WO2018221657A1 - Spacer, led surface light source device, and led image display device - Google Patents

Spacer, led surface light source device, and led image display device Download PDF

Info

Publication number
WO2018221657A1
WO2018221657A1 PCT/JP2018/020969 JP2018020969W WO2018221657A1 WO 2018221657 A1 WO2018221657 A1 WO 2018221657A1 JP 2018020969 W JP2018020969 W JP 2018020969W WO 2018221657 A1 WO2018221657 A1 WO 2018221657A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
led
optical sheet
light
partition
Prior art date
Application number
PCT/JP2018/020969
Other languages
French (fr)
Japanese (ja)
Inventor
直信 喜
健 森長
松浦 大輔
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2019521300A priority Critical patent/JP6575729B2/en
Publication of WO2018221657A1 publication Critical patent/WO2018221657A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • the present invention relates to a spacer, an LED surface light source device, and an LED image display device.
  • LED image display devices that have rapidly spread are usually provided with a display screen such as a liquid crystal display panel and an LED surface light source device that illuminates the display screen from the back side.
  • a display screen such as a liquid crystal display panel
  • an LED surface light source device that illuminates the display screen from the back side.
  • edge-light type LED surface light source devices are often used in LED image display devices, but from the viewpoint of brightness, the use of direct type LED surface light source devices has been studied.
  • an optical sheet is disposed on the LED element from the viewpoint of improving the in-plane uniformity of luminance on the light emitting surface of the LED surface light source device.
  • an optical sheet for example, a white or other resin-made reflective material sheet that reflects light from the LED element has an opening pattern in which the opening gradually increases as it goes from directly above the LED element to the periphery of the LED element.
  • a formed light transmitting / reflecting sheet is used (see JP 2010-272245 A).
  • the optical sheet may be bent between the spacers.
  • a light transmitting / reflecting sheet is used as the optical sheet, if the light transmitting / reflecting sheet is bent, the position of the opening pattern with respect to the LED element is changed, so that in-plane uniformity of luminance may be lowered.
  • LED elements are individually controlled so as to correspond to light and dark portions of an image to reduce power consumption and improve contrast.
  • an object of the present invention is to provide a spacer that can suppress the bending of the optical sheet and is suitable for local dimming control, and an LED surface light source device and an LED image display device including the spacer.
  • an LED including a wiring board, an LED mounting board including a plurality of LED elements mounted on one surface of the wiring board, and an optical sheet disposed on the LED element side.
  • a spacer that is used in a surface light source device and is disposed between the LED mounting substrate and the optical sheet and separates the optical sheet from the LED mounting substrate, and penetrates in the height direction of the spacer.
  • Two openings having the above-described opening and a wall having a partition for partitioning between the openings and surrounding at least one of the openings, the partition facing the opening
  • a spacer that includes a thermoplastic resin and has a light transmittance of 30% or less from one side surface to the other side surface of the partition.
  • the partition may further include a light shielding material present in the thermoplastic resin.
  • the partition portion may include a partition portion main body including the thermoplastic resin and a light shielding layer provided on at least one side surface of the partition portion main body.
  • the partition portion includes a partition portion body including the thermoplastic resin and a light shielding layer, and the partition portion body includes a first portion including a first side surface of the partition portion body, and A partition portion main body including a second side opposite to the first side and the second portion spaced apart from the first portion, wherein the light shielding layer includes the first portion and the first portion; It may be sandwiched between the second part.
  • the arithmetic average roughness of at least one side surface of the partition may be 10 ⁇ m or less.
  • the wall portion may have a lattice shape or a honeycomb shape.
  • a wiring board an LED mounting board comprising a plurality of LED elements mounted on one surface of the wiring board, and a first optical sheet disposed on the LED element side, A first spacer disposed between the LED mounting substrate and the first optical sheet, and separating the first optical sheet from the LED mounting substrate, and the first spacer, An LED surface light source device that is the spacer is provided.
  • a side surface of the spacer facing the opening of the wall is inclined so that an opening diameter of the opening increases from the wiring board toward the first optical sheet. You may do it.
  • the first optical sheet includes a plurality of divided regions in plan view, and each of the divided regions transmits a part of light from the LED element. And a plurality of reflecting portions that reflect a part of the light from the LED element, and an aperture ratio that is an area ratio of the transmission portion in each partition region is from the central portion of the partition region to the partition region A region that gradually increases toward the outer edge of the substrate may be included.
  • the thickness of the first optical sheet may be not less than 25 ⁇ m and not more than 1 mm.
  • the second optical sheet disposed on the light emitting side of the first optical sheet, the outer peripheral surface of the first optical sheet, and the outer peripheral surface of the first spacer are surrounded. And a frame-shaped second spacer that is disposed and supports the second optical sheet.
  • an LED image display device comprising the LED surface light source device and a display panel disposed closer to an observer than the LED surface light source device.
  • a spacer that can suppress the bending of the optical sheet and is suitable for local dimming control.
  • an LED surface light source device and LED image display apparatus provided with such a spacer can be provided.
  • FIG. 1 is an exploded perspective view of an LED image display device according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of the LED image display device according to the embodiment.
  • FIG. 3 is an enlarged cross-sectional view of a part of the LED surface light source device according to the embodiment.
  • FIG. 4 is a plan view of the first optical sheet shown in FIG.
  • FIG. 5 is a plan view of another first optical sheet according to the embodiment.
  • FIG. 6 is a plan view of the first spacer shown in FIG.
  • FIG. 7 is a plan view showing the positional relationship between the first optical sheet and the first spacer shown in FIG.
  • FIG. 8 is a plan view of another first spacer according to the embodiment.
  • FIG. 9 is a plan view of another first spacer according to the embodiment.
  • FIG. 1 is an exploded perspective view of an LED image display device according to an embodiment.
  • FIG. 2 is a schematic configuration diagram of the LED image display device according to the embodiment.
  • FIG. 3 is an enlarged cross-
  • FIG. 10 is a plan view of another first spacer according to the embodiment.
  • FIG. 11A and FIG. 11B are plan views of other first spacers according to the embodiment.
  • FIG. 12 (A) is a diagram schematically showing a state in which a sample for measuring the light transmittance between the side surfaces is cut out from the partition portion of the first spacer, and FIG. 12 (B) and FIG. 12 (C). These are the figures which showed typically the mode at the time of measuring the light transmittance between the side surfaces of a sample.
  • FIG. 13A and FIG. 13B are longitudinal sectional views of a part of another first spacer according to the embodiment.
  • FIG. 14A and FIG. 14B are longitudinal sectional views of a part of another first spacer according to the embodiment.
  • FIG. 15B are longitudinal sectional views of a part of another first spacer according to the embodiment.
  • FIG. 16 is a plan view showing the positional relationship between the first spacer and the second spacer shown in FIG.
  • FIG. 17 is a cross-sectional view of the lens sheet shown in FIG.
  • FIG. 1 is an exploded perspective view of an LED image display device according to the present embodiment
  • FIG. 2 is a schematic configuration diagram of the LED image display device according to the present embodiment
  • FIG. 3 is an LED surface light source device according to the present embodiment.
  • FIG. 4 is a plan view of the first optical sheet shown in FIG. 1, FIG.
  • FIG. 5 is a plan view of another first optical sheet according to the embodiment
  • FIG. 6 is a plan view of the first optical sheet shown in FIG.
  • FIG. 7 is a plan view showing the arrangement relationship between the first optical sheet and the first spacer shown in FIG.
  • FIGS. 8 to 11 are plan views of other first spacers according to the embodiment
  • FIG. 12A shows a sample for measuring the light transmittance between the side surfaces cut out from the partition portion of the first spacer. It is the figure which showed the mode typically, and FIG. 12 (B) and FIG.12 (C) are the figures which showed typically the mode at the time of measuring the light transmittance between the side surfaces of a sample.
  • 13 to 15 are longitudinal sectional views of a part of another first spacer according to the embodiment
  • FIG. 16 is a plan view showing the positional relationship between the first spacer and the second spacer shown in FIG.
  • FIG. 17 is a cross-sectional view of the lens sheet shown in FIG.
  • the LED image display device 10 shown in FIGS. 1 and 2 includes a direct-type LED surface light source device 20 and a display panel 120 disposed closer to the viewer than the LED surface light source device 20.
  • the display panel 120 shown in FIGS. 1 and 2 is a liquid crystal display panel, and includes a polarizing plate 121 disposed on the light incident side, a polarizing plate 122 disposed on the light exit side, a polarizing plate 121 and a polarizing plate 122. And a liquid crystal cell 123 disposed between them.
  • polarizing plates 121 and 122 and the liquid crystal cell 123 known polarizing plates and liquid crystal cells can be used.
  • the LED surface light source device 20 shown in FIG. 1 or 2 includes a housing 30, an LED mounting substrate 40, a first optical sheet 50, a first spacer 60, a second optical sheet 70, 2 spacers 80.
  • the LED surface light source device 20 includes a lens sheet 90 and a reflective polarization separation sheet 100 laminated on the second optical sheet 70. Note that the LED surface light source device 20 only needs to include the LED mounting substrate 40, the first optical sheet 50, and the first spacer 60, and the housing 30, the second optical sheet 70, and the second spacer 80.
  • the lens sheet 90 or the reflective polarization separation sheet 100 may not be provided.
  • the LED surface light source device 20 When the LED surface light source device is used for in-vehicle use, it is disposed in a very narrow space in the vehicle, so that it is desired to make it thinner than a general LED surface light source device. For this reason, the total thickness of the LED surface light source device 20 is preferably 15 mm or less, and more preferably 10 mm or less, from the viewpoint of reducing the thickness.
  • the total thickness of the “LED surface light source device” means the distance from the outer bottom surface 30 ⁇ / b> C of the housing 30 shown in FIG. 2 to the surface 100 ⁇ / b> A of the reflective polarization separation sheet 100.
  • the housing 30 includes a housing space 30A for housing the LED mounting substrate 40 and the like. As shown in FIG. 2 or 3, the housing 30 has an inner bottom surface 30B that is an inner bottom surface, an outer bottom surface 30C that is an outer bottom surface, and an inner side surface 30D that is an inner side surface rising from the inner bottom surface 30B. is doing. Moreover, the housing
  • the housing 30 shown in FIGS. 1 and 2 includes a housing body 31 having a housing space 30A, and a frame-shaped lid 32 that covers the housing space 30A of the housing body 31 and has an opening 30E. ing.
  • the inner bottom surface 30 ⁇ / b> B of the housing 30 is the inner bottom surface of the housing body 31, and the inner side surface 30 ⁇ / b> D of the housing 30 is the inner side surface of the housing body 31.
  • the housing 30 (the housing body 31 and the lid body 32) is preferably made of metal. By constituting the casing body 31 from metal, the casing body 31 also functions as a heat dissipation structure, so that the heat from the LED element 42 can be efficiently radiated. Although it does not specifically limit as a metal, For example, aluminum etc. are mentioned.
  • the LED mounting substrate 40 includes a wiring substrate 41 and a plurality of LED elements 42 mounted on one surface (hereinafter referred to as “surface”) 41 ⁇ / b> A of the wiring substrate 41. 2 and 3, the LED mounting board 40 has a surface 41B opposite to the front surface 41A on which the LED element 42 is mounted on the wiring board 41 (hereinafter, this surface is referred to as "back surface") 41B.
  • the housing 30 is disposed in the housing 30 so as to be positioned on the inner bottom surface 30B side.
  • the wiring board 41 is disposed along the inner bottom surface 30 ⁇ / b> B of the housing 30.
  • the back surface 41B of the wiring board 41 is preferably in contact with the inner bottom surface 30B of the housing 30. Since the back surface 41B of the wiring board 41 is in contact with the inner bottom surface 30B of the housing 30, the heat of the wiring substrate 41 and the like can be efficiently radiated to the housing 30 side.
  • “the back surface of the wiring board is in contact with the inner bottom surface of the housing” is not limited to the case where the back surface of the wiring board is in direct contact with the inner bottom surface of the housing. This is a concept that includes a case where a layer that can be almost ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the inner bottom surface of the housing.
  • the resin film 43, the metal wiring part 44, the insulating protective film 45, and the reflective layer 46 are arranged in this order toward the first optical sheet 50. Are stacked. However, the wiring board 41 may not include the insulating protective film 45 and the reflective layer 46.
  • the metal wiring part 44 is preferably bonded to the resin film 43 by a dry laminating method through an adhesive layer 47. Further, the metal wiring portion 44 is electrically connected to the LED element 42 via the solder layer 48.
  • the wiring board 41 may be a rigid wiring board, but is preferably a flexible wiring board. Since the wiring board 41 is a flexible wiring board, a bendable LED surface light source device can be obtained.
  • a wiring board 41 shown in FIG. 2 is a flexible wiring board. “Flexible” means that there is flexibility, and “flexible wiring board” means a wiring board that is generally flexible and can be bent. The term “flexibility” in this specification means bending so that the radius of curvature is at least 1 m. The flexible wiring board is bent so that the radius of curvature is preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm.
  • the resin film 43 has flexibility.
  • the resin film 43 is a film that bends so that the radius of curvature is preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm.
  • the resin film 43 can be formed using a known thermoplastic resin.
  • the thermoplastic resin used as the material of the resin film 43 preferably has high heat resistance and insulation.
  • a resin polyimide (PI) or polyethylene naphthalate (PEN) which is excellent in heat resistance, dimensional stability during heating, mechanical strength, and durability can be used.
  • polyethylene terephthalate (PET) whose flame retardancy is improved by addition of a flame retardant inorganic filler or the like can also be selected as a resin for forming a resin film.
  • thermoplastic resin for forming the resin film 43 one having a thermal shrinkage start temperature of 100 ° C. or higher, or one having improved heat resistance so that the temperature becomes 100 ° C. or higher by the above-described annealing treatment or the like is used. It is preferable.
  • thermal shrinkage start temperature means that a sample film made of a thermoplastic resin to be measured is set in a thermomechanical analysis (TMA) apparatus, a load of 1 g is applied, and a temperature rise rate of 2 ° C./min is 120. Measure the amount of shrinkage (in%) at that time, measure the temperature and the amount of shrinkage, and read the temperature that deviates from the 0% baseline due to shrinkage. Is the heat shrinkage start temperature.
  • the heat shrinkage starting temperature is an arithmetic average value obtained by measuring three times.
  • the LED element periphery may reach a temperature of about 90 ° C. due to heat from the LED element. From this viewpoint, it is preferable that the thermoplastic resin forming the resin film 43 has heat resistance equal to or higher than the above temperature.
  • the resin film 43 is required to be a resin having high insulation enough to provide the wiring board 41 with necessary insulation. For this reason, the resin film 43 has a volume resistivity of preferably 10 14 ⁇ ⁇ cm or more, and more preferably 10 18 ⁇ ⁇ cm or more.
  • the volume resistivity can be measured by a method based on JIS C2151: 2006. The volume resistivity is measured at 10 random locations, and is the arithmetic average value of the measured volume resistivity at 10 locations.
  • the thickness of the resin film 43 is not particularly limited, but is generally 10 ⁇ m or more and 500 ⁇ m or less from the viewpoint of not being a bottleneck as a heat dissipation path, having heat resistance and insulation, and a balance of manufacturing costs. It is preferable that Moreover, it is preferable that it is the said thickness range also from a viewpoint of maintaining favorable productivity at the time of manufacturing by a roll-to-roll system.
  • the thickness of the resin film 43 is determined by measuring the thickness at any 10 locations using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation) and calculating the average value. Shall.
  • the lower limit of the thickness of the resin film 43 is preferably 10 ⁇ m or more, and the upper limit of the thickness of the resin film 43 is preferably 250 ⁇ m or less.
  • the metal wiring portion 44 is provided closer to the LED element 42 than the resin film 43 and is electrically connected to the LED element 42.
  • the metal wiring part 44 can be formed by patterning a metal foil or the like.
  • the thermal conductivity ⁇ of the metal constituting the metal wiring part 44 is preferably 200 W / (m ⁇ K) or more and 500 W / (m ⁇ K) or less.
  • the thermal conductivity ⁇ can be measured using, for example, a thermal conductivity meter (product name “QTM-500”, manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the thermal conductivity ⁇ is an arithmetic average value obtained by measuring three times.
  • the lower limit of the thermal conductivity is more preferably 300 W / (m ⁇ K) or more, and the upper limit is preferably 500 W / (m ⁇ K) or less.
  • the thermal conductivity ⁇ is 403 W / (m ⁇ K).
  • the electric resistivity R of the metal constituting the metal wiring portion 44 is preferably 3.00 ⁇ 10 ⁇ 8 ⁇ m or less, and more preferably 2.50 ⁇ 10 ⁇ 8 ⁇ m or less.
  • the electrical resistivity R can be measured using an electrometer (product name “6517B type electrometer”, manufactured by Keithley).
  • the electrical resistivity R is an arithmetic average value of values obtained by measuring three times. In the case of copper, the electrical resistivity R is 1.55 ⁇ 10 ⁇ 8 ⁇ m.
  • both heat dissipation and electrical conductivity can be achieved at a high level. More specifically, since the heat dissipation from the LED elements is stabilized and an increase in electrical resistance can be prevented, the light emission variation between the LED elements is reduced, and the LED elements can stably emit light. In addition, the lifetime of the LED element is extended. Further, since deterioration of peripheral members such as a resin film due to heat can be prevented, the product life of the LED image display device incorporating the LED surface light source device can be extended.
  • Examples of the metal forming the metal wiring part 44 include metals such as aluminum, gold, and silver in addition to the above copper.
  • the metal wiring part 44 is an electrolytic copper foil, and the ten-point average roughness Rz of the surface on the resin film 43 side in the metal wiring part 44 is more preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the ten-point average roughness Rz within the above range, the surface area of the surface of the metal wiring portion 44 on the resin film 43 side can be increased, and the heat dissipation can be further enhanced.
  • this surface is a concavo-convex surface, the adhesiveness with the resin film 43 can be further improved, and thereby the heat dissipation can be improved.
  • the rough surface side (mat surface side) of the electrolytic copper foil can be suitably used.
  • the ten-point average roughness Rz can be measured, for example, using a surface roughness measuring instrument (product name “SE-3400”, manufactured by Kosaka Laboratory) in accordance with JIS B0601: 1999.
  • SE-3400 surface roughness measuring instrument
  • JIS B0601 1999.
  • the ten-point average roughness Rz is an arithmetic average value obtained by measuring three times.
  • the arrangement of the metal wiring part 44 is not limited to a specific arrangement as long as the LED elements 42 can be conducted, preferably the LED elements 42 can be arranged in a matrix.
  • the surface of one surface of the resin film 43 is preferably 80% or more, more preferably 90%, and most preferably 95% or more is covered with the metal wiring part 44. preferable. Accordingly, the LED elements 42 can be arranged with high density, and the excessive heat generated can be sufficiently diffused quickly through the metal wiring portion 44 and radiated to the outside via the resin film 43. Therefore, the LED surface light source device 20 which has the outstanding heat dissipation can be obtained.
  • the thickness of the metal wiring portion 44 may be set as appropriate according to the magnitude of the withstand current required for the wiring substrate 41 and is not particularly limited, but may be 10 ⁇ m or more and 50 ⁇ m or less as an example. From the viewpoint of improving heat dissipation, the thickness of the metal wiring portion 44 is preferably 10 ⁇ m or more. In addition, if the thickness of the metal wiring portion is less than 10 ⁇ m, the influence of heat shrinkage of the resin film 43 is large, and warpage after the processing is likely to increase during the solder reflow processing. The thickness is preferably 10 ⁇ m or more.
  • the thickness of the metal wiring portion is 50 ⁇ m or less, it is possible to maintain sufficient flexibility of the wiring substrate, and it is possible to prevent a decrease in handling properties due to an increase in weight.
  • the thickness of the metal wiring portion 44 can be measured by the same method as that for the resin film 43.
  • the insulating protective film 45 mainly improves the migration resistance characteristics of the wiring board 41.
  • the insulating protective film 45 covers the entire surface of the surface of the metal wiring portion 44 except for the connection portion for mounting the LED element 42 and the substantially entire surface of the surface of the resin film 43 where the metal wiring portion 44 is not formed. It is formed in an embodiment.
  • the insulating protective film 45 is preferably composed of a cured product of a thermosetting resin composition containing a thermosetting resin.
  • a thermosetting resin composition a known thermosetting resin composition can be suitably used as long as the thermosetting temperature is about 100 ° C. or less.
  • a thermosetting resin composition using a polyester resin, an epoxy resin, an epoxy resin and a phenol resin, an epoxy acrylate resin, a silicone resin, or the like as a base resin can be preferably used.
  • a thermosetting resin composition containing a polyester-based resin is particularly preferable as a material for forming the insulating protective film 45 from the viewpoint of excellent flexibility.
  • thermosetting resin composition for forming the insulating protective film 45 may be a white thermosetting resin composition further containing an inorganic white pigment such as titanium dioxide, for example.
  • an inorganic white pigment such as titanium dioxide
  • the formation of the insulating protective film 45 using the insulating thermosetting resin composition can be performed by a known method such as screen printing.
  • the film thickness of the insulating protective film 45 is preferably 10 ⁇ m or more and 100 ⁇ m or less. If the thickness of the insulating protective film 45 is less than 10 ⁇ m, the insulating property may be lowered, and if it exceeds 100 ⁇ m, bleeding when forming the insulating protective layer by screen printing or shrinkage during thermosetting There is a possibility that the warping of the wiring board due to the above will occur remarkably.
  • a cross section of the insulating protective film 45 is photographed using a scanning electron microscope (SEM), and the film thickness of the insulating protective film 45 is measured at 20 locations in the image of the cross section. The arithmetic average value of the film thicknesses at the 20 locations is used.
  • the reflective layer 46 has high reflectivity mainly with respect to light in a visible light wavelength region having a wavelength of 380 nm to 780 nm.
  • the reflective layer 46 is laminated on the surface 41 ⁇ / b> A of the wiring board 41 so as to cover a region excluding the LED element mounting region for the purpose of improving the light emission capability of the LED surface light source device 20.
  • the reflection layer 46 is insulated so as to surround the LED element 42 in a plan view and to expose the inner peripheral edge of the region removed by the LED element mounting region of the insulating protective film 45. On the protective protective film 45.
  • the inner peripheral edge of the region of the insulating protective film 45 that is removed by the LED element mounting region is not exposed, and the inner peripheral edge of both the insulating protective film 45 and the reflective layer 46 is not exposed. They may be laminated so as to match and form the same shape.
  • the reflection layer 46 is not particularly limited as long as it is a member having a reflection surface for reflecting the light from the LED element 42 and guiding it in a predetermined direction.
  • foam type white polyester, white polyethylene resin, silver-deposited polyester, etc. Can be appropriately used according to the use of the final product and the required specifications.
  • the film thickness of the reflective layer 46 is preferably 50 ⁇ m or more and 1 mm or less. If the thickness of the reflective layer 46 is less than 50 ⁇ m, the desired reflectance may not be obtained, and since the reflective layer is too thin, it is difficult to set in a predetermined position. In addition to the cost, the LED surface light source device may not be thinned.
  • the thickness of the reflective layer 46 can be measured by the same method as the thickness of the insulating protective film 45.
  • Adhesive layer 47 a known resin adhesive can be used as appropriate. Of these resin-based adhesives, urethane-based, polycarbonate-based, or epoxy-based adhesives can be particularly preferably used.
  • the adhesive layer 47 remains on the resin film 43 after the metal wiring portion 44 is etched.
  • solder layer 48 is for electrically and mechanically joining the metal wiring part 44 and the LED element 42.
  • a joining method using the solder layer 48 there are a reflow method and a laser method, which can be performed by either of them.
  • the LED element 42 is a light emitting element that utilizes light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined.
  • LED elements there are known a structure in which a P-type electrode and an N-type electrode are provided on the upper and lower surfaces of the element, and a structure in which both the P-type and N-type electrodes are provided on one side of the element.
  • An LED element can also be used for the LED surface light source device 20.
  • an LED element having a structure in which both P-type and N-type electrodes are provided on one side of the element can be particularly preferably used.
  • the LED elements 42 are arranged in a matrix on the wiring board 41.
  • the “matrix shape” in this specification means a state in which the matrix is two-dimensionally arranged.
  • the LED elements 42 are arranged in a matrix, but the arrangement state of the LED elements is not particularly limited.
  • the LED elements may be arranged in a staggered manner.
  • a plurality of LED elements 42 are mounted on the wiring board 41.
  • the number of LED elements 42 mounted on the wiring board 41 is not particularly limited as long as it is plural.
  • the arrangement density of the LED elements 42 is preferably 0.02 pieces / cm 2 or more and 2.0 pieces / cm 2 or less, and preferably 0.1 pieces / cm 2 or more and 1.5 pieces / cm 2 or less. More preferred.
  • the first optical sheet 50 is a sheet having an optical function. Examples of the first optical sheet include a light transmission / reflection sheet.
  • the first optical sheet 50 shown in FIGS. 1 and 2 is a light transmission / reflection sheet.
  • the light-transmitting / reflecting sheet has a transmitting part that transmits light and a reflecting part that reflects light, and transmits light in one part and reflects light in another part, thereby allowing light from the LED element to be in a plane. And having a function of improving the in-plane uniformity of luminance.
  • the first optical sheet 50 is disposed on the LED element 42 side. Specifically, the first optical sheet 50 is disposed so as to face the plurality of LED elements 42, and is separated from the LED mounting substrate 40 by the first spacer 60. The first optical sheet 50 is disposed substantially parallel to the wiring board 41.
  • the distance d1 from the surface 41A of the wiring board 41 shown in FIG. 3 to the first optical sheet 50 is 0.6 mm or more and 6 mm or less.
  • the “distance from the surface of the wiring board to the first optical sheet” includes a reflective layer on the insulating protective layer like the wiring board 41, and the surface of the reflective layer is the surface of the wiring board.
  • the insulating protective layer of the wiring board also has the function of the reflective layer,
  • the surface of the protective protective layer is the surface of the wiring substrate, it means the distance from the surface of the insulating protective layer to the surface on the wiring substrate side of the first optical sheet.
  • the surface on the wiring board side in the first optical sheet is the surface on the wiring board side in the resin film when the surface on the wiring board side in the first optical sheet is composed only of the surface of the resin film.
  • the reflective layer 55 is formed on the wiring substrate 41 side of the resin film 54 as in the first optical sheet 50, the surface of the reflective layer 55 on the wiring substrate 41 side is used.
  • the thickness of the first optical sheet 50 is preferably 25 ⁇ m or more and 1 mm or less. If the thickness of the light transmitting / reflecting sheet is less than 25 ⁇ m, the desired reflectance may not be obtained, and if it exceeds 1 mm, the LED surface light source device may not be thinned.
  • the thickness of the first optical sheet 50 is the thickness of the reflecting portion 53 to be described later, and the thickness is measured at any 10 locations using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation). It can be obtained by measuring the thickness and calculating the average value. As shown in FIG. 4, the first optical sheet 50 includes a partitioned area 51 that is divided into a plurality of parts in plan view.
  • the partition area 51 is preferably divided according to the number of the LED elements 42.
  • the boundary line is indicated by a dotted line. However, the boundary line is not actually formed, the boundary line is a virtual line, and the partition area 51 is also a virtual area.
  • each partition region 51 includes a plurality of transmission parts 52 that transmit a part of the light from the LED element 42, and a plurality of reflection parts 53 that reflect a part of the light from the LED element 42. It consists of The transmission part 52 and the reflection part 53 are configured in a predetermined pattern.
  • the transmission part 52 is represented in white formally, and the reflection part 53 is represented in gray.
  • the pattern of the transmission part 52 and the reflection part 53 in each division area 51 is the same, it does not necessarily need to be the same and a pattern which changes with division areas may be sufficient.
  • the transmission part 52 and the reflection part 53 may have a grid pattern.
  • the first optical sheet 50 is disposed so that the central portion 51A of each partition region 51 is a region corresponding to each LED element 42, so that the central portion is more central than the outer edge portion 51B.
  • the amount of light incident on 51A increases.
  • the aperture ratio which is the area ratio of the transmission part 52, gradually increases from the central part 51A toward the outer edge part 51B.
  • the “aperture ratio” of a partitioned area means that each partitioned area is divided into square cells having an equal area that is divided at an appropriate ratio of about 25 to 100 equal parts. It means the area ratio of the transmission part in the eye.
  • the method of defining the squares having the same area in one partition region is arbitrary. For example, it is desirable to set so that the number of transmission parts 52 present in each square is approximately equal.
  • the “aperture ratio” defines a plurality of concentric circles centered on the center point of one partition region at equal intervals from the central region to the outer region located outside the central region. You may obtain
  • the above “opening ratio” can be defined also for a partitioned area other than a general opening arrangement in which rectangular openings are arranged in a grid pattern.
  • the aperture ratio only needs to gradually increase from the central portion 51A toward the outer edge portion 51B.
  • the aperture ratio is constant in a limited partial range near the central portion or the outer edge portion. An area may exist.
  • the area ratio is reflection portion> transmission portion.
  • area ratio is the transmission part> reflection part.
  • the area ratio of the transmission part 52 in the outer edge part 51B is preferably 50% or more and 100% or less.
  • the lower limit of the area ratio of the transmission part 52 in the outer edge part 51B is more preferably 60% or more, and preferably 70% or more.
  • the area ratio of the transmission part can theoretically be 100% by forming the reflection part 53 in an island shape. This is a configuration that cannot be achieved with a conventional punched-open light transmitting / reflecting sheet.
  • the flexibility of patterning can be increased.
  • the first optical sheet 50 includes a resin film 54 and a reflective layer 55 laminated on a part of at least one surface of the resin film 54.
  • the reflective layer 55 can be formed by screen printing or the like.
  • a region where the reflective layer 55 exists is the reflective portion 53, and a region where the reflective layer 55 does not exist is the transmissive portion 52.
  • the transmissive portion 52 is a region where the reflective layer 55 is not formed on any of both surfaces of the resin film 54 and is a region where both surfaces of the resin film 54 in FIG. 3 are exposed.
  • the resin film 54 a conventionally known transparent film is preferably used, and the total light transmittance is preferably 85% or more.
  • the total light transmittance of the transmission part 52 is based on JIS K-7361: 1997 and is attached to a spectrophotometer (for example, product name “V670DS”, manufactured by JASCO Corporation) with an integrating sphere attachment device (for example, integrating sphere unit). The value measured with ISN-723) attached.
  • the total light transmittance is an arithmetic average value of values obtained by measuring three times.
  • the resin film 54 examples include polyethylene terephthalate (PET) and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the thickness of the resin film 54 is preferably 12 ⁇ m or more and 1 mm (1000 ⁇ m) or less.
  • the thickness of the resin film 54 can be measured by the same method as the thickness of the resin film 43.
  • the reflective portion 53 is a region where the reflective layer 55 in the first optical sheet 50 in FIG. 3 is present.
  • the reflecting portion 53 shown in FIG. 3 is formed on the surface of the resin film 54 on the LED element 42 side, but is not limited thereto, and is formed on the surface opposite to the surface on the LED element 42 side. Alternatively, it may be formed on both surfaces of the resin film 54.
  • the thickness of the reflective layer 55 is preferably 20 ⁇ m or more and 200 ⁇ m or less. The thickness of the reflective layer 55 can be measured by the same method as the thickness of the insulating protective film 45.
  • the reflecting portion 53 preferably has a reflectance of at least 80% in the visible light wavelength region with a wavelength of 420 nm or more and 780 nm or less.
  • the reflectivity of the reflection part formed in a narrow range like the reflection part 53 in the first optical sheet 50 is determined using a microspectrophotometer (product name “USPM-RURIII”, manufactured by Olympus Corporation). Therefore, it can measure accurately.
  • the value of the reflectance is a value obtained by measuring the relative reflectance with barium sulfate as the standard plate and the standard plate as 100%.
  • the reflectance is an arithmetic average value of values obtained by measuring three times.
  • the reflective layer 55 can be composed of a cured product of a thermosetting resin composition containing a white pigment such as titanium oxide.
  • the content of the white pigment in the reflective layer 55 is preferably 10% by mass or more and 85% by mass or less in the reflective layer.
  • thermosetting resin in the thermosetting resin composition constituting the reflective layer 55 examples include conventionally known combinations of urethane resins and isocyanate compounds, combinations of epoxy resins and polyamines and acid anhydrides, silicone resins and cross-linking agents. And a two-component thermosetting resin containing a main agent and a curing agent, and a three-component thermosetting resin containing a curing accelerator such as amine, imidazole, and phosphorus. It is done.
  • examples of the thermosetting resin include silicone-based thermosetting resins described in JP-A No. 2014-129549.
  • the reflective layer 55 can be formed by pattern-printing the thermosetting resin composition on the surface of the resin film 54 using, for example, a printing method such as screen printing.
  • said thickness and reflectance are the total thickness of the thickness of both surfaces, when a reflective layer is formed on both surfaces of a resin film, and are the reflectance when a reflective layer is formed on both surfaces.
  • the first optical sheet 50 shown in FIG. 3 includes the resin film 54 and the reflective layer 55 laminated on a part of at least one surface of the resin film 54. As shown in FIG. 5, the first optical sheet has a plurality of openings 135 penetrating in the thickness direction of the light reflective sheet 134 in a light reflective sheet 134 such as foamed polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the first optical sheet 130 may be used. Similar to the first optical sheet 50, the first optical sheet 130 includes a partition region 131, a transmission part 132, and a reflection part 133.
  • the partition area 131, the transmission part 132, and the reflection part 133 in the first optical sheet 130 are the same as the partition area 51, the transmission part 52, and the reflection part 53 in the first optical sheet 50. Shall be omitted.
  • the aperture ratio which is the area ratio of the transmission part 132, gradually increases from the central portion 131A of the partition region 131 toward the outer edge portion 131B of the partition region 131. It is preferable.
  • the opening 135 functions as a transmission part 132 that transmits light
  • a part other than the opening 135 in the first optical sheet 130 functions as a reflection part 133 that reflects light. .
  • the openings 135 have an arbitrary shape (for example, a circular shape or a rectangular shape), and are dispersedly arranged so as not to be connected to each other along a predetermined pattern.
  • the opening 135 can be formed by press punching, punching with an engraving blade, drilling, laser processing, or the like. Press punching is an effective manufacturing method for mass production because of its excellent running cost and productivity.
  • the first spacer 60 is for separating the first optical sheet 50 from the LED mounting substrate 40.
  • the first spacer 60 has a function of holding the distance d1 from the surface 41A of the wiring board 41 to the first optical sheet 50 at 0.6 mm or more and 6 mm or less.
  • the height h1 of the first spacer 60 shown in FIG. 3 is preferably 0.5 mm or more and 5 mm or less.
  • the height of the first spacer is less than 0.5 mm, the distance between the LED element and the first optical sheet is too short, so that each of the first optical sheets in the plan view of the first optical sheet There is a possibility that the central part of the partition area is brighter than the outer edge part, and if it exceeds 5 mm, the LED surface light source device may not be thinned.
  • “the height of the first spacer” is opposite to the bottom surface of the first spacer from the bottom surface of the first spacer in the direction perpendicular to the bottom surface of the first spacer on the wiring board side. It means the distance to the upper surface which is the side surface.
  • the height h1 of the first spacer 60 is an arithmetic average value of values obtained by randomly measuring the height of the first spacer 60 at ten locations.
  • the first spacer 60 and the wiring board 41 are fixed.
  • the method for fixing the first spacer 60 and the wiring board 41 is not particularly limited, and examples thereof include fixing by adhesion or mechanical fixing means.
  • “adhesion” is a concept including “adhesion”.
  • the first spacer 60 and the wiring board 41 are fixed via a double-sided tape 111.
  • the bottom surface 60 ⁇ / b> A of the first spacer 60 (the bottom surface of the wall portion 62 described later) and the reflective layer 46 of the wiring substrate 41 are fixed by being bonded via a double-sided tape 111.
  • the first spacer 60 and the wiring board 41 may be fixed using an adhesive or an adhesive instead of the double-sided tape 111.
  • the first spacer 60 is fixed to the reflective layer 46, but by forming a through hole in the reflective layer of the wiring board or by not providing the reflective layer on the wiring board, The first spacer may be fixed to the insulating protective film, and a through hole is formed in the reflective layer and the insulating protective layer of the wiring board, or the reflective layer and the insulating protective layer are not provided on the wiring board.
  • the first spacer may be fixed to the metal wiring part.
  • the first spacer 60 and the first optical sheet 50 are fixed.
  • a method for fixing the first spacer 60 and the first optical sheet 50 is not particularly limited, and examples thereof include fixing by adhesion or mechanical fixing means.
  • the first spacer 60 and the first optical sheet 50 are fixed by being bonded via a double-sided tape 112.
  • the upper surface 60B of the first spacer 60 (the upper surface of the wall portion 62 described later) and the first optical sheet 50 are bonded via a double-sided tape 112.
  • the first spacer 60 and the first optical sheet 50 may be fixed using an adhesive or a pressure-sensitive adhesive instead of the double-sided tape 112.
  • the first spacer 60 divides the opening 61 from two or more openings 61 penetrating in the height direction of the first spacer 60, and at least one of the openings 61. And a wall portion 62 surrounding the periphery.
  • the opening 61 is for allowing light from each LED element 42 to pass through.
  • a portion 61 is formed.
  • each opening 61 allows light from each LED element 42 to pass therethrough, each opening 61 has a size that allows the LED element 42 to enter the opening 61 when the first spacer 60 is viewed in plan. It has become.
  • one LED element 42 is disposed in one opening 61, but a plurality of LED elements may be disposed in one opening.
  • the openings 61 shown in FIG. 6 are all the same size, but the openings 61 do not have to be the same size and may be different sizes.
  • the wall portion 62 partitions the openings 61 and surrounds at least one opening 61.
  • the wall 62 preferably surrounds two or more openings 61, and more preferably surrounds all the openings 61.
  • the wall 62 shown in FIG. 6 has a lattice shape and surrounds all the openings 61.
  • the “lattice shape” in the present specification means a structure in which a plurality of openings are arranged in a matrix shape by wall portions in a plan view of the first spacer.
  • Examples of the shape of the opening in the plan view of the first spacer include a polygonal shape such as a square shape, an elliptical shape, and a circular shape.
  • Examples of the quadrangular shape include a square shape, a rectangular shape, and a rhombus shape.
  • square-shaped openings 61 are arranged in a matrix by wall portions 62.
  • the wall portion 62 has a lattice shape, but the wall portion may not have a lattice shape.
  • the wall portion may have openings arranged in a staggered pattern.
  • the wall 142 may have a honeycomb shape.
  • the first spacer 140 shown in FIG. 8 includes two or more openings 141, and the wall 142 partitions the openings 141 and has at least one opening. 141 is surrounded. Since the first spacer 140 is the same as the first spacer 60 except that the wall 142 is formed in a honeycomb shape, the description thereof is omitted here.
  • the first spacer 60 in which the wall portions 62 are in a lattice shape is used, and the LED mounting in which the LED elements are arranged in a staggered manner.
  • the first spacer 140 in which the wall 142 has a honeycomb shape can be used.
  • the corner portion 152 ⁇ / b> A on the opening 151 side of the wall portion 152 may be curved in a plan view of the first spacer 150. Since the corner portion 152A has a curved shape in a plan view of the first spacer 150, the wall portion 152 is not easily broken even when vibration or impact is applied to the wall portion 152. Since the number of reflections in the portion 152A can be reduced, a reduction in luminance can be suppressed. Similarly to the first spacer 60, the first spacer 150 shown in FIG. 9 also includes two or more openings 151, and the wall 152 partitions the openings 151 and at least one opening. 151 is surrounded. Since the first spacer 150 is the same as the first spacer 60 except that the corner portion 152A of the wall portion 152 is curved, description thereof will be omitted here.
  • the thickness of the wall portion 62 is preferably 0.5 mm or more and 10 mm or less. If the thickness of the wall portion 62 is 0.5 mm or more, the function as a support for the first optical sheet 50 can be reliably achieved, and if it is 10 mm or less, the opening diameter of the opening portion 61 is sufficiently large. Therefore, a decrease in luminance can be suppressed.
  • the “wall thickness” means the thickness of the thinnest portion of the wall.
  • the thickness of the wall part 62 does not need to be all uniform.
  • the thickness of the frame part 63 and the partition part 64 which comprise the wall part 62 may be the same, but does not need to be the same.
  • the side surface 62 ⁇ / b> A facing the opening 61 of the wall 62 has a large opening diameter from the bottom surface 60 ⁇ / b> A to the top surface 60 ⁇ / b> B in the height direction of the first spacer 60. It is inclined to become. That is, the wall part 62 has a tapered shape in which the thickness of the upper part is thinner than the thickness of the bottom part.
  • the LED elements When lighting only some of the LED elements, it is desirable to suppress light leakage from the section surrounded by the wall from the viewpoint of local dimming control. However, all the LED elements are turned on. In some cases, it is desirable that light be incident uniformly on the first optical sheet.
  • the light transmittance of the wall portion of the first spacer if the light transmittance of the wall portion of the first spacer is low, the portion where the wall portion of the first spacer exists becomes dark, and the first optical sheet is viewed in plan view. If you do, there is a risk that the wall will become a shadow.
  • the light transmittance tends to change depending on the thickness of the member. Specifically, the light transmittance of the thin member is higher than that of the thick member.
  • the thickness of the upper portion of the wall portion 62 becomes thinner than the thickness of the bottom portion of the wall portion 62.
  • Light can be transmitted to an inconspicuous extent.
  • the wall portion 62 can suppress that the location where the part 62 exists becomes dark.
  • the outer edge portion 51B near the boundary portion 51C of the partition area 51 of the first optical sheet 50 has the highest aperture ratio, the first spacer is located at a position corresponding to the outer edge portion 51B near the boundary portion 51C.
  • a wall portion is formed so as to surround the light source in the reflection sheet, and by providing a gap between the wall portion and the optical sheet, a portion where the wall portion of the reflection sheet exists becomes dark.
  • the technique which suppresses this is known (for example, refer international publication 2017/002307), in this technique, in order to suppress that the location in which the wall part of a reflection sheet exists becomes a wall part, It is necessary to provide a gap between the optical sheet and the optical sheet.
  • the wall portion 62 having the inclined side surface 62 as described above can suppress the location where the wall portion 62 is present from becoming dark, so the wall portion 62 and the first portion There is no need to provide a gap between the optical sheets 50. For this reason, since the contact area of the 1st spacer 60 and the 1st optical sheet 50 can be increased, the bending of the 1st optical sheet 50 can be suppressed more.
  • the first spacer 60 including the wall portion 62 having the inclined side surface 62A can be obtained by, for example, injection molding, cutting, or a three-dimensional printer.
  • the side surface 62A may be curved in the cross section in the height direction of the first spacer 60, but is preferably linear from the viewpoint of ease of manufacture.
  • the wall portion may be inclined so that the opening diameter of the opening portion increases from the upper surface to the bottom surface of the first spacer.
  • the wall portion 62 preferably has antistatic properties. If dust adheres during manufacture or use of the LED surface light source device, it may cause a failure. However, the wall 62 has antistatic properties, so that dust adheres during manufacture or use of the LED surface light source device. Can be suppressed. Since the antistatic property can be represented by a surface resistance value, when the wall portion 62 has the antistatic property, the surface resistance value of the wall portion 62 is preferably 10 12 ⁇ / ⁇ or less. The surface resistance value can be measured using a resistivity meter (product name “HIRESTA-UP MCP-HT450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd., probe: URS) in accordance with JIS K6911: 2006. .
  • a resistivity meter product name “HIRESTA-UP MCP-HT450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd., probe: URS
  • the surface resistance value of the wall portion 62 is obtained by measuring ten surface resistance values of the wall portion 62 at random and calculating the arithmetic average value of the measured surface resistance values at ten locations.
  • Examples of a method for imparting antistatic properties to the wall portion 62 include a method of coating a composition containing an antistatic agent by spraying or dipping.
  • the glass transition temperature (Tg) of the wall 62 is preferably higher than 85 ° C.
  • the wall 62 is heated by an engine or the like. Therefore, even if the wall 62 is subjected to an environmental test in which the wall 62 is left at 85 ° C. for 1000 hours. It is required that it does not flow. If the glass transition temperature of the wall portion 62 exceeds 85 ° C., the flow of the wall portion 62 is suppressed even when the wall portion 62 is subjected to an environmental test for 1000 hours in an environment of 85 ° C. it can.
  • the glass transition temperature of the wall 62 exceeds 115 ° C. in consideration of the summer.
  • the LED surface light source device is very thin, the distance between the first optical sheet and the LED mounting substrate is designed very precisely, and the wall portion flows temporarily. Then, since the distance between the first optical sheet and the LED mounting substrate changes, luminance unevenness occurs, and luminance in-plane uniformity decreases. For this reason, the heat-resistant reliability of the wall 62 is very important.
  • the glass transition temperature of the wall portion 62 is measured by scraping 10 mg of the wall portion 62 as a sample and using a differential scanning calorimeter (DSC) at a temperature rising rate of 5 ° C./min. Let the glass transition temperature of the wall part 62 be the arithmetic mean value of the value measured 3 times. When the glass transition temperature of the wall 62 is confirmed to be 2 or more, the lowest glass transition temperature is adopted as the glass transition temperature.
  • DSC differential scanning calorimeter
  • the molding shrinkage rate of the wall 62 is preferably less than 1.0%. If the molding shrinkage rate of the wall portion 62 is less than 1.0%, the dimensional change of the wall portion 62 and the occurrence of warpage during cooling after molding can be suppressed.
  • the measurement of the molding shrinkage rate of the wall portion 62 is performed based on JIS K6911: 1995. When the molding shrinkage rate of the wall portion 62 is measured, the resin constituting the wall portion 62 by heating the wall portion 62. A molded product obtained by melting the resin, pouring the resin into a mold and solidifying the resin is used.
  • a convex portion is provided on the upper surface of the wall portion on the first optical sheet side.
  • the first spacer can be produced by injection molding, punching, cutting, or a three-dimensional printer.
  • the convex portion is provided on the first spacer, among these, the convex From the viewpoint of easy formation of the part, injection molding is preferable.
  • the hole part is provided in the 1st optical sheet, and the convex part has penetrated into the hole part.
  • the alignment of the first optical sheet with respect to the LED element is facilitated, and even when a vibration test is performed, the first optical sheet with respect to the LED element is not aligned. Misalignment can be further suppressed.
  • the hole is also a through hole.
  • the hole may not be a through hole.
  • the “hole” in the present specification is a concept including not only a through hole but also a hole that does not penetrate, such as a dent. Moreover, even if it is an optical sheet which does not have the opening part which functions as a permeation
  • the convex portion is for aligning the position of the first optical sheet having a plurality of openings that function as transmission portions for the LED elements, and for suppressing the positional deviation of the first optical sheet.
  • the convex portion enters the opening that functions as the hole.
  • the shape of the convex portion is not particularly limited, and examples thereof include a cone shape, a truncated cone shape, a pyramid shape, a truncated pyramid shape, a dome shape, and an irregular shape.
  • the height of the convex portion is preferably set to be equal to or less than the thickness of the first optical sheet (less than the height of the opening). Further, from the viewpoint of suppressing the positional deviation of the first optical sheet, it is more preferable that the lower limit of the height of the convex portion is 1 ⁇ 4 or more of the thickness of the first optical sheet.
  • the diameter and width of the convex portion are not particularly limited, but the first optical sheet has a plurality of openings having different diameters, so that the diameter does not enter an opening smaller than the target opening. It is preferable that
  • One or more convex portions may be formed as a whole of the first spacer, but a plurality of convex portions are preferably formed from the viewpoint of further suppressing displacement of the first optical sheet. Furthermore, from the viewpoint of further suppressing the positional deviation of the first optical sheet, it is preferable that convex portions are formed at least at four places so that a quadrangle is drawn by the convex portions in plan view of the first spacer. .
  • the 1st spacer which has a convex part can be produced by injection molding.
  • the wall part 62 shown in FIG. 6 includes a frame part 63 and a partition part 64 that is positioned inside the frame part 63 and partitions the openings 61.
  • the wall portion 62 is not particularly limited as long as it has a partition portion 64 and surrounds the periphery of at least one opening portion 61.
  • a wall like a first spacer 160 shown in FIG. The part 162 does not include a frame part, is configured only from the partition part 163, and may have a cross beam shape.
  • the first spacer 160 shown in FIG. 10 also includes two or more openings 161, and the wall 162 partitions the openings 161 and at least one opening. 161 is surrounded.
  • FIG. 10 also includes two or more openings 161, and the wall 162 partitions the openings 161 and at least one opening. 161 is surrounded.
  • FIG. 10 in FIG.
  • the wall 162 does not surround the periphery of the opening 161 existing on the outermost periphery. Since the first spacer 160 is the same as the first spacer 60 except that the wall portion 162 is composed only of the partition portion 163, the description thereof will be omitted here.
  • the wall 62 can be obtained by injection molding, cutting, or a three-dimensional printer.
  • the frame part 63 and the partition part 64 are integrally provided, but the frame part 63 and the partition part 64 may not be provided integrally. That is, like the first spacer 170 shown in FIG. 11A, the frame portion 172 and the partition portion 173 are separately manufactured, and the partition portion 173 is arranged inside the frame portion 172 to obtain the wall portion 171. May be.
  • the wall portion 181 may be obtained by joining two or more wall portions 181A like the first spacer 180 shown in FIG.
  • the frame portion 63 has a quadrangular shape in plan view, but the shape of the frame portion can be appropriately changed according to the shape of the LED mounting substrate and the like.
  • the frame portion 63 is approximately the same size as the wiring substrate 41.
  • the frame part 63 is preferably made of the same thermoplastic resin as the partition part 64. Further, the frame part 63 may include a light shielding material, a light shielding layer, and an ultraviolet absorber similar to the partition part 64.
  • the thermoplastic resin, the light shielding material, the light shielding layer, and the ultraviolet absorber in the frame 63 are the same as the thermoplastic resin, the light shielding material, the light shielding layer, and the ultraviolet absorber described in the section of the partitioning portion 64. Shall be omitted.
  • the partition portion 64 partitions the openings 61 and has two side surfaces 64 ⁇ / b> A that face the openings 61.
  • the partition portion 64 has a light transmittance from one side surface 64A to the other side surface 64A of the partition portion 64 (hereinafter, this light transmittance is referred to as “light transmittance between side surfaces”) of 30% or less. Yes. It is preferable that the lower limit of the light transmittance between the side surfaces of the partition portion 64 is 2% or more. If the light transmittance between the side surfaces of the partition portion is 2% or more, the partition portion 64 can be prevented from being shaded when the first optical sheet 50 is viewed in plan.
  • the upper limit of the light transmittance between the side surfaces of the partition portion 64 is preferably 20% or less.
  • the inter-side light transmittance can be measured as follows. First, as shown in FIG. 12A, a part of the partitioning portion 64 of the first spacer 60 is cut out so as to include both side surfaces 64A of the partitioning portion 64 to obtain a sample 190 having a predetermined size. In the sample 190, the surface of the sample 190 that was the side surface 64 ⁇ / b> A of the partition portion 64 is defined as the first side surface 190 ⁇ / b> A of the sample 190, and the side surface formed by cutting the partition portion 64 is the second side surface 190 ⁇ / b> B. Will be described.
  • the sample 190 Since the sample 190 is obtained by cutting the partition portion 64 so as to include both side surfaces 64A of the partition portion 64, the sample 190 has two first side surfaces 190A. Further, since the side surface 64A of the partition portion 64 is inclined, the first side surface 190A of the sample 190 is also inclined.
  • an ultraviolet-visible near-infrared spectrophotometer (product name “V-7200”, manufactured by JASCO Corporation) with an integrating sphere, a light transmission diffuser plate, a first light duct, and a second light Prepare a duct.
  • V-7200 ultraviolet-visible near-infrared spectrophotometer
  • a combination of an equivalent light source and a measurement meter may be used.
  • a diffused light source may be used in place of the light source for irradiating parallel light and the light transmission diffusion plate.
  • An illuminometer may be used instead of the integrating sphere.
  • the light transmission diffuser plate is used to convert the parallel light emitted from the light source into diffused light.
  • a milky white acrylic plate can be used as the light transmission diffusion plate.
  • the first light duct is for guiding the diffused light to the sample
  • the second light duct is for guiding the light transmitted through the sample to the integrating sphere.
  • the first optical duct and the second optical duct have a cylindrical shape, and a metal such as aluminum or silver or a multilayer reflective film so that the inner surfaces of the first optical duct and the second optical duct are specularly reflected.
  • the first optical duct is for guiding light from the light source to the sample
  • the second optical duct is configured to transmit the light transmitted through the sample to the illuminance meter. It is for leading up to.
  • the opening of the first light duct and the second light duct is smaller than the side surface of the sample and the opening of the integrating sphere.
  • each opening edge part of a 1st optical duct and a 2nd optical duct becomes a shape along the 1st side surface of a sample, in order to make the whole opening edge part contact the 1st side surface of a sample. ing.
  • the opening edge of the optical duct is also inclined along the first side surface of the sample.
  • the light source 201 capable of irradiating the parallel light of the spectrophotometer and the integrating sphere 202
  • the light source 201 From the side, the light transmission diffusion plate 203, the first light duct 204, and the second light duct 205 are arranged in this order.
  • the second optical duct 204 is slightly inserted into the opening 202A of the integrating sphere 202.
  • the light source 201 is turned on, and the amount of light ( ⁇ 1 ) incident on the integrating sphere 202 via the first optical duct 204 and the second optical duct 205 is measured.
  • This amount of light is equal to the amount of light incident on the sample 190 in consideration of light absorption by the second optical duct 205 in FIG.
  • An optical duct 206 may be arranged.
  • a reflector 207 for returning leakage light may be provided in the gap between the second optical duct 205 and the opening 202A of the integrating sphere 202.
  • the first light duct 204 is connected to the opening edge portion.
  • 204A is arranged so that the entire 204A contacts the first side 190A of the sample 190 on the light source 201 side, and the second optical duct 205 is disposed on the integrating sphere 202 side of the sample 190. It arrange
  • the second optical duct 205 is slightly inserted into the opening 202A of the integrating sphere 202 in order to suppress leakage of light emitted from the second optical duct 205.
  • the light source 201 is turned on, and light from the light source 201 is incident from the first side surface 190 ⁇ / b> A on the light source 201 side of the sample 190 through the first optical duct 204.
  • the amount of light ( ⁇ 2 ) that passes through the sample 190, exits from the first side surface 190 A of the sample 190 on the integrating sphere 202 side, and enters the integrating sphere 202 through the second optical duct 205 is measured. Since this light amount is the amount of light transmitted through the sample 190, this light amount is referred to as “transmitted light amount”.
  • the light transmittance between the side surfaces is obtained by the ratio ( ⁇ 2 / ⁇ 1 ⁇ 100) of the transmitted light amount ( ⁇ 2 ) transmitted through the sample 190 with respect to the incident light amount ( ⁇ 1 ) incident on the sample 190.
  • the light transmittance between the side surfaces is an arithmetic average value of values obtained by measuring three times.
  • the upper and lower surfaces of the sample 190 are not covered by the optical duct. This is because the luminous flux emitted from the upper and lower surfaces of the sample 190 is not measured as the amount of transmitted light.
  • the arithmetic average roughness Ra of at least one side surface 64A of the partition portion 64 is preferably 10 ⁇ m or less. If Ra of side surface 64A is 10 micrometers or less, since the frequency
  • Ra can be measured using a surface roughness measuring device (product name “SE-3400”, manufactured by Kosaka Laboratory) in accordance with JIS B0601: 1999. Ra is measured at 10 locations at random, and is the arithmetic average value of the measured 10 locations of Ra.
  • the partition part 64 contains a thermoplastic resin. Since the partition part 64 contains the thermoplastic resin, weight reduction and cost reduction can be achieved compared with the case where the first spacer is made of only metal.
  • the partition part 64 shown by FIG. 6 is comprised only from the partition part main body 65 containing a thermoplastic resin and the light-shielding material which exists in a thermoplastic resin.
  • the partition body may not include a light shielding material as long as the entire partition has light shielding properties. Further, since not only visible light but also ultraviolet rays are radiated from the LED element 42, there is a possibility that the members in the LED surface light source device 20 are deteriorated by the ultraviolet rays. For this reason, in order to suppress ultraviolet-ray deterioration, it is preferable that the partition part 64 further contains the ultraviolet absorber other than a thermoplastic resin and a light-shielding material.
  • the thermoplastic resin constituting the partition main body 65 is not particularly limited, but polycarbonate resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile-styrene-acrylate copolymer resin (ASA resin), acrylonitrile / ethylene.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • ASA resin acrylonitrile-styrene-acrylate copolymer resin
  • AES resin acrylonitrile-styrene-acrylate copolymer resin
  • PMMA resin polymethyl methacrylate resin
  • polyacetal resin polyvinyl chloride resin
  • polyethylene resin polypropylene resin
  • polyethylene terephthalate resin polyethylene terephthalate resin
  • polyacetal resin polyvinyl chloride resin
  • polyethylene resin polypropylene resin
  • PMMA resin polyacetal resin
  • polyacetal resin or a mixture of two or more of
  • the Young's modulus at 25 ° C. of the thermoplastic resin is preferably 0.5 GPa or more and 5 GPa or less. If the Young's modulus of the thermoplastic resin is less than 0.5 GPa, there is a risk that the strength for fixing the wiring board and the first optical sheet may not be secured at the wall, and if it exceeds 5 GPa, the LED surface When the light source device is installed on a curved surface or the like, the partition portion may not be bent.
  • the lower limit of the Young's modulus at 25 ° C. of the thermoplastic resin is more preferably 1 GPa or more, and the upper limit is more preferably 4 GPa or less.
  • the light shielding material a material that reduces the light transmittance between the side surfaces is used, and a material that returns light to the incident direction by scattering, a material that absorbs light, or the like is used.
  • the light shielding material include white pigments made of titanium oxide, alumina, talc, aluminum hydroxide, mica, calcium carbonate, zinc sulfide, zinc oxide, barium sulfate, potassium titanate, and the like, or a mixture thereof. It is preferable that the light shielding material in the partition body is included in a ratio of 10 parts by mass to 250 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the ultraviolet absorber is not particularly limited, and examples thereof include a triazine ultraviolet absorber and a benzotriazole ultraviolet absorber.
  • a triazine-based ultraviolet absorber is preferred from the viewpoint that it absorbs ultraviolet light efficiently without absorbing light in the visible light region as much as possible and is less likely to cause yellowing even after long-term use.
  • TINUVIN® 1577® ED manufactured by BASF may be mentioned.
  • the partition part 64 is preferably provided integrally with the frame part 63, as shown in FIG.
  • the partition portion 64 integrally with the frame portion 63, it is possible to obtain a first spacer without a joint. Therefore, the assembly process of the LED surface light source device is performed rather than configuring the first spacer from a plurality of members. And the risk of displacement of the first optical sheet in the vibration test can be reduced.
  • the first spacer has no seam, there is no light entering the seam, and optical loss can be reduced.
  • “provided integrally” means not only when there is no boundary between the frame portion and the partition portion, that is, when the frame portion and the partition portion are integrally formed, but also the partition portion. It is a concept including the case where is joined to the frame.
  • the frame part 63 and the partition part 64 are integrally formed.
  • the partition part 64 is preferably provided integrally with the frame part 63 from a viewpoint of increasing the strength of the wall part 62, the partition part may not be provided integrally with the frame part.
  • the partition part 64 is arrange
  • the “boundary portion between partitioned regions” means a portion including a region that is assumed to be a boundary between partitioned regions based on patterns of the transmissive portion and the reflective portion.
  • FIG. 7 is a plan view of the first spacer 60 and the first optical sheet 50 from the LED element 42 side.
  • partition part 64 shown by FIG. 6 is comprised only from the partition part main body 65, you may be comprised from the partition part main body containing a thermoplastic resin, and the light shielding layer. In this case, the partition part main body does not need to contain the light shielding material.
  • the partition part 210 shown in FIG. 13A includes a partition part body 211 and a light shielding layer 212 provided on both side surfaces 211A and 211B of the partition part body 211.
  • the “side surface of the partition unit main body” in the present specification means a surface located on the opening side among the surfaces of the partition unit main body. Therefore, the light shielding layer 212 is positioned closer to the opening 213 than the partition body 211.
  • the partition part main body 211 is the same as that of the partition part main body 65, and the opening part 213 is the same as the opening part 61, it abbreviate
  • the light shielding layer 212 is a layer having a function of shielding incident light.
  • the light shielding layer 212 has a single layer structure, but may have a multilayer structure of two or more layers.
  • the thickness of the light shielding layer 212 is preferably 0.1 ⁇ m or more. If the thickness of the light shielding layer 212 is 0.1 ⁇ m or more, the light can be effectively shielded.
  • the thickness of the light shielding layer 212 can be measured by the same method as the thickness of the insulating protective film 45.
  • the upper limit of the thickness of the light shielding layer 212 is preferably 50 ⁇ m or less from the viewpoint of suppressing loss due to light absorption in the light shielding layer 212 and maintaining sufficient brightness as a light source.
  • the light blocking layer 212 is not particularly limited as long as it has a function of blocking incident light, but includes a light reflecting layer or a light absorbing layer.
  • a light reflecting layer or a light absorbing layer as the light shielding layer, high light shielding properties can be obtained.
  • the light absorption layer absorbs light, whereas the metal layer can reflect light, and therefore, the light reflection layer is preferable from the viewpoint of effective use of light.
  • the light reflecting layer examples include a resin layer or a metal layer containing a pigment having light reflectivity.
  • the metal layer may be a layer containing one or more metals selected from the group consisting of aluminum, silver, nickel, and chromium.
  • a layer containing such a metal as the metal layer a high reflectance can be obtained, so that incident light can be reflected more, and thus the light utilization efficiency can be improved.
  • aluminum is preferable because it has high reflectance and does not change the color of reflected light.
  • the “metal layer” in the present specification is a concept including a metal foil.
  • the light absorption layer includes a resin and a color material dispersed in the resin.
  • the resin include a polymer of a polymerizable compound and a thermoplastic resin. Although it does not specifically limit as a color material, From the point of light absorption performance, black color materials, such as carbon black and titanium black, are preferable, for example.
  • a method for forming the light shielding layer 212 is not particularly limited.
  • a vapor deposition method such as a physical vapor deposition (PVD) method such as a sputtering method or an ion plating method or a chemical vapor deposition (CVD) method, a plating method, Alternatively, a spray coating method, a dipping method, or the like can be used.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a plating method Alternatively, a spray coating method, a dipping method, or the like can be used.
  • a light-shielding film for example, metal foil
  • a light-shielding film for example, metal foil
  • the partition part 220 shown by FIG. 13 (B) is also comprised from the partition part main body 221 and the light shielding layer 222 provided in the 1st side surface 221A and the 2nd side surface 221B of the partition part main body 221.
  • the partition part main body 221 is formed by bonding the first part 221C including the first side 221A and the second part 221D including the second side 221B.
  • Such a partition 220 has a first portion 221C in which the light shielding layer 222 is formed on one side, a second portion 221D in which the light shielding layer 222 is formed on one side, and the light shielding layer 222 on the opening 223 side. It can be obtained by pasting together.
  • the light shielding layer 212 is provided on the first side surface 211A and the second side surface 211B of the partition portion main body 211, and in FIG. 13B, the light shielding layer 222 is composed of the partition portion main body 221.
  • the first side 221A and the second side 221B are provided, but the light shielding layer only needs to be provided on at least one side of the partition main body.
  • the light shielding layers 232 and 242 are the first side 231 ⁇ / b> A of the partition portion main body 231 and the first side of the partition portion main body 241. It may be provided only on the side surface 241A.
  • the partition portion 250 is opposite to the first portion 251C including the first side surface 251A of the partition portion main body 251 and the first side surface 251A of the partition portion main body 251.
  • the light shielding layer 252 may be provided.
  • the partition body 251 is located closer to the opening 253 than the light shielding layer 252.
  • first portion 261C including the first side 261A of the partition main body 261, and a first portion 261A on the opposite side of the first side 261A of the partition main body 261.
  • a partition portion body 261 including two side surfaces 261B and having a second portion 261D spaced from the first portion 261C, and a light shielding layer sandwiched between the first portion 261C and the second portion 261D 262, the light shielding layer 262 includes a light shielding layer 262A located on the first portion 261C side and a light shielding layer 262B located on the second portion 261D side.
  • the layer 262B is formed by bonding.
  • the light shielding layers 262A and 262B face each other between the first portion 261C in which the light shielding layer 262A is formed on one side and the second portion 261D in which the light shielding layer 262B is formed on one side. Can be obtained by pasting together.
  • the light shielding layers 222, 232, 242, 252, and 262 are also the same as the light shielding layer 212, description thereof is omitted here.
  • the partition body 221, 231, 241, 251, and 261 are the same as the partition body 65, and the openings 223 and 253 are the same as the opening 61, description thereof is omitted here. .
  • the second optical sheet 70 is a sheet having an optical function.
  • the second optical sheet is not particularly limited as long as it is a sheet having an optical function, and examples thereof include a light diffusion sheet, a lens sheet, and a reflective polarization separation sheet.
  • the second optical sheet 70 shown in FIGS. 1 and 2 is a light diffusion sheet.
  • the lens sheet 90 may not be provided, and when the second optical sheet is a reflection type polarization separation sheet, the reflection type polarization separation sheet. 100 may not be provided.
  • the same one as the lens sheet 90 or the reflection type polarization separation sheet 100 can be used.
  • the second optical sheet 70 is disposed on the light emission side of the first optical sheet 50.
  • the second optical sheet 70 is separated from the first optical sheet 50 by the second spacer 80.
  • the second optical sheet 70 is disposed substantially parallel to the first optical sheet 50.
  • the distance d2 from the first optical sheet 50 to the second optical sheet 70 shown in FIG. 3 is preferably 5 mm or less. If the distance d2 exceeds 5 mm, the LED surface light source device may not be thinned.
  • the “distance from the first optical sheet to the second optical sheet” in the present specification refers to the first optical sheet side of the second optical sheet from the second optical sheet side surface of the first optical sheet. It means the distance to the surface.
  • the distance from the first optical sheet 50 to the second optical sheet 70 is an arithmetic average value of values obtained by measuring this distance at 10 random locations.
  • the distance d2 may be 0.5 mm or more. In FIG. 3, the second optical sheet 70 is separated from the first optical sheet 50, but the second optical sheet 70 may be in contact with the first optical sheet 50. In this case, the distance d2 is 0 mm.
  • the distance (OD) from the surface 41A of the wiring board 41 to the second optical sheet 70 is preferably 1 mm or more and 10 mm or less.
  • the “distance from the surface of the wiring board to the second optical sheet” in this specification means the distance from the surface of the wiring board to the surface of the second optical sheet on the wiring board side.
  • the distance from the surface 41 ⁇ / b> A of the wiring board 41 to the second optical sheet 70 is an arithmetic average value of values obtained by measuring this distance at 10 random locations.
  • the upper limit of the distance from the surface 41A of the wiring board 41 to the second optical sheet 70 is preferably 5 mm or less.
  • the thickness of the second optical sheet 70 is preferably larger than the thickness of the first optical sheet 50. Since the thickness of the second optical sheet 70 is larger than the thickness of the first optical sheet 50, the second optical sheet 70 is less likely to bend than the first optical sheet 50. For this reason, the second optical sheet 70 can hold the distance between the first optical sheet 50 and the second optical sheet 70 at a predetermined distance by the frame-shaped second spacer 80.
  • the thickness of the second optical sheet 70 is preferably 0.3 mm or more and 5 mm or less. This is because if the thickness of the second optical sheet 70 is less than 0.3 mm, the light diffusion effect may not be sufficiently obtained, and if the thickness exceeds 5 mm, the LED surface light source device is thinned. May not be possible.
  • the thickness of the second optical sheet 70 can be measured by the same method as the thickness of the first optical sheet 50.
  • the second optical sheet 70 is preferably made of a resin.
  • “consisting of resin” means that the resin is a main constituent.
  • the second optical sheet 70 is formed of a translucent resin film made of polycarbonate resin, acrylic resin, or the like, and is formed on one surface side of the resin film. And a lens layer having a lens array or the like.
  • the second spacer 80 is for supporting the second optical sheet 70 with respect to the first optical sheet 50.
  • the second spacer 80 holds the distance d2 from the first optical sheet 50 to the second optical sheet 70 to 5 mm or less, and the distance from the surface 41A of the wiring board 41 to the second optical sheet 70. Has a function of holding 1 to 10 mm.
  • the second spacer When the second optical sheet is in contact with the first optical sheet, the second optical sheet can be supported by the first spacer via the first optical sheet, and therefore the second spacer is provided. It does not have to be, but may be provided. In this case, the second spacer has such a height that the second optical sheet is in contact with the first optical sheet.
  • the height h2 of the second spacer 80 shown in FIG. 3 is larger than the height h1 of the first spacer 60.
  • the height h2 of the second spacer 80 is preferably 10 mm or less. If the height of the second spacer exceeds 10 mm, the LED surface light source device may not be thinned.
  • the “height of the second spacer” refers to the second spacer from the bottom surface of the second spacer in the direction perpendicular to the bottom surface that is the inner bottom surface of the housing. It shall mean the distance to the top surface.
  • the height h2 of the second spacer 80 is an arithmetic average value of values obtained by measuring the height of the second spacer 80 at 10 random locations.
  • the lower limit of the height h2 of the second spacer 80 may be 1 mm or more.
  • the second spacer 80 has a frame shape as shown in FIG.
  • the “frame shape” in this specification is not limited to a configuration in which one round is connected without a break, but may have a gap in the middle as long as it is generally connected.
  • the second spacer 80 shown in FIG. 16 is provided with a gap 80A for connection with a terminal or the like.
  • the second spacer 80 has one opening 81 and is disposed so as to surround the outer peripheral surface 50 ⁇ / b> A of the first optical sheet 50 and the outer peripheral surface 60 ⁇ / b> C of the first spacer 60. As shown in FIG.
  • the second spacer 80 surrounds not only the outer peripheral surface 50 ⁇ / b> A of the first optical sheet 50 and the outer peripheral surface 60 ⁇ / b> C of the first spacer 60 but also the outer peripheral surface 41 ⁇ / b> C of the wiring substrate 41.
  • the LED mounting substrate 40, the first optical sheet 50, and the first spacer 60 are located inside the second spacer 80. Since the second spacer 80 has a frame shape, the light transmitted through the first optical sheet 50 and directed toward the second spacer 80 is reflected by the second spacer 80, so that the second optical The sheet 70 can be led.
  • the second spacer 80 since the second spacer 80 has a frame shape, the contact area with the second optical sheet 70 can be increased as compared with the case where the second spacer is composed of a plurality of columnar bodies. Therefore, when the LED surface light source device 20 is used, the heat of the second optical sheet 70 can be further dissipated through the second spacer 80. In addition, since the second spacer 80 has a frame shape, the second spacer 80 and the second optical sheet 70 are more bonded than in the case where the second spacer is composed of a plurality of columnar bodies. Since the area can be increased, the second optical sheet 70 is less likely to be displaced.
  • the bottom surface 80 ⁇ / b> B of the second spacer 80 is preferably in contact with the inner bottom surface 30 ⁇ / b> B of the housing 30.
  • “the bottom surface of the second spacer is in contact with the inner bottom surface of the housing” is not limited to the case where the bottom surface of the second spacer is in direct contact with the inner bottom surface of the housing. This is a concept including a case where a layer that can be ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the bottom surface of the spacer and the inner bottom surface of the housing.
  • a double-sided tape 113 described later is interposed between the bottom surface 80B of the second spacer 80 and the inner bottom surface 30B of the housing 30.
  • the outer side surface 80C which is the outer side surface of the second spacer 80 shown in FIG. 3, is in contact with the inner side surface 30D of the housing 30.
  • the “outer surface of the second spacer” means a surface opposite to the inner surface that defines the opening of the second spacer.
  • the phrase “the outer surface of the second spacer is in contact with the inner surface of the housing” in this specification is limited to the case where the outer surface of the second spacer is in direct contact with the inner surface of the housing.
  • the concept includes a case where a layer that can be ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the outer surface of the second spacer and the inner surface of the housing. is there.
  • the outer side surface 80 ⁇ / b> C of the second spacer 80 is in direct contact with the inner side surface 30 ⁇ / b> D of the housing 30.
  • the second spacer 80 and the housing 30 are fixed from the viewpoint of further suppressing the displacement of the second optical sheet 70 with respect to the LED element 42.
  • the method for fixing the second spacer 80 and the housing 30 is not particularly limited, and examples include fixing by adhesion or mechanical fixing means.
  • the bottom surface 80 ⁇ / b> B of the second spacer 80 and the inner bottom surface 30 ⁇ / b> B of the housing 30 are fixed by being bonded via a double-sided tape 113.
  • the second spacer 80 has a frame shape, the adhesion area with the housing 30 can be increased as compared with the case where the second spacer is composed of a plurality of columnar bodies.
  • the second spacer 80 can be easily fixed.
  • the second spacer 80 and the housing 30 may be bonded via an adhesive or an adhesive instead of the double-sided tape 113.
  • the second spacer 80 and the second optical sheet 70 are fixed.
  • a method for fixing the second spacer 80 and the second optical sheet 70 is not particularly limited, and examples include fixing by adhesion or mechanical fixing means.
  • the upper surface 80 ⁇ / b> D opposite to the bottom surface 80 ⁇ / b> B of the second spacer 80 and the second optical sheet 70 are fixed by being bonded via a double-sided tape 114.
  • the second spacer 80 and the second optical sheet 70 may be fixed using an adhesive or an adhesive instead of the double-sided tape 114.
  • the inner side surface 80 ⁇ / b> E that is the inner side surface of the second spacer 80 has an opening diameter of the opening 81 that increases from the inner bottom surface 30 ⁇ / b> B of the housing 30 toward the second optical sheet 70. It is preferable to be inclined. That is, the second spacer 80 has a tapered shape in which the thickness of the upper part is thinner than the thickness of the bottom part.
  • the second spacer 80 having such an inclined inner surface 80E can be obtained by, for example, injection molding, punching, cutting, or a three-dimensional printer.
  • the inner side surface 80E may be curved in the cross section in the height direction of the second spacer 80, but is preferably linear from the viewpoint of ease of manufacture.
  • the material constituting the second spacer 80 is not particularly limited, but is preferably made of resin from the viewpoint of easy molding and protection of the second optical sheet 70 and the like from impact.
  • a white resin is preferable from the viewpoint of increasing the reflectance and further guiding light to the second optical sheet 70.
  • the resin constituting the second spacer 80 is preferably the same resin as the thermoplastic resin constituting the first spacer 60. However, at present, it is desired to bend the LED surface light source device, and in order to bend the LED surface light source device, when the first spacer and the second spacer are made of a resin having a low Young's modulus, the LED surface Since the rigidity of the light source device is lowered, when the LED surface light source device is bent, the resin 25 constituting the second spacer 80 is bent so that the LED surface light source device can be bent while maintaining a certain degree of rigidity.
  • the Young's modulus at 0 ° C. is preferably smaller than the Young's modulus at 25 ° C. of the thermoplastic resin constituting the first spacer 60.
  • the Young's modulus at 25 ° C. of the thermoplastic resin constituting the first spacer 60 and the Young's modulus at 25 ° C. of the resin constituting the second spacer 80 are respectively determined by a dynamic viscoelasticity measuring device (product name “Rheogel- E4000 "(manufactured by UBM Co., Ltd.) is used, and a tensile test is performed at 25 ° C, and the stress is obtained from the slope of the linear portion of the stress-strain curve with the vertical axis representing stress and the horizontal axis representing strain.
  • the said Young's modulus be the arithmetic mean value of the value obtained by measuring 3 times.
  • the lens sheet 90 has a function of changing the traveling direction of incident light and emitting it from the light exit side. As shown in FIG. 17, the lens sheet 90 changes the traveling direction of light having a large incident angle, such as L1, for example, and emits it from the light-emitting side to intensively improve the luminance in the front direction (collection). In addition to the light function, for example, the light having a small incident angle such as L2 is reflected and returned to the first optical sheet 50 side (retroreflection function). As shown in FIG. 17, the lens sheet 90 includes a resin film 91 and a lens layer 92 provided on one surface of the resin film 91. The lens sheet 90 is arranged so that the lens layer 92 is positioned closer to the reflective polarization separation sheet 100 than the resin film 91.
  • thermoplastic resin examples include pentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, and polyurethane.
  • the lens layer 92 includes a plurality of unit lenses 92A arranged side by side on the light output side.
  • the unit lens 92A may have a triangular prism shape, or may have a wave shape or a bowl shape such as a hemisphere.
  • examples of the unit lens include a unit prism, a unit cylindrical lens, and a unit microlens.
  • the lens sheet having such a unit lens shape include a prism sheet, a lenticular lens sheet, and a microlens sheet.
  • the unit lens 92A preferably has an apex angle ⁇ of 80 ° or more and 100 ° or less, more preferably about 90 °, from the viewpoint of improving the light utilization efficiency.
  • the reflection-type polarization separation sheet 100 transmits only a first linearly polarized light component (for example, P-polarized light) out of the light emitted from the lens sheet 90 and is a second straight line orthogonal to the first linearly polarized light component. It has a function of reflecting a polarized light component (for example, S-polarized light) without absorbing it.
  • a polarized light component for example, S-polarized light
  • the reflective polarization separation sheet 100 As the reflective polarization separation sheet 100, “VIKUITI (registered trademark)“ Dual ”Brightness“ Enhancement ”Film (DBEF) available from 3M Company can be used. In addition to “VIKUITI (registered trademark) DBEF”, a high-intensity polarizing sheet “WRPS” or a wire grid polarizer available from Shinwha Intertek can be used as the reflective polarization separating sheet 100.
  • WRPS high-intensity polarizing sheet
  • a wire grid polarizer available from Shinwha Intertek
  • the first spacer 60 includes the partition portion 64 that partitions the openings 61 and includes the wall portion 62 that surrounds the periphery of at least one opening 61.
  • the contact area with the first optical sheet 50 can be increased. Thereby, the bending of the 1st optical sheet 50 can be suppressed.
  • the first optical sheet is a light transmission / reflection sheet
  • the light transmission / reflection sheet has a pattern of a transmission part and a reflection part in each partition region. Since the position of the light transmitting / reflecting sheet with respect to the element changes, the in-plane luminance uniformity may be reduced. For this reason, it is necessary to keep the distance from the surface of the wiring board to the light transmission / reflection sheet at a predetermined distance.
  • the first spacer 60 can suppress the bending of the first optical sheet 50 that is a light transmitting and reflecting sheet, the in-plane uniformity of luminance can be improved.
  • the first spacer 60 since the first spacer 60 has the partition portion 64 having a light transmittance between the side surfaces of 30% or less, the light emitted from the LED element and directed to the adjacent LED element side is It is blocked by the partition part 64. Thereby, when local dimming control is performed, mixing of light from the LED elements 42 can be suppressed, which is suitable for local dimming control.
  • the first spacer 60 since the first spacer 60 includes the wall portion 62, it has higher rigidity than a columnar spacer or a simple frame-shaped spacer. For this reason, when the vibration test is performed on the LED surface light source device 20, the swing width of the first optical sheet 50 is smaller than when a columnar spacer or a simple frame spacer is used. Thereby, when the vibration test is performed, the positional deviation of the first optical sheet 50 with respect to the LED element 42 can be suppressed. Further, since the first spacer 60 has higher rigidity than a columnar spacer or a simple frame-shaped spacer, the first spacer 60 is not easily damaged even when a vibration test is performed.
  • the first optical sheet is a light transmission / reflection sheet
  • the light transmission / reflection sheet has a pattern of a transmission part and a reflection part in each partition region. Since the position of the light transmitting / reflecting sheet with respect to the LED element changes, the in-plane uniformity of luminance may be lowered. On the other hand, in this embodiment, since the position shift of the 1st optical sheet 50 with respect to the LED element 42 can be suppressed, the in-plane uniformity of a brightness
  • luminance can be improved.
  • the first spacers 140, 150, 160, 170, and 180 also have a partition portion that partitions the openings and includes a wall portion that surrounds at least one of the openings, and thus the first spacer 60
  • the first spacer 60 is also used. The same effect as above can be obtained.
  • the use of the LED image display device 10 and the LED surface light source device 20 of the present embodiment is not particularly limited, but can be used for television media, in-vehicle applications, billboards and other advertising media.
  • the LED image display device 10 and the LED surface light source device can withstand vibration tests, and can be suitably used for in-vehicle use.
  • an LED mounting substrate was produced. Specifically, a copper layer having a thickness of 35 ⁇ m for wiring was laminated on one surface of a polyimide film having a length of 112 mm ⁇ width of 301 mm and a thickness of 25 ⁇ m. Thereafter, the copper layer for wiring was etched to form a copper wiring part. After forming the copper wiring portion, an insulating protective film having a thickness of 20 ⁇ m was formed by screen printing to obtain a flexible wiring board. After obtaining the flexible wiring board, a total of 60 LED elements of 5 vertical x 12 horizontal were mounted on the copper wiring part of the flexible wiring board via a solder layer by a reflow method to obtain an LED mounting board.
  • a light transmission / reflection sheet was prepared.
  • the light transmissive reflection sheet was produced by forming a plurality of openings penetrating in the thickness direction in a predetermined pattern on a foamed polyethylene terephthalate film having a thickness of 0.5 mm by press punching.
  • a light transmitting / reflecting sheet having 60 partition regions in total of 5 vertical portions ⁇ 12 horizontal portions each including a transmission portion and a reflection portion was obtained.
  • the size of each partition region was 22 mm long ⁇ 24.4 mm wide, and the aperture ratio gradually increased from the center of each partition region toward the outer edge.
  • the 1st spacer was produced.
  • the first spacer has a lattice shape and is manufactured by injection molding using a polycarbonate resin containing titanium oxide (TiO 2 ) as a light shielding material. Titanium oxide was used in an amount of 30 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the first spacers are 22 mm long ⁇ 24.4 mm wide, the first spacers penetrating in the height direction of 5 ⁇ vertical ⁇ 12 horizontal matrix openings, and 112 mm long ⁇ 294.8 mm wide.
  • a rectangular frame portion having a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm, and an opening are partitioned, and a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm formed integrally with the frame portion.
  • the wall part which has the partition part which consists of this partition part main body was provided.
  • the wall portion surrounds all the openings.
  • the frame part and the partition part main body were composed of a polycarbonate resin and titanium oxide present in the polycarbonate resin.
  • a second spacer was produced.
  • the second spacer was produced by injection molding using a polycarbonate resin.
  • the second spacer penetrates in the height direction of a second spacer having a length of 113 mm ⁇ width of 306 mm inside the frame portion, and a frame portion of length 117 mm ⁇ width 310 mm, width 2 mm, and height 5 mm. And two openings.
  • the produced LED mounting substrate was placed on an aluminum casing main body having a storage space of 117 mm in length, 310 mm in width, and 7 mm in height so that the LED element was on the upper side.
  • the first spacer prepared above is fixed to the surface of the flexible wiring board in the LED mounting substrate via a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation), and further on the first spacer.
  • the produced light transmission reflection sheet was fixed via a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation).
  • the first spacer is arranged so that light from each LED element passes through the opening of the first spacer, and the light transmitting / reflecting sheet has a boundary portion between the partition regions of the first spacer. It was arrange
  • the produced second spacer is disposed between the housing main body, the LED mounting substrate, and the first spacer, and the second spacer is attached to the bottom surface of the housing main body with a double-sided tape (product name “No. 5000NS”). ”, Manufactured by Nitto Denko Corporation). Furthermore, a light diffusion sheet having a length of 117 mm ⁇ width of 310 mm and a thickness of 1.5 mm was disposed on the second spacer.
  • a frame-shaped lid having an opening with a size of 110 mm in length and 303 mm in width was fitted into the housing body to obtain an LED surface light source device.
  • the distance from the surface of the flexible wiring board to the light transmission / reflection sheet is 2 mm
  • the distance from the surface of the flexible wiring board to the light diffusion sheet is 4.8 mm
  • the light transmission / reflection sheet, the light diffusion sheet was 2.3 mm.
  • Example 2 instead of the first spacer composed of the polycarbonate resin containing titanium oxide, the LED surface was used in the same manner as in Example 1 except that the first spacer produced as follows was used. A light source device was obtained. In the production of the first spacer, first, an acrylic resin not containing titanium oxide is injection-molded, and the vertical spacer is 22 mm long by 24.4 mm wide and penetrates in the height direction of the first spacer by 5 vertical by 12 horizontal.
  • the openings are arranged in a matrix, a rectangular frame having a length of 112 mm ⁇ width of 294.8 mm, a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm, and the openings are partitioned to be integrated with the frame portion.
  • a partition part main body having a bottom surface width of 2 mm, a top surface width of 1.9 mm, and a height of 2 mm was formed.
  • the light shielding layer with a film thickness of 15 micrometers was formed by spray-coating with the plating-like spray (silver) by Asahi Pen Co., Ltd. on both sides of the opening part side of a partition part main body, and making it dry at room temperature for 1 hour. .
  • the wall part which has a frame part and the partition part which consists of a partition part main body and a light shielding layer was formed, and the 1st spacer was obtained.
  • the wall portion surrounds all the openings.
  • Comparative Example 1 an LED surface light source device was manufactured in the same manner as in Example 1 except that the first spacer was formed using a polycarbonate resin not containing titanium oxide instead of the polycarbonate resin containing titanium oxide. Obtained.
  • Comparative Example 2 an LED surface light source device was obtained in the same manner as in Example 1 except that a plurality of columnar first spacers were used instead of the lattice-shaped first spacer.
  • the first spacer used in Comparative Example 1 was a columnar shape made of polycarbonate resin and having a diameter of 5 mm and a height of 2 mm, and one spacer was disposed between each LED element.
  • the columnar first spacers were fixed to the flexible wiring substrate and the light reflecting / transmitting sheet through a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation).
  • Comparative Example 3 In Comparative Example 3, in the same manner as in Example 1 except that a frame-shaped first spacer composed of one opening portion having no partitioning portion was used instead of the lattice-shaped first spacer, An LED surface light source device was obtained.
  • the first spacer used in Comparative Example 2 is composed of a polycarbonate resin having a length of 112 mm ⁇ width of 294.8 mm, a width of 2 mm, a height of 2 mm, and a length of 108 mm ⁇ width of 290.8 mm inside the frame.
  • the first spacer in a frame shape was fixed to the flexible wiring substrate and the light reflecting / transmitting sheet through a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation).
  • the light transmittance between the side surfaces of the partition portion was measured.
  • the light transmittance between the side surfaces was measured as follows. First, a part of the partition portion of the first spacer is cut in a direction orthogonal to the direction in which the partition portion extends so as to include both side surfaces of the partition portion, and the bottom surface width is 2 mm, the top surface width is 1.9 mm, the height is 2 mm, and the length A sample with a thickness of 10 mm was obtained.
  • an ultraviolet-visible near-infrared spectrophotometer (product name “V-7200”, manufactured by JASCO Corporation) equipped with an integrating sphere (inner diameter: 60 mm), a light transmission diffusion plate, a first light duct, A measurement system for the transmittance between the side surfaces of the sample was prepared using the second optical duct.
  • the light transmission diffusion plate a milky white acrylic plate having a length of 30 mm, a width of 30 mm, and a thickness of 2 mm was used.
  • the first light duct and the second light duct were in the shape of a square cylinder.
  • the first optical duct was 2 mm long, 10 mm wide, and 20 mm long
  • the second optical duct was 2 mm long, 10 mm wide, and 20 mm long
  • the opening size of the first optical duct was 1.8 mm in length and 9.8 mm in width
  • the opening size of the second optical duct was 1.8 mm in length and 9.8 mm in width.
  • the inner surfaces of the first optical duct and the second optical duct are made of aluminum and are specularly reflected.
  • the opening edge of each one of the first light duct and the second light duct was shaped along the side of the sample so that the entire opening edge was in contact with the side of the sample.
  • the first light duct and the second light duct are arranged from the light source side between the light source of the spectrophotometer and the integrating sphere, and the second optical duct is slightly inserted into the opening of the integrating sphere.
  • the light source was turned on, and the amount of incident light ( ⁇ 1 ) incident on the integrating sphere via the first and second optical ducts was measured under the following measurement conditions.
  • ⁇ Wavelength range 400nm to 800nm
  • Light source Tungsten halogen lamp
  • ⁇ Detector Photomultiplier tube
  • a light transmission diffusion plate, a first light duct, a sample, and a second light duct were arranged in this order from the light source side between the light source and the integrating sphere.
  • the entire opening edge of one of the samples is connected to the first light duct.
  • the second light duct was placed in contact with the other side of the sample, and the second light duct was placed in contact with the other side of the sample. Further, a second optical duct was inserted slightly into the opening of the integrating sphere.
  • the light source was turned on under the same lighting conditions as when measuring the amount of incident light, and light from the light source was incident from one side surface of the sample through the first optical duct. Then, the amount of transmitted light ( ⁇ 2 ) transmitted through the sample and incident on the integrating sphere via the second optical duct was measured under the same measurement conditions as those for the incident light amount ( ⁇ 1 ).
  • the light transmittance between side surfaces was calculated
  • the light transmittance between the side surfaces was an arithmetic average value of values obtained by measuring three times.
  • ⁇ Light / dark evaluation> In the LED surface light source device according to the example and the comparative example, local dimming control is performed, and on the surface of the LED surface light source device (the surface of the second optical sheet), a portion where the LED element is lit and a portion where the LED element is not lit The difference in light and dark was visually evaluated.
  • the evaluation criteria were as follows. ⁇ : Light and dark were clear. ⁇ : Light and dark were unclear. X: Brightness and darkness were remarkably unclear.
  • ⁇ Evaluation of in-plane brightness uniformity> In the LED surface light source devices according to the example and the comparative example, a vibration test is performed, and before and after the vibration test, the luminance distribution of the light emitting surface (the surface of the light diffusion sheet) of the LED surface light source device is measured. In addition to evaluating the in-plane uniformity, the rate of change of the in-plane uniformity before and after the vibration test was determined to evaluate how much the in-plane uniformity had decreased before and after the vibration test.
  • the vibration test is performed on the vibration table of the single-axis electrodynamic vibration test apparatus (product name “EM2605S / H10”, manufactured by IMV Corporation), and the outer surface of the LED surface light source device in the short direction is the vibration table side.
  • the LED surface light source device In a state where the LED surface light source device is erected, the LED surface light source device is fixed and vibrated for one hour in each of the three axial directions (X direction, Y direction, Z direction) orthogonal to each other under the following conditions: Was done.
  • the vibration conditions were a sweep rate of 1 oct / min, a vibration with an amplitude of ⁇ 0.75 mm when the frequency was 10 Hz to 30 Hz, and an acceleration of 3 G when the frequency was 30 Hz to 500 Hz.
  • the luminance distribution is 1 m away from the light emitting surface of the LED surface light source device (the surface of the light diffusion sheet) in the normal direction of the light emitting surface in a state where the LED element is turned on by supplying a current of 180 mA per LED element.
  • the measurement was performed using a two-dimensional color luminance meter (product name “CA-2000”, manufactured by Konica Minolta, Inc.).
  • the in-plane uniformity of the luminance is 22 mm ⁇ 146.4 mm in the central region in the measurement region, and the maximum luminance (Lv max ) and the minimum luminance (Lv min ) in the luminance distribution within the evaluation range are used. by determining the ratio of the minimum luminance (Lv min) (Lv min / Lv max) with respect to the maximum luminance (Lv max), it was quantified.
  • the rate of change in the in-plane brightness before and after the vibration test is obtained, and before and after the vibration test.
  • the degree to which the in-plane luminance uniformity was reduced was evaluated.
  • the evaluation criteria were as follows. A: The rate of change of the in-plane uniformity of luminance before and after the vibration test was within 10%. X: The rate of change in in-plane uniformity of luminance before and after the vibration test exceeded 10%.
  • the rate of change in in-plane uniformity of brightness before and after the vibration test is the difference between the in-plane uniformity of brightness before the vibration test and the in-plane uniformity of brightness after the vibration test (in-plane uniformity of brightness before the vibration test). -In-plane uniformity of luminance after vibration test).
  • ⁇ Appearance evaluation> In the LED surface light source devices according to Examples and Comparative Examples, the appearance of the first spacer after the vibration test was visually observed and evaluated. The evaluation results were based on the following criteria. ⁇ : In the first spacer, damage such as cracking or breaking was not confirmed. X: In the first spacer, damage such as cracking or breaking was confirmed.
  • Comparative Example 1 Although no deflection was confirmed in the light reflecting sheet, the light transmittance between the side surfaces of the partitioning portion of the first spacer exceeded 30%, and thus the results of the brightness evaluation were inferior. This is considered to be because the light from the LED element penetrates the partition and enters the area where the LED element is not lit.
  • Comparative Example 2 since the first spacer was columnar and did not have a partition portion, the light transmitting / reflecting sheet was confirmed to be bent, and the results of brightness evaluation were also inferior.
  • the first spacer is a frame having no partition part, and has no partition part. Therefore, the light transmission / reflection sheet is confirmed to be bent, and the result of the brightness evaluation is also inferior. It was.
  • Comparative Example 2 and Comparative Example 3 the in-plane uniformity of luminance before the vibration test was low. This is presumably because the light transmission / reflection sheet was bent.
  • Example 1 and 2 since the first spacer was composed of the wall portion provided with the partitioning portion, no bending was confirmed in the light transmission / reflection sheet. In Examples 1 and 2, the in-plane uniformity of luminance before the vibration test was high. This is considered because the light transmission reflection sheet was not bent. Furthermore, since the light transmittance between the side surfaces of the partition part in the first spacer is 30% or less, it is possible to suppress the light of the LED element from passing through the partition part and entering the region where the LED element is not lit. As a result, the brightness evaluation was good.
  • Example 1 the deterioration of the in-plane uniformity after the vibration test with respect to the in-plane uniformity before the vibration test was suppressed as compared with Comparative Examples 2 and 3.
  • the first spacer is composed of a wall part having a frame part and a partition part, so that the rigidity is high, and the positional deviation of the light transmission / reflection sheet with respect to the LED element hardly occurs even in the vibration test. It is considered a thing.

Abstract

One aspect of the present invention provides a first spacer (60) that is used in an LED surface light source device (20) which is provided with a first optical sheet (50) and an LED mounting substrate (40) facing the first optical sheet (50). The first spacer is disposed between the first optical sheet (50) and the LED mounting substrate (50) and separates the first optical sheet (50) from the LED mounting substrate (40). The first spacer (60) is provided with: at least two openings (61) that penetrate in the height direction of the first spacer; and a wall part (62) that surrounds the periphery of at least one of the openings (61) and that has a partition part (64) that partitions the openings (61) from each other. The partition part (64) has two side surfaces that face the openings and includes a thermally curable resin. The light transmittance from one side surface (64A) to another side surface (64A) of the partition part (64) is 30% or less.

Description

スペーサー、LED面光源装置およびLED画像表示装置Spacer, LED surface light source device and LED image display device 関連出願の参照Reference to related applications
 本願は、先行する日本国出願である特願2017-109304(出願日:2017年6月1日)の優先権の利益を享受するものであり、その開示内容全体は引用することにより本明細書の一部とされる。 This application enjoys the benefit of priority of Japanese Patent Application No. 2017-109304 (filing date: June 1, 2017), which is a preceding Japanese application, the entire disclosure of which is incorporated herein by reference. To be part of
 本発明は、スペーサー、LED面光源装置およびLED画像表示装置に関する。 The present invention relates to a spacer, an LED surface light source device, and an LED image display device.
 近年、急速に普及が進んだLED画像表示装置は、通常、液晶表示パネル等の表示画面と、この表示画面を背面側から照明するLED面光源装置とを備えている。現在、LED画像表示装置においては、通常、エッジライト型のLED面光源装置が用いられることが多いが、明るさの観点から、直下型のLED面光源装置を用いることが検討されている。 2. Description of the Related Art In recent years, LED image display devices that have rapidly spread are usually provided with a display screen such as a liquid crystal display panel and an LED surface light source device that illuminates the display screen from the back side. Currently, edge-light type LED surface light source devices are often used in LED image display devices, but from the viewpoint of brightness, the use of direct type LED surface light source devices has been studied.
 直下型のLED面光源装置においては、LED面光源装置の発光面における輝度の面内均一性を向上させる等の観点から、LED素子上に光学シートを配置している。このような光学シートとして、例えば、LED素子からの光を反射する白色等の樹脂製反射材シートに、LED素子直上からLED素子の周囲に向かうに従って徐々に開口部が大きくなるような開口パターンを形成した光透過反射シートを用いる場合がある(特開2010-272245号参照)。このような開口パターンを有する光透過反射シートを用いることにより、LED素子直上の光を反射させて周囲に拡散し、周囲の開口部から出光させることができるので、輝度の面内均一性を向上させることができる。 In the direct type LED surface light source device, an optical sheet is disposed on the LED element from the viewpoint of improving the in-plane uniformity of luminance on the light emitting surface of the LED surface light source device. As such an optical sheet, for example, a white or other resin-made reflective material sheet that reflects light from the LED element has an opening pattern in which the opening gradually increases as it goes from directly above the LED element to the periphery of the LED element. There is a case where a formed light transmitting / reflecting sheet is used (see JP 2010-272245 A). By using a light-transmitting / reflecting sheet having such an opening pattern, the light directly above the LED element can be reflected and diffused to the surroundings and emitted from the surrounding openings, improving the in-plane uniformity of luminance. Can be made.
 光学シートによって、輝度の面内均一性を向上させるためには、LED素子が実装されたLED実装基板に対して、光学シートを離間させる必要がある。このため、通常、LED実装基板と光学シートとの間に、LED実装基板に対して光学シートを離間させるための複数の柱状のスペーサーを配置している。 In order to improve the in-plane uniformity of luminance by the optical sheet, it is necessary to separate the optical sheet from the LED mounting substrate on which the LED elements are mounted. For this reason, usually, a plurality of columnar spacers for separating the optical sheet from the LED mounting substrate are arranged between the LED mounting substrate and the optical sheet.
 しかしながら、柱状のスペーサーを用いると、スペーサー間で光学シートが撓むおそれがある。光学シートとして光透過反射シートを用いた場合、光透過反射シートに撓みが生じると、LED素子に対する開口パターンの位置が変わるので、輝度の面内均一性が低下してしまうおそれがある。 However, when columnar spacers are used, the optical sheet may be bent between the spacers. When a light transmitting / reflecting sheet is used as the optical sheet, if the light transmitting / reflecting sheet is bent, the position of the opening pattern with respect to the LED element is changed, so that in-plane uniformity of luminance may be lowered.
 また、現在、映像の明暗部に対応するように、LED素子を個別に制御して、消費電力を低減するとともにコントラストを向上させることができるローカルディミング制御が知られている。 Currently, local dimming control is known in which LED elements are individually controlled so as to correspond to light and dark portions of an image to reduce power consumption and improve contrast.
 ローカルディミング制御においては、LED素子からの光が互いに混合されないことが求められるが、柱状のスペーサーを用いた場合、スペーサー間の隙間から光が抜けてしまうので、LED素子からの光が互いに混合されてしまう。 In local dimming control, it is required that the light from the LED elements is not mixed with each other. However, when columnar spacers are used, light escapes from the gaps between the spacers, so that the light from the LED elements is mixed with each other. End up.
 本発明は、上記問題を解決するためになされたものである。すなわち、光学シートの撓みを抑制でき、かつローカルディミング制御に適したスペーサー、ならびにこれを備えたLED面光源装置およびLED画像表示装置を提供することを目的とする。 The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a spacer that can suppress the bending of the optical sheet and is suitable for local dimming control, and an LED surface light source device and an LED image display device including the spacer.
 本発明の一の態様によれば、配線基板、および前記配線基板の一方の面に実装された複数のLED素子を備えるLED実装基板と、前記LED素子側に配置された光学シートとを備えるLED面光源装置に用いられ、かつ前記LED実装基板と前記光学シートとの間に配置され、前記LED実装基板に対し前記光学シートを離間させるスペーサーであって、前記スペーサーの高さ方向に貫通する2以上の開口部と、前記開口部間を仕切る仕切部を有し、かつ少なくとも1つの前記開口部の周囲を取り囲む壁部と、を備え、前記仕切部が、前記開口部に面する2つの側面を有し、かつ熱可塑性樹脂を含み、前記仕切部における一方の前記側面から他方の前記側面への光透過率が、30%以下である、スペーサーが提供される。 According to one aspect of the present invention, an LED including a wiring board, an LED mounting board including a plurality of LED elements mounted on one surface of the wiring board, and an optical sheet disposed on the LED element side. A spacer that is used in a surface light source device and is disposed between the LED mounting substrate and the optical sheet and separates the optical sheet from the LED mounting substrate, and penetrates in the height direction of the spacer. Two openings having the above-described opening and a wall having a partition for partitioning between the openings and surrounding at least one of the openings, the partition facing the opening There is provided a spacer that includes a thermoplastic resin and has a light transmittance of 30% or less from one side surface to the other side surface of the partition.
 上記スペーサーにおいて、前記仕切部が、前記熱可塑性樹脂中に存在する遮光材をさらに含んでいてもよい。 In the spacer, the partition may further include a light shielding material present in the thermoplastic resin.
 上記スペーサーにおいて、前記仕切部が、前記熱可塑性樹脂を含む仕切部本体と、前記仕切部本体の少なくとも一方の側面に設けられた遮光層とを備えていてもよい。 In the spacer, the partition portion may include a partition portion main body including the thermoplastic resin and a light shielding layer provided on at least one side surface of the partition portion main body.
 上記スペーサーにおいて、前記仕切部が、前記熱可塑性樹脂を含む仕切部本体と、遮光層とを備え、前記仕切部本体が、前記仕切部本体の第1の側面を含む第1の部分と、前記仕切部本体における前記第1の側面とは反対側の第2の側面を含み、かつ前記第1の部分と離間した第2の部分とを備え、前記遮光層が、前記第1の部分と前記第2の部分との間に挟まれていてもよい。 In the spacer, the partition portion includes a partition portion body including the thermoplastic resin and a light shielding layer, and the partition portion body includes a first portion including a first side surface of the partition portion body, and A partition portion main body including a second side opposite to the first side and the second portion spaced apart from the first portion, wherein the light shielding layer includes the first portion and the first portion; It may be sandwiched between the second part.
 上記スペーサーにおいて、前記仕切部の少なくとも一方の側面の算術平均粗さが、10μm以下であってもよい。 In the spacer, the arithmetic average roughness of at least one side surface of the partition may be 10 μm or less.
 上記スペーサーにおいて、前記壁部が、格子状またはハニカム状であってもよい。 In the spacer, the wall portion may have a lattice shape or a honeycomb shape.
 本発明の他の態様によれば、配線基板、および前記配線基板の一方の面に実装された複数のLED素子を備えるLED実装基板と、前記LED素子側に配置された第1の光学シートと、前記LED実装基板と前記第1の光学シートとの間に配置され、前記LED実装基板に対し前記第1の光学シートを離間させる第1のスペーサーと、を備え、前記第1のスペーサーが、上記スペーサーである、LED面光源装置が提供される。 According to another aspect of the present invention, a wiring board, an LED mounting board comprising a plurality of LED elements mounted on one surface of the wiring board, and a first optical sheet disposed on the LED element side, A first spacer disposed between the LED mounting substrate and the first optical sheet, and separating the first optical sheet from the LED mounting substrate, and the first spacer, An LED surface light source device that is the spacer is provided.
 上記LED面光源装置において、前記スペーサーの前記壁部の前記開口部に面している側面が、前記配線基板から前記第1の光学シートに向けて前記開口部の開口径が大きくなるように傾斜していてもよい。 In the LED surface light source device, a side surface of the spacer facing the opening of the wall is inclined so that an opening diameter of the opening increases from the wiring board toward the first optical sheet. You may do it.
 上記LED面光源装置において、前記第1の光学シートが、平面視において複数に分割された区画領域を備え、前記各区画領域が、前記LED素子からの光の一部を透過する複数の透過部と、前記LED素子からの光の一部を反射する複数の反射部とを有し、前記各区画領域における前記透過部の面積割合である開口率が、前記区画領域の中央部から前記区画領域の外縁部に向けて漸増する領域を含んでいてもよい。 In the LED surface light source device, the first optical sheet includes a plurality of divided regions in plan view, and each of the divided regions transmits a part of light from the LED element. And a plurality of reflecting portions that reflect a part of the light from the LED element, and an aperture ratio that is an area ratio of the transmission portion in each partition region is from the central portion of the partition region to the partition region A region that gradually increases toward the outer edge of the substrate may be included.
 上記LED面光源装置において、前記第1の光学シートの厚みが、25μm以上1mm以下であってもよい。 In the LED surface light source device, the thickness of the first optical sheet may be not less than 25 μm and not more than 1 mm.
 上記LED面光源装置において、前記第1の光学シートの光出射側に配置された第2の光学シートと、前記第1の光学シートの外周面および前記第1のスペーサーの外周面を取り囲むように配置され、かつ前記第2の光学シートを支持する枠状の第2のスペーサーと、をさらに備えていてもよい。 In the LED surface light source device, the second optical sheet disposed on the light emitting side of the first optical sheet, the outer peripheral surface of the first optical sheet, and the outer peripheral surface of the first spacer are surrounded. And a frame-shaped second spacer that is disposed and supports the second optical sheet.
 本発明の他の態様によれば、上記LED面光源装置と、前記LED面光源装置よりも観察者側に配置された表示パネルと、を備える、LED画像表示装置が提供される。 According to another aspect of the present invention, there is provided an LED image display device comprising the LED surface light source device and a display panel disposed closer to an observer than the LED surface light source device.
 本発明の一の態様によれば、光学シートの撓みを抑制でき、かつローカルディミング制御に適したスペーサーを提供することができる。また、本発明の他の態様によれば、このようなスペーサーを備えるLED面光源装置およびLED画像表示装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a spacer that can suppress the bending of the optical sheet and is suitable for local dimming control. Moreover, according to the other aspect of this invention, an LED surface light source device and LED image display apparatus provided with such a spacer can be provided.
図1は、実施形態に係るLED画像表示装置の分解斜視図である。FIG. 1 is an exploded perspective view of an LED image display device according to an embodiment. 図2は、実施形態に係るLED画像表示装置の概略構成図である。FIG. 2 is a schematic configuration diagram of the LED image display device according to the embodiment. 図3は、実施形態に係るLED面光源装置の一部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a part of the LED surface light source device according to the embodiment. 図4は、図1に示される第1の光学シートの平面図である。FIG. 4 is a plan view of the first optical sheet shown in FIG. 図5は、実施形態に係る他の第1の光学シートの平面図である。FIG. 5 is a plan view of another first optical sheet according to the embodiment. 図6は、図1に示される第1のスペーサーの平面図である。FIG. 6 is a plan view of the first spacer shown in FIG. 図7は、図1に示される第1の光学シートと第1のスペーサーとの配置関係を示す平面図である。FIG. 7 is a plan view showing the positional relationship between the first optical sheet and the first spacer shown in FIG. 図8は、実施形態に係る他の第1のスペーサーの平面図である。FIG. 8 is a plan view of another first spacer according to the embodiment. 図9は、実施形態に係る他の第1のスペーサーの平面図である。FIG. 9 is a plan view of another first spacer according to the embodiment. 図10は、実施形態に係る他の第1のスペーサーの平面図である。FIG. 10 is a plan view of another first spacer according to the embodiment. 図11(A)および図11(B)は、実施形態に係る他の第1のスペーサーの平面図である。FIG. 11A and FIG. 11B are plan views of other first spacers according to the embodiment. 図12(A)は、側面間光透過率を測定するためのサンプルを第1のスペーサーの仕切部から切り出す様子を模式的に示した図であり、図12(B)および図12(C)は、サンプルの側面間光透過率を測定する際の様子を模式的に示した図である。FIG. 12 (A) is a diagram schematically showing a state in which a sample for measuring the light transmittance between the side surfaces is cut out from the partition portion of the first spacer, and FIG. 12 (B) and FIG. 12 (C). These are the figures which showed typically the mode at the time of measuring the light transmittance between the side surfaces of a sample. 図13(A)および図13(B)は、実施形態に係る他の第1のスペーサーの一部の縦断面図である。FIG. 13A and FIG. 13B are longitudinal sectional views of a part of another first spacer according to the embodiment. 図14(A)および図14(B)は、実施形態に係る他の第1のスペーサーの一部の縦断面図である。FIG. 14A and FIG. 14B are longitudinal sectional views of a part of another first spacer according to the embodiment. 図15(A)および図15(B)は、実施形態に係る他の第1のスペーサーの一部の縦断面図である。FIG. 15A and FIG. 15B are longitudinal sectional views of a part of another first spacer according to the embodiment. 図16は、図1に示される第1のスペーサーと第2のスペーサーとの配置関係を示す平面図である。FIG. 16 is a plan view showing the positional relationship between the first spacer and the second spacer shown in FIG. 図17は、図1に示されるレンズシートの断面図である。FIG. 17 is a cross-sectional view of the lens sheet shown in FIG.
 以下、本発明の実施形態に係るスペーサー、直下型のLED面光源装置およびLED画像表示装置について、図面を参照しながら説明する。本明細書において、「LED」とは、発光ダイオードを意味するものである。また、「シート」、「フィルム」、「板」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。したがって、例えば、「シート」は、フィルムや板とも呼ばれるような部材も含む意味で用いられる。図1は本実施形態に係るLED画像表示装置の分解斜視図であり、図2は本実施形態に係るLED画像表示装置の概略構成図であり、図3は本実施形態に係るLED面光源装置の一部の拡大断面図である。図4は図1に示される第1の光学シートの平面図であり、図5は実施形態に係る他の第1の光学シートの平面図であり、図6は図1に示される第1のスペーサーの平面図であり、図7は図1に示される第1の光学シートと第1のスペーサーとの配置関係を示す平面図である。図8~図11は実施形態に係る他の第1のスペーサーの平面図であり、図12(A)は、側面間光透過率を測定するためのサンプルを第1のスペーサーの仕切部から切り出す様子を模式的に示した図であり、図12(B)および図12(C)は、サンプルの側面間光透過率を測定する際の様子を模式的に示した図である。図13~図15は実施形態に係る他の第1のスペーサーの一部の縦断面図であり、図16は図1に示される第1のスペーサーと第2のスペーサーとの配置関係を示す平面図であり、図17は図1に示されるレンズシートの断面図である。 Hereinafter, a spacer, a direct type LED surface light source device, and an LED image display device according to embodiments of the present invention will be described with reference to the drawings. In this specification, “LED” means a light emitting diode. Further, terms such as “sheet”, “film”, and “plate” are not distinguished from each other based only on the difference in designation. Therefore, for example, “sheet” is used to include a member called a film or a plate. FIG. 1 is an exploded perspective view of an LED image display device according to the present embodiment, FIG. 2 is a schematic configuration diagram of the LED image display device according to the present embodiment, and FIG. 3 is an LED surface light source device according to the present embodiment. FIG. 4 is a plan view of the first optical sheet shown in FIG. 1, FIG. 5 is a plan view of another first optical sheet according to the embodiment, and FIG. 6 is a plan view of the first optical sheet shown in FIG. FIG. 7 is a plan view showing the arrangement relationship between the first optical sheet and the first spacer shown in FIG. FIGS. 8 to 11 are plan views of other first spacers according to the embodiment, and FIG. 12A shows a sample for measuring the light transmittance between the side surfaces cut out from the partition portion of the first spacer. It is the figure which showed the mode typically, and FIG. 12 (B) and FIG.12 (C) are the figures which showed typically the mode at the time of measuring the light transmittance between the side surfaces of a sample. 13 to 15 are longitudinal sectional views of a part of another first spacer according to the embodiment, and FIG. 16 is a plan view showing the positional relationship between the first spacer and the second spacer shown in FIG. FIG. 17 is a cross-sectional view of the lens sheet shown in FIG.
<<<<LED画像表示装置>>>>
 図1および図2に示されるLED画像表示装置10は、直下型のLED面光源装置20と、LED面光源装置20よりも観察者側に配置された表示パネル120とを備えている。
<<<<< LED image display device >>>>
The LED image display device 10 shown in FIGS. 1 and 2 includes a direct-type LED surface light source device 20 and a display panel 120 disposed closer to the viewer than the LED surface light source device 20.
<<<表示パネル>>>
 図1および図2に示される表示パネル120は、液晶表示パネルであり、入光側に配置された偏光板121と、出光側に配置された偏光板122と、偏光板121と偏光板122との間に配置された液晶セル123とを備えている。偏光板121、122および液晶セル123としては、公知の偏光板および液晶セルを用いることができる。
<<< Display Panel >>>
The display panel 120 shown in FIGS. 1 and 2 is a liquid crystal display panel, and includes a polarizing plate 121 disposed on the light incident side, a polarizing plate 122 disposed on the light exit side, a polarizing plate 121 and a polarizing plate 122. And a liquid crystal cell 123 disposed between them. As the polarizing plates 121 and 122 and the liquid crystal cell 123, known polarizing plates and liquid crystal cells can be used.
<<<LED面光源装置>>>
 図1または図2に示されるLED面光源装置20は、筐体30と、LED実装基板40と、第1の光学シート50と、第1のスペーサー60と、第2の光学シート70と、第2のスペーサー80とを備えている。また、LED面光源装置20は、その他、第2の光学シート70に積層されたレンズシート90および反射型偏光分離シート100を備えている。なお、LED面光源装置20は、LED実装基板40、第1の光学シート50、および第1のスペーサー60を備えていればよく、筐体30、第2の光学シート70、第2のスペーサー80、レンズシート90、または反射型偏光分離シート100を備えていなくともよい。
<<< LED surface light source device >>>
The LED surface light source device 20 shown in FIG. 1 or 2 includes a housing 30, an LED mounting substrate 40, a first optical sheet 50, a first spacer 60, a second optical sheet 70, 2 spacers 80. In addition, the LED surface light source device 20 includes a lens sheet 90 and a reflective polarization separation sheet 100 laminated on the second optical sheet 70. Note that the LED surface light source device 20 only needs to include the LED mounting substrate 40, the first optical sheet 50, and the first spacer 60, and the housing 30, the second optical sheet 70, and the second spacer 80. The lens sheet 90 or the reflective polarization separation sheet 100 may not be provided.
 LED面光源装置が車載用途として用いられる場合、車両内の非常に狭い空間に配置されるので、一般のLED面光源装置よりも薄型化を図ることが望まれている。このため、LED面光源装置20の総厚は、薄型化を図る観点から、15mm以下となっていることが好ましく、10mm以下となっていることがより好ましい。「LED面光源装置」の総厚とは、図2に示される筐体30の外底面30Cから反射型偏光分離シート100の表面100Aまでの距離を意味するものとする。 When the LED surface light source device is used for in-vehicle use, it is disposed in a very narrow space in the vehicle, so that it is desired to make it thinner than a general LED surface light source device. For this reason, the total thickness of the LED surface light source device 20 is preferably 15 mm or less, and more preferably 10 mm or less, from the viewpoint of reducing the thickness. The total thickness of the “LED surface light source device” means the distance from the outer bottom surface 30 </ b> C of the housing 30 shown in FIG. 2 to the surface 100 </ b> A of the reflective polarization separation sheet 100.
<<筐体>>
 筐体30は、LED実装基板40等を収容する収容空間30Aを備えている。筐体30は、図2または図3に示されるように、内側の底面である内底面30B、外側の底面である外底面30C、および内底面30Bから立ち上がる内側の側面である内側面30Dを有している。また、筐体30は、図2に示されるように、LED素子42からの光を筐体30から出射させるための開口部30Eを有している。開口部30Eは、内底面30Bに対向する位置に設けられていることが好ましい。開口部30Eの形状は、特に限定されず、例えば、矩形状または円形状が挙げられる。
<< Case >>
The housing 30 includes a housing space 30A for housing the LED mounting substrate 40 and the like. As shown in FIG. 2 or 3, the housing 30 has an inner bottom surface 30B that is an inner bottom surface, an outer bottom surface 30C that is an outer bottom surface, and an inner side surface 30D that is an inner side surface rising from the inner bottom surface 30B. is doing. Moreover, the housing | casing 30 has the opening part 30E for making the light from the LED element 42 radiate | emit from the housing | casing 30, as FIG. 2 shows. The opening 30E is preferably provided at a position facing the inner bottom surface 30B. The shape of the opening 30E is not particularly limited, and examples thereof include a rectangular shape or a circular shape.
 図1および図2に示される筐体30は、収容空間30Aを有する筐体本体31と、筐体本体31の収容空間30Aを覆い、かつ開口部30Eを有する枠状の蓋体32とを備えている。筐体30においては、筐体30の内底面30Bは筐体本体31の内底面となっており、筐体30の内側面30Dは筐体本体31の内側面となっている。 The housing 30 shown in FIGS. 1 and 2 includes a housing body 31 having a housing space 30A, and a frame-shaped lid 32 that covers the housing space 30A of the housing body 31 and has an opening 30E. ing. In the housing 30, the inner bottom surface 30 </ b> B of the housing 30 is the inner bottom surface of the housing body 31, and the inner side surface 30 </ b> D of the housing 30 is the inner side surface of the housing body 31.
 筐体30(筐体本体31および蓋体32)は、金属から構成されていることが好ましい。筐体本体31を金属から構成することによって、筐体本体31が放熱構造体としても機能するので、LED素子42からの熱を効率良く、放熱させることができる。金属としては、特に限定されないが、例えば、アルミニウム等が挙げられる。 The housing 30 (the housing body 31 and the lid body 32) is preferably made of metal. By constituting the casing body 31 from metal, the casing body 31 also functions as a heat dissipation structure, so that the heat from the LED element 42 can be efficiently radiated. Although it does not specifically limit as a metal, For example, aluminum etc. are mentioned.
<<LED実装基板>>
 LED実装基板40は、配線基板41と、配線基板41の一方の面(以下、この面を「表面」と称する。)41Aに実装された複数のLED素子42とを備えている。LED実装基板40は、図2および図3に示されるように、配線基板41におけるLED素子42が実装された表面41Aとは反対側の面(以下、この面を「裏面」と称する)41Bが筐体30の内底面30B側に位置するように筐体30内に配置されている。
<< LED mounting board >>
The LED mounting substrate 40 includes a wiring substrate 41 and a plurality of LED elements 42 mounted on one surface (hereinafter referred to as “surface”) 41 </ b> A of the wiring substrate 41. 2 and 3, the LED mounting board 40 has a surface 41B opposite to the front surface 41A on which the LED element 42 is mounted on the wiring board 41 (hereinafter, this surface is referred to as "back surface") 41B. The housing 30 is disposed in the housing 30 so as to be positioned on the inner bottom surface 30B side.
<配線基板>
 配線基板41は、筐体30の内底面30Bに沿って配置されている。配線基板41の裏面41Bは、筐体30の内底面30Bと接していることが好ましい。配線基板41における裏面41Bが筐体30の内底面30Bと接することにより、配線基板41等の熱を効率良く筐体30側に放熱させることができる。本明細書において、「配線基板の裏面が筐体の内底面と接している」とは、配線基板の裏面が筐体の内底面に直接接触している場合に限らず、配線基板の裏面と筐体の内底面との間に、両面テープ、粘着剤または接着剤等、熱伝導という観点でほぼ無視できる層が介在している場合をも含む概念である。
<Wiring board>
The wiring board 41 is disposed along the inner bottom surface 30 </ b> B of the housing 30. The back surface 41B of the wiring board 41 is preferably in contact with the inner bottom surface 30B of the housing 30. Since the back surface 41B of the wiring board 41 is in contact with the inner bottom surface 30B of the housing 30, the heat of the wiring substrate 41 and the like can be efficiently radiated to the housing 30 side. In this specification, “the back surface of the wiring board is in contact with the inner bottom surface of the housing” is not limited to the case where the back surface of the wiring board is in direct contact with the inner bottom surface of the housing. This is a concept that includes a case where a layer that can be almost ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the inner bottom surface of the housing.
 配線基板41においては、図3に示されるように、第1の光学シート50に向けて、樹脂フィルム43と、金属配線部44と、絶縁性保護膜45と、反射層46とがこの順で積層されている。ただし、配線基板41は、絶縁性保護膜45や反射層46を備えていなくともよい。また、金属配線部44は、樹脂フィルム43に対し、接着層47を介したドライラミネート法によって接着されていることが好ましい。さらに、金属配線部44は、LED素子42とはんだ層48を介して電気的に接続されている。 In the wiring board 41, as shown in FIG. 3, the resin film 43, the metal wiring part 44, the insulating protective film 45, and the reflective layer 46 are arranged in this order toward the first optical sheet 50. Are stacked. However, the wiring board 41 may not include the insulating protective film 45 and the reflective layer 46. The metal wiring part 44 is preferably bonded to the resin film 43 by a dry laminating method through an adhesive layer 47. Further, the metal wiring portion 44 is electrically connected to the LED element 42 via the solder layer 48.
 配線基板41は、リジット配線基板であってもよいが、フレキシブル配線基板であることが好ましい。配線基板41が、フレキシブル配線基板であることにより、曲げ可能なLED面光源装置を得ることも可能になる。図2に示される配線基板41は、フレキシブル配線基板である。「フレキシブル」とは、柔軟性があることを意味しており、「フレキシブル配線基板」とは、一般的に可撓性があり、曲げることが可能な配線基板を意味するものとする。本明細書における「可撓性」とは、少なくとも曲率半径が1mとなるように曲がることを意味する。フレキシブル配線基板は、曲率半径が、好ましくは50cm、より好ましくは30cm、更に好ましくは10cm、特に好ましくは5cmとなるように曲がる。 The wiring board 41 may be a rigid wiring board, but is preferably a flexible wiring board. Since the wiring board 41 is a flexible wiring board, a bendable LED surface light source device can be obtained. A wiring board 41 shown in FIG. 2 is a flexible wiring board. “Flexible” means that there is flexibility, and “flexible wiring board” means a wiring board that is generally flexible and can be bent. The term “flexibility” in this specification means bending so that the radius of curvature is at least 1 m. The flexible wiring board is bent so that the radius of curvature is preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm.
(樹脂フィルム)
 樹脂フィルム43は、可撓性を有している。樹脂フィルム43は、曲率半径が、好ましくは50cm、より好ましくは30cm、更に好ましくは10cm、特に好ましくは5cmとなるように曲がるフィルムである。
(Resin film)
The resin film 43 has flexibility. The resin film 43 is a film that bends so that the radius of curvature is preferably 50 cm, more preferably 30 cm, still more preferably 10 cm, and particularly preferably 5 cm.
 樹脂フィルム43は、公知の熱可塑性樹脂を用いて形成することができる。樹脂フィルム43の材料として用いる熱可塑性樹脂には耐熱性および絶縁性が高いものであるが好ましい。このような樹脂として、耐熱性と加熱時の寸法安定性、機械的強度、および耐久性に優れるポリイミド(PI)や、ポリエチレンナフタレート(PEN)を用いることができる。また、難燃性の無機フィラー等の添加によって難燃性を向上させたポリエチレンテレフタレート(PET)も樹脂フィルムを形成するための樹脂として選択することができる。 The resin film 43 can be formed using a known thermoplastic resin. The thermoplastic resin used as the material of the resin film 43 preferably has high heat resistance and insulation. As such a resin, polyimide (PI) or polyethylene naphthalate (PEN) which is excellent in heat resistance, dimensional stability during heating, mechanical strength, and durability can be used. Further, polyethylene terephthalate (PET) whose flame retardancy is improved by addition of a flame retardant inorganic filler or the like can also be selected as a resin for forming a resin film.
 樹脂フィルム43を形成する熱可塑性樹脂は、熱収縮開始温度が100℃以上のもの、または、上記のアニール処理等によって、同温度が100℃以上となるように耐熱性を向上させたものを用いることが好ましい。本明細書における「熱収縮開始温度」とは、熱機械分析(TMA)装置に測定対象の熱可塑性樹脂からなるサンプルフィルムをセットし、荷重1gをかけて、昇温速度2℃/分で120℃まで昇温し、その時の収縮量(%表示)を測定し、このデータを出力して温度と収縮量を記録したグラフから、収縮によって、0%のベースラインから離れる温度を読みとり、その温度を熱収縮開始温度としたものである。なお、熱収縮開始温度は、3回測定して得られた値の算術平均値とする。 As the thermoplastic resin for forming the resin film 43, one having a thermal shrinkage start temperature of 100 ° C. or higher, or one having improved heat resistance so that the temperature becomes 100 ° C. or higher by the above-described annealing treatment or the like is used. It is preferable. In this specification, “thermal shrinkage start temperature” means that a sample film made of a thermoplastic resin to be measured is set in a thermomechanical analysis (TMA) apparatus, a load of 1 g is applied, and a temperature rise rate of 2 ° C./min is 120. Measure the amount of shrinkage (in%) at that time, measure the temperature and the amount of shrinkage, and read the temperature that deviates from the 0% baseline due to shrinkage. Is the heat shrinkage start temperature. The heat shrinkage starting temperature is an arithmetic average value obtained by measuring three times.
 通常LED素子からの熱によりLED素子周辺部は90℃程度の温度に達する場合がある。この観点から、樹脂フィルム43を形成する熱可塑性樹脂は、上記温度以上の耐熱性を有するものであることが好ましい。 Usually, the LED element periphery may reach a temperature of about 90 ° C. due to heat from the LED element. From this viewpoint, it is preferable that the thermoplastic resin forming the resin film 43 has heat resistance equal to or higher than the above temperature.
 樹脂フィルム43には、配線基板41に必要な絶縁性を付与し得るだけの高い絶縁性を有する樹脂であることが求められる。このため、樹脂フィルム43は、その体積固有抵抗率が1014Ω・cm以上であることが好ましく、1018Ω・cm以上であることがより好ましい。体積固有抵抗率は、JIS C2151:2006に準拠した方法で測定することができる。体積固有抵抗率は、ランダムに10箇所測定し、測定した10箇所の体積固有抵抗率の算術平均値とする。 The resin film 43 is required to be a resin having high insulation enough to provide the wiring board 41 with necessary insulation. For this reason, the resin film 43 has a volume resistivity of preferably 10 14 Ω · cm or more, and more preferably 10 18 Ω · cm or more. The volume resistivity can be measured by a method based on JIS C2151: 2006. The volume resistivity is measured at 10 random locations, and is the arithmetic average value of the measured volume resistivity at 10 locations.
 樹脂フィルム43の厚みは、特に限定されないが、放熱経路としてボトルネックとはならないこと、耐熱性および絶縁性を有するものであること、ならびに、製造コストのバランスとの観点から、概ね10μm以上500μm以下であることが好ましい。また、ロール・トゥ・ロール方式による製造を行う場合の生産性を良好に維持する観点からも上記厚さ範囲であることが好ましい。樹脂フィルム43の厚みは、厚み測定装置(製品名「デジマチックインジケーターIDF-130」、株式会社ミツトヨ製)を用いて任意の10箇所の厚さを測定し、その平均値を算出することにより求めるものとする。樹脂フィルム43の厚みの下限は、10μm以上であることが好ましく、樹脂フィルム43の厚みの上限は、250μm以下であることが好ましい。 The thickness of the resin film 43 is not particularly limited, but is generally 10 μm or more and 500 μm or less from the viewpoint of not being a bottleneck as a heat dissipation path, having heat resistance and insulation, and a balance of manufacturing costs. It is preferable that Moreover, it is preferable that it is the said thickness range also from a viewpoint of maintaining favorable productivity at the time of manufacturing by a roll-to-roll system. The thickness of the resin film 43 is determined by measuring the thickness at any 10 locations using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation) and calculating the average value. Shall. The lower limit of the thickness of the resin film 43 is preferably 10 μm or more, and the upper limit of the thickness of the resin film 43 is preferably 250 μm or less.
(金属配線部)
 金属配線部44は、樹脂フィルム43よりLED素子42側に設けられ、かつLED素子42と電気的に接続されている。金属配線部44は、金属箔等をパターニングすることによって形成することができる。
(Metal wiring part)
The metal wiring portion 44 is provided closer to the LED element 42 than the resin film 43 and is electrically connected to the LED element 42. The metal wiring part 44 can be formed by patterning a metal foil or the like.
 金属配線部44を構成する金属の熱伝導率λは200W/(m・K)以上500W/(m・K)以下が好ましい。熱伝導率λは、例えば、熱伝導率計(製品名「QTM-500」、京都電子工業株式会社製)を用いて測定することができる。熱伝導率λは、3回測定して得られた値の算術平均値とする。上記熱伝導率の下限は、300W/(m・K)以上であることがより好ましく、上限は500W/(m・K)以下であることが好ましい。銅の場合、熱伝導率λは403W/(m・K)である。 The thermal conductivity λ of the metal constituting the metal wiring part 44 is preferably 200 W / (m · K) or more and 500 W / (m · K) or less. The thermal conductivity λ can be measured using, for example, a thermal conductivity meter (product name “QTM-500”, manufactured by Kyoto Electronics Industry Co., Ltd.). The thermal conductivity λ is an arithmetic average value obtained by measuring three times. The lower limit of the thermal conductivity is more preferably 300 W / (m · K) or more, and the upper limit is preferably 500 W / (m · K) or less. In the case of copper, the thermal conductivity λ is 403 W / (m · K).
 金属配線部44を構成する金属の電気抵抗率Rは3.00×10-8Ωm以下が好ましく、2.50×10-8Ωm以下がより好ましい。電気抵抗率Rは、エレクトロメータ(製品名「6517B型エレクトロメータ」、ケースレー社製)を用いて測定することができる。電気抵抗率Rは、3回測定して得られた値の算術平均値とする。銅の場合、電気抵抗率Rは1.55×10-8Ωmとなる。 The electric resistivity R of the metal constituting the metal wiring portion 44 is preferably 3.00 × 10 −8 Ωm or less, and more preferably 2.50 × 10 −8 Ωm or less. The electrical resistivity R can be measured using an electrometer (product name “6517B type electrometer”, manufactured by Keithley). The electrical resistivity R is an arithmetic average value of values obtained by measuring three times. In the case of copper, the electrical resistivity R is 1.55 × 10 −8 Ωm.
 例えば、金属配線部44を銅箔で形成した場合、放熱性と電気伝導性を高い水準で両立させることができる。より具体的には、LED素子からの放熱性が安定し、電気抵抗の増加を防げるので、LED素子間の発光バラツキが小さくなってLED素子の安定した発光が可能となる。また、LED素子の寿命も延長される。更に、熱による樹脂フィルム等の周辺部材の劣化も防止できるので、LED面光源装置を組み込んだLED画像表示装置の製品寿命も延長できる。 For example, when the metal wiring part 44 is formed of a copper foil, both heat dissipation and electrical conductivity can be achieved at a high level. More specifically, since the heat dissipation from the LED elements is stabilized and an increase in electrical resistance can be prevented, the light emission variation between the LED elements is reduced, and the LED elements can stably emit light. In addition, the lifetime of the LED element is extended. Further, since deterioration of peripheral members such as a resin film due to heat can be prevented, the product life of the LED image display device incorporating the LED surface light source device can be extended.
 金属配線部44を形成する金属の例としては、上記の銅の他、アルミニウム、金、銀等の金属を挙げることができる。 Examples of the metal forming the metal wiring part 44 include metals such as aluminum, gold, and silver in addition to the above copper.
 金属配線部44は電解銅箔であり、また、金属配線部44における樹脂フィルム43側の面の十点平均粗さRzが1.0μm以上10.0μm以下であることがより好ましい。十点平均粗さRzを上記範囲内とすることで、特に金属配線部44における樹脂フィルム43側の面の表面積を増大させることができ、放熱性を更に高めることができる。また、この面が凹凸面となっているので、樹脂フィルム43との密着性をより向上でき、これによっても放熱性を向上できる。このような十点平均粗さRzを有する電解銅箔の面としては、電解銅箔の粗面側(マット面側)を好適に用いることができる。十点平均粗さRzは、JIS B0601:1999に準拠して、例えば、表面粗さ測定器(製品名「SE-3400」、小坂研究所製)を用いて測定することができる。十点平均粗さRzは、3回測定して得られた値の算術平均値とする。 The metal wiring part 44 is an electrolytic copper foil, and the ten-point average roughness Rz of the surface on the resin film 43 side in the metal wiring part 44 is more preferably 1.0 μm or more and 10.0 μm or less. By setting the ten-point average roughness Rz within the above range, the surface area of the surface of the metal wiring portion 44 on the resin film 43 side can be increased, and the heat dissipation can be further enhanced. Moreover, since this surface is a concavo-convex surface, the adhesiveness with the resin film 43 can be further improved, and thereby the heat dissipation can be improved. As the surface of the electrolytic copper foil having such a ten-point average roughness Rz, the rough surface side (mat surface side) of the electrolytic copper foil can be suitably used. The ten-point average roughness Rz can be measured, for example, using a surface roughness measuring instrument (product name “SE-3400”, manufactured by Kosaka Laboratory) in accordance with JIS B0601: 1999. The ten-point average roughness Rz is an arithmetic average value obtained by measuring three times.
 金属配線部44の配置は、LED素子42の導通可能な配置、好ましくはLED素子42をマトリックス状に配置できるものであれば、特定の配置に限定されない。ただし、配線基板41においては、樹脂フィルム43の一方の表面の好ましくは80%以上、より好ましくは90%、最も好ましくは95%以上の範囲が、この金属配線部44によって被覆されていることが好ましい。これにより、LED素子42を高密度で配置することができるとともに、発生する過剰な熱を、十分に金属配線部44を通じて速やかに拡散させ、樹脂フィルム43を経由させて外部へ放熱させることができるので、優れた放熱性を有するLED面光源装置20を得ることができる。 The arrangement of the metal wiring part 44 is not limited to a specific arrangement as long as the LED elements 42 can be conducted, preferably the LED elements 42 can be arranged in a matrix. However, in the wiring substrate 41, the surface of one surface of the resin film 43 is preferably 80% or more, more preferably 90%, and most preferably 95% or more is covered with the metal wiring part 44. preferable. Accordingly, the LED elements 42 can be arranged with high density, and the excessive heat generated can be sufficiently diffused quickly through the metal wiring portion 44 and radiated to the outside via the resin film 43. Therefore, the LED surface light source device 20 which has the outstanding heat dissipation can be obtained.
 金属配線部44の厚みは、配線基板41に要求される耐電流の大きさ等に応じて適宜設定すればよく、特に限定されないが、一例として10μm以上50μm以下としてもよい。放熱性向上の観点から、金属配線部44の厚みは、10μm以上であることが好ましい。また、金属配線部の厚さが10μm未満であると、樹脂フィルム43の熱収縮の影響が大きく、はんだリフロー処理時に処理後の反りが大きくなりやすいため、この観点からも金属配線部44の厚さは10μm以上であることが好ましい。一方、金属配線部の厚さが、50μm以下であることによって、配線基板の十分なフレキシブル性を維持することができ、重量増大によるハンドリング性の低下等も防止できる。金属配線部44の厚さは、樹脂フィルム43と同様の方法によって測定することができる。 The thickness of the metal wiring portion 44 may be set as appropriate according to the magnitude of the withstand current required for the wiring substrate 41 and is not particularly limited, but may be 10 μm or more and 50 μm or less as an example. From the viewpoint of improving heat dissipation, the thickness of the metal wiring portion 44 is preferably 10 μm or more. In addition, if the thickness of the metal wiring portion is less than 10 μm, the influence of heat shrinkage of the resin film 43 is large, and warpage after the processing is likely to increase during the solder reflow processing. The thickness is preferably 10 μm or more. On the other hand, when the thickness of the metal wiring portion is 50 μm or less, it is possible to maintain sufficient flexibility of the wiring substrate, and it is possible to prevent a decrease in handling properties due to an increase in weight. The thickness of the metal wiring portion 44 can be measured by the same method as that for the resin film 43.
(絶縁性保護膜)
 絶縁性保護膜45は、主として配線基板41の耐マイグレーション特性を向上させるものである。絶縁性保護膜45は、金属配線部44の表面のうちLED素子42を実装するための接続部分を除く全面、および樹脂フィルム43の表面のうち金属配線部44の非形成部分の概ね全面を覆う態様で形成されている。
(Insulating protective film)
The insulating protective film 45 mainly improves the migration resistance characteristics of the wiring board 41. The insulating protective film 45 covers the entire surface of the surface of the metal wiring portion 44 except for the connection portion for mounting the LED element 42 and the substantially entire surface of the surface of the resin film 43 where the metal wiring portion 44 is not formed. It is formed in an embodiment.
 絶縁性保護膜45は、熱硬化性樹脂を含む熱硬化性樹脂組成物の硬化物から構成されていることが好ましい。熱硬化性樹脂組成物としては、熱硬化温度が100℃以下程度のものであれば、公知の熱硬化性樹脂組成物を適宜好ましく用いることができる。具体的には、ポリエステル系樹脂、エポキシ系樹脂、エポキシ系およびフェノール系樹脂、エポキシアクリレート樹脂、シリコーン系樹脂等をそれぞれベース樹脂とする熱硬化性樹脂組成物を好ましく用いることができる。また、これらのうちでも、ポリエステル系樹脂を含む熱硬化性樹脂組成物は、可撓性に優れる点から、絶縁性保護膜45を形成するための材料として特に好ましい。 The insulating protective film 45 is preferably composed of a cured product of a thermosetting resin composition containing a thermosetting resin. As the thermosetting resin composition, a known thermosetting resin composition can be suitably used as long as the thermosetting temperature is about 100 ° C. or less. Specifically, a thermosetting resin composition using a polyester resin, an epoxy resin, an epoxy resin and a phenol resin, an epoxy acrylate resin, a silicone resin, or the like as a base resin can be preferably used. Among these, a thermosetting resin composition containing a polyester-based resin is particularly preferable as a material for forming the insulating protective film 45 from the viewpoint of excellent flexibility.
 絶縁性保護膜45を形成するための熱硬化性樹脂組成物は、例えば、二酸化チタン等の無機白色顔料を更に含有する白色の熱硬化性樹脂組成物であってもよい。絶縁性保護膜45を白色化することで、意匠性の向上を図ることができる。また、反射層の機能を絶縁性保護膜45に付与することもできる。 The thermosetting resin composition for forming the insulating protective film 45 may be a white thermosetting resin composition further containing an inorganic white pigment such as titanium dioxide, for example. By whitening the insulating protective film 45, the design can be improved. Further, the function of the reflective layer can be imparted to the insulating protective film 45.
 絶縁性の熱硬化性樹脂組成物を用いた絶縁性保護膜45の形成は、スクリーン印刷等の公知の方法によって行うことができる。 The formation of the insulating protective film 45 using the insulating thermosetting resin composition can be performed by a known method such as screen printing.
 絶縁性保護膜45の膜厚は、10μm以上100μm以下であることが好ましい。絶縁性保護膜45の膜厚が、10μm未満であると、絶縁性が低下するおそれがあり、また100μmを超えると、絶縁性保護層をスクリーン印刷によって形成する際の滲みや熱硬化時の収縮による配線基板の反り等が顕著に生じるおそれがある。絶縁性保護膜45の膜厚は、走査型電子顕微鏡(SEM)を用いて、絶縁性保護膜45の断面を撮影し、その断面の画像において絶縁性保護膜45の膜厚を20箇所測定し、その20箇所の膜厚の算術平均値とする。 The film thickness of the insulating protective film 45 is preferably 10 μm or more and 100 μm or less. If the thickness of the insulating protective film 45 is less than 10 μm, the insulating property may be lowered, and if it exceeds 100 μm, bleeding when forming the insulating protective layer by screen printing or shrinkage during thermosetting There is a possibility that the warping of the wiring board due to the above will occur remarkably. As for the film thickness of the insulating protective film 45, a cross section of the insulating protective film 45 is photographed using a scanning electron microscope (SEM), and the film thickness of the insulating protective film 45 is measured at 20 locations in the image of the cross section. The arithmetic average value of the film thicknesses at the 20 locations is used.
(反射層)
 反射層46は、主として波長380nm以上780nm以下の可視光波長域の光に対して高い反射性を有するものである。反射層46は、LED面光源装置20の発光能力の向上を目的として、配線基板41の表面41Aに、LED素子実装領域を除く領域を覆って積層されている。なお、この実施形態においては、反射層46は、平面視において、LED素子42を囲い、かつ、絶縁性保護膜45のLED素子実装領域によって除かれた領域の内周縁部が露出するように絶縁性保護膜45上に積層されている。また、これに限らず、例えば、絶縁性保護膜45のLED素子実装領域によって除かれた領域の内周縁部が露出せず、絶縁性保護膜45と反射層46との両方の内周縁部が一致して同一形状をなすように積層されていてもよい。
(Reflective layer)
The reflective layer 46 has high reflectivity mainly with respect to light in a visible light wavelength region having a wavelength of 380 nm to 780 nm. The reflective layer 46 is laminated on the surface 41 </ b> A of the wiring board 41 so as to cover a region excluding the LED element mounting region for the purpose of improving the light emission capability of the LED surface light source device 20. In this embodiment, the reflection layer 46 is insulated so as to surround the LED element 42 in a plan view and to expose the inner peripheral edge of the region removed by the LED element mounting region of the insulating protective film 45. On the protective protective film 45. In addition, for example, the inner peripheral edge of the region of the insulating protective film 45 that is removed by the LED element mounting region is not exposed, and the inner peripheral edge of both the insulating protective film 45 and the reflective layer 46 is not exposed. They may be laminated so as to match and form the same shape.
 反射層46は、LED素子42からの光を反射し、所定の方向へ導くための反射面を持つ部材であれば、特に限定されないが、発泡タイプの白色ポリエステル、白色ポリエチレン樹脂、銀蒸着ポリエステル等を、最終製品の用途とその要求スペック等に応じて適宜用いることができる。 The reflection layer 46 is not particularly limited as long as it is a member having a reflection surface for reflecting the light from the LED element 42 and guiding it in a predetermined direction. For example, foam type white polyester, white polyethylene resin, silver-deposited polyester, etc. Can be appropriately used according to the use of the final product and the required specifications.
 反射層46の膜厚は、50μm以上1mm以下であることが好ましい。反射層46の膜厚が、50μm未満であると、所望の反射率が得られないおそれがあり、また反射層が薄すぎるので、所定の位置にセッティングしにくくなり、また1mmを超えると、高コストとなるとともに、LED面光源装置の薄型化を達成できないおそれがある。反射層46の膜厚は、絶縁性保護膜45の膜厚と同様の方法によって測定するものとすることができる。 The film thickness of the reflective layer 46 is preferably 50 μm or more and 1 mm or less. If the thickness of the reflective layer 46 is less than 50 μm, the desired reflectance may not be obtained, and since the reflective layer is too thin, it is difficult to set in a predetermined position. In addition to the cost, the LED surface light source device may not be thinned. The thickness of the reflective layer 46 can be measured by the same method as the thickness of the insulating protective film 45.
(接着層)
 接着層47としては、公知の樹脂系接着剤を適宜用いることができる。それらの樹脂系接着剤のうち、ウレタン系、ポリカーボネート系、又はエポキシ系の接着剤等を特に好ましく用いることができる。この接着層47は、金属配線部44のエッチング処理後に樹脂フィルム43上に残存している。
(Adhesive layer)
As the adhesive layer 47, a known resin adhesive can be used as appropriate. Of these resin-based adhesives, urethane-based, polycarbonate-based, or epoxy-based adhesives can be particularly preferably used. The adhesive layer 47 remains on the resin film 43 after the metal wiring portion 44 is etched.
(はんだ層)
 はんだ層48は、金属配線部44とLED素子42とを電気的および機械的に接合するためものである。このはんだ層48による接合方法としては、大きく分けて、リフロー方式あるはレーザー方式があるが、このいずれかによって行うことができる。
(Solder layer)
The solder layer 48 is for electrically and mechanically joining the metal wiring part 44 and the LED element 42. As a joining method using the solder layer 48, there are a reflow method and a laser method, which can be performed by either of them.
 金属配線部とLED素子とをはんだによって接合する際、樹脂フィルムおよび金属配線部には多大な熱が加えられるので、樹脂フィルムと金属配線部の線膨張係数の違いから、樹脂フィルムおよび金属配線部を備える配線基板に反りが発生するおそれがある。このような反りを防ぐために、樹脂フィルム43における金属配線部44側の面とは反対側の面に金属箔を設けることが好ましい。また、このような金属箔を設けることにより、点灯時のLED実装基板40の熱をより筐体本体31に放熱させることもできる。 When joining the metal wiring part and the LED element with solder, a great amount of heat is applied to the resin film and the metal wiring part. Therefore, the resin film and the metal wiring part are affected by the difference in coefficient of linear expansion between the resin film and the metal wiring part. There is a risk of warping of the wiring board provided with. In order to prevent such warpage, it is preferable to provide a metal foil on the surface of the resin film 43 opposite to the surface on the metal wiring portion 44 side. Further, by providing such a metal foil, the heat of the LED mounting substrate 40 at the time of lighting can be further radiated to the housing body 31.
<<LED素子>>
 LED素子42は、P型半導体とN型半導体が接合されたPN接合部での発光を利用した発光素子である。LED素子としては、P型電極、N型電極を素子上面、下面に設けた構造と、素子片面にP型、N型電極の双方が設けられた構造が知られているが、いずれの構造のLED素子も、LED面光源装置20に用いることができる。ただし、上記のうち素子片面にP型、N型電極の双方が設けられた構造のLED素子を特に好ましく用いることができる。
<< LED element >>
The LED element 42 is a light emitting element that utilizes light emission at a PN junction where a P-type semiconductor and an N-type semiconductor are joined. As LED elements, there are known a structure in which a P-type electrode and an N-type electrode are provided on the upper and lower surfaces of the element, and a structure in which both the P-type and N-type electrodes are provided on one side of the element. An LED element can also be used for the LED surface light source device 20. However, an LED element having a structure in which both P-type and N-type electrodes are provided on one side of the element can be particularly preferably used.
 LED素子42は、配線基板41上にマトリクス状に配置されている。本明細書における「マトリクス状」とは、行列状に二次元配列されている状態を意味するものとする。本実施形態においては、LED素子42はマトリクス状に配置されているが、LED素子の配置状態は、特に限定されず、例えば、LED素子は千鳥状に配置されていてもよい。LED素子42は配線基板41上に複数個実装されている。配線基板41に実装されるLED素子42の個数は、複数個であれば、特に限定されない。LED素子42の配置密度は、0.02個/cm以上2.0個/cm以下であることが好ましく、0.1個/cm以上1.5個/cm以下であることがより好ましい。 The LED elements 42 are arranged in a matrix on the wiring board 41. The “matrix shape” in this specification means a state in which the matrix is two-dimensionally arranged. In the present embodiment, the LED elements 42 are arranged in a matrix, but the arrangement state of the LED elements is not particularly limited. For example, the LED elements may be arranged in a staggered manner. A plurality of LED elements 42 are mounted on the wiring board 41. The number of LED elements 42 mounted on the wiring board 41 is not particularly limited as long as it is plural. The arrangement density of the LED elements 42 is preferably 0.02 pieces / cm 2 or more and 2.0 pieces / cm 2 or less, and preferably 0.1 pieces / cm 2 or more and 1.5 pieces / cm 2 or less. More preferred.
<<第1の光学シート>>
 第1の光学シート50は、光学的な機能を有するシートである。第1の光学シートとしては、例えば、光透過反射シート等が挙げられる。図1および図2に示される第1の光学シート50は、光透過反射シートとなっている。光透過反射シートは、光を透過させる透過部と光を反射させる反射部を有し、ある部分では光を透過させ、他の部分では光を反射させることで、LED素子からの光を平面内に拡散させて、輝度の面内均一性を向上させる機能を有するものである。
<< first optical sheet >>
The first optical sheet 50 is a sheet having an optical function. Examples of the first optical sheet include a light transmission / reflection sheet. The first optical sheet 50 shown in FIGS. 1 and 2 is a light transmission / reflection sheet. The light-transmitting / reflecting sheet has a transmitting part that transmits light and a reflecting part that reflects light, and transmits light in one part and reflects light in another part, thereby allowing light from the LED element to be in a plane. And having a function of improving the in-plane uniformity of luminance.
 第1の光学シート50は、LED素子42側に配置されている。具体的には、複数のLED素子42と対向するように配置されている、また、第1の光学シート50は、第1のスペーサー60によってLED実装基板40に対して離間している。第1の光学シート50は、配線基板41と略平行に配置されている。 The first optical sheet 50 is disposed on the LED element 42 side. Specifically, the first optical sheet 50 is disposed so as to face the plurality of LED elements 42, and is separated from the LED mounting substrate 40 by the first spacer 60. The first optical sheet 50 is disposed substantially parallel to the wiring board 41.
 図3に示される配線基板41の表面41Aから第1の光学シート50までの距離d1は0.6mm以上6mm以下となっている。本明細書における「配線基板の表面から第1の光学シートまでの距離」とは、配線基板41のように絶縁性保護層上に反射層を備えており、反射層の表面が配線基板の表面となっている場合には、反射層の表面から第1の光学シートにおける配線基板側の面までの距離を意味し、また配線基板の絶縁性保護層が反射層の機能を兼ね備えており、絶縁性保護層の表面が配線基板の表面となっている場合には、絶縁性保護層の表面から第1の光学シートにおける配線基板側の面までの距離を意味するものとする。また、第1の光学シートにおける配線基板側の面とは、第1の光学シートにおける配線基板側の面が樹脂フィルムの面のみから構成されている場合には、樹脂フィルムにおける配線基板側の面であるが、第1の光学シート50のように、樹脂フィルム54よりも配線基板41側に反射層55が形成されている場合には、反射層55における配線基板41側の面とする。 The distance d1 from the surface 41A of the wiring board 41 shown in FIG. 3 to the first optical sheet 50 is 0.6 mm or more and 6 mm or less. In this specification, the “distance from the surface of the wiring board to the first optical sheet” includes a reflective layer on the insulating protective layer like the wiring board 41, and the surface of the reflective layer is the surface of the wiring board. Means the distance from the surface of the reflective layer to the surface of the first optical sheet on the side of the wiring board, and the insulating protective layer of the wiring board also has the function of the reflective layer, When the surface of the protective protective layer is the surface of the wiring substrate, it means the distance from the surface of the insulating protective layer to the surface on the wiring substrate side of the first optical sheet. The surface on the wiring board side in the first optical sheet is the surface on the wiring board side in the resin film when the surface on the wiring board side in the first optical sheet is composed only of the surface of the resin film. However, when the reflective layer 55 is formed on the wiring substrate 41 side of the resin film 54 as in the first optical sheet 50, the surface of the reflective layer 55 on the wiring substrate 41 side is used.
 第1の光学シート50の厚みは、25μm以上1mm以下であることが好ましい。光透過反射シートの厚みが、25μm未満であると、所望の反射率が得られないおそれがあり、また1mmを超えると、LED面光源装置の薄型化が図れないおそれがある。第1の光学シート50の厚さは、後述する反射部53の厚みとし、厚さ測定装置(製品名「デジマチックインジケーターIDF-130」、株式会社ミツトヨ製)を用いて任意の10箇所の厚さを測定し、その平均値を算出することにより求めることができる。第1の光学シート50は、図4に示されるように、平面視において複数に分割された区画領域51を備えている。 The thickness of the first optical sheet 50 is preferably 25 μm or more and 1 mm or less. If the thickness of the light transmitting / reflecting sheet is less than 25 μm, the desired reflectance may not be obtained, and if it exceeds 1 mm, the LED surface light source device may not be thinned. The thickness of the first optical sheet 50 is the thickness of the reflecting portion 53 to be described later, and the thickness is measured at any 10 locations using a thickness measuring device (product name “Digimatic Indicator IDF-130”, manufactured by Mitutoyo Corporation). It can be obtained by measuring the thickness and calculating the average value. As shown in FIG. 4, the first optical sheet 50 includes a partitioned area 51 that is divided into a plurality of parts in plan view.
<区画領域>
 区画領域51は、LED素子42の個数に合わせて分割されていることが好ましい。図4においては、LED素子(縦4個×横6個=24個)に対応して、縦4個×横6個=24個の区画領域51が形成されている。なお、図4においては点線で境界線が記載されているが、実際には境界線が形成されていることはなく、境界線は仮想線であり、区画領域51も仮想の領域である。
<Division area>
The partition area 51 is preferably divided according to the number of the LED elements 42. In FIG. 4, 4 vertical sections × 6 horizontal sections = 24 partition areas 51 are formed corresponding to the LED elements (4 vertical sections × 6 horizontal sections = 24). In FIG. 4, the boundary line is indicated by a dotted line. However, the boundary line is not actually formed, the boundary line is a virtual line, and the partition area 51 is also a virtual area.
 各区画領域51は、図4に示されるようにLED素子42からの光の一部を透過する複数の透過部52と、LED素子42からの光の一部を反射する複数の反射部53とで構成されている。透過部52および反射部53は、所定のパターンで構成されている。なお、図4においては、形式的に、透過部52を白色で表しており、反射部53を灰色で表している。また、各区画領域51における透過部52および反射部53のパターンは同じとなっているが、必ずしも同じである必要はなく、区画領域によって異なるパターンであってもよい。透過部52および反射部53は、マス目状のパターンであってもよい。 As shown in FIG. 4, each partition region 51 includes a plurality of transmission parts 52 that transmit a part of the light from the LED element 42, and a plurality of reflection parts 53 that reflect a part of the light from the LED element 42. It consists of The transmission part 52 and the reflection part 53 are configured in a predetermined pattern. In addition, in FIG. 4, the transmission part 52 is represented in white formally, and the reflection part 53 is represented in gray. Moreover, although the pattern of the transmission part 52 and the reflection part 53 in each division area 51 is the same, it does not necessarily need to be the same and a pattern which changes with division areas may be sufficient. The transmission part 52 and the reflection part 53 may have a grid pattern.
 第1の光学シート50は、図4に示されるように、各区画領域51の中央部51Aが各LED素子42と対応する領域となるように配置されているので、外縁部51Bよりも中央部51Aに入射する光量は多くなる。このため、各区画領域51においては、透過部52の面積割合である開口率が、中央部51Aから外縁部51Bに向けて漸増していることが好ましい。各区画領域51における開口率を、中央部51Aから外縁部51Bに向けて漸増させることにより、十分な光量を確保した上で、発光面上における輝度の均一性をより向上させることができる。本明細書における区画領域の「開口率」とは、一の区画領域を、25~100等分程度の適当な割合で当分する等面積の正方形のマス目状に区切った際に、それぞれのマス目における透過部の面積比率のことを意味する。一の区画領域におけるこの等面積のマス目の規定の仕方は任意であるが、例えば、各マス目内に存在する透過部52の個数が概ね等数となるように設定することが望ましい。また、「開口率」は、一の区画領域の中心点を中心とする同心円を中央領域から中央領域の外側に位置する外側領域に向けて等間隔で複数規定し、各同心円の円周と円周の間の各領域内における透過部の面積比率を上記同様にして算出することによって求めたものであってもよい。この算出方法によれば、矩形の開口部が格子状に配置された一般的な開口配置以外の区画領域についても、上記の「開口率」を定義することができる。なお、各区画領域51においては、開口率が中央部51Aから外縁部51Bに向けて漸増していればよく、例えば中央部や外縁部近傍の限定された一部範囲において開口率が一定である領域が存在していてもよい。 As shown in FIG. 4, the first optical sheet 50 is disposed so that the central portion 51A of each partition region 51 is a region corresponding to each LED element 42, so that the central portion is more central than the outer edge portion 51B. The amount of light incident on 51A increases. For this reason, in each partition area 51, it is preferable that the aperture ratio, which is the area ratio of the transmission part 52, gradually increases from the central part 51A toward the outer edge part 51B. By gradually increasing the aperture ratio in each partition region 51 from the central portion 51A toward the outer edge portion 51B, it is possible to further improve the uniformity of luminance on the light emitting surface while securing a sufficient amount of light. In the present specification, the “aperture ratio” of a partitioned area means that each partitioned area is divided into square cells having an equal area that is divided at an appropriate ratio of about 25 to 100 equal parts. It means the area ratio of the transmission part in the eye. The method of defining the squares having the same area in one partition region is arbitrary. For example, it is desirable to set so that the number of transmission parts 52 present in each square is approximately equal. In addition, the “aperture ratio” defines a plurality of concentric circles centered on the center point of one partition region at equal intervals from the central region to the outer region located outside the central region. You may obtain | require by calculating the area ratio of the permeation | transmission part in each area | region between circumference | surroundings similarly to the above. According to this calculation method, the above “opening ratio” can be defined also for a partitioned area other than a general opening arrangement in which rectangular openings are arranged in a grid pattern. In each partition region 51, the aperture ratio only needs to gradually increase from the central portion 51A toward the outer edge portion 51B. For example, the aperture ratio is constant in a limited partial range near the central portion or the outer edge portion. An area may exist.
 各区画領域51の中央部51Aにおいては、面積比が反射部>透過部となっていることが好ましい。また、各区画領域51の外縁部51Bにおいては、面積比が透過部>反射部となっていることが好ましい。具体的には、外縁部51Bにおける透過部52の面積割合は、50%以上100%以下であることが好ましい。外縁部51Bにおける透過部52の面積割合の下限は、60%以上であることがより好ましく、70%以上であることが好ましい。なお、外縁部51Bでは反射部53を島状に形成することによって、理論的には透過部の面積割合を100%にすることもできる。このことは、従来の打ち抜き開口方式の光透過反射シートではなし得ない構成である。このように、第1の光学シート50の透過部52および反射部53を印刷方法によりパターン形成する場合には、パターニングのフレキシビリティを拡大させることができる。 In the central portion 51A of each partition region 51, it is preferable that the area ratio is reflection portion> transmission portion. Moreover, in the outer edge part 51B of each partition area | region 51, it is preferable that area ratio is the transmission part> reflection part. Specifically, the area ratio of the transmission part 52 in the outer edge part 51B is preferably 50% or more and 100% or less. The lower limit of the area ratio of the transmission part 52 in the outer edge part 51B is more preferably 60% or more, and preferably 70% or more. In addition, in the outer edge part 51B, the area ratio of the transmission part can theoretically be 100% by forming the reflection part 53 in an island shape. This is a configuration that cannot be achieved with a conventional punched-open light transmitting / reflecting sheet. Thus, when patterning the transmission part 52 and the reflection part 53 of the first optical sheet 50 by a printing method, the flexibility of patterning can be increased.
 第1の光学シート50は、図3に示されるように、樹脂フィルム54と、樹脂フィルム54の少なくとも一方の面上の一部に積層された反射層55とで構成される。反射層55は、スクリーン印刷等によって形成することが可能である。この場合、第1の光学シート50のうち、反射層55が存在する領域が反射部53となり、反射層55が存在しない領域が透過部52となる。 As shown in FIG. 3, the first optical sheet 50 includes a resin film 54 and a reflective layer 55 laminated on a part of at least one surface of the resin film 54. The reflective layer 55 can be formed by screen printing or the like. In this case, in the first optical sheet 50, a region where the reflective layer 55 exists is the reflective portion 53, and a region where the reflective layer 55 does not exist is the transmissive portion 52.
<透過部>
 透過部52は、樹脂フィルム54の両面のいずれにも反射層55が形成されてない領域であって、図3における樹脂フィルム54の両面が露出している領域である。樹脂フィルム54としては、従来公知の透明フィルムが好ましく用いられ、好ましくは全光線透過率が85%以上であることが好ましい。透過部52の全光線透過率は、JIS K-7361:1997に準拠して、分光光度計(例えば、製品名「V670DS」、日本分光株式会社製)に積分球付属装置(例えば、積分球ユニットISN-723)を取り付けて測定した値とする。全光線透過率は、3回測定して得られた値の算術平均値とする。
<Transmission part>
The transmissive portion 52 is a region where the reflective layer 55 is not formed on any of both surfaces of the resin film 54 and is a region where both surfaces of the resin film 54 in FIG. 3 are exposed. As the resin film 54, a conventionally known transparent film is preferably used, and the total light transmittance is preferably 85% or more. The total light transmittance of the transmission part 52 is based on JIS K-7361: 1997 and is attached to a spectrophotometer (for example, product name “V670DS”, manufactured by JASCO Corporation) with an integrating sphere attachment device (for example, integrating sphere unit). The value measured with ISN-723) attached. The total light transmittance is an arithmetic average value of values obtained by measuring three times.
 樹脂フィルム54としては、例えばポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)が挙げられる。樹脂フィルム54の厚さは、12μm以上1mm(1000μm)以下であることが好ましい。樹脂フィルム54の厚さは、樹脂フィルム43の厚みと同様の方法によって測定することができる。 Examples of the resin film 54 include polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). The thickness of the resin film 54 is preferably 12 μm or more and 1 mm (1000 μm) or less. The thickness of the resin film 54 can be measured by the same method as the thickness of the resin film 43.
<反射部>
 反射部53は、図3における第1の光学シート50における反射層55が存在する領域である。図3に示される反射部53は、樹脂フィルム54のLED素子42側の面に形成されているが、これに限らず、LED素子42の側の面とは反対側の面に形成されていてもよく、また、樹脂フィルム54の両面に形成されていてもよい。反射層55の膜厚は、20μm以上200μm以下であることが好ましい。反射層55の膜厚は、絶縁性保護膜45の膜厚と同様の方法によって測定することができる。
<Reflecting part>
The reflective portion 53 is a region where the reflective layer 55 in the first optical sheet 50 in FIG. 3 is present. The reflecting portion 53 shown in FIG. 3 is formed on the surface of the resin film 54 on the LED element 42 side, but is not limited thereto, and is formed on the surface opposite to the surface on the LED element 42 side. Alternatively, it may be formed on both surfaces of the resin film 54. The thickness of the reflective layer 55 is preferably 20 μm or more and 200 μm or less. The thickness of the reflective layer 55 can be measured by the same method as the thickness of the insulating protective film 45.
 反射部53においては、波長420nm以上780nm以下の可視光波長領域で少なくとも80%以上の反射率を有することが好ましい。第1の光学シート50における反射部53のように狭小な範囲に形成されている反射部の反射率は、顕微分光測定機(製品名「USPM-RU III」、オリンパス株式会社製)を用いることより、正確に測定することができる。反射率の値は、硫酸バリウムを標準板とし、標準板を100%とした相対反射率を測定した値とする。なお、反射率は、3回測定して得られた値の算術平均値とする。 The reflecting portion 53 preferably has a reflectance of at least 80% in the visible light wavelength region with a wavelength of 420 nm or more and 780 nm or less. The reflectivity of the reflection part formed in a narrow range like the reflection part 53 in the first optical sheet 50 is determined using a microspectrophotometer (product name “USPM-RURIII”, manufactured by Olympus Corporation). Therefore, it can measure accurately. The value of the reflectance is a value obtained by measuring the relative reflectance with barium sulfate as the standard plate and the standard plate as 100%. The reflectance is an arithmetic average value of values obtained by measuring three times.
 反射層55は、酸化チタン等の白色顔料を含む熱硬化性樹脂組成物の硬化物から構成することが可能である。反射層55中の白色顔料の含有量は、反射層中に10質量%以上85質量%以下であることが好ましい。 The reflective layer 55 can be composed of a cured product of a thermosetting resin composition containing a white pigment such as titanium oxide. The content of the white pigment in the reflective layer 55 is preferably 10% by mass or more and 85% by mass or less in the reflective layer.
 反射層55を構成する熱硬化性樹脂組成物中の熱硬化性樹脂としては、従来公知のウレタン樹脂とイソシアネート化合物との組み合わせ、エポキシ樹脂とポリアミンや酸無水物との組み合わせ、シリコーン樹脂と架橋剤との組み合わせのような、主剤と硬化剤とを含む2成分型の熱硬化性樹脂や、更に、アミン、イミダゾール、リン系等の硬化促進剤を含有する3成分型の熱硬化性樹脂が挙げられる。具体的には、熱硬化性樹脂としては、特開2014-129549に記載されているシリコーン系の熱硬化性樹脂が挙げられる。反射層55は、上記熱硬化性樹脂組成物を、例えば、スクリーン印刷等の印刷法を用いて樹脂フィルム54の表面にパターン印刷することによって形成することができる。なお、上記の厚さや反射率は、反射層が樹脂フィルムの両面に形成されている場合には両面の厚さの合計厚さであり、両面に反射層を形成した場合の反射率である。 Examples of the thermosetting resin in the thermosetting resin composition constituting the reflective layer 55 include conventionally known combinations of urethane resins and isocyanate compounds, combinations of epoxy resins and polyamines and acid anhydrides, silicone resins and cross-linking agents. And a two-component thermosetting resin containing a main agent and a curing agent, and a three-component thermosetting resin containing a curing accelerator such as amine, imidazole, and phosphorus. It is done. Specifically, examples of the thermosetting resin include silicone-based thermosetting resins described in JP-A No. 2014-129549. The reflective layer 55 can be formed by pattern-printing the thermosetting resin composition on the surface of the resin film 54 using, for example, a printing method such as screen printing. In addition, said thickness and reflectance are the total thickness of the thickness of both surfaces, when a reflective layer is formed on both surfaces of a resin film, and are the reflectance when a reflective layer is formed on both surfaces.
 図3に示される第1の光学シート50は、上記したように、樹脂フィルム54と、樹脂フィルム54の少なくとも一方の面上の一部に積層された反射層55とで構成されているが、第1の光学シートは、図5に示されるように、例えば、発泡ポリエチレンテレフタレート(PET)等の光反射性シート134に光反射性シート134の厚み方向に貫通する複数の開口部135を形成した第1の光学シート130であってもよい。第1の光学シート130は、第1の光学シート50と同様に、区画領域131、透過部132、および反射部133を備えている。第1の光学シート130における区画領域131、透過部132、および反射部133は、第1の光学シート50における区画領域51、透過部52、および反射部53と同様であるので、ここでは説明を省略するものとする。なお、第1の光学シート130の各区画領域131においても、透過部132の面積割合である開口率が、区画領域131の中央部131Aから区画領域131の外縁部131Bに向けて漸増していることが好ましい。第1の光学シート130の場合、開口部135は、光を透過させる透過部132として機能し、第1の光学シート130における開口部135以外の部分が、光を反射させる反射部133として機能する。開口部135は、任意の形状(例えば、円形状や矩形状)を有し、また所定のパターンに沿って互いに連結しないように分散配置されている。開口部135は、プレス打ち抜き加工、彫刻刃による抜き加工、ドリル加工、またはレーザー加工等により形成することができる。プレス打ち抜き加工は、ランニングコストや生産性に優れるため、大量生産する場合に有効な製造方法である。 As described above, the first optical sheet 50 shown in FIG. 3 includes the resin film 54 and the reflective layer 55 laminated on a part of at least one surface of the resin film 54. As shown in FIG. 5, the first optical sheet has a plurality of openings 135 penetrating in the thickness direction of the light reflective sheet 134 in a light reflective sheet 134 such as foamed polyethylene terephthalate (PET). The first optical sheet 130 may be used. Similar to the first optical sheet 50, the first optical sheet 130 includes a partition region 131, a transmission part 132, and a reflection part 133. The partition area 131, the transmission part 132, and the reflection part 133 in the first optical sheet 130 are the same as the partition area 51, the transmission part 52, and the reflection part 53 in the first optical sheet 50. Shall be omitted. Note that also in each partition region 131 of the first optical sheet 130, the aperture ratio, which is the area ratio of the transmission part 132, gradually increases from the central portion 131A of the partition region 131 toward the outer edge portion 131B of the partition region 131. It is preferable. In the case of the first optical sheet 130, the opening 135 functions as a transmission part 132 that transmits light, and a part other than the opening 135 in the first optical sheet 130 functions as a reflection part 133 that reflects light. . The openings 135 have an arbitrary shape (for example, a circular shape or a rectangular shape), and are dispersedly arranged so as not to be connected to each other along a predetermined pattern. The opening 135 can be formed by press punching, punching with an engraving blade, drilling, laser processing, or the like. Press punching is an effective manufacturing method for mass production because of its excellent running cost and productivity.
<<第1のスペーサー>>
 第1のスペーサー60は、LED実装基板40に対し第1の光学シート50を離間させるためのものである。また、第1のスペーサー60は、配線基板41の表面41Aから第1の光学シート50までの距離d1を0.6mm以上6mm以下に保持する機能を有している。
<< First spacer >>
The first spacer 60 is for separating the first optical sheet 50 from the LED mounting substrate 40. The first spacer 60 has a function of holding the distance d1 from the surface 41A of the wiring board 41 to the first optical sheet 50 at 0.6 mm or more and 6 mm or less.
 図3に示される第1のスペーサー60の高さh1は、0.5mm以上5mm以下であることが好ましい。第1のスペーサーの高さが、0.5mm未満であると、LED素子と第1の光学シートの距離が短すぎるために、第1の光学シートの平面視において、第1の光学シートの各区画領域の中央部が外縁部よりも明るくなるおそれがあり、また5mmを越えると、LED面光源装置の薄型化が図れないおそれがある。本明細書における「第1のスペーサーの高さ」とは、第1のスペーサーにおける配線基板側の面である底面に垂直な方向において、第1のスペーサーの底面から第1のスペーサーにおける底面と反対側の面である上面までの距離を意味するものとする。第1のスペーサー60の高さh1は、第1のスペーサー60の高さをランダムに10箇所測定した値の算術平均値とする。 The height h1 of the first spacer 60 shown in FIG. 3 is preferably 0.5 mm or more and 5 mm or less. When the height of the first spacer is less than 0.5 mm, the distance between the LED element and the first optical sheet is too short, so that each of the first optical sheets in the plan view of the first optical sheet There is a possibility that the central part of the partition area is brighter than the outer edge part, and if it exceeds 5 mm, the LED surface light source device may not be thinned. In the present specification, “the height of the first spacer” is opposite to the bottom surface of the first spacer from the bottom surface of the first spacer in the direction perpendicular to the bottom surface of the first spacer on the wiring board side. It means the distance to the upper surface which is the side surface. The height h1 of the first spacer 60 is an arithmetic average value of values obtained by randomly measuring the height of the first spacer 60 at ten locations.
 第1のスペーサー60と配線基板41は固定されていることが好ましい。第1のスペーサー60と配線基板41の固定方法としては、特に限定されず、接着や機械的固定手段による固定が挙げられる。本明細書における「接着」とは、「粘着」を含む概念である。図3においては、第1のスペーサー60と配線基板41は、両面テープ111を介して固定されている。具体的には、第1のスペーサー60の底面60A(後述する壁部62の底面)と配線基板41の反射層46が、両面テープ111を介して接着されることによって固定されている。第1のスペーサー60と配線基板41を固定することにより、LED素子42に対する第1のスペーサー60の位置ずれを抑制できる。なお、第1のスペーサー60と配線基板41は、両面テープ111ではなく、接着剤や粘着剤を用いて固定されていてもよい。なお、図3においては、第1のスペーサー60は、反射層46に固定されているが、配線基板の反射層に貫通孔を形成することにより、または配線基板に反射層を設けないことにより、第1のスペーサーを絶縁性保護膜に固定してもよく、また配線基板の反射層および絶縁性保護層に貫通孔を形成することにより、または配線基板に反射層および絶縁性保護層を設けないことにより、第1のスペーサーを金属配線部に固定してもよい。 It is preferable that the first spacer 60 and the wiring board 41 are fixed. The method for fixing the first spacer 60 and the wiring board 41 is not particularly limited, and examples thereof include fixing by adhesion or mechanical fixing means. In the present specification, “adhesion” is a concept including “adhesion”. In FIG. 3, the first spacer 60 and the wiring board 41 are fixed via a double-sided tape 111. Specifically, the bottom surface 60 </ b> A of the first spacer 60 (the bottom surface of the wall portion 62 described later) and the reflective layer 46 of the wiring substrate 41 are fixed by being bonded via a double-sided tape 111. By fixing the first spacer 60 and the wiring board 41, the positional deviation of the first spacer 60 with respect to the LED element 42 can be suppressed. Note that the first spacer 60 and the wiring board 41 may be fixed using an adhesive or an adhesive instead of the double-sided tape 111. In FIG. 3, the first spacer 60 is fixed to the reflective layer 46, but by forming a through hole in the reflective layer of the wiring board or by not providing the reflective layer on the wiring board, The first spacer may be fixed to the insulating protective film, and a through hole is formed in the reflective layer and the insulating protective layer of the wiring board, or the reflective layer and the insulating protective layer are not provided on the wiring board. Thus, the first spacer may be fixed to the metal wiring part.
 第1のスペーサー60と第1の光学シート50は固定されていることが好ましい。第1のスペーサー60と第1の光学シート50の固定方法としては、特に限定されず、接着や機械的固定手段による固定が挙げられる。図3においては、第1のスペーサー60と第1の光学シート50は、両面テープ112を介して接着されることによって固定されている。具体的には、第1のスペーサー60の上面60B(後述する壁部62の上面)と第1の光学シート50が、両面テープ112を介して接着されている。第1のスペーサー60と第1の光学シート50を固定することにより、第1のスペーサー60およびLED素子42に対する第1の光学シート50の位置ずれをより抑制できる。なお、第1のスペーサー60と第1の光学シート50は、両面テープ112ではなく、接着剤や粘着剤を用いて固定されていてもよい。 It is preferable that the first spacer 60 and the first optical sheet 50 are fixed. A method for fixing the first spacer 60 and the first optical sheet 50 is not particularly limited, and examples thereof include fixing by adhesion or mechanical fixing means. In FIG. 3, the first spacer 60 and the first optical sheet 50 are fixed by being bonded via a double-sided tape 112. Specifically, the upper surface 60B of the first spacer 60 (the upper surface of the wall portion 62 described later) and the first optical sheet 50 are bonded via a double-sided tape 112. By fixing the first spacer 60 and the first optical sheet 50, the positional deviation of the first optical sheet 50 with respect to the first spacer 60 and the LED element 42 can be further suppressed. Note that the first spacer 60 and the first optical sheet 50 may be fixed using an adhesive or a pressure-sensitive adhesive instead of the double-sided tape 112.
 第1のスペーサー60は、図6に示されるように、第1のスペーサー60の高さ方向に貫通する2以上の開口部61と、開口部61間を仕切り、かつ少なくとも1つの開口部61の周囲を取り囲む壁部62とを有している。 As shown in FIG. 6, the first spacer 60 divides the opening 61 from two or more openings 61 penetrating in the height direction of the first spacer 60, and at least one of the openings 61. And a wall portion 62 surrounding the periphery.
<開口部>
 開口部61は、各LED素子42からの光を通過させるためのものである。開口部61の個数は特に限定されないが、図6においては、LED素子42の個数(縦4個×横6個=24個)に対応して、縦4個×横6個=24個の開口部61が形成されている。
<Opening>
The opening 61 is for allowing light from each LED element 42 to pass through. Although the number of openings 61 is not particularly limited, in FIG. 6, corresponding to the number of LED elements 42 (vertical 4 × 6 horizontal = 24), 4 vertical × 6 horizontal = 24 openings. A portion 61 is formed.
 各開口部61は、各LED素子42からの光を通過させるものであるので、各開口部61は、第1のスペーサー60を平面視したとき、開口部61内にLED素子42が入る大きさとなっている。本実施形態においては、1つの開口部61内に1個のLED素子42が配置されるが、1つの開口部内に複数個のLED素子が配置されていてもよい。 Since each opening 61 allows light from each LED element 42 to pass therethrough, each opening 61 has a size that allows the LED element 42 to enter the opening 61 when the first spacer 60 is viewed in plan. It has become. In the present embodiment, one LED element 42 is disposed in one opening 61, but a plurality of LED elements may be disposed in one opening.
 図6に示される開口部61は、全て同じ大きさとなっているが、開口部61は同じ大きさである必要はなく、異なる大きさであってもよい。 The openings 61 shown in FIG. 6 are all the same size, but the openings 61 do not have to be the same size and may be different sizes.
<壁部>
 壁部62は、上記したように、開口部61間を仕切り、かつ少なくとも1つの開口部61の周囲を取り囲んでいる。壁部62は、2以上の開口部61の周囲を取り囲んでいることが好ましく、全ての開口部61の周囲を取り囲んでいることがより好ましい。図6に示される壁部62は、格子状となっており、全ての開口部61の周囲を囲んでいる。本明細書における「格子状」とは、第1のスペーサーの平面視において、壁部によって複数の開口部がマトリクス状に配置された構造を意味するものとする。第1のスペーサーの平面視における開口部の形状としては、四角形状等の多角形状、楕円形状、円形状等が挙げられる。上記四角形状としては、正方形状、長方形状、菱形形状等が挙げられる。図6に示される第1のスペーサー60においては、壁部62によって四角形状の開口部61がマトリクス状に配置されている。
<Wall>
As described above, the wall portion 62 partitions the openings 61 and surrounds at least one opening 61. The wall 62 preferably surrounds two or more openings 61, and more preferably surrounds all the openings 61. The wall 62 shown in FIG. 6 has a lattice shape and surrounds all the openings 61. The “lattice shape” in the present specification means a structure in which a plurality of openings are arranged in a matrix shape by wall portions in a plan view of the first spacer. Examples of the shape of the opening in the plan view of the first spacer include a polygonal shape such as a square shape, an elliptical shape, and a circular shape. Examples of the quadrangular shape include a square shape, a rectangular shape, and a rhombus shape. In the first spacer 60 shown in FIG. 6, square-shaped openings 61 are arranged in a matrix by wall portions 62.
 壁部62は、格子状となっているが、壁部は、格子状となっていなくともよい。例えば、壁部は、開口部が千鳥状に配置されたものであってもよい。具体的には、図8に示される第1のスペーサー140のように、壁部142がハニカム状となったものでもよい。図8に示される第1のスペーサー140も、第1のスペーサー60と同様に、2以上の開口部141を備えており、壁部142は、開口部141間を仕切り、かつ少なくとも1つの開口部141の周囲を取り囲んでいる。第1のスペーサー140は、壁部142がハニカム状となっている以外、第1のスペーサー60と同様となっているので、ここでは説明を省略するものとする。なお、LED素子42がマトリクス状に配置されたLED実装基板40を用いる場合には、壁部62が格子状となった第1のスペーサー60を用い、LED素子が千鳥状に配置されたLED実装基板を用いる場合には、壁部142がハニカム状となった第1のスペーサー140を用いることができる。 The wall portion 62 has a lattice shape, but the wall portion may not have a lattice shape. For example, the wall portion may have openings arranged in a staggered pattern. Specifically, as in the first spacer 140 shown in FIG. 8, the wall 142 may have a honeycomb shape. Similarly to the first spacer 60, the first spacer 140 shown in FIG. 8 includes two or more openings 141, and the wall 142 partitions the openings 141 and has at least one opening. 141 is surrounded. Since the first spacer 140 is the same as the first spacer 60 except that the wall 142 is formed in a honeycomb shape, the description thereof is omitted here. When the LED mounting substrate 40 in which the LED elements 42 are arranged in a matrix is used, the first spacer 60 in which the wall portions 62 are in a lattice shape is used, and the LED mounting in which the LED elements are arranged in a staggered manner. In the case of using a substrate, the first spacer 140 in which the wall 142 has a honeycomb shape can be used.
 また、図9に示される第1のスペーサー150のように、壁部152の開口部151側の角部152Aは、第1のスペーサー150の平面視において、曲線状となっていてもよい。角部152Aが、第1のスペーサー150の平面視において、曲線状になっていることにより、壁部152に振動や衝撃が加わった場合であっても、壁部152が割れにくくなるとともに、角部152Aにおける反射回数を低減させることができるので、輝度の低下を抑制できる。図9に示される第1のスペーサー150も、第1のスペーサー60と同様に、2以上の開口部151を備えており、壁部152は、開口部151間を仕切り、かつ少なくとも1つの開口部151の周囲を取り囲んでいる。第1のスペーサー150は、壁部152の角部152Aが曲線状になっている以外、第1のスペーサー60と同様となっているので、ここでは説明を省略するものとする。 Further, like the first spacer 150 shown in FIG. 9, the corner portion 152 </ b> A on the opening 151 side of the wall portion 152 may be curved in a plan view of the first spacer 150. Since the corner portion 152A has a curved shape in a plan view of the first spacer 150, the wall portion 152 is not easily broken even when vibration or impact is applied to the wall portion 152. Since the number of reflections in the portion 152A can be reduced, a reduction in luminance can be suppressed. Similarly to the first spacer 60, the first spacer 150 shown in FIG. 9 also includes two or more openings 151, and the wall 152 partitions the openings 151 and at least one opening. 151 is surrounded. Since the first spacer 150 is the same as the first spacer 60 except that the corner portion 152A of the wall portion 152 is curved, description thereof will be omitted here.
 壁部62の厚みは、0.5mm以上10mm以下であることが好ましい。壁部62の厚みが、0.5mm以上であれば、第1の光学シート50の支持体としての機能を確実に果たすことができ、また10mm以下であれば、開口部61の開口径を充分に確保することができるので、輝度低下を抑制できる。本明細書における「壁部の厚み」とは、壁部のうち最も薄い箇所の厚みを意味するものとする。壁部62の厚みは、全て均一でなくともよい。なお、壁部62を構成する枠部63と仕切部64の厚みは、同一であってもよいが、同一でなくともよい。 The thickness of the wall portion 62 is preferably 0.5 mm or more and 10 mm or less. If the thickness of the wall portion 62 is 0.5 mm or more, the function as a support for the first optical sheet 50 can be reliably achieved, and if it is 10 mm or less, the opening diameter of the opening portion 61 is sufficiently large. Therefore, a decrease in luminance can be suppressed. In the present specification, the “wall thickness” means the thickness of the thinnest portion of the wall. The thickness of the wall part 62 does not need to be all uniform. In addition, the thickness of the frame part 63 and the partition part 64 which comprise the wall part 62 may be the same, but does not need to be the same.
 図3に示されるように、壁部62の開口部61に面している側面62Aが、第1のスペーサー60の高さ方向における底面60Aから上面60Bに向けて開口部61の開口径が大きくなるように傾斜している。すなわち、壁部62は、上部の厚みが底部の厚みに比べて薄くなったテーパー形状を有している。このような傾斜した側面62Aを有する壁部62を形成することにより、LED素子42からの出射光を壁部62の側面62Aで反射させて、第1の光学シート50に導くことができるので、LED面光源装置20からより効率良く光を出射させることができる。 As shown in FIG. 3, the side surface 62 </ b> A facing the opening 61 of the wall 62 has a large opening diameter from the bottom surface 60 </ b> A to the top surface 60 </ b> B in the height direction of the first spacer 60. It is inclined to become. That is, the wall part 62 has a tapered shape in which the thickness of the upper part is thinner than the thickness of the bottom part. By forming the wall portion 62 having such an inclined side surface 62A, the emitted light from the LED element 42 can be reflected by the side surface 62A of the wall portion 62 and guided to the first optical sheet 50. Light can be emitted from the LED surface light source device 20 more efficiently.
 LED素子のうち一部のLED素子のみを点灯させる場合には、ローカルディミング制御の観点から壁部で囲まれる区画内からの光漏れを抑制することが望まれるが、全てのLED素子を点灯させる場合には、第1の光学シートには光が均一に入射することが望ましい。ここで、全てのLED素子を点灯させる場合、第1のスペーサーの壁部の光透過率が低いと、第1のスペーサーの壁部が存在する箇所は暗くなり、第1の光学シートを平面視したとき、壁部が影になるおそれがある。一方で、同じ材質でも、部材の厚みによって光透過率が変わる傾向がある。具体的には、厚みが薄い部材の方が、厚みが厚い部材よりも光透過率は高くなる。上記のように傾斜した側面62を有する壁部62を形成することにより、壁部62における上部の厚みは壁部62における底部の厚みよりも薄くなるので、壁部62の上部において壁部62が目立たない程度に光を透過させることができる。これにより、一部のLED素子42のみを点灯させる場合には、壁部62で囲まれる区画内からの光漏れを抑制することができるとともに、全てのLED素子42を点灯させる場合には、壁部62が存在する箇所が暗くなることを抑制できる。また、第1の光学シート50の区画領域51の境界部51C付近の外縁部51Bは、開口率が最も高くなっているので、境界部51C付近の外縁部51Bに対応する位置に第1のスペーサー60を配置することにより、光を多く出射させることができ、これにより壁部62が存在する箇所が暗くなることをより抑制できる。さらに、第1のスペーサー60が光を若干透過する場合(後述する側面間光透過率が0%を超える場合)には、第1のスペーサー60の内部で光が散乱することによって第1のスペーサー60が明るく見えるので、壁部62が存在する箇所が暗くなることをさらに抑制できる。なお、ローカルディミング制御の観点から反射シートに光源を囲むように壁部を形成するとともに、この壁部と光学シートの間に空隙を設けることによって、反射シートの壁部が存在する箇所が暗くなることを抑制する技術が知られているが(例えば、国際公開第2017/002307号参照)、この技術においては、反射シートの壁部が存在する箇所が暗くなることを抑制するためには壁部と光学シートの間に空隙を設ける必要がある。これに対し、本実施形態においては、上記のように傾斜した側面62を有する壁部62によって、壁部62が存在する箇所が暗くなることを抑制することができるので、壁部62と第1の光学シート50の間に空隙を設ける必要がない。このため、第1のスペーサー60と第1の光学シート50の接触面積を増大させることができるので、第1の光学シート50の撓みをより抑制することができる。 When lighting only some of the LED elements, it is desirable to suppress light leakage from the section surrounded by the wall from the viewpoint of local dimming control. However, all the LED elements are turned on. In some cases, it is desirable that light be incident uniformly on the first optical sheet. Here, when all the LED elements are turned on, if the light transmittance of the wall portion of the first spacer is low, the portion where the wall portion of the first spacer exists becomes dark, and the first optical sheet is viewed in plan view. If you do, there is a risk that the wall will become a shadow. On the other hand, even with the same material, the light transmittance tends to change depending on the thickness of the member. Specifically, the light transmittance of the thin member is higher than that of the thick member. By forming the wall portion 62 having the inclined side surface 62 as described above, the thickness of the upper portion of the wall portion 62 becomes thinner than the thickness of the bottom portion of the wall portion 62. Light can be transmitted to an inconspicuous extent. As a result, when only some of the LED elements 42 are lit, light leakage from the section surrounded by the wall portion 62 can be suppressed, and when all the LED elements 42 are lit, the wall It can suppress that the location where the part 62 exists becomes dark. Further, since the outer edge portion 51B near the boundary portion 51C of the partition area 51 of the first optical sheet 50 has the highest aperture ratio, the first spacer is located at a position corresponding to the outer edge portion 51B near the boundary portion 51C. By disposing 60, it is possible to emit a lot of light, and thereby it is possible to further suppress the location where the wall 62 is present from becoming dark. Further, when the first spacer 60 transmits light slightly (when the light transmittance between side surfaces described later exceeds 0%), the first spacer 60 is scattered by light inside the first spacer 60. Since 60 looks bright, it can further suppress that the location where the wall part 62 exists becomes dark. In addition, from the viewpoint of local dimming control, a wall portion is formed so as to surround the light source in the reflection sheet, and by providing a gap between the wall portion and the optical sheet, a portion where the wall portion of the reflection sheet exists becomes dark. Although the technique which suppresses this is known (for example, refer international publication 2017/002307), in this technique, in order to suppress that the location in which the wall part of a reflection sheet exists becomes a wall part, It is necessary to provide a gap between the optical sheet and the optical sheet. On the other hand, in the present embodiment, the wall portion 62 having the inclined side surface 62 as described above can suppress the location where the wall portion 62 is present from becoming dark, so the wall portion 62 and the first portion There is no need to provide a gap between the optical sheets 50. For this reason, since the contact area of the 1st spacer 60 and the 1st optical sheet 50 can be increased, the bending of the 1st optical sheet 50 can be suppressed more.
 このような傾斜した側面62Aを有する壁部62を備える第1のスペーサー60は、例えば、射出成形、切削や三次元プリンターによって得ることができる。側面62Aは、第1のスペーサー60の高さ方向の断面において、曲線状となっていてもよいが、作製し易さの観点から、直線状となっていることが好ましい。また、壁部は、第1のスペーサーの上面から底面に向けて開口部の開口径が大きくなるように傾斜していてもよい。 The first spacer 60 including the wall portion 62 having the inclined side surface 62A can be obtained by, for example, injection molding, cutting, or a three-dimensional printer. The side surface 62A may be curved in the cross section in the height direction of the first spacer 60, but is preferably linear from the viewpoint of ease of manufacture. Further, the wall portion may be inclined so that the opening diameter of the opening portion increases from the upper surface to the bottom surface of the first spacer.
 壁部62は、帯電防止性を有していることが好ましい。LED面光源装置の製造時や使用時に埃が付着すると、故障の原因となるが、壁部62が帯電防止性を有することによって、LED面光源装置の製造時や使用時に埃が付着することを抑制できる。帯電防止性は表面抵抗値で表すことが可能であるので、壁部62が帯電防止性を有する場合、壁部62の表面抵抗値は、1012Ω/□以下となっていることが好ましい。表面抵抗値は、JIS K6911:2006に準拠して、抵抗率計(製品名「ハイレスタ-UP MCP-HT450」、株式会社三菱化学アナリテック製、プローブ:URS)を用いて、測定することができる。壁部62の表面抵抗値は、壁部62の表面抵抗値をランダムに10箇所測定し、測定した10箇所の表面抵抗値の算術平均値とする。壁部62に帯電防止性を付与する方法としては、帯電防止剤を含む組成物をスプレーや浸漬によりコーティングする方法が挙げられる。 The wall portion 62 preferably has antistatic properties. If dust adheres during manufacture or use of the LED surface light source device, it may cause a failure. However, the wall 62 has antistatic properties, so that dust adheres during manufacture or use of the LED surface light source device. Can be suppressed. Since the antistatic property can be represented by a surface resistance value, when the wall portion 62 has the antistatic property, the surface resistance value of the wall portion 62 is preferably 10 12 Ω / □ or less. The surface resistance value can be measured using a resistivity meter (product name “HIRESTA-UP MCP-HT450”, manufactured by Mitsubishi Chemical Analytech Co., Ltd., probe: URS) in accordance with JIS K6911: 2006. . The surface resistance value of the wall portion 62 is obtained by measuring ten surface resistance values of the wall portion 62 at random and calculating the arithmetic average value of the measured surface resistance values at ten locations. Examples of a method for imparting antistatic properties to the wall portion 62 include a method of coating a composition containing an antistatic agent by spraying or dipping.
 壁部62のガラス転移温度(Tg)は、85℃を越えることが好ましい。自動車等の車両にLED面光源装置を組み込む場合には、エンジン等によって加熱されるので、壁部62は、壁部62に対し85℃で1000時間放置する環境試験を行った場合であっても、流動しないことが必要とされる。壁部62のガラス転移温度が85℃を越えるものであれば、壁部62に対し85℃の環境下で1000時間放置する環境試験を行った場合であっても、壁部62の流動を抑制できる。また、夏場には環境試験以上の熱が加わるおそれがあるので、夏場を考慮すると、壁部62のガラス転移温度は、115℃を越えることがより好ましい。ここで、LED面光源装置は、非常に薄型であるため、第1の光学シートとLED実装基板との間の距離は非常に精密に設計されており、仮に、壁部が、流動してしまうと、第1の光学シートとLED実装基板との間の距離が変化してしまうので、輝度ムラが発生して、輝度の面内均一性が低下してしまう。このことから、壁部62の耐熱信頼性は非常に重要である。壁部62のガラス転移温度は、壁部62を10mg削り取ってサンプルとし、示差走査熱量計(DSC)を用いて、昇温速度5℃/minの条件で測定するものとする。壁部62のガラス転移温度は、3回測定した値の算術平均値とする。なお、壁部62のガラス転移温度が2以上確認されたときには、ガラス転移温度としては、最も低い温度のガラス転移温度を採用するものとする。 The glass transition temperature (Tg) of the wall 62 is preferably higher than 85 ° C. When an LED surface light source device is incorporated in a vehicle such as an automobile, the wall 62 is heated by an engine or the like. Therefore, even if the wall 62 is subjected to an environmental test in which the wall 62 is left at 85 ° C. for 1000 hours. It is required that it does not flow. If the glass transition temperature of the wall portion 62 exceeds 85 ° C., the flow of the wall portion 62 is suppressed even when the wall portion 62 is subjected to an environmental test for 1000 hours in an environment of 85 ° C. it can. Further, since there is a risk that heat higher than the environmental test is applied in the summer, it is more preferable that the glass transition temperature of the wall 62 exceeds 115 ° C. in consideration of the summer. Here, since the LED surface light source device is very thin, the distance between the first optical sheet and the LED mounting substrate is designed very precisely, and the wall portion flows temporarily. Then, since the distance between the first optical sheet and the LED mounting substrate changes, luminance unevenness occurs, and luminance in-plane uniformity decreases. For this reason, the heat-resistant reliability of the wall 62 is very important. The glass transition temperature of the wall portion 62 is measured by scraping 10 mg of the wall portion 62 as a sample and using a differential scanning calorimeter (DSC) at a temperature rising rate of 5 ° C./min. Let the glass transition temperature of the wall part 62 be the arithmetic mean value of the value measured 3 times. When the glass transition temperature of the wall 62 is confirmed to be 2 or more, the lowest glass transition temperature is adopted as the glass transition temperature.
 壁部62の成形収縮率は、1.0%未満であることが好ましい。壁部62の成形収縮率が1.0%未満であれば、成形後の冷却時における壁部62の寸法変化および反りの発生等を抑制することができる。壁部62の成形収縮率の測定は、JIS K6911:1995に基づいて行うが、壁部62の成形収縮率の測定の際には、壁部62を加熱することによって壁部62を構成する樹脂を溶融させて、この樹脂を金型に流し込み、固化させることによって得た成形物を用いるものとする。 The molding shrinkage rate of the wall 62 is preferably less than 1.0%. If the molding shrinkage rate of the wall portion 62 is less than 1.0%, the dimensional change of the wall portion 62 and the occurrence of warpage during cooling after molding can be suppressed. The measurement of the molding shrinkage rate of the wall portion 62 is performed based on JIS K6911: 1995. When the molding shrinkage rate of the wall portion 62 is measured, the resin constituting the wall portion 62 by heating the wall portion 62. A molded product obtained by melting the resin, pouring the resin into a mold and solidifying the resin is used.
 壁部の第1の光学シート側の上面には、凸部が設けられていることが好ましい。第1のスペーサーは、上記したように、射出成形、打ち抜き、切削、または三次元プリンターによって作製することが可能であるが、第1のスペーサーに凸部を設ける場合には、これらの中でも、凸部の形成し易さの観点から、射出成形が好ましい。 It is preferable that a convex portion is provided on the upper surface of the wall portion on the first optical sheet side. As described above, the first spacer can be produced by injection molding, punching, cutting, or a three-dimensional printer. However, when a convex portion is provided on the first spacer, among these, the convex From the viewpoint of easy formation of the part, injection molding is preferable.
 壁部に凸部を設ける場合、第1の光学シートには孔部が設けられており、凸部が孔部に入り込んでいる。このような孔部および凸部を設けることによって、LED素子に対する第1の光学シートの位置合わせが容易となるとともに、振動試験を行った場合であっても、LED素子に対する第1の光学シートの位置ずれをより抑制することができる。 When providing a convex part in a wall part, the hole part is provided in the 1st optical sheet, and the convex part has penetrated into the hole part. By providing such a hole and a convex portion, the alignment of the first optical sheet with respect to the LED element is facilitated, and even when a vibration test is performed, the first optical sheet with respect to the LED element is not aligned. Misalignment can be further suppressed.
 第1の光学シートとして、貫通する複数の開口部135を有する第1の光学シート130を用いる場合、開口部135のうち1以上の開口部135を上記孔部として利用してもよい。この場合、開口部135が貫通孔となっているので、孔部も貫通孔となっているが、開口部135と別に孔部を設ける場合には、孔部は貫通孔でなくともよい。本明細書における「孔部」とは、貫通孔のみならず、凹みのような貫通していない孔をも含む概念である。また、透過部として機能する開口部がない光学シートであっても、凸部を入り込ませる孔部を有する光学シートであれば、適用できる。 When using the 1st optical sheet 130 which has the several opening part 135 which penetrates as a 1st optical sheet, you may utilize one or more opening parts 135 among the opening parts 135 as said hole part. In this case, since the opening 135 is a through hole, the hole is also a through hole. However, when the hole is provided separately from the opening 135, the hole may not be a through hole. The “hole” in the present specification is a concept including not only a through hole but also a hole that does not penetrate, such as a dent. Moreover, even if it is an optical sheet which does not have the opening part which functions as a permeation | transmission part, if it is an optical sheet which has a hole part which enters a convex part, it is applicable.
 上記凸部は、LED素子に対する透過部として機能する複数の開口部を有する第1の光学シートの位置を合わせ、およびこの第1の光学シートの位置ずれを抑制するためのものである。凸部は、上記孔部として機能する開口部に入り込んでいる。 The convex portion is for aligning the position of the first optical sheet having a plurality of openings that function as transmission portions for the LED elements, and for suppressing the positional deviation of the first optical sheet. The convex portion enters the opening that functions as the hole.
 凸部の形状は、特に限定されないが、例えば、円錐形状、円錐台形状、角錐形状、角錐台形状、ドーム形状、不定形形状が挙げられる。 The shape of the convex portion is not particularly limited, and examples thereof include a cone shape, a truncated cone shape, a pyramid shape, a truncated pyramid shape, a dome shape, and an irregular shape.
 凸部の高さは、第1の光学シートの光学性能に影響を与えない観点から、第1の光学シートの厚み以下(開口部の高さ以下)とすることが好ましい。また、第1の光学シートの位置ずれを抑制する観点からは、凸部の高さの下限は、第1の光学シートの厚みの1/4以上となっていることがより好ましい。 From the viewpoint of not affecting the optical performance of the first optical sheet, the height of the convex portion is preferably set to be equal to or less than the thickness of the first optical sheet (less than the height of the opening). Further, from the viewpoint of suppressing the positional deviation of the first optical sheet, it is more preferable that the lower limit of the height of the convex portion is ¼ or more of the thickness of the first optical sheet.
 凸部の直径や幅は、特に限定されないが、第1の光学シートは、直径が異なる開口部が複数存在しているので、対象とする開口部よりも小さい開口部には入らないような直径であることが好ましい。 The diameter and width of the convex portion are not particularly limited, but the first optical sheet has a plurality of openings having different diameters, so that the diameter does not enter an opening smaller than the target opening. It is preferable that
 凸部は、第1のスペーサー全体として1以上形成されていればよいが、第1の光学シートの位置ずれをより抑制する観点からは、複数個形成されていることが好ましい。さらに、第1の光学シートの位置ずれをさらに抑制する観点からは、第1のスペーサーの平面視において、凸部によって四角形が描かれるように少なくとも4箇所に凸部が形成されていることが好ましい。 One or more convex portions may be formed as a whole of the first spacer, but a plurality of convex portions are preferably formed from the viewpoint of further suppressing displacement of the first optical sheet. Furthermore, from the viewpoint of further suppressing the positional deviation of the first optical sheet, it is preferable that convex portions are formed at least at four places so that a quadrangle is drawn by the convex portions in plan view of the first spacer. .
 凸部を有する第1のスペーサーは、射出成形によって作製することができる。また、凸部を別途作製し、壁部に凸部を接着剤等や機械的固定によって固定することも可能であるが、接着剤等によって上記凸部を壁部に固定した場合には、凸部が壁部から剥がれるおそれがあるので、凸部と壁部とは射出成形によって一体形成されることが好ましい。 The 1st spacer which has a convex part can be produced by injection molding. In addition, it is possible to prepare a convex part separately and fix the convex part to the wall part by an adhesive or the like or mechanical fixing, but when the convex part is fixed to the wall part by an adhesive or the like, Since the portion may be peeled off from the wall portion, it is preferable that the convex portion and the wall portion are integrally formed by injection molding.
 図6に示される壁部62は、枠部63と、枠部63よりも内側に位置し、開口部61間を仕切る仕切部64とから構成されている。壁部62は、仕切部64を有し、かつ少なくとも1つの開口部61の周囲を取り囲むものでれば、特に限定されず、例えば、図10に示される第1のスペーサー160のように、壁部162は、枠部を備えず、仕切部163のみから構成され、井桁状となっていてもよい。図10に示される第1のスペーサー160も、第1のスペーサー60と同様に、2以上の開口部161を備えており、壁部162は、開口部161間を仕切り、かつ少なくとも1つの開口部161の周囲を取り囲んでいる。ただし、図10においては、壁部162は、最外周に存在する開口部161の周囲は取り囲んでいない。第1のスペーサー160は、壁部162が仕切部163のみから構成されている以外、第1のスペーサー60と同となっているので、ここでは説明を省略するものとする。 The wall part 62 shown in FIG. 6 includes a frame part 63 and a partition part 64 that is positioned inside the frame part 63 and partitions the openings 61. The wall portion 62 is not particularly limited as long as it has a partition portion 64 and surrounds the periphery of at least one opening portion 61. For example, a wall like a first spacer 160 shown in FIG. The part 162 does not include a frame part, is configured only from the partition part 163, and may have a cross beam shape. Similarly to the first spacer 60, the first spacer 160 shown in FIG. 10 also includes two or more openings 161, and the wall 162 partitions the openings 161 and at least one opening. 161 is surrounded. However, in FIG. 10, the wall 162 does not surround the periphery of the opening 161 existing on the outermost periphery. Since the first spacer 160 is the same as the first spacer 60 except that the wall portion 162 is composed only of the partition portion 163, the description thereof will be omitted here.
 壁部62は、射出成形、切削や三次元プリンターによって得ることができる。壁部62においては、枠部63と仕切部64が一体的に設けられているが、枠部63と仕切部64を一体的に設けらなくともよい。すなわち、図11(A)に示される第1のスペーサー170のように、枠部172と仕切部173を別々に作製し、枠部172の内側に仕切部173を配置して壁部171を得てもよい。また、図11(B)に示される第1のスペーサー180のように2以上の壁部181A同士を接合して、壁部181を得てもよい。 The wall 62 can be obtained by injection molding, cutting, or a three-dimensional printer. In the wall part 62, the frame part 63 and the partition part 64 are integrally provided, but the frame part 63 and the partition part 64 may not be provided integrally. That is, like the first spacer 170 shown in FIG. 11A, the frame portion 172 and the partition portion 173 are separately manufactured, and the partition portion 173 is arranged inside the frame portion 172 to obtain the wall portion 171. May be. Alternatively, the wall portion 181 may be obtained by joining two or more wall portions 181A like the first spacer 180 shown in FIG.
(枠部)
 枠部63は、平面視において四角形状となっているが、枠部の形状は、LED実装基板の形状等に合わせて、適宜変更することができる。枠部63は、ほぼ配線基板41の大きさと同じ大きさになっている。
(Frame part)
The frame portion 63 has a quadrangular shape in plan view, but the shape of the frame portion can be appropriately changed according to the shape of the LED mounting substrate and the like. The frame portion 63 is approximately the same size as the wiring substrate 41.
 枠部63は、仕切部64と同様の熱可塑性樹脂から構成されていることが好ましい。また、枠部63は、仕切部64と同様の遮光材、遮光層や紫外線吸収剤を含んでいてもよい。枠部63における熱可塑性樹脂、遮光材、遮光層や紫外線吸収剤は、仕切部64の欄で説明する熱可塑性樹脂、遮光材、遮光層や紫外線吸収剤と同様であるので、ここでは説明を省略するものとする。 The frame part 63 is preferably made of the same thermoplastic resin as the partition part 64. Further, the frame part 63 may include a light shielding material, a light shielding layer, and an ultraviolet absorber similar to the partition part 64. The thermoplastic resin, the light shielding material, the light shielding layer, and the ultraviolet absorber in the frame 63 are the same as the thermoplastic resin, the light shielding material, the light shielding layer, and the ultraviolet absorber described in the section of the partitioning portion 64. Shall be omitted.
(仕切部)
 仕切部64は、開口部61間を仕切るものであり、開口部61に面する2つの側面64Aを有している。仕切部64は、仕切部64における一方の側面64Aから他方の側面64Aへの光透過率(以下、この光透過率を「側面間光透過率」と称する。)は、30%以下となっている。仕切部64の側面間光透過率の下限は、2%以上であることが好ましい。仕切部の側面間光透過率が2%以上であれば、第1の光学シート50を平面視したとき、仕切部64が影になることを抑制できる。仕切部64の側面間光透過率の上限は、20%以下であることが好ましい。
(Partition)
The partition portion 64 partitions the openings 61 and has two side surfaces 64 </ b> A that face the openings 61. The partition portion 64 has a light transmittance from one side surface 64A to the other side surface 64A of the partition portion 64 (hereinafter, this light transmittance is referred to as “light transmittance between side surfaces”) of 30% or less. Yes. It is preferable that the lower limit of the light transmittance between the side surfaces of the partition portion 64 is 2% or more. If the light transmittance between the side surfaces of the partition portion is 2% or more, the partition portion 64 can be prevented from being shaded when the first optical sheet 50 is viewed in plan. The upper limit of the light transmittance between the side surfaces of the partition portion 64 is preferably 20% or less.
 上記側面間光透過率は、以下のようにして測定することができる。まず、図12(A)に示されるように、第1のスペーサー60の仕切部64の一部を、仕切部64の両側面64Aを含むように切り出して所定の大きさのサンプル190を得る。なお、サンプル190においては、サンプル190のうち仕切部64の側面64Aであった面をサンプル190の第1の側面190Aとし、仕切部64を切断することによって形成された側面を第2の側面190Bとして説明する。サンプル190は、仕切部64の両側面64Aを含むように仕切部64を切断して得られているので、2つの第1の側面190Aを有している。また、仕切部64の側面64Aは傾斜しているので、サンプル190の第1の側面190Aも傾斜している。 The inter-side light transmittance can be measured as follows. First, as shown in FIG. 12A, a part of the partitioning portion 64 of the first spacer 60 is cut out so as to include both side surfaces 64A of the partitioning portion 64 to obtain a sample 190 having a predetermined size. In the sample 190, the surface of the sample 190 that was the side surface 64 </ b> A of the partition portion 64 is defined as the first side surface 190 </ b> A of the sample 190, and the side surface formed by cutting the partition portion 64 is the second side surface 190 </ b> B. Will be described. Since the sample 190 is obtained by cutting the partition portion 64 so as to include both side surfaces 64A of the partition portion 64, the sample 190 has two first side surfaces 190A. Further, since the side surface 64A of the partition portion 64 is inclined, the first side surface 190A of the sample 190 is also inclined.
 一方で、積分球を取り付けた紫外可視近赤外分光光度計(製品名「V-7200」、日本分光株式会社製)と、光透過拡散板と、第1の光ダクトと、第2の光ダクトとを用意する。上記分光光度計の代わりに、同等の光源と測定計の組合せを用いてもよい。例えば、平行光を照射する光源と光透過拡散板の代わりに拡散光源を用いてもよい。また積分球の代わりに照度計を用いてもよい。 On the other hand, an ultraviolet-visible near-infrared spectrophotometer (product name “V-7200”, manufactured by JASCO Corporation) with an integrating sphere, a light transmission diffuser plate, a first light duct, and a second light Prepare a duct. Instead of the spectrophotometer, a combination of an equivalent light source and a measurement meter may be used. For example, a diffused light source may be used in place of the light source for irradiating parallel light and the light transmission diffusion plate. An illuminometer may be used instead of the integrating sphere.
 上記分光光度計を用いる場合には、光透過拡散板は、光源から照射される平行光を拡散光にするためのものである。光透過拡散板としては、乳白色のアクリル板を用いることができる。第1の光ダクトは、前記拡散光をサンプルまで導くためのものであり、また第2の光ダクトは、サンプルを透過した光を上記積分球まで導くためのものである。第1の光ダクトおよび第2の光ダクトは、筒状となっており、また第1の光ダクトおよび第2の光ダクトの内面は鏡面反射するようにアルミニウムや銀等の金属や多層反射膜で構成されている。また、上記照度計を用いる場合には、第1の光ダクトは、上記光源からの光をサンプルまで導くためのものであり、また第2の光ダクトは、サンプルを透過した光を上記照度計まで導くためのものである。 When the spectrophotometer is used, the light transmission diffuser plate is used to convert the parallel light emitted from the light source into diffused light. As the light transmission diffusion plate, a milky white acrylic plate can be used. The first light duct is for guiding the diffused light to the sample, and the second light duct is for guiding the light transmitted through the sample to the integrating sphere. The first optical duct and the second optical duct have a cylindrical shape, and a metal such as aluminum or silver or a multilayer reflective film so that the inner surfaces of the first optical duct and the second optical duct are specularly reflected. It consists of When the illuminance meter is used, the first optical duct is for guiding light from the light source to the sample, and the second optical duct is configured to transmit the light transmitted through the sample to the illuminance meter. It is for leading up to.
 第1の光ダクトおよび第2の光ダクトの開口はサンプルの側面および積分球の開口よりも小さくなっている。なお、第1の光ダクトおよび第2の光ダクトのそれぞれ一方の開口縁部は、開口縁部全体をサンプルの第1の側面に接触させるためにサンプルの第1の側面に沿った形状となっている。例えば、サンプルの第1の側面が傾斜している場合には、サンプルの第1の側面に沿うように光ダクトの開口縁部も傾斜している。 The opening of the first light duct and the second light duct is smaller than the side surface of the sample and the opening of the integrating sphere. In addition, each opening edge part of a 1st optical duct and a 2nd optical duct becomes a shape along the 1st side surface of a sample, in order to make the whole opening edge part contact the 1st side surface of a sample. ing. For example, when the first side surface of the sample is inclined, the opening edge of the optical duct is also inclined along the first side surface of the sample.
 サンプル190の側面間光透過率を測定する際には、まず、図12(B)に示されるように上記分光光度計の平行光を照射可能な光源201と積分球202の間に、光源201側から、光透過拡散板203、第1の光ダクト204、第2の光ダクト205をこの順で配置する。さらに、第1の光ダクト204から出射する光の漏れを抑制するために積分球202の開口202Aに第2の光ダクト204を若干挿入する。この状態で、光源201を点灯させて、第1の光ダクト204と第2の光ダクト205を介して積分球202に入射する光量(τ)を測定する。この光量は、図12(C)において第2の光ダクト205による光吸収を考慮したサンプル190に入射する光量に等しいので、この光量を「入射光量」と称する。このとき、第1の光ダクト204と第2の光ダクト205の間に隙間が生じる場合、第1の光ダクト204と第2の光ダクト205の隙間に、この隙間を塞ぐための第3の光ダクト206を配置してもよい。また、第2の光ダクト205と積分球202の開口202Aの隙間に、漏れ光を戻すための反射板207を設けてもよい。 When measuring the light transmittance between the side surfaces of the sample 190, first, as shown in FIG. 12B, between the light source 201 capable of irradiating the parallel light of the spectrophotometer and the integrating sphere 202, the light source 201 From the side, the light transmission diffusion plate 203, the first light duct 204, and the second light duct 205 are arranged in this order. Further, in order to suppress leakage of light emitted from the first optical duct 204, the second optical duct 204 is slightly inserted into the opening 202A of the integrating sphere 202. In this state, the light source 201 is turned on, and the amount of light (τ 1 ) incident on the integrating sphere 202 via the first optical duct 204 and the second optical duct 205 is measured. This amount of light is equal to the amount of light incident on the sample 190 in consideration of light absorption by the second optical duct 205 in FIG. At this time, when a gap is generated between the first optical duct 204 and the second optical duct 205, a third gap for closing the gap between the first optical duct 204 and the second optical duct 205 is provided. An optical duct 206 may be arranged. Further, a reflector 207 for returning leakage light may be provided in the gap between the second optical duct 205 and the opening 202A of the integrating sphere 202.
 その後、光源201と積分球202の間に、光源201側から、光透過拡散板203、第1の光ダクト204、サンプル190、第2の光ダクト205をこの順で配置する。この際、サンプル190と第1の光ダクト204との間からの光漏れおよびサンプル190と第2の光ダクト205からの光漏れを抑制するために、第1の光ダクト204を、開口縁部204A全体がサンプル190における光源201側の第1の側面190Aに接触するように配置し、また第2の光ダクト205を、開口縁部205A全体がサンプル190における積分球202側の第1の側面190Aに接触するように配置する。さらに、第2の光ダクト205から出射する光の漏れを抑制するために積分球202の開口202Aに第2の光ダクト205を若干挿入する。この状態で、光源201を点灯させて、光源201からの光を、第1の光ダクト204を介してサンプル190における光源201側の第1の側面190Aから入射させる。サンプル190を透過し、サンプル190における積分球202側の第1の側面190Aから出射して、第2の光ダクト205を介して積分球202に入射する光量(τ)を測定する。この光量は、サンプル190を透過した光量であるので、この光量を「透過光量」と称する。 Thereafter, between the light source 201 and the integrating sphere 202, the light transmission diffusion plate 203, the first optical duct 204, the sample 190, and the second optical duct 205 are arranged in this order from the light source 201 side. At this time, in order to suppress light leakage from between the sample 190 and the first light duct 204 and light leakage from the sample 190 and the second light duct 205, the first light duct 204 is connected to the opening edge portion. 204A is arranged so that the entire 204A contacts the first side 190A of the sample 190 on the light source 201 side, and the second optical duct 205 is disposed on the integrating sphere 202 side of the sample 190. It arrange | positions so that it may contact 190A. Further, the second optical duct 205 is slightly inserted into the opening 202A of the integrating sphere 202 in order to suppress leakage of light emitted from the second optical duct 205. In this state, the light source 201 is turned on, and light from the light source 201 is incident from the first side surface 190 </ b> A on the light source 201 side of the sample 190 through the first optical duct 204. The amount of light (τ 2 ) that passes through the sample 190, exits from the first side surface 190 A of the sample 190 on the integrating sphere 202 side, and enters the integrating sphere 202 through the second optical duct 205 is measured. Since this light amount is the amount of light transmitted through the sample 190, this light amount is referred to as “transmitted light amount”.
 そして、サンプル190に入射した入射光量(τ)に対するサンプル190を透過した透過光量(τ)の割合(τ/τ×100)によって、側面間光透過率を求める。側面間光透過率は、3回測定して得られた値の算術平均値とする。なお、図12(C)に示すように、サンプル190の上面と下面は、光ダクトにより覆われない。これは、サンプル190の上面と下面から出射する光束を透過光量として測定しないためである。 Then, the light transmittance between the side surfaces is obtained by the ratio (τ 2 / τ 1 × 100) of the transmitted light amount (τ 2 ) transmitted through the sample 190 with respect to the incident light amount (τ 1 ) incident on the sample 190. The light transmittance between the side surfaces is an arithmetic average value of values obtained by measuring three times. As shown in FIG. 12C, the upper and lower surfaces of the sample 190 are not covered by the optical duct. This is because the luminous flux emitted from the upper and lower surfaces of the sample 190 is not measured as the amount of transmitted light.
 仕切部64の少なくとも一方の側面64Aの算術平均粗さRaは、10μm以下であることが好ましい。側面64AのRaが、10μm以下であれば、反射回数が増えすぎないので、仕切部64が光を吸収する頻度が高まることを抑制でき、輝度の面内均一性の低下を抑制できる。Raは、JIS B0601:1999に準拠して、表面粗さ測定装置(製品名「SE-3400」、小坂研究所製)を用いて測定することができる。Raは、ランダムに10箇所測定し、測定した10箇所のRaの算術平均値とする。 The arithmetic average roughness Ra of at least one side surface 64A of the partition portion 64 is preferably 10 μm or less. If Ra of side surface 64A is 10 micrometers or less, since the frequency | count of reflection will not increase too much, it can suppress that the frequency | count that the partition part 64 absorbs light increases, and can suppress the fall of the in-plane uniformity of a brightness | luminance. Ra can be measured using a surface roughness measuring device (product name “SE-3400”, manufactured by Kosaka Laboratory) in accordance with JIS B0601: 1999. Ra is measured at 10 locations at random, and is the arithmetic average value of the measured 10 locations of Ra.
 仕切部64は、熱可塑性樹脂を含んでいる。仕切部64が熱可塑性樹脂を含んでいるので、第1のスペーサーが金属のみから構成されている場合に比べて、軽量化およびコストの低減を図ることができる。図6に示される仕切部64は、熱可塑性樹脂と、熱可塑性樹脂中に存在する遮光材とを含む仕切部本体65のみから構成されている。 The partition part 64 contains a thermoplastic resin. Since the partition part 64 contains the thermoplastic resin, weight reduction and cost reduction can be achieved compared with the case where the first spacer is made of only metal. The partition part 64 shown by FIG. 6 is comprised only from the partition part main body 65 containing a thermoplastic resin and the light-shielding material which exists in a thermoplastic resin.
 仕切部本体は、仕切部全体で遮光性を有していれば、遮光材を含まなくともよい。また、LED素子42からは可視光線のみならず紫外線も放射しているので、LED面光源装置20内の部材が紫外線により劣化するおそれがある。このため、仕切部64は、紫外線劣化を抑制するために、熱可塑性樹脂や遮光材の他、紫外線吸収剤をさらに含んでいることが好ましい。 The partition body may not include a light shielding material as long as the entire partition has light shielding properties. Further, since not only visible light but also ultraviolet rays are radiated from the LED element 42, there is a possibility that the members in the LED surface light source device 20 are deteriorated by the ultraviolet rays. For this reason, in order to suppress ultraviolet-ray deterioration, it is preferable that the partition part 64 further contains the ultraviolet absorber other than a thermoplastic resin and a light-shielding material.
 仕切部本体65を構成する熱可塑性樹脂としては、特に限定されないが、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、アクリロニトリル-スチレン-アクリレート共重合樹脂(ASA樹脂)、アクリロニトリル・エチレン-プロピレン-ジエン・スチレン樹脂(AES樹脂)、ポリメチルメタクリレート樹脂(PMMA樹脂)、ポリアセタール樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、またはこれらの樹脂を2種以上混合した混合物等が挙げられる。これらの中でも、耐熱性や成形性等の観点から、ポリカーボネート樹脂、ABS樹脂、ASA樹脂、AES樹脂、PMMA樹脂、ポリアセタール樹脂、またはこれらの樹脂を2種以上混合した混合物が好ましい。 The thermoplastic resin constituting the partition main body 65 is not particularly limited, but polycarbonate resin, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), acrylonitrile-styrene-acrylate copolymer resin (ASA resin), acrylonitrile / ethylene. -Propylene-diene styrene resin (AES resin), polymethyl methacrylate resin (PMMA resin), polyacetal resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, or a mixture of two or more of these resins Etc. Among these, polycarbonate resin, ABS resin, ASA resin, AES resin, PMMA resin, polyacetal resin, or a mixture of two or more of these resins is preferable from the viewpoint of heat resistance, moldability, and the like.
 上記熱可塑性樹脂の25℃でのヤング率は、0.5GPa以上5GPa以下であることが好ましい。上記熱可塑性樹脂のヤング率が、0.5GPa未満であると、壁部において、配線基板や第1の光学シートを固定するための強度が確保できないおそれがあり、また5GPaを超えると、LED面光源装置を曲面などへ設置する際に仕切部を曲げることができないおそれがある。上記熱可塑性樹脂の25℃でのヤング率の下限は、1GPa以上であることがより好ましく、上限は4GPa以下であることがより好ましい。 The Young's modulus at 25 ° C. of the thermoplastic resin is preferably 0.5 GPa or more and 5 GPa or less. If the Young's modulus of the thermoplastic resin is less than 0.5 GPa, there is a risk that the strength for fixing the wiring board and the first optical sheet may not be secured at the wall, and if it exceeds 5 GPa, the LED surface When the light source device is installed on a curved surface or the like, the partition portion may not be bent. The lower limit of the Young's modulus at 25 ° C. of the thermoplastic resin is more preferably 1 GPa or more, and the upper limit is more preferably 4 GPa or less.
 上記遮光材としては、上記側面間光透過率を低下させるものが用いられ、散乱により光を入射方向に戻す材料や、光を吸収する材料などが用いられる。上記遮光材としては、酸化チタン、アルミナ、タルク、水酸化アルミニウム、マイカ、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウム等、またはこれらの混合物からなる白色顔料が挙げられる。仕切部本体中の遮光材は、熱可塑性樹脂100質量部に対して10質量部以上250質量部以下の割合で含まれていることが好ましい。 As the light shielding material, a material that reduces the light transmittance between the side surfaces is used, and a material that returns light to the incident direction by scattering, a material that absorbs light, or the like is used. Examples of the light shielding material include white pigments made of titanium oxide, alumina, talc, aluminum hydroxide, mica, calcium carbonate, zinc sulfide, zinc oxide, barium sulfate, potassium titanate, and the like, or a mixture thereof. It is preferable that the light shielding material in the partition body is included in a ratio of 10 parts by mass to 250 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
 上記紫外線吸収剤としては、特に限定されず、トリアジン系紫外線吸収剤やベンゾトリアゾール系紫外線吸収剤が挙げられる。これらの中でも、可視光領域の光は極力吸収せず、効率的に紫外線を吸収することができるとともに、長期間使用しても黄変が生じにくい観点から、トリアジン系紫外線吸収剤が好ましい。トリアジン系紫外線吸収剤の市販品としては、例えば、BASF社製のTINUVIN 1577 EDが挙げられる。また、必要に応じて、ヒンダードアミン系光安定剤等を添加してもよい。 The ultraviolet absorber is not particularly limited, and examples thereof include a triazine ultraviolet absorber and a benzotriazole ultraviolet absorber. Among these, a triazine-based ultraviolet absorber is preferred from the viewpoint that it absorbs ultraviolet light efficiently without absorbing light in the visible light region as much as possible and is less likely to cause yellowing even after long-term use. As a commercial item of a triazine type ultraviolet absorber, for example, TINUVIN® 1577® ED manufactured by BASF may be mentioned. Moreover, you may add a hindered amine light stabilizer etc. as needed.
 仕切部64は、図6に示されるように、枠部63と一体的に設けられていることが好ましい。仕切部64を枠部63と一体形成することによって、繋ぎ目がない第1のスペーサーを得ることができるので、第1のスペーサーを複数の部材から構成するよりも、LED面光源装置の組立工程の簡素化、および振動試験における第1の光学シートの位置ずれリスクの低減を図ることができる。また、第1のスペーサーには、繋ぎ目がないので、継ぎ目に入り込む光にもなく、光学的損失の低減を図ることができる。本明細書における「一体的に設けられている」とは、枠部と仕切部との間に境界が存在しない場合、すなわち枠部と仕切部が一体形成されている場合のみならず、仕切部が枠部に接合されている場合をも含む概念である。第1のスペーサー60においては、枠部63および仕切部64が一体形成されている。なお、壁部62の強度を高める観点から、仕切部64は枠部63と一体的に設けられていることが好ましいが、仕切部は枠部と一体的に設けられていなくともよい。 The partition part 64 is preferably provided integrally with the frame part 63, as shown in FIG. By forming the partition portion 64 integrally with the frame portion 63, it is possible to obtain a first spacer without a joint. Therefore, the assembly process of the LED surface light source device is performed rather than configuring the first spacer from a plurality of members. And the risk of displacement of the first optical sheet in the vibration test can be reduced. In addition, since the first spacer has no seam, there is no light entering the seam, and optical loss can be reduced. In this specification, “provided integrally” means not only when there is no boundary between the frame portion and the partition portion, that is, when the frame portion and the partition portion are integrally formed, but also the partition portion. It is a concept including the case where is joined to the frame. In the first spacer 60, the frame part 63 and the partition part 64 are integrally formed. In addition, although the partition part 64 is preferably provided integrally with the frame part 63 from a viewpoint of increasing the strength of the wall part 62, the partition part may not be provided integrally with the frame part.
 仕切部64は、図7に示されるように、区画領域51間の境界部51Cに対応する位置に配置されていることが好ましい。本明細書における「区画領域間の境界部」とは、透過部および反射部のパターンから区画領域間の境界と想定される領域を含む部分を意味するものとする。なお、図7は、LED素子42側から第1のスペーサー60および第1の光学シート50を平面視した図である。 It is preferable that the partition part 64 is arrange | positioned in the position corresponding to the boundary part 51C between the division areas 51, as FIG. 7 shows. In the present specification, the “boundary portion between partitioned regions” means a portion including a region that is assumed to be a boundary between partitioned regions based on patterns of the transmissive portion and the reflective portion. FIG. 7 is a plan view of the first spacer 60 and the first optical sheet 50 from the LED element 42 side.
 図6に示される仕切部64は、仕切部本体65のみから構成されているが、熱可塑性樹脂を含む仕切部本体と、遮光層とから構成されていてもよい。この場合、仕切部本体は、遮光材を含んでいなくともよい。 Although the partition part 64 shown by FIG. 6 is comprised only from the partition part main body 65, you may be comprised from the partition part main body containing a thermoplastic resin, and the light shielding layer. In this case, the partition part main body does not need to contain the light shielding material.
 図13(A)に示される仕切部210は、仕切部本体211と、仕切部本体211の両方の側面211A、211Bに設けられた遮光層212とから構成されている。本明細書における「仕切部本体の側面」とは、仕切部本体の面のうち、開口部側に位置した面を意味するものとする。したがって、遮光層212は、仕切部本体211よりも開口部213側に位置している。なお、仕切部本体211は、仕切部本体65と同様であり、また、開口部213は、開口部61と同様であるので、ここでは説明を省略するものとする。 The partition part 210 shown in FIG. 13A includes a partition part body 211 and a light shielding layer 212 provided on both side surfaces 211A and 211B of the partition part body 211. The “side surface of the partition unit main body” in the present specification means a surface located on the opening side among the surfaces of the partition unit main body. Therefore, the light shielding layer 212 is positioned closer to the opening 213 than the partition body 211. In addition, since the partition part main body 211 is the same as that of the partition part main body 65, and the opening part 213 is the same as the opening part 61, it abbreviate | omits description here.
 遮光層212は、入射する光を遮る機能を有する層である。遮光層212は、単層構造のものであるが、2層以上の多層構造のものであってもよい。 The light shielding layer 212 is a layer having a function of shielding incident light. The light shielding layer 212 has a single layer structure, but may have a multilayer structure of two or more layers.
 遮光層212の膜厚は、0.1μm以上であることが好ましい。遮光層212の膜厚が0.1μm以上であれば、有効に遮光することができる。遮光層212の膜厚は、絶縁性保護膜45の膜厚と同様の方法によって測定することができる。遮光層212の膜厚の上限は、遮光層212での光の吸収による損失を抑制し、光源として充分な明るさを維持する観点から、50μm以下であることが好ましい。 The thickness of the light shielding layer 212 is preferably 0.1 μm or more. If the thickness of the light shielding layer 212 is 0.1 μm or more, the light can be effectively shielded. The thickness of the light shielding layer 212 can be measured by the same method as the thickness of the insulating protective film 45. The upper limit of the thickness of the light shielding layer 212 is preferably 50 μm or less from the viewpoint of suppressing loss due to light absorption in the light shielding layer 212 and maintaining sufficient brightness as a light source.
 遮光層212としては、入射する光を遮る機能を有すれば、特に限定されないが、光反射層または光吸収層が挙げられる。遮光層として、光反射層または光吸収層を用いることにより、高い遮光性を得ることができる。光吸収層は、光を吸収してしまうのに対し、金属層は、光を反射させることができるので、光の有効利用を図る点から、光反射層が好ましい。 The light blocking layer 212 is not particularly limited as long as it has a function of blocking incident light, but includes a light reflecting layer or a light absorbing layer. By using a light reflecting layer or a light absorbing layer as the light shielding layer, high light shielding properties can be obtained. The light absorption layer absorbs light, whereas the metal layer can reflect light, and therefore, the light reflection layer is preferable from the viewpoint of effective use of light.
 光反射層としては、光反射性を有する顔料を含む樹脂層または金属層が挙げられる。金属層は、アルミニウム、銀、ニッケル、およびクロムからなる群から選択される1以上の金属を含む層であってもよい。金属層として、このような金属を含む層を用いることにより、高い反射率を得ることができるので、入射する光をより反射することができ、それにより光の利用効率を向上させることができる。これらの中でも、反射率が高く、反射光の色味が変化しない点から、アルミニウムが好ましい。本明細書における「金属層」は、金属箔を含む概念である。 Examples of the light reflecting layer include a resin layer or a metal layer containing a pigment having light reflectivity. The metal layer may be a layer containing one or more metals selected from the group consisting of aluminum, silver, nickel, and chromium. By using a layer containing such a metal as the metal layer, a high reflectance can be obtained, so that incident light can be reflected more, and thus the light utilization efficiency can be improved. Among these, aluminum is preferable because it has high reflectance and does not change the color of reflected light. The “metal layer” in the present specification is a concept including a metal foil.
 光吸収層は、樹脂と、樹脂中に分散された色材とを含む。樹脂としては、重合性化合物の重合体や熱可塑性樹脂等が挙げられる。色材としては、特に限定されないが、光吸収性能の点から、例えば、カーボンブラックやチタンブラック等の黒色色材が好ましい。 The light absorption layer includes a resin and a color material dispersed in the resin. Examples of the resin include a polymer of a polymerizable compound and a thermoplastic resin. Although it does not specifically limit as a color material, From the point of light absorption performance, black color materials, such as carbon black and titanium black, are preferable, for example.
 遮光層212の形成方法としては、特に限定されないが、例えば、スパッタリング法、イオンプレーティング法等の物理気相成長(PVD)法や化学気相成長(CVD)法等の蒸着法、メッキ法、またはスプレーコート法、ディッピング法の塗布法等が挙げられる。また、これらの方法を組み合わせてもよい。さらに、遮光層212として、遮光性を有するフィルム(例えば、金属箔)を用いてもよい。 A method for forming the light shielding layer 212 is not particularly limited. For example, a vapor deposition method such as a physical vapor deposition (PVD) method such as a sputtering method or an ion plating method or a chemical vapor deposition (CVD) method, a plating method, Alternatively, a spray coating method, a dipping method, or the like can be used. Moreover, you may combine these methods. Furthermore, a light-shielding film (for example, metal foil) may be used as the light-shielding layer 212.
 また、図13(B)に示される仕切部220も、仕切部本体221と、仕切部本体221の第1の側面221Aおよび第2の側面221Bに設けられた遮光層222とから構成されているが、仕切部本体221は、第1の側面221Aを含む第1の部分221Cと、第2の側面221Bを含む第2の部分221Dとを貼り合せることによって形成されている。このような仕切部220は、遮光層222が片面に形成された第1の部分221Cと、遮光層222が片面に形成された第2の部分221Dとを、遮光層222がそれぞれ開口部223側となるように貼り合せることによって得ることができる。 Moreover, the partition part 220 shown by FIG. 13 (B) is also comprised from the partition part main body 221 and the light shielding layer 222 provided in the 1st side surface 221A and the 2nd side surface 221B of the partition part main body 221. FIG. However, the partition part main body 221 is formed by bonding the first part 221C including the first side 221A and the second part 221D including the second side 221B. Such a partition 220 has a first portion 221C in which the light shielding layer 222 is formed on one side, a second portion 221D in which the light shielding layer 222 is formed on one side, and the light shielding layer 222 on the opening 223 side. It can be obtained by pasting together.
 図13(A)においては、遮光層212は、仕切部本体211の第1の側面211Aおよび第2の側面211Bに設けられ、図13(B)においては、遮光層222は、仕切部本体221の第1の側面221Aおよび第2の側面221Bに設けられているが、遮光層は、仕切部本体部の少なくとも一方の側面に設けられていればよい。例えば、図14(A)および図14(B)に示される仕切部230、240のように、遮光層232、242は、仕切部本体231の第1の側面231Aや仕切部本体241の第1の側面241Aのみに設けられていてもよい。 13A, the light shielding layer 212 is provided on the first side surface 211A and the second side surface 211B of the partition portion main body 211, and in FIG. 13B, the light shielding layer 222 is composed of the partition portion main body 221. The first side 221A and the second side 221B are provided, but the light shielding layer only needs to be provided on at least one side of the partition main body. For example, like the partition portions 230 and 240 shown in FIGS. 14A and 14B, the light shielding layers 232 and 242 are the first side 231 </ b> A of the partition portion main body 231 and the first side of the partition portion main body 241. It may be provided only on the side surface 241A.
 また、図15(A)に示されるように、仕切部250は、仕切部本体251の第1の側面251Aを含む第1の部分251Cと、仕切部本体251における第1の側面251Aとは反対側の第2の側面251Bを含み、かつ第1の部分251Cと離間した第2の部分251Dとを備える仕切部本体251と、第1の部分251Cと第2の部分251Dとの間に挟まれた遮光層252とを備えていてもよい。仕切部本体251は、遮光層252よりも開口部253側に位置している。さらに、図15(B)に示される仕切部260も、仕切部本体261の第1の側面261Aを含む第1の部分261Cと、仕切部本体261における第1の側面261Aとは反対側の第2の側面261Bを含み、かつ第1の部分261Cと離間した第2の部分261Dとを備える仕切部本体261と、第1の部分261Cと第2の部分261Dとの間に挟まれた遮光層262とを備えているが、遮光層262は、第1の部分261C側に位置した遮光層262Aと、第2の部分261D側に位置した遮光層262Bから構成されており、遮光層262Aと遮光層262Bを貼り合せることによって形成されている。このような仕切部260は、遮光層262Aが片面に形成された第1の部分261Cと、遮光層262Bが片面に形成された第2の部分261Dとを、遮光層262A、262Bが互いに向き合うように貼り合せることによって得ることができる。 Further, as shown in FIG. 15A, the partition portion 250 is opposite to the first portion 251C including the first side surface 251A of the partition portion main body 251 and the first side surface 251A of the partition portion main body 251. A partition body 251 including a second side 251B on the side and having a second part 251D spaced from the first part 251C, and sandwiched between the first part 251C and the second part 251D The light shielding layer 252 may be provided. The partition body 251 is located closer to the opening 253 than the light shielding layer 252. Further, the partition 260 shown in FIG. 15B also includes a first portion 261C including the first side 261A of the partition main body 261, and a first portion 261A on the opposite side of the first side 261A of the partition main body 261. A partition portion body 261 including two side surfaces 261B and having a second portion 261D spaced from the first portion 261C, and a light shielding layer sandwiched between the first portion 261C and the second portion 261D 262, the light shielding layer 262 includes a light shielding layer 262A located on the first portion 261C side and a light shielding layer 262B located on the second portion 261D side. The light shielding layer 262A and the light shielding layer The layer 262B is formed by bonding. In such a partition 260, the light shielding layers 262A and 262B face each other between the first portion 261C in which the light shielding layer 262A is formed on one side and the second portion 261D in which the light shielding layer 262B is formed on one side. Can be obtained by pasting together.
 遮光層222、232、242、252、262も、遮光層212と同様であるので、ここでは説明を省略するものとする。仕切部本体221、231、241、251、261は、仕切部本体65と同様であり、また、開口部223、253は、開口部61と同様であるので、ここでは説明を省略するものとする。 Since the light shielding layers 222, 232, 242, 252, and 262 are also the same as the light shielding layer 212, description thereof is omitted here. Since the partition body 221, 231, 241, 251, and 261 are the same as the partition body 65, and the openings 223 and 253 are the same as the opening 61, description thereof is omitted here. .
<<第2の光学シート>>
 第2の光学シート70は、光学的な機能を有するシートである。第2の光学シートとしては、光学的な機能を有するシートであれば、特に限定されず、例えば、光拡散シート、レンズシート、または反射型偏光分離シート等が挙げられる。図1および図2に示される第2の光学シート70は、光拡散シートとなっている。光拡散シートである第2の光学シート70を配置することにより、第1の光学シート50を透過した光を第2の光学シート70でさらに拡散させることができ、輝度の面内均一性をさらに向上させることができる。なお、第2の光学シートが、レンズシートである場合には、レンズシート90は備えなくともよく、また第2の光学シートが、反射型偏光分離シートである場合には、反射型偏光分離シート100は備えなくともよい。また、第2の光学シートとして、レンズシートや反射型偏光分離シートを用いる場合には、レンズシート90や反射型偏光分離シート100と同様のものを用いることができる。
<< second optical sheet >>
The second optical sheet 70 is a sheet having an optical function. The second optical sheet is not particularly limited as long as it is a sheet having an optical function, and examples thereof include a light diffusion sheet, a lens sheet, and a reflective polarization separation sheet. The second optical sheet 70 shown in FIGS. 1 and 2 is a light diffusion sheet. By disposing the second optical sheet 70 which is a light diffusion sheet, the light transmitted through the first optical sheet 50 can be further diffused by the second optical sheet 70, and the in-plane uniformity of luminance is further increased. Can be improved. When the second optical sheet is a lens sheet, the lens sheet 90 may not be provided, and when the second optical sheet is a reflection type polarization separation sheet, the reflection type polarization separation sheet. 100 may not be provided. In addition, when a lens sheet or a reflection type polarization separation sheet is used as the second optical sheet, the same one as the lens sheet 90 or the reflection type polarization separation sheet 100 can be used.
 第2の光学シート70は、第1の光学シート50の光出射側に配置されている。第2の光学シート70は、第2のスペーサー80によって第1の光学シート50に対し離間している。第2の光学シート70は、第1の光学シート50と略平行に配置されている。 The second optical sheet 70 is disposed on the light emission side of the first optical sheet 50. The second optical sheet 70 is separated from the first optical sheet 50 by the second spacer 80. The second optical sheet 70 is disposed substantially parallel to the first optical sheet 50.
 図3に示される第1の光学シート50から第2の光学シート70までの距離d2は、5mm以下であることが好ましい。この距離d2が5mmを超えると、LED面光源装置の薄型化が図れないおそれがある。本明細書における「第1の光学シートから第2の光学シートまでの距離」とは、第1の光学シートにおける第2の光学シート側の面から第2の光学シートにおける第1の光学シート側の面までの距離を意味するものとする。第1の光学シート50から第2の光学シート70までの距離は、この距離をランダムに10箇所測定した値の算術平均値とする。上記距離d2は0.5mm以上となっていてもよい。また、図3においては、第2の光学シート70は、第1の光学シート50から離間しているが、第2の光学シート70は、第1の光学シート50に接していてもよい。この場合、上記距離d2は0mmとなる。 The distance d2 from the first optical sheet 50 to the second optical sheet 70 shown in FIG. 3 is preferably 5 mm or less. If the distance d2 exceeds 5 mm, the LED surface light source device may not be thinned. The “distance from the first optical sheet to the second optical sheet” in the present specification refers to the first optical sheet side of the second optical sheet from the second optical sheet side surface of the first optical sheet. It means the distance to the surface. The distance from the first optical sheet 50 to the second optical sheet 70 is an arithmetic average value of values obtained by measuring this distance at 10 random locations. The distance d2 may be 0.5 mm or more. In FIG. 3, the second optical sheet 70 is separated from the first optical sheet 50, but the second optical sheet 70 may be in contact with the first optical sheet 50. In this case, the distance d2 is 0 mm.
 配線基板41の表面41Aから第2の光学シート70までの距離(OD)は、LED面光源装置20の薄型化を図る観点から、1mm以上10mm以下となっていることが好ましい。本明細書における「配線基板の表面から第2の光学シートまでの距離」とは、配線基板の表面から第2の光学シートにおける配線基板側の面までの距離を意味するものとする。配線基板41の表面41Aから第2の光学シート70までの距離は、この距離をランダムに10箇所測定した値の算術平均値とする。配線基板41の表面41Aから第2の光学シート70までの距離の上限は、5mm以下となっていることが好ましい。 From the viewpoint of reducing the thickness of the LED surface light source device 20, the distance (OD) from the surface 41A of the wiring board 41 to the second optical sheet 70 is preferably 1 mm or more and 10 mm or less. The “distance from the surface of the wiring board to the second optical sheet” in this specification means the distance from the surface of the wiring board to the surface of the second optical sheet on the wiring board side. The distance from the surface 41 </ b> A of the wiring board 41 to the second optical sheet 70 is an arithmetic average value of values obtained by measuring this distance at 10 random locations. The upper limit of the distance from the surface 41A of the wiring board 41 to the second optical sheet 70 is preferably 5 mm or less.
 第2の光学シート70の厚みは、第1の光学シート50の厚みよりも大きくなっていることが好ましい。第2の光学シート70の厚みが、第1の光学シート50の厚みより大きいことにより、第2の光学シート70は、第1の光学シート50よりも撓み難い。このため、第2の光学シート70は、枠状の第2のスペーサー80によって、第1の光学シート50と第2の光学シート70との間の距離を所定の距離に保持することができる。 The thickness of the second optical sheet 70 is preferably larger than the thickness of the first optical sheet 50. Since the thickness of the second optical sheet 70 is larger than the thickness of the first optical sheet 50, the second optical sheet 70 is less likely to bend than the first optical sheet 50. For this reason, the second optical sheet 70 can hold the distance between the first optical sheet 50 and the second optical sheet 70 at a predetermined distance by the frame-shaped second spacer 80.
 第2の光学シート70の厚みは、0.3mm以上5mm以下であることが好ましい。第2の光学シート70の厚みが、0.3mm未満であると、光拡散効果が十分に得られないおそれがあるからであり、また厚みが、5mmを超えると、LED面光源装置の薄型化が図れないおそれがある。第2の光学シート70の厚みは、第1の光学シート50の厚さと同様の方法によって測定することができる。 The thickness of the second optical sheet 70 is preferably 0.3 mm or more and 5 mm or less. This is because if the thickness of the second optical sheet 70 is less than 0.3 mm, the light diffusion effect may not be sufficiently obtained, and if the thickness exceeds 5 mm, the LED surface light source device is thinned. May not be possible. The thickness of the second optical sheet 70 can be measured by the same method as the thickness of the first optical sheet 50.
 第2の光学シート70は、樹脂から構成されていることが好ましい。本明細書における「樹脂から構成されている」とは、樹脂が主の構成成分となっていることを意味する。第2の光学シート70は、ポリカーボネート樹脂やアクリル樹脂等からなる半透明の樹脂フィルムと、樹脂フィルムの一方の面側に形成された、光拡散機能を発揮するための、例えば、微小でランダムなレンズアレイ等を有するレンズ層とを備えている。 The second optical sheet 70 is preferably made of a resin. In the present specification, “consisting of resin” means that the resin is a main constituent. The second optical sheet 70 is formed of a translucent resin film made of polycarbonate resin, acrylic resin, or the like, and is formed on one surface side of the resin film. And a lens layer having a lens array or the like.
<<第2のスペーサー>>
 第2のスペーサー80は、第1の光学シート50に対し第2の光学シート70を支持するためのものである。また、第2のスペーサー80は、第1の光学シート50から第2の光学シート70までの距離d2を5mm以下に保持するとともに、配線基板41の表面41Aから第2の光学シート70までの距離を1mm以上10mm以下に保持する機能を有している。第2の光学シートが第1の光学シートに接している場合、第2の光学シートは第1の光学シートを介して第1のスペーサーで支持可能であるので、第2のスペーサーは設けられていなくともよいが、設けられていてもよい。この場合、第2のスペーサーは、第2の光学シートが第1の光学シートに接するような高さとなっている。
<< Second spacer >>
The second spacer 80 is for supporting the second optical sheet 70 with respect to the first optical sheet 50. The second spacer 80 holds the distance d2 from the first optical sheet 50 to the second optical sheet 70 to 5 mm or less, and the distance from the surface 41A of the wiring board 41 to the second optical sheet 70. Has a function of holding 1 to 10 mm. When the second optical sheet is in contact with the first optical sheet, the second optical sheet can be supported by the first spacer via the first optical sheet, and therefore the second spacer is provided. It does not have to be, but may be provided. In this case, the second spacer has such a height that the second optical sheet is in contact with the first optical sheet.
 図3に示される第2のスペーサー80の高さh2は、第1のスペーサー60の高さh1よりも大きくなっている。第2のスペーサー80の高さh2は、10mm以下であることが好ましい。第2のスペーサーの高さが、10mmを越えると、LED面光源装置の薄型化が図れないというおそれがある。本明細書における「第2のスペーサーの高さ」とは、第2のスペーサーにおける筐体の内底面側の面である底面に垂直な方向において、第2のスペーサーの底面から第2のスペーサーの上面までの距離を意味するものとする。第2のスペーサー80の高さh2は、第2のスペーサー80の高さをランダムに10箇所測定した値の算術平均値とする。第2のスペーサー80の高さh2の下限は、1mm以上となっていてもよい。 The height h2 of the second spacer 80 shown in FIG. 3 is larger than the height h1 of the first spacer 60. The height h2 of the second spacer 80 is preferably 10 mm or less. If the height of the second spacer exceeds 10 mm, the LED surface light source device may not be thinned. In the present specification, the “height of the second spacer” refers to the second spacer from the bottom surface of the second spacer in the direction perpendicular to the bottom surface that is the inner bottom surface of the housing. It shall mean the distance to the top surface. The height h2 of the second spacer 80 is an arithmetic average value of values obtained by measuring the height of the second spacer 80 at 10 random locations. The lower limit of the height h2 of the second spacer 80 may be 1 mm or more.
 第2のスペーサー80は、図16に示されるように、枠状となっている。本明細書の「枠状」とは、切れ間なく1周繋がっている構成のみならず、概ね繋がっていれば途中で切れ間があってもよい。図16に示される第2のスペーサー80は、端子等との接続のために、切れ間80Aが設けられている。第2のスペーサー80は、1つの開口部81を有しており、第1の光学シート50の外周面50Aおよび第1のスペーサー60の外周面60Cを取り囲むように配置されている。第2のスペーサー80は、図2に示されるように、第1の光学シート50の外周面50Aおよび第1のスペーサー60の外周面60Cのみならず、配線基板41の外周面41Cを取り囲むように配置されている。すなわち、第2のスペーサー80の内側には、LED実装基板40、第1の光学シート50、および第1のスペーサー60が位置している。第2のスペーサー80が枠状になっていることにより、第1の光学シート50を透過して、第2のスペーサー80側に向かう光を第2のスペーサー80で反射させて、第2の光学シート70に導くことができる。また、第2のスペーサー80が枠状となっていることにより、第2のスペーサーが複数の柱状体から構成されている場合よりも、第2の光学シート70との接触面積を増大させることができるので、LED面光源装置20の使用時において、第2のスペーサー80を介して第2の光学シート70の熱をより放熱させることができる。また、第2のスペーサー80が枠状となっていることにより、第2のスペーサーが複数の柱状体から構成されている場合よりも、第2のスペーサー80と第2の光学シート70との接着面積を増大させることができるので、より第2の光学シート70が位置ずれしにくい。 The second spacer 80 has a frame shape as shown in FIG. The “frame shape” in this specification is not limited to a configuration in which one round is connected without a break, but may have a gap in the middle as long as it is generally connected. The second spacer 80 shown in FIG. 16 is provided with a gap 80A for connection with a terminal or the like. The second spacer 80 has one opening 81 and is disposed so as to surround the outer peripheral surface 50 </ b> A of the first optical sheet 50 and the outer peripheral surface 60 </ b> C of the first spacer 60. As shown in FIG. 2, the second spacer 80 surrounds not only the outer peripheral surface 50 </ b> A of the first optical sheet 50 and the outer peripheral surface 60 </ b> C of the first spacer 60 but also the outer peripheral surface 41 </ b> C of the wiring substrate 41. Has been placed. That is, the LED mounting substrate 40, the first optical sheet 50, and the first spacer 60 are located inside the second spacer 80. Since the second spacer 80 has a frame shape, the light transmitted through the first optical sheet 50 and directed toward the second spacer 80 is reflected by the second spacer 80, so that the second optical The sheet 70 can be led. In addition, since the second spacer 80 has a frame shape, the contact area with the second optical sheet 70 can be increased as compared with the case where the second spacer is composed of a plurality of columnar bodies. Therefore, when the LED surface light source device 20 is used, the heat of the second optical sheet 70 can be further dissipated through the second spacer 80. In addition, since the second spacer 80 has a frame shape, the second spacer 80 and the second optical sheet 70 are more bonded than in the case where the second spacer is composed of a plurality of columnar bodies. Since the area can be increased, the second optical sheet 70 is less likely to be displaced.
 図3に示されるように、第2のスペーサー80の底面80Bは筐体30の内底面30Bに接していることが好ましい。本明細書における「第2のスペーサーの底面が筐体の内底面と接している」とは、第2のスペーサーの底面が筐体の内底面に直接接触している場合に限らず、第2のスペーサーの底面と筐体の内底面との間に、両面テープ、粘着剤または接着剤等、熱伝導という観点でほぼ無視できる層が介在している場合をも含む概念である。図3においては、第2のスペーサー80の底面80Bと筐体30の内底面30Bとの間には、後述する両面テープ113が介在している。 As shown in FIG. 3, the bottom surface 80 </ b> B of the second spacer 80 is preferably in contact with the inner bottom surface 30 </ b> B of the housing 30. In this specification, “the bottom surface of the second spacer is in contact with the inner bottom surface of the housing” is not limited to the case where the bottom surface of the second spacer is in direct contact with the inner bottom surface of the housing. This is a concept including a case where a layer that can be ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the bottom surface of the spacer and the inner bottom surface of the housing. In FIG. 3, a double-sided tape 113 described later is interposed between the bottom surface 80B of the second spacer 80 and the inner bottom surface 30B of the housing 30.
 また、図3に示される第2のスペーサー80の外側の側面である外側面80Cは筐体30の内側面30Dに接している。本明細書における「第2のスペーサーの外側面」とは、第2のスペーサーの開口部を画定する内側面とは反対側の面を意味するものとする。また、本明細書における「第2のスペーサーの外側面が筐体の内側面と接している」とは、第2のスペーサーの外側面が筐体の内側面に直接接触している場合に限らず、第2のスペーサーの外側面と筐体の内側面との間に、両面テープ、粘着剤または接着剤等、熱伝導という観点でほぼ無視できる層が介在している場合をも含む概念である。図3においては、第2のスペーサー80の外側面80Cは、筐体30の内側面30Dに直接接している。 Also, the outer side surface 80C, which is the outer side surface of the second spacer 80 shown in FIG. 3, is in contact with the inner side surface 30D of the housing 30. In the present specification, the “outer surface of the second spacer” means a surface opposite to the inner surface that defines the opening of the second spacer. In addition, the phrase “the outer surface of the second spacer is in contact with the inner surface of the housing” in this specification is limited to the case where the outer surface of the second spacer is in direct contact with the inner surface of the housing. In addition, the concept includes a case where a layer that can be ignored in terms of heat conduction, such as a double-sided tape, an adhesive, or an adhesive, is interposed between the outer surface of the second spacer and the inner surface of the housing. is there. In FIG. 3, the outer side surface 80 </ b> C of the second spacer 80 is in direct contact with the inner side surface 30 </ b> D of the housing 30.
 第2のスペーサー80と筐体30は、LED素子42に対する第2の光学シート70の位置ずれをより抑制する観点から、固定されていることが好ましい。第2のスペーサー80と筐体30の固定方法としては、特に限定されず、接着や機械的固定手段による固定が挙げられる。図3においては、第2のスペーサー80の底面80Bと筐体30の内底面30Bが、両面テープ113を介して接着されることによって固定されている。ここで、第2のスペーサー80は、枠状となっているので、第2のスペーサーが複数の柱状体から構成されている場合よりも、筐体30との接着面積を増大させることができるので、第2のスペーサー80を固定しやすい。なお、第2のスペーサー80と筐体30は、両面テープ113ではなく、接着剤や粘着剤を介して接着されていてもよい。 It is preferable that the second spacer 80 and the housing 30 are fixed from the viewpoint of further suppressing the displacement of the second optical sheet 70 with respect to the LED element 42. The method for fixing the second spacer 80 and the housing 30 is not particularly limited, and examples include fixing by adhesion or mechanical fixing means. In FIG. 3, the bottom surface 80 </ b> B of the second spacer 80 and the inner bottom surface 30 </ b> B of the housing 30 are fixed by being bonded via a double-sided tape 113. Here, since the second spacer 80 has a frame shape, the adhesion area with the housing 30 can be increased as compared with the case where the second spacer is composed of a plurality of columnar bodies. The second spacer 80 can be easily fixed. The second spacer 80 and the housing 30 may be bonded via an adhesive or an adhesive instead of the double-sided tape 113.
 第2のスペーサー80と第2の光学シート70は、固定されていることが好ましい。第2のスペーサー80と第2の光学シート70の固定方法としては、特に限定されず、接着や機械的固定手段による固定が挙げられる。図3においては、第2のスペーサー80における底面80Bとは反対側の上面80Dと第2の光学シート70が、両面テープ114を介して接着されることによって固定されている。第2のスペーサー80と第2の光学シート70を固定することにより、LED素子42に対する第2のスペーサー80の位置ずれをより抑制できる。なお、第2のスペーサー80と第2の光学シート70は、両面テープ114ではなく、接着剤や粘着剤を用いて固定されていてもよい。 It is preferable that the second spacer 80 and the second optical sheet 70 are fixed. A method for fixing the second spacer 80 and the second optical sheet 70 is not particularly limited, and examples include fixing by adhesion or mechanical fixing means. In FIG. 3, the upper surface 80 </ b> D opposite to the bottom surface 80 </ b> B of the second spacer 80 and the second optical sheet 70 are fixed by being bonded via a double-sided tape 114. By fixing the second spacer 80 and the second optical sheet 70, the positional deviation of the second spacer 80 with respect to the LED element 42 can be further suppressed. Note that the second spacer 80 and the second optical sheet 70 may be fixed using an adhesive or an adhesive instead of the double-sided tape 114.
 図3に示されるように、第2のスペーサー80の内側の側面である内側面80Eは、筐体30の内底面30Bから第2の光学シート70に向けて開口部81の開口径が大きくなるように傾斜していることが好ましい。すなわち、第2のスペーサー80は、上部の厚みが底部の厚みに比べて薄くなったテーパー形状を有している。このような傾斜した内側面80Eを有する第2のスペーサー80を形成することにより、第1の光学シート50からの出射光を第2のスペーサー80の内側面80Eで反射させて、第2の光学シート70に導くことができるので、LED面光源装置20からより効率良く光を出射させることができる。このような傾斜した内側面80Eを有する第2のスペーサー80は、例えば、射出成形、打ち抜き、切削または三次元プリンターによって得ることができる。内側面80Eは、第2のスペーサー80の高さ方向の断面において、曲線状となっていてもよいが、作製し易さの観点から、直線状となっていることが好ましい。 As shown in FIG. 3, the inner side surface 80 </ b> E that is the inner side surface of the second spacer 80 has an opening diameter of the opening 81 that increases from the inner bottom surface 30 </ b> B of the housing 30 toward the second optical sheet 70. It is preferable to be inclined. That is, the second spacer 80 has a tapered shape in which the thickness of the upper part is thinner than the thickness of the bottom part. By forming the second spacer 80 having such an inclined inner surface 80E, the emitted light from the first optical sheet 50 is reflected by the inner surface 80E of the second spacer 80, and the second optical Since the light can be guided to the sheet 70, light can be emitted from the LED surface light source device 20 more efficiently. The second spacer 80 having such an inclined inner surface 80E can be obtained by, for example, injection molding, punching, cutting, or a three-dimensional printer. The inner side surface 80E may be curved in the cross section in the height direction of the second spacer 80, but is preferably linear from the viewpoint of ease of manufacture.
 第2のスペーサー80を構成する材料としては、特に限定されないが、成形し易く、また第2の光学シート70等を衝撃から保護する観点から、樹脂から構成されていることが好ましい。樹脂の中でも、反射率を高めて、第2の光学シート70に光をより導く観点から白色系樹脂が好ましい。 The material constituting the second spacer 80 is not particularly limited, but is preferably made of resin from the viewpoint of easy molding and protection of the second optical sheet 70 and the like from impact. Among the resins, a white resin is preferable from the viewpoint of increasing the reflectance and further guiding light to the second optical sheet 70.
 第2のスペーサー80を構成する樹脂は、第1のスペーサー60を構成する熱可塑性樹脂と同じ樹脂であることが好ましい。ただし、現在、LED面光源装置を曲げることが望まれており、LED面光源装置を曲げるために、第1のスペーサーおよび第2のスペーサーをヤング率が低い樹脂から構成した場合には、LED面光源装置の剛性が低下してしまうので、LED面光源装置を曲げる場合には、ある程度の剛性を維持しながら、LED面光源装置が曲げられるように、第2のスペーサー80を構成する樹脂の25℃でのヤング率は、第1のスペーサー60を構成する熱可塑性樹脂の25℃でのヤング率よりも小さいことが好ましい。第1のスペーサー60を構成する熱可塑性樹脂の25℃でのヤング率および第2のスペーサー80を構成する樹脂の25℃でのヤング率は、それぞれ動的粘弾性測定装置(製品名「Rheogel-E4000」、株式会社ユービーエム製)を用いて、25℃で引張り試験を行い、縦軸に応力、横軸にひずみをとった応力-ひずみ曲線の直線部の傾きから求めるものとする。なお、上記ヤング率は、3回測定して得られた値の算術平均値とする。 The resin constituting the second spacer 80 is preferably the same resin as the thermoplastic resin constituting the first spacer 60. However, at present, it is desired to bend the LED surface light source device, and in order to bend the LED surface light source device, when the first spacer and the second spacer are made of a resin having a low Young's modulus, the LED surface Since the rigidity of the light source device is lowered, when the LED surface light source device is bent, the resin 25 constituting the second spacer 80 is bent so that the LED surface light source device can be bent while maintaining a certain degree of rigidity. The Young's modulus at 0 ° C. is preferably smaller than the Young's modulus at 25 ° C. of the thermoplastic resin constituting the first spacer 60. The Young's modulus at 25 ° C. of the thermoplastic resin constituting the first spacer 60 and the Young's modulus at 25 ° C. of the resin constituting the second spacer 80 are respectively determined by a dynamic viscoelasticity measuring device (product name “Rheogel- E4000 "(manufactured by UBM Co., Ltd.) is used, and a tensile test is performed at 25 ° C, and the stress is obtained from the slope of the linear portion of the stress-strain curve with the vertical axis representing stress and the horizontal axis representing strain. In addition, let the said Young's modulus be the arithmetic mean value of the value obtained by measuring 3 times.
<<レンズシート>>
 レンズシート90は、入射した光の進行方向を変化させて出光側から出射させる機能を有する。レンズシート90は、図17に示されるように、例えばL1のような入射角度が大きい光の進行方向を変化させて出光側から出射させて、正面方向の輝度を集中的に向上させる機能(集光機能)とともに、例えばL2のような入射角度が小さい光を反射させて、第1の光学シート50側に戻す機能(再帰反射機能)を有している。レンズシート90は、図17に示されるように、樹脂フィルム91と、樹脂フィルム91の一方の面に設けられたレンズ層92とを備えている。なお、レンズシート90は、レンズ層92が樹脂フィルム91よりも反射型偏光分離シート100側に位置するように配置されている。
<< Lens sheet >>
The lens sheet 90 has a function of changing the traveling direction of incident light and emitting it from the light exit side. As shown in FIG. 17, the lens sheet 90 changes the traveling direction of light having a large incident angle, such as L1, for example, and emits it from the light-emitting side to intensively improve the luminance in the front direction (collection). In addition to the light function, for example, the light having a small incident angle such as L2 is reflected and returned to the first optical sheet 50 side (retroreflection function). As shown in FIG. 17, the lens sheet 90 includes a resin film 91 and a lens layer 92 provided on one surface of the resin film 91. The lens sheet 90 is arranged so that the lens layer 92 is positioned closer to the reflective polarization separation sheet 100 than the resin film 91.
(樹脂フィルム)
 樹脂フィルム91の構成材料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。
(Resin film)
Examples of the constituent material of the resin film 91 include polyester (for example, polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyamide, polyimide, polyethersulfone, polysulfone, polypropylene, and polymethyl. Examples of the thermoplastic resin include pentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, and polyurethane.
(レンズ層)
 レンズ層92は、出光側に並べて配置された複数の単位レンズ92Aを備えている。単位レンズ92Aは、三角柱状であってもよいし、波状や例えば半球状のような椀状であってもよい。具体的には、単位レンズとしては、単位プリズム、単位シリンドリカルレンズ、単位マイクロレンズ等が挙げられる。なお、そのような単位レンズ形状を有するレンズシートとしては、プリズムシート、レンチキュラーレンズシート、マイクロレンズシート等が挙げられる。
(Lens layer)
The lens layer 92 includes a plurality of unit lenses 92A arranged side by side on the light output side. The unit lens 92A may have a triangular prism shape, or may have a wave shape or a bowl shape such as a hemisphere. Specifically, examples of the unit lens include a unit prism, a unit cylindrical lens, and a unit microlens. Examples of the lens sheet having such a unit lens shape include a prism sheet, a lenticular lens sheet, and a microlens sheet.
 単位レンズ92Aは、光の利用効率を向上させる観点から、80°以上100°以下の頂角θを有することが好ましく、約90°の頂角を有することがより好ましい。 The unit lens 92A preferably has an apex angle θ of 80 ° or more and 100 ° or less, more preferably about 90 °, from the viewpoint of improving the light utilization efficiency.
<反射型偏光分離シート>
 反射型偏光分離シート100は、レンズシート90から出射される光のうち、第1の直線偏光成分(例えば、P偏光)のみを透過し、かつ第1の直線偏光成分と直交する第2の直線偏光成分(例えば、S偏光)を吸収せずに反射する機能を有するものである。反射型偏光分離シート100で反射された第2の直線偏光成分は再度反射され、偏光が解消された状態(第1の直線偏光成分と第2の直線偏光成分とを両方含んだ状態)で、再度、反射型偏光分離シート100に入射する。
<Reflection-type polarized light separation sheet>
The reflection-type polarization separation sheet 100 transmits only a first linearly polarized light component (for example, P-polarized light) out of the light emitted from the lens sheet 90 and is a second straight line orthogonal to the first linearly polarized light component. It has a function of reflecting a polarized light component (for example, S-polarized light) without absorbing it. In the state where the second linearly polarized light component reflected by the reflective polarization separating sheet 100 is reflected again and the polarized light is released (including both the first linearly polarized light component and the second linearly polarized light component), The light again enters the reflective polarization separation sheet 100.
 反射型偏光分離シート100としては、3M社から入手可能な「VIKUITI(登録商標) Dual Brightness Enhancement Film(DBEF)」を用いることができる。また、「VIKUITI(登録商標) DBEF」以外にも、Shinwha Intertek社から入手可能な高輝度偏光シート「WRPS」やワイヤーグリッド偏光子等を、反射型偏光分離シート100として用いることができる。 As the reflective polarization separation sheet 100, “VIKUITI (registered trademark)“ Dual ”Brightness“ Enhancement ”Film (DBEF) available from 3M Company can be used. In addition to “VIKUITI (registered trademark) DBEF”, a high-intensity polarizing sheet “WRPS” or a wire grid polarizer available from Shinwha Intertek can be used as the reflective polarization separating sheet 100.
 本実施形態によれば、第1のスペーサー60が、開口部61間を仕切る仕切部64を有し、かつ少なくとも1つの開口部61の周囲を取り囲む壁部62を備えているので、柱状のスペーサーや単なる枠状のスペーサーに比べて、第1の光学シート50との接触面積を増大させることができる。これにより、第1の光学シート50の撓みを抑制することができる。 According to the present embodiment, the first spacer 60 includes the partition portion 64 that partitions the openings 61 and includes the wall portion 62 that surrounds the periphery of at least one opening 61. Compared with a simple frame-shaped spacer, the contact area with the first optical sheet 50 can be increased. Thereby, the bending of the 1st optical sheet 50 can be suppressed.
 第1の光学シートが光透過反射シートである場合には、光透過反射シートは各区画領域に透過部および反射部のパターンを有しているので、光透過反射シートが撓むことによって、LED素子に対する光透過反射シートの位置が変わるので、輝度の面内均一性が低下するおそれがある。このため、配線基板の表面から光透過反射シートまでの距離は所定の距離に保持する必要がある。本実施形態においては、第1のスペーサー60によって、光透過反射シートである第1の光学シート50の撓みを抑制することができるので、輝度の面内均一性を向上させることができる。 In the case where the first optical sheet is a light transmission / reflection sheet, the light transmission / reflection sheet has a pattern of a transmission part and a reflection part in each partition region. Since the position of the light transmitting / reflecting sheet with respect to the element changes, the in-plane luminance uniformity may be reduced. For this reason, it is necessary to keep the distance from the surface of the wiring board to the light transmission / reflection sheet at a predetermined distance. In the present embodiment, since the first spacer 60 can suppress the bending of the first optical sheet 50 that is a light transmitting and reflecting sheet, the in-plane uniformity of luminance can be improved.
 本実施形態によれば、第1のスペーサー60が、側面間光透過率が30%以下の仕切部64を有しているので、LED素子から発せられ、隣のLED素子側に向かう光は、仕切部64によって遮られる。これにより、ローカルディミング制御を行った場合に、LED素子42からの光が混合されることを抑制できるので、ローカルディミング制御に適している。 According to the present embodiment, since the first spacer 60 has the partition portion 64 having a light transmittance between the side surfaces of 30% or less, the light emitted from the LED element and directed to the adjacent LED element side is It is blocked by the partition part 64. Thereby, when local dimming control is performed, mixing of light from the LED elements 42 can be suppressed, which is suitable for local dimming control.
 本実施形態によれば、第1のスペーサー60が、壁部62を備えているので、柱状のスペーサーや単なる枠状のスペーサーよりも、剛性が高い。このため、LED面光源装置20に対して振動試験を行った場合に、柱状のスペーサーや単なる枠状のスペーサーを用いた場合よりも、第1の光学シート50の揺れ幅が小さくなる。これにより、振動試験を行った場合に、LED素子42に対する第1の光学シート50の位置ずれを抑制することができる。また、第1のスペーサー60は、柱状のスペーサーや単なる枠状のスペーサーよりも剛性が高いので、振動試験を行った場合であっても、第1のスペーサー60は破損しにくい。 According to the present embodiment, since the first spacer 60 includes the wall portion 62, it has higher rigidity than a columnar spacer or a simple frame-shaped spacer. For this reason, when the vibration test is performed on the LED surface light source device 20, the swing width of the first optical sheet 50 is smaller than when a columnar spacer or a simple frame spacer is used. Thereby, when the vibration test is performed, the positional deviation of the first optical sheet 50 with respect to the LED element 42 can be suppressed. Further, since the first spacer 60 has higher rigidity than a columnar spacer or a simple frame-shaped spacer, the first spacer 60 is not easily damaged even when a vibration test is performed.
 第1の光学シートが光透過反射シートである場合には、光透過反射シートは各区画領域に透過部および反射部のパターンを有しているので、光透過反射シートの位置ずれが生じることによって、LED素子に対する光透過反射シートの位置が変わるので、輝度の面内均一性が低下するおそれがある。これに対し、本実施形態においては、LED素子42に対する第1の光学シート50の位置ずれを抑制することができるので、輝度の面内均一性を向上させることができる。 In the case where the first optical sheet is a light transmission / reflection sheet, the light transmission / reflection sheet has a pattern of a transmission part and a reflection part in each partition region. Since the position of the light transmitting / reflecting sheet with respect to the LED element changes, the in-plane uniformity of luminance may be lowered. On the other hand, in this embodiment, since the position shift of the 1st optical sheet 50 with respect to the LED element 42 can be suppressed, the in-plane uniformity of a brightness | luminance can be improved.
 第1のスペーサー140、150、160、170、180においても、開口部間を仕切る仕切部を有し、かつ少なくとも1つの開口部の周囲を取り囲む壁部を備えているので、第1のスペーサー60と同様の上記効果を得ることができる。また、第1のスペーサーとして、仕切部190、200、210、220、230、240を有し、少なくとも1つの開口部の周囲を取り囲む壁部を備えるスペーサーを用いた場合も、第1のスペーサー60と同様の上記効果を得ることができる。 The first spacers 140, 150, 160, 170, and 180 also have a partition portion that partitions the openings and includes a wall portion that surrounds at least one of the openings, and thus the first spacer 60 The same effect as above can be obtained. In addition, when the spacer having the partition portions 190, 200, 210, 220, 230, and 240 and including the wall portion surrounding the periphery of at least one opening is used as the first spacer, the first spacer 60 is also used. The same effect as above can be obtained.
 本実施形態のLED画像表示装置10およびLED面光源装置20の用途は、特に限定されないが、例えば、テレビ用途、車載用途や看板等の広告媒体用途に用いることができる。これらの中でも、LED画像表示装置10およびLED面光源装置は、振動試験に耐え得るものであるので、車載用途に好適に用いることができる。 The use of the LED image display device 10 and the LED surface light source device 20 of the present embodiment is not particularly limited, but can be used for television media, in-vehicle applications, billboards and other advertising media. Among these, the LED image display device 10 and the LED surface light source device can withstand vibration tests, and can be suitably used for in-vehicle use.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。 In order to describe the present invention in detail, examples will be described below, but the present invention is not limited to these descriptions.
<実施例1>
 まず、LED実装基板を作製した。具体的には、縦112mm×横301mmおよび厚さ25μmのポリイミドフィルムの一方の面に、配線用の厚さ35μmの銅層を積層した。その後、配線用の銅層をエッチングして、銅配線部を形成した。銅配線部を形成した後、スクリーン印刷法によって膜厚20μmの絶縁性保護膜を形成し、フレキシブル配線基板を得た。フレキシブル配線基板を得た後、フレキシブル配線基板の銅配線部にリフロー方式によりはんだ層を介して縦5個×横12個の合計60個のLED素子を実装して、LED実装基板を得た。
<Example 1>
First, an LED mounting substrate was produced. Specifically, a copper layer having a thickness of 35 μm for wiring was laminated on one surface of a polyimide film having a length of 112 mm × width of 301 mm and a thickness of 25 μm. Thereafter, the copper layer for wiring was etched to form a copper wiring part. After forming the copper wiring portion, an insulating protective film having a thickness of 20 μm was formed by screen printing to obtain a flexible wiring board. After obtaining the flexible wiring board, a total of 60 LED elements of 5 vertical x 12 horizontal were mounted on the copper wiring part of the flexible wiring board via a solder layer by a reflow method to obtain an LED mounting board.
 また、光透過反射シートを作製した。光透過反射シートは、厚さ0.5mmの発泡ポリエチレンテレフタレートフィルムに、プレス打ち抜き加工によって、厚さ方向に貫通する複数の開口部を所定のパターンで形成して、作製された。これにより、各区画領域が透過部および反射部からなる縦5個×横12個の合計60個の区画領域を有する光透過反射シートを得た。光透過反射シートにおいては、各区画領域の大きさが縦22mm×横24.4mmであり、かつ各区画領域の中央部から外縁部に向けて開口率が漸増するものであった。 Also, a light transmission / reflection sheet was prepared. The light transmissive reflection sheet was produced by forming a plurality of openings penetrating in the thickness direction in a predetermined pattern on a foamed polyethylene terephthalate film having a thickness of 0.5 mm by press punching. As a result, a light transmitting / reflecting sheet having 60 partition regions in total of 5 vertical portions × 12 horizontal portions each including a transmission portion and a reflection portion was obtained. In the light transmission / reflection sheet, the size of each partition region was 22 mm long × 24.4 mm wide, and the aperture ratio gradually increased from the center of each partition region toward the outer edge.
 また、第1のスペーサーを作製した。第1のスペーサーは、格子状となっており、遮光材としての酸化チタン(TiO)を含むポリカーボネート樹脂を用いて射出成形によって作製した。酸化チタンは、ポリカーボネート樹脂100質量部に対して30質量部用いた。第1のスペーサーは、縦22mm×横24.4mmの第1のスペーサーの高さ方向に貫通する縦5個×横12個のマトリクス状に配置された開口部と、縦112mm×横294.8mm、底面幅2mm、上面幅1.9mmおよび高さ2mmの四角形状の枠部、および開口部間を仕切り、枠部と一体的に形成された底面幅2mm、上面幅1.9mmおよび高さ2mmの仕切部本体からなる仕切部を有する壁部とを備えているものであった。壁部は、全ての開口部の周囲を取り囲むものであった。枠部および仕切部本体は、ポリカーボネート樹脂と、ポリカーボネート樹脂中に存在する酸化チタンとから構成されていた。 Moreover, the 1st spacer was produced. The first spacer has a lattice shape and is manufactured by injection molding using a polycarbonate resin containing titanium oxide (TiO 2 ) as a light shielding material. Titanium oxide was used in an amount of 30 parts by mass with respect to 100 parts by mass of the polycarbonate resin. The first spacers are 22 mm long × 24.4 mm wide, the first spacers penetrating in the height direction of 5 × vertical × 12 horizontal matrix openings, and 112 mm long × 294.8 mm wide. A rectangular frame portion having a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm, and an opening are partitioned, and a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm formed integrally with the frame portion. The wall part which has the partition part which consists of this partition part main body was provided. The wall portion surrounds all the openings. The frame part and the partition part main body were composed of a polycarbonate resin and titanium oxide present in the polycarbonate resin.
 さらに、第2のスペーサーを作製した。第2のスペーサーは、ポリカーボネート樹脂を用いて射出成形によって作製した。第2のスペーサーは、縦117mm×横310mm、幅2mm、および高さ5mmの枠部と、枠部の内側に大きさが縦113mm×横306mmの第2のスペーサーの高さ方向に貫通する1つの開口部とを備えているものであった。 Furthermore, a second spacer was produced. The second spacer was produced by injection molding using a polycarbonate resin. The second spacer penetrates in the height direction of a second spacer having a length of 113 mm × width of 306 mm inside the frame portion, and a frame portion of length 117 mm × width 310 mm, width 2 mm, and height 5 mm. And two openings.
 そして、大きさが縦117mm×横310mm×高さ7mmの収容空間を有するアルミニウム製の筐体本体に、上記作製したLED実装基板をLED素子が上側になるように配置した。次いで、LED実装基板におけるフレキシブル配線基板の表面に上記作製した第1のスペーサーを両面テープ(製品名「No.5000NS」、日東電工株式会社製)を介して固定し、さらに第1のスペーサー上に上記作製した光透過反射シートを両面テープ(製品名「No.5000NS」、日東電工株式会社製)を介して固定した。なお、第1のスペーサーは、第1のスペーサーの開口部を介して各LED素子からの光が通過するように配置され、また光透過反射シートは区画領域間の境界部が第1のスペーサーの仕切部の位置となるように配置された。また、上記作製した第2のスペーサーを筐体本体とLED実装基板および第1のスペーサーとの間に配置するとともに、筐体本体の底面に第2のスペーサーを両面テープ(製品名「No.5000NS」、日東電工株式会社製)を介して固定した。さらに、第2のスペーサー上に縦117mm×横310mmおよび厚さ1.5mmの光拡散シートを配置した。最後に、大きさが縦110mm×横303mmの開口部を有する枠状の蓋体を筐体本体に勘合させて、LED面光源装置を得た。なお、フレキシルブル配線基板の表面から光透過反射シートまでの距離は2mmであり、フレキシルブル配線基板の表面から光拡散シートまでの距離は4.8mmであり、光透過反射シートと光拡散シートとの間の距離は2.3mmであった。 Then, the produced LED mounting substrate was placed on an aluminum casing main body having a storage space of 117 mm in length, 310 mm in width, and 7 mm in height so that the LED element was on the upper side. Next, the first spacer prepared above is fixed to the surface of the flexible wiring board in the LED mounting substrate via a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation), and further on the first spacer. The produced light transmission reflection sheet was fixed via a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation). The first spacer is arranged so that light from each LED element passes through the opening of the first spacer, and the light transmitting / reflecting sheet has a boundary portion between the partition regions of the first spacer. It was arrange | positioned so that it might become a position of a partition part. Further, the produced second spacer is disposed between the housing main body, the LED mounting substrate, and the first spacer, and the second spacer is attached to the bottom surface of the housing main body with a double-sided tape (product name “No. 5000NS”). ”, Manufactured by Nitto Denko Corporation). Furthermore, a light diffusion sheet having a length of 117 mm × width of 310 mm and a thickness of 1.5 mm was disposed on the second spacer. Finally, a frame-shaped lid having an opening with a size of 110 mm in length and 303 mm in width was fitted into the housing body to obtain an LED surface light source device. The distance from the surface of the flexible wiring board to the light transmission / reflection sheet is 2 mm, the distance from the surface of the flexible wiring board to the light diffusion sheet is 4.8 mm, and the light transmission / reflection sheet, the light diffusion sheet, and The distance between was 2.3 mm.
<実施例2>
 実施例2においては、酸化チタンを含むポリカーボネート樹脂から構成された第1のスペーサーの代わりに、以下によって作製された第1のスペーサーを用いたこと以外は、実施例1と同様にして、LED面光源装置を得た。第1のスペーサーの作製においては、まず、酸化チタンを含まないアクリル樹脂を射出成形して、縦22mm×横24.4mmの第1のスペーサーの高さ方向に貫通する縦5個×横12個のマトリクス状に配置された開口部と、縦112mm×横294.8mm、底面幅2mm、上面幅1.9mmおよび高さ2mmの四角形状の枠部、および開口部間を仕切り、枠部と一体的に形成された底面幅2mm、上面幅1.9mmおよび高さ2mmの仕切部本体とを形成した。そして、仕切部本体の開口部側の両方の側面に、株式会社アサヒペン製のメッキ調スプレー(シルバー)によってスプレーコートして、室温で1時間乾燥させることによって、膜厚15μmの遮光層を形成した。これにより、枠部と、仕切部本体および遮光層からなる仕切部とを有する壁部を形成し、第1のスペーサーを得た。壁部は、全ての開口部の周囲を取り囲むものであった。
<Example 2>
In Example 2, instead of the first spacer composed of the polycarbonate resin containing titanium oxide, the LED surface was used in the same manner as in Example 1 except that the first spacer produced as follows was used. A light source device was obtained. In the production of the first spacer, first, an acrylic resin not containing titanium oxide is injection-molded, and the vertical spacer is 22 mm long by 24.4 mm wide and penetrates in the height direction of the first spacer by 5 vertical by 12 horizontal. The openings are arranged in a matrix, a rectangular frame having a length of 112 mm × width of 294.8 mm, a bottom surface width of 2 mm, a top surface width of 1.9 mm and a height of 2 mm, and the openings are partitioned to be integrated with the frame portion. A partition part main body having a bottom surface width of 2 mm, a top surface width of 1.9 mm, and a height of 2 mm was formed. And the light shielding layer with a film thickness of 15 micrometers was formed by spray-coating with the plating-like spray (silver) by Asahi Pen Co., Ltd. on both sides of the opening part side of a partition part main body, and making it dry at room temperature for 1 hour. . Thereby, the wall part which has a frame part and the partition part which consists of a partition part main body and a light shielding layer was formed, and the 1st spacer was obtained. The wall portion surrounds all the openings.
<比較例1>
 比較例1においては、酸化チタンを含むポリカーボネート樹脂の代わりに、酸化チタンを含まないポリカーボネート樹脂を用いて第1のスペーサーを形成したこと以外は、実施例1と同様にして、LED面光源装置を得た。
<Comparative Example 1>
In Comparative Example 1, an LED surface light source device was manufactured in the same manner as in Example 1 except that the first spacer was formed using a polycarbonate resin not containing titanium oxide instead of the polycarbonate resin containing titanium oxide. Obtained.
<比較例2>
 比較例2においては、格子状の第1のスペーサーの代わりに、複数の柱状の第1のスペーサーを用いたこと以外は、実施例1と同様にして、LED面光源装置を得た。比較例1で用いた第1のスペーサーは、ポリカーボネート樹脂から構成された直径5mm、高さ2mmの柱状のものであり、各LED素子間に1本ずつ配置された。なお、柱状の第1のスペーサーは、両面テープ(製品名「No.5000NS」、日東電工株式会社製)を介してフレキシブル配線基材および光反射透過シートと固定された。
<Comparative example 2>
In Comparative Example 2, an LED surface light source device was obtained in the same manner as in Example 1 except that a plurality of columnar first spacers were used instead of the lattice-shaped first spacer. The first spacer used in Comparative Example 1 was a columnar shape made of polycarbonate resin and having a diameter of 5 mm and a height of 2 mm, and one spacer was disposed between each LED element. The columnar first spacers were fixed to the flexible wiring substrate and the light reflecting / transmitting sheet through a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation).
<比較例3>
 比較例3においては、格子状の第1のスペーサーの代わりに、仕切部を有しない1つの開口部からなる枠状の第1のスペーサーを用いたこと以外は、実施例1と同様にして、LED面光源装置を得た。比較例2で用いた第1のスペーサーは、ポリカーボネート樹脂から構成された縦112mm×横294.8mm、幅2mm、高さ2mmである枠部と、枠部の内側に縦108mm×横290.8mmの1つの開口部とを有するものであった。なお、枠状の第1のスペーサーは、両面テープ(製品名「No.5000NS」、日東電工株式会社製)を介してフレキシブル配線基材および光反射透過シートと固定された。
<Comparative Example 3>
In Comparative Example 3, in the same manner as in Example 1 except that a frame-shaped first spacer composed of one opening portion having no partitioning portion was used instead of the lattice-shaped first spacer, An LED surface light source device was obtained. The first spacer used in Comparative Example 2 is composed of a polycarbonate resin having a length of 112 mm × width of 294.8 mm, a width of 2 mm, a height of 2 mm, and a length of 108 mm × width of 290.8 mm inside the frame. One opening. The first spacer in a frame shape was fixed to the flexible wiring substrate and the light reflecting / transmitting sheet through a double-sided tape (product name “No. 5000NS”, manufactured by Nitto Denko Corporation).
<撓み評価>
 実施例および比較例に係るLED面光源装置において、光透過反射シートに撓みが発生しているか否かを目視により評価した。なお、撓みは、後述する振動試験前の光透過反射シートで確認するものとする。
 ○:光透過反射シートに撓みが確認されなかった。
 ×:光透過反射シートに撓みが確認された。
<Bending evaluation>
In the LED surface light source devices according to Examples and Comparative Examples, it was visually evaluated whether or not the light transmission / reflection sheet was bent. In addition, a bending shall be confirmed with the light transmission reflection sheet before the vibration test mentioned later.
○: Deflection was not confirmed in the light transmission reflection sheet.
X: Deflection was confirmed in the light transmission reflection sheet.
<側面間光透過率測定>
 実施例1、2および比較例1に係る第1のスペーサーにおいて、仕切部の側面間光透過率を測定した。側面間光透過率は、以下のようにして測定した。まず、第1のスペーサーの仕切部の一部を仕切部の両側面を含むように仕切部が延びる方向と直交する方向に切断して底面幅2mm、上面幅1.9mm、高さ2mm、長さ10mmのサンプルを得た。一方で、積分球(内径:60mm)を取り付けた紫外可視近赤外分光光度計(製品名「V-7200」、日本分光株式会社製)と、光透過拡散板と、第1の光ダクトと、第2の光ダクトとを用いて、サンプルの側面間透過率の測定システムを用意した。光透過拡散板は、縦30mm、横30mm、厚さ2mmの乳白色のアクリル板を用いた。第1の光ダクトおよび第2の光ダクトは、四角筒状となっていた。第1の光ダクトの大きさは、縦2mm、横10mm、長さ20mmであり、第2の光ダクトの大きさは、縦2mm、横10mm、長さ20mmであった。また、第1の光ダクトの開口の大きさは、縦1.8mm、横9.8mmであり、第2の光ダクトの開口の大きさは、縦1.8mm、横9.8mmであった。また第1の光ダクトおよび第2の光ダクトの内面はアルミニウムから構成されており、鏡面反射するようになっていた。第1の光ダクトおよび第2の光ダクトのそれぞれ一方の開口縁部は、開口縁部全体をサンプルの側面に接触させるためにサンプルの側面に沿った形状となっていた。
<Measurement of light transmittance between sides>
In the first spacers according to Examples 1 and 2 and Comparative Example 1, the light transmittance between the side surfaces of the partition portion was measured. The light transmittance between the side surfaces was measured as follows. First, a part of the partition portion of the first spacer is cut in a direction orthogonal to the direction in which the partition portion extends so as to include both side surfaces of the partition portion, and the bottom surface width is 2 mm, the top surface width is 1.9 mm, the height is 2 mm, and the length A sample with a thickness of 10 mm was obtained. On the other hand, an ultraviolet-visible near-infrared spectrophotometer (product name “V-7200”, manufactured by JASCO Corporation) equipped with an integrating sphere (inner diameter: 60 mm), a light transmission diffusion plate, a first light duct, A measurement system for the transmittance between the side surfaces of the sample was prepared using the second optical duct. As the light transmission diffusion plate, a milky white acrylic plate having a length of 30 mm, a width of 30 mm, and a thickness of 2 mm was used. The first light duct and the second light duct were in the shape of a square cylinder. The first optical duct was 2 mm long, 10 mm wide, and 20 mm long, and the second optical duct was 2 mm long, 10 mm wide, and 20 mm long. The opening size of the first optical duct was 1.8 mm in length and 9.8 mm in width, and the opening size of the second optical duct was 1.8 mm in length and 9.8 mm in width. . Further, the inner surfaces of the first optical duct and the second optical duct are made of aluminum and are specularly reflected. The opening edge of each one of the first light duct and the second light duct was shaped along the side of the sample so that the entire opening edge was in contact with the side of the sample.
 これらを用意した後、上記分光光度計の光源と積分球の間に光源側から第1の光ダクトおよび第2の光ダクトを配置し、かつ積分球の開口に第2の光ダクトを若干挿入した状態で、光源を点灯させて、第1および第2の光ダクトを介して積分球に入射する入射光量(τ)を以下の測定条件で測定した。
(測定条件)
・波長域:400nm~800nm
・光源:タングステンハロゲンランプ
・検出器:光電子増倍管
After preparing these, the first light duct and the second light duct are arranged from the light source side between the light source of the spectrophotometer and the integrating sphere, and the second optical duct is slightly inserted into the opening of the integrating sphere. In this state, the light source was turned on, and the amount of incident light (τ 1 ) incident on the integrating sphere via the first and second optical ducts was measured under the following measurement conditions.
(Measurement condition)
・ Wavelength range: 400nm to 800nm
・ Light source: Tungsten halogen lamp ・ Detector: Photomultiplier tube
 その後、光源と積分球の間に、光源側から光透過拡散板、第1の光ダクト、サンプル、第2の光ダクトをこの順で配置した。この際、サンプルと第1の光ダクトとの間からの光漏れおよびサンプルと第2の光ダクトからの光漏れを抑制するために、第1の光ダクトを、開口縁部全体がサンプルの一方の側面に接触するように配置し、また第2の光ダクトを、開口縁部全体がサンプルの他方の側面に接触するように配置した。さらに、積分球の開口に第2の光ダクトを若干挿入した。この状態で、上記入射光量を測定する際の点灯条件と同様の条件で光源を点灯させて、光源からの光を、第1の光ダクトを介してサンプルの一方の側面から入射させた。そして、サンプルを透過して、第2の光ダクトを介して積分球に入射する透過光量(τ)を上記入射光量(τ)の測定条件と同様の測定条件で測定した。 Thereafter, a light transmission diffusion plate, a first light duct, a sample, and a second light duct were arranged in this order from the light source side between the light source and the integrating sphere. At this time, in order to suppress light leakage from between the sample and the first light duct and light leakage from the sample and the second light duct, the entire opening edge of one of the samples is connected to the first light duct. The second light duct was placed in contact with the other side of the sample, and the second light duct was placed in contact with the other side of the sample. Further, a second optical duct was inserted slightly into the opening of the integrating sphere. In this state, the light source was turned on under the same lighting conditions as when measuring the amount of incident light, and light from the light source was incident from one side surface of the sample through the first optical duct. Then, the amount of transmitted light (τ 2 ) transmitted through the sample and incident on the integrating sphere via the second optical duct was measured under the same measurement conditions as those for the incident light amount (τ 1 ).
 そして、サンプルに入射した入射光量(τ)に対するサンプルを透過した透過光量(τ)の割合(τ/τ×100)によって、側面間光透過率を求めた。側面間光透過率は、3回測定して得られた値の算術平均値とした。 And the light transmittance between side surfaces was calculated | required by the ratio ((tau) 2 / (tau) 1 * 100) of the transmitted light amount ((tau) 2 ) which permeate | transmitted the sample with respect to the incident light amount ((tau) 1 ) incident on the sample. The light transmittance between the side surfaces was an arithmetic average value of values obtained by measuring three times.
<明暗評価>
 実施例および比較例に係るLED面光源装置において、ローカルディミング制御を行い、LED面光源装置の表面(第2の光学シートの表面)において、LED素子が点灯している部分と点灯していない部分での明暗の差を目視で評価した。評価基準は、以下の通りとした。
 ○:明暗が明瞭であった。
 △:明暗が不明瞭であった。
 ×:明暗が著しく不明瞭であった。
<Light / dark evaluation>
In the LED surface light source device according to the example and the comparative example, local dimming control is performed, and on the surface of the LED surface light source device (the surface of the second optical sheet), a portion where the LED element is lit and a portion where the LED element is not lit The difference in light and dark was visually evaluated. The evaluation criteria were as follows.
○: Light and dark were clear.
Δ: Light and dark were unclear.
X: Brightness and darkness were remarkably unclear.
<輝度の面内均一性評価>
 実施例および比較例に係るLED面光源装置において、それぞれ、振動試験を行い、振動試験前後において、それぞれLED面光源装置の発光面(光拡散シートの表面)の輝度分布を測定し、輝度の面内均一性を評価するとともに、振動試験前後における面内均一性の変化率を求めて、振動試験前後において面内均一性がどの程度低下したかを評価した。
<Evaluation of in-plane brightness uniformity>
In the LED surface light source devices according to the example and the comparative example, a vibration test is performed, and before and after the vibration test, the luminance distribution of the light emitting surface (the surface of the light diffusion sheet) of the LED surface light source device is measured. In addition to evaluating the in-plane uniformity, the rate of change of the in-plane uniformity before and after the vibration test was determined to evaluate how much the in-plane uniformity had decreased before and after the vibration test.
 振動試験は、単軸動電式振動試験装置(製品名「EM2605S/H10」、IMV株式会社製)の振動テーブルに、LED面光源装置の筐体の短手方向における外側面が振動テーブル側となるようにLED面光源装置を立てた状態で、LED面光源装置を固定し、互いに直交する3軸方向(X方向、Y方向、Z方向)の各方向に対し1時間ずつ下記条件で振動させることにより行った。振動条件は、掃引速度1oct/分で、周波数が10Hz~30Hzの間は振幅±0.75mmで振動させ、周波数が30Hz~500Hzの間は加速度を3Gとした。 The vibration test is performed on the vibration table of the single-axis electrodynamic vibration test apparatus (product name “EM2605S / H10”, manufactured by IMV Corporation), and the outer surface of the LED surface light source device in the short direction is the vibration table side. In a state where the LED surface light source device is erected, the LED surface light source device is fixed and vibrated for one hour in each of the three axial directions (X direction, Y direction, Z direction) orthogonal to each other under the following conditions: Was done. The vibration conditions were a sweep rate of 1 oct / min, a vibration with an amplitude of ± 0.75 mm when the frequency was 10 Hz to 30 Hz, and an acceleration of 3 G when the frequency was 30 Hz to 500 Hz.
 輝度分布は、LED素子1個当たり180mAの電流を投入して、LED素子を点灯させた状態で、LED面光源装置の発光面(光拡散シートの表面)から発光面の法線方向に1m離れた箇所において、2次元色彩輝度計(製品名「CA-2000」、コニカミノルタ株式会社製)を用いて測定された。 The luminance distribution is 1 m away from the light emitting surface of the LED surface light source device (the surface of the light diffusion sheet) in the normal direction of the light emitting surface in a state where the LED element is turned on by supplying a current of 180 mA per LED element. The measurement was performed using a two-dimensional color luminance meter (product name “CA-2000”, manufactured by Konica Minolta, Inc.).
 輝度の面内均一性は、測定領域における中央領域の縦22mm×横146.4mmを評価範囲とし、評価範囲内の輝度分布における最大輝度(Lvmax)および最小輝度(Lvmin)を用いて、最大輝度(Lvmax)に対する最小輝度(Lvmin)の割合(Lvmin/Lvmax)を求めることによって、数値化された。 The in-plane uniformity of the luminance is 22 mm × 146.4 mm in the central region in the measurement region, and the maximum luminance (Lv max ) and the minimum luminance (Lv min ) in the luminance distribution within the evaluation range are used. by determining the ratio of the minimum luminance (Lv min) (Lv min / Lv max) with respect to the maximum luminance (Lv max), it was quantified.
 また、上記で求めた振動試験前における輝度の面内均一性および振動試験後における輝度の面内均一性を用いて、振動試験前後の輝度の面内均一性の変化率を求め、振動試験前後で輝度の面内均一性がどの程度低下したか評価した。評価基準は、以下の通りとした。
 ○:振動試験前後における輝度の面内均一性の変化率が10%以内であった。
 ×:振動試験前後における輝度の面内均一性の変化率が10%を超えていた。
 なお、振動試験前後の輝度の面内均一性の変化率は、振動試験前の輝度の面内均一性と振動試験後の輝度の面内均一性の差(振動試験前の輝度の面内均一性-振動試験後の輝度の面内均一性)とした。
Also, using the in-plane brightness uniformity before the vibration test and the in-plane brightness uniformity after the vibration test obtained above, the rate of change in the in-plane brightness before and after the vibration test is obtained, and before and after the vibration test. The degree to which the in-plane luminance uniformity was reduced was evaluated. The evaluation criteria were as follows.
A: The rate of change of the in-plane uniformity of luminance before and after the vibration test was within 10%.
X: The rate of change in in-plane uniformity of luminance before and after the vibration test exceeded 10%.
The rate of change in in-plane uniformity of brightness before and after the vibration test is the difference between the in-plane uniformity of brightness before the vibration test and the in-plane uniformity of brightness after the vibration test (in-plane uniformity of brightness before the vibration test). -In-plane uniformity of luminance after vibration test).
<外観評価>
 実施例および比較例に係るLED面光源装置において、振動試験後の第1のスペーサーの外観を目視にて観察し、評価した。評価結果は、以下の基準とした。
 ○:第1のスペーサーにおいて、割れや折れ等の損傷が確認されなかった。
 ×:第1のスペーサーにおいて、割れや折れ等の損傷が確認された。
<Appearance evaluation>
In the LED surface light source devices according to Examples and Comparative Examples, the appearance of the first spacer after the vibration test was visually observed and evaluated. The evaluation results were based on the following criteria.
○: In the first spacer, damage such as cracking or breaking was not confirmed.
X: In the first spacer, damage such as cracking or breaking was confirmed.
 以下、結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 以下、結果について述べる。比較例1においては、光反射シートに撓みが確認されなかったものの、第1のスペーサーの仕切部の側面間光透過率が、30%を超えていたので、明暗評価の結果が劣っていた。これは、LED素子の光が仕切部を透過して、LED素子が点灯していない領域に入り込んだためであると考えられる。比較例2においては、第1のスペーサーが柱状のものであり、仕切部を有していなかったので、光透過反射シートに撓みが確認され、また明暗評価の結果も劣っていた。比較例3においては、第1のスペーサーが仕切部を有しない枠状のものであり、仕切部を有していなかったので、光透過反射シートに撓みが確認され、また明暗評価の結果も劣っていた。また、比較例2および比較例3においては、振動試験前の輝度の面内均一性が低かった。これは、光透過反射シートが撓んでいたからであると考えられる。 The following describes the results. In Comparative Example 1, although no deflection was confirmed in the light reflecting sheet, the light transmittance between the side surfaces of the partitioning portion of the first spacer exceeded 30%, and thus the results of the brightness evaluation were inferior. This is considered to be because the light from the LED element penetrates the partition and enters the area where the LED element is not lit. In Comparative Example 2, since the first spacer was columnar and did not have a partition portion, the light transmitting / reflecting sheet was confirmed to be bent, and the results of brightness evaluation were also inferior. In Comparative Example 3, the first spacer is a frame having no partition part, and has no partition part. Therefore, the light transmission / reflection sheet is confirmed to be bent, and the result of the brightness evaluation is also inferior. It was. In Comparative Example 2 and Comparative Example 3, the in-plane uniformity of luminance before the vibration test was low. This is presumably because the light transmission / reflection sheet was bent.
 これに対し、実施例1および2においては、第1のスペーサーが仕切部を備える壁部から構成されていたので、光透過反射シートに撓みが確認されなかった。また、実施例1、2においては、振動試験前の輝度の面内均一性が高かった。これは、光透過反射シートが撓んでいなかったからであると考えられる。さらに、第1のスペーサーにおける仕切部の側面間光透過率が30%以下であったので、LED素子の光が仕切部を透過せず、LED素子が点灯していない領域に入り込むことを抑制でき、これにより明暗評価が良好であった。 On the other hand, in Examples 1 and 2, since the first spacer was composed of the wall portion provided with the partitioning portion, no bending was confirmed in the light transmission / reflection sheet. In Examples 1 and 2, the in-plane uniformity of luminance before the vibration test was high. This is considered because the light transmission reflection sheet was not bent. Furthermore, since the light transmittance between the side surfaces of the partition part in the first spacer is 30% or less, it is possible to suppress the light of the LED element from passing through the partition part and entering the region where the LED element is not lit. As a result, the brightness evaluation was good.
 比較例2においては、振動試験前の輝度の面内均一性に比べて振動試験後の輝度の面内均一性が明らかに低下していた。これは、第1のスペーサーが柱状のものであったので、剛性が低く、振動試験によって、LED素子に対して光透過反射シートが位置ずれを起こしてしまったものと考えられる。また、比較例3においては、振動試験前の輝度の面内均一性が低かった。これは、光透過反射シートが撓んでいたからであると考えられる。さらに、比較例3においては、振動試験前の面内均一性に比べて振動試験後の面内均一性が明らかに低下していた。これは、第1のスペーサーが仕切部を有しない枠状のものであったので、剛性が低く、振動試験によって、LED素子に対して光透過反射シートが位置ずれを起こしてしまったものと考えられる。 In Comparative Example 2, the in-plane brightness uniformity after the vibration test was clearly lower than the in-plane brightness uniformity before the vibration test. This is probably because the first spacer was a columnar shape, so that the rigidity was low, and the light transmission / reflection sheet was displaced from the LED element by the vibration test. In Comparative Example 3, the in-plane uniformity of luminance before the vibration test was low. This is presumably because the light transmission / reflection sheet was bent. Furthermore, in Comparative Example 3, the in-plane uniformity after the vibration test was clearly reduced as compared with the in-plane uniformity before the vibration test. This is because the first spacer was a frame-like shape having no partition part, so that the rigidity was low, and it was considered that the light transmission / reflection sheet was displaced from the LED element by the vibration test. It is done.
 これに対し、実施例1においては、比較例2、3よりも振動試験前の面内均一性に対する振動試験後の面内均一性の低下が抑制されていた。これは、第1のスペーサーが枠部および仕切部を有する壁部から構成されていたので、剛性が高く、振動試験によっても、LED素子に対して光透過反射シートの位置ずれがほぼ起こらなかったものと考えられる。 On the other hand, in Example 1, the deterioration of the in-plane uniformity after the vibration test with respect to the in-plane uniformity before the vibration test was suppressed as compared with Comparative Examples 2 and 3. This is because the first spacer is composed of a wall part having a frame part and a partition part, so that the rigidity is high, and the positional deviation of the light transmission / reflection sheet with respect to the LED element hardly occurs even in the vibration test. It is considered a thing.
10…LED画像表示装置
20…LED面光源装置
40…LED実装基板
41…配線基板
42…LED素子
50、130…第1の光学シート
50A…外周面
51、131…区画領域
51A、131A…中央部
51B、131B…外縁部
52、132…透過部
53、133…反射部
60、140、150、160、170、180…第1のスペーサー
60C…外周面
61…開口部
62、142、152、162、171…壁部
63…枠部
64、210、220、230、240、250、260…仕切部
65、211、221、231、241、251、261…仕切部本体
70…第2の光学シート
80…第2のスペーサー
212、222、232、242、252、262…遮光層

 
DESCRIPTION OF SYMBOLS 10 ... LED image display apparatus 20 ... LED surface light source device 40 ... LED mounting board 41 ... Wiring board 42 ... LED element 50, 130 ... 1st optical sheet 50A ... Outer peripheral surface 51, 131 ... Partition area 51A, 131A ... Center part 51B, 131B ... outer edge portions 52, 132 ... transmission portions 53, 133 ... reflection portions 60, 140, 150, 160, 170, 180 ... first spacer 60C ... outer peripheral surface 61 ... openings 62, 142, 152, 162, 171 ... Wall 63 ... Frame 64, 210, 220, 230, 240, 250, 260 ... Partition 65, 211, 221, 231, 241, 251, 261 ... Partition main body 70 ... Second optical sheet 80 ... Second spacers 212, 222, 232, 242, 252, 262...

Claims (12)

  1.  配線基板、および前記配線基板の一方の面に実装された複数のLED素子を備えるLED実装基板と、前記LED素子側に配置された光学シートとを備えるLED面光源装置に用いられ、かつ前記LED実装基板と前記光学シートとの間に配置され、前記LED実装基板に対し前記光学シートを離間させるスペーサーであって、
     前記スペーサーの高さ方向に貫通する2以上の開口部と、
     前記開口部間を仕切る仕切部を有し、かつ少なくとも1つの前記開口部の周囲を取り囲む壁部と、を備え、
     前記仕切部が、前記開口部に面する2つの側面を有し、かつ熱可塑性樹脂を含み、
     前記仕切部における一方の前記側面から他方の前記側面への光透過率が、30%以下である、スペーサー。
    An LED surface light source device including a wiring board, an LED mounting board including a plurality of LED elements mounted on one surface of the wiring board, and an optical sheet disposed on the LED element side, and the LED A spacer that is disposed between the mounting substrate and the optical sheet, and that separates the optical sheet from the LED mounting substrate,
    Two or more openings penetrating in the height direction of the spacer;
    A partition that partitions between the openings, and a wall that surrounds at least one of the openings, and
    The partition has two side faces facing the opening, and includes a thermoplastic resin;
    The spacer whose light transmittance from one said side surface in the said partition part to the said other side surface is 30% or less.
  2.  前記仕切部が、前記熱可塑性樹脂中に存在する遮光材をさらに含む、請求項1に記載のスペーサー。 The spacer according to claim 1, wherein the partition portion further includes a light shielding material present in the thermoplastic resin.
  3.  前記仕切部が、前記熱可塑性樹脂を含む仕切部本体と、前記仕切部本体の少なくとも一方の側面に設けられた遮光層とを備える、請求項1に記載のスペーサー。 The spacer according to claim 1, wherein the partition portion includes a partition portion main body including the thermoplastic resin and a light shielding layer provided on at least one side surface of the partition portion main body.
  4.  前記仕切部が、前記熱可塑性樹脂を含む仕切部本体と、遮光層とを備え、前記仕切部本体が、前記仕切部本体の第1の側面を含む第1の部分と、前記仕切部本体における前記第1の側面とは反対側の第2の側面を含み、かつ前記第1の部分と離間した第2の部分とを備え、前記遮光層が、前記第1の部分と前記第2の部分との間に挟まれている、請求項1に記載のスペーサー。 The partition portion includes a partition portion main body including the thermoplastic resin and a light shielding layer, and the partition portion main body includes a first portion including a first side surface of the partition portion main body, and the partition portion main body. A second portion that includes a second side opposite to the first side and that is spaced apart from the first portion, wherein the light shielding layer includes the first portion and the second portion. The spacer according to claim 1, which is sandwiched between
  5.  前記仕切部の少なくとも一方の側面の算術平均粗さが、10μm以下である、請求項1に記載のスペーサー。 The spacer according to claim 1, wherein the arithmetic average roughness of at least one side surface of the partition portion is 10 µm or less.
  6.  前記壁部が、格子状またはハニカム状である、請求項1に記載のスペーサー。 The spacer according to claim 1, wherein the wall portion has a lattice shape or a honeycomb shape.
  7.  配線基板、および前記配線基板の一方の面に実装された複数のLED素子を備えるLED実装基板と、
     前記LED素子側に配置された第1の光学シートと、
     前記LED実装基板と前記第1の光学シートとの間に配置され、前記LED実装基板に対し前記第1の光学シートを離間させる第1のスペーサーと、を備え、
     前記第1のスペーサーが、請求項1に記載のスペーサーである、LED面光源装置。
    An LED mounting board comprising a wiring board and a plurality of LED elements mounted on one surface of the wiring board;
    A first optical sheet disposed on the LED element side;
    A first spacer that is disposed between the LED mounting substrate and the first optical sheet and separates the first optical sheet from the LED mounting substrate;
    The LED surface light source device, wherein the first spacer is the spacer according to claim 1.
  8.  前記スペーサーの前記壁部の前記開口部に面している側面が、前記配線基板から前記第1の光学シートに向けて前記開口部の開口径が大きくなるように傾斜している、請求項7に記載のLED面光源装置。 The side surface of the wall facing the opening of the spacer is inclined so that the opening diameter of the opening increases from the wiring board toward the first optical sheet. LED surface light source device described in 1.
  9.  前記第1の光学シートが、平面視において複数に分割された区画領域を備え、前記各区画領域が、前記LED素子からの光の一部を透過する複数の透過部と、前記LED素子からの光の一部を反射する複数の反射部とを有し、前記各区画領域における前記透過部の面積割合である開口率が、前記区画領域の中央部から前記区画領域の外縁部に向けて漸増している領域を含む、請求項7に記載のLED面光源装置。 The first optical sheet includes a partition region divided into a plurality of parts in plan view, and each partition region includes a plurality of transmission portions that transmit a part of light from the LED element, and the LED element. A plurality of reflecting portions that reflect a part of the light, and an aperture ratio that is an area ratio of the transmitting portion in each partition region gradually increases from a central portion of the partition region toward an outer edge portion of the partition region. The LED surface light source device according to claim 7, wherein the LED surface light source device includes a region where
  10.  前記第1の光学シートの厚みが、25μm以上1mm以下である、請求項7に記載のLED面光源装置。 The LED surface light source device according to claim 7, wherein the thickness of the first optical sheet is 25 μm or more and 1 mm or less.
  11.  前記第1の光学シートの光出射側に配置された第2の光学シートと、
     前記第1の光学シートの外周面および前記第1のスペーサーの外周面を取り囲むように配置され、かつ前記第2の光学シートを支持する枠状の第2のスペーサーと、
     をさらに備える、請求項7に記載のLED面光源装置。
    A second optical sheet disposed on the light exit side of the first optical sheet;
    A frame-shaped second spacer disposed so as to surround the outer peripheral surface of the first optical sheet and the outer peripheral surface of the first spacer, and supporting the second optical sheet;
    The LED surface light source device according to claim 7, further comprising:
  12.  請求項7に記載のLED面光源装置と、
     前記LED面光源装置よりも観察者側に配置された表示パネルと、
     を備える、LED画像表示装置。
    LED surface light source device according to claim 7,
    A display panel disposed closer to the viewer than the LED surface light source device;
    An LED image display device comprising:
PCT/JP2018/020969 2017-06-01 2018-05-31 Spacer, led surface light source device, and led image display device WO2018221657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019521300A JP6575729B2 (en) 2017-06-01 2018-05-31 Spacer, LED surface light source device and LED image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109304 2017-06-01
JP2017-109304 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221657A1 true WO2018221657A1 (en) 2018-12-06

Family

ID=64455543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020969 WO2018221657A1 (en) 2017-06-01 2018-05-31 Spacer, led surface light source device, and led image display device

Country Status (3)

Country Link
JP (2) JP6575729B2 (en)
TW (1) TW201911557A (en)
WO (1) WO2018221657A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948775B2 (en) 2019-03-08 2021-03-16 Nichia Corporation Light source device
CN112558355A (en) * 2020-12-17 2021-03-26 业成科技(成都)有限公司 Backlight module and display panel
CN113204069A (en) * 2020-01-31 2021-08-03 日亚化学工业株式会社 Planar light source
JP2022021300A (en) * 2020-07-21 2022-02-02 日亜化学工業株式会社 Light emitting module and planar light source
US11415738B2 (en) 2020-07-21 2022-08-16 Nichia Corporation Light-emitting module and planar light source
US11437429B2 (en) 2019-09-30 2022-09-06 Nichia Corporation Light emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116719B2 (en) * 2019-12-16 2022-08-10 Nissha株式会社 Lighting cover and display device
JP6924958B1 (en) * 2020-01-31 2021-08-25 日亜化学工業株式会社 Planar light source
WO2021166432A1 (en) * 2020-02-18 2021-08-26 富士フイルム株式会社 Light source unit, display device, and light source unit manufacturing device
JPWO2021166433A1 (en) * 2020-02-18 2021-08-26

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3122548U (en) * 2006-01-18 2006-06-15 エターナル ケミカル シーオー.,エルティーディー. Surface light source device
JP2007066634A (en) * 2005-08-30 2007-03-15 Omron Corp Backlight device, and liquid crystal display device
JP2008311026A (en) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd Surface light source device
JP2009140720A (en) * 2007-12-05 2009-06-25 Sharp Corp Illuminating device and liquid crystal display device
JP2009145657A (en) * 2007-12-14 2009-07-02 Sony Corp Color liquid crystal display assembly and light-emitting device
WO2011132787A1 (en) * 2010-04-23 2011-10-27 株式会社オプトデザイン Surface illumination fixture and surface illumination device
JP2016012552A (en) * 2014-06-05 2016-01-21 キヤノン株式会社 Light source device and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066634A (en) * 2005-08-30 2007-03-15 Omron Corp Backlight device, and liquid crystal display device
JP3122548U (en) * 2006-01-18 2006-06-15 エターナル ケミカル シーオー.,エルティーディー. Surface light source device
JP2008311026A (en) * 2007-06-13 2008-12-25 Mitsubishi Rayon Co Ltd Surface light source device
JP2009140720A (en) * 2007-12-05 2009-06-25 Sharp Corp Illuminating device and liquid crystal display device
JP2009145657A (en) * 2007-12-14 2009-07-02 Sony Corp Color liquid crystal display assembly and light-emitting device
WO2011132787A1 (en) * 2010-04-23 2011-10-27 株式会社オプトデザイン Surface illumination fixture and surface illumination device
JP2016012552A (en) * 2014-06-05 2016-01-21 キヤノン株式会社 Light source device and display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754879B2 (en) 2019-03-08 2023-09-12 Nichia Corporation Light source device
US10948775B2 (en) 2019-03-08 2021-03-16 Nichia Corporation Light source device
US11372286B2 (en) 2019-03-08 2022-06-28 Nichia Corporation Light source device
US11437429B2 (en) 2019-09-30 2022-09-06 Nichia Corporation Light emitting device
US11798977B2 (en) 2019-09-30 2023-10-24 Nichia Corporation Light emitting device
CN113204069B (en) * 2020-01-31 2023-07-04 日亚化学工业株式会社 Planar light source
CN113204069A (en) * 2020-01-31 2021-08-03 日亚化学工业株式会社 Planar light source
US11808968B2 (en) 2020-01-31 2023-11-07 Nichia Corporation Planar light source
US11415738B2 (en) 2020-07-21 2022-08-16 Nichia Corporation Light-emitting module and planar light source
JP7266175B2 (en) 2020-07-21 2023-04-28 日亜化学工業株式会社 Light-emitting module and planar light source
US11674666B2 (en) 2020-07-21 2023-06-13 Nichia Corporation Light-emitting module and planar light source
JP2022021300A (en) * 2020-07-21 2022-02-02 日亜化学工業株式会社 Light emitting module and planar light source
CN112558355A (en) * 2020-12-17 2021-03-26 业成科技(成都)有限公司 Backlight module and display panel

Also Published As

Publication number Publication date
JPWO2018221657A1 (en) 2019-11-07
JP2019194985A (en) 2019-11-07
TW201911557A (en) 2019-03-16
JP6575729B2 (en) 2019-09-18
JP6575718B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP6575718B1 (en) Spacer, LED surface light source device and LED image display device
WO2018124012A1 (en) Spacer, surface light source device, and image display device
JP2018106971A (en) LED backlight device and LED image display device
JP2018206553A (en) Spacer, led surface light source device, and led image display device
US9329323B2 (en) Light source and backlight module having the same
KR20080063276A (en) Backlight device, display device and optical member
JP3235664U (en) Light source module and display device
JP2018207048A (en) Flexible substrate for led element
JP2010108948A (en) Lighting device, and display using the same
JP2018006259A (en) Led backlight, led image display device, and penetration reflection board for direct type led backlight
JP2015118758A (en) LED backlight
JP2018106973A (en) LED backlight device and LED image display device
JP2018106972A (en) LED backlight device and LED image display device
JP2018018711A (en) LED backlight and LED image display device using the same
US9057806B2 (en) Light source and backlight module having the same
JP2019046668A (en) Spacer, led surface light source device, and led image display device
JP2018106970A (en) LED backlight device and LED image display device
JP2018037316A (en) Direct-below type led backlight and led image display device using the same
JP2009123361A (en) Light guide plate, and backlight unit for liquid crystal display device
JP2018200375A (en) Light transmission reflection sheet, led surface light source device, and led image display device
JP2019046667A (en) Spacer, led surface light source device, and led image display device
JP5087148B2 (en) Liquid crystal display
JP2019179711A (en) Surface light source device, laminate used for surface light source device, and display device
JP2009294240A (en) Optical sheet, back light unit, liquid crystal display device and display device
JP2019016629A (en) LED module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808673

Country of ref document: EP

Kind code of ref document: A1