WO2018223637A1 - 一种移动机器人系统 - Google Patents

一种移动机器人系统 Download PDF

Info

Publication number
WO2018223637A1
WO2018223637A1 PCT/CN2017/115160 CN2017115160W WO2018223637A1 WO 2018223637 A1 WO2018223637 A1 WO 2018223637A1 CN 2017115160 W CN2017115160 W CN 2017115160W WO 2018223637 A1 WO2018223637 A1 WO 2018223637A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile robot
unit
communication unit
controller
processor
Prior art date
Application number
PCT/CN2017/115160
Other languages
English (en)
French (fr)
Inventor
赵仕勤
Original Assignee
上海岭先机器人科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海岭先机器人科技股份有限公司 filed Critical 上海岭先机器人科技股份有限公司
Publication of WO2018223637A1 publication Critical patent/WO2018223637A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/006Controls for manipulators by means of a wireless system for controlling one or several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices

Definitions

  • the invention relates to the field of artificial intelligence, and in particular to a mobile robot system.
  • mobile robots are becoming more and more intelligent, equipped with various sensors to sense the surrounding world and obtain mission information.
  • sensors for example, visual, auditory, tactile, gustatory, olfactory and attitude sensors, etc.; also provided with various actuators, such as arm actuators and their clamping mechanisms, leg actuators, head actuators and moving mechanisms such as wheels, etc.
  • the core part is the robot controller, one of the key factors affecting the performance of the robot, from receiving task instructions to completion, basically no manual intervention, so the use of artificial intelligence Technology, through the neural network and other algorithms to analyze a large amount of information, calculations, etc., so that the controller's performance, compatibility, integration, computing performance, etc. have high requirements. Therefore, among the mobile robots that assist or help people to undertake work, some are small in size but single in function; some mobile robots are powerful but bulky, bulky, costly, and require a long charging time after working for a period of time. ,low efficiency.
  • Mobile robots need various sensors to obtain external environment information, and also require highly integrated controllers to interpolate various data processors to process, calculate and analyze these external environmental information, and issue drive commands to drive various actuators of the robot.
  • Mechanical movement if these devices are all arranged on the mobile robot, it will cause the mobile robot to be bulky and cumbersome.
  • the mobile robot also needs to be equipped with components for storing electrical energy, correspondingly increasing the weight of the mobile robot, and also increasing its own consumption. A large amount of electrical energy, reducing the running time of mobile robots.
  • connection between the controller set and various data processors is basically connected by plugging.
  • the mobile robot When the mobile robot performs mechanical motion, it will cause the controller connector to loosen, thus reducing the reliability and stability of the mobile robot.
  • the present invention provides a data processing center of a mobile robot placed outside the mobile robot, wirelessly communicating with the mobile robot to complete data processing, and also reduces the number of internal components of the mobile robot and reduces movement.
  • a mobile robot system for controlling the self-weight and energy consumption of the robot, and increasing the control reliability of the mobile robot including a mobile robot and a data processing center;
  • the mobile robot includes a sensing unit, a controller, and a first communication unit;
  • the sensing unit is coupled to the first communication unit;
  • the data processing center includes a processor and a second communication unit;
  • the processor is coupled to the second communication unit; the controller and the processor Performing information interaction by the first communication unit and the second communication unit;
  • the sensing unit is configured to collect environmental data
  • the controller is configured to process the environmental data to output environmental information to a processor of the data processing center;
  • the processor is configured to process the environmental information to output feedback information to a controller of the robot.
  • first communication unit and the second communication unit are wireless communication units.
  • the wireless communication unit includes a Wi-Fi communication unit or a Bluetooth communication unit.
  • the first communication unit adopts an embedded communication board
  • the second communication unit adopts a wireless router or a slot type wireless board.
  • the sensing unit includes at least one of a visual sensor, an audible sensor, a tactile sensor, an olfactory sensor, a taste sensor, an attitude sensor, and a gravity acceleration sensor.
  • the mobile robot further includes a driving unit and a body part executing unit, the driving unit is respectively connected to the controller and the body part executing unit, and the controller is further configured to calculate the feedback information to obtain control
  • the instructions are sent to the drive unit, and the drive unit is configured to drive the corresponding body part execution unit to perform mechanical motion according to the control instruction.
  • controller processing the environmental data includes encrypting the environmental data
  • processor processing the environmental information comprises decrypting the environmental information
  • the data processing center is an industrial control machine and/or a computer for managing a plurality of robots.
  • the processor includes at least one of a central processing unit, a graphics processing unit, and a vector processing unit, and the plurality of processing units are processed in series or in parallel.
  • the mobile robot can make full use of the external data processing center to process the information provided by various sensors, and improve the stability and control reliability of the mobile robot.
  • the mobile robot and the data processing center interact by wireless communication, so that the mobile robot can be free from the constraints of the cable.
  • a data processing center can interact with multiple mobile robots to coordinate and manage multiple mobile robots to work together.
  • FIG. 1 is a schematic diagram of a mobile robot system according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of a mobile robot system according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a data processing center and a plurality of robot interaction systems of the present invention.
  • FIG. 1 is a schematic diagram of a mobile robot system according to Embodiment 1 of the present invention.
  • the mobile robot system of this embodiment includes a mobile robot and a data processing center;
  • the mobile robot includes a sensing unit, a controller and a first communication unit;
  • the data processing center includes a processor (for example, various data processing chips such as a CPU, a GPU, a TPU, and the like) and a second communication unit;
  • a processor for example, various data processing chips such as a CPU, a GPU, a TPU, and the like
  • second communication unit for example, various data processing chips such as a CPU, a GPU, a TPU, and the like
  • the sensing unit is used to collect environmental data.
  • a visual sensor for example, at least one of a visual sensor, an auditory sensor, a tactile sensor, an olfactory sensor, and a taste sensor is included.
  • An attitude sensor and/or a gravity acceleration sensor may also be included.
  • the controller processes the environmental data to output environmental information to the processor of the data processing center.
  • the processor is configured to process environmental information to output feedback information to the controller of the mobile robot.
  • a central processing unit For example, at least one of a central processing unit, a graphics processing unit, a vector processing unit, and various other data processing units are included, and the plurality of processing units are processed serially or in parallel.
  • the controller and the processor exchange information through the first communication unit and the second communication unit; wherein the first communication unit and the second communication unit are wireless communication units.
  • the wireless communication unit adopts Wi-Fi, Bluetooth or other wireless communication methods
  • the first communication unit can adopt an embedded communication board.
  • a general-purpose CPU for example, Intel's CPU
  • a single-chip microcomputer for example, an FPGA, or various A dedicated communication chip
  • the second communication unit can be a wireless router or a slotted wireless card.
  • the mobile robot system of this embodiment includes a mobile robot and a data processing center;
  • the mobile robot includes a sensing unit, a controller, a driving unit, a body part execution unit, a power control unit, and a first communication unit;
  • the data processing center includes a processor and a second communication unit; for example, the data processing center may be a PC or a computer.
  • the sensing unit is used to collect environmental data, including a visual sensor, an auditory sensor, a tactile sensor, an olfactory sensor, a taste sensor, an attitude sensor, and a gravity acceleration sensor.
  • a visual sensor is a direct source of information for the entire robot vision system, consisting primarily of one or two graphic sensors, sometimes with a light projector and other ancillary equipment.
  • the main function of the vision sensor is to obtain enough of the original image to be processed by the machine vision system.
  • Image sensors can use laser scanners, line arrays and area array CCD cameras or TV cameras; tactile sensors as a visual complement to the surface properties and physical properties of the target object: softness, hardness, elasticity, roughness and thermal conductivity Wait.
  • the attitude sensor uses a high-performance three-dimensional motion attitude measurement system based on MEMS technology. It includes motion sensors such as a three-axis gyroscope, a three-axis accelerometer, and a three-axis electronic compass.
  • the temperature-compensated three-dimensional attitude and orientation data is obtained through an embedded low-power ARM processor.
  • the zero-drift three-dimensional attitude and orientation data represented by quaternion and Euler angle is output in real time.
  • the controller processes the environmental data and also encrypts it and outputs the encrypted environmental information to the processor of the data processing center.
  • the controller is also used to solve the feedback information of the data center to obtain control instructions and send them to the driving unit.
  • the mobile robot main controller CCU Common Control Unit
  • DPC Data Processing Center
  • the control parameters obtained after the solution are sent to the respective driving units of the body part execution unit.
  • the controller can be mounted at any suitable location on the body of the mobile robot, such as the head, chest, waist, hips, and even limbs.
  • the driving unit is configured to drive the corresponding body part performing unit to perform mechanical movement according to the control instruction, wherein.
  • a driving unit that controls the arm actuator a driving unit that controls the leg actuator, a driving unit that controls the moving actuator, and the like; when the controller receives a control signal to swing the arm, sends it to the driving arm actuator a unit that drives the arm to perform a corresponding mechanical movement; when the controller receives the control signal of the curved leg, it sends it to a drive unit that controls the leg actuator, and the drive unit drives the leg to perform corresponding mechanical motion
  • the controller receives the moving control signal, it sends it to the driving unit that controls the mobile actuator.
  • the driving unit drives the wheel to move, so that the mobile robot can be free in three-dimensional space. action.
  • the processor is configured to process environmental information to output feedback information to the controller of the mobile robot.
  • the processor processing also needs to decrypt the received encrypted environment information
  • the processor includes a central processing unit (CPU), a graphics processing unit (GPU), a vector processing unit (TPU) or other data processing unit, and various processing.
  • Unit serial or parallel processing
  • the graphics processing unit uses a graphics processing unit (GPU), which is the core of large-scale parallel data processing, and can be used by companies such as NVIDIA and 3dfx.
  • the vector processing unit uses a vector processor, which is also an array processor, and can perform arithmetic operations on integrated data synchronously, and can use a chip of Google.
  • the controller and the processor exchange information through the first communication unit and the second communication unit; wherein the first communication unit and the second communication unit are wireless communication units.
  • Wireless communication can adopt Wi-Fi or Bluetooth or other various wireless communication methods.
  • the first communication unit can use an embedded communication board. Specifically, a general-purpose CPU, a single-chip microcomputer, an FPGA, or various dedicated communication chips can be used, and the second communication can be used.
  • the unit can be a wireless router or a slotted wireless card.
  • the second communication unit can interact with the first communication unit using a general purpose wireless router or can be plugged into the first communication unit using a tablet wireless router plugged directly into the data processing center DPC chassis.
  • a mobile robot Take the total power of a mobile robot at around 4,000 watts as an example.
  • the total power can be reduced to about 3,000 watts or less, and the energy consumption can be reduced by about 25% or even higher.
  • a mobile robot has a total weight of 50-100 kg, and the components associated with the data processing center weigh 5 to 10 kg. Moving them outside the body, mobile robots can reduce their own weight by 10% or more.
  • FIG. 3 is a schematic diagram of a data processing center and a plurality of mobile robot interaction systems according to the present invention.
  • data processing capabilities can be provided for multiple mobile robots through a data processing center, which can manage multiple mobile robots and greatly reduce the cost of working together with multiple mobile robots.

Abstract

一种移动机器人系统,包括移动机器人和数据处理中心;移动机器人包括传感单元、控制器和第一通讯单元;控制器分别与传感单元和第一通讯单元连接;数据处理中心包括处理器和第二通讯单元;处理器与第二通讯单元连接;控制器和处理器通过第一通讯单元和第二通讯单元进行信息交互;传感单元用于采集环境数据;控制器用于处理环境数据,以输出环境信息至数据处理中心的处理器;处理器用于处理环境信息,以输出反馈信息至机器人的控制器。将数据处理中心从机器人内部移动到体外,这样移动机器人工作功率、能耗以及自重等等各项功耗参数降低,并且移动机器人可以充分利用外置的数据处理中心处理各种传感器提供的信息。

Description

一种移动机器人系统 技术领域
本发明涉及人工智能领域,尤其涉及一种移动机器人系统。
背景技术
当前,随着人工智能、计算机科学、传感器技术以及其他相关学科越来越多的应用在移动机器人上,移动机器人表现的越来越智能,配置有各种传感器用来感知周围世界和获取任务信息,例如视觉、听觉、触觉、味觉、嗅觉和姿态传感器等等;还设置有各种执行机构,例如手臂执行机构及其夹持机构、腿部执行机构、头部执行机构和移动机构如轮子等并配合各种驱动电路完成任务,还包括移动电源等;最核心的部分是机器人的控制器,影响机器人性能的关键之一,从接收任务指令到完成,基本不需要人工干预,因此使用人工智能技术,通过神经网络等算法对获取的大量信息进行分析、运算等等处理,这样对控制器的性能、兼容性、集成度、运算性能等等都有很高的要求。所以,在协助或帮忙人们承担工作的移动机器人中,有的体积小但是功能单一;有的移动机器人功能强大但是体积庞大,笨重,成本高,并且工作一段时间后,就需要长时间的充电时间,效率低。
因此,本领域的技术人员致力于开发一种机器人系统,将移动机器人的数据处理中心转移到移动机器人体外,从而极大的改善移动机器人本身的性能。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是:
(1)移动机器人需要各种传感器获取外界环境信息,还需要高集成度的控制器接插各种数据处理器对这些外界环境信息进行处理、计算和分析,并且发出驱动指令驱动机器人各个执行机构做机械运动,这些器件如果都配置在移动机器人身上,会造成移动机器人体积庞大和笨重,尤其是移动机器人还需要配备存储电能的部件,相应增加移动机器人的自重,同时也必然增加了自身消耗的大量电能,缩短移动机器人的运行时间。
(2)高集成度的控制器和各种数据处理器运行过程中产生大量的热量,因此还需要强大的风扇和散热空间,这样导致需要更大的空间来容纳控制器和各种数据处理器,使得移动机器人的内部空间布局变得十分困难。
(3)控制器集与各种数据处理器连接基本都是采用接插方式连接,移动机器人在做机械运动时,会导致控制器接插件的松动,从而降低移动机器人的可靠性和稳 定性。
为了解决上述问题,本发明提供了一种将移动机器人的数据处理中心放置在移动机器人体外,通过无线方式与移动机器人进行通讯完成数据处理工作,同时也减少了移动机器人的内部部件数量、降低移动机器人的自重和能耗、增加移动机器人的控制可靠性的移动机器人系统,包括移动机器人和数据处理中心;所述移动机器人包括传感单元、控制器和第一通讯单元;所述控制器分别与所述传感单元和所述第一通讯单元连接;所述数据处理中心包括处理器和第二通讯单元;所述处理器与所述第二通讯单元连接;所述控制器和所述处理器通过所述第一通讯单元和所述第二通讯单元进行信息交互;
所述传感单元用于采集环境数据;
所述控制器用于处理所述环境数据,以输出环境信息至所述数据处理中心的处理器;
所述处理器用于处理所述环境信息,以输出反馈信息至所述机器人的控制器。
进一步地,所述第一通讯单元和第二通讯单元为无线通讯单元。
进一步地,所述无线通讯单元包括Wi-Fi通讯单元或蓝牙通讯单元。
进一步地,所述第一通讯单元采用嵌入式通讯板卡,所述第二通讯单元采用无线路由器或插槽式无线板卡。
进一步地,所述传感单元包括视觉传感器、听觉传感器、触觉传感器、嗅觉传感器、味觉传感器、姿态传感器和重力加速度传感器中的至少一种。
进一步地,所述移动机器人还包括驱动单元和身体部位执行单元,所述驱动单元分别与所述控制器和身体部位执行单元连接,所述控制器还用于解算所述反馈信息以获得控制指令并发送至所述驱动单元,所述驱动单元用于根据所述控制指令驱动相应的身体部位执行单元做机械运动。
进一步地,所述控制器处理所述环境数据包括对所述环境数据进行加密,以及所述处理器处理所述环境信息包括对所述环境信息进行解密。
进一步地,所述数据处理中心为工业控制机和/或计算机,用于管理多个机器人。
进一步地,所述处理器包括中央处理单元、图形处理单元和向量处理单元中的至少一种,多种处理单元串行或并行处理。
通过实施上述本发明提供的一种移动机器人系统,具有如下技术效果:
(1)将数据处理中心从移动机器人内部移动到体外,这样移动机器人内部部件数量减少,并且移动机器人工作功率、能耗以及自重等等各项功耗参数降低。
(2)移动机器人可以充分利用外置的数据处理中心处理各种传感器提供的信息,提高了移动机器人的的稳定性和控制可靠性。
(3)移动机器人和数据处理中心采用无线通讯方式进行交互,这样移动机器 人可以不用受限于有线的拘束。
(4)可在数据处理中心设置插槽式无线板卡,不需要再配置其他无线设备及布线,节约成本。
(5)一台数据处理中心可以与多台移动机器人进行交互,可以协调管理多台移动机器人协同工作。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的实施例一的移动机器人系统示意图;
图2是本发明的实施例二的移动机器人系统示意图;
图3是本发明的一台数据处理中心与多个机器人交互系统示意图。
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面采用几个具体实施例对本发明上述实施例的技术方案进行详细说明。
实施例1
图1为本发明的实施例一的移动机器人系统示意图,如图1所示,本实施例的移动机器人系统包括移动机器人和数据处理中心;
移动机器人包括传感单元、控制器和第一通讯单元;
数据处理中心包括处理器(例如,CPU、GPU、TPU等各种数据处理芯片)和第二通讯单元;
传感单元用于采集环境数据。例如,包括视觉传感器、听觉传感器、触觉传感器、嗅觉传感器和味觉传感器中的至少一种。还可以包括姿态传感器和/或重力加速度传感器。
控制器用于处理环境数据,以输出环境信息至数据处理中心的处理器。
处理器用于处理环境信息,以输出反馈信息至移动机器人的控制器。例如,包 括中央处理单元、图形处理单元、向量处理单元和其他各种数据处理单元中的至少一种,多种处理单元串行或并行处理。
控制器和处理器通过第一通讯单元和第二通讯单元进行信息交互;其中第一通讯单元和第二通讯单元为无线通讯单元。例如无线通讯单元采用Wi-Fi、蓝牙或其他无线通讯方式,第一通讯单元可采用嵌入式通讯板卡,具体地,可以使用通用CPU(例如,英特尔公司的CPU)、单片机、FPGA或各种专用通讯芯片,第二通讯单元可采用无线路由器或插槽式无线板卡。
实施例2
图2为本发明的实施例一的移动机器人系统示意图,如图2所示,本实施例的移动机器人系统包括移动机器人和数据处理中心;
移动机器人包括传感单元、控制器,驱动单元、身体部位执行单元、电源控制单元和第一通讯单元;
数据处理中心包括处理器和第二通讯单元;例如数据处理中心可以是PC机或工控机。
传感单元用于采集环境数据,包括视觉传感器、听觉传感器、触觉传感器、嗅觉传感器、味觉传感器、姿态传感器和重力加速度传感器。例如视觉传感器是整个机器人视觉系统信息的直接来源,主要由一个或者两个图形传感器组成,有时还要配以光投射器及其他辅助设备。视觉传感器的主要功能是获取足够的机器视觉系统要处理的最原始图像。图像传感器可以使用激光扫描器、线阵和面阵CCD摄像机或者TV摄像机;触觉传感器作为视觉的补充,触觉能感知目标物体的表面性能和物理特性:柔软性、硬度、弹性、粗糙度和导热性等。姿态传感器采用基于MEMS技术的高性能三维运动姿态测量系统。它包含三轴陀螺仪、三轴加速度计,三轴电子罗盘等运动传感器,通过内嵌的低功耗ARM处理器得到经过温度补偿的三维姿态与方位等数据。利用基于四元数的三维算法和特殊数据融合技术,实时输出以四元数、欧拉角表示的零漂移三维姿态方位数据。
控制器对环境数据进行处理,还需要对其进行加密处理,并且输出已加密的环境信息至数据处理中心的处理器。控制器还用于解算数据中心的反馈信息以获得控制指令并发送至驱动单元。例如,移动机器人本体主控制器CCU(Communication and Control Unit)负责把各路传感器信号转换成无线信号,经加密后向外部数据处理中心DPC(Data Processing Center)发出,并负责接受来自DPC的数据反馈并把解算后获得的控制参数发送给身体部位执行单元的各个驱动单元。并且该控制器可以安装在移动机器人身体上的任意合适位置,例如头部、胸部、腰部、臀部、甚至四肢上。
驱动单元用于根据控制指令驱动相应的身体部位执行单元做机械运动,其中。例如控制手臂执行机构的驱动单元、控制腿部执行机构的驱动单元、控制移动执行 机构的驱动单元等等;当控制器接收到挥动手臂的控制信号时,将其发送到控制手臂执行机构的驱动单元,该驱动单元驱动手臂做相应的机械运动;当控制器接收到弯曲腿部的控制信号时,将其发送到控制腿部执行机构的驱动单元,该驱动单元驱动腿部做相应的机械运动;当控制器接收到移动的控制信号时,将其发送到控制移动执行机构的驱动单元,比如移动执行机构是轮子,则该驱动单元驱动轮子做移动,以实现移动机器人可以在三维空间内自由行动。
处理器用于处理环境信息,以输出反馈信息至移动机器人的控制器。相应的,处理器处理还需要对接收到的加密环境信息进行解密,处理器包括中央处理单元(CPU)、图形处理单元(GPU)、向量处理单元(TPU)或其他数据处理单元,多种处理单元串行或并行处理。例如图形处理单元采用图形处理器(Graphics Processing Unit,缩写:GPU),是进行大规模并行数据处理的核心,具体可采用NVIDIA和3dfx等公司的芯片。向量处理单元使用向量处理器,也是阵列处理器,能够同步进行综合数据的运算操作,可采用谷歌公司的芯片。
控制器和处理器通过第一通讯单元和第二通讯单元进行信息交互;其中第一通讯单元和第二通讯单元为无线通讯单元。无线通讯可采用Wi-Fi或蓝牙或其他各种无线通讯方式,第一通讯单元可采用嵌入式通讯板卡,具体地,可以使用通用CPU、单片机、FPGA或各种专用通讯芯片,第二通讯单元可采用无线路由器或插槽式无线板卡。第二通讯单元可以使用通用的无线路由器或可以使用直接插在数据处理中心DPC机箱内的板卡式无线路由器与第一通讯单元进行交互。
以一台移动机器人的总功率在4000瓦左右为例。当把数据处理中心移到机器人体外后,总功率可以下降到3000瓦左右甚至更低,能耗因此可降低25%左右甚至更高的比例。例如一台移动机器人总重量在50-100公斤左右,和数据处理中心有关的部件的重量在5到10公斤。把它们移动到体外,移动机器人可以降低10%甚至更多的自重。
实施例三
图3为本发明的一台数据处理中心与多个移动机器人交互系统示意图。
当无线宽带足够时,可以通过一台数据处理中心为多个移动机器人提供数据处理能力,这样可以管理多个移动机器人,大幅度降低多台移动机器人协同工作的成本。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (9)

  1. 一种移动机器人系统,其特征在于,包括移动机器人和数据处理中心;所述移动机器人包括传感单元、控制器和第一通讯单元;所述控制器分别与所述传感单元和所述第一通讯单元连接;所述数据处理中心包括处理器和第二通讯单元;所述处理器与所述第二通讯单元连接;所述控制器和所述处理器通过所述第一通讯单元和所述第二通讯单元进行信息交互;
    所述传感单元用于采集环境数据;
    所述控制器用于处理所述环境数据,以输出环境信息至所述数据处理中心的处理器;
    所述处理器用于处理所述环境信息,以输出反馈信息至所述机器人的控制器。
  2. 如权利要求1所述的移动机器人系统,其特征在于,所述第一通讯单元和第二通讯单元为无线通讯单元。
  3. 如权利要求2所述的移动机器人系统,其特征在于,所述无线通讯单元包括Wi-Fi通讯单元或蓝牙通讯单元。
  4. 如权利要求1所述的移动机器人系统,其特征在于,所述第一通讯单元采用嵌入式通讯板卡,所述第二通讯单元采用无线路由器或插槽式无线板卡。
  5. 如权利要求1所述的移动机器人系统,其特征在于,所述传感单元包括视觉传感器、听觉传感器、触觉传感器、嗅觉传感器、味觉传感器、姿态传感器和重力加速度传感器中的至少一种。
  6. 如权利要求1所述的移动机器人系统,其特征在于,所述移动机器人还包括驱动单元和身体部位执行单元,所述驱动单元分别与所述控制器和身体部位执行单元连接,所述控制器还用于解算所述反馈信息以获得控制指令并发送至所述驱动单元,所述驱动单元用于根据所述控制指令驱动相应的身体部位执行单元做机械运动。
  7. 如权利要求1所述的移动机器人系统,其特征在于,所述控制器处理所述环境数据包括对所述环境数据进行加密,以及所述处理器处理所述环境信息包括对所述环境信息进行解密。
  8. 如权利要求1所述的移动机器人系统,其特征在于,所述数据处理中心为工业控制机和/或计算机,用于管理多个机器人。
  9. 如权利要求1所述的移动机器人系统,其特征在于,所述处理器包括中央处理单元、图形处理单元和向量处理单元中的至少一种,多种处理单元串行或并行处理。
PCT/CN2017/115160 2017-06-09 2017-12-08 一种移动机器人系统 WO2018223637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710434510.3 2017-06-09
CN201710434510.3A CN107030703A (zh) 2017-06-09 2017-06-09 一种移动机器人系统

Publications (1)

Publication Number Publication Date
WO2018223637A1 true WO2018223637A1 (zh) 2018-12-13

Family

ID=59542042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115160 WO2018223637A1 (zh) 2017-06-09 2017-12-08 一种移动机器人系统

Country Status (2)

Country Link
CN (1) CN107030703A (zh)
WO (1) WO2018223637A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030703A (zh) * 2017-06-09 2017-08-11 上海岭先机器人科技股份有限公司 一种移动机器人系统
CN108115728A (zh) * 2017-12-24 2018-06-05 胡明建 一种机械听觉触觉嗅觉以时间相互映射的设计方法
JP7052546B2 (ja) * 2018-05-11 2022-04-12 トヨタ自動車株式会社 自律移動システム、自律移動体、充電ドック、制御方法、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490134A (zh) * 2003-09-19 2004-04-21 清华大学 实现动物节律运动的足式仿生机器人控制方法及装置
CN205485415U (zh) * 2016-03-31 2016-08-17 深圳光启合众科技有限公司 智能机器人的控制系统
CN205750532U (zh) * 2016-04-19 2016-11-30 天津城建大学 一种履带式机器人的控制系统
US20160346920A1 (en) * 2013-11-22 2016-12-01 Jiaxing Doublewell Microelectronics. Ltd Robot system and simultaneous performance control method thereof
CN106695783A (zh) * 2015-11-18 2017-05-24 哈尔滨工大天才智能科技有限公司 一种基于单片机的小型机器人控制系统
CN107030703A (zh) * 2017-06-09 2017-08-11 上海岭先机器人科技股份有限公司 一种移动机器人系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010076786A (ko) * 2000-01-28 2001-08-16 오길록 가상현실기술을 이용한 로봇 원격제어 시스템 및 방법
CN101751038B (zh) * 2008-12-05 2011-10-26 沈阳新松机器人自动化股份有限公司 一种移动机器人导航控制装置
CN103268111A (zh) * 2013-05-28 2013-08-28 重庆大学 一种网络化分布式多移动机器人系统
CN104175308A (zh) * 2014-08-12 2014-12-03 湖南信息职业技术学院 自主服务机器人
WO2017015898A1 (zh) * 2015-07-29 2017-02-02 Abb 瑞士股份有限公司 用于机器人拆垛设备的控制系统和用于控制机器人拆垛的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490134A (zh) * 2003-09-19 2004-04-21 清华大学 实现动物节律运动的足式仿生机器人控制方法及装置
US20160346920A1 (en) * 2013-11-22 2016-12-01 Jiaxing Doublewell Microelectronics. Ltd Robot system and simultaneous performance control method thereof
CN106695783A (zh) * 2015-11-18 2017-05-24 哈尔滨工大天才智能科技有限公司 一种基于单片机的小型机器人控制系统
CN205485415U (zh) * 2016-03-31 2016-08-17 深圳光启合众科技有限公司 智能机器人的控制系统
CN205750532U (zh) * 2016-04-19 2016-11-30 天津城建大学 一种履带式机器人的控制系统
CN107030703A (zh) * 2017-06-09 2017-08-11 上海岭先机器人科技股份有限公司 一种移动机器人系统

Also Published As

Publication number Publication date
CN107030703A (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
Nishiwaki et al. Design and development of research platform for perception-action integration in humanoid robot: H6
US20210205986A1 (en) Teleoperating Of Robots With Tasks By Mapping To Human Operator Pose
Kagami et al. Design and implementation of software research platform for humanoid robotics: H6
WO2018223637A1 (zh) 一种移动机器人系统
US20180025268A1 (en) Configurable machine learning assemblies for autonomous operation in personal devices
Asfour et al. Armar-6: A collaborative humanoid robot for industrial environments
Lv et al. Teleoperation of collaborative robot for remote dementia care in home environments
TWI617908B (zh) 機械手臂控制裝置,包含該控制裝置的機械手臂系統及機械手臂控制方法
CN106507092A (zh) 摄像装置及其图像处理方法、虚拟现实设备
JP3742879B2 (ja) ロボットアーム・ハンド操作制御方法、ロボットアーム・ハンド操作制御システム
US11110612B2 (en) Processing device, system, and control method
Raj et al. Static gesture recognition based precise positioning of 5-DOF robotic arm using FPGA
Merino et al. Forward kinematic model for continuum robotic surfaces
Chauhan et al. Design of Robotic Snake with ESP 32 CAM and Arduino
Sharma et al. Design and implementation of robotic hand control using gesture recognition
CN206855448U (zh) 一种移动机器人系统
Battaglia et al. Exosense: Measuring manipulation in a wearable manner
Yu et al. Distributed control system for a humanoid robot
US20230038804A1 (en) Master-slave system and controlling method
Ni et al. Design of a Hierarchical Control System for Tetherless Snake Robot
CN206357238U (zh) 一种机器人控制系统
Adiprawita et al. Service oriented architecture in robotic as a platform for cloud robotic (Case study: human gesture based teleoperation for upper part of humanoid robot)
Zhou et al. Development of a synchronized human-robot-virtuality interaction system using cooperative robot and motion capture device
Zhou et al. An IoT-enabled telerobotic-assisted healthcare system based on inertial motion capture
US20230398695A1 (en) Haptic system for robot teleoperation in confined spaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912430

Country of ref document: EP

Kind code of ref document: A1