WO2018221992A1 - Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same - Google Patents

Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same Download PDF

Info

Publication number
WO2018221992A1
WO2018221992A1 PCT/KR2018/006259 KR2018006259W WO2018221992A1 WO 2018221992 A1 WO2018221992 A1 WO 2018221992A1 KR 2018006259 W KR2018006259 W KR 2018006259W WO 2018221992 A1 WO2018221992 A1 WO 2018221992A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot press
temperature
corrosion resistance
less
Prior art date
Application number
PCT/KR2018/006259
Other languages
French (fr)
Korean (ko)
Inventor
오진근
김성우
신현정
조아라
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170101563A external-priority patent/KR102010048B1/en
Priority to EP22155560.0A priority Critical patent/EP4012064B1/en
Priority to JP2019565877A priority patent/JP7058675B2/en
Priority to PL18810671.0T priority patent/PL3632587T3/en
Priority to ES18810671T priority patent/ES2914361T3/en
Priority to EP18810671.0A priority patent/EP3632587B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201880036329.XA priority patent/CN110709184B/en
Priority to MX2019014326A priority patent/MX2019014326A/en
Priority to CN202211143165.5A priority patent/CN115555475A/en
Priority to BR112019025146-4A priority patent/BR112019025146B1/en
Priority to US16/617,798 priority patent/US11141953B2/en
Publication of WO2018221992A1 publication Critical patent/WO2018221992A1/en
Priority to US17/394,830 priority patent/US20210362472A1/en
Priority to JP2022065569A priority patent/JP7464649B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a steel sheet for hot press forming member excellent in coating adhesion and corrosion resistance after painting, and a manufacturing method thereof.
  • the hot press forming method is a method of forming a low temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then quenching it at a low temperature to increase the strength of the final product.
  • a hot press molding method is a method of forming a low temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then quenching it at a low temperature to increase the strength of the final product.
  • US Patent No. 6,296,805 has been proposed.
  • the steel plate subjected to aluminum plating is used in a process of heating and quenching (hot post-heat treatment) after hot press molding or normal temperature molding. Since the aluminum plating layer is present on the steel sheet surface, the steel sheet is not oxidized at the time of heating.
  • the member obtained after heating and molding is still exposed to the corrosive environment.
  • base iron diffuses into the aluminum plating layer, and a hard Fe-Al-based plating layer is formed on the surface of the steel sheet.
  • the Fe-Al-based plating layer cracks occur in the plating layer because it is vulnerable as hard. There is a concern that the steel sheet may be exposed to a corrosive environment.
  • the hot press formed member is provided with a coating layer, which is required to have excellent paint adhesion.
  • a steel sheet for hot press molding that can produce a hot press molding member excellent in paint adhesion and consequently excellent in corrosion resistance after painting.
  • the steel sheet for hot press forming includes a holding plate and a plated layer formed on the surface of the plate, and the area ratio occupied by the voids in the cross section of the surface layer observed by cutting the plated layer in the thickness direction. It may be more than 10% of the area of the.
  • the area ratio occupied by the voids in the cross section of the surface layer portion observed by cutting the plating layer in the thickness direction may be 15% or more of the total surface layer portion.
  • the plating layer may be an aluminum alloy plating layer.
  • the aluminum alloy plating layer may have an average content of Fe of at least 30% by weight.
  • the aluminum alloy plating layer may have an average content of Fe of at least 40% by weight.
  • the base steel sheet by weight% C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.01 ⁇ 10%, Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
  • the composition of the steel sheet is weight percent, one or more sums selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, in the group consisting of Ti, Nb, Zr and V
  • the sum of the species or more may further include at least one of 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
  • a method of manufacturing a steel sheet for a hot press-forming member comprising: obtaining an aluminum plated steel sheet by aluminum plating and winding the surface of the steel sheet; Step an aluminum alloy plated steel sheet by annealing the aluminum plated steel sheet; And cooling the aluminum alloy plated steel sheet, wherein the aluminum plating amount is 30 to 200 g / m 2 based on one side of the steel sheet, and the winding tension is 0.5 to 5 kg /.
  • the annealing is carried out at a heating temperature range of 550 ⁇ 750 °C 30 bun ⁇ 50 hours at a appeal placed, when heated in room temperature during the annealing to the heating temperature, the average temperature increase rate 20 ⁇ 100 °C / h, but the average temperature increase rate of 400 ⁇ 500 °C section 1 ⁇ 15 °C / h, the heating temperature -50 °C ⁇ heating temperature section of the heating rate is 1 ⁇ 15 °C / h, in the above annealing furnace
  • the difference between the atmosphere temperature and the steel sheet temperature is 5 to 80 ° C., and the cooling may be performed at a rate of 50 ° C./h or less to 500 ° C. in the step of cooling the aluminum alloy plated steel sheet.
  • the base steel sheet by weight% C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.01 ⁇ 10%, Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
  • the composition of the steel sheet is weight percent, one or more sums selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, in the group consisting of Ti, Nb, Zr and V
  • the sum of the species or more may further include at least one of 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
  • the steel sheet for hot press forming contains voids in the surface layer portion, the surface roughness of the member obtained after hot press forming can be greatly increased, resulting in good paint adhesion, and as a result, good post-painting corrosion resistance. You can get it.
  • 1 is a cross-sectional photograph of the cut surface of the plated layer of the steel sheet according to an embodiment of the present invention.
  • Example 2 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured according to Inventive Example 1 by using a GDS analyzer.
  • FIG. 3 is a scanning electron micrograph (rear scattering electron image) of observing a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 1.
  • FIG. 3 is a scanning electron micrograph (rear scattering electron image) of observing a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 1.
  • Example 4 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured according to Inventive Example 2 with a GDS analyzer.
  • FIG. 5 is a scanning electron micrograph (backscattered electron image) of observing a cross section of a plated layer of a steel sheet prepared according to Inventive Example 2.
  • FIG. 5 is a scanning electron micrograph (backscattered electron image) of observing a cross section of a plated layer of a steel sheet prepared according to Inventive Example 2.
  • 6 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 1 by a GDS analyzer.
  • FIG. 7 is a scanning electron microscope photograph of a cross section of a plated layer of a steel sheet manufactured according to Comparative Example 1.
  • FIG. 9 is a scanning electron microscope photograph of a cross section of a plated layer of a steel sheet manufactured by Comparative Example 2.
  • FIG. 9 is a scanning electron microscope photograph of a cross section of a plated layer of a steel sheet manufactured by Comparative Example 2.
  • 10 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 3 with a GDS analyzer.
  • FIG. 11 is a scanning electron microscope photograph of a cross section of a plated layer of the steel sheet manufactured by Comparative Example 3.
  • FIG. 11 is a scanning electron microscope photograph of a cross section of a plated layer of the steel sheet manufactured by Comparative Example 3.
  • the member refers to a part or a part material manufactured by hot press molding.
  • a steel plate means the thing before hot press molding, and this steel plate may be wound up during a manufacturing process, and may have a coil form, and this time is also called a coil.
  • the steel sheet of the present invention is composed of a plated steel plate and a plated layer formed on the surface of the plated steel plate, and has a plurality of pores (pore) in the surface layer portion of the plated layer.
  • This is a phenomenon that cannot be observed in the conventional aluminum plated steel sheet for hot press forming.
  • voids are hardly generated in the surface layer by hot-dip aluminum plating, whereas in the steel sheet according to the present embodiment, the surface layer portion of the plated layer is The main feature is that a number of voids are formed.
  • the surface layer means a region within 10 ⁇ m deep from the surface (if the surface layer is rough, the depth is measured from each point of the rough surface).
  • Alloying is performed to the surface of the member for hot press forming obtained by hot press molding an aluminum plated steel plate.
  • the resulting alloy layer is relatively stable compared with the non-alloyed aluminum plating layer, so the reactivity with the phosphate to improve the coating adhesion is weak, and there is little room for improvement of the coating adhesion only by the usual phosphate treatment.
  • the roughness during the alloying in the hot press molding process increases the adhesion to the paint itself to some level, but there is a limit to the improvement.
  • the voids are collapsed in future press molding, thereby contributing to increase the roughness.
  • the area ratio occupied by the voids in the cross section of the surface layer portion observed by cutting the plating layer of the steel sheet in the thickness direction may be 10% or more with respect to the total surface layer portion, or may be 15% or more.
  • the surface roughness is improved when the steel sheet is hot press formed, thereby greatly improving the coating adhesion and the corrosion resistance after painting.
  • the upper limit of the surface roughness does not need to be particularly limited in terms of paint adhesion or post-painting corrosion resistance, but the void ratio may be usually determined to be 70% or less or 60% or less.
  • There may be various methods for measuring the void ratio but in one embodiment of the present invention, a method for measuring the ratio of the portion where the void exists by using an image analyzer may be used.
  • the plating layer in order to form a plating layer having a high proportion of voids in the surface layer portion on the surface of the steel sheet, the plating layer may be an aluminum alloy plating layer, and in one embodiment, an Al-Fe alloy plating layer.
  • the Al—Fe alloy plating layer may be obtained by alloying an Al plated steel sheet under appropriate conditions. That is, in the present invention, when the Al-coated steel sheet is heated under appropriate conditions, diffusion occurs between Al of the plating layer and Fe of the base steel sheet, and Al and Fe are alloyed. In the process, a plurality of voids are formed in the surface layer portion. will be.
  • the average content of Fe in the plating layer may be 30% by weight or more, more preferably 40% by weight or more, and more preferably 50% by weight or more. That is, since sufficient voiding may occur to obtain voids in the surface layer portion, the average content of Fe in the plating layer may be 30% by weight, 40% by weight or 50% by weight or more.
  • the upper limit of the average content of Fe does not need to be specifically determined, considering the efficiency of alloying etc., it may also be set to 80 weight% or less.
  • the average content of Fe refers to the average content of Fe in the entire plating layer, but there may be various measurement methods.
  • the surface of the plating layer from the surface of the plating layer by Glow Discharge Spectrometry (GDS) method Integrating the content curve of Fe according to the depth (thickness) appearing when analyzed to the interface of can be used as the value divided by the plating layer thickness.
  • GDS Glow Discharge Spectrometry
  • the steel sheet of the present invention is a steel sheet for hot press molding, and if used for hot press molding, its composition is not particularly limited. However, according to one aspect of the present invention in terms of weight percent (hereinafter, unless noted otherwise, it is necessary to note that the composition of the steel sheet and the plating layer is based on weight), C: 0.04-0.5%, Si: 0.01-2%, Mn: 0.01-10%, Al: 0.001-1.0%, P: 0.05% or less, S: 0.02% or less and N: 0.02% or less.
  • the C may be added in an appropriate amount as an essential element for increasing the strength of the heat treatment member. That is, in order to ensure sufficient strength of the heat treatment member, the C may be added at least 0.04%.
  • the lower limit of the C content may be 0.1%. However, if the content is too high, when producing cold rolled material, the cold rolled material is too high when cold-rolled and the cold rolled property is greatly inferior, and the spot weldability is greatly degraded. It may be added at 0.5% or less to ensure weldability.
  • the C content may be limited to 0.45% or less and 0.4% or less.
  • the Si not only needs to be added as a deoxidizer in steelmaking, but also inhibits carbide formation which most affects the strength of the hot press forming member, and in the hot press forming, carbon is formed on the martensite lath boundary after martensite formation. It concentrates to secure residual austenite.
  • Si may be added in an amount of 0.01% or more.
  • the upper limit of the Si content may be set to 2% in order to secure sufficient plating properties when aluminum plating the steel sheet after rolling. In one embodiment of the present invention, the Si content may be limited to 1.5% or less.
  • the Mn may be added in an amount of 0.01% or more in order to secure a solid solution strengthening effect and to lower the critical cooling rate for securing martensite in the hot press forming member.
  • the Mn content may be 10% or less in terms of ensuring the hot press forming process workability, reducing manufacturing cost, and improving spot weldability by appropriately maintaining the strength of the steel sheet, and one embodiment of the present invention. Can be 9% or less, or 8% or less.
  • the Al may be added in an amount of 0.001% or more since the deoxidation action in steelmaking together with Si may increase the cleanliness of the steel.
  • the content of Al may be 1.0% or less in order to prevent the Ac3 temperature from becoming too high so that heating required in hot press molding may be performed in an appropriate temperature range.
  • P is present as an impurity in the steel, and the smaller the content is, the more advantageous. Therefore, in one embodiment of the present invention, P may be included in an amount of 0.05% or less. In another embodiment of the invention, P may be limited to 0.03% or less. Since less P is an advantageous impurity element, there is no need to specifically set an upper limit of the content. However, in order to lower the P content excessively, the manufacturing cost may increase, and when considering this, the lower limit may be 0.001%.
  • the maximum content is 0.02% (preferably 0.01% or less) because it is an element that inhibits the ductility, impact property and weldability of the member.
  • the lower limit of the content may be 0.0001%.
  • the N is an element included as an impurity in the steel, and in order to reduce the sensitivity to crack generation during continuous slab casting, and to secure the impact characteristics, the lower the content, the more advantageously, it may be included in 0.02% or less. Although the lower limit needs to be specifically determined, the N content may be set to 0.001% or more in one embodiment in consideration of an increase in manufacturing cost.
  • the Cr, Mo and W can secure the strength and crystallization through improving the hardenability, and the precipitation strengthening effect, these one or more may be added 0.01% or more based on the total content.
  • the content may be limited to 4.0% or less in order to ensure weldability of the member.
  • the content of these elements exceeds 4.0%, further increase in effect is also weak, so if the content is limited to 4.0% or less, it is possible to prevent the increase in cost due to the addition of additional elements.
  • the Ti, Nb and V are effective in improving the steel sheet of the heat-treating member by forming fine precipitates and improving the retained austenite and impact toughness by refining grains, and therefore, at least one of them may be added in an amount of 0.001% or more. have. However, if the added amount exceeds 0.4%, the effect is not only saturated, but excessive cost may be caused by the addition of ferroalloy.
  • Cu and Ni are elements that form fine precipitates to improve strength.
  • the sum of one or more of these components may be 0.005% or more. However, if the value exceeds 2.0%, the excessive cost increases, so the upper limit is 2.0%.
  • the Sb and Sn may be concentrated on the surface during annealing heat treatment for Al-Si plating to suppress the formation of Si or Mn oxide on the surface to improve plating properties. It may be added 0.001% or more in order to obtain such an effect. However, if the added amount exceeds 1.0%, the upper limit is 1.0% because not only excessive ferroalloy costs but also solid solution at the slab grain boundary may cause coil edge cracks during hot rolling.
  • the above-mentioned B is an element which can not only improve hardenability by addition of a small amount but also segregate in the old austenite grain boundary and suppress brittleness of the hot press-molded member due to grain boundary segregation of P or / and S. Therefore, B may be added at least 0.001%. However, if the content exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit thereof may be 0.01%, and in one embodiment, the B content may be 0.005% or less.
  • Iron and unavoidable impurities are mentioned as remainder other than the above-mentioned component, and if it is a component which can be contained in a steel plate for hot forming, it will not specifically limit.
  • the steel sheet of the present invention can be obtained by using hot-rolled or cold-rolled steel sheet, by performing hot-dip aluminum plating on the surface of the steel sheet and performing annealing treatment on the coated steel sheet.
  • the surface of the rolled steel sheet may be subjected to aluminum plating.
  • Aluminum plating is usually required by AlSi plating (type 80), containing at least 80% Al and 5-20% Si, optionally with additional elements, or at least 90% Al (type II). Depending on the plating, any plating containing additional elements may be used. Molten aluminum plating may be performed to form a plating layer, and annealing treatment may be performed on the steel sheet before plating. When plating, the appropriate plating amount is 30 ⁇ 200g / m 2 on one side. If the plating amount is too large, it may take an excessive time to alloy to the surface, on the contrary, if the plating amount is too small, it is difficult to obtain sufficient corrosion resistance.
  • the winding tension of the coil can be adjusted. According to the adjustment of the winding tension of the coil, the alloying behavior and the surface quality of the coil may be changed during the subsequent annealing treatment.
  • An annealing treatment is performed on the aluminum plated steel sheet by the above-described process to obtain an aluminum alloy plated steel sheet.
  • the aluminum plated steel sheet (coil) is heated in a batch annealing furnace.
  • the target heat treatment temperature and the holding time are in the range of 550 to 750 ° C based on the steel sheet temperature (in the present invention, this temperature range). It is preferable to maintain the maximum temperature reached by the material at 30 minutes to 50 hours at the heating temperature), wherein the holding time is the time from the coil temperature to the target temperature until the cooling start.
  • the plating layer may be peeled off during roll leveling, so that the heating temperature may be 550 ° C. or more for sufficient alloying. In order to ensure spot weldability, the heating temperature may be 750 ° C.
  • the holding time may be set to 30 minutes to 50 hours
  • the temperature of the steel sheet may have a pattern in which the temperature is continuously raised without cooling until the heating temperature is reached. Can be.
  • the steel sheet (coil) temperature reference for the entire temperature section (room temperature to heating temperature section)
  • the average temperature increase rate can be 20-100 degreeC / h.
  • the overall average temperature increase rate can be controlled in the above numerical range, but in one embodiment of the present invention to control the temperature increase rate of a specific temperature section as described later to achieve the problem of the present invention.
  • the average temperature increase rate of the entire temperature section may be set at 70 ° C /.
  • the average temperature increase rate of 400 to 500 ° C. is increased. It can be heated at 1 to 15 ° C / h. In one embodiment of the present invention can be the lower limit of the average temperature increase rate of 400 ⁇ 500 °C section at the time of the temperature increase to 4 °C / hr, and in another embodiment the lower limit of the average temperature increase rate of 400 ⁇ 500 °C section at the time of temperature increase It may also be 5 ° C / hr.
  • the average temperature rise rate of the heating temperature -50 ° C to the heating temperature range during heating It can be heated at 1-15 degreeC / h.
  • the lower limit of the average temperature increase rate of the section may be set at 4 ° C./h. In another embodiment, the lower limit of the average temperature increase rate of the section may be set at 5 ° C./h.
  • the difference between the ambient temperature and the steel plate temperature in the annealing furnace is 5 ⁇ 80 °C
  • the heating of the annealing furnace is a method of heating the steel sheet (coil) by raising the atmosphere temperature in the annealing furnace, rather than directly heating the steel sheet (coil).
  • the difference between the atmosphere temperature and the steel sheet temperature cannot be avoided.
  • the difference between the atmosphere temperature and the coil temperature can be set to 80 ° C or less based on the time point at which the heat treatment target temperature is reached in order to minimize the variation of the material and plating quality for each position in the steel sheet. have.
  • the temperature difference should be as small as possible, but this can be as high as 5 ° C, since it may be difficult to meet the overall average temperature rise rate conditions by slowing the rate of temperature rise.
  • the temperature of the steel sheet means that the temperature of the loaded steel plate (coil) bottom part (meaning the lowest part of the coil) is measured
  • the atmospheric temperature means the temperature measured at the center of the internal space of the heating furnace. .
  • the aluminum alloy plated steel sheet (coil) is cooled.
  • various methods such as furnace cooling, air cooling, and water cooling, can be applied.
  • the average cooling rate of the entire cooling section there is no particular limitation on the average cooling rate of the entire cooling section, and it may be rapidly cooled to improve productivity.
  • the cooling rate of the temperature section up to 500 ° C. after heating may be 50 ° C./h or less.
  • the lower limit is not particularly limited, but may be 1 ° C / h or more in consideration of productivity.
  • a cold rolled steel sheet for hot press molding having the composition of Table 1.
  • the surface of the steel sheet was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition.
  • the coating amount was adjusted to 70 g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2.2 kg / mm 2 .
  • the plated steel sheet was heated to 650 ° C. under the following conditions in an annealing furnace.
  • the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to the 10 ⁇ m thickness direction was 22.8%. there was.
  • the surface of the steel sheet having the composition shown in Table 1 was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 80g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2kg / mm 2 .
  • the plated steel plate was then heated to 700 ° C. under the following conditions in an annealing furnace.
  • the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to the 10 ⁇ m thickness direction was 28.5%. there was.
  • the cross-sectional shape of the steel sheet was that a plating layer was formed on the outer surface of the base steel sheet, and almost no voids were formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a point of 10 ⁇ m in the thickness direction. there was.
  • the area ratio of the formed voids was 0%.
  • a component profile of the form as shown in FIG. 8 was obtained, and the average Fe content calculated based on this was 21% by weight.
  • a plating layer was formed on the outer surface of the steel sheet, and almost no void was formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a point of 10 ⁇ m in the thickness direction. there was.
  • the area ratio of the formed voids was 0%.
  • the surface of the steel sheet having the composition shown in Table 1 was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 90 g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2 kg / mm 2 .
  • the plated steel plate was then heated to 650 ° C. under the following conditions in an annealing furnace.
  • the plate After heating, the plate was maintained at the same temperature for 10 hours, after which the steel sheet was cooled to an average cooling rate of 45 ° C./h up to 500 ° C., and then cooled to an average cooling rate of 60 ° C./h up to 100 ° C. to obtain a hot press forming steel sheet. .
  • the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a thickness point of 10 ⁇ m was 3.5%. there was.
  • the steel sheets of Inventive Examples 1 and 2 and Comparative Examples 1 to 3 were heated to 950 ° C. and maintained at the above temperature for 5 minutes, and then subjected to hot press molding to quench while pressing by a press to obtain a hot press molding member.
  • Inventive Example 1 and Inventive Example 2 have a surface roughness (Ra) of 2.01 and 2.23 ⁇ m, respectively, Comparative Example 1, Comparative Example 2 and Comparative Example 3 has a surface roughness (Ra) of 1.12, 1.27 And 1.48 ⁇ m.
  • Phosphate treatment and electrodeposition coating were performed on the members obtained from the respective examples and comparative examples, crosses were formed on the surface of the steel sheet, and then a cyclic corrosion test was carried out to cause blisters on the crosses. Was observed.
  • the composite corrosion test was carried out in a cycle of 24 hours of 'wet atmosphere exposure 2 hours-salt spray exposure 2 hours-drying 1 hour-wet atmosphere exposure 6 hours-drying 2 hours-wet atmosphere exposure 6 hours-drying 2 hours-cooling 3 hours'. It was time and maintained a total of 50 cycles.
  • Inventive Examples 1 and 2 were all the maximum width of the blister 1mm or less, while Comparative Examples 1, 2 and 3 are the maximum width of the blister 3.2, 2.9 and 2.4mm respectively, it can be confirmed that the corrosion resistance is poor after coating compared to the invention example there was.

Abstract

The present invention relates to a steel sheet for a hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and a method for manufacturing the same. A steel sheet for hot press forming according to one aspect of the present invention comprises a base steel sheet and a plated layer formed on a surface of the base steel sheet, wherein the ratio of an area occupied by pores to the entire area of a surface layer portion may be 10% or more in a cross section of the surface layer portion observed when the plated layer is cut in a thickness direction thereof.

Description

도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법Steel plate for hot press forming member having excellent paint adhesion and corrosion resistance after painting and its manufacturing method
[규칙 제26조에 의한 보정 13.08.2018] 
본 발명은 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판과 그 제조방법에 관한 것이다.
[Revision 13.08.2018 under Rule 26]
The present invention relates to a steel sheet for hot press forming member excellent in coating adhesion and corrosion resistance after painting, and a manufacturing method thereof.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다.Recently, due to the depletion of petroleum energy resources and high interest in the environment, regulations on improving fuel economy of automobiles are becoming stronger.
재료적인 측면에서 자동차의 연비를 향상시키기 위한 한가지의 방법으로서 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다.In terms of materials, it is possible to reduce the thickness of the steel sheet used as one method for improving fuel efficiency of the automobile. However, reducing the thickness may cause a problem in the safety of the automobile. Should be.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데, 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱이 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.For this reason, the demand for high strength steel sheets has been continuously generated, and various kinds of steel sheets have been developed. By the way, since these steel sheets have high strength in themselves, there is a problem that workability is poor. That is, since the product of strength and elongation for each grade of steel sheet tends to always have a constant value, when the strength of the steel sheet increases, there is a problem in that elongation, which is an index of workability, decreases.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온으로 가공한 후, 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다는 장점이 있다.In order to solve this problem, a hot press molding method has been proposed. The hot press forming method is a method of forming a low temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature suitable for processing and then quenching it at a low temperature to increase the strength of the final product. In this case, there is an advantage that the problem of workability can be minimized when manufacturing a member having a high strength.
그런데, 상기 열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하여야 하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다.However, in the hot press forming method, there is a problem in that the steel sheet surface is oxidized because the steel sheet needs to be heated to a high temperature, and thus a process of removing oxide from the steel sheet surface after the press molding has to be added.
이러한 문제점을 해결하기 위한 방법으로 미국 특허공보 제6,296,805호 발명이 제안된 바 있다. 상기 발명에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있다. 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열시에 강판이 산화되지는 않는다. In order to solve this problem, US Patent No. 6,296,805 has been proposed. In the above invention, the steel plate subjected to aluminum plating is used in a process of heating and quenching (hot post-heat treatment) after hot press molding or normal temperature molding. Since the aluminum plating layer is present on the steel sheet surface, the steel sheet is not oxidized at the time of heating.
그러나, 표면에 알루미늄 도금층이 존재하여 가열시에 강판이 산화되지 않는다고 하더라도 가열 및 성형 후에 얻어지는 부재는 여전히 부식 환경에 노출되게 된다. 특히, 도금된 강판을 가열하는 과정에서 알루미늄 도금층으로 소지철이 확산하여 강판의 표면에는 경질의 Fe-Al계 도금층이 형성되는데, Fe-Al계 도금층의 경우에는 경질로서 취약하기 때문에 도금층에 크랙이 발생할 우려가 있고 그에 따라 소지강판이 부식환경에 노출될 우려가 있다.However, even if the aluminum plating layer is present on the surface so that the steel sheet is not oxidized at the time of heating, the member obtained after heating and molding is still exposed to the corrosive environment. Particularly, in the process of heating the plated steel sheet, base iron diffuses into the aluminum plating layer, and a hard Fe-Al-based plating layer is formed on the surface of the steel sheet. In the case of the Fe-Al-based plating layer, cracks occur in the plating layer because it is vulnerable as hard. There is a concern that the steel sheet may be exposed to a corrosive environment.
이러한 점을 방지하기 위해 열간 프레스 성형 부재에는 도장 층이 형성될 있는데, 이때 우수한 도장 밀착성을 가질 것이 요구된다.In order to prevent this, the hot press formed member is provided with a coating layer, which is required to have excellent paint adhesion.
본 발명의 한가지 측면에 따르면 도장 밀착성이 우수하고 그 결과 도장 후 내식성이 우수한 열간 프레스 성형 부재를 제조할 수 있는 열간 프레스 성형용 강판이 제공된다.According to one aspect of the present invention there is provided a steel sheet for hot press molding that can produce a hot press molding member excellent in paint adhesion and consequently excellent in corrosion resistance after painting.
본 발명의 과제는 상술한 내용으로 한정되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 해결하는데 아무런 어려움도 없을 것이다.The subject of this invention is not limited to what was mentioned above. Those skilled in the art will have no difficulty in solving the additional problems of the present invention from the general matters of the present specification.
본 발명의 한가지 측면에 따른 열간 프레스 성형용 강판은 소지강판 및 상기 소지강판의 표면에 형성된 도금층을 포함하고, 상기 도금층을 두께 방향으로 절단하여 관찰되는 표층부의 단면에서 공극이 차지하는 면적 비율이 전체 표층부의 면적 대비 10% 이상일 수 있다.The steel sheet for hot press forming according to one aspect of the present invention includes a holding plate and a plated layer formed on the surface of the plate, and the area ratio occupied by the voids in the cross section of the surface layer observed by cutting the plated layer in the thickness direction. It may be more than 10% of the area of the.
본 발명의 한가지 구현례에서, 상기 도금층을 두께 방향으로 절단하여 관찰되는 표층부의 단면에서 공극이 차지하는 면적 비율이 전체 표층부의 면적 대비 15% 이상일 수 있다.In one embodiment of the present invention, the area ratio occupied by the voids in the cross section of the surface layer portion observed by cutting the plating layer in the thickness direction may be 15% or more of the total surface layer portion.
본 발명의 한가지 구현례에서, 상기 도금층은 알루미늄 합금 도금층일 수 있다.In one embodiment of the present invention, the plating layer may be an aluminum alloy plating layer.
본 발명의 한가지 구현례에서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 30중량% 이상일 수 있다.In one embodiment of the present invention, the aluminum alloy plating layer may have an average content of Fe of at least 30% by weight.
본 발명의 한가지 구현례에서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 40중량% 이상일 수 있다.In one embodiment of the present invention, the aluminum alloy plating layer may have an average content of Fe of at least 40% by weight.
본 발명의 한가지 구현례에서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가질 수 있다.In one embodiment of the present invention, the base steel sheet by weight% C: 0.04 ~ 0.5%, Si: 0.01 ~ 2%, Mn: 0.01 ~ 10%, Al: 0.001 ~ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
본 발명의 한가지 구현례에서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함할 수 있다.In one embodiment of the present invention, the composition of the steel sheet is weight percent, one or more sums selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, in the group consisting of Ti, Nb, Zr and V The sum of the species or more may further include at least one of 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
본 발명의 한가지 측면에 따른 열간 프레스 성형 부재용 강판의 제조방법은, 소지강판 표면을 알루미늄 도금하고 권취하여 알루미늄 도금 강판을 얻는 단계; 알루미늄 도금 강판을 소둔하여 알루미늄 합금 도금 강판을 단계; 및 알루미늄 합금 도금 강판을 냉각하는 단계를 포함하는 열간 프레스 성형 부재용 강판의 제조방법으로서, 상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m2이고, 권취 시 권취 장력을 0.5~5kg/mm2으로 하며, 상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분 ~ 50시간 실시되며, 상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 20~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고, 가열 온도-50℃ ~ 가열 온도 구간의 승온 속도를 1~15℃/h로 하며, 상기 상소둔 로내 분위기 온도와 강판 온도간 차이를 5~80℃로 하며, 상기 알루미늄 합금 도금 강판을 냉각하는 단계에서 500℃까지 50℃/h 이하의 속도로 냉각할 수 있다.According to an aspect of the present invention, there is provided a method of manufacturing a steel sheet for a hot press-forming member, the method comprising: obtaining an aluminum plated steel sheet by aluminum plating and winding the surface of the steel sheet; Step an aluminum alloy plated steel sheet by annealing the aluminum plated steel sheet; And cooling the aluminum alloy plated steel sheet, wherein the aluminum plating amount is 30 to 200 g / m 2 based on one side of the steel sheet, and the winding tension is 0.5 to 5 kg /. in mm 2 and said annealing is carried out at a heating temperature range of 550 ~ 750 30 bun ~ 50 hours at a appeal placed, when heated in room temperature during the annealing to the heating temperature, the average temperature increase rate 20 ~ 100 ℃ / h, but the average temperature increase rate of 400 ~ 500 ℃ section 1 ~ 15 ℃ / h, the heating temperature -50 ℃ ~ heating temperature section of the heating rate is 1 ~ 15 ℃ / h, in the above annealing furnace The difference between the atmosphere temperature and the steel sheet temperature is 5 to 80 ° C., and the cooling may be performed at a rate of 50 ° C./h or less to 500 ° C. in the step of cooling the aluminum alloy plated steel sheet.
본 발명의 한가지 구현례에서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가질 수 있다.In one embodiment of the present invention, the base steel sheet by weight% C: 0.04 ~ 0.5%, Si: 0.01 ~ 2%, Mn: 0.01 ~ 10%, Al: 0.001 ~ 1.0%, P: 0.05% or less, S It may have a composition comprising: 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
본 발명의 한가지 구현례에서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함할 수 있다.In one embodiment of the present invention, the composition of the steel sheet is weight percent, one or more sums selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, in the group consisting of Ti, Nb, Zr and V The sum of the species or more may further include at least one of 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
본 발명의 한가지 측면에 따르면, 열간 프레스 성형용 강판이 표층부에 공극을 포함하고 있기 때문에, 열간 프레스 성형 후 얻어지는 부재의 표면 조도가 크게 높아져서 양호한 도장 밀착성을 가질 수 있으며, 그 결과 양호한 도장 후 내식성도 얻을 수 있다.According to one aspect of the present invention, since the steel sheet for hot press forming contains voids in the surface layer portion, the surface roughness of the member obtained after hot press forming can be greatly increased, resulting in good paint adhesion, and as a result, good post-painting corrosion resistance. You can get it.
도 1은 본 발명의 한가지 구현례에 따른 강판의 도금층의 절단면을 관찰한 단면 사진이다. 1 is a cross-sectional photograph of the cut surface of the plated layer of the steel sheet according to an embodiment of the present invention.
도 2는 발명예 1에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.2 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured according to Inventive Example 1 by using a GDS analyzer.
도 3은 발명예 1에 의하여 제조된 강판의 도금층의 단면을 관찰한 주사전자현미경 사진(후방산란전자 이미지)이다. 3 is a scanning electron micrograph (rear scattering electron image) of observing a cross section of a plated layer of a steel sheet manufactured according to Inventive Example 1. FIG.
도 4는 발명예 2에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.4 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured according to Inventive Example 2 with a GDS analyzer.
도 5는 발명예 2에 의하여 제조된 강판의 도금층의 단면을 관찰한 주사전자현미경 사진(후방산란전자 이미지)이다.5 is a scanning electron micrograph (backscattered electron image) of observing a cross section of a plated layer of a steel sheet prepared according to Inventive Example 2. FIG.
도 6은 비교예 1에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.6 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 1 by a GDS analyzer.
도 7은 비교예 1에 의하여 제조된 강판의 도금층의 단면을 관찰한 주사전자현미경 사진이다.7 is a scanning electron microscope photograph of a cross section of a plated layer of a steel sheet manufactured according to Comparative Example 1. FIG.
도 8은 비교예 2에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.8 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 2 with a GDS analyzer.
도 9는 비교예 2에 의하여 제조된 강판의 도금층의 단면을 관찰한 주사전자현미경 사진이다.9 is a scanning electron microscope photograph of a cross section of a plated layer of a steel sheet manufactured by Comparative Example 2. FIG.
도 10은 비교예 3에 의하여 제조된 강판의 도금층을 GDS 분석기로 분석한 성분 프로파일이다.10 is a component profile obtained by analyzing a plated layer of a steel sheet manufactured by Comparative Example 3 with a GDS analyzer.
도 11은 비교예 3에 의하여 제조된 강판의 도금층의 단면을 관찰한 주사전자현미경 사진이다.FIG. 11 is a scanning electron microscope photograph of a cross section of a plated layer of the steel sheet manufactured by Comparative Example 3. FIG.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명에서 부재라 함은 열간 프레스 성형에 의해서 제조된 부품 또는 부품용 재료를 말한다. 또한, 강판은 열간 프레스 성형 전의 것을 의미하고 이러한 강판은 제조 공정 중에 권취되어 코일 형태를 가지는 경우가 있는데 이때에는 코일이라고 부르기도 한다.In the present invention, the member refers to a part or a part material manufactured by hot press molding. In addition, a steel plate means the thing before hot press molding, and this steel plate may be wound up during a manufacturing process, and may have a coil form, and this time is also called a coil.
도 1은 본 발명의 한가지 구현례에 따른 강판의 도금층의 절단면을 관찰한 단면 사진이다. 도면에서 볼 수 있듯이 본 발명의 강판은 소지강판과 소지강판의 표면에 형성된 도금층으로 이루어져 있으며, 도금층의 표층부에 다수의 공극(pore)을 가지고 있다. 이는 종래의 열간 프레스 성형용 알루미늄 도금 강판에서는 관찰할 수 없는 현상으로서, 종래의 알루미늄 도금 강판에서는 용융 알루미늄 도금에 의하여 표층부에 공극이 거의 발생하지 않는 반면, 본 구현례에 따른 강판에서는 도금층의 표층부에 다수의 공극이 형성되어 있다는 것이 주요한 특징이다. 본 구현례에서 표층부라 함은 표면으로부터 깊이 10㎛ 이내의 영역을 의미한다(표층이 거칠 경우에는 거친 표면의 각각의 지점으로부터 깊이를 측정한다). 1 is a cross-sectional photograph of the cut surface of the plated layer of the steel sheet according to an embodiment of the present invention. As can be seen in the drawing, the steel sheet of the present invention is composed of a plated steel plate and a plated layer formed on the surface of the plated steel plate, and has a plurality of pores (pore) in the surface layer portion of the plated layer. This is a phenomenon that cannot be observed in the conventional aluminum plated steel sheet for hot press forming. In the conventional aluminum plated steel sheet, voids are hardly generated in the surface layer by hot-dip aluminum plating, whereas in the steel sheet according to the present embodiment, the surface layer portion of the plated layer is The main feature is that a number of voids are formed. In this embodiment, the surface layer means a region within 10 μm deep from the surface (if the surface layer is rough, the depth is measured from each point of the rough surface).
강판의 도금층 표층부에 다수의 공극이 포함될 경우, 강판을 열간으로 가열하여 프레스 성형할 때, 프레스 가공시 가해지는 응력에 의하여 상기 표층부 공극 중 일부가 개방되게 되는데, 이는 도금층 표면의 조도를 증가시키는 역할을 한다.When a plurality of pores are included in the surface layer of the plated steel sheet, when the steel sheet is hot heated and press-molded, some of the surface layer pores are opened by the stress applied during press working, which increases the roughness of the surface of the plated layer. Do it.
알루미늄 도금 강판을 열간 프레스 성형하여 얻어지는 열간 프레스 성형용 부재는 표면까지 합금화가 일어난다. 결과적으로 얻어지는 합금층은 합금화되지 않은 알루미늄 도금층에 비하여 상대적으로 안정적이기 때문에 도장 밀착성을 향상시키기 위하여 실시하는 인산염과 반응성이 약하여 통상의 인산염 처리만으로는 도장 밀착성을 개선할 여지가 작다. 물론, 열간 프레스 성형 과정에서 합금화시 조도가 증가하여 그 자체로 도장 밀착성이 어느 수준까지는 개선될 여지가 있으나 개선에는 한계가 있다.Alloying is performed to the surface of the member for hot press forming obtained by hot press molding an aluminum plated steel plate. The resulting alloy layer is relatively stable compared with the non-alloyed aluminum plating layer, so the reactivity with the phosphate to improve the coating adhesion is weak, and there is little room for improvement of the coating adhesion only by the usual phosphate treatment. Of course, the roughness during the alloying in the hot press molding process increases the adhesion to the paint itself to some level, but there is a limit to the improvement.
따라서, 본 구현례에서는 이를 개선하기 위하여 상술한 바와 같이 강판 단계에서 도금층에 공극을 형성시켜 둠으로써 향후 프레스 성형시 상기 공극이 붕괴되어 조도를 증가시키는데 기여를 하게 한 것이다.Therefore, in this embodiment, in order to improve this, by forming voids in the plating layer in the steel sheet step as described above, the voids are collapsed in future press molding, thereby contributing to increase the roughness.
이를 위해서는 강판의 도금층을 두께 방향으로 절단하여 관찰되는 표층부의 단면에서 공극이 차지하는 면적 비율이 전체 표층부의 면적 대비 10% 이상일 수 있으며, 15% 이상일 수도 있다. 이와 같이 할 경우에는 상기 강판을 열간 프레스 성형할 경우 표면 조도가 향상되어 도장 밀착성과 그에 따른 도장 후 내식성을 크게 개선할 수 있다. 도장 밀착성이나 그에 따른 도장 후 내식성의 관점에서 표면 조도의 상한을 특별히 제한할 필요는 없으나, 상기 공극 비율은 통상 70% 이하 또는 60% 이하로 결정될 수 있다. 공극 비율을 측정하는 방법은 여러 가지가 있을 수 있으나, 본 발명의 한가지 구현례에서는 이미지 분석기(Image Analyzer)를 이용하여 공극이 존재하는 부분의 비율을 측정하는 방법을 사용할 수 있다.To this end, the area ratio occupied by the voids in the cross section of the surface layer portion observed by cutting the plating layer of the steel sheet in the thickness direction may be 10% or more with respect to the total surface layer portion, or may be 15% or more. In this case, the surface roughness is improved when the steel sheet is hot press formed, thereby greatly improving the coating adhesion and the corrosion resistance after painting. The upper limit of the surface roughness does not need to be particularly limited in terms of paint adhesion or post-painting corrosion resistance, but the void ratio may be usually determined to be 70% or less or 60% or less. There may be various methods for measuring the void ratio, but in one embodiment of the present invention, a method for measuring the ratio of the portion where the void exists by using an image analyzer may be used.
본 발명에서는 이와 같이 표층부의 공극의 비율이 높은 도금층을 강판 표면에 형성시키기 위해서, 도금층을 알루미늄 합금 도금층으로 할 수 있으며, 한가지 구현례에서는 Al-Fe 합금 도금층으로 할 수 있다. 본 발명의 한가지 구현례에 따르면 Al-Fe 합금 도금층은 Al 도금된 강판을 적절한 조건으로 합금화함으로써 얻어질 수 있다. 즉, 본 발명에서는 Al 도금 강판을 적절한 조건으로 가열할 때, 도금층의 Al과 소지 강판의 Fe 사이에 확산이 일어나고 Al과 Fe가 합금되는데, 그 과정에서 표층부에 다수의 공극이 형성되는 현상을 이용한 것이다.In the present invention, in order to form a plating layer having a high proportion of voids in the surface layer portion on the surface of the steel sheet, the plating layer may be an aluminum alloy plating layer, and in one embodiment, an Al-Fe alloy plating layer. According to one embodiment of the present invention, the Al—Fe alloy plating layer may be obtained by alloying an Al plated steel sheet under appropriate conditions. That is, in the present invention, when the Al-coated steel sheet is heated under appropriate conditions, diffusion occurs between Al of the plating layer and Fe of the base steel sheet, and Al and Fe are alloyed. In the process, a plurality of voids are formed in the surface layer portion. will be.
이때, 공극의 형성을 위해서는 도금층의 Fe의 평균 함량이 30중량% 이상일 수 있으며, 보다 바람직하게는 40중량% 이상, 더욱 바람직하게는 50중량% 이상일 수 있다. 즉, 충분한 합금화가 일어나야 표층부에서 공극이 얻어질 수 있으므로, 도금층의 Fe의 평균 함량은 30중량%, 40중량% 또는 50중량% 이상일 수 있다. Fe의 평균 함량의 상한은 특별히 정할 필요는 없으나, 합금화의 효율 등을 고려할 때 80중량% 이하로 정할 수도 있다. 여기서 Fe의 평균 함량은 전체 도금층 중의 Fe 함량의 평균을 의미하는 것으로서 측정 방법이 여러가지가 있을 수 있으나, 본 구현례에서는 글로우 방전 분광분석(Glow Discharge emission Spectrometry; 간략히 GDS)법으로 도금층의 표면부터 강판의 계면까지 분석하였을 때 나타나는 깊이(두께)에 따른 Fe의 함량 곡선을 적분한 후 이를 도금층 두께로 나눈 값으로 사용할 수 있다. 도금층과 강판의 계면을 판단하는 기준에는 여러가지가 있을 수 있으나, 본 구현례에서는 GDS 결과로부터 Fe의 함량이 모재 Fe함량의 92%인 지점을 도금층과 강판의 계면으로 규정할 수 있다. In this case, in order to form the voids, the average content of Fe in the plating layer may be 30% by weight or more, more preferably 40% by weight or more, and more preferably 50% by weight or more. That is, since sufficient voiding may occur to obtain voids in the surface layer portion, the average content of Fe in the plating layer may be 30% by weight, 40% by weight or 50% by weight or more. Although the upper limit of the average content of Fe does not need to be specifically determined, considering the efficiency of alloying etc., it may also be set to 80 weight% or less. Here, the average content of Fe refers to the average content of Fe in the entire plating layer, but there may be various measurement methods. However, in the present embodiment, the surface of the plating layer from the surface of the plating layer by Glow Discharge Spectrometry (GDS) method. Integrating the content curve of Fe according to the depth (thickness) appearing when analyzed to the interface of can be used as the value divided by the plating layer thickness. There may be various criteria for determining the interface between the plated layer and the steel sheet, but in this embodiment, the point where the Fe content is 92% of the base Fe content from the GDS results may be defined as the interface between the plated layer and the steel sheet.
본 발명의 강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 그 조성을 특별히 제한하지 않는다. 다만, 본 발명의 한가지 측면에 따를 경우 중량%로(이하, 특별히 다르게 표현하지 않는 한 본 발명의 강판과 도금층의 조성은 중량을 기준으로 한다는 것에 유의할 필요가 있다), C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하 및 N: 0.02% 이하를 포함하는 조성을 가질 수 있다.The steel sheet of the present invention is a steel sheet for hot press molding, and if used for hot press molding, its composition is not particularly limited. However, according to one aspect of the present invention in terms of weight percent (hereinafter, unless noted otherwise, it is necessary to note that the composition of the steel sheet and the plating layer is based on weight), C: 0.04-0.5%, Si: 0.01-2%, Mn: 0.01-10%, Al: 0.001-1.0%, P: 0.05% or less, S: 0.02% or less and N: 0.02% or less.
C: 0.04~0.5%C: 0.04-0.5%
상기 C는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.04% 이상 첨가될 수 있다. 한가지 구현례에서는 상기 C 함량의 하한은 0.1%일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하 또한 0.4% 이하로 그 함량을 제한할 수도 있다.C may be added in an appropriate amount as an essential element for increasing the strength of the heat treatment member. That is, in order to ensure sufficient strength of the heat treatment member, the C may be added at least 0.04%. In one embodiment, the lower limit of the C content may be 0.1%. However, if the content is too high, when producing cold rolled material, the cold rolled material is too high when cold-rolled and the cold rolled property is greatly inferior, and the spot weldability is greatly degraded. It may be added at 0.5% or less to ensure weldability. In addition, the C content may be limited to 0.45% or less and 0.4% or less.
Si: 0.01~2% Si: 0.01-2%
상기 Si는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제하고, 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 래쓰(lath) 입계로 탄소를 농화시켜 잔류오스테나이트를 확보하는 역할을 한다. 따라서, Si는 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 압연 후 강판에 알루미늄 도금을 행할때 충분한 도금성을 확보하기 위해서 상기 Si 함량의 상한을 2%로 정할 수 있다. 본 발명의 한가지 구현례에서는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다. The Si not only needs to be added as a deoxidizer in steelmaking, but also inhibits carbide formation which most affects the strength of the hot press forming member, and in the hot press forming, carbon is formed on the martensite lath boundary after martensite formation. It concentrates to secure residual austenite. Thus, Si may be added in an amount of 0.01% or more. In addition, the upper limit of the Si content may be set to 2% in order to secure sufficient plating properties when aluminum plating the steel sheet after rolling. In one embodiment of the present invention, the Si content may be limited to 1.5% or less.
Mn: 0.01~10%Mn: 0.01 ~ 10%
상기 Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 10% 이하로 할 수 있으며, 본 발명의 한가지 구현례에서는 9% 이하, 또는 8% 이하로 할 수 있다.The Mn may be added in an amount of 0.01% or more in order to secure a solid solution strengthening effect and to lower the critical cooling rate for securing martensite in the hot press forming member. In addition, the Mn content may be 10% or less in terms of ensuring the hot press forming process workability, reducing manufacturing cost, and improving spot weldability by appropriately maintaining the strength of the steel sheet, and one embodiment of the present invention. Can be 9% or less, or 8% or less.
Al: 0.001~1.0%Al: 0.001-1.0%
상기 Al은 Si과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으므로 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1.0% 이하로 할 수 있다.The Al may be added in an amount of 0.001% or more since the deoxidation action in steelmaking together with Si may increase the cleanliness of the steel. In addition, the content of Al may be 1.0% or less in order to prevent the Ac3 temperature from becoming too high so that heating required in hot press molding may be performed in an appropriate temperature range.
P: 0.05% 이하P: 0.05% or less
상기 P는 강내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명의 한가지 구현례에서 P는 0.05% 이하의 함량으로 포함될 수 있다. 본 발명의 다른 한가지 구현례에서 P는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수도 있다.P is present as an impurity in the steel, and the smaller the content is, the more advantageous. Therefore, in one embodiment of the present invention, P may be included in an amount of 0.05% or less. In another embodiment of the invention, P may be limited to 0.03% or less. Since less P is an advantageous impurity element, there is no need to specifically set an upper limit of the content. However, in order to lower the P content excessively, the manufacturing cost may increase, and when considering this, the lower limit may be 0.001%.
S: 0.02% 이하S: 0.02% or less
상기 S는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 한다(바람직하게는 0.01% 이하). 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 본 발명의 한가지 구현례에서는 그 함량의 하한을 0.0001%로 할 수 있다.S is an impurity in steel, and the maximum content is 0.02% (preferably 0.01% or less) because it is an element that inhibits the ductility, impact property and weldability of the member. In addition, since the manufacturing cost may increase when the minimum content is less than 0.0001%, in one embodiment of the present invention, the lower limit of the content may be 0.0001%.
N: 0.02% 이하N: 0.02% or less
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요가 있으나, 제조비용의 상승 등을 고려하여 한가지 구현례에서 N 함량을 0.001% 이상으로 정할 수도 있다.The N is an element included as an impurity in the steel, and in order to reduce the sensitivity to crack generation during continuous slab casting, and to secure the impact characteristics, the lower the content, the more advantageously, it may be included in 0.02% or less. Although the lower limit needs to be specifically determined, the N content may be set to 0.001% or more in one embodiment in consideration of an increase in manufacturing cost.
본 발명에서는 필요에 따라, 상술한 강 조성에 더하여 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중에서 하나 이상을 추가로 첨가할 수 있다.In the present invention, if necessary, in addition to the above-described steel composition, at least one sum selected from the group consisting of Cr, Mo, and W: 0.01 to 4.0%, and at least one sum from the group consisting of Ti, Nb, Zr, and V: 0.001 At least one of ˜0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합 : 0.01~4.0%Sum of at least one selected from the group consisting of Cr, Mo and W: 0.01% to 4.0%
상기 Cr, Mo 및 W은 경화능 향상과, 석출강화 효과를 통한 강도 및 결정립 미세화를 확보할 수 있으므로, 이들 1종 이상을 함량 합계 기준으로 0.01% 이상 첨가할 수 있다. 또한, 부재의 용접성을 확보하기 위해서 그 함량을 4.0% 이하로 제한할 수도 있다. 또한, 이들 원소의 함량이 4.0%를 초과 하면 더이상의 효과 상승도 미약하기 때문에 함량을 4.0% 이하로 제한할 경우 추가적인 원소 첨가에 따른 비용 상승을 방지할 수도 있다. The Cr, Mo and W can secure the strength and crystallization through improving the hardenability, and the precipitation strengthening effect, these one or more may be added 0.01% or more based on the total content. In addition, the content may be limited to 4.0% or less in order to ensure weldability of the member. In addition, if the content of these elements exceeds 4.0%, further increase in effect is also weak, so if the content is limited to 4.0% or less, it is possible to prevent the increase in cost due to the addition of additional elements.
Ti, Nb, Zr 및 V로 이루어진 그룹 중 선택된 1종 이상의 합 : 0.001~0.4%Sum of at least one selected from the group consisting of Ti, Nb, Zr and V: 0.001 to 0.4%
상기 Ti, Nb 및 V은 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 이들 중 1종 이상을 함량의 합계로 0.001% 이상 첨가할 수 있다. 다만, 그 첨가량이 0.4%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다. The Ti, Nb and V are effective in improving the steel sheet of the heat-treating member by forming fine precipitates and improving the retained austenite and impact toughness by refining grains, and therefore, at least one of them may be added in an amount of 0.001% or more. have. However, if the added amount exceeds 0.4%, the effect is not only saturated, but excessive cost may be caused by the addition of ferroalloy.
Cu + Ni: 0.005~2.0%Cu + Ni: 0.005-2.0%
상기 Cu와 Ni는 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 상술한 효과를 얻기 위해서 이들 중 하나 이상의 성분의 합을 0.005% 이상으로 할 수 있다. 다만, 그 값이 2.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 2.0%로 한다.Cu and Ni are elements that form fine precipitates to improve strength. In order to obtain the above-mentioned effects, the sum of one or more of these components may be 0.005% or more. However, if the value exceeds 2.0%, the excessive cost increases, so the upper limit is 2.0%.
Sb + Sn: 0.001~1.0%,Sb + Sn: 0.001-1.0%,
상기 Sb와 Sn은 Al-Si도금을 위한 소둔 열처리 시, 표면에 농화되어 Si 또는 Mn 산화물이 표면에 형성되는 것을 억제하여 도금성을 향상시킬 수 있다. 이와 같은 효과를 얻기 위해서 0.001% 이상 첨가될 수 있다. 다만, 그 첨가량이 1.0%를 초과하면 과다한 합금철 비용 뿐만 아니라 슬라브 입계에 고용되어 열간압연 시 코일 에지(edge) 크랙을 유발시킬 수 있기 때문에 그 상한을 1.0%로 한다.The Sb and Sn may be concentrated on the surface during annealing heat treatment for Al-Si plating to suppress the formation of Si or Mn oxide on the surface to improve plating properties. It may be added 0.001% or more in order to obtain such an effect. However, if the added amount exceeds 1.0%, the upper limit is 1.0% because not only excessive ferroalloy costs but also solid solution at the slab grain boundary may cause coil edge cracks during hot rolling.
B: 0.0001~0.01%B: 0.0001-0.01%
상기 B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 또는/및 S의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 한가지 구현례에서는 상기 B 함량을 0.005% 이하로 할 수 있다.The above-mentioned B is an element which can not only improve hardenability by addition of a small amount but also segregate in the old austenite grain boundary and suppress brittleness of the hot press-molded member due to grain boundary segregation of P or / and S. Therefore, B may be added at least 0.001%. However, if the content exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit thereof may be 0.01%, and in one embodiment, the B content may be 0.005% or less.
상술한 성분 이외의 잔부로서는 철 및 불가피한 불순물을 들 수 있으며, 열간 성형용 강판에 포함될 수 있는 성분이라면 특별히 제한하지 않는다.Iron and unavoidable impurities are mentioned as remainder other than the above-mentioned component, and if it is a component which can be contained in a steel plate for hot forming, it will not specifically limit.
이하, 본 발명의 일측면에 따른 열간 프레스 성형용 강판의 제조방법의 한가지 예를 설명하면 아래와 같다. 다만, 하기하는 열간 프레스 성형용 강판의 제조방법은 한가지 예시로서 본 발명의 열간 프레스 성형용 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 사용함에 아무런 문제가 없다는 것에 유의할 필요가 있다.Hereinafter, an example of a method of manufacturing a steel sheet for hot press forming according to an aspect of the present invention will be described. However, the manufacturing method of the steel sheet for hot press forming described below is just one example, and the steel sheet for hot pressing forming of the present invention is not necessarily manufactured by the present manufacturing method, and any method of manufacturing the steel sheet for the present invention satisfies the claims of the present invention. It should be noted that there is no problem in using each of the embodiments of the present invention.
본 발명의 강판은 열간 압연 또는 냉간 압연된 소지강판을 이용하며, 상기 소지강판의 표면에 용융 알루미늄 도금을 실시하고, 도금 강판에 소둔 처리를 함으로써 얻을 수 있다.The steel sheet of the present invention can be obtained by using hot-rolled or cold-rolled steel sheet, by performing hot-dip aluminum plating on the surface of the steel sheet and performing annealing treatment on the coated steel sheet.
[알루미늄 도금 공정][Aluminum Plating Process]
본 발명의 한가지 구현례에서는 소지강판을 준비하고, 상기 소지강판의 표면을 적절한 조건으로 알루미늄 도금하고 권취하여 알루미늄 도금 강판(코일)을 얻는 과정이 수행된다.In one embodiment of the present invention, a process of preparing a holding steel sheet, aluminum plating and winding the surface of the holding steel sheet under appropriate conditions is performed to obtain an aluminum plated steel sheet (coil).
한쪽면One side 당 30~200g/m 30 ~ 200g / m Per 22 의 도금량으로 소지강판 표면을 알루미늄 도금Aluminum plating on the surface of the steel sheet
압연된 강판의 표면에 알루미늄 도금 처리를 할 수 있다. 알루미늄 도금은 통상 type I 이라고 명명되는 AlSi 도금(80% 이상의 Al과 5~20%의 Si를 포함, 필요에 따라 추가적인 원소도 포함 가능)이나, type II라고 명명되는 Al을 90% 이상 포함하고 필요에 따라 추가적인 원소를 포함하는 도금 모두 사용할 수 있다. 도금층을 형성하기 위해 용융 알루미늄 도금을 행할 수 있으며, 도금전에 강판에 대한 소둔 처리를 할 수도 있다. 도금시 적절한 도금량은 한쪽면 기준으로 30~200g/m2 이다. 도금량이 너무 많을 경우에는 표면까지 합금화하는데 시간이 과다하게 소요될 수 있으며, 반대로 도금량이 너무 적을 경우에는 충분한 내식성을 얻기 어렵다.The surface of the rolled steel sheet may be subjected to aluminum plating. Aluminum plating is usually required by AlSi plating (type 80), containing at least 80% Al and 5-20% Si, optionally with additional elements, or at least 90% Al (type II). Depending on the plating, any plating containing additional elements may be used. Molten aluminum plating may be performed to form a plating layer, and annealing treatment may be performed on the steel sheet before plating. When plating, the appropriate plating amount is 30 ~ 200g / m 2 on one side. If the plating amount is too large, it may take an excessive time to alloy to the surface, on the contrary, if the plating amount is too small, it is difficult to obtain sufficient corrosion resistance.
도금 후 After plating 권취Winding 장력을 0.5~ Tension 0.5 ~ 5 kg5 kg /Of mmmm 22 로 함 Should be
도금 후 강판을 권취하여 코일을 얻을 때, 코일의 권취 장력을 조절할 수 있다. 코일의 권취 장력의 조절에 따라 이후 행해지는 소둔 처리 시 코일의 합금화 거동과 표면 품질이 달라질 수 있다. When winding the steel plate after plating to obtain a coil, the winding tension of the coil can be adjusted. According to the adjustment of the winding tension of the coil, the alloying behavior and the surface quality of the coil may be changed during the subsequent annealing treatment.
[소둔 처리][Annealed]
상술한 과정에 의해 알루미늄 도금된 강판에 대하여 다음과 같은 조건으로 소둔 처리를 실시하여 알루미늄 합금 도금 강판을 얻는다.An annealing treatment is performed on the aluminum plated steel sheet by the above-described process to obtain an aluminum alloy plated steel sheet.
상소둔 로에서 550~750℃의 범위에서 30분 ~ 50시간 실시30 minutes to 50 hours in the range of 550 ~ 750 ℃
알루미늄 도금 강판(코일)은 상소둔 로(Batch annealing furnace에서 가열된다. 강판을 가열할 때, 열처리 목표 온도와 유지 시간은 강판 온도를 기준으로 550~750℃인 범위 내(본 발명에서는 이 온도 범위에서 소재가 도달하는 최고 온도를 가열 온도라고 함)에서 30분~50시간 유지하는 것이 바람직하다. 여기서 유지시간이라 함은 코일온도가 목표 온도에 도달한 후 냉각개시까지의 시간이다. 본 발명의 한가지 구현례에서는 합금화가 충분하게 이루어지지 않을 경우에는 롤 레벨링시 도금층이 박리될 수 있으므로 충분한 합금화를 위해서 가열 온도를 550℃ 이상으로 할 수 있다. 또한, 표층에 산화물이 과다하게 생성되는 것을 방지하고 점 용접성을 확보하기 위해서 상기 가열 온도는 750℃ 이하로 할 수 있다. 또한, 도금층을 충분하게 확보하는 동시에 생산성의 저하를 방지하기 위하여 상기 유지 시간은 30분~50시간으로 정할 수 있다. 본 발명의 한가지 구현례에서는 강판의 온도는 가열 온도에 도달할 때까지 냉각 과정 없이 온도가 계속 상승하는 형태의 패턴을 가질 수 있다.The aluminum plated steel sheet (coil) is heated in a batch annealing furnace. When heating the steel sheet, the target heat treatment temperature and the holding time are in the range of 550 to 750 ° C based on the steel sheet temperature (in the present invention, this temperature range). It is preferable to maintain the maximum temperature reached by the material at 30 minutes to 50 hours at the heating temperature), wherein the holding time is the time from the coil temperature to the target temperature until the cooling start. In one embodiment, if the alloying is not sufficient, the plating layer may be peeled off during roll leveling, so that the heating temperature may be 550 ° C. or more for sufficient alloying. In order to ensure spot weldability, the heating temperature may be 750 ° C. or lower, and sufficient plating layer productivity and productivity In order to prevent degradation, the holding time may be set to 30 minutes to 50 hours In one embodiment of the present invention, the temperature of the steel sheet may have a pattern in which the temperature is continuously raised without cooling until the heating temperature is reached. Can be.
평균 승온 속도를 20~100℃/h로 하여 가열 온도까지 가열Heating up to heating temperature with an average temperature increase rate of 20 to 100 ° C / h
상술한 가열 온도로 강판을 가열할 때, 충분한 생산성을 확보하고 전 강판(코일)에서 도금층을 균일하게 합금화 시키기 위해서는 전체 온도 구간(상온부터 가열 온도까지의 구간)에 대한 강판(코일) 온도 기준으로 평균 승온 속도가 20~100℃/h로 되도록 할 수 있다. 또한, 전체적인 평균 승온 속도는 위와 같은 수치 범위에서 제어할 수 있지만, 본 발명의 한가지 구현례에서는 후술하는 바와 같이 특정 온도 구간의 승온 속도도 함께 제어하여 본 발명의 과제를 달성할 수 있도록 하였다. 본 발명의 다른 한가지 구현례에서는 상기 전체 온도 구간의 평균 승온 속도를 70℃/로 정할 수 있다.When heating the steel sheet at the above-described heating temperature, in order to ensure sufficient productivity and to uniformly alloy the plating layer on all steel sheets (coils), the steel sheet (coil) temperature reference for the entire temperature section (room temperature to heating temperature section) The average temperature increase rate can be 20-100 degreeC / h. In addition, the overall average temperature increase rate can be controlled in the above numerical range, but in one embodiment of the present invention to control the temperature increase rate of a specific temperature section as described later to achieve the problem of the present invention. In another embodiment of the present invention, the average temperature increase rate of the entire temperature section may be set at 70 ° C /.
승온시 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하여 가열Heating at an average temperature increase rate of 400 ~ 500 ℃ section at 1 ~ 15 ℃ / h
본 발명의 한가지 구현례에서는 압연시 혼입된 압연유가 기화되는 상기 온도구간에서 압연유가 잔존하여 표면 얼룩 등을 야기하는 것을 방지하면서 충분한 생산성을 확보하기 위하여 승온시 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하여 가열할 수 있다. 본 발명의 한가지 구현례에서는 상기 승온시 400~500℃ 구간의 평균 승온 속도의 하한을 4℃/hr로 할 수 있으며, 다른 한가지 구현례에서는 승온시 400~500℃ 구간의 평균 승온 속도의 하한을 5℃/hr로 할 수도 있다.In one embodiment of the present invention in order to ensure sufficient productivity while preventing the rolling oil remains in the temperature range during which the rolling oil mixed during rolling is vaporized to cause surface stains, etc., the average temperature increase rate of 400 to 500 ° C. is increased. It can be heated at 1 to 15 ° C / h. In one embodiment of the present invention can be the lower limit of the average temperature increase rate of 400 ~ 500 ℃ section at the time of the temperature increase to 4 ℃ / hr, and in another embodiment the lower limit of the average temperature increase rate of 400 ~ 500 ℃ section at the time of temperature increase It may also be 5 ° C / hr.
승온시At elevated temperature 가열 온도-50℃ ~ 가열 온도 구간의 평균  Heating temperature-50 ℃ ~ heating temperature average 승온Elevated temperature 속도를 1~15℃/h로 하여 가열 Heating at speed of 1 ~ 15 ℃ / h
합금화시 스티킹(코일간 표면이 합금화되어 들러붙는 표면 결함)을 방지하고, 공극이 충분히 형성될 수 있도록 하면서, 충분한 생산성을 확보하기 위하여 승온시 가열 온도-50℃ ~ 가열 온도 구간의 평균 승온 속도를 1~15℃/h로 하여 가열할 수 있다. 본 발명의 한가지 구현례에서는 상기 구간의 평균 승온 속도의 하한을 4℃/h로 정할 수 있으며, 또다른 한가지 구현례에서는 상기 구간의 평균 승온 속도의 하한을 5℃/h로 정할 수 있다.In order to prevent sticking during the alloying (surface defects where the surface of the coil is alloyed and sticking) and to allow the voids to be formed sufficiently, to ensure sufficient productivity, the average temperature rise rate of the heating temperature -50 ° C to the heating temperature range during heating It can be heated at 1-15 degreeC / h. In one embodiment of the present invention, the lower limit of the average temperature increase rate of the section may be set at 4 ° C./h. In another embodiment, the lower limit of the average temperature increase rate of the section may be set at 5 ° C./h.
상소둔로내 분위기온도와 강판 온도간 차이를 5~80℃로 함The difference between the ambient temperature and the steel plate temperature in the annealing furnace is 5 ~ 80 ℃
일반적인 상소둔로의 가열은 강판(코일)을 직접 가열하는 방식보다는 소둔로내 분위기 온도 상승을 통하여 강판(코일)을 가열하는 방식을 취한다. 이런 경우에 분위기 온도와 강판 온도 간의 차이는 피할 수 없으나, 강판 내 위치별 재질 및 도금 품질 편차를 최소화 하기 위해서는 열처리 목표온도 도달시점을 기준으로 분위기 온도와 코일 온도간 차이를 80℃ 이하로 할 수 있다. 온도차이는 가능한 작게 하는 것이 이상적이나 이는 승온속도를 느리게 하여 전체 평균 승온 속도 조건을 충족하기 어려울 수도 있으므로 이를 고려한다면 5℃ 이상으로 할 수 있다. 여기서, 강판의 온도는 장입된 강판(코일) 바닥부(코일 중에서 가장 낮은 부분을 의미한다)의 온도를 측정한 것을 의미하며, 분위기 온도는 가열로의 내부 공간의 중심에서 측정한 온도를 의미한다.In general, the heating of the annealing furnace is a method of heating the steel sheet (coil) by raising the atmosphere temperature in the annealing furnace, rather than directly heating the steel sheet (coil). In this case, the difference between the atmosphere temperature and the steel sheet temperature cannot be avoided. However, the difference between the atmosphere temperature and the coil temperature can be set to 80 ° C or less based on the time point at which the heat treatment target temperature is reached in order to minimize the variation of the material and plating quality for each position in the steel sheet. have. Ideally, the temperature difference should be as small as possible, but this can be as high as 5 ° C, since it may be difficult to meet the overall average temperature rise rate conditions by slowing the rate of temperature rise. Here, the temperature of the steel sheet means that the temperature of the loaded steel plate (coil) bottom part (meaning the lowest part of the coil) is measured, and the atmospheric temperature means the temperature measured at the center of the internal space of the heating furnace. .
[냉각 공정][Cooling process]
소둔 후 500℃까지 50℃/h 이하의 속도로 냉각After annealing, cool down to 500 ℃ at a rate of 50 ℃ / h or less
목표온도에서 일정 시간을 유지한 후 알루미늄 합금 도금 강판(코일)은 냉각된다. 냉각 방법으로서 로냉, 공냉, 수냉 등 다양한 방법을 적용할 수 있으며, 냉각 구간 전체의 평균 냉각속도에는 특별한 제한이 없으며, 생산성 향상을 위해서 빠르게 냉각해도 무방하다. 다만, 스티킹 결함을 방지하고 재질 균일성 확보하면서도 공극을 충분히 형성 시키기 위해 가열 후 500℃까지 온도 구간의 냉각속도는 50℃/h 이하로 할 수 있다. 하한의 경우는 특별히 한정하지는 않으나, 생산성을 고려해서 1℃/h 이상으로 할 수 있다.After maintaining a certain time at the target temperature, the aluminum alloy plated steel sheet (coil) is cooled. As the cooling method, various methods, such as furnace cooling, air cooling, and water cooling, can be applied. There is no particular limitation on the average cooling rate of the entire cooling section, and it may be rapidly cooled to improve productivity. However, in order to prevent sticking defects and ensure material uniformity and to form voids sufficiently, the cooling rate of the temperature section up to 500 ° C. after heating may be 50 ° C./h or less. The lower limit is not particularly limited, but may be 1 ° C / h or more in consideration of productivity.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 청구범위에 기재된 사항 및 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it should be noted that the following examples are only intended to illustrate the present invention and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
강판의 제조Manufacture of steel sheet
발명예 1Inventive Example 1
하기 표 1의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하였다. 강판의 표면에 Al-9%Si-2.5%Fe 조성을 가지는 type I 도금욕으로 강판을 표면을 도금하였다. 도금시 도금량은 한쪽 면당 70g/m2으로 조절하였고, 도금 후 권취장력을 2.2kg/mm2으로 조절하여 코일을 권취하였다.To prepare a cold rolled steel sheet for hot press molding having the composition of Table 1. The surface of the steel sheet was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 70 g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2.2 kg / mm 2 .
원소element CC SiSi MnMn AlAl PP SS NN 추가 원소Additional elements
함량(%)content(%) 0.210.21 0.20.2 1.31.3 0.030.03 0.010.01 0.0030.003 0.0050.005 Ti 0.03, B 0.002, Cr 0.2Ti 0.03, B 0.002, Cr 0.2
도금된 강판을 상소둔 로에서 다음과 같은 조건으로 650℃까지 가열하였다.The plated steel sheet was heated to 650 ° C. under the following conditions in an annealing furnace.
650℃까지의 전체 평균 승온 속도: 20℃/hOverall average temperature rise rate up to 650 ° C: 20 ° C / h
400~500℃ 온도 구간의 평균 승온 속도: 10℃/hAverage temperature rise rate of 400 ~ 500 ℃ temperature range: 10 ℃ / h
600~650℃ 온도 구간의 평균 승온 속도: 10℃/hAverage temperature rise rate of 600 ~ 650 ℃ temperature range: 10 ℃ / h
가열 온도에서 분위기와 코일 사이의 온도 차이: 30℃Temperature difference between atmosphere and coil at heating temperature: 30 ° C
가열 후 동일한 온도에서 10시간 유지하였으며, 이후 강판을 500℃까지 40℃/h의 평균 냉각 속도로 냉각한 후, 100℃까지 55℃/h의 평균 냉각 속도로 냉각하여 열간 프레스 성형용 강판을 얻었다.After heating, the plate was maintained at the same temperature for 10 hours, after which the steel sheet was cooled to an average cooling rate of 40 ° C./h up to 500 ° C., and then cooled to an average cooling rate of 55 ° C./h up to 100 ° C. to obtain a hot press forming steel sheet. .
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 2와 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 51.5중량% 이었다. 강판의 단면 형태는 도 3에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 형성된 도금층의 표면으로부터 두께 방향 10㎛ 지점까지의 표층부에 해당하는 부분에 형성된 공극의 면적율이 22.8% 임을 확인할 수 있었다. As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 2 was obtained, and the average Fe content calculated based on this was 51.5 wt%. As shown in FIG. 3, the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to the 10 µm thickness direction was 22.8%. there was.
발명예 2Inventive Example 2
상기 표 1의 조성을 가지는 강판의 표면에 Al-9%Si-2.5%Fe 조성을 가지는 type I 도금욕으로 강판을 표면을 도금하였다. 도금시 도금량은 한쪽 면당 80g/m2으로 조절하였조절하였고, 도금 후 권취장력을 2kg/mm2으로 조절하여 코일을 권취하였다.On the surface of the steel sheet having the composition shown in Table 1, the surface of the steel sheet was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 80g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2kg / mm 2 .
이후 도금된 강판을 상소둔 로에서 다음과 같은 조건으로 700℃까지 가열하였다.The plated steel plate was then heated to 700 ° C. under the following conditions in an annealing furnace.
700℃까지의 전체 평균 승온 속도: 20℃/hOverall average temperature rise rate up to 700 ° C: 20 ° C / h
400~500℃ 온도 구간의 평균 승온 속도: 12℃/hAverage temperature rise rate in the temperature range of 400 ~ 500 ℃: 12 ℃ / h
650~700℃ 온도 구간의 평균 승온 속도: 8℃/hAverage temperature rise rate of 650 ~ 700 ℃ temperature range: 8 ℃ / h
가열 온도에서 분위기와 코일 사이의 온도 차이: 40℃Temperature difference between atmosphere and coil at heating temperature: 40 ° C
가열 후 동일한 온도에서 1시간 유지하였으며, 이후 강판을 500℃까지 30℃/h의 평균 냉각 속도로 냉각한 후, 100℃까지 57℃/h의 평균 냉각 속도로 냉각하여 열간프레스 성형용 강판을 얻었다.After heating was maintained at the same temperature for 1 hour, and then the steel sheet was cooled to an average cooling rate of 30 ℃ / h to 500 ℃, then cooled to an average cooling rate of 57 ℃ / h to 100 ℃ to obtain a hot press forming steel sheet .
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 4와 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 53.7중량% 이었다. 강판의 단면 형태는 도 5에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 형성된 도금층의 표면으로부터 두께 방향 10㎛ 지점까지의 표층부에 해당하는 부분에 형성된 공극의 면적율이 28.5% 임을 확인할 수 있었다. As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 4 was obtained, and the average Fe content calculated based on this was 53.7 wt%. As shown in FIG. 5, the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to the 10 μm thickness direction was 28.5%. there was.
비교예 1Comparative Example 1
상기 발명예 1과 동일하되 도금만 실시하고 가열 및 냉각은 실시하지 않은 알루미늄 도금 강판을 비교예 1로 하였다.In the same manner as in Inventive Example 1, only the plating was performed, but the heating and cooling were not performed.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 6과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 23.6중량% 이었다. 강판의 단면 형태는 도 7에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 형성된 도금층의 표면으로부터 두께 방향 10㎛ 지점까지의 표층부에 해당하는 부분에 공극은 거의 형성되어 있지 않은 것을 확인할 수 있었다. 형성된 공극의 면적율은 0% 이었다. As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form shown in FIG. 6 was obtained, and the average Fe content calculated based on this was 23.6 wt%. As shown in FIG. 7, the cross-sectional shape of the steel sheet was that a plating layer was formed on the outer surface of the base steel sheet, and almost no voids were formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a point of 10 μm in the thickness direction. there was. The area ratio of the formed voids was 0%.
비교예 2Comparative Example 2
상기 발명예 2과 동일하되 도금만 실시하고 가열 및 냉각은 실시하지 않은 알루미늄 도금 강판을 비교예 2로 하였다.In the same manner as in Inventive Example 2, the plating was performed but the heating and cooling were not performed.
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 8과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 21중량% 이었다. 강판의 단면 형태는 도 9에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 형성된 도금층의 표면으로부터 두께 방향 10㎛ 지점까지의 표층부에 해당하는 부분에 공극은 거의 형성되어 있지 않은 것을 확인할 수 있었다. 형성된 공극의 면적율은 0% 이었다. As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 8 was obtained, and the average Fe content calculated based on this was 21% by weight. As shown in Fig. 9, in the cross-sectional shape of the steel sheet, a plating layer was formed on the outer surface of the steel sheet, and almost no void was formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a point of 10 µm in the thickness direction. there was. The area ratio of the formed voids was 0%.
비교예 3Comparative Example 3
상기 표 1의 조성을 가지는 강판의 표면에 Al-9%Si-2.5%Fe 조성을 가지는 type I 도금욕으로 강판을 표면을 도금하였다. 도금시 도금량은 한쪽 면당 90g/m2으로 조절하였조절하였고, 도금 후 권취장력을 2kg/mm2으로 조절하여 코일을 권취하였다.On the surface of the steel sheet having the composition shown in Table 1, the surface of the steel sheet was plated with a type I plating bath having an Al-9% Si-2.5% Fe composition. During plating, the coating amount was adjusted to 90 g / m 2 per side, and the coil was wound by adjusting the winding tension after plating to 2 kg / mm 2 .
이후 도금된 강판을 상소둔 로에서 다음과 같은 조건으로 650℃까지 가열하였다.The plated steel plate was then heated to 650 ° C. under the following conditions in an annealing furnace.
650℃까지의 전체 평균 승온 속도: 50℃/hOverall average temperature rise rate up to 650 ° C: 50 ° C / h
400~500℃ 온도 구간의 평균 승온 속도: 10℃/hAverage temperature rise rate of 400 ~ 500 ℃ temperature range: 10 ℃ / h
600~650℃ 온도 구간의 평균 승온 속도: 70℃/h Average temperature rise rate in the 600 ~ 650 ℃ temperature range: 70 ℃ / h
가열 온도에서 분위기와 코일 사이의 온도 차이: 30℃Temperature difference between atmosphere and coil at heating temperature: 30 ° C
가열 후 동일한 온도에서 10시간 유지하였으며, 이후 강판을 500℃까지 45℃/h의 평균 냉각 속도로 냉각한 후, 100℃까지 60℃/h의 평균 냉각 속도로 냉각하여 열간프레스 성형용 강판을 얻었다.After heating, the plate was maintained at the same temperature for 10 hours, after which the steel sheet was cooled to an average cooling rate of 45 ° C./h up to 500 ° C., and then cooled to an average cooling rate of 60 ° C./h up to 100 ° C. to obtain a hot press forming steel sheet. .
강판의 도금층을 GDS 분석기로 분석해 본 결과 도 10과 같은 형태의 성분 프로파일을 얻을 수 있었으며, 이를 토대로 계산된 평균 Fe 함량은 48.4중량% 이었다. 강판의 단면 형태는 도 11에 나타낸 바와 같이 소지 강판의 외면에 도금층이 형성되고 있었으며, 형성된 도금층의 표면으로부터 두께 방향 10㎛ 지점까지의 표층부에 해당하는 부분에 형성된 공극의 면적율이 3.5% 임을 확인할 수 있었다. As a result of analyzing the plated layer of the steel sheet using a GDS analyzer, a component profile of the form as shown in FIG. 10 was obtained, and the average Fe content was 48.4 wt% based on this. As shown in FIG. 11, the cross-sectional shape of the steel sheet was formed with a plating layer formed on the outer surface of the base steel sheet, and the area ratio of the voids formed in the portion corresponding to the surface layer portion from the surface of the formed plating layer to a thickness point of 10 μm was 3.5%. there was.
열간Hot 프레스 성형 Press molding
상기 발명예 1, 2 및 비교예 1 내지 3의 강판을 950℃로 가열한 후 상기 온도에서 5분간 유지하였으며, 이후 프레스에 의하여 가압하면서 급냉하는 열간 프레스 성형을 실시하여 열간 프레스 성형 부재를 얻었다.The steel sheets of Inventive Examples 1 and 2 and Comparative Examples 1 to 3 were heated to 950 ° C. and maintained at the above temperature for 5 minutes, and then subjected to hot press molding to quench while pressing by a press to obtain a hot press molding member.
얻어진 부재의 단면을 관찰하여 표면 조도(Ra)를 관찰하였으며, 그 결과를 하기 표 2로 나타내었다.The cross section of the obtained member was observed to observe the surface roughness Ra, and the results are shown in Table 2 below.
구분division 표면 조도(Ra)Surface roughness (Ra)
발명예 1Inventive Example 1 2.012.01
발명예 2Inventive Example 2 2.232.23
비교예 1Comparative Example 1 1.121.12
비교예 2Comparative Example 2 1.271.27
비교예 3Comparative Example 3 1.481.48
상기 표 2에서 확인할 수 있듯이, 발명예 1과 발명예 2는 각각 표면 조도(Ra)가 2.01 및 2.23㎛인 반면 비교예 1, 비교예 2 및 비교예 3은 표면 조도(Ra)가 1.12, 1.27 및 1.48㎛에 불과하였다.As can be seen in Table 2, Inventive Example 1 and Inventive Example 2 have a surface roughness (Ra) of 2.01 and 2.23㎛, respectively, Comparative Example 1, Comparative Example 2 and Comparative Example 3 has a surface roughness (Ra) of 1.12, 1.27 And 1.48 μm.
상기 각 발명예 및 비교예로부터 얻어진 부재에 인산염 처리 및 전착도장을 실시하고, 강판의 표면에 십자흠을 형성한 다음 복합부식시험(Cyclic corrosion test)을 실시하여 십자흠에 블리스터가 발생하는 정도를 관찰하였다. 복합부식시험은 1싸이클을 '습윤 분위기 노출 2시간-염수분무 노출 2시간-건조 1시간-습윤 분위기 노출 6시간-건조 2시간 - 습윤 분위기 노출 6시간-건조 2시간-냉각 3시간'의 24시간으로 하고 총 50싸이클을 유지하였다. 발명예 1 및 2는 모두 블리스트의 최대폭이 1mm 이하인 반면, 비교예 1, 2 및 3은 블리스트의 최대폭이 각각 3.2, 2.9 및 2.4mm로서 발명예에 비하여 도장 후 내식성이 열악하다는 것을 확인할 수 있었다.Phosphate treatment and electrodeposition coating were performed on the members obtained from the respective examples and comparative examples, crosses were formed on the surface of the steel sheet, and then a cyclic corrosion test was carried out to cause blisters on the crosses. Was observed. The composite corrosion test was carried out in a cycle of 24 hours of 'wet atmosphere exposure 2 hours-salt spray exposure 2 hours-drying 1 hour-wet atmosphere exposure 6 hours-drying 2 hours-wet atmosphere exposure 6 hours-drying 2 hours-cooling 3 hours'. It was time and maintained a total of 50 cycles. Inventive Examples 1 and 2 were all the maximum width of the blister 1mm or less, while Comparative Examples 1, 2 and 3 are the maximum width of the blister 3.2, 2.9 and 2.4mm respectively, it can be confirmed that the corrosion resistance is poor after coating compared to the invention example there was.
따라서, 본 발명의 유리한 효과를 확인할 수 있었다.Thus, the advantageous effects of the present invention could be confirmed.

Claims (10)

  1. 소지강판 및 상기 소지강판의 표면에 형성된 도금층을 포함하고,A steel plate and a plating layer formed on a surface of the steel plate,
    상기 도금층을 두께 방향으로 절단하여 관찰되는 표층부의 단면에서 공극이 차지하는 면적 비율이 전체 표층부의 면적 대비 10% 이상인 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판. A steel sheet for hot press forming member having excellent coating adhesiveness and corrosion resistance after coating, wherein an area ratio occupied by the voids in the cross section of the surface layer portion observed by cutting the plating layer in the thickness direction is 10% or more of the total surface layer portion.
  2. 제 1 항에 있어서, 상기 도금층을 두께 방향으로 절단하여 관찰되는 표층부의 단면에서 공극이 차지하는 면적 비율이 전체 표층부의 면적 대비 15% 이상인 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.The steel sheet for hot press-molded member according to claim 1, wherein an area ratio of voids in the cross section of the surface layer portion observed by cutting the plating layer in the thickness direction is 15% or more relative to the area of the entire surface layer portion.
  3. 제 1 항에 있어서, 상기 도금층은 알루미늄 합금 도금층인 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.The steel sheet for hot press forming member according to claim 1, wherein the plating layer is an aluminum alloy plating layer.
  4. 제3 항에 있어서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 30중량% 이상인 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.4. The steel sheet for hot press forming member according to claim 3, wherein the aluminum alloy plating layer has excellent paint adhesion and corrosion resistance after coating, in which the average content of Fe is 30% by weight or more.
  5. 제 3 항에 있어서, 상기 알루미늄 합금 도금층은 Fe의 평균 함량이 40중량% 이상인 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.4. The steel sheet for hot press forming member according to claim 3, wherein the aluminum alloy plating layer is excellent in paint adhesion and corrosion resistance after coating, in which the average content of Fe is 40% by weight or more.
  6. 제 1 항에 있어서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.According to claim 1, wherein the steel sheet is in the weight% C: 0.04-0.5%, Si: 0.01-2%, Mn: 0.01-10%, Al: 0.001-1.0%, P: 0.05% or less, S: 0.02 A steel sheet for hot press forming member having a composition containing% or less, N: 0.02% or less, balance Fe and other unavoidable impurities, and excellent coating adhesion and corrosion resistance after painting.
  7. 제 6 항에 있어서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판.The composition of claim 6, wherein the composition of the steel sheet is in weight percent, at least one selected from the group consisting of Cr, Mo, and W: 0.01 to 4.0%, at least one member from the group consisting of Ti, Nb, Zr, and V. Total: 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01% Hot press forming with excellent paint adhesion and corrosion resistance after painting Steel plate for member.
  8. 소지강판 표면을 알루미늄 도금하고 권취하여 알루미늄 도금 강판을 얻는 단계;Aluminum plating and winding the surface of the base steel sheet to obtain an aluminum plated steel sheet;
    알루미늄 도금 강판을 소둔하여 알루미늄 합금 도금 강판을 얻는 단계; 및Annealing the aluminum plated steel sheet to obtain an aluminum alloy plated steel sheet; And
    알루미늄 합금 도금 강판을 냉각하는 단계를 포함하는 열간 프레스 성형 부재용 강판의 제조방법으로서,A method of manufacturing a steel sheet for a hot press formed member comprising the step of cooling an aluminum alloy plated steel sheet,
    상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m2이고,The aluminum plating amount is 30 ~ 200g / m 2 on one side of the steel sheet,
    권취 시 권취 장력을 0.5~5kg/mm2으로 하며,Winding tension is 0.5 ~ 5kg / mm 2 when winding up,
    상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분 ~ 50시간 실시되며,The annealing is carried out in a heating temperature range of 550 ~ 750 ℃ in an annealing furnace for 30 minutes to 50 hours,
    상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 20~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고, 가열 온도-50℃ ~ 가열 온도 구간의 승온 속도를 1~15℃/h로 하며,When the annealing is heated from room temperature to the heating temperature, the average temperature increase rate to 20 ~ 100 ℃ / h, the average temperature increase rate of 400 ~ 500 ℃ section is 1 ~ 15 ℃ / h, heating temperature-50 ℃ ~ The temperature increase rate of the heating temperature range is 1 ~ 15 ℃ / h,
    상기 상소둔 로내 분위기 온도와 강판 온도간 차이를 5~80℃로 하며,The difference between the ambient annealing furnace atmosphere temperature and the steel sheet temperature is 5 ~ 80 ℃,
    상기 알루미늄 합금 도금 강판을 냉각하는 단계에서 500℃까지 50℃/h 이하의 속도로 냉각하는 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.The method of manufacturing a steel sheet for hot press molding member having excellent coating adhesion and corrosion resistance after cooling at a rate of 50 ° C./h or less to 500 ° C. in the step of cooling the aluminum alloy plated steel sheet.
  9. 제 8 항에 있어서, 상기 소지강판이 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.9. The steel sheet according to claim 8, wherein the base steel sheet is in weight percent of C: 0.04-0.5%, Si: 0.01-2%, Mn: 0.01-10%, Al: 0.001-1.0%, P: 0.05% or less, S: 0.02. A method for producing a steel sheet for hot press forming member having a composition containing% or less, N: 0.02% or less, balance Fe and other unavoidable impurities, and excellent coating adhesion and postcorrosion resistance.
  10. 제 9 항에 있어서, 상기 소지강판의 조성은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 도장 밀착성과 도장 후 내식성이 우수한 열간 프레스 성형 부재용 강판의 제조방법.The composition of claim 9, wherein the composition of the steel sheet is in weight percent, at least one sum selected from the group consisting of Cr, Mo, and W: 0.01 to 4.0%, at least one member from the group consisting of Ti, Nb, Zr, and V. Total: 0.001 to 0.4%, Cu + Ni: 0.005 to 2.0%, Sb + Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01% Hot press forming with excellent paint adhesion and corrosion resistance after painting Method for manufacturing steel sheet for member.
PCT/KR2018/006259 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same WO2018221992A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US16/617,798 US11141953B2 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance
MX2019014326A MX2019014326A (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same.
PL18810671.0T PL3632587T3 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same
ES18810671T ES2914361T3 (en) 2017-06-01 2018-05-31 Steel sheet for hot-pressed formed member having excellent paint adhesion and corrosion resistance after painting, and method of manufacturing the same
EP18810671.0A EP3632587B1 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same
EP22155560.0A EP4012064B1 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same
CN201880036329.XA CN110709184B (en) 2017-06-01 2018-05-31 Steel sheet for hot press-formed member having excellent coating adhesion and post-coating corrosion resistance, and method for producing same
JP2019565877A JP7058675B2 (en) 2017-06-01 2018-05-31 Steel sheet for hot press forming member with excellent coating adhesion and corrosion resistance after coating and its manufacturing method
CN202211143165.5A CN115555475A (en) 2017-06-01 2018-05-31 Steel sheet for hot press-formed member having excellent coating adhesion and post-coating corrosion resistance, and method for producing same
BR112019025146-4A BR112019025146B1 (en) 2017-06-01 2018-05-31 STEEL PLATE FOR MEMBER FORMED BY HOT PRESSING WITH EXCELLENT PAINT ADHESION AND RESISTANCE TO POST-PAINTING CORROSION, AND MANUFACTURING METHOD
US17/394,830 US20210362472A1 (en) 2017-06-01 2021-08-05 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same
JP2022065569A JP7464649B2 (en) 2017-06-01 2022-04-12 Steel sheet for hot press forming parts with excellent paint adhesion and corrosion resistance after painting, and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0068651 2017-06-01
KR20170068651 2017-06-01
KR1020170101563A KR102010048B1 (en) 2017-06-01 2017-08-10 Steel sheet for hot press formed member having excellent paint adhesion and corrosion resistance after painted and method for manufacturing thereof
KR10-2017-0101563 2017-08-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/617,798 A-371-Of-International US11141953B2 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance
US17/394,830 Division US20210362472A1 (en) 2017-06-01 2021-08-05 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2018221992A1 true WO2018221992A1 (en) 2018-12-06

Family

ID=64454841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006259 WO2018221992A1 (en) 2017-06-01 2018-05-31 Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018221992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575622A (en) * 2020-05-11 2020-08-25 马鞍山钢铁股份有限公司 Aluminum-plated steel sheet for hot-formed parts having excellent coating properties, method for producing same, and hot-formed parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
JP2004043887A (en) * 2002-07-11 2004-02-12 Nissan Motor Co Ltd Aluminum-coated structural member and production method thereof
KR20150073021A (en) * 2013-12-20 2015-06-30 주식회사 포스코 Alloy plated steel sheet for hot press forming having excellent anti-corrosion and method for manufacturing the same
KR101536703B1 (en) * 2011-03-09 2015-07-14 신닛테츠스미킨 카부시키카이샤 Steel sheets for hot stamping, method for manufacturing same, and method for manufacturing high-strength parts
KR101569505B1 (en) * 2014-12-24 2015-11-30 주식회사 포스코 Hot press formed article having good anti-delamination, and method for the same
KR101696121B1 (en) * 2015-12-23 2017-01-13 주식회사 포스코 Al-Fe coated steel sheet having good hydrogen delayed fracture resistance property, anti-delamination property and spot weldability, and HPF parts obtained therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
JP2004043887A (en) * 2002-07-11 2004-02-12 Nissan Motor Co Ltd Aluminum-coated structural member and production method thereof
KR101536703B1 (en) * 2011-03-09 2015-07-14 신닛테츠스미킨 카부시키카이샤 Steel sheets for hot stamping, method for manufacturing same, and method for manufacturing high-strength parts
KR20150073021A (en) * 2013-12-20 2015-06-30 주식회사 포스코 Alloy plated steel sheet for hot press forming having excellent anti-corrosion and method for manufacturing the same
KR101569505B1 (en) * 2014-12-24 2015-11-30 주식회사 포스코 Hot press formed article having good anti-delamination, and method for the same
KR101696121B1 (en) * 2015-12-23 2017-01-13 주식회사 포스코 Al-Fe coated steel sheet having good hydrogen delayed fracture resistance property, anti-delamination property and spot weldability, and HPF parts obtained therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3632587A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575622A (en) * 2020-05-11 2020-08-25 马鞍山钢铁股份有限公司 Aluminum-plated steel sheet for hot-formed parts having excellent coating properties, method for producing same, and hot-formed parts
CN111575622B (en) * 2020-05-11 2022-07-15 马鞍山钢铁股份有限公司 Aluminum-plated steel sheet for hot-formed parts having excellent coating properties, method for producing same, and hot-formed parts

Similar Documents

Publication Publication Date Title
WO2017111525A1 (en) Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same
WO2018117543A1 (en) Hot press forming plated steel sheet having excellent impact property, hot press molding member, and manufacturing method thereof
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2016104880A1 (en) Hpf molding member having excellent delamination resistance and manufacturing method therefor
WO2017078278A1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
WO2015099221A1 (en) Steel sheet having high strength and low density and method of manufacturing same
WO2016098964A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
WO2015093793A1 (en) Plated steel sheet for hot press forming having excellent weldability and corrosion resistance, forming member, and manufacturing method thereof
WO2015023012A1 (en) Ultrahigh-strength steel sheet and manufacturing method therefor
WO2019231023A1 (en) Al-fe-alloy plated steel sheet for hot forming, having excellent twb welding characteristics, hot forming member, and manufacturing methods therefor
WO2016104881A1 (en) Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same
WO2018117724A1 (en) High strength hot rolled steel sheet and cold rolled steel sheet having excellent continuous productivity, high strength hot dip galvanized steel sheet having excellent surface quality and plating adhesion, and manufacturing method therefor
WO2020111640A1 (en) Non-oriented electrical steel sheet having low iron loss and excellent surface quality, and manufacturing method therefor
WO2020111702A1 (en) High-strength steel with excellent durability and method for manufacturing same
WO2018117523A1 (en) High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for same sheet and same member
WO2019124776A1 (en) High-strength hot-rolled steel sheet having excellent bendability and low-temperature toughness and method for manufacturing same
WO2016104837A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2019124781A1 (en) Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same
WO2016104838A1 (en) Hot-rolled steel sheet for high strength galvanized steel sheet, having excellent surface quality, and method for producing same
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2020130675A1 (en) High-strength cold-rolled steel sheet having excellent bending workability and manufacturing method therefor
WO2019124807A1 (en) Steel sheet with excellent bake hardening properties and corrosion resistance and method for manufacturing same
WO2017111428A1 (en) High strength cold-rolled steel sheet excellent in ductility, hole-forming property and surface treatment property, molten galvanized steel sheet, and method for manufacturing same
WO2018221992A1 (en) Steel sheet for hot press formed member having excellent painting adhesion and post-painting corrosion resistance, and method for manufacturing same
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810671

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025146

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018810671

Country of ref document: EP

Effective date: 20200102

ENP Entry into the national phase

Ref document number: 112019025146

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191128