem
Amplitudenverlauf 103 und dem Amplitudenverlauf 109 sind dargestellt. Der Amplitudenverlauf 103 entspricht einem
Amplitudenverlauf bei unbeladenem Filter. Der Amplitudenverlauf 109 entspricht dem Amplitudenverlauf bei beladenem Filter 100. Der Amplitudenverlauf 103 ist insbesondere größer als der Amplitudenverlauf 109. Der Amplitudenverlauf nimmt folglich mit zunehmender Beladung des Filters 100 ab, insbesondere aufgrund der steigenden Dämpfung. Die Amplitudenverläufe zwischen dem Amplitudenverlauf 103 und dem Amplitudenverlauf 109 korres¬ pondieren mit teilweisen Beladungen des Filters 100.
Aus dem Amplitudenverlauf 104 wird mindestens ein weiterer Amplitudenverlauf 105 und/oder 111 (Figur 4) ausgewählt.
Beispielsweise wird der weitere Amplitudenverlauf 105 ausge¬ wählt, indem im zugehörigen Frequenzbereich keine stehenden Wellen ausgebildet sind. Alternativ oder zusätzlich wird der weitere Frequenzbereich 111 ausgewählt, indem sich mindestens eine stehende Welle 113 ausbildet, auch Resonanzmode genannt. Der Frequenzbereich 111 wird beispielsweise so ausgewählt, dass die Resonanzmode nur einen kleinen Teil des Frequenzbereichs 111 ausmacht.
Figur 3 zeigt den Frequenzbereich 105, indem sich keine stehende Welle ausbildet. Der Amplitudenverlauf 103 bei unbeladenem Zustand verschiebt sich zum Amplitudenverlauf 109, wenn der Filter 100 beladen wird. Der Amplitudenverlauf 103, 109 im Frequenzbereich 105 ist vergleichsweise linear. Die Höhe der Amplitude einer einzelnen Frequenz ist von nachrangigem Interesse. Vielmehr wird der Amplitudenverlauf 103 bis zum Amplitudenverlauf 109 verwendet, um den Beladungszustand zu ermitteln. Der Amplitudenverlauf 103, 109 des Frequenzbereichs 105 wird mathematisch verarbeitet, um daraus den Zustand des Filters 100 ermitteln zu können. Insbesondere wird aus dem Amplitudenverlauf 103, 109 des Frequenzbereich 105 jeweils ein Kennwert errechnet. Beispielsweise wird über den Amplituden¬ verlauf 103, 109 integriert, insbesondere über den Frequenz¬ bereich 105. Das Ergebnis des Integrals wird als Kennwert mit einem vorher festgelegten Referenzwert verglichen. Liegt der Kennwert unterhalb des vorgegebenen Referenzwerts, ist der Amplitudenverlauf also vergleichsweise niedrig wie bei¬ spielsweise der Amplitudenverlauf 109, wird auf einen beladenen Filter 100 geschlossen. Dieser kann dann beispielsweise regeneriert werden. Auch andere mathematische Verfahren zum Ermitteln des Kennwerts sind möglich. Das verwendete mathematische Verfahren muss lediglich eine Unterscheidung zwischen einem höheren
Amplitudenverlauf, wie dem Amplitudenverlauf 103, und einem niedrigen Amplitudenverlauf, wie dem Amplitudenverlauf 109, ermöglichen. Der Referenzwert wird beispielsweise abhängig von dem verwendeten Filter 100, der Brennkraftmaschine des
Kraftfahrzeugs, sowie weiteren Einflussgrößen festgelegt. Beispielsweise wird eine Temperatur des Filters, eine Temperatur des Abgases und/oder weitere Einflussgrößen berücksichtigt, die insbesondere Einfluss auf die Dielektrizitätskonstante des Filters 100 und/oder des Filtermoduls 101 haben.
Figur 4 zeigt den Frequenzbereich 111. Der Frequenzbereich 111 wurde aus dem großen Frequenzbereich 104 so ausgewählt, dass sich die Resonanzmode 113 ausbildet. Zusätzlich zur Auswertung der Veränderung des Amplitudenverlaufs 103, 109 wird gemäß Aus¬ führungsbeispielen eine Veränderung einer Frequenz 114, 115 der Resonanzmode 113 ermittelt. Im unbeladenen Zustand des Filters 100 beim Amplitudenverlauf 103 weist die Resonanzmode 113 die Frequenz 114 auf. Die Frequenz der Resonanzmode 113 verringert sich mit zunehmender Beladung des Filters 100 von der Frequenz 114 auf die Frequenz 115. Bei der Frequenz 115, also bei beladenem Filter 100, tritt der mit Amplitudenverlauf 109 auf. Die Veränderung der Frequenz der Resonanzmode 113 von der Frequenz 114 zur Frequenz 115 wird gemäß Ausführungsbeispielen zusätzlich zum Amplitudenverlauf verwendet, um den Zustand des Filters 100 zu ermitteln. Alternativ oder zusätzlich ist es auch möglich eine Güte der Resonanzmode 113 zu ermitteln und abhängig von der Veränderung der Güte auf einen Beladungszustand zu schließen. Alternativ oder zusätzlich ist es auch möglich die Veränderung der Amplitude der Resonanzmode 113 zu ermitteln und daraus auf den Beladungszustand des Filters 100 zu schließen. Wie in Figur 3 dargestellt findet auch im Bereich 105 des
Spektrums, in dem sich keine Moden ausbreiten, ein Absinken des Pegels beziehungsweise der Amplitude statt bei Beladung des Filters 100. Grund dafür ist unter anderem beispielsweise die geänderte Dämpfung im Filter 100. Wie auch aus Figur 4 er- sichtlichO werden mit zunehmender Beladung des Filters 100 die Frequenzen 114, 115 der Resonanzmode 113 und die Amplituden kleiner. Zudem nimmt die Güte ab. Das kann insbesondere soweit gehen, dass bei sehr starker Dämpfung die Resonanzmode 113 nur noch schwer zu ermitteln ist beziehungsweise komplett ver- schwindet oder sich auch in eingeschränkten Bereichen unstetig verhält. Da jedoch der Amplitudenverlauf 103, 109 zur Ermittlung des Beladungszustands verwendet wird, ist dies von nachrangiger Bedeutung. Es wird die Veränderung des Amplitudenverlaufs verfolgt. Der Amplitudenverlauf stellt die Verluste des Re- sonators dar. Beispielsweise wird ermittelt wie sich der Mittelwert der Amplituden des Amplitudenverlaufs 103, 109 verändert . Die Figuren 2, 3 und 4 zeigen jeweils das Beispiel einer
Transmissionsmessung. Alternativ ist auch eine Reflektions- messung möglich.
Figur 5 zeigt schematisch ein Ablaufdiagramm eines anmel- dungsgemäßen Verfahrens. Das Verfahren wird beispielsweise ganz oder teilweise von der Vorrichtung 110 ausgeführt.
In Schritt 201 werden die Mikrowellen 112 ausgesandt. Die Mikrowellen 112 werden insbesondere mit dem Frequenzbereich 105 und/oder 111 ausgesandt, abhängig davon ob Resonanzmoden 113 gewünscht sind oder vermieden werden sollen.
Nachfolgend werden in Schritt 202 Mikrowellen mit einem
Amplitudenverlauf empfangen.
In Schritt 203 wird der empfangene Amplitudenverlauf mittels gängiger mathematischer Verfahren ausgewertet. Insbesondere wird eine Veränderung des Amplitudenverlaufs über die Zeit mit gängigen mathematischen Verfahren ausgewertet. Das mathema- tische Verfahren umfasst mindestens eines auf: Zeitliche
Mittelung, Mittelung über Frequenzbereich, statistische Verfahren, Extrapolation, Integration, Gradientenbildung und weiterer geeigneter Verfahren. Somit wird ein Kennwert für den empfangenen Amplitudenverlauf ermittelt. Der Kennwert ändert sich in Abhängigkeit des Zustands des Filters, insbesondere in Abhängigkeit des Beladungszustands und/oder des Funktionszu¬ stands . In Schritt 204 wird dann in Abhängigkeit des ermittelten Kennwerts der Zustand des Filters ermittelt. Insbesondere wird hierzu der ermittelte Kennwert mit dem vorgegebenen Referenzwert verglichen. Zusätzlich zur Beladung werden in Schritt 204 gemäß Ausführungsbeispielen auch eine Schädigung, eine Alterung des Filters und/oder weitere Kenngrößen ermittelt. Beispielsweise wird das Verfahren insbesondere bei bestimmten Betriebsereignissen im Kraftfahrzeug durchgeführt. Somit lässt sich beispielsweise der Referenzwert bestimmen und/oder der Kennwert bei unbeladenem Filter ermitteln. Das Betriebsereignis ist vorzugsweise mindestens eines aus Regenerationsende des Filters, bei dem der Filter sehr heiß ist und weitestgehend alle Partikel entfernt wurden, NH3 und/oder NOx-Schlupf beim SCR-Katalysator, λ-Schlupf beim 3-Wege-Katalysator, oder weiterer Betriebser- eignisse, die definierte Rahmenbedingungen vorgeben . Das gleiche gilt, wenn statt eines Filters ein Katalysator verwendet wird.
Auch Kombinationen aus Frequenz- und Amplitudenermittlungen sind möglich. Damit lassen sich beispielsweise Schädigungen des Filters 100 ermitteln und/oder der Beladungszustand örtlich aufgelöst ermitteln.
Das anmeldungsgemäße Verfahren ermöglicht insbesondere aufgrund der Betrachtung der Veränderung von Amplitudenverläufen 103, 109 in einem oder mehreren Frequenzbereichen 104, 105 auch unabhängig vom Ausbilden einer Resonanzmode 113 ein verlässliches Ermitteln des Zustands des Filters 100. Das gleiche gilt, wenn statt eines Filters ein Katalysator verwendet wird.

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines Zustands eines Abgasbehand¬ lungselements (100) für ein Kraftfahrzeug, umfassend:
- Aussenden von Mikrowellen (112) verschiedener Frequenzen eines ersten Frequenzbereichs (105, 111) in ein Gehäuse (102) des Abgasbehandlungselements (100),
- Empfangen von Mikrowellen mit einem Amplitudenverlauf (103, 109) in Antwort auf das Aussenden,
- Anwenden einer mathematischen Funktion auf den empfangenen Amplitudenverlauf (103, 109) und dadurch ermitteln eines Kennwerts ,
- Ermitteln des Zustands in Abhängigkeit von dem ermittelten Kennwert .
2. Verfahren nach Anspruch 1, bei dem das Ermitteln des Zustands umfasst :
- Vergleichen des ermittelten Kennwerts mit einem vorgegebenen Referenzwert .
3. Verfahren nach Anspruch 1 oder 2, bei dem das Anwenden der mathematischen Funktion mindestens eines umfasst aus:
- Integrieren,
- Mittelwertbildung,
- Extrapolation,
- statistisches Verfahren,
- Gradientenbildung.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem als Zustand ein Beladungszustand des Abgasbehandlungselements (100) er¬ mittelt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, umfassend: - Aussenden von Mikrowellen (112) verschiedener Frequenzen eines zweiten Frequenzbereichs (104), der den ersten Frequenzbereich (105, 111) aufweist und größer ist als der erste Frequenzbereich (105, 111),
- Empfangen eines Amplitudenverlaufs (103, 109) in Antwort auf das Aussenden,
- Auswählen des ersten Frequenzbereichs (105), sodass in dem ersten Frequenzbereich (105) keine Ausbildung einer Resonanzmode stattfindet .
6. Verfahren nach einem der Ansprüche 1 bis 5, umfassend:
- Aussenden von Mikrowellen (112) verschiedener Frequenzen eines zweiten Frequenzbereichs (104), der den ersten Frequenzbereich (105, 111) aufweist und größer ist als der erste Frequenzbereich (105, 111),
- Empfangen eines Amplitudenverlaufs (103, 109) in Antwort auf das Aussenden,
- Auswählen des ersten Frequenzbereichs (111), so dass in dem empfangenen Amplitudenverlauf (103, 109) eine Ausbildung einer Resonanzmode (113) stattfindet,
- Ermitteln einer Veränderung einer Frequenz (114, 115) der ausgebildeten Resonanzmode,
- Ermitteln des Zustands in Abhängigkeit von der Veränderung der Frequenz (114, 115) .
7. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das Empfangen der Mikrowellen umfasst:
- Empfangen von reflektierten Mikrowellen.
8. Verfahren nach einem der Ansprüche 1 bis 8, bei dem das Empfangen der Mikrowellen umfasst:
- Empfangen von transmittierten Mikrowellen.
9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem als Zustand ein Funktionszustand ermittelt wird.
10. Vorrichtung für ein Kraftfahrzeug zum Ermitteln eines Zustands eines Abgasbehandlungselements (100), die dazu aus¬ gebildet ist, ein Verfahren nach einem der Ansprüche 1 bis 9 aus zuführen .
PCT/EP2018/061429 2017-06-07 2018-05-03 Verfahren zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug und vorrichtung WO2018224220A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017209521.0A DE102017209521B3 (de) 2017-06-07 2017-06-07 Verfahren zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug und Vorrichtung
DE102017209521.0 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018224220A1 true WO2018224220A1 (de) 2018-12-13

Family

ID=62116867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/061429 WO2018224220A1 (de) 2017-06-07 2018-05-03 Verfahren zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug und vorrichtung

Country Status (2)

Country Link
DE (1) DE102017209521B3 (de)
WO (1) WO2018224220A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202043B4 (de) * 2018-02-09 2020-09-03 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
GB2582984B (en) * 2019-04-12 2021-04-07 Perkins Engines Co Ltd Determining an estimate of soot load in a diesel particulate filter using a radio frequency sensor
DE102019214172A1 (de) * 2019-09-18 2021-03-18 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung eines Kohlenwasserstofffüllstandes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120291419A1 (en) * 2011-05-17 2012-11-22 Caterpillar Inc. Methods And System For Ash Detection In Exhaust Particulate Filter
DE102011107784A1 (de) * 2011-07-15 2013-01-17 Umicore Ag & Co. Kg Verfahren zur Zustandsbestimmung einer Abgasreinigungsvorrichtung
US20130127478A1 (en) * 2006-05-01 2013-05-23 Filter Sensing Technologies, Inc. System And Method For Measuring Retentate In Filters
DE112011104499T5 (de) * 2010-12-22 2013-12-12 Caterpillar Inc. Abgaspartikelfiltersystem und Betriebsverfahren dafür

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10358495B4 (de) 2003-12-13 2011-10-06 Ralf Moos Verfahren zur Erkennung des Zustands eines Katalysators mittels Mikrowellen
DE102008012050A1 (de) 2008-02-29 2009-09-03 Fischerauer, Gerhard, Prof. Dr.-Ing. Vorrichtung und Verfahren zur Steuerung eines Abgasnachbehandlungssystems, das einen Abgaskatalysator beinhaltet
DE102015001231A1 (de) 2015-02-03 2016-08-04 Markus Dietrich Verfahren zur simultanen Überwachung der verschiedenen Funktionen eines Abgasnachbehandlungssystems aus mehreren Komponenten mit einem einzigen mikrowellenbasierten Messsystem
DE102015116659A1 (de) 2015-10-01 2017-04-20 Umicore Ag & Co. Kg Verfahren und Vorrichtung zur Ermittlung einer Angabe über eine Speicherkapazität eines Reaktionsmittels in einer Abgasnachbehandlungseinrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127478A1 (en) * 2006-05-01 2013-05-23 Filter Sensing Technologies, Inc. System And Method For Measuring Retentate In Filters
DE112011104499T5 (de) * 2010-12-22 2013-12-12 Caterpillar Inc. Abgaspartikelfiltersystem und Betriebsverfahren dafür
US20120291419A1 (en) * 2011-05-17 2012-11-22 Caterpillar Inc. Methods And System For Ash Detection In Exhaust Particulate Filter
DE102011107784A1 (de) * 2011-07-15 2013-01-17 Umicore Ag & Co. Kg Verfahren zur Zustandsbestimmung einer Abgasreinigungsvorrichtung

Also Published As

Publication number Publication date
DE102017209521B3 (de) 2018-06-28

Similar Documents

Publication Publication Date Title
DE102011107784B4 (de) Verfahren zur Zustandsbestimmung einer Abgasreinigungsvorrichtung
DE102016219555B4 (de) On-Board Diagnose für einen Abgaskatalysator und Alterungserkennung
WO2018224220A1 (de) Verfahren zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug und vorrichtung
DE102010034983A1 (de) Verfahren zur Erkennung des Ammoniakspeicherzustands eines SCR-Katalysators
DE10358495B4 (de) Verfahren zur Erkennung des Zustands eines Katalysators mittels Mikrowellen
DE102010004513B4 (de) Gaspartikelbehandlungssystem
DE102018205132A1 (de) Verfahren zum Betreiben eines Abgasnachbehandlungssystems
EP1542781A1 (de) Vorrichtung und verfahren zur bestimmung des zustands eines partikelfilters
EP3516184A1 (de) Verfahren zum betrieb einer katalysatoreinrichtung im kraftfahrzeug
DE102016219646A1 (de) Eigendiagnose eines Abgaskatalysators durch Messung der S-Parameter
DE102010019309B4 (de) Verfahren zur Erkennung des Zustands eines kombinierten Abgasnachbehandlungssystems mit mehreren Komponenten
DE102016219640A1 (de) Katalysator-Alterungserkennung mit minimalem Ammoniak-Schlupf
WO2019011612A1 (de) Verfahren zum ermitteln eines zustands eines abgasbehandlungselements, vorrichtung für ein kraftfahrzeug und system zur abgasbehandlung für ein kraftfahrzeug
DE102017214750B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
DE102018201391B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands einer Mikrowellenantenne eines Abgasbehandlungselements für ein Kraftfahrzeug
WO2019219358A1 (de) Verfahren und vorrichtung zum ermitteln eines zustands eines abgasbehandlungselements für ein kraftfahrzeug
DE102017213928B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
DE102017219951B4 (de) System zur Abgasbehandlung für ein Kraftfahrzeug, Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Systems zur Abgasbehandlung für ein Kraftfahrzeug
EP3523519B1 (de) Katalysator-alterungserkennung ohne zusätzliche systemkomponente
DE102018110214A1 (de) Verfahren zur Funktionszustandserkennung einer Hochfrequenz-Antenne für einen SCR-Katalysator
WO2018219824A1 (de) Verfahren sowie anordnung zur resonanzfrequenz-bestimmung eines abgasnachbehandlungssystems
DE102018217047B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
DE102018202043B4 (de) Verfahren und Vorrichtung zum Ermitteln eines Zustands eines Abgasbehandlungselements für ein Kraftfahrzeug
DE102017213937A1 (de) Antenne für ein Hochfrequenzsystem für ein Kraftfahrzeug, Hochfrequenzsystem sowie Verfahren zum Betreiben einer Antenne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18722964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18722964

Country of ref document: EP

Kind code of ref document: A1