WO2018223363A1 - 一种三自由度解耦球面并联机构 - Google Patents

一种三自由度解耦球面并联机构 Download PDF

Info

Publication number
WO2018223363A1
WO2018223363A1 PCT/CN2017/087680 CN2017087680W WO2018223363A1 WO 2018223363 A1 WO2018223363 A1 WO 2018223363A1 CN 2017087680 W CN2017087680 W CN 2017087680W WO 2018223363 A1 WO2018223363 A1 WO 2018223363A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved
connecting rod
branch
platform
parallel mechanism
Prior art date
Application number
PCT/CN2017/087680
Other languages
English (en)
French (fr)
Inventor
赵国如
王永奉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to US16/479,918 priority Critical patent/US11331791B2/en
Priority to PCT/CN2017/087680 priority patent/WO2018223363A1/zh
Publication of WO2018223363A1 publication Critical patent/WO2018223363A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0283Three-dimensional joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0033Gripping heads and other end effectors with gripping surfaces having special shapes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators

Definitions

  • the invention relates to the technical field of parallel mechanisms, in particular to a three-degree-of-freedom decoupling spherical parallel mechanism.
  • the parallel robot Since the parallel robot was first proposed in 1938, it has been widely used in various fields of society because of its large rigidity, strong bearing capacity, small error, high precision, small self-weight load ratio, good dynamic performance and easy control.
  • the spherical parallel mechanism belongs to a 3-rotation parallel mechanism, which can realize the arbitrary rotation of the spherical center of the spherical surface around the reference point of the moving platform.
  • the mechanism moves, all the points on the moving platform of the mechanism are around the spherical center and fixed by one. The radius rotates.
  • the advantage of spherical parallel connection with respect to the general parallel mechanism is that the working space is large, flexible and reliable, and it is not easy to interfere.
  • a three-degree-of-freedom spherical parallel mechanism (CN101306534) with a central spherical hinge, which has a typical 3-RRR type mechanism, is proposed by Professor Yan and others of Yanshan University. Achieve three directions of rotation around the fixed center.
  • a three-degree-of-freedom spherical parallel mechanism (CN104827463) with a curved moving pair proposed by Lin Rongfu and others of Shanghai Jiaotong University.
  • the shape of the curved moving pair is used to realize the rotation of the moving platform at the midpoint of the arc in three directions.
  • a three-degree-of-freedom decoupling spherical parallel mechanism includes a static platform, a rotating portion mounted on the static platform, a moving platform hinged with one end of the rotating portion, and a first fixed connection to a side of the rotating portion a curved branch and a second curved branch, a first arc that is received at one end in the inner cavity formed by the first curved branch and reciprocable along a tangential direction of the first curved branch a second curved connecting rod, wherein one end is received in an inner cavity formed by the second curved branch and reciprocable along a tangential direction of the second curved branch, the first The other end of the curved connecting rod and the other end of the second curved connecting rod are fixedly connected to the side edge of the moving platform, and the rotating portion can drive the moving platform to 360 in a direction perpendicular to the static platform.
  • first curved link and the second curved link respectively reciprocate along a tangential direction of the first curved branch and the second curved branch to enable the movable platform to be wound around
  • the axis of the plane in which the first arcuate branch or the second arcuate branch is located rotates.
  • the rotating portion includes a first driving unit and a rotating unit
  • the a driving unit includes a first driving motor fixed to the static platform and a first driving gear fixedly coupled to the first driving motor
  • the rotating unit including a bracket fixed on the static platform and sleeved on a rotating member on the bracket, the rotating member is provided with a first tooth shape engaged with the first driving gear, and one end of the rotating member is hinged with the moving platform ball.
  • the axes of the first drive motor and the bracket are parallel to one another.
  • a restraining rod is disposed between the rotating member and the movable platform, one end of the restraining rod is fixedly coupled to the rotating member, and the other end is hinged to the moving platform by a ball joint.
  • the first curved branch and the second curved branch form an angle of 90 degrees.
  • a side of the first curved branch is mounted with a second driving unit
  • the second driving unit includes a second driving motor fixed to a side of the first curved branch And a second driving gear fixedly coupled to the second driving motor, wherein the first curved connecting rod is provided with a second tooth shape that meshes with the second driving gear.
  • a side of the second curved branch is mounted with a third driving unit
  • the third driving unit includes a third driving motor fixed on a side of the second curved branch And a third driving gear fixedly coupled to the third driving motor, wherein the second curved connecting rod is provided with a third tooth shape that meshes with the third driving gear.
  • a first connecting rod is disposed between the first curved connecting rod and the moving platform, and one end of the first connecting rod is opened through the end of the first curved connecting rod. The other end is fixedly connected to the side edge of the moving platform.
  • a second connecting rod is disposed between the second curved connecting rod and the moving platform, and one end of the second connecting rod is opened through the end of the second curved connecting rod. The other end is fixedly connected to the side edge of the moving platform.
  • the axes of the first connecting rod and the second connecting rod pass through the center of the ball joint.
  • the three-degree-of-freedom decoupling spherical parallel mechanism comprises a static platform, a rotating portion mounted on the static platform, a moving platform hinged with one end of the rotating portion, and a fixed connection to the side of the rotating portion a first curved branch and a second curved branch, one end of which is received in an inner cavity formed by the first curved branch and reciprocable along a tangential direction of the first curved branch a curved connecting rod, a second curved connecting rod at one end of the inner cavity formed by the second curved branch and reciprocable along a tangential direction of the second curved branch,
  • the other ends of the first curved connecting rod and the second curved connecting rod are fixedly connected to the side edge of the moving platform, and the three-degree-of-freedom decoupling spherical parallel mechanism, the rotating portion can drive the moving platform to rotate vertically
  • the direction of the static platform is rotated 360 degrees, and the first curved link and the second curved link respectively reciprocate along a tangential direction
  • FIG. 1 is a schematic structural view of a three-degree-of-freedom decoupling spherical parallel mechanism according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a three-degree-of-freedom decoupling spherical parallel mechanism according to another aspect of the present invention.
  • a three-degree-of-freedom decoupling spherical parallel mechanism 100 includes: a static platform 110, a rotating portion 120, a moving platform 130, a first curved branch 140, and a second arc.
  • the rotating portion 120 is mounted on the static platform 110.
  • the moving platform 130 is hinged with one end of the rotating portion 120, and the first curved branch 140 and the second curved branch 150 are fixed.
  • one end of the first curved link 160 is received in an inner cavity formed by the first curved branch 140 and the first curved link 160 is Reciprocating along a tangential direction of the first curved branch 140, one end of the second curved link 170 being received in an internal cavity formed by the second curved branch 150 and the second
  • the curved connecting rod 170 is reciprocable along a tangential direction of the second curved branch 150, and the other end of the first curved connecting rod 160 and the other end of the second curved connecting rod 170 are fixedly connected.
  • the present invention provides a three-degree-of-freedom decoupling spherical parallel mechanism 100, and the rotating portion 110 can drive the movable platform 130 to rotate 360 degrees in a direction perpendicular to the static platform 110, the first curved shape.
  • the connecting rod 160 and the second curved connecting rod 170 reciprocate along the tangential direction of the first curved branch 140 and the second curved branch 150 respectively to enable the moving platform 130 to surround the first arc
  • the axis of the plane in which the shaped branch 140 or the second curved branch 150 is located rotates.
  • the static platform 110 may be a square plate. It can be understood that the structure of the static platform 110 is designed into a circular plate, a rectangular plate, and the like according to needs.
  • the rotating portion 120 includes a first driving unit 121 and a rotating unit 122.
  • the specific scheme is as follows:
  • the first driving unit 121 includes a first driving motor 1211 fixed to the static platform 110 and a first driving gear 1212 fixedly coupled to the first driving motor 1211.
  • the rotating unit 122 includes a bracket 1221 fixed to the static platform 110 and a rotating member 1222 sleeved on the bracket 1221.
  • the rotating member 1222 is provided with the first driving tooth.
  • the wheel 1212 engages with the first tooth shape 1223, and one end of the rotating member 1222 is ball-joined with the movable platform 130.
  • the axes of the first driving motor 1211 and the bracket 1221 are parallel to each other.
  • a restraining rod 180 is disposed between the rotating member 1222 and the movable platform 130.
  • One end of the restraining rod 180 is fixedly connected to the rotating member 1222, and the other end is connected by a ball joint (not shown).
  • the platform 130 is articulated.
  • the first driving motor 1211 can drive the first driving gear 1212 to rotate, and the first driving gear 1212 drives the first tooth 1223 to rotate, so that the rotating member 1222 can be rotated.
  • the axis of the bracket 122 rotates.
  • the structure of the movable platform 130 is a circular plate. It can be understood that the structure of the movable platform 130 is designed into a structure such as a square plate or a rectangular plate as needed.
  • the first curved branch 140 can be a curved tubular structure.
  • the cross section of the cavity of the first curved branch 140 may be circular, elliptical or square.
  • the cross section of the first curved link 160 may be a circular, elliptical or square structure that matches the cavity structure of the first curved branch 140.
  • first curved link 160 is received in the inner cavity formed by the first curved branch 140 and the first curved link 160 can be along the first curved branch
  • the tangential direction of the chain 140 is reciprocated to rotate the movable platform 130 about the axis of the plane in which the first curved branch 140 is located.
  • the second curved branch 150 can be a curved tubular structure.
  • the cross section of the cavity of the second curved branch 150 may be a circular, elliptical or square structure.
  • the cross section of the second curved link 170 may be a circular, elliptical or square structure that matches the cavity structure of the second curved branch 150.
  • one end of the second curved link 170 is received in the inner cavity formed by the second curved branch 150 and the second curved link 170 can be along the second curved branch
  • the tangential direction of the chain 150 is reciprocated to rotate the movable platform 130 about the axis of the plane in which the second curved branch 150 is located.
  • first curved branch 140 and the second curved branch 150 form an angle of 90 degrees.
  • the side of the first curved branch 140 may further be mounted with a second driving unit 141, and the second driving unit 141 is fixed to the first curved branch.
  • the first curved connecting rod 160 is provided with the second driving gear 143.
  • the side of the second curved branch 150 may further be mounted with a third driving unit 151, and the third driving unit 151 is fixed to the second curved branch.
  • the output end of the third driving motor 152 is coupled to the third driving gear 153 through a coupling, and the side of the second curved connecting rod 170 is opened with a side opening, so that the third driving The gear 153 is engageable with the third tooth of the third tooth 171.
  • the rotation of the second driving gear 143 is driven by the second driving motor 142 on the first curved branch 140 to drive the first curved connecting rod 160 to be engaged with the second driving gear 143.
  • the rotation of the second toothed 161 causes the first curved link 160 to reciprocate in a curved tangential direction within the cavity of the first curved branch 140 such that the movable platform 130 can be wound around the center of the ball joint and vertically Rotating with the axis of the plane in which the first curved branch 140 lies. (here for the second curved branch 150 and the second curved link 170 have similar motion states, which will not be described here)
  • a first connecting rod L1 is disposed between the first curved connecting rod 160 and the moving platform 130, and one end of the first connecting rod L1 passes through the first A small hole is formed at an end of the curved connecting rod 160, and the other end is fixedly connected to a side edge of the moving platform 130.
  • a second connecting rod L2 is disposed between the second curved connecting rod 170 and the moving platform 130, and one end of the second connecting rod 170 passes through the second A small hole is formed at an end of the curved connecting rod 170, and the other end is fixedly connected to a side edge of the moving platform 130.
  • the axes of the first connecting rod L1 and the second connecting rod L2 pass through the center of the ball joint.
  • the three-degree-of-freedom decoupling spherical parallel mechanism 100 is provided by the present invention.
  • the rotating portion 110 can drive the movable platform 130 to rotate 360 degrees in a direction perpendicular to the static platform 110.
  • the first curved connecting rod 160 And the second curved connecting rod 170 reciprocates along the tangential direction of the first curved branch 140 and the second curved branch 150 respectively to enable the movable platform 130 to surround the first curved branch 140 or the axis of the plane in which the second curved branch 150 is located, such that the three stages of the movable platform 130 can be rotated, driven by driving units that are independent of each other in three directions, so that the mechanism The three turning actions are decoupled.
  • the three-degree-of-freedom decoupling spherical parallel mechanism 100 has the advantages of simple and reliable structure, strong driving capability, high flexibility, and stable movement of the movable platform 130, and can be applied to virtual axis machine tools, industrial robots, aviation simulation equipment, medical equipment and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Toys (AREA)

Abstract

一种三自由度解耦球面并联机构(100),包括:静平台(110)、旋转部(120)、动平台(130)、第一弧形支链(140)、第二弧形支链(150)、第一弧形连杆(160)及第二弧形连杆(170),上述三自由度解耦球面并联机构(100),旋转部(120)可带动动平台(130)绕垂直静平台(110)所在的方向做360度旋转,第一弧形连杆(160)及第二弧形连杆(170)分别沿第一弧形支链(140)及第二弧形支链(150)的切线方向做往复运动以使动平台(130)可绕第一弧形支链(140)或第二弧形支链(150)所在的平面的轴线转动,这样使得动平台(130)的三个方向转动,彼此由三个方向、彼此之间相互独立的驱动单元所驱动,使得机构的三个转动动作具有解耦性。

Description

一种三自由度解耦球面并联机构 技术领域
本发明涉及并联机构技术领域,尤其涉及一种三自由度解耦球面并联机构。
背景技术
自1938年首次提出并联机器人以来,因其具较大刚度、较强的承载能力、误差小、精度高、自重负荷比小、动力性能好、控制容易等特点,广泛应用于社会的各个领域。目前,常见的有2自由度、3自由度、4自由度、6自由度并联机构;目前,3自由度并联机构是研究最多、应用最广的一类少自由度并联机构。它按动平台自由度的类型可以分为四类:3转动并联机构、2转动1移动并联机构、1转动2移动并联机构、3移动并联机构。其中,球面并联机构属于3转动并联机构,其能实现绕动平台参考点运动球面的球心的任意转动,当机构运动时,机构动平台上所有的点都绕着该球心、以一个固定半径转动。球面并联相对于一般的并联机构的优势是工作空间大、灵活可靠、不易发生干涉等。
如燕山大学高峰教授等人提出的一种具有中心球面铰链的偏置输出三自由度球面并联机构(CN101306534),其具有典型的3-RRR型机构特征。实现绕固定中心做三个方向转动。
燕山大学黄真教授提出一种具有对称结构且无伴随运动的并联机构(CN102962840)。其能够定、动平台中间对称平面内的任意一条轴或者任意一点连续转动,能有效的避免伴随运动的发生。
上海大学沈龙提出的一种球面三自由度并联机构天线结构系统(CN101924266)。其较一般的3自由度球型机构相比,具有较大的工作空间。
上海交通大学林荣富等人提出的具有弧形移动副的三自由度球面并联机构(CN104827463)。采用弧形移动副的形式来实现动平台绕弧形的中点做三个方向的转动。
这些机构支链的运动副配置大多包含RR或者RRR,并且这些运动副的轴线相交于一点,来实现动平台的3个自由度的运动,其中上海交通大学林荣富采用弧形移动副,使得通过运动副的弧形配置,让动平台受到三个方向的力约束,而仅仅能够绕弧形的中心做三个方向的转动,不具备部分解耦性。
发明内容
鉴于此,有必要提供一种具备运动解耦性的三自由度解耦球面并联机构。
一种三自由度解耦球面并联机构,包括静平台、安装于所述静平台上的旋转部、与所述旋转部一端球铰的动平台、固定连接于所述旋转部侧边的第一弧形支链及第二弧形支链、一端收容于所述第一弧形支链形成的内部空腔中且可沿所述第一弧形支链的切线方向做往复运动的第一弧形连杆、一端收容于所述第二弧形支链形成的内部空腔中且可沿所述第二弧形支链的切线方向做往复运动的第二弧形连杆,所述第一弧形连杆的另一端及第二弧形连杆的另一端均固定连接于所述动平台的侧缘,所述旋转部可带动所述动平台绕垂直所述静平台所在的方向做360度旋转,所述第一弧形连杆及第二弧形连杆分别沿所述第一弧形支链及第二弧形支链的切线方向做往复运动以使所述动平台可绕所述第一弧形支链或所述第二弧形支链所在的平面的轴线转动。
在其中一些实施例中,所述旋转部包括第一驱动单元及旋转单元,所述第 一驱动单元包括固定于所述静平台上的第一驱动电机及与所述第一驱动电机固定连接的第一驱动齿轮,所述旋转单元包括固定于所述静平台上的支架及套设于所述支架上的旋转件,所述旋转件上开设有与所述第一驱动齿轮相啮合的第一齿状,所述旋转件的一端与所述动平台球铰。
在其中一些实施例中,所述第一驱动电机与所述支架的轴线相互平行。
在其中一些实施例中,所述旋转件与所述动平台之间设置有约束杆,所述约束杆的一端固定连接于所述旋转件,另一端通过球铰与所述动平台球铰。
在其中一些实施例中,所述第一弧形支链及第二弧形支链形成的夹角呈90度。
在其中一些实施例中,所述第一弧形支链的侧边安装有第二驱动单元,所述第二驱动单元包括固定于所述第一弧形支链侧边上的第二驱动电机以及与所述第二驱动电机固定连接的第二驱动齿轮,所述第一弧形连杆上开设有与所述第二驱动齿轮相啮合的第二齿状。
在其中一些实施例中,所述第二弧形支链的侧边安装有第三驱动单元,所述第三驱动单元包括固定于所述第二弧形支链侧边上的第三驱动电机以及与所述第三驱动电机固定连接的第三驱动齿轮,所述第二弧形连杆上开设有与所述第三驱动齿轮相啮合的第三齿状。
在其中一些实施例中,所述第一弧形连杆与所述动平台之间设置有第一连接杆,所述第一连接杆的一端穿过所述第一弧形连杆端部开设的小孔,另一端固定连接于所述动平台的侧缘。
在其中一些实施例中,所述第二弧形连杆与所述动平台之间设置有第二连接杆,所述第二连接杆的一端穿过所述第二弧形连杆端部开设的小孔,另一端固定连接于所述动平台的侧缘。
在其中一些实施例中,所述第一连接杆和所述第二连接杆的轴线经过所述球铰的中心。
本发明提供的三自由度解耦球面并联机构,包括静平台、安装于所述静平台上的旋转部、与所述旋转部一端球铰的动平台、固定连接于所述旋转部侧边的第一弧形支链及第二弧形支链、一端收容于所述第一弧形支链形成的内部空腔中且可沿所述第一弧形支链的切线方向做往复运动的第一弧形连杆、一端收容于所述第二弧形支链形成的内部空腔中且可沿所述第二弧形支链的切线方向做往复运动的第二弧形连杆,所述第一弧形连杆及第二弧形连杆的另一端均固定连接于所述动平台的侧缘,上述三自由度解耦球面并联机构,所述旋转部可带动所述动平台绕垂直所述静平台所在的方向做360度旋转,所述第一弧形连杆及第二弧形连杆分别沿所述第一弧形支链及第二弧形支链的切线方向做往复运动以使所述动平台可绕所述第一弧形支链或所述第二弧形支链所在的平面的轴线转动,这样使得动平台的三个方向转动,彼此由三个方向、彼此之间相互独立的驱动单元所驱动,使得机构的三个转动动作具有解耦性。
附图说明
图1为本发明一实施方式的三自由度解耦球面并联机构的结构示意图;
图2为本发明另一角度的三自由度解耦球面并联机构的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1至图2,为本发明一实施方式的三自由度解耦球面并联机构100,包括:静平台110、旋转部120、动平台130、第一弧形支链140、第二弧形支链150、第一弧形连杆160及第二弧形连杆170。
其中:所述旋转部120安装于所述静平台110上,所述动平台130与所述旋转部120的一端球铰,所述第一弧形支链140及第二弧形支链150固定连接于所述旋转部120的侧边,所述第一弧形连杆160的一端收容于所述第一弧形支链140形成的内部空腔中且所述第一弧形连杆160可沿所述第一弧形支链140的切线方向做往复运动,所述第二弧形连杆170的一端收容于所述第二弧形支链150形成的内部空腔中且所述第二弧形连杆170可沿所述第二弧形支链150的切线方向做往复运动的,所述第一弧形连杆160的另一端及第二弧形连杆170的另一端均固定连接于所述动平台130的侧缘。
可以理解,本发明提供的三自由度解耦球面并联机构100,所述旋转部110可带动所述动平台130绕垂直所述静平台110所在的方向做360度旋转,所述第一弧形连杆160及第二弧形连杆170分别沿所述第一弧形支链140及第二弧形支链150的切线方向做往复运动以使所述动平台130可绕所述第一弧形支链140或所述第二弧形支链150所在的平面的轴线转动。
在本发明一较佳实施例中,静平台110结构可以为方形板块。可以理解,静平台110的结构根据需要设计成圆形板块、长方形板块等结构。
在本发明一较佳实施例中,所述旋转部120包括第一驱动单元121及旋转单元122,具体方案如下:
所述第一驱动单元121包括固定于所述静平台110上的第一驱动电机1211及与所述第一驱动电机1211固定连接的第一驱动齿轮1212。
所述旋转单元122包括固定于所述静平台110上的支架1221及套设于所述支架1221上的旋转件1222,所述旋转件1222上开设有与所述第一驱动齿 轮1212相啮合的第一齿状1223,所述旋转件1222的一端与所述动平台130球铰。
优选地,所述第一驱动电机1211与所述支架1221的轴线相互平行。
进一步地,所述旋转件1222与所述动平台130之间设置有约束杆180,所述约束杆180的一端固定连接于所述旋转件1222,另一端通过球铰(图未示)与所述动平台130球铰。
可以理解,本发明提供的旋转部120,所述第一驱动电机1211可驱动第一驱动齿轮1212旋转,所述第一驱动齿轮1212的带动第一齿状1223旋转,使得旋转件1222可以绕着支架122的轴线转动。
在本发明一较佳实施例中,动平台130的结构为圆形板块。可以理解,动平台130的结构根据需要设计成正方形板块或长方形板块等结构。
在本发明一较佳实施例中,第一弧形支链140可以为弧形的管状结构。第一弧形支链140的空腔的横截面可以为圆形、椭圆形或方形等结构。所述第一弧形连杆160的横截面可以为与第一弧形支链140空腔结构相匹配的圆形、椭圆或方形等结构。
可以理解,所述第一弧形连杆160的一端收容于所述第一弧形支链140形成的内部空腔中且所述第一弧形连杆160可沿所述第一弧形支链140的切线方向做往复运动,以使所述动平台130绕所述第一弧形支链140所在的平面的轴线转动。
在本发明一较佳实施例中,第二弧形支链150可以为弧形的管状结构。第二弧形支链150的空腔的横截面可以为圆形、椭圆形或方形等结构。所述第二弧形连杆170的横截面可以为与第二弧形支链150空腔结构相匹配的圆形、椭圆或方形等结构。
可以理解,所述第二弧形连杆170的一端收容于所述第二弧形支链150形成的内部空腔中且所述第二弧形连杆170可沿所述第二弧形支链150的切线方向做往复运动,以使所述动平台130绕所述第二弧形支链150所在的平面的轴线转动。
在本发明一较佳实施例中,所述第一弧形支链140及第二弧形支链150形成的夹角呈90度。
在本发明一较佳实施例中,所述第一弧形支链140的侧边还可以安装有第二驱动单元141,所述第二驱动单元141包括固定于所述第一弧形支链140侧边上的第二驱动电机142以及与所述第二驱动电机142固定连接的第二驱动齿轮143,所述第一弧形连杆160上开设有与所述第二驱动齿轮143相啮合的第二齿状161。可以理解,所述第二驱动电机142的输出端通过联轴器与所述第二驱动齿轮143联接,且所述第一弧形连杆160的侧边上开有一侧口,使得第二驱动齿轮143能够与第二齿状161的第三齿状啮合。
在本发明一较佳实施例中,所述第二弧形支链150的侧边还可以安装有第三驱动单元151,所述第三驱动单元151包括固定于所述第二弧形支链150侧边上的第三驱动电机152以及与所述第三驱动电机152固定连接的第三驱动齿轮153,所述第二弧形连杆170上开设有与所述第三驱动齿轮153相啮合的第三齿状171。可以理解,所述第三驱动电机152的输出端通过联轴器与所述第三驱动齿轮153联接,且所述第二弧形连杆170的侧边上开有一侧口,使得第三驱动齿轮153能够与第三齿状171的第三齿状啮合。
可以理解,通过第一弧形支链140上的第二驱动电机142驱动第二驱动齿轮143的转动从而带动第一弧形连杆160上开设有与所述第二驱动齿轮143相啮合的第二齿状161的转动,使得第一弧形连杆160在第一弧形支链140的空腔内沿弧形切线方向的往复移动,使得动平台130可以绕着过球铰的中心并垂直与第一弧形支链140所在的平面的轴线转动。(这里对于第二弧形支链 150及第二弧形连杆170具有类似的运动状态,这里不再赘述)
在本发明一较佳实施例中,所述第一弧形连杆160与所述动平台130之间设置有第一连接杆L1,所述第一连接杆L1的一端穿过所述第一弧形连杆160端部开设的小孔,另一端固定连接于所述动平台130的侧缘。
在本发明一较佳实施例中,所述第二弧形连杆170与所述动平台130之间设置有第二连接杆L2,所述第二连接杆170的一端穿过所述第二弧形连杆170端部开设的小孔,另一端固定连接于所述动平台130的侧缘。
在本发明一较佳实施例中,所述第一连接杆L1和所述第二连接杆L2的轴线经过所述球铰的中心。
本发明提供的三自由度解耦球面并联机构100,所述旋转部110可带动所述动平台130绕垂直所述静平台110所在的方向做360度旋转,所述第一弧形连杆160及第二弧形连杆170分别沿所述第一弧形支链140及第二弧形支链150的切线方向做往复运动以使所述动平台130可绕所述第一弧形支链140或所述第二弧形支链150所在的平面的轴线转动,这样可以使得动平台130的三个方向转动,彼此由三个方向、彼此之间相互独立的驱动单元所驱动,使得机构的三个转动动作具有解耦性。
上述三自由度解耦球面并联机构100,结构简单可靠,驱动能力强,灵活度较高,动平台130运动平稳,可应用于虚轴机床、工业机器人、航空模拟设备、医疗设备等领域。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种三自由度解耦球面并联机构,其特征在于,包括静平台、安装于所述静平台上的旋转部、与所述旋转部一端球铰的动平台、固定连接于所述旋转部侧边的第一弧形支链及第二弧形支链、一端收容于所述第一弧形支链形成的内部空腔中且可沿所述第一弧形支链的切线方向做往复运动的第一弧形连杆、一端收容于所述第二弧形支链形成的内部空腔中且可沿所述第二弧形支链的切线方向做往复运动的第二弧形连杆,所述第一弧形连杆的另一端及第二弧形连杆的另一端均固定连接于所述动平台的侧缘,所述旋转部可带动所述动平台绕垂直所述静平台所在的方向做360度旋转,所述第一弧形连杆及第二弧形连杆分别沿所述第一弧形支链及第二弧形支链的切线方向做往复运动以使所述动平台可绕所述第一弧形支链或所述第二弧形支链所在的平面的轴线转动。
  2. 如权利要求1所述的三自由度解耦球面并联机构,其特征在于,所述旋转部包括第一驱动单元及旋转单元,所述第一驱动单元包括固定于所述静平台上的第一驱动电机及与所述第一驱动电机固定连接的第一驱动齿轮,所述旋转单元包括固定于所述静平台上的支架及套设于所述支架上的旋转件,所述旋转件上开设有与所述第一驱动齿轮相啮合的第一齿状,所述旋转件的一端与所述动平台球铰。
  3. 如权利要求2所述的三自由度解耦球面并联机构,其特征在于,所述第一驱动电机与所述支架的轴线相互平行。
  4. 如权利要求3所述的三自由度解耦球面并联机构,其特征在于,所述旋转件与所述动平台之间设置有约束杆,所述约束杆的一端固定连接于所述旋转件,另一端通过球铰与所述动平台球铰。
  5. 如权利要求1所述的三自由度解耦球面并联机构,其特征在于,所述第一弧形支链及第二弧形支链形成的夹角呈90度。
  6. 如权利要求1所述的三自由度解耦球面并联机构,其特征在于,所述第一弧形支链的侧边安装有第二驱动单元,所述第二驱动单元包括固定于所述第一弧形支链侧边上的第二驱动电机以及与所述第二驱动电机固定连接的第二驱动齿轮,所述第一弧形连杆上开设有与所述第二驱动齿轮相啮合的第二齿状。
  7. 如权利要求1所述的三自由度解耦球面并联机构,其特征在于,所述第二弧形支链的侧边安装有第三驱动单元,所述第三驱动单元包括固定于所述第二弧形支链侧边上的第三驱动电机以及与所述第三驱动电机固定连接的第三驱动齿轮,所述第二弧形连杆上开设有与所述第三驱动齿轮相啮合的第三齿状。
  8. 如权利要求4所述的三自由度解耦球面并联机构,其特征在于,所述第一弧形连杆与所述动平台之间设置有第一连接杆,所述第一连接杆的一端穿过所述第一弧形连杆端部开设的小孔,另一端固定连接于所述动平台的侧缘。
  9. 如权利要求8所述的三自由度解耦球面并联机构,其特征在于,所述第二弧形连杆与所述动平台之间设置有第二连接杆,所述第二连接杆的一端穿过所述第二弧形连杆端部开设的小孔,另一端固定连接于所述动平台的侧缘。
  10. 如权利要求9所述的三自由度解耦球面并联机构,其特征在于,所述第一连接杆和所述第二连接杆的轴线经过所述球铰的中心。
PCT/CN2017/087680 2017-06-09 2017-06-09 一种三自由度解耦球面并联机构 WO2018223363A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/479,918 US11331791B2 (en) 2017-06-09 2017-06-09 3 degree-of-freedoms decoupling spherical parallel mechanism
PCT/CN2017/087680 WO2018223363A1 (zh) 2017-06-09 2017-06-09 一种三自由度解耦球面并联机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087680 WO2018223363A1 (zh) 2017-06-09 2017-06-09 一种三自由度解耦球面并联机构

Publications (1)

Publication Number Publication Date
WO2018223363A1 true WO2018223363A1 (zh) 2018-12-13

Family

ID=64566338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087680 WO2018223363A1 (zh) 2017-06-09 2017-06-09 一种三自由度解耦球面并联机构

Country Status (2)

Country Link
US (1) US11331791B2 (zh)
WO (1) WO2018223363A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016116677B3 (de) * 2016-09-06 2017-12-14 Universität Duisburg-Essen Chirurgisches Simulationsgerät
CN106346450B (zh) * 2016-10-17 2018-11-09 中国科学院深圳先进技术研究院 三支链三自由度并联机构
WO2018223362A1 (zh) * 2017-06-09 2018-12-13 深圳先进技术研究院 一种二自由度解耦的并联机构
CN111168646B (zh) * 2019-12-27 2023-04-07 兰州空间技术物理研究所 一种空间球面机构三自由度上的限位结构
CN111331580B (zh) * 2020-03-17 2022-12-16 中国民航大学 一种动平台可翻转的六自由度并联机构
CN111759679B (zh) * 2020-08-06 2022-03-29 马鞍山学院 一种用于膝关节康复训练的多自由度机器人
CN114536352B (zh) * 2020-11-27 2023-09-12 三赢科技(深圳)有限公司 机械定位结构及机械手组件
CN112720424B (zh) * 2021-01-12 2022-03-25 山东理工大学 一种含平行四边形的双层三段导轨式平面机器人
CN113319817B (zh) * 2021-02-06 2022-07-05 常州大学 全铰两约束支链的大转角零耦合度两平移一转动并联平台
CN113319816B (zh) * 2021-02-06 2022-07-05 常州大学 全铰两约束支链的大转角一耦合度一平移两转动并联平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135683A (en) * 1997-11-05 2000-10-24 Jongwon Kim Parallel mechanism for multi-machining type machining center
CN104029197A (zh) * 2014-06-26 2014-09-10 山东大学(威海) 一种水下机器人的矢量推进机构
CN104827463A (zh) * 2015-05-07 2015-08-12 上海交通大学 具有弧形移动副的三自由度球面并联机构
CN104889976A (zh) * 2015-05-28 2015-09-09 燕山大学 一种三转动解耦球面并联机器人机构
CN104985587A (zh) * 2015-07-02 2015-10-21 上海交通大学 具有弧形移动副的四自由度转动移动完全解耦并联机构
CN105538296A (zh) * 2016-02-03 2016-05-04 中北大学 一种可重构球面并联机器人
CN106426091A (zh) * 2016-10-09 2017-02-22 邯郸学院 一种三自由度机器人
CN107160365A (zh) * 2017-06-09 2017-09-15 深圳先进技术研究院 一种三自由度解耦球面并联机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026703A (en) * 1997-08-14 2000-02-22 Stanisic; Michael M. Dexterous split equator joint
JP2008531931A (ja) * 2005-02-11 2008-08-14 フォース ディメンション エス.エイ.アール.エル. 運動伝達装置およびその構成部品
US8535335B2 (en) * 2010-04-13 2013-09-17 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Needle-coupled parallel mechanism
US20140150593A1 (en) * 2012-12-05 2014-06-05 Alio Industries, Inc. Precision tripod motion system
CN104023197A (zh) 2014-06-27 2014-09-03 联想(北京)有限公司 一种信息处理方法和装置
WO2018223362A1 (zh) * 2017-06-09 2018-12-13 深圳先进技术研究院 一种二自由度解耦的并联机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135683A (en) * 1997-11-05 2000-10-24 Jongwon Kim Parallel mechanism for multi-machining type machining center
CN104029197A (zh) * 2014-06-26 2014-09-10 山东大学(威海) 一种水下机器人的矢量推进机构
CN104827463A (zh) * 2015-05-07 2015-08-12 上海交通大学 具有弧形移动副的三自由度球面并联机构
CN104889976A (zh) * 2015-05-28 2015-09-09 燕山大学 一种三转动解耦球面并联机器人机构
CN104985587A (zh) * 2015-07-02 2015-10-21 上海交通大学 具有弧形移动副的四自由度转动移动完全解耦并联机构
CN105538296A (zh) * 2016-02-03 2016-05-04 中北大学 一种可重构球面并联机器人
CN106426091A (zh) * 2016-10-09 2017-02-22 邯郸学院 一种三自由度机器人
CN107160365A (zh) * 2017-06-09 2017-09-15 深圳先进技术研究院 一种三自由度解耦球面并联机构

Also Published As

Publication number Publication date
US20190389054A1 (en) 2019-12-26
US11331791B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2018223363A1 (zh) 一种三自由度解耦球面并联机构
US10994410B2 (en) Three-degree-of-freedom parallel mechanism with curved sliding pairs
US11203112B2 (en) Three-degree-of-freedom parallel mechanism
CN1326671C (zh) 并联机器人连接分支结构及六自由度并联机器人机构
US8245595B2 (en) Two-axis non-singular robotic wrist
CN109514596B (zh) 一种双十字铰三自由度并联关节机构
CN104308835A (zh) 一种面对称型三转动并联机构
CN110815182B (zh) 一种含双驱动复合支链的五自由度并联机构
CN104325457A (zh) 一种新型对称型三转动并联机构
CN106859768A (zh) 用于腹腔微创手术的解耦四自由度远心机构
US7765892B2 (en) Multi-degree-of-freedom motion mechanism
WO2018223362A1 (zh) 一种二自由度解耦的并联机构
CN104942795B (zh) 一移动二转动三自由度转动移动完全解耦并联机构
KR101947697B1 (ko) 4자유도 병렬형 구동장치
CN106625591B (zh) 一种三平两转五自由度并联机构
CN107160365A (zh) 一种三自由度解耦球面并联机构
CN110539293B (zh) 一种四自由度并联机构
CN114603538B (zh) 一种完全解耦的球面3r转动并联机构
CN110480601B (zh) 四分支的交叉型三自由度并联机构
CN113561157B (zh) 两转两移四自由度并联机构
CN107116538B (zh) 一种三转动一移动广义解耦并联机器人机构
CN109514597A (zh) 一种三自由度并联关节机构
CN106903672A (zh) 二分支三自由度工业机器人
EP3095563A1 (en) Device for the movement and positioning of an object in space
CN210757713U (zh) 一种基于双陀螺仪部件的六自由度并联机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912515

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17912515

Country of ref document: EP

Kind code of ref document: A1