WO2018223265A1 - 一种微型结构的光波分复用集成器件及其制作方法 - Google Patents

一种微型结构的光波分复用集成器件及其制作方法 Download PDF

Info

Publication number
WO2018223265A1
WO2018223265A1 PCT/CN2017/087201 CN2017087201W WO2018223265A1 WO 2018223265 A1 WO2018223265 A1 WO 2018223265A1 CN 2017087201 W CN2017087201 W CN 2017087201W WO 2018223265 A1 WO2018223265 A1 WO 2018223265A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical filter
division multiplexing
wavelength division
film
Prior art date
Application number
PCT/CN2017/087201
Other languages
English (en)
French (fr)
Inventor
李京辉
陆文
金诚
刘远
张承鹏
周强
Original Assignee
北极光电(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北极光电(深圳)有限公司 filed Critical 北极光电(深圳)有限公司
Priority to PCT/CN2017/087201 priority Critical patent/WO2018223265A1/zh
Publication of WO2018223265A1 publication Critical patent/WO2018223265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Definitions

  • the invention relates to a micro-structured optical wavelength division multiplexing integrated device and a manufacturing method thereof, in particular to a micro-structured optical wavelength division multiplexing integrated device and a manufacturing method thereof.
  • Optical communication is one of the most important means of high-speed information transmission. It is widely used in telecommunications, data communication (including data center), cable TV network, media image transmission and future all-round video signal transmission.
  • Distributed feedback laser (DFB) as a transmitter in optical communication high-speed laser such as vertical cavity surface emitting laser (VCSEL), and junction junction photodiode (PIN) and avalanche photodiode (APD) as receivers are key Components.
  • VCSEL vertical cavity surface emitting laser
  • PIN junction junction photodiode
  • APD avalanche photodiode
  • the laser and receiver are further integrated into an optical transmission subassembly (TOSA) and an optical receiving subassembly (ROSA), respectively.
  • TOSA optical transmission subassembly
  • ROSA optical receiving subassembly
  • WDM optical wave composite decomposition technique
  • the existing optical filter block assembly method is to stick one optical filter to the optical base, and even if it is assembled using an automated machine, there is a problem that the time is long and inefficient. Moreover, when the optical filter is cut into a thin sheet (for example, 0.8 mm, 0.6 mm or less), the surface is bent by the release of the coating stress. Such surface curvature of the optical filter causes different shifts in the beams on different optical filters on the same optically multiplexed optical filter block, thereby causing an increase in TOSA/ROSA optical coupling loss.
  • the existing 2, 4 or 8 wavelength optical filter block assembly is composed of a plurality of optical filters and an optical base. This requires the assembler or assembly machine to bond each optical filter to the base with optical epoxy glue.
  • Each of the optical filters is plated with a different optical film such that the optical wavelength division multiplexing filter transmits or reflects optical signals of different wavelengths.
  • the beam input region at one end of the optical base is plated with a highly transmissive film while the remaining regions are plated with a highly reflective film to direct the transmission of the beam.
  • ⁇ 1 and ⁇ 2 in the input beam are optical signals of different wavelengths, which are input from a region where the optical base is plated with a high transmission film.
  • the optical wavelength division multiplexing filter ⁇ 1 allows the optical signal ⁇ 1 to simultaneously reflect the optical signal ⁇ 2.
  • the optical signal ⁇ 2 is reflected to the end face of the optical base plated with the highly reflective film.
  • the optical signal ⁇ 2 reflected again can pass through the optical wavelength division multiplexed optical filter ⁇ 2. This decomposes the optical signals ⁇ 1 and ⁇ 2 of different wavelengths combined to achieve a typical ROSA function.
  • the combination of the optical signals ⁇ 1 and ⁇ 2 can be achieved by changing the input direction of the beam to the output direction.
  • the object of the present invention is to solve the structure of the existing optical wavelength division multiplexing integrated device.
  • the assembly process is too cumbersome, the required parts are more, the cost is higher, and the overall structural size of the product is larger, and a new integrated wavelength division multiplexer component structure and its manufacturing method are provided.
  • the technical solution adopted is: a micro-structured optical wavelength division multiplexing integrated device, the optical wavelength division multiplexing integrated device comprising at least two optical filtering components, the two The optical filter component is a first optical filter component and a second optical filter component.
  • One end of the first optical filter component is plated with an anti-reflection film, and the other end of the first optical filter component is plated with a first optical wave splitting.
  • One end of the second optical filter component is plated with an optical film, and the other end of the second optical filter component is plated with a second optical wavelength division multiplexing filter film; the first optical filter component
  • An adhesive connection is made between adjacent two planes of the second optical filter element.
  • At least one optical filter component is disposed between the first optical filter component and the second optical filter component, and the optical filter component and the first optical filter component and the second optical filter component are respectively adhered Connected, one end of the optical filter component is plated with an optical film, and the other end of the optical filter component is plated with an optical wavelength division multiplexing filter film; when the first optical filter component and the second optical filter component are When an optical filter component is disposed between, the corresponding optical filter component is plated with an optical film at one end, and the third optical wavelength division multiplexing filter film is plated at one end; and so on, the first optical filter component and the second light
  • Each of the optical filter elements disposed between the filter elements is coated with an optical film at one end and an optical wavelength division multiplexing filter film of the corresponding optical filter element at the other end.
  • the adhesive bond is connected by an optical adhesive.
  • the adhesive connection is connected by a photo-adhesive
  • the optical adhesive connection described in the present embodiment refers to the use of a non-adhesive agent and a certain pressure to make the two faces uniform and smooth and optical. The parts are held together by surface adsorption.
  • optical film is a highly reflective film.
  • the optical film is an optical wavelength division multiplexing filter film.
  • the shapes of the first optical filter component and the second optical filter component are polygonal.
  • optical filter component is a parallelogram.
  • the height of the first optical filter component may be lengthened, and the height is 2*h*tan(sin -1 (sin ⁇ n)), where h is the vertical distance between the left and right end faces of the optical filter component, n is The refractive index of the material of the optical filter component, and ⁇ is the angle of incidence of the left side.
  • the height of the optical filter component can be lengthened, and the height is 2*h*tan(sin -1 (sin ⁇ n)), where h is the vertical distance of the left and right end faces of the optical filter component, and n is the optical filter.
  • the refractive index of the material of the component, ⁇ is the angle of incidence of the left side.
  • a sheet-shaped optical filter raw material is cut out from the coated wafer, processed into a sheet-shaped optical filter element, and the optical wavelength division multiplexing filter film is at the other end; an anti-reflection film is plated on one end of the optical filter element; Is a first optical filter component;
  • the chip-shaped optical filter components are sequentially glued and connected in layers in the horizontal direction in a horizontal direction to form a filter block assembly;
  • the optical filter assembly is subjected to a cutting process perpendicular to the horizontal direction as needed to produce a micro-structured optical wavelength division multiplexing integrated device of a final desired size.
  • FIG. 1 is a schematic structural view of a conventional two-wavelength optical wavelength division multiplexing device
  • FIG. 2 is a schematic structural view of a conventional 4-wavelength optical wavelength division multiplexing device
  • FIG. 3 is a schematic structural diagram of an existing 8-wavelength optical wavelength division multiplexing device
  • FIG. 4 is a schematic structural view of a 2-wavelength optical wavelength division multiplexing device according to the present invention.
  • FIG. 5 is a schematic structural view of a four-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of two parallel quadrilateral optical filter elements and two trapezoidal optical filter elements;
  • FIG. 6 is a schematic structural view of a four-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of four parallel quadrilateral optical filter elements;
  • FIG. 7 is a schematic diagram of a four-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of three parallel quadrilateral optical filter elements and two triangular body optical filter elements;
  • FIG. 8 is a schematic structural view of a four-wavelength optical wavelength division multiplexing device according to the present invention, comprising two parallel quadrilateral optical filter elements and one triangular body optical filter component;
  • FIG. 9 is a schematic structural view of a four-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of three parallel quadrilateral optical filter elements;
  • FIG. 10 is a schematic structural view of an 8-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of 5 parallel quadrilateral optical filter elements;
  • FIG. 11 is a schematic structural view of an 8-wavelength optical wavelength division multiplexing device according to the present invention, which is composed of 8 parallel quadrilateral optical filter elements;
  • Figure 12 is a schematic structural view of a 2-wavelength optical wavelength division multiplexing device according to the present invention.
  • FIG. 13 is a schematic structural diagram of selecting different optical filter components in the method for fabricating the optical wavelength division multiplexing integrated device according to the present invention.
  • Figure 14 is a schematic view showing the structure of bonding different optical filter elements in the method of the present invention.
  • Figure 15 is a schematic view showing the structure of the optical filter element after the bonding is cut into individual optical wavelength division multiplexing devices in the present invention.
  • the optical wavelength division multiplexing integrated device includes at least two optical filtering components, and the two optical filtering components.
  • An optical filter element 1 and a second optical filter element 2 are coated with an anti-reflection film 11 at one end thereof, and the other end of the first optical filter element 1 is plated with a first light wave.
  • a multiplexed filter film 10 an optical film is plated on one end of the second optical filter element 2, and the optical film described in the present embodiment is a high-reflection film 9, and the second optical filter element 2 is additionally
  • the second optical wavelength division multiplexing filter film 20 is plated at one end; the upper surface of the first optical filter element 1 and the lower surface of the second optical filter element 2 are bonded by adhesion.
  • the integrated device includes a first optical filter component 1, a second optical filter component 2, and a third optical filter component. 3 and a fourth optical filter component 4, one end of the first optical filter component 1 is plated with an anti-reflection film 11, and the other end is plated with a first optical wavelength division multiplexing filter film 10; the second optical filter component 2 One end of the third optical filter element 3 and the fourth optical filter element 4 is plated with a high-reflection film 9 and the other end is respectively plated with a corresponding N-th optical wavelength division multiplexing filter film, wherein the N-th wavelength is divided.
  • the filter film refers to the second optical wavelength division multiplexing filter film 20, the third optical wavelength division multiplexing filter film 30, and the fourth optical wavelength division multiplexing filter film 40; the third optical filter component 3 and the fourth The optical filter component 4 is disposed between the first optical filter component 1 and the second optical filter component 2, and the upper surface and the lower surface of the two optical filter components adjacent to each other
  • the first optical filter element 1 and the second optical filter element 2 described in the present embodiment are trapezoidal in a fixed manner by bonding.
  • the third optical filter element 3 and the fourth optical filter element 4 described in the present embodiment are parallelograms.
  • a 4-wavelength optical wavelength division multiplexing device function is realized.
  • a micro-structured optical wavelength division multiplexing integrated device described in the present solution is different from the integrated device described in FIG. 5 in that the first optical filter component 1 and the second light are The filter element 2 is a quadrangle.
  • a micro-structured optical wavelength division multiplexing integrated device described in the present solution is different from the integrated device described in FIG. 5 in that the first optical filter component 1 and the second light are
  • the filter element 2 is a triangular body.
  • the integrated device includes a first optical filter component 1, a second optical filter component 2, and a third optical filter component.
  • first optical filter component 1 is plated with an anti-reflection film 11, and the other end is plated with a first optical wavelength division multiplexing filter film 10;
  • the second optical filter component 2 is plated with a second optical wave split at one end Using the filter film 20;
  • the third optical wavelength division component 3 is respectively plated with a third optical wavelength division multiplexing filter film 30 and a fourth optical wavelength division multiplexing filter film 40;
  • the third optical filter The element 3 is disposed between the first optical filter element 1 and the second optical filter element 2, and the upper surface and the lower surface of the two optical filter elements adjacent to each other are fixed together by bonding.
  • the second optical filter component 2 described in the scheme is a triangular body, and the first optical filter component 1 and the third optical filter component 3 are parallelograms.
  • the optical wavelength division multiplexing integration of a micro structure described in this solution The device is different from the integrated device described in FIG. 8 in that the first optical filter component 1, the second optical filter component 2, and the third optical filter component 3 are all parallelograms.
  • a micro-structured optical wavelength division multiplexing integrated device includes a first optical filter component 1, a second optical filter component 2, and a third optical filter component. 3.
  • the fourth optical filter component 4 and the fifth optical filter component 5, one end of the first optical filter component 1 is plated with an anti-reflection film 11, and the other end is plated with a first wavelength division multiplexing filter film 10;
  • Both ends of the third optical filter component 3, the fourth optical filter component 4, and the fifth optical filter component 5 are plated with wavelength division multiplexing filter films of different wavelength bands, wherein one end of the second optical filter component 2 is plated a second wavelength division multiplexing filter film 20;
  • one end of the third optical filter component 3 is plated with a third wavelength division multiplexing filter film 30, and the other end of the third optical filter component 3 is plated with a fourth wave division A filter film 40 is used; one end of the fourth optical filter component 4 is plated with a fifth wavelength division multiplexing filter film 50, and the other end of the fourth optical
  • One end of the fifth optical filter component 5 is plated with a seventh wavelength division multiplexing filter film 70, and the other end of the fifth optical filter component 5 is plated with an eighth wave division.
  • a filter film 80; the third optical filter component 3, the fourth optical filter component 4, and the fifth optical filter component 5 are disposed between the first optical filter component 1 and the second optical filter component 2, and are mutually coupled The upper surface and the lower surface of the adjacent two optical filter elements are fixed together by bonding.
  • the first optical filter component 1, the second optical filter component 2, and the third optical filter component 3 are The fourth optical filter element 4 and the fifth optical filter element 5 are parallelograms. Thereby, an 8-wavelength wavelength division multiplexing device function is realized.
  • a micro-structured optical wavelength division multiplexing integrated device includes a first optical filter component 1 and a second optical filter component 2. a third optical filter component 3, a fourth optical filter component 4, a fifth optical filter component 5, a sixth optical filter component 6, a seventh optical filter component 7, and an eighth optical filter component 8, said first optical filter component 1 One end is plated with an anti-reflection film 11 and the other end is plated with a first wavelength division multiplexing filter film 10; the second optical filter element 2, the third optical filter element 3, the fourth optical filter element 4, and the fifth light One end of the filter element 5, the sixth optical filter element 6, the seventh optical filter element 7, and the eighth optical filter element 8 are plated with a high-reflection film 9, and the other end is correspondingly plated with a corresponding N-th wavelength division multiplexing filter.
  • the film wherein the Nth optical wavelength division multiplexing filter film refers to the second optical wavelength division multiplexing filter film 20, the third optical wavelength division multiplexing filter film 30, and the fourth optical wavelength division multiplexing filter film 40, respectively.
  • the filter element 3, the fourth optical filter element 4, the fifth optical filter element 5, the sixth optical filter element 6, the seventh optical filter element 7, and the eighth optical filter element 8 are provided at Between the first optical filter element 1 and the second optical filter element 2, and the upper surface and the lower surface of the two optical filter elements adjacent to each other are fixed together by bonding, as described in the present scheme.
  • the eight-light filter elements 8 are all parallelograms.
  • the 8-wavelength wavelength division multiplexing device function is realized.
  • the first optical filter component 1 As shown in FIG. 12, after the height of the first optical filter component 1 is lengthened, signal light is incident from the left antireflection film layer 11 of the first optical filter component 1 into the first optical filter component 1, wherein the signal The light ⁇ 1 is transmitted from the right first wavelength division multiplexing filter film 10 of the first optical filter element 1, and the remaining signals are reflected to the left side of the first optical filter element 1.
  • the first optical wavelength division multiplexing filter film 10 on the right side of the first optical filter element 1 is reflected again, and ⁇ 1 in the signal light is filtered again, thereby reducing the first optical wavelength division multiplexing.
  • the portion of the signal light passes through the bonding surface of the first optical filter element 1 and the second optical filter element 2 into the second optical filter element 2, and reflects on the high reflection film 9 on the left side of the second optical filter element 2, and The second optical wavelength division multiplexing filter film 20 on the right side of the second optical filter element 2 is transmitted, thereby realizing the wavelength division function of the two signals. On the contrary, the multiplexing function of the two signals can be realized.
  • a method for fabricating a micro-structured optical wavelength division multiplexing integrated device as described in the present embodiment the steps of the manufacturing method are as follows:
  • a sheet-shaped optical filter material is cut out from the coated wafer, processed into a sheet-like optical filter element, and the optical wavelength division multiplexing filter film is at the other end; an anti-reflection coating is coated on one end of the optical filter element.
  • the chip-shaped optical filter elements are sequentially glued in layers in the horizontal direction in a horizontal direction to form a filter block assembly
  • the optical filter component is subjected to a cutting process perpendicular to the horizontal direction as needed to produce a micro-structured optical wavelength division multiplexing integrated device of a final desired size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

一种微型结构的光波分复用集成器件,包括:至少两个光滤波元件,两个光滤波元件为第一光滤波元件(1)和第二光滤波元件(2);第一光滤波元件(1)的一端镀制有增透膜(11),另外一端镀制有第一光波分复用滤光膜(10);所述第二光滤波元件(2)的一端上镀制有光学膜,例如为高反射膜(9),另外一端镀制第二光波分复用滤光膜(20);第一光滤波元件(1)和第二光滤波元件(2)的相邻两个平面之间通过粘合连接。微型结构的光波分复用集成器件可批量化生产,简化了装配流程,降低了生产成本,减小了产品整体的尺寸,优化了性能的新型集成波分复用器组件结构。

Description

一种微型结构的光波分复用集成器件及其制作方法 技术领域
本发明涉及一种微型结构的光波分复用集成器件及其制作方法,特别是涉及一种微型结构的光波分复用集成器件及其制作方法。
背景技术
光信通讯是高速信息传输最为重要的手段之一,它被广泛应用在电讯,数据通讯(包括数据中心),有线电视网络,媒体图像传输和未来全方位的视频信号传送。在光信通讯中作为传输器的分布式反馈激光器(DFB),垂直腔面发射激光器(VCSEL)等高速激光器,和作为接收器的面结型光电二极管(PIN)和雪崩光电二极管(APD)是关键的组成部件。激光器和接收器会进一步分别集成为光学传输次组装件(TOSA)和光学接收次组装件(ROSA)。由于射频信号和集成电路运行的局限性,很难通过提高激光器和光学探测器的调制速度来满足日益增加的传输和接收数据速度需求,如25千兆比特/秒或50千兆比特/秒。但通过WDM光学复用技术,就很容易实现100千兆比特/秒,400千兆比特/秒,甚至更快的光学传输。因此光波复合分解技术(WDM)通过在TOSA,ROSA中复合调制光信号的多个波长提高传输接收数据速度和降低成本已成为一种非常有效的方法。
现有用于TOSA,ROSA的WDM器件是将多个光学光滤波片组装到同一个光学底座上。不同的光滤波片对不同波长的光信号有不同的透射和反射。在光学底座的不同区域镀上高反射和高透射光学薄膜可以使得光束在光学底座中沿特定的光路传输。
现有的光滤波块组件装配方法是将一个一个光滤波片粘到光学底座上,即便使用自动化机器进行装配也存在耗时长效率低的问题。而且当光滤波片被切成很薄的薄片时(比如0.8mm,0.6mm或更薄),表面会因镀膜应力的释放而弯曲。这种光滤波片表面弯曲会对同一光学复用光滤波片块上的不同光滤波片上的光束造成不同偏移,因而造成TOSA/ROSA光学耦合损耗的增加。
如图1至3所示:现有的2,4或8个波长的光滤波块组件是由多个光滤波片和一个光学底座组成。这需要装配人员或装配机器用光学环氧树脂胶把每个光滤波片同底座粘合起来。每个光滤波片镀有不同的光学薄膜,使得光波分复用滤波器透射或反射不同波长的光信号。在光学底座一端的光束输入区域镀有高透射薄膜同时在其余区域镀上高反射薄膜来引导光束的传输。
以图1为例,输入光束中λ1和λ2是不同波长的光信号,它们从光学底座镀有高透射膜的区域输入。光波分复用滤波片λ1让光学信号λ1通过同时反射光学信号λ2。光学信号λ2被反射到光学底座镀有高反射薄膜的端面。再次反射的光学信号λ2可以通过光波分复用光滤波片λ2。这样分解了复合在一起不同波长的光学信号λ1和λ2,实现了典型的ROSA功能。对TOSA,把光束的输入方向变为输出方向就可以实现光学信号λ1和λ2的复合。
发明内容
本发明的目的是在于解决现有的光波分复用集成器件的结构过 于复杂,装配流程过于繁琐,所需要的零部件较多,成本较高,产品的整体结构尺寸较大的问题,而提供一种新型集成波分复用器组件结构及其制作方法。
为解决本发明所提出的技术问题,采用的技术方案为:一种微型结构的光波分复用集成器件,所述的光波分复用集成器件包括至少两个光滤波元件,所述的两个光滤波元件为第一光滤波元件和第二光滤波元件,所述第一光滤波元件的一端镀制有增透膜,所述第一光滤波元件的另外一端镀制有第一光波分复用滤光膜;所述第二光滤波元件的一端上镀制有光学膜,所述第二光滤波元件的另外一端镀制第二光波分复用滤光膜;所述第一光滤波元件和第二光滤波元件的相邻两个平面之间通过粘合连接。
进一步的,在所述的第一光滤波元件和第二光滤波元件之间至少设有一块光滤波元件,所述光滤波元件与第一光滤波元件和第二光滤波元件之间分别通过粘合连接,所述光滤波元件的一端镀制有光学膜,所述光滤波元件的另外一端镀制有光波分复用滤光膜;当所述第一光滤波元件和第二光滤波元件之间设有一块光滤波元件时,所对应的光滤波元件一端镀制有光学膜,另外一端镀制有第三光波分复用滤光膜;以此类推,第一光滤波元件和第二光滤波元件之间设有的每块光滤波元件,其一端镀制有光学膜,而另外一端镀制有对应的光滤波元件的光波分复用滤光膜。
进一步的,所述的粘合连接为通过光学粘结剂连接。
进一步的,所述的粘合连接为通过光胶连接,在本方案中所述的光胶连接,指的是不用黏结剂,再用一定压力的方式,使两个面型一致且光滑干净光学零件通过表面吸附的方式固定在一起。
进一步的,所述的光学膜为高反射膜。
进一步的,所述的光学膜为光波分复用滤光膜。
进一步的,所述第一光滤波元件和第二光滤波元件的形状为多边形。
进一步的,所述的光滤波元件是平行四边形。
进一步的,所述的第一光滤波元件的高度可加长,加长高度为为2*h*tan(sin-1(sinα÷n)),其中h为光滤波元件左右端面的垂直距离,n为光滤波元件的材料折射率,α为左侧入光角度。
进一步的,所述的光滤波元件的高度可加长,加长高度为为2*h*tan(sin-1(sinα÷n)),其中h为光滤波元件左右端面的垂直距离,n为光滤波元件的材料折射率,α为左侧入光角度。
一种根据上述中任一项所述的一种微型结构的光波分复用集成器件的制作方法,所述的方法步骤如下:
A、先从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于另外一端;在光滤波元件一端上镀制增透膜;这是第一光滤波元件;
B、再从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于另外一端;在光滤波元件一端上镀制光学膜;这是第二光滤波元件;
C、根据步骤(A)和(B)继续加工其它的光滤波元件;
D、接着将片状光滤波元件按通道顺序以水平方向依次逐层进行胶合连接,形成滤波块组件;
E、根据需要对所述的光滤波组件以垂直于水平方向进行切割处理,生产出最终需要的尺寸的微型结构的光波分复用集成器件。
采用上述技术方案的有益效果是:相对于原结构而言,可批量化生产,简化了装配流程,降低了生产成本,减小了产品整体的尺寸,优化了性能。
附图说明
图一为现有2波长的光波分复用器件的结构示意图;
图二为现有4波长的光波分复用器件的结构示意图;
图三为现有8波长的光波分复用器件的结构示意图;
图四为本发明专利所述的2波长的光波分复用器件的结构示意图;
图五为本发明所述的4波长的光波分复用器件,由2个平行四边体光滤波元件和2个梯形体光滤波元件组成的结构示意图;
图六为本发明所述的4波长的光波分复用器件,由4个平行四边体的光滤波元件组成的结构示意图;
图七为本发明所述的4波长的光波分复用器件,由3个平行四边体的光滤波元件和2个三角体的光滤波元件所组成的结构示意图;
图八为本发明所述的4波长的光波分复用器件,由2个平行四边体的光滤波元件和1个三角体的光滤波元件所组成的结构示意图;
图九为本发明所述的4波长的光波分复用器件,由3个平行四边体的光滤波元件组成的结构示意图;
图十为本发明所述的8波长的光波分复用器件,由5个平行四边体的光滤波元件组成的结构示意图;
图十一为本发明所述的8波长的光波分复用器件,由8个平行四边体的光滤波元件组成的结构示意图;
图十二为本发明所述的2波长的光波分复用器件的结构示意图;
图十三为本发明中所述光波分复用集成器件的制作方法中的选用不同的光学滤波元件的结构示意图;
图十四为本发明所述方法中将不同的光学滤波元件进行贴合的结构示意图;
图十五为本发明中将所述贴合之后的光学滤波元件切割成单独的光波分复用器件的结构示意图。
1-第一光滤波元件、10-第一光波分复用滤光膜、2-第二光滤波元件、20-第二光波分复用滤光膜、3-第三光滤波元件、4-第四光滤波元件、5-第五光滤波元件、6-第六光滤波元件、7-第七光滤波元件、8-第八光滤波元件、9-高反射膜、11-增透膜、30-第三光波分复用滤光膜、40-第四光波分复用滤光膜、50-第五光波分复用滤光膜、60-第六光波分复用滤光膜、70-第七光波分复用滤光膜、80-第八光波分复用滤光膜。
具体实施方式
以下结合附图和本发明优选的具体实施例对本发明的内容作进一步地说明。所举实例只用于解释本发明,并非用于限定本发明的范围。
如图4中所示,本方案中所述的一种微型结构的光波分复用集成器件,所述的光波分复用集成器件包括至少两个光滤波元件,所述的两个光滤波元件为第一光滤波元件1和第二光滤波元件2,所述第一光滤波元件1的一端镀制有增透膜11,所述第一光滤波元件1的另外一端镀制有第一光波分复用滤光膜10;所述第二光滤波元件2的一端上镀制有光学膜,在本方案中所述的光学膜为高反射膜9,所述第二光滤波元件2的另外一端镀制第二光波分复用滤光膜20;所述第一光滤波元件1的上表面和第二光滤波元件2的下表面之间通过粘合连接。
如图5中所示,本方案中所述的一种微型结构的光波分复用集成器件,所述的集成器件包括第一光滤波元件1、第二光滤波元件2、第三光滤波元件3和第四光滤波元件4,所述第一光滤波元件1的一端镀有增透膜11,另外一端镀有第一光波分复用滤光膜10;所述第二光滤波元件2、第三光滤波元件3和第四光滤波元件4的一端镀有高反射膜9,另外一端分别对应的镀有对应的第N光波分复用滤光膜,其中所述的第N光波分复用滤光膜是指第二光波分复用滤光膜20、第三光波分复用滤光膜30和第四光波分复用滤光膜40;所述第三光滤波元件3和第四光滤波元件4设于所述第一光滤波元件1和第二光滤波元件2之间,且彼此相邻的两个光滤波元件的上表面和下表面之 间通过粘接的方式组合固定在一起的,在本方案中所述的第一光滤波元件1和第二光滤波元件2为梯形。在本方案中所述的第三光滤波元件3和第四光滤波元件4为平行四边体。实现了4波长的光波分复用器件功能。
如图6中所示,本方案中所述的一种微型结构的光波分复用集成器件,与图5中所述的集成器件区别在于,所述的第一光滤波元件1和第二光滤波元件2为平息四边体。
如图7中所示,本方案中所述的一种微型结构的光波分复用集成器件,与图5中所述的集成器件区别在于,所述的第一光滤波元件1和第二光滤波元件2为三角体。
如图8中所示,本方案中所述的一种微型结构的光波分复用集成器件,所述的集成器件包括第一光滤波元件1、第二光滤波元件2和第三光滤波元件3,所述第一光滤波元件1的一端镀有增透膜11,另外一端镀有第一光波分复用滤光膜10;所述第二光滤波元件2一端镀有第二光波分复用滤光膜20;所述的第三光滤波元件3的两端分别镀制有第三光波分复用滤光膜30和第四光波分复用滤光膜40;所述第三光滤波元件3设于所述第一光滤波元件1和第二光滤波元件2之间,且彼此相邻的两个光滤波元件的上表面和下表面是通过粘接的方式固定在一起,在本方案中所述的第二光滤波元件2为三角体,所述的第一光滤波元件1和第三光滤波元件3为平行四边体。实现了4波长的光波分复用器件功能。
如图9中所示,本方案中所述的一种微型结构的光波分复用集成 器件,与图8所述的集成器件区别在于,所述的第一光滤波元件1、第二光滤波元件2和第三光滤波元件3均为平行四边体。
如图10中所示,本方案中所述的一种微型结构的光波分复用集成器件,所述的集成器件包括第一光滤波元件1、第二光滤波元件2、第三光滤波元件3、第四光滤波元件4和第五光滤波元件5,所述第一光滤波元件1的一端镀有增透膜11,另外一端镀有第一波分复用滤光膜10;所述第三光滤波元件3、第四光滤波元件4和第五光滤波元件5的两端镀有不同波段的波分复用滤光膜,其中所述的第二光滤波元件2的一端镀有第二波分复用滤光膜20;所述第三光滤波元件3的一端镀有第三波分复用滤光膜30,第三光滤波元件3的另外一端镀有第四波分复用滤光膜40;所述第四光滤波元件4的一端镀有第五波分复用滤光膜50,第四光滤波元件4的另外一端镀有第六波分复用滤光膜60;所述第五光滤波元件5的一端镀有第七波分复用滤光膜70,第五光滤波元件5的另外一端镀有第八波分复用滤光膜80;所述第三光滤波元件3、第四光滤波元件4和第五光滤波元件5设于所述第一光滤波元件1和第二光滤波元件2之间,且彼此相邻的两个光滤波元件的上表面与下表面是通过粘接的方式固定在一起,在本方案中所述的第一光滤波元件1、第二光滤波元件2、第三光滤波元件3、第四光滤波元件4和第五光滤波元件5为平行四边形。从而实现了8波长的光波分复用器件功能。
如图11中所示,本方案中所述的一种微型结构的光波分复用集成器件,所述的集成器件包括第一光滤波元件1、第二光滤波元件2、 第三光滤波元件3、第四光滤波元件4、第五光滤波元件5、第六光滤波元件6、第七光滤波元件7和第八光滤波元件8,所述第一光滤波元件1的一端镀有增透膜11,另外一端镀有第一波分复用滤光膜10;所述第二光滤波元件2、第三光滤波元件3、第四光滤波元件4、第五光滤波元件5、第六光滤波元件6、第七光滤波元件7和第八光滤波元件8的一端镀有高反射膜9,另外一端分别对应的镀有对应的第N光波分复用滤光膜,其中所述的第N光波分复用滤光膜分别是指第二光波分复用滤光膜20、第三光波分复用滤光膜30、第四光波分复用滤光膜40、第五光波分复用滤光膜50、第六光波分复用滤光膜60、第七光波分复用滤光膜70和第八光波分复用滤光膜80;所述第三光滤波元件3、第四光滤波元件4、第五光滤波元件5、第六光滤波元件6、第七光滤波元件7和第八光滤波元件8设于所述第一光滤波元件1和第二光滤波元件2之间,且彼此相邻的两个光滤波元件的上表面与下表面是通过粘接的方式固定在一起,在本方案中所述的第一光滤波元件1、第二光滤波元件2、第三光滤波元件3、第四光滤波元件4、第五光滤波元件5、第六光滤波元件6、第七光滤波元件7和第八光滤波元件8均为平行四边形。实现了8波长的光波分复用器件功能。
如图12中所述,所述的第一光滤波元件1的高度加长后,信号光从第一光滤波元件1的左侧增透膜层11入射,进入第一光滤波元件1,其中信号光λ1从第一光滤波元件1的右侧第一光波分复用滤光膜10透射出来,而其余信号被反射至第一光滤波元件1的左侧上 方高反膜9上,实现再次反射回第一光滤波元件1右侧的第一光波分复用滤光膜10上,对信号光中的λ1进行再次过滤,从而降低第一光波分复用滤光膜10上第二次反射的信号光中残留的λ1能量。该部分信号光穿越第一光滤波元件1与第二光滤波元件2的粘合面进入第二光滤波元件2中,在第二光滤波元件2左侧的高反膜9上实现反射,并从第二光滤波元件2的右侧第二光波分复用滤光膜20透射出来,从而实现了两个信号的波分功能。反之,则可实现两个信号的复用功能。
如图13至15中所示,本方案中所述的采一种微型结构的光波分复用集成器件的制作方法,所述的制作方法的步骤如下:
(1)、先从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于另外一端;在光滤波元件一端上镀制增透膜;这是第一光滤波元件1;
(2)、再从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于另外一端;在光滤波元件一端上镀制光学膜;这是第二光滤波元件2;
(3)、根据步骤(1)和(2)继续加工其它的光滤波元件;
(4)、接着将片状光滤波元件按通道顺序以水平方向依次逐层进行胶合连接,形成滤波块组件;
(5)、根据需要对所述的光滤波组件以垂直于水平方向进行切割处理,生产出最终需要的尺寸的微型结构的光波分复用集成器件。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在 本发明的原理之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种微型结构的光波分复用集成器件,其特征在于:所述的光波分复用集成器件包括至少两个光滤波元件,所述的两个光滤波元件为第一光滤波元件和第二光滤波元件,所述第一光滤波元件的一端镀制有增透膜,所述第一光滤波元件的另外一端镀制有第一光波分复用滤光膜;所述第二光滤波元件的一端上镀制有光学膜,所述第二光滤波元件的另外一端镀制第二光波分复用滤光膜;所述第一光滤波元件和第二光滤波元件相邻两个平面之间通过粘合连接。
  2. 根据权利要求1所述的一种微型结构的光波分复用集成器件,其特征在于:在所述的第一光滤波元件和第二光滤波元件之间至少设有一块光滤波元件,所述光滤波元件与第一光滤波元件和第二光滤波元件之间分别通过粘合连接,所述光滤波元件的一端镀制有光学膜,所述光滤波元件的另外一端镀制有光波分复用滤光膜。
  3. 根据权利要求1或2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的粘合连接为通过光学粘结剂连接。
  4. 根据权利要求1或2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的粘合连接为通过光胶连接。
  5. 根据权利要求1或2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的光学膜为高反射膜。
  6. 根据权利要求1或2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的光学膜为光波分复用滤光膜。
  7. 根据权利要求1或2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述第一光滤波元件和第二光滤波元件的形状为多边形。
  8. 根据权利要求2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的光滤波元件是平行四边形。
  9. 根据权利要求1中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的第一光滤波元件高度加长2*h*tan(sin-1(sinα÷n))后,右端第一光波分复用膜以实现两次滤光,其中h为光滤波元件左右端面的垂直距离,n为光滤波元件的材料折射率,α为左侧入光角度。
  10. 根据权利要求2中所述的一种微型结构的光波分复用集成器件,其特征在于:所述的光滤波元件高度加长2*h*tan(sin-1(sinα÷n))后,右端光波分复用膜以实现两次滤光,其中h为光滤波元件左右端面的垂直距离,n为光滤波元件的材料折射率,α为左侧入光角度。
  11. 一种根据权利要求1至8中任一项所述的一种微型结构的光波分复用集成器件的制作方法,其特征在于,所述的方法步骤如下:
    A、先从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于右平面;在光滤波元件左平面上镀制增透膜;这是第一光滤波元件;
    B、再从镀膜完成的晶片中切出片状的光滤波原材料,加工成片状光滤波元件,光波分复用滤光膜处于右平面;在光滤波元件左平面上镀制光学膜;这是第二光滤波元件;
    C、根据步骤(A)和(B)继续加工其它的光滤波元件;
    D、接着将片状光滤波元件按通道顺序以水平方向依次逐层进行胶合连接,形成滤波块组件;
    E、根据需要对所述的光滤波组件以垂直于水平方向进行切割处理,生产出最终需要的尺寸的微型结构的光波分复用集成器件。
PCT/CN2017/087201 2017-06-05 2017-06-05 一种微型结构的光波分复用集成器件及其制作方法 WO2018223265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087201 WO2018223265A1 (zh) 2017-06-05 2017-06-05 一种微型结构的光波分复用集成器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/087201 WO2018223265A1 (zh) 2017-06-05 2017-06-05 一种微型结构的光波分复用集成器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2018223265A1 true WO2018223265A1 (zh) 2018-12-13

Family

ID=64566905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087201 WO2018223265A1 (zh) 2017-06-05 2017-06-05 一种微型结构的光波分复用集成器件及其制作方法

Country Status (1)

Country Link
WO (1) WO2018223265A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341232A (ja) * 1992-06-10 1993-12-24 Fujitsu Ltd 光増幅器用光モジュール
US20020197008A1 (en) * 2001-06-23 2002-12-26 Dong-Soo Kim Wavelength division multiplexer using planar lightwave circuit
CN203301489U (zh) * 2013-07-05 2013-11-20 青岛海信宽带多媒体技术有限公司 具有多路波长通道的光发射器件、光接收器件及光模块
CN104954075A (zh) * 2014-03-27 2015-09-30 上海贝尔股份有限公司 一种光模块
CN105158853A (zh) * 2015-10-16 2015-12-16 北极光电(深圳)有限公司 一种新型的集成微光学波分复用组件及采用该组件的分波、合波方法
CN205958795U (zh) * 2016-07-06 2017-02-15 北极光电(深圳)有限公司 一种新型集成微光学波分与复用组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341232A (ja) * 1992-06-10 1993-12-24 Fujitsu Ltd 光増幅器用光モジュール
US20020197008A1 (en) * 2001-06-23 2002-12-26 Dong-Soo Kim Wavelength division multiplexer using planar lightwave circuit
CN203301489U (zh) * 2013-07-05 2013-11-20 青岛海信宽带多媒体技术有限公司 具有多路波长通道的光发射器件、光接收器件及光模块
CN104954075A (zh) * 2014-03-27 2015-09-30 上海贝尔股份有限公司 一种光模块
CN105158853A (zh) * 2015-10-16 2015-12-16 北极光电(深圳)有限公司 一种新型的集成微光学波分复用组件及采用该组件的分波、合波方法
CN205958795U (zh) * 2016-07-06 2017-02-15 北极光电(深圳)有限公司 一种新型集成微光学波分与复用组件

Similar Documents

Publication Publication Date Title
EP3088928B1 (en) Optical transceiver and optical communications product
US9110260B2 (en) Hybrid optical coupling module having an alignment mark formed on an optical transmission means and an array lens and manufacturing method thereof
US20200057212A1 (en) Bonded filter substrates
JP6319985B2 (ja) 光モジュール及び光モジュール製造方法。
US20160187585A1 (en) Optical fitler subassembly for compact wavelength demultiplexing device
GB2545766A (en) Optical components for wavelength division multiplexing with high-density optical interconnect modules
US11480805B2 (en) Bidirectional micro-optics module for WDM application
US20180275347A1 (en) Compact structure of integrated WDM device
US20220270986A1 (en) Enhanced bonding between iii-v material and oxide material
US9857535B2 (en) Method of packaging multichannel optical receiver module having a sub-mount with an optical block to guide incident parallel light beams and package of the same
US20150153522A1 (en) Optical modules for wavelength multiplexing
CN107065076A (zh) 一种微型结构的光波分复用集成器件及其制作方法
JP6527451B2 (ja) 光分波器、光受信モジュールおよびその製造方法
US4790616A (en) Optical separating module
WO2018223265A1 (zh) 一种微型结构的光波分复用集成器件及其制作方法
US11474311B1 (en) Parabolic lens device for use in optical subassembly modules
CN105824078B (zh) 一种单纤四向组件的波分复用滤光棱镜
WO2021190405A1 (zh) 一种光纤连接器、单纤双向光组件及光纤传输系统
CN111552013A (zh) 分光器及单光纤双向光收发组件
CN113495323A (zh) 一种多波长波分复用解复用光组件
KR101896698B1 (ko) 다채널 광수신모듈의 패키징 방법 및 그 패키지
JP2011253064A (ja) フィルタ素子及びそれを用いた光モジュール、及びその製造方法
KR20100074704A (ko) 다파장 분리용 광모듈
TWM575533U (zh) Photosynthetic wave/demultiplexer
JP2003066376A (ja) 波長分離光学デバイス及び波長多重光伝送モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912861

Country of ref document: EP

Kind code of ref document: A1