WO2018223809A1 - 一种qled器件及其制作方法 - Google Patents

一种qled器件及其制作方法 Download PDF

Info

Publication number
WO2018223809A1
WO2018223809A1 PCT/CN2018/086559 CN2018086559W WO2018223809A1 WO 2018223809 A1 WO2018223809 A1 WO 2018223809A1 CN 2018086559 W CN2018086559 W CN 2018086559W WO 2018223809 A1 WO2018223809 A1 WO 2018223809A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
layer
dielectric layer
qled device
doped graphene
Prior art date
Application number
PCT/CN2018/086559
Other languages
English (en)
French (fr)
Inventor
宋莹莹
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2018223809A1 publication Critical patent/WO2018223809A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • Embodiments of the present disclosure relate to a QLED device and a method of fabricating the same.
  • QLEDs quantum dot light-emitting diodes
  • the work function of indium tin oxide (ITO) in the anode is low, and the ionization potential of the quantum dot material in the quantum dot light-emitting layer is relatively high, it is required at the anode and the quantum dot.
  • a hole injecting layer is interposed between the light emitting layers to increase the number of holes injected into the QLED device and the efficiency of the transfer, thereby improving the performance of the QLED device.
  • PEDOT a polymer of a 3,4-ethylenedioxythiophene monomer
  • PSS sodium polystyrene sulfonate
  • Embodiments of the present disclosure provide a QLED device and a method of fabricating the same for improving hole transmission and injection performance of a QLED device, thereby improving performance of the QLED device.
  • Embodiments of the present disclosure provide a QLED device, which adopts the following technical solutions:
  • the QLED device includes a substrate, and an ITO electrode layer, a P-doped dielectric layer, a quantum dot light-emitting layer, an electron transport layer, and a top electrode layer which are sequentially stacked on the substrate.
  • Embodiments of the present disclosure also provide a method for fabricating a QLED device, which adopts the following technical solutions:
  • the method for fabricating the QLED device comprises: sequentially forming an ITO electrode layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer and a top electrode layer on a substrate, and forming the hole transport after forming the ITO electrode layer Before the layer, the manufacturing method of the QLED device further includes:
  • a P-doped dielectric layer is formed on the ITO electrode layer.
  • FIG. 1 is a schematic diagram of a structure of a QLED device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a hole transport process of a QLED device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a QLED device including: a substrate 1 , and an ITO electrode layer 2 , a P-doped dielectric layer 3 , and a hole transport layer 4 which are sequentially stacked on the substrate 1 .
  • the holes in the ITO electrode layer 2 may be first transferred to the main material of the P-doped dielectric layer 3, and then transferred from the main material of the P-doped dielectric layer 3.
  • the holes are transported to the hole transport layer 4 through the dopant of the P-doped dielectric layer 3, and then transported to the quantum dot light-emitting layer 5, so that the quantum The electrons in the dot light-emitting layer 5 can form photons after being concentrated by holes transported to the quantum dot light-emitting layer 5 through the electron transport layer 6, and the QLEDs are caused to light by recombination of photons.
  • the substrate 1 is provided with not only the ITO electrode layer 2, the hole transport layer 4, the quantum dot light-emitting layer 5, the electron transport layer 6 and the top electrode layer 7, but also in the hole transport layer 4.
  • a P-doped dielectric layer 3 is also disposed between the ITO electrode layer 2, so that holes in the ITO electrode layer 2 can be first transferred to the P-doped layer during the hole injection process of the QLED device.
  • the main material of the dielectric layer 3 is transferred to the dopant of the P-doped dielectric layer 3, and then the hole can be transported to the hole transport layer 4 through the dopant of the P-doped dielectric layer 3. And then transmitted to the quantum dot luminescent layer 5, thereby increasing the number of holes injected and the transmission efficiency of the QLED device, and improving the performance of the QLED device.
  • the QLED device provided by the embodiment of the present disclosure uses the P-doped dielectric layer as an empty In the hole injection layer, so that in the process of fabricating the QLED device provided by the embodiment of the present disclosure, it is not necessary to use a plurality of solution materials to make holes.
  • the transport layer avoids the problem that the selection of the solution material for forming the hole transport layer due to the mutual solubility of the plurality of solution materials is difficult, and the difficulty in fabricating the QLED device is reduced.
  • the P-doped dielectric layer may be a P-doped graphene dielectric layer or a P-doped graphene oxide dielectric layer.
  • the dopants in the P-doped graphene dielectric layer have a minimum electron orbital energy level lower than the Fermi level of the graphene, and the dopants in the P-doped graphene oxide dielectric layer have the lowest electrons.
  • the unoccupied orbital energy level is lower than the Fermi level of graphene oxide.
  • the main material of the P-doped dielectric layer in the embodiment of the present disclosure is graphene or graphene oxide, and the Fermi level of graphene and graphene oxide (generally 4.6 eV to 5.0 eV). ) are closer to the electrical work function of the ITO electrode layer (4.7 eV), which makes it easier for holes in the ITO electrode layer to be transported into graphene or graphene oxide, and the doping in the P-doped graphene dielectric layer
  • the electrons have the lowest unoccupied orbital energy level of graphene and the Fermi level, and the dopants in the P-doped graphene oxide dielectric layer have the lowest electron orbital energy level and lower than that of graphene oxide.
  • the work function of the dopant (typically 5.4eV ⁇ 5.6eV) is greater than the Fermi level of graphene and graphene oxide, and closer to the work function of the hole transport layer (typically 5.8eV) , which can transport holes transported into graphene or graphene oxide to the dopant, and then transport the holes to the hole transport layer through the dopant, and then transport to the quantum dot light-emitting layer.
  • the function is generally 6.0 eV or more), thereby increasing the number of holes injected into the QLED device and transmitting Efficiency, improving the performance of the device QLED.
  • FIG. 2 only shows the transport process of the holes of the QLED device and the energy level of each material, wherein the graphene or graphene oxide and the dopant are not independent two-layer structures, but are composed together as shown in the figure.
  • the above dopant may be a metal oxide, for example, aluminum oxide, zinc oxide or nickel oxide. Since these metal oxides are all P-type, the electrons have the lowest unoccupied orbital energy level lower than graphene and The Fermi level of graphene oxide, which allows the holes transported to graphene and graphene oxide to be efficiently and efficiently transported into the metal oxide, transported to the hole transport layer, and then transported to the quantum dot luminescent layer. .
  • the above dopant may also be an organic material such as readily available HATCN (2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene).
  • Etc. because the lowest non-occupied orbital energy level of these organic materials is lower than the Fermi level of graphene and graphene oxide, which enables the holes transported to graphene and graphene oxide to be efficiently and quickly transferred to In the organic material, it is transported to the hole transport layer and then transferred to the quantum dot light-emitting layer.
  • the main material and the dopant of the P-doped dielectric layer are not limited to the above, as long as the Fermi level of the main material of the P-doped dielectric layer and the work function of the ITO electrode layer are satisfied. It is relatively close, and the electrons of the dopant have the lowest occupied orbital energy level lower than the Fermi level of the main material of the P-doped dielectric layer.
  • an ITO electrode layer not only an ITO electrode layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a top electrode layer are disposed on the substrate between the hole transport layer and the ITO electrode layer.
  • a P-doped dielectric layer is also provided, which enables the holes in the ITO electrode layer to be transferred to the main material of the P-doped dielectric layer and then transmitted during the hole injection process of the QLED device.
  • the hole can then be transported to the hole transport layer through the dopant of the P-doped dielectric layer, and then transferred to the quantum dot light-emitting layer, thereby improving the QLED
  • the number of holes injected into the device and the transmission efficiency improve the performance of the QLED device.
  • the QLED device provided by the embodiment of the present disclosure uses a P-doped dielectric layer as a dielectric layer
  • the hole injection layer can replace the existing multilayer hole transport layer by only one hole transport layer, so that in the process of fabricating the QLED device provided by the embodiment of the present disclosure, it is not necessary to use a plurality of solution materials to make an empty space.
  • the hole transport layer avoids the problem that the selection of the solution material for forming the hole transport layer due to the mutual dissolution of the plurality of solution materials is difficult, and the difficulty in fabricating the QLED device is reduced.
  • an embodiment of the present disclosure further provides a method for fabricating a QLED device for fabricating the QLED device.
  • the method for fabricating the QLED device includes sequentially forming an ITO electrode layer, a hole transport layer, and a quantum dot light-emitting layer on a substrate.
  • the electron transport layer and the top electrode layer, after forming the hole transport layer after forming the ITO electrode layer, the method of fabricating the QLED device further comprises: forming a P-doped dielectric layer on the ITO electrode layer.
  • a method of forming a P-doped dielectric layer provides the following two types of ITO electrode layers.
  • Step S1a preparing a mixed solution of P-doped graphene or P-doped graphene oxide.
  • Step S2a using a mixture of P-doped graphene or P-doped graphene oxide, inkjet printing on the ITO electrode layer to form a P-doped dielectric layer.
  • Step S1b preparing a mixture of P-doped graphene or P-doped graphene oxide.
  • Step S1b spin-coating a mixture of P-doped graphene or P-doped graphene oxide on the ITO electrode layer to form a P-doped dielectric layer.
  • the mixture of the P-doped graphene mixture and the P-doped graphene oxide may be a solution or suspension in which the dopant is respectively prepared with a graphene solution or a graphene oxide solution. Turbidity.
  • Method 1 Selecting a metal oxide as a dopant, for example, preparing a mixture of P-doped graphene or P-doped graphene oxide comprises: mixing a metal oxide with a graphene solution to form a P-doping a mixture of graphene; or, a metal oxide and a graphene oxide solution are mixed to form a mixture of P-doped graphene oxide.
  • Method 2 selecting an organic material as a dopant, for example, preparing a mixture of P-doped graphene or P-doped graphene oxide comprises: mixing an organic material with a graphene solution to form P-doped graphite a mixture of olefins; or, an organic material is mixed with a graphene oxide solution to form a mixture of P-doped graphene oxide.
  • the inventors have found that when the ratio of the dopant (metal oxide or organic material) in the mixture of the P-doped graphene or the P-doped graphene oxide is 1% to 10%, the above-mentioned
  • the P-doped dielectric layer formed by the mixture of P-doped graphene or P-doped graphene oxide has a relatively high number of hole injection and high efficiency of hole transport, and thus, for example, P-doped graphite is selected.
  • the proportion of the dopant in the mixed solution of the ene or P-doped graphene oxide is from 1% to 10%.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种QLED器件及其制作方法,解决了QLED器件的空穴注入与传输的性能较差,导致QLED器件的性能较差的技术问题。该QLED器件包括:基板(1),以及依次层叠设置在基板(1)的ITO电极层(2)、P掺杂的介质层(3)、空穴传输层(4)、量子点发光层(5)、电子传输层(6)和顶电极层(7)。

Description

一种QLED器件及其制作方法
本申请要求于2017年6月5日递交的中国专利申请第201710414183.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种QLED器件及其制作方法。
背景技术
近年来,量子点发光二极管(QLED)因其具备高亮度、低功耗、广色域、易加工等诸多优点,在照明和显示领域都获得了广泛的关注与研究。
在已知的正装结构的QLED器件中,由于阳极中氧化铟锡(ITO)的功函数较低,而量子点发光层中的量子点材料的电离势都比较高,因此需要在阳极与量子点发光层之间插入空穴注入层,以增加QLED器件的空穴的注入数量以及传输的效率,从而提高QLED器件性能。
目前,常用的空穴注入层为PEDOT(3,4-乙烯二氧噻吩单体的聚合物):PSS(聚苯乙烯磺酸钠)。但PEDOT:PSS的电离势依然比较低,无法有效提高QLED器件的空穴的注入数量以及传输的效率。
发明内容
本公开的实施例提供一种QLED器件及其制作方法,用于提高QLED器件的空穴传输与注入的性能,进而提高QLED器件的性能。
本公开的实施例提供一种QLED器件,采用如下技术方案:
该QLED器件包括:基板,以及依次层叠设置在所述基板的ITO电极层、P掺杂的介质层、量子点发光层、电子传输层和顶电极层。
本公开的实施例还提供一种QLED器件的制作方法,采用如下技术方案:
该QLED器件的制作方法包括:在基板上依次形成ITO电极层、空穴传输层、量子点发光层、电子传输层和顶电极层,在形成所述ITO电极层之后, 形成所述空穴传输层之前,所述QLED器件的制作方法还包括:
在所述ITO电极层上形成P掺杂的介质层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的QLED器件的结构的示意图;
图2为本公开实施例提供的QLED器件的空穴传输过程示意图。
附图标记说明:
1—基板,        2—ITO电极层,     3—P掺杂的介质层,
4—空穴传输层,  5—量子点发光层,  6—电子传输层,
7—顶电极层。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开实施例提供一种QLED器件,该QLED器件包括:基板1,以及依次层叠设置在基板1的ITO电极层2、P掺杂的介质层3、空穴传输层4、量子点发光层5、、电子传输层6和顶电极层7。
在上述QLED器件的空穴注入过程中,可先将ITO电极层2中的空穴传输到P掺杂的介质层3的主材料中,再从P掺杂的介质层3的主材料中传输到P掺杂的介质层3的掺杂剂中,然后通过P掺杂的介质层3的掺杂剂,将空穴传输至空穴传输层4,进而传输至量子点发光层5,使得量子点发光层5中的电子可与通过电子传输层6传输至量子点发光层5的空穴汇聚后形成光子,并且通过光子的重组使QLED发光。
在本实施例提供的QLED器件中,基板1上不仅设置有ITO电极层2、 空穴传输层4、量子点发光层5、、电子传输层6和顶电极层7,在空穴传输层4与ITO电极层2之间还设置有P掺杂的介质层3,这就使得在该QLED器件的空穴注入过程中,就能够先将ITO电极层2中的空穴传输到P掺杂的介质层3的主材料中,再传输到P掺杂的介质层3的掺杂剂中,然后即可通过P掺杂的介质层3的掺杂剂,将空穴传输至空穴传输层4,进而传输至量子点发光层5,从而提高了QLED器件的空穴的注入数量以及传输效率,提高了QLED器件的性能。
此外,与已知的使用PEDOT:PSS作为空穴注入层,并设置有多层空穴传输层的QLED器件相比,本公开实施例提供的QLED器件中通过利用P掺杂的介质层作为空穴注入层,只需一层空穴传输层即可替代现有的多层空穴传输层,从而在制作本公开的实施例提供的QLED器件过程中,无需选用多种溶液材料来制作空穴传输层,避免了出现因为多种溶液材料互溶而造成的制作空穴传输层的溶液材料的选择较难的问题,降低了制作QLED器件的难度。
上述P掺杂的介质层可以为P掺杂的石墨烯介质层或P掺杂的氧化石墨烯介质层。例如,P掺杂的石墨烯介质层中的掺杂剂的电子最低未占有轨道能级低于石墨烯的费米能级,P掺杂的氧化石墨烯介质层中的掺杂剂的电子最低未占有轨道能级低于氧化石墨烯的费米能级。
如图2所示,由于本公开实施例中的P掺杂的介质层的主材料为石墨烯或氧化石墨烯,而石墨烯和氧化石墨烯的费米能级(一般为4.6eV~5.0eV)均较为接近ITO电极层的电功函数(4.7eV),这就使得ITO电极层中的空穴更容易传输至石墨烯或氧化石墨烯中,并且P掺杂的石墨烯介质层中的掺杂剂的电子最低未占有轨道能级低于石墨烯和的费米能级,P掺杂的氧化石墨烯介质层中的掺杂剂的电子最低未占有轨道能级也低于氧化石墨烯的费米能级,掺杂剂的功函数(一般为5.4eV~5.6eV)大于石墨烯和氧化石墨烯的费米能级,并且更接近于空穴传输层的功函数(一般为5.8eV),这就能够将传输至石墨烯或氧化石墨烯中的空穴,传输至掺杂剂中,再通过掺杂剂将空穴传输至空穴传输层,进而传输至量子点发光层(其功函数一般为6.0eV以上),从而提高了QLED器件的空穴的注入数量以及传输效率,进而提高了QLED器件的性能。
可以理解的是,图2仅表示QLED器件的空穴的传输过程以及各材料的能级大小,其中石墨烯或氧化石墨烯与掺杂剂并非是独立的两层结构,而是共同组成如图1中所示的一层P掺杂的介质层3。
例如,上述掺杂剂可以金属氧化物,例如,三氧化二铝、氧化锌或氧化镍等,由于这些金属氧化物均是P型的,其电子最低未占有轨道能级均低于石墨烯和氧化石墨烯的费米能级,这就使得传输至石墨烯和氧化石墨烯的空穴可以有效快速的传输至金属氧化物中,再传输至空穴传输层,进而传输至量子点发光层中。
上述掺杂剂也可以为有机材料,例如容易获取的HATCN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)等,由于这些有机材料的电子最低未占有轨道能级均低于石墨烯和氧化石墨烯的费米能级,这就使得传输至石墨烯和氧化石墨烯的空穴可以有效快速的传输至有机材料中,再传输至空穴传输层,进而传输至量子点发光层中。
需要补充的是,对于P掺杂的介质层的主材料和掺杂剂,并不限于以上几种,只要满足P掺杂的介质层的主材料的费米能级与ITO电极层的功函数较为接近,而掺杂剂的电子最低未占有轨道能级低于P掺杂的介质层的主材料的费米能级即可。
本公开提供的QLED器件具有以下有益效果:
在本公开的实施例提供的QLED器件中,基板上不仅设置有ITO电极层、空穴传输层、量子点发光层、电子传输层和顶电极层,在空穴传输层与ITO电极层之间还设置有P掺杂的介质层,这就使得在该QLED器件的空穴注入过程中,就能够先将ITO电极层中的空穴传输到P掺杂的介质层的主材料中,再传输到P掺杂的介质层的掺杂剂中,然后即可通过P掺杂的介质层的掺杂剂,将空穴传输至空穴传输层,进而传输至量子点发光层,从而提高了QLED器件的空穴的注入数量以及传输效率,提高了QLED器件的性能。
此外,与已知的使用PEDOT:PSS作为空穴注入层,并设置有多层空穴传输层的QLED器件相比,本公开的实施例提供的QLED器件中通过利用P掺杂的介质层作为空穴注入层,只需一层空穴传输层即可替代现有的多层空穴传输层,从而在制作本公开的实施例提供的QLED器件过程中,无需选用多种溶液材料来制作空穴传输层,避免了出现因为多种溶液材料互溶而造成 的制作空穴传输层的溶液材料的选择较难的问题,降低了制作QLED器件的难度。
此外,本公开实施例还提供一种QLED器件的制作方法,用于制作上述QLED器件,该QLED器件的制作方法包括:在基板上依次形成ITO电极层、空穴传输层、量子点发光层、电子传输层和顶电极层,在形成ITO电极层之后,形成空穴传输层之前,该QLED器件的制作方法还包括:在ITO电极层上形成P掺杂的介质层。
对于本公开实施例提供的QLED器件的制作方法的有益效果,可参照上述QLED器件的有益效果,此处不再进行赘述。
上述在ITO电极层上形成P掺杂的介质层的方法有很多,本领域技术人员可根据实际情况进行选择,本公开实施例不进行限定,本公开实施例给出以下两种在ITO电极层上形成P掺杂的介质层的方法:
方法一:
步骤S1a、配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液。
步骤S2a、使用P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液,在ITO电极层上喷墨打印,形成P掺杂的介质层。
方法二:
步骤S1b、配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液。
步骤S1b、将P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液,旋涂在ITO电极层上,形成P掺杂的介质层。
上述步骤S1a和步骤S1b中,上述P掺杂的石墨烯的混合液和P掺杂的氧化石墨烯的混合液可以为掺杂剂分别与石墨烯溶液或氧化石墨烯溶液配制成的溶液或悬浊液。
例如,配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液的方法也有多种,示例性地,本公开实施例给出以下两种配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液的方法:
方法一:选用金属氧化物作为掺杂剂,例如,配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液的步骤包括:将金属氧化物与石墨烯溶液混合,形成P掺杂的石墨烯的混合液;或,将金属氧化物与氧化石墨烯溶液混合,形成P掺杂的氧化石墨烯的混合液。
方法二:选用有机材料作为掺杂剂,例如,配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液的步骤包括:将有机材料与石墨烯溶液混合,形成P掺杂的石墨烯的混合液;或,将有机材料与氧化石墨烯溶液混合,形成P掺杂的氧化石墨烯的混合液。
此外,发明人发现,当上述P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液中的掺杂剂(金属氧化物或有机材料)的比例为1%~10%时,使用上述P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液形成的P掺杂的介质层的空穴注入的数量以及空穴传输的效率均比较高,因此,例如选择P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液中的掺杂剂的比例为1%~10%。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种QLED器件,包括:基板,以及依次层叠设置在所述基板的ITO电极层、P掺杂的介质层、空穴传输层、量子点发光层、电子传输层和顶电极层。
  2. 根据权利要求1所述的QLED器件,其中,所述P掺杂的介质层为P掺杂的石墨烯介质层,所述P掺杂的石墨烯介质层中的掺杂剂的电子最低未占有轨道能级低于石墨烯的费米能级。
  3. 根据权利要求1所述的QLED器件,其中,所述P掺杂的介质层为P掺杂的氧化石墨烯介质层,所述P掺杂的氧化石墨烯介质层中的掺杂剂的电子最低未占有轨道能级低于氧化石墨烯的费米能级。
  4. 根据权利要求2或3所述的QLED器件,其中,所述P掺杂的介质层中的掺杂剂为金属氧化物。
  5. 根据权利要求2或3所述的QLED器件,其中,所述P掺杂的介质层中的掺杂剂为有机材料。
  6. 一种QLED器件的制作方法,包括:在基板上依次形成ITO电极层、空穴传输层、量子点发光层、电子传输层和顶电极层,其中,在形成所述ITO电极层之后,形成所述空穴传输层之前,所述QLED器件的制作方法还包括:
    在所述ITO电极层上形成P掺杂的介质层。
  7. 根据权利要求6所述的QLED器件的制作方法,其中,在所述ITO电极层层上形成P掺杂的介质层的步骤包括:
    配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液;
    使用P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液,在所述ITO电极层上喷墨打印,形成所述P掺杂的介质层。
  8. 根据权利要求6所述的QLED器件的制作方法,其中,在所述ITO电极层上形成P掺杂的介质层的步骤包括:
    配制P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液;
    将P掺杂的石墨烯或P掺杂的氧化石墨烯的混合液,旋涂在所述ITO电极层上,形成所述P掺杂的介质层。
  9. 根据权利要求7或8所述的QLED器件的制作方法,其中,配制P 掺杂的石墨烯或P掺杂的氧化石墨烯的混合液的步骤包括:
    将金属氧化物与石墨烯溶液混合,形成P掺杂的石墨烯的混合液;
    或,将所述金属氧化物与氧化石墨烯溶液混合,形成P掺杂的氧化石墨烯的混合液。
  10. 根据权利要求7或8所述的QLED器件的制作方法,其中,配制P掺杂的石墨烯或P掺杂的氧化石墨烯的溶液的步骤包括:
    将有机材料与石墨烯溶液混合,形成P掺杂的石墨烯的混合液;
    或,将所述有机材料与氧化石墨烯溶液混合,形成P掺杂的氧化石墨烯的混合液。
PCT/CN2018/086559 2017-06-05 2018-05-11 一种qled器件及其制作方法 WO2018223809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710414183.5A CN107204401A (zh) 2017-06-05 2017-06-05 一种qled器件及其制作方法
CN201710414183.5 2017-06-05

Publications (1)

Publication Number Publication Date
WO2018223809A1 true WO2018223809A1 (zh) 2018-12-13

Family

ID=59907771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086559 WO2018223809A1 (zh) 2017-06-05 2018-05-11 一种qled器件及其制作方法

Country Status (2)

Country Link
CN (1) CN107204401A (zh)
WO (1) WO2018223809A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204401A (zh) * 2017-06-05 2017-09-26 京东方科技集团股份有限公司 一种qled器件及其制作方法
CN109326726B (zh) * 2017-07-31 2021-03-16 Tcl科技集团股份有限公司 Qled器件及其制备方法
CN111418036B (zh) * 2017-11-14 2022-10-21 香港大学 作为空穴传输层的氧化镍修饰的氧化石墨烯纳米复合材料和制造其的方法
CN110311046A (zh) 2019-06-26 2019-10-08 深圳市华星光电半导体显示技术有限公司 量子点发光材料及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119369A1 (en) * 2010-07-29 2013-05-16 Sumitomo Chemical Company, Limited Layered structure, electronic device using same, aromatic compound, and method for manufacturing said compound
CN103682152A (zh) * 2012-09-25 2014-03-26 国际商业机器公司 透明导电电极及其形成方法、有机发光二极管(oled)器件及其形成方法
CN105161637A (zh) * 2015-08-17 2015-12-16 Tcl集团股份有限公司 含有掺杂型空穴注入层的量子点发光二极管及其制备方法
CN107204401A (zh) * 2017-06-05 2017-09-26 京东方科技集团股份有限公司 一种qled器件及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282030B1 (ko) * 2015-01-26 2021-07-29 삼성디스플레이 주식회사 표시 장치
CN105261707B (zh) * 2015-09-08 2017-06-06 河南大学 一种新型量子点发光器件
CN105244451B (zh) * 2015-10-16 2018-08-14 Tcl集团股份有限公司 一种具有混合htl的量子点发光二极管及其制备方法
CN105206757B (zh) * 2015-11-05 2016-09-07 京东方科技集团股份有限公司 有机发光二极管及其制作方法、显示基板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119369A1 (en) * 2010-07-29 2013-05-16 Sumitomo Chemical Company, Limited Layered structure, electronic device using same, aromatic compound, and method for manufacturing said compound
CN103682152A (zh) * 2012-09-25 2014-03-26 国际商业机器公司 透明导电电极及其形成方法、有机发光二极管(oled)器件及其形成方法
CN105161637A (zh) * 2015-08-17 2015-12-16 Tcl集团股份有限公司 含有掺杂型空穴注入层的量子点发光二极管及其制备方法
CN107204401A (zh) * 2017-06-05 2017-09-26 京东方科技集团股份有限公司 一种qled器件及其制作方法

Also Published As

Publication number Publication date
CN107204401A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018223809A1 (zh) 一种qled器件及其制作方法
CN106384765B (zh) 一种量子点发光二极管及其制备方法
CN103715360B (zh) 有机电致发光器件、显示装置
WO2020140760A1 (zh) 量子点发光二极管器件及其制备方法
CN106129263B (zh) Oled显示器件及其制作方法
CN105679958A (zh) 电致发光器件及其制作方法、显示装置
CN110212105B (zh) 量子点发光器件及其制备方法、照明装置
CN105161637A (zh) 含有掺杂型空穴注入层的量子点发光二极管及其制备方法
CN107579159B (zh) 一种有机发光二极管、显示面板及显示装置
CN107958961A (zh) 串联量子点发光器件、面板即显示器
CN106024844B (zh) 有机发光器件及其制备方法、显示装置
WO2021017627A1 (zh) 有机发光二极管器件和显示装置
WO2021135637A1 (zh) 量子点薄膜及其制备方法和应用
CN109935711A (zh) 发光二极管及其制备方法、显示面板
WO2018036101A1 (zh) 荧光/磷光混合型白光有机发光二极管
CN104134754A (zh) 有机电致发光器件及其制备方法
Friend et al. Perovskite LEDs
CN105514290A (zh) 一种量子点发光二极管及其制备方法
CN103730586A (zh) 层叠式有机发光二极体及其制备方法
KR101450858B1 (ko) 그래핀 산화물을 이용한 유기전계 발광소자 및 그 제조방법
TWI540779B (zh) 有機發光裝置
CN112331787B (zh) 金属四苯基卟啉复合物在电子传输材料中的应用、量子点发光器件及其制备方法和发光装置
CN108878664A (zh) 量子点发光二极管及其制备方法与应用
CN114220928A (zh) 有机发光器件和显示屏
CN111162183B (zh) 量子点发光二极管及其制备方法与光源结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15-05-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18813788

Country of ref document: EP

Kind code of ref document: A1