WO2018223783A1 - 无线通信方法和无线通信设备 - Google Patents

无线通信方法和无线通信设备 Download PDF

Info

Publication number
WO2018223783A1
WO2018223783A1 PCT/CN2018/084005 CN2018084005W WO2018223783A1 WO 2018223783 A1 WO2018223783 A1 WO 2018223783A1 CN 2018084005 W CN2018084005 W CN 2018084005W WO 2018223783 A1 WO2018223783 A1 WO 2018223783A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
threshold
reception quality
communication method
neighboring base
Prior art date
Application number
PCT/CN2018/084005
Other languages
English (en)
French (fr)
Inventor
张源
呂本舜
Original Assignee
索尼公司
张源
呂本舜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 张源, 呂本舜 filed Critical 索尼公司
Priority to US16/611,864 priority Critical patent/US20200120557A1/en
Priority to CN201880029292.8A priority patent/CN110603849B/zh
Priority to EP18814252.5A priority patent/EP3637856B1/en
Publication of WO2018223783A1 publication Critical patent/WO2018223783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node

Definitions

  • the present invention relates to a wireless communication method and a wireless communication device, and in particular to a method and a communication device for performing uplink measurement based handover in a mobile communication system.
  • Switching is an important operation in mobile communication systems.
  • higher requirements are imposed on the delay, signaling overhead, and energy efficiency of the handover process.
  • 3GPP 3rd Generation Partnership Project
  • handover is typically based on downlink measurements.
  • the user equipment receives the downlink reference signals transmitted by the respective base stations, and measures the reception quality of the downlink reference signals. If the measurement result of the source base station (ie, the base station currently serving itself) is observed to be deteriorating, and the measurement results of some neighboring base stations (ie, the target base station) are getting better, the user equipment reports the measurement results to the source. Base station. The source base station determines whether the user equipment needs to perform handover and switch to which target base station according to the received measurement result, thereby performing a handover process.
  • the uplink reference signals are sent by the user equipment, and each base station receives the uplink reference signals and measures the reception quality of the uplink reference signals.
  • the user equipment should be switched to the target base station with better measurement results.
  • the measurement results are scattered at the respective base stations in the handover process based on the uplink measurement, it is difficult for the source base station to obtain the measurement result of the candidate target base station, and thus it is difficult to perform the handover decision.
  • the above problems may be easier to resolve.
  • the central office can obtain information of all base stations, a handover decision can be made.
  • the cellular system includes a mobile cell, the above problem may become very prominent. This is mainly due to the fact that the mobile cell may be deployed in a scenario where there is no background central or the background center is destroyed for any reason, and no network entity in these scenarios can obtain information of all base stations, thus making the handover decision impossible.
  • a communication method performed by a base station comprising: measuring a reception quality of an uplink reference signal broadcast by a terminal device; generating an initial message when the measured reception quality is lower than a preset first threshold The initial message is used to instruct the neighboring base station to measure the reception quality of the uplink reference signal, and determine whether to instruct the terminal device to switch to the neighboring base station based on a response message from the neighboring base station, where The response message indicates the quality of reception measured by the neighboring base station.
  • a communication method performed by a base station, comprising: measuring a reception quality of an uplink reference signal broadcast by a terminal device upon receiving an initial message from a neighboring base station; and generating an indication of the measurement Receiving a quality response message for transmission to the neighboring base station, wherein the neighboring base station generates the initial message based on a received quality of the uplink reference signal measured by the neighboring base station.
  • a base station apparatus comprising processing circuitry configured to perform the above communication method.
  • a computer readable recording medium storing a program, which, when executed, causes a computer to execute the above communication method.
  • FIG. 1 schematically shows a scenario of handover based on uplink measurement.
  • Figure 2 shows the signaling flow of the handover procedure based on the uplink measurement.
  • FIG. 3 shows a signaling interaction flow for performing a handover decision according to the first embodiment.
  • Fig. 4 shows a variation of the measurement results of the base station A and the base station B according to the first embodiment and corresponding signaling interactions.
  • FIG. 5 shows a signaling interaction flow for performing a handover decision according to a second embodiment.
  • Fig. 6 shows a variation of measurement results of the base station A and the base station B according to the second embodiment and corresponding signaling interactions.
  • FIG. 7 shows a signaling interaction flow for performing a handover decision according to a third embodiment.
  • Fig. 8 shows a variation of measurement results of the base station A and the base station B according to the third embodiment and corresponding signaling interactions.
  • FIG. 9 shows a schematic configuration block diagram of an eNB as one example of a base station.
  • FIG. 10 shows a schematic configuration block diagram of a smartphone as one example of a user equipment.
  • Figure 11 shows a schematic configuration block diagram of computer hardware.
  • FIG. 1 shows a scenario of handover based on uplink measurement.
  • the base station A is a base station that is currently serving the user equipment UE, that is, a source base station.
  • the base stations A and B may be, for example, mobile base stations installed on a vehicle, but the present invention is not limited thereto, and the solution of the present invention is also applicable to the case where the base stations A and B are fixed base stations.
  • the present invention can well solve the problem that the source base station performs the handover decision, and for the case of the fixed cell (the background control center), The solution of the invention can also be applied.
  • the user equipment UE transmits an uplink reference signal
  • the base stations A and B respectively receive the uplink reference signal, and measure the reception quality of the uplink reference signal.
  • the measurement result of the mobile base station A is represented as X A
  • the measurement result of the mobile base station B is represented as X B .
  • O is a preset threshold, which may generally be set according to one or more of the following factors: cell radius, transmit power, electromagnetic wave propagation environment, signal to interference ratio requirement, operator's own experience and preferences, and the like.
  • FIG. 2 shows the signaling flow for a handover procedure.
  • the user equipment UE transmits (eg, broadcasts) an uplink reference signal in step S210.
  • the base stations A and B respectively measure the reception quality of the received uplink reference signal, for example, the received signal power, in step S220.
  • the source base station A then tries to make a handover decision in step S230.
  • the source base station A determines that the user equipment UE should handover to the target base station B
  • the source base station A and the target base station B exchange signaling and perform a handover request and response in step S240.
  • the source base station A interacts with the user equipment UE to perform layer 3 configuration in step S250.
  • the user equipment UE tries to establish synchronization with the target base station B in step S260 to communicate therewith.
  • the user equipment UE switches from the source base station A to the target base station B.
  • the handover decision performed by the source base station A in step S230 is crucial, which will be specifically described below.
  • FIG. 3 shows a signaling interaction flow for performing a handover decision according to a first embodiment of the present invention.
  • the source base station A sets an initial threshold S
  • the candidate target base station B also sets an initial threshold T.
  • the thresholds S and T can be set according to factors such as cell radius, transmission power, electromagnetic wave propagation environment, and signal to interference ratio requirements.
  • the source base station A performs a trigger in step S301, that is, to all candidate target base stations. Broadcast an initial message Msg1 containing its own measurement results.
  • the initial message Msg1 is used to notify all candidate target base stations of the degradation of the communication quality of the source base station A, and instructs each candidate target base station to start uplink measurement in preparation for possible handover. It will be readily understood by those skilled in the art that there are usually a plurality of candidate target base stations in the actual communication system, and the measurement result of the source base station A will be notified to each candidate target base station by the message Msg1. For the sake of brevity, the description only shows the base station B as a representative of the candidate target base station, and omits other candidate target base stations.
  • the candidate target base station B After receiving the message Msg1 from the source base station A, the candidate target base station B performs uplink measurement in step S302.
  • the base station B When the measurement result X B of the base station B is higher than the initial threshold T, that is, X B >T, the base station B performs a trigger in step S303, that is, transmits a response message Msg2 including the measurement result to the source base station A.
  • each time the trigger is executed its own threshold is lowered by ⁇ S. Therefore, the source base station A lowers its own threshold by ⁇ S after transmitting the message Msg1, as shown in step S304. Since the user equipment periodically transmits the uplink reference signal, the source base station A periodically performs the uplink measurement. Based on this, the source base station A will perform uplink measurement after the threshold is lowered by ⁇ S, as shown in step S305.
  • the source base station A observes that the current measurement result is lower than the current threshold, that is, X A ⁇ S- ⁇ S, it performs a trigger in step S306 to broadcast to all candidate target base stations a piece containing its current measurement result. Message Msg3.
  • the source base station A will then again lower the threshold by ⁇ S, and the threshold after the down-regulation will become S-2* ⁇ S.
  • the ⁇ S can be lowered again... This process can be repeated multiple times.
  • the base station B raises its own threshold by ⁇ T after transmitting the response message Msg2, as shown in step S307. Similar to the source base station A, the base station B also periodically performs uplink measurement, so the base station B will perform uplink measurement after the threshold is raised by ⁇ T, as shown in step S308.
  • the base station B observes that the current measurement result is higher than the current threshold, that is, X B >T+ ⁇ T, it performs a trigger in step S309, and sends a response message Msg4 containing the current measurement result to the source base station A. .
  • base station B will again raise the threshold by ⁇ T, and the up-regulated threshold will become T+2* ⁇ T.
  • step S306 of transmitting the message Msg3 by the source base station A is shown in FIG. 3 as step S309 before the candidate target base station B transmits the response message Msg4, the order of execution of steps S306 and S309 is not limited thereto. Since base station A and base station B independently perform uplink measurements and triggers, these two steps may occur simultaneously or in the reverse order shown in the figures.
  • the source base station A Each time the source base station A receives the response message Msg4 from the candidate target base station B, it compares its current measurement result with the measurement result of the base station B included in the received response message Msg4, as shown in step S310. If the measurement result contained in the response message Msg4 is higher than the threshold value O of the current measurement result, the source base station A makes a handover decision, and determines that the user equipment should switch to the base station B, as shown in step S311. On the other hand, if the measurement result contained in the response message Msg4 is not higher than the threshold value O of its current measurement result, the source base station A proceeds to perform the operations of steps S304-S306.
  • the operation of the candidate target base station is shown only by the base station B as a representative. If the source base station A determines in step S310 that the measurement results contained in the plurality of response messages Msg4 from the plurality of candidate target base stations are higher than the current measurement result by the threshold O, the source base station A will base the plurality of candidate target base stations. Other factors such as the amount of power, capacity, and speed of movement select an optimal base station among the candidate target base stations that satisfy the condition as the handover target base station.
  • Fig. 4 schematically shows a variation of signal reception quality measured by the base station A and the base station B according to the first embodiment and corresponding signaling interaction.
  • lines X A and X B represent changes in the reception quality of the uplink reference signal measured by base station A and base station B, respectively, over time.
  • X A and X B are shown as straight lines in the figure, while in fact X A and X B are usually curved.
  • the reception quality X A measured by the base station A is smaller than the initial threshold value S, so the base station A transmits the message Msg1.
  • the measurement result X B of the base station B is higher than the initial threshold T, so the base station B transmits a response message Msg2 to the base station A.
  • the base station A lowered threshold, and the result of measuring the door down limit of less than X A S- ⁇ S, so the base station A to the base station sends a message Msg3 B.
  • base station B raises the threshold and the measurement result X B is greater than T + ⁇ T, so base station B transmits a response message Msg4.
  • the base station A receives the response message from the base station B Msg4, the measurement result can be the response of the base station B X B Msg4 message included in the measurement results compared with the case of the base station A X-A, if X A ⁇ X B -O, then base station A can make a handover decision to handover to base station B.
  • FIG. 4 is only schematically shown that base station A and base station B respectively perform an initial adjustment and an upward adjustment on the initial threshold, and the actual processing may involve multiple upward adjustments and downward adjustments. As described with reference to FIG.
  • FIG. 5 shows a signaling interaction flow for performing a handover decision according to a second embodiment of the present invention.
  • the second embodiment is a simplified scheme, which can be considered as equivalent to omitting steps S304-S306 and steps S307-S309 in the first embodiment.
  • step S500 the source base station A sets a threshold S
  • the candidate target base station B sets a threshold S+O, where O has the same meaning as the threshold O in the first embodiment.
  • the source base station A performs a trigger to broadcast an initial message Msg1 with its current measurement result to all candidate target base stations (represented by the base station B in the figure). , as shown in step S501.
  • the candidate target base station B starts uplink measurement after receiving the initial message Msg1 from the source base station A, as shown in step S502.
  • the base station B performs a trigger to send a response message Msg2 with its measurement result to the source base station A, as shown in step S503.
  • the source base station A can immediately perform a handover decision to determine that the user equipment should be handed over to the base station B, as shown in step S504, because the transmission of the response message Msg2 means that the measurement result of the base station B is greater than the source.
  • the measurement result of the base station A is at least higher than the threshold O, and thus meets the conditions of the handover.
  • the source base station A receives the message Msg2 from a plurality of candidate target base stations, that is, if there are multiple candidate target base stations satisfying X B >S+O, the source base station A will base the plurality of candidate target base stations.
  • Other factors such as power, capacity, and moving speed select the best one among the candidate target base stations as the handover target base station.
  • FIG. 6 shows a variation curve of signal reception quality measured by the base station A and the base station B and corresponding signaling interactions.
  • the uplink reference signal received quality X A measured by the base station A is smaller than the threshold S, so the base station A transmits the message Msg1.
  • the measurement result X B of the base station B is higher than the threshold S+O, so the base station B transmits a response message Msg2 to the base station A.
  • the base station A receives the reply message the Msg2, it can make a handover to base station B handover decisions.
  • FIG. 7 shows a signaling interaction flow for performing a handover decision according to a third embodiment of the present invention.
  • the source base station A sets an initial threshold S
  • the candidate target base station B also sets an initial threshold D.
  • the threshold S in the present embodiment is the same as the threshold S in the first embodiment, and the threshold D can be set by the base station B based on the moving speed of the user equipment.
  • the source base station A performs a trigger in step S701 to broadcast one to all candidate target base stations.
  • a message Msg1 containing its own measurement results As described above, for the sake of simplicity, only the base station B is shown as a representative of the candidate target base station in FIG. 7, and other candidate target base stations are omitted.
  • the candidate target base station B After receiving the message Msg1 from the source base station A, the candidate target base station B measures the uplink reference signal from the user equipment in step S702, obtains the measurement result, and calculates the rate of change of the measurement result.
  • the measurement result change rate d B (t) of the base station B at the time t can be expressed as the following equation (1):
  • ⁇ t is the time interval
  • X B (t) represents the measurement results of base station B at time t
  • X B (t- ⁇ t) shows the measurement results at time (t- ⁇ t) of.
  • Fig. 8 there is shown a variation of the measurement results of the base station A and the base station B, in which the measurement result X B of the base station B is shown as a curve.
  • the measurement change rate d B (t) represented by the above equation (1) can be understood as the derivative (or tangent slope) of the curve X B at the time t.
  • the slopes of the curves X B at different times are different from each other, that is, the rate of change d B (t) of the measurement results of the base station B at respective times is different from each other, rather than being fixed.
  • the base station B When the amount of change in the measurement result change rate of the base station B is higher than the threshold D set in step S700, that is,
  • the base station A transmits a response message Msg2 including the measurement result X B (t) of the base station B at the time t and the measurement result change rate d B (t), as shown in step S703.
  • t' denotes the time when the base station B performs the last trigger
  • d B (t') denotes the rate of change of the measurement result of the base station B when it was last triggered.
  • step S703 may be performed multiple times, and base station B may transmit a multiple reply message Msg2.
  • the source base station A may receive multiple response messages Msg2 from the target candidate base station B, and assume that the latest one response message Msg2 received by the source base station A includes the measurement result X B of the base station B at the time t recent (t Recent ) and the rate of change of the measurement result d B (t recent ).
  • the source base station A predicts the measurement at the time t current using the measurement result X B (t recent ) at the time t recent included in the latest message and the measurement result change rate d B (t recent ) in step S704.
  • the time t current may be any time after the source base station A receives the latest response message. This prediction can be expressed as the following equation (2):
  • the source base station A determines in step S705 whether the predicted measurement result of the base station B is higher than the current measurement result of the source base station A (at time t current ) by a threshold value O, that is, determining X B.predict (t current )>X Whether A (t current )+O is true. If so, the source base station A determines that the user equipment should handover to the target base station B, as shown in step S706. If not, the source base station A will return to step S704 and wait for the response message Msg2 from the base station B to be received again. As described above, only one candidate target base station B is shown in FIG. 7, and in practice, there are usually a plurality of candidate target base stations.
  • the source base station A determines in step S705 that a plurality of candidate target base stations B satisfy X B.predict (t current )>X A (t current )+O, the source base station A will be based on the plurality of candidate target base stations B. Other factors such as power, capacity, and moving speed select the optimal one among the candidate target base stations as the switching target.
  • the source base station A may use the measurement result included in the message and the change rate of the measurement result to predict the measurement result of the base station B at any time after the response message is transmitted.
  • the rate of change (slope) of the measurement result of the base station B changes greatly (for example, greater than the threshold D)
  • the base station B needs to send a new response message to Notifying the source base station A of the new measurement result and the rate of change of the measurement result.
  • the rate of change (slope) of the measurement result of the base station B does not change greatly, the base station B does not need to transmit a new response message. Thereby, the message or signaling that the base station B needs to transmit can be further reduced.
  • Fig. 8 schematically shows a variation of measurement results of the base station A and the base station B according to the third embodiment and corresponding signaling interactions.
  • lines X A and X B represent changes in the reception quality of the uplink reference signal measured by base station A and base station B, respectively.
  • the measurement result X B of the base station B is represented as a curve. It will be readily understood by those skilled in the art that the measurement result X A of the base station A can also be a curve, but considering the conciseness of the description, X A is still shown as a straight line in FIG.
  • the base station A X A measurement result is less than the initial threshold S, and therefore the base station A sends a message Msg1 to the base station B.
  • the change amount ⁇ d B (t 2 ) of the measurement result change rate d B (t 2 ) of the base station B is greater than the preset threshold D, so the base station B transmits the response message Msg2 to the base station A.
  • the base station B observed again to the measurement results of change rates d B (t 3) the amount of change ⁇ d B (t 3) greater than a preset threshold D, so the base station B sends a new response message Msg2 to the base station A.
  • base station A predicts base station B at time point t 4 based on the last (second time) transmitted response message Msg2 of base station B.
  • the measurement result is determined, and it is judged whether the predicted measurement result is higher than the measurement result of the base station A at the time point t 4 by a threshold value O. If so, base station A can make a handover decision to handover the user equipment to base station B.
  • FIG. 8 shows that base station B has sent two response messages Msg2, but those skilled in the art will readily appreciate that more or only one transmission of response message Msg2 may be involved in the actual processing.
  • the present invention proposes a technical solution capable of enabling a source base station to efficiently perform handover decisions in a scenario without a background control center.
  • the source base station can quickly obtain the information of the candidate target base station required for the handover decision, reduce the signaling overhead, and improve the overall performance of the handover process based on the uplink measurement.
  • the base station in the above embodiments may include any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the network side device or base station may also include any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminal devices can also operate as base stations by performing base station functions temporarily or semi-persistently.
  • the user equipment in the above embodiment can be implemented, for example, as a communication terminal device (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device).
  • a communication terminal device such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device.
  • an in-vehicle terminal device such as a car navigation device
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device or user device may also be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • the implementation of the base station will be described below with reference to FIG. 9 with the eNB as an example.
  • FIG. 9 shows a block diagram of a schematic configuration of an eNB.
  • the eNB 2300 includes one or more antennas 2310 and base station devices 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 2320 to transmit and receive wireless signals.
  • the eNB 2300 may include a plurality of antennas 2310.
  • multiple antennas 2310 can be compatible with multiple frequency bands used by eNB 2300.
  • FIG. 9 illustrates an example in which the eNB 2300 includes a plurality of antennas 2310, the eNB 2300 may also include a single antenna 2310.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, controller 2321 generates data packets based on data in signals processed by wireless communication interface 2325 and delivers the generated packets via network interface 2323. The controller 2321 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2321 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324. Controller 2321 can communicate with a core network node or another eNB via network interface 2323. In this case, the eNB 2300 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 2300 via the antenna 2310.
  • Wireless communication interface 2325 can typically include, for example, BB processor 2326 and RF circuitry 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2326 may have some or all of the above described logic functions.
  • the BB processor 2326 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2326 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 can include a plurality of BB processors 2326.
  • multiple BB processors 2326 can be compatible with multiple frequency bands used by eNB 2300.
  • the wireless communication interface 2325 can include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 can be compatible with multiple antenna elements.
  • FIG. 9 illustrates an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver of the base station side device can be implemented by the wireless communication interface 2325. At least a portion of the functionality of each unit may also be performed by controller 2321.
  • the controller 2321 can perform at least a portion of the functions of the units by executing a program stored in the memory 2322.
  • the implementation of the user equipment is described below with reference to FIG. 10 with a smartphone as an example.
  • FIG. 10 shows a block diagram of a schematic configuration of a smartphone.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, and a wireless communication interface. 2512, one or more antenna switches 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2500.
  • the memory 2502 includes a RAM and a ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the image pickup device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2507 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and radio frequency (RF) circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2516.
  • the wireless communication interface 2512 may be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG. 10, the wireless communication interface 2512 can include a plurality of BB processors 2513 and a plurality of RF circuits 2514. However, the wireless communication interface 2512 can also include a single BB processor 2513 or a single RF circuit
  • the wireless communication interface 2512 can also support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 can include a BB processor 2513 and RF circuitry 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512, such as circuits for different wireless communication schemes.
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2512 to transmit and receive wireless signals.
  • smart phone 2500 can include multiple antennas 2516.
  • smart phone 2500 can also include a single antenna 2516.
  • smart phone 2500 can include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 can be omitted from the configuration of the smartphone 2500.
  • the bus 2517 has a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and an auxiliary controller 2519. connection.
  • Battery 2518 provides power to various components of smart phone 2500 via feeders, which are shown partially as dashed lines in the figure.
  • the secondary controller 2519 operates the minimum required function of the smartphone 2500, for example, in a sleep mode.
  • the transceiver of the terminal device can be implemented by the wireless communication interface 2512. At least a portion of the functions of the functional units of the terminal device may also be implemented by the processor 2501 or the auxiliary controller 2519. For example, the power consumption of the battery 2518 can be reduced by performing a portion of the functions of the processor 2501 by the auxiliary controller 2519. Further, the processor 2501 or the auxiliary controller 2519 can perform at least a part of the functions of the respective functional units of the terminal device by executing the program stored in the memory 2502 or the storage device 2503.
  • a series of processes performed by each device or unit in the above embodiment may be implemented by software, hardware, or a combination of software and hardware.
  • the program included in the software may be stored in advance in, for example, a storage medium provided inside or outside each device or unit.
  • these programs are written to a random access memory (RAM) and executed by a processor (e.g., a CPU) to perform the methods and processes described in the above embodiments.
  • RAM random access memory
  • a processor e.g., a CPU
  • the present invention includes such program code and program product, and a computer readable recording medium having the program code recorded thereon.
  • FIG. 11 is a block diagram showing an example configuration of computer hardware that executes the scheme of the present invention in accordance with a program.
  • a central processing unit (CPU) 1101, a read only memory (ROM) 1102, and a random access memory (RAM) 1103 are connected to each other through a bus 1104.
  • the input/output interface 1105 is further connected to the bus 1104.
  • the input/output interface 1105 is connected to an input unit 1106 formed by a keyboard, a mouse, a microphone, or the like; an output unit 1107 formed of a display, a speaker, or the like; a storage unit 1108 formed of a hard disk, a nonvolatile memory, or the like; A communication unit 1109 formed of a network interface card (such as a local area network (LAN) card, a modem, etc.); and a drive 1110 that drives the removable medium 1111 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • LAN local area network
  • the CPU 1101 loads the program stored in the storage unit 1108 into the RAM 1103 via the input/output interface 1105 and the bus 1104, and executes the program to execute the above processing.
  • a program to be executed by a computer may be recorded on a removable medium 1111 as a package medium, such as a magnetic disk (including a floppy disk), an optical disk (including a compact disk-read only memory (CD-ROM)), A digital versatile disc (DVD) or the like, a magneto-optical disc, or a semiconductor memory is formed.
  • a program to be executed by a computer can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 1108 via the input/output interface 1105.
  • the program can be received by the communication unit 1109 via a wired or wireless transmission medium, and the program is installed in the storage unit 1108.
  • the program may be pre-installed in the ROM 1102 or the storage unit 1108.
  • the program to be executed by the computer may be a program that performs processing in accordance with the order described in this specification, or may be a program that executes processing in parallel or performs processing when needed, such as when called.
  • the present invention can also be configured as follows.
  • a communication method performed by a base station comprising: measuring a reception quality of an uplink reference signal broadcast by a terminal device; generating an initial message when the measured reception quality is lower than a preset first threshold, the initial message being used for an instruction phase a neighbor base station measuring a reception quality of the uplink reference signal; and determining, based on a response message from the neighboring base station, whether to instruct the terminal device to switch to the neighboring base station, wherein the response message indicates that the phase is indicated by The reception quality measured by the neighboring base station.
  • the communication method further includes: reducing the first threshold; measuring a reception quality of the uplink reference signal after decreasing the first threshold; and when the measured reception quality is lower than a reduced first threshold, A notification message indicating the measured reception quality is generated for transmission to the neighboring base station.
  • the communication method further includes: reducing the first threshold multiple times, and measuring a reception quality of the uplink reference signal after each decreasing the first threshold; and generating and transmitting the notification message multiple times .
  • the communication method further includes reducing the first threshold a plurality of times by reducing the first threshold by a first predetermined value each time, wherein the first is set according to a moving speed of the terminal device Predetermined value.
  • the communication method further includes instructing the terminal device to switch to the neighboring base station when a reception quality measured by the neighboring base station is higher than a reception quality measured by the base station by a certain threshold.
  • the communication method further includes instructing the terminal device to switch to the neighboring base station upon receiving a response message from the neighboring base station.
  • the communication method further includes: predicting, according to a response message from the neighboring base station, a reception quality of the neighboring base station after transmitting the response message; and when predicting a reception quality ratio of the neighboring base station by the When the receiving quality measured by the base station is higher than a certain threshold, the terminal device is instructed to switch to the neighboring base station.
  • a reception quality measured by a neighboring base station is higher than a reception quality measured by the base station by a certain threshold
  • a response message from a neighboring base station is received, and a predicted phase is received
  • the reception quality of the neighboring base station is higher than the reception quality measured by the base station by a certain threshold
  • one of the plurality of neighboring base stations is selected as the terminal based on the power, capacity, or moving speed of the plurality of neighboring base stations.
  • the first threshold is preset in accordance with at least one of the following: a cell radius, a transmission power, an electromagnetic wave propagation environment, and a signal to interference ratio requirement.
  • the particular threshold is pre-set according to at least one of: cell radius, transmit power, electromagnetic wave propagation environment, signal to interference ratio requirements, operator experience and preferences.
  • a communication method performed by a base station comprising: measuring a reception quality of an uplink reference signal broadcasted by a terminal device upon receiving an initial message from a neighboring base station; and generating a response message indicating the measured reception quality to transmit to The neighboring base station, wherein the neighboring base station generates the initial message based on a received quality of the uplink reference signal measured by the neighboring base station.
  • the communication method further includes: increasing a second threshold set in advance; measuring a reception quality of the uplink reference signal after increasing the second threshold; and when the measured reception quality is higher than an increased second threshold Sending the response message.
  • the communication method further includes: increasing the second threshold multiple times, and measuring a reception quality of the uplink reference signal after each increasing the second threshold; and generating and transmitting the response message multiple times .
  • the communication method further includes: increasing the second threshold a plurality of times by increasing the second threshold by a second predetermined value each time, wherein the second is set according to a moving speed of the terminal device Predetermined value.
  • the neighboring base station generates the initial message that the received quality measured by the neighboring base station is lower than the first threshold
  • the communication method further includes: the receiving quality measured by the base station is higher than the first threshold
  • the response message is sent when a certain threshold is reached.
  • the communication method further includes transmitting the response message when a change amount of a change rate of reception quality measured by the base station is greater than a third threshold, wherein the response message indicates a reception quality measured by the base station and The rate of change of the measured reception quality.
  • the first threshold and the second threshold are preset according to at least one of the following: a cell radius, a transmission power, an electromagnetic wave propagation environment, and a signal to interference ratio requirement.
  • the third threshold is set in advance according to a moving speed of the terminal device.
  • the particular threshold is pre-set according to at least one of: cell radius, transmit power, electromagnetic wave propagation environment, signal to interference ratio requirements, operator experience and preferences.
  • a base station apparatus includes processing circuitry configured to perform the communication method described above.
  • a computer readable recording medium storing a program, which, when executed, causes a computer to execute the above communication method.

Abstract

公开了无线通信方法和无线通信设备。该通信方法由基站执行,包括:测量由终端设备广播的上行参考信号的接收质量;当测量的接收质量低于预先设置的第一门限时生成初始消息,该初始消息用于指令相邻基站测量上行参考信号的接收质量;基于来自相邻基站的应答消息来确定是否指令终端设备切换至相邻基站,其中,该应答消息指示由相邻基站测量的接收质量。摘要附图:图3

Description

无线通信方法和无线通信设备 技术领域
本发明涉及无线通信方法和无线通信设备,具体地,涉及用于在移动通信系统中执行基于上行测量的切换的方法和通信设备。
背景技术
切换是移动通信系统中的重要操作。在未来的蜂窝系统中,对切换过程的延时、信令开销、能量效率等方面提出了更高的要求。为此,第三代合作伙伴计划(3GPP)已经考虑在蜂窝系统中引入基于上行测量的切换过程。
在传统的蜂窝系统中,切换通常基于下行测量。具体来说,用户设备接收由各个基站发送的下行参考信号,并且测量这些下行参考信号的接收质量。如果观测到源基站(即当前正在为自己服务的基站)的测量结果正在变差,而某些相邻基站(即目标基站)的测量结果正在变好,则用户设备将这些测量结果报告给源基站。源基站根据接收到的测量结果,判决该用户设备是否需要进行切换以及切换至哪个目标基站,从而进行切换过程。
与基于下行测量的切换不同,在基于上行测量的切换过程中,由用户设备发送上行参考信号,各个基站接收这些上行参考信号,并且测量这些上行参考信号的接收质量。从系统的角度来说,当源基站的测量结果比某个候选目标基站的测量结果更差时,应当使该用户设备切换至测量结果更优的目标基站。但是,由于在基于上行测量的切换过程中测量结果散布在各个基站处,源基站难以获得候选目标基站的测量结果,因而难以进行切换判决。
在未来的蜂窝系统是中央控制式(即所有的基站都被某个后台中央所控制)的情况下,上述问题可能较容易解决。例如,由于后台中央可以获得所有基站的信息,因而可以进行切换判决。但是,在蜂窝系统包括可移动小区的情况下,上述问题可能变得非常突出。这主要是由于:可移动小区可能被部署在没有后台中央或者后台中央因故被毁的场景中,而在这些 场景中没有一种网络实体能够获得所有基站的信息,因此使得切换判决无法进行。
因此,期望提出一种能够在没有后台控制中央的场景中高效地执行基于上行测量的切换的方案。
发明内容
根据本发明的一个方面,提供了一种由基站执行的通信方法,包括:测量由终端设备广播的上行参考信号的接收质量;当测量的接收质量低于预先设置的第一门限时生成初始消息,所述初始消息用于指令相邻基站测量所述上行参考信号的接收质量;基于来自所述相邻基站的应答消息来确定是否指令所述终端设备切换至所述相邻基站,其中,所述应答消息指示由所述相邻基站测量的接收质量。
根据本发明的另一个方面,提供了一种由基站执行的通信方法,包括:在接收到来自相邻基站的初始消息时测量由终端设备广播的上行参考信号的接收质量;以及生成指示所测量的接收质量的应答消息,以发送至所述相邻基站,其中,所述相邻基站基于由所述相邻基站测量的所述上行参考信号的接收质量而生成所述初始消息。
根据本发明的另一个方面,提供了一种基站设备,包括处理电路,所述处理电路被配置为执行上述通信方法。
根据本发明的另一个方面,提供了一种存储有程序的计算机可读记录介质,所述程序在被执行时使计算机执行上述通信方法。
附图说明
可以通过参考下文中结合附图所给出的描述来更好地理解本发明,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1示意地示出了基于上行测量的切换的场景。
图2示出了基于上行测量的切换过程的信令流程。
图3示出了根据第一实施方式的用于执行切换判决的信令交互流程。
图4示出了根据第一实施方式的基站A和基站B的测量结果的变化曲线以及相应的信令交互。
图5示出了根据第二实施方式的用于执行切换判决的信令交互流程。
图6示出了根据第二实施方式的基站A和基站B的测量结果的变化曲线以及相应的信令交互。
图7示出了根据第三实施方式的用于执行切换判决的信令交互流程。
图8示出了根据第三实施方式的基站A和基站B的测量结果的变化曲线以及相应的信令交互。
图9示出了作为基站的一个示例的eNB的示意性配置框图。
图10示出了作为用户设备的一个示例的智能电话的示意性配置框图。
图11示出了计算机硬件的示意性配置框图。
具体实施方式
图1示出了基于上行测量的切换的场景。如图1所示,通信系统中存在着用户设备UE和两个相邻的基站A和B,其中基站A是当前正在服务用户设备UE的基站,即源基站。如图所示,基站A和B例如可以是安装在车辆上的移动的基站,但本发明不限于此,本发明的方案也可适用于基站A和B是固定基站的情形。也就是说,针对上文所述的可移动小区的情况(没有后台控制中央),本发明能够很好地解决源基站进行切换判决的问题,而针对固定小区的情况(有后台控制中央),本发明的方案也能够适用。
在图1中,用户设备UE发送上行参考信号,基站A和B分别接收该上行参考信号,并且测量该上行参考信号的接收质量。为描述方便,将移动基站A的测量结果表示为X A,将移动基站B的测量结果表示为X B。从通信系统的角度看,希望在基站A测量的信号接收质量比基站B测量的信号接收质量差一定量时,即当满足X A<X B-O时,基站A进行切换判决,以指令用户设备UE切换至目标基站B。其中O是预设的阈值,该阈值通常可以根据以下因素中的一个或多个来设置:小区半径、发射功率、电磁波传播环境、信干比要求、运营商自身的经验和偏好等。
图2示出了一次切换过程的信令流程。如图2所示,用户设备UE在步骤S210发送(例如,广播)上行参考信号。基站A和B在步骤S220分别测量接收到的上行参考信号的接收质量,例如接收信号功率。然后源基站A在步骤S230设法进行切换判决。当源基站A确定用户设备UE应当切换至目标基站B之后,源基站A与目标基站B在步骤S240交互信令进行切换请求与应答。然后,源基站A在步骤S250与用户设备UE交互信令以进行层3配置。之后,用户设备UE在步骤S260设法与目标基站B建立同步,从而与其进行通信。通过上述过程,用户设备UE从源基站A切换至目标基站B。
由图2可见,源基站A在步骤S230中执行的切换判决至关重要,以下将具体进行描述。
图3示出了根据本发明第一实施方式的用于执行切换判决的信令交互流程。
参见图3,首先在步骤S300,源基站A设置初始门限S,候选目标基站B也设置初始门限T。门限S和T可以根据小区半径、发射功率、电磁波传播环境、信干比要求等因素来设置。当源基站A对用户设备所发送的上行参考信号的测量结果X A低于该初始门限S时,即X A<S时,源基站A在步骤S301执行一次触发,即向所有的候选目标基站广播一条包含其自身的测量结果的初始消息Msg1。该初始消息Msg1用于向所有候选目标基站通知源基站A的通信质量的下降,并指令各个候选目标基站开始进行上行测量,以便为可能需要的切换做准备。本领域技术人员易于理解,实际通信系统中通常存在着多个候选目标基站,通过消息Msg1,源基站A的测量结果将被通知给每一个候选目标基站。本说明书为了简明起见,图中仅示意地示出了基站B作为候选目标基站的代表,而省略了其它的候选目标基站。
候选目标基站B在接收到来自源基站A的消息Msg1后,在步骤S302进行上行测量。当基站B的测量结果X B高于初始门限T时,即X B>T时,基站B在步骤S303执行一次触发,即向源基站A发送包含有其测量结果的应答消息Msg2。
对于源基站A来说,每执行一次触发后,都将自己的门限下调ΔS。因此源基站A在发送了消息Msg1之后将自己的门限下调ΔS,如步骤S304所示。由于用户设备周期性地发送上行参考信号,因此源基站A周期性地执行上行测量。基于此,源基站A在将门限下调ΔS之后将会执行上行测 量,如步骤S305所示。当源基站A观测到当前的测量结果低于当前门限值时,即X A<S-ΔS时,其在步骤S306执行一次触发,向所有的候选目标基站广播一条包含有其当前测量结果的消息Msg3。然后源基站A将再次将门限下调ΔS,下调后的门限将成为S-2*ΔS。然后源基站A将执行步骤S305-S306的操作。由此可见,源基站A将门限下调ΔS,观测到当前测量结果低于下调后的门限(即S-k*ΔS,k=1,2,3…),从而执行触发以发送消息Msg3,然后将门限再次下调ΔS……这一过程可以重复执行多次。
另一方面,对于候选目标基站B来说,每执行一次触发后,都将自己的门限上调ΔT。因此基站B在发送了应答消息Msg2之后将自己的门限上调ΔT,如步骤S307所示。与源基站A类似,基站B也周期性地执行上行测量,因此在将门限上调ΔT之后基站B将会进行上行测量,如步骤S308所示。当基站B观测到当前的测量结果高于当前门限值时,即X B>T+ΔT时,其在步骤S309执行一次触发,向源基站A发送一条包含有其当前测量结果的应答消息Msg4。然后基站B将再次将门限上调ΔT,上调后的门限将成为T+2*ΔT。然后基站B将执行步骤S308-S309的操作。由此可见,与源基站A的操作类似地,候选目标基站B将门限上调ΔT,观测到当前测量结果高于上调后的门限(即T+k*ΔT,k=1,2,3…),从而执行触发以发送应答消息Msg4,然后将门限再次上调ΔT……这一过程也可以重复执行多次。
上述参数ΔS和ΔT可以由基站基于用户设备的移动速度来设置。此外需要说明的是,虽然在图3中将源基站A发送消息Msg3的步骤S306示出为在候选目标基站B发送应答消息Msg4的步骤S309之前,但步骤S306和S309的执行顺序不限于此。由于基站A和基站B独立地进行上行测量和触发,因此这两个步骤可能同时发生或者以与图中所示相反的顺序发生。
源基站A在每次接收到来自候选目标基站B的应答消息Msg4时,将自己的当前测量结果与所接收的应答消息Msg4中包含的基站B的测量结果进行比较,如步骤S310所示。如果应答消息Msg4中包含的测量结果比自己的当前测量结果高出阈值O,则源基站A做出切换判决,确定用户设备应该切换到基站B,如步骤S311所示。反之,如果应答消息Msg4中包含的测量结果没有比自己的当前测量结果高出阈值O,则源基站A继续执行步骤S304-S306的操作。
需要说明的是,图3中仅以基站B为代表示出了候选目标基站的操作。 如果在步骤S310中源基站A确定来自多个候选目标基站的多个应答消息Msg4中包含的测量结果都比自己的当前测量结果高出阈值O,则源基站A将根据该多个候选目标基站的电量、容量、移动速度等其他因素在这些满足条件的候选目标基站中选择一个最优的基站作为切换目标基站。
图4示意地示出了根据第一实施方式的基站A和基站B所测量的信号接收质量的变化曲线以及相应的信令交互。如图4所示,线X A和X B分别表示基站A和基站B所测量的上行参考信号接收质量随时间的变化。为了简明起见,图中将X A和X B示出为直线,而实际上X A和X B通常是曲线。
在时间点t 1处,基站A所测量的接收质量X A小于初始门限值S,因此基站A发送消息Msg1。在时间点t 2处,基站B的测量结果X B高于初始门限T,因此基站B向基站A发送应答消息Msg2。在时间点t 3处,基站A下调了门限,并且测量结果X A小于下调后的门限S-ΔS,因此基站A向基站B发送消息Msg3。在时间点t 4处,基站B上调了门限,并且测量结果X B大于T+ΔT,因此基站B发送应答消息Msg4。在时间点t 5处,基站A接收到来自基站B的应答消息Msg4,因此可以将应答消息Msg4中所包含的基站B的测量结果X B与此时基站A的测量结果X A进行比较,如果X A<X B-O,则基站A可以做出切换至基站B的切换判决。为了说明本发明的原理的目的,图4仅是示意地示出了基站A和基站B分别对初始门限进行了一次下调和上调,而实际处理过程可能涉及多次上调和下调。如参照图3所描述的。
图5示出了根据本发明第二实施方式的用于执行切换判决的信令交互流程。第二实施方式是一种简化的方案,可以认为其相当于省略了第一实施方式中的步骤S304-S306以及步骤S307-S309。如图5所示,首先在步骤S500,源基站A设置门限S,候选目标基站B设置门限S+O,其中O与第一实施方式中的阈值O具有相同的含义。当源基站A当前测量的下行参考信号接收质量低于门限S时,源基站A执行一次触发,向所有候选目标基站(图中以基站B作为代表)广播带有其当前测量结果的初始消息Msg1,如步骤S501所示。
候选目标基站B在接收到来自源基站A的初始消息Msg1后开始进行上行测量,如步骤S502所示。当基站B的测量结果高于先前设置的门限S+O时,基站B执行一次触发,向源基站A发送带有其测量结果的应答消息Msg2,如步骤S503所示。源基站A在接收到应答消息Msg2后可以 立刻进行切换判决,确定用户设备应被切换至基站B,如步骤S504所示,这是因为应答消息Msg2的发送就意味着基站B的测量结果比源基站A的测量结果至少高出阈值O,因而符合切换的条件。与图3类似地,如果源基站A接收到来自多个候选目标基站的消息Msg2,即,有多个候选目标基站满足X B>S+O,则源基站A将根据该多个候选目标基站的电量、容量、移动速度等其他因素在这些候选目标基站中选择最优的一个作为切换目标基站。
针对第二实施方式,图6示出了基站A和基站B所测量的信号接收质量的变化曲线以及相应的信令交互。在时间点t 1处,基站A所测量的上行参考信号接收质量X A小于门限S,因此基站A发送消息Msg1。在时间点t 2处,基站B的测量结果X B高于门限S+O,因此基站B向基站A发送应答消息Msg2。在时间点t 3处,基站A接收到应答消息Msg2,因此可以做出切换至基站B的切换判决。
图7示出了根据本发明第三实施方式的用于执行切换判决的信令交互流程。
参见图7,首先在步骤S700,源基站A设置初始门限S,候选目标基站B也设置初始门限D。本实施方式中的门限S与第一实施方式中的门限S相同,而门限D可以由基站B基于用户设备的移动速度来设置。当源基站A对用户设备所发送的上行参考信号的测量结果X A低于该门限S时,即X A<S时,源基站A在步骤S701执行一次触发,向所有的候选目标基站广播一条包含其自身的测量结果的消息Msg1。如前文所述,为了简明起见,图7中仅示出了基站B作为候选目标基站的代表,而省略了其它的候选目标基站。
候选目标基站B在接收到来自源基站A的消息Msg1之后,在步骤S702对来自用户设备的上行参考信号进行测量,获得测量结果,并且计算测量结果的变化率。基站B在时刻t的测量结果变化率d B(t)可以表示为以下等式(1):
d B(t)=[X B(t)-X B(t-Δt)]/Δt       --等式(1)
其中,Δt是时间间隔,X B(t)表示基站B在时刻t的测量结果,X B(t-Δt)表示在时刻(t-Δt)的测量结果。参见图8,其示出了基站A和基站B的测量结果的变化曲线,其中基站B的测量结果X B被示为一条曲线。上述等式(1)所表示的测量结果变化率d B(t)可以被理解为曲线X B在时刻t处的导 数(或切线斜率)。由图8中可以看出,曲线X B在各个时刻的斜率彼此不同,也就是说,基站B在各个时刻处的测量结果变化率d B(t)彼此不同,而不是固定不变的。
当基站B的测量结果变化率的改变量高于在步骤S700中设置的门限D时,即|d B(t)-d B(t’)|>D时,基站B执行一次触发,向源基站A发送一条包含有基站B在时刻t的测量结果X B(t)和测量结果变化率d B(t)的应答消息Msg2,如步骤S703所示。其中,t’表示基站B执行上一次触发的时刻,d B(t’)表示基站B在上一次触发时的测量结果变化率。需要说明的是,基站B在发送了应答消息Msg2之后仍然保持进行上行测量,因此随着时间的推移,基站B可能继续观测到测量结果变化率d B(t)的改变量高于门限D的情况(假设在时刻t i处出现)。当观测到这一情况时,基站B将再次执行触发,向源基站A发送包含有基站B在时刻t i处的测量结果X B(t i)和测量结果变化率d B(t i)的新的应答消息Msg2。也就是说,步骤S703可能执行多次,基站B可能发送多次应答消息Msg2。
相应地,源基站A可能从目标候选基站B先后接收到多条应答消息Msg2,假设源基站A接收到的最新的一条应答消息Msg2包含了基站B在时刻t recent处的测量结果X B(t recent)和测量结果变化率d B(t recent)。在此情况下,源基站A将在步骤S704中使用该最新消息中包含的时刻t recent处的测量结果X B(t recent)和测量结果变化率d B(t recent)来预测在时刻t current处基站B的测量结果,时刻t current可以是源基站A在接收到该最新应答消息之后的任何时刻。该预测可以表示为以下等式(2):
X B.predict(t current)=X B(t recent)+d B(t recent)*(t current-t recent)    -等式(2)
然后,源基站A在步骤S705判断所预测的基站B的测量结果是否比源基站A当前(时刻t current处)的测量结果高出阈值O,即,判断X B.predict(t current)>X A(t current)+O是否成立。如果成立,源基站A判决用户设备应当切换至目标基站B,如步骤S706所示。如果不成立,源基站A将返回至步骤S704之前,等待再次接收来自基站B的应答消息Msg2。如上所述,图7中仅示出了一个候选目标基站B,而实际中通常存在多个候选目标基站。如果源基站A在步骤S705中判断有多个候选目标基站B都满足X B.predict(t current)>X A(t current)+O,则源基站A将根据该多个候选目标基站B的电量、容量、移动速度等其他因素在这些候选目标基站中选择最优的一个作为切换目标。
在本实施方式中,源基站A在接收到一条应答消息之后,可以使用 该消息中包含的测量结果以及测量结果变化率来预测基站B在发送了该应答消息之后任何时刻的测量结果。当基站B的测量结果变化率(斜率)发生较大改变(例如大于门限D)时,这意味着使用先前的变化率已不能准确地预测测量结果,因此基站B需要发送新的应答消息,以将新的测量结果和测量结果变化率通知给源基站A。而当基站B的测量结果变化率(斜率)没有发生较大改变时,基站B不需要发送新的应答消息。由此,可以进一步减少基站B需要发送的消息或信令。
图8示意地示出了根据第三实施方式的基站A和基站B的测量结果的变化曲线以及相应的信令交互。如图8所示,线X A和X B分别表示基站A和基站B所测量的上行参考信号接收质量随时间的变化。特别地,为了阐明本实施方式,基站B的测量结果X B被表示为曲线。本领域技术人员易于理解,基站A的测量结果X A也可以是曲线,只是考虑到说明的简明性,图8中将X A仍示为直线。
在时间点t 1处,基站A的测量结果X A小于初始门限S,因此基站A向基站B发送消息Msg1。在时间点t 2处,基站B的测量结果变化率d B(t 2)的变化量Δd B(t 2)大于预设门限D,因此基站B向基站A发送应答消息Msg2。在时间点t 3处,基站B再次观测到测量结果变化率d B(t 3)的变化量Δd B(t 3)大于预设门限D,因此基站B向基站A发送新的应答消息Msg2。在时间点t 4处(在基站A接收到新的应答消息Msg2之后的某一时刻),基站A根据基站B最近一次(第二次)发送的应答消息Msg2来预测基站B在时间点t 4处的测量结果,并判断该预测的测量结果是否比基站A在时间点t 4处的测量结果高出阈值O。如果成立,基站A可以做出将用户设备切换至基站B的切换判决。为了说明本发明的原理,图8示出基站B发送了两次应答消息Msg2,但本领域技术人员易于理解,实际处理过程中可能涉及应答消息Msg2的更多次发送或仅一次发送。
根据以上结合附图所描述的本发明的各实施方式,本发明提出了在没有后台控制中央的场景下能够使源基站高效地执行切换判决的技术方案。根据本发明的方案,源基站能够快速获得进行切换判决所需要的候选目标基站的信息,减少了信令开销,提高了基于上行测量的切换过程的总体性能。
本发明能够应用于各种产品。例如,上述实施例中的基站可以包括任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以是覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微) eNB。代替地,该网络侧设备或基站也可以包括任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端设备也可以通过暂时地或半持久性地执行基站功能而作为基站工作。
另一方面,上述实施例中的用户设备例如可以被实现为通信终端设备(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端设备(诸如汽车导航设备),还可以被实现为执行机器对机器(M2M)通信的终端设备,也称为机器类型通信(MTC)终端设备。此外,该终端设备或用户设备也可以是安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下结合图9以eNB作为一个示例来描述基站的实现。
图9示出了eNB的示意性配置的框图。如图9所示,eNB 2300包括一个或多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图9所示,eNB 2300可以包括多个天线2310。例如,多个天线2310可以与eNB 2300使用的多个频带兼容。虽然图9示出eNB 2300包括多个天线2310的示例,但是eNB 2300也可以包括单个天线2310。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型 的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323与核心网节点或另外的eNB进行通信。在此情况下,eNB 2300与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与无线通信接口2325所使用的频带相比,网络接口2323可以使用较高频带以用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于eNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为插入到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图9所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与eNB 2300使用的多个频带兼容。如图9所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图9示出无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图9所示的eNB 2300中,基站侧设备的收发装置可以由无线通信接口2325实现。各单元的功能的至少一部分也可以由控制器2321执行。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行各单元的功能的至少一部分。
以下结合图10以智能电话作为一个示例来描述用户设备的实现。
图10示出了智能电话的示意性配置的框图。如图10所示,智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上系统(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以是其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图10所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。但是,无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512还可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图10所示,智能电话2500可以包括多个天线2516。但是,智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,可以从智能电话2500的配置中省略天线开关2515。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向智能电话2500的各个部件提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图10所示的智能电话2500中,终端设备的收发装置可以由无线通信接口2512实现。终端设备的各功能单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行终端设备的各功能单元的功能的至少一部分。
此外,在上述实施例中由每个设备或单元执行的一系列处理可以由软件、硬件或者软件和硬件的组合来实现。包括在软件中的程序可以事先存储在例如每个设备或单元的内部或外部所设置的存储介质中。作为一个示例,在执行期间,这些程序被写入随机存取存储器(RAM)并且由处理器(例如CPU)来执行,从而执行在上述实施例中描述的方法和处理。本发明包括这样的程序代码和程序产品,以及其上记录有该程序代码的计算机可读记录介质。
图11是示出了根据程序执行本发明的方案的计算机硬件的示例配置框图。
在计算机1100中,中央处理单元(CPU)1101、只读存储器(ROM)1102以及随机存取存储器(RAM)1103通过总线1104彼此连接。
输入/输出接口1105进一步与总线1104连接。输入/输出接口1105连接有以下组件:以键盘、鼠标、麦克风等形成的输入单元1106;以显示器、扬声器等形成的输出单元1107;以硬盘、非易失性存储器等形成的存储单元1108;以网络接口卡(诸如局域网(LAN)卡、调制解调器等)形成的通信单元1109;以及驱动移动介质1111的驱动器1110,该移动介质1111诸如是磁盘、光盘、磁光盘或半导体存储器。
在具有上述结构的计算机中,CPU 1101将存储在存储单元1108中的程序经由输入/输出接口1105和总线1104加载到RAM 1103中,并且执行该程序,以便执行上述处理。
要由计算机(CPU 1101)执行的程序可以被记录在作为封装介质的移动介质1111上,该封装介质以例如磁盘(包括软盘)、光盘(包括压缩光盘-只读存储器(CD-ROM))、数字多功能光盘(DVD)等)、磁光盘、或半导体存储器来形成。此外,要由计算机(CPU 1101)执行的程序也可以经由诸如局域网、因特网、或数字卫星广播的有线或无线传输介质来提供。
当移动介质1111安装在驱动器1110中时,可以将程序经由输入/输出接口1105安装在存储单元1108中。另外,可以经由有线或无线传输介质由通信单元1109来接收程序,并且将程序安装在存储单元1108中。可替选地,可以将程序预先安装在ROM 1102或存储单元1108中。
要由计算机执行的程序可以是根据本说明书中描述的顺序来执行处理的程序,或者可以是并行地执行处理或当需要时(诸如,当调用时)执行处理的程序。
本文中所描述的各个设备或单元仅是逻辑意义上的,并不严格对应于物理设备或实体。例如,本文所描述的每个单元的功能可能由多个物理实体来实现,或者,本文所描述的多个单元的功能可能由单个物理实体来实现。此外需要说明的是,在一个实施例中描述的特征、部件、元素、步骤等并不局限于该实施例,而是也可应用于其它实施例,例如替代其它实施例中的特定特征、部件、元素、步骤等,或者与其相结合。
以上已经结合附图详细描述了本发明的实施例以及技术效果,但是本发明的范围不限于此。本领域普通技术人员应该理解的是,取决于设计要求和其他因素,在不偏离本发明的原理和精神的情况下,可以对本文中所讨论的实施方式进行各种修改或变化。本发明的范围由所附权利要求或其等同方案来限定。
此外,本发明也可以被配置如下。
一种由基站执行的通信方法,包括:测量由终端设备广播的上行参考信号的接收质量;当测量的接收质量低于预先设置的第一门限时生成初始消息,所述初始消息用于指令相邻基站测量所述上行参考信号的接收质量;以及基于来自所述相邻基站的应答消息来确定是否指令所述终端设备切换至所述相邻基站,其中,所述应答消息指示由所述相邻基站测量的接收质量。
该通信方法还包括:减小所述第一门限;在减小所述第一门限后测量所述上行参考信号的接收质量;以及当所测量的接收质量低于减小后的第一门限时,生成指示所测量的接收质量的通知消息,以发送至所述相邻基站。
该通信方法还包括:多次地减小所述第一门限,并在每次减小所述第一门限后测量所述上行参考信号的接收质量;以及多次地生成并发送所述通知消息。
该通信方法还包括:通过每次将所述第一门限减小第一预定值,来多次地减小所述第一门限,其中,根据所述终端设备的移动速度来设置所述第一预定值。
该通信方法还包括:在由所述相邻基站测量的接收质量比由所述基站测量的接收质量高出特定阈值时,指令所述终端设备切换至所述相邻基站。
该通信方法还包括:在接收到来自所述相邻基站的应答消息时,指令所述终端设备切换至所述相邻基站。
该通信方法还包括:根据来自所述相邻基站的应答消息来预测所述相邻基站在发送所述应答消息之后的接收质量;以及当所预测的所述相邻基站的接收质量比由所述基站测量的接收质量高出特定阈值时,指令所述终端设备切换至所述相邻基站。
当存在多个相邻基站满足以下条件之一时:由相邻基站测量的接收质量比由所述基站测量的接收质量高出特定阈值,接收到来自相邻基站的应答消息,以及所预测的相邻基站的接收质量比由所述基站测量的接收质量高出特定阈值,基于所述多个相邻基站的电量、容量或移动速度来选择所述多个相邻基站中的一个作为所述终端设备将要切换至的基站。
根据以下中的至少一个来预先设置所述第一门限:小区半径、发射功 率、电磁波传播环境、信干比要求。
根据以下中的至少一个来预先设置所述特定阈值:小区半径、发射功率、电磁波传播环境、信干比要求、运营商的经验和偏好。
一种由基站执行的通信方法,包括:在接收到来自相邻基站的初始消息时测量由终端设备广播的上行参考信号的接收质量;以及生成指示所测量的接收质量的应答消息,以发送至所述相邻基站,其中,所述相邻基站基于由所述相邻基站测量的所述上行参考信号的接收质量而生成所述初始消息。
该通信方法还包括:增大预先设置的第二门限;在增大所述第二门限后测量所述上行参考信号的接收质量;以及当所测量的接收质量高于增大后的第二门限时,发送所述应答消息。
该通信方法还包括:多次地增大所述第二门限,并在每次增大所述第二门限后测量所述上行参考信号的接收质量;以及多次地生成并发送所述应答消息。
该通信方法还包括:通过每次将所述第二门限增大第二预定值,来多次地增大所述第二门限,其中,根据所述终端设备的移动速度来设置所述第二预定值。
所述相邻基站在由所述相邻基站测量的接收质量低于第一门限生成所述初始消息,该通信方法还包括:在由所述基站测量的接收质量比所述第一门限高出特定阈值时,发送所述应答消息。
该通信方法还包括:在由所述基站测量的接收质量的变化率的改变量大于第三门限时,发送所述应答消息,其中,所述应答消息指示由所述基站测量的接收质量以及所测量的接收质量的变化率。
根据以下中的至少一个来预先设置所述第一门限和所述第二门限:小区半径、发射功率、电磁波传播环境、信干比要求。
根据所述终端设备的移动速度来预先设置所述第三门限。
根据以下中的至少一个来预先设置所述特定阈值:小区半径、发射功率、电磁波传播环境、信干比要求、运营商的经验和偏好。
一种基站设备,包括处理电路,所述处理电路被配置为执行上述通信方法。
一种存储有程序的计算机可读记录介质,所述程序在被执行时使计算 机执行上述通信方法。

Claims (23)

  1. 一种由基站执行的通信方法,包括:
    测量由终端设备广播的上行参考信号的接收质量;
    当测量的接收质量低于预先设置的第一门限时生成初始消息,所述初始消息用于指令相邻基站测量所述上行参考信号的接收质量;以及
    基于来自所述相邻基站的应答消息来确定是否指令所述终端设备切换至所述相邻基站,其中,所述应答消息指示由所述相邻基站测量的接收质量。
  2. 根据权利要求1所述的通信方法,还包括:
    减小所述第一门限;
    在减小所述第一门限后测量所述上行参考信号的接收质量;以及
    当所测量的接收质量低于减小后的第一门限时,生成指示所测量的接收质量的通知消息,以发送至所述相邻基站。
  3. 根据权利要求2所述的通信方法,还包括:
    多次地减小所述第一门限,并在每次减小所述第一门限后测量所述上行参考信号的接收质量;以及
    多次地生成并发送所述通知消息。
  4. 根据权利要求3所述的通信方法,还包括:
    通过每次将所述第一门限减小第一预定值,来多次地减小所述第一门限,
    其中,根据所述终端设备的移动速度来设置所述第一预定值。
  5. 根据权利要求1所述的通信方法,还包括:
    在由所述相邻基站测量的接收质量比由所述基站测量的接收质量高出特定阈值时,指令所述终端设备切换至所述相邻基站。
  6. 根据权利要求1所述的通信方法,还包括:在接收到来自所述相邻基站的应答消息时,指令所述终端设备切换至所述相邻基站。
  7. 根据权利要求1所述的通信方法,还包括:
    根据来自所述相邻基站的应答消息来预测所述相邻基站在发送所述应答消息之后的接收质量;以及
    当所预测的所述相邻基站的接收质量比由所述基站测量的接收质量高出特定阈值时,指令所述终端设备切换至所述相邻基站。
  8. 根据权利要求5-7中任一项所述的通信方法,当存在多个相邻基站满足以下条件之一时:
    由相邻基站测量的接收质量比由所述基站测量的接收质量高出特定阈值,
    接收到来自相邻基站的应答消息,以及
    所预测的相邻基站的接收质量比由所述基站测量的接收质量高出特定阈值,
    基于所述多个相邻基站的电量、容量或移动速度来选择所述多个相邻基站中的一个作为所述终端设备将要切换至的基站。
  9. 根据权利要求1-7中任一项所述的通信方法,其中,根据以下中的至少一个来预先设置所述第一门限:小区半径、发射功率、电磁波传播环境、信干比要求。
  10. 根据权利要求5或7所述的通信方法,其中,根据以下中的至少一个来预先设置所述特定阈值:小区半径、发射功率、电磁波传播环境、信干比要求、运营商的经验和偏好。
  11. 一种基站设备,包括处理电路,所述处理电路被配置为执行根据权利要求1-10中任一项所述的通信方法。
  12. 一种存储有程序的计算机可读记录介质,所述程序在被执行时使计算机执行根据权利要求1-10中任一项所述的通信方法。
  13. 一种由基站执行的通信方法,包括:
    在接收到来自相邻基站的初始消息时测量由终端设备广播的上行参考信号的接收质量;以及
    生成指示所测量的接收质量的应答消息,以发送至所述相邻基站,
    其中,所述相邻基站基于由所述相邻基站测量的所述上行参考信号的接收质量而生成所述初始消息。
  14. 根据权利要求13所述的通信方法,还包括:
    增大预先设置的第二门限;
    在增大所述第二门限后测量所述上行参考信号的接收质量;以及
    当所测量的接收质量高于增大后的第二门限时,发送所述应答消息。
  15. 根据权利要求14所述的通信方法,还包括:
    多次地增大所述第二门限,并在每次增大所述第二门限后测量所述上行参考信号的接收质量;以及
    多次地生成并发送所述应答消息。
  16. 根据权利要求15所述的通信方法,还包括:
    通过每次将所述第二门限增大第二预定值,来多次地增大所述第二门限,
    其中,根据所述终端设备的移动速度来设置所述第二预定值。
  17. 根据权利要求13所述的通信方法,其中,所述相邻基站在由所述相邻基站测量的接收质量低于第一门限生成所述初始消息,
    所述通信方法还包括:
    在由所述基站测量的接收质量比所述第一门限高出特定阈值时,发送所述应答消息。
  18. 根据权利要求13所述的通信方法,还包括:
    在由所述基站测量的接收质量的变化率的改变量大于第三门限时,发送所述应答消息,
    其中,所述应答消息指示由所述基站测量的接收质量以及所测量的接收质量的变化率。
  19. 根据权利要求14-17中任一项所述的通信方法,其中,根据以下中的至少一个来预先设置所述第一门限和所述第二门限:小区半径、发射功率、电磁波传播环境、信干比要求。
  20. 根据权利要求18所述的通信方法,其中,根据所述终端设备的移动速度来预先设置所述第三门限。
  21. 根据权利要求17所述的通信方法,其中,根据以下中的至少一个来预先设置所述特定阈值:小区半径、发射功率、电磁波传播环境、信干比要求、运营商的经验和偏好。
  22. 一种基站设备,包括处理电路,所述处理电路被配置为执行根据权利要求13-21中任一项所述的通信方法。
  23. 一种存储有程序的计算机可读记录介质,所述程序在被执行时使计算机执行根据权利要求13-21中任一项所述的通信方法。
PCT/CN2018/084005 2017-06-07 2018-04-23 无线通信方法和无线通信设备 WO2018223783A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/611,864 US20200120557A1 (en) 2017-06-07 2018-04-23 Wireless communication method and wireless communication device
CN201880029292.8A CN110603849B (zh) 2017-06-07 2018-04-23 无线通信方法和无线通信设备
EP18814252.5A EP3637856B1 (en) 2017-06-07 2018-04-23 Wireless communication method and wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710422338.XA CN109005558A (zh) 2017-06-07 2017-06-07 无线通信方法和无线通信设备
CN201710422338.X 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018223783A1 true WO2018223783A1 (zh) 2018-12-13

Family

ID=64566078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084005 WO2018223783A1 (zh) 2017-06-07 2018-04-23 无线通信方法和无线通信设备

Country Status (4)

Country Link
US (1) US20200120557A1 (zh)
EP (1) EP3637856B1 (zh)
CN (2) CN109005558A (zh)
WO (1) WO2018223783A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654850A (zh) * 2019-03-04 2020-09-11 华为技术有限公司 一种无线局域网的漫游方法及通信装置
US11375364B2 (en) * 2019-05-31 2022-06-28 Qualcomm Incorporated Broadcast relay method in new radio
CN111225336B (zh) * 2020-01-18 2021-01-08 杭州后博科技有限公司 一种基于智慧灯杆的基站选择与切换方法及系统
CN114513807B (zh) * 2020-11-16 2023-10-17 中国移动通信集团有限公司 网络切换参数的确定方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106819A (zh) * 2006-06-20 2008-01-16 阿尔卡特朗讯 用于无线通信网络的切换方法和基站
CN104412654A (zh) * 2012-05-17 2015-03-11 瑞典爱立信有限公司 用于在多扇区部署中做出切换决策的小区间协作
US20160270018A1 (en) * 2015-03-13 2016-09-15 Qualcomm Incorporated Synchronous low-latency media access control
CN106134236A (zh) * 2014-04-07 2016-11-16 三星电子株式会社 用于在基于波束成形的蜂窝系统中跟踪上行链路波束的方法和装置
CN106465217A (zh) * 2014-05-13 2017-02-22 高通股份有限公司 小型小区信道选择

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI103081B (fi) * 1996-02-23 1999-04-15 Nokia Telecommunications Oy Kanavanvaihto matkaviestinjärjestelmässä
KR100413418B1 (ko) * 1998-07-10 2004-02-14 엘지전자 주식회사 역방향링크의독립적소프트핸드오프제어방법
KR100975715B1 (ko) * 2005-06-27 2010-08-12 삼성전자주식회사 이동통신 시스템에서의 핸드오프 결정 방법 및 이를 지원하는 시스템
WO2013095219A1 (en) * 2011-12-20 2013-06-27 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for identifying a neighbouring base station
US9590772B2 (en) * 2012-07-02 2017-03-07 Intel Corporation Simultaneous transmit and receive
KR102394978B1 (ko) * 2015-09-18 2022-05-09 삼성전자주식회사 무선 통신 시스템에서 핸드오버 방법 및 이를 지원하는 장치
US20180317145A1 (en) * 2015-10-27 2018-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Source and target network node and respective methods performed thereby for providing mobility to a wireless device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106819A (zh) * 2006-06-20 2008-01-16 阿尔卡特朗讯 用于无线通信网络的切换方法和基站
CN104412654A (zh) * 2012-05-17 2015-03-11 瑞典爱立信有限公司 用于在多扇区部署中做出切换决策的小区间协作
CN106134236A (zh) * 2014-04-07 2016-11-16 三星电子株式会社 用于在基于波束成形的蜂窝系统中跟踪上行链路波束的方法和装置
CN106465217A (zh) * 2014-05-13 2017-02-22 高通股份有限公司 小型小区信道选择
US20160270018A1 (en) * 2015-03-13 2016-09-15 Qualcomm Incorporated Synchronous low-latency media access control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637856A4 *

Also Published As

Publication number Publication date
EP3637856B1 (en) 2021-07-21
CN110603849B (zh) 2022-04-26
EP3637856A1 (en) 2020-04-15
CN110603849A (zh) 2019-12-20
CN109005558A (zh) 2018-12-14
EP3637856A4 (en) 2020-05-13
US20200120557A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
CN109479224B (zh) 用于无线通信的电子装置以及无线通信方法
EP3678406B1 (en) Electronic device and method for wireless communications
US11456795B2 (en) Electronic device and method for measuring a beam quality of a currently serving beam based on a prediction window when the detected beam quality is within a particular range
CN106686674B (zh) 无线通信系统中的电子设备和无线通信方法
US10687258B2 (en) Electronic device in wireless communication system and wireless communication method
WO2018223783A1 (zh) 无线通信方法和无线通信设备
US9832701B2 (en) Radio communication apparatus, radio communication method, communication control apparatus, and communication control method to switch operation mode based on failure of handover
KR20180080269A (ko) 무선 통신 디바이스 및 무선 통신 방법
US11019473B2 (en) Communication device and communication method
US10715993B2 (en) Electronic apparatus, information processing device and information processing method
US20190274071A1 (en) Enhanced reactivation for light connection
CN114449596A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021159999A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2017038192A1 (ja) 装置及び方法
US20240163757A1 (en) Electronic device, communication method and storage medium
WO2020144973A1 (ja) 通信装置、通信方法、及びプログラム
CN116982349A (zh) 电子设备、通信方法和存储介质
CN114747247A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2014185139A1 (ja) 通信制御装置、通信制御方法、端末装置及び情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018814252

Country of ref document: EP

Effective date: 20200107