WO2018221598A1 - Light control device for infrared region and visible region - Google Patents

Light control device for infrared region and visible region Download PDF

Info

Publication number
WO2018221598A1
WO2018221598A1 PCT/JP2018/020781 JP2018020781W WO2018221598A1 WO 2018221598 A1 WO2018221598 A1 WO 2018221598A1 JP 2018020781 W JP2018020781 W JP 2018020781W WO 2018221598 A1 WO2018221598 A1 WO 2018221598A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarizing plate
control device
phase
visible
Prior art date
Application number
PCT/JP2018/020781
Other languages
French (fr)
Japanese (ja)
Inventor
典明 望月
Original Assignee
日本化薬株式会社
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, 株式会社ポラテクノ filed Critical 日本化薬株式会社
Priority to JP2019521273A priority Critical patent/JP7111703B2/en
Priority to CN201880032295.7A priority patent/CN110622061B/en
Publication of WO2018221598A1 publication Critical patent/WO2018221598A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a light control device that controls light in the infrared region and the visible region.
  • a polarizing plate having a light transmission / shielding function is used in a display device such as a liquid crystal display (LCD) together with a liquid crystal having a light switching function.
  • LCD liquid crystal display
  • Applications of this LCD include small computers such as calculators and watches in the early days, notebook computers, word processors, liquid crystal projectors, liquid crystal televisions, car navigation systems, indoor and outdoor information display devices, measuring devices, and the like. Further, it can be applied to a lens having a polarization function, and has been applied to sunglasses with improved visibility, and in recent years to polarized glasses compatible with 3D televisions.
  • a general polarizing plate is a polarizing film such as a stretched and oriented film of polyvinyl alcohol or a derivative thereof, or a polyene film obtained by orienting a polyene by dehydrochlorination of a polyvinyl chloride film or dehydration of a polyvinyl alcohol film.
  • the substrate is produced by dyeing or containing iodine or a dichroic dye as a polarizing element.
  • an iodine-based polarizing film using iodine as a polarizing element is excellent in polarization performance, but is weak against water and heat, and is durable when used for a long time at high temperature and high humidity. There's a problem.
  • the polarizing performance is generally not sufficient. That is, the polarizing plate has a polarizing function with respect to the wavelength for the visible wavelength range, and is not the polarizing plate for the infrared wavelength range.
  • Patent Document 5 and Patent Document 6 are techniques using circularly polarized light that have been published for a long time, the color changes depending on the viewing angle, and basically a polarizing plate using reflection. For this reason, it is difficult to form stray light or absolute polarized light. That is, there is no polarizing plate corresponding to an infrared wavelength region which is an absorptive polarizing element like a general iodine-based polarizing plate, is flexible in film type and has high durability. Furthermore, it only has the function of a polarizing plate in the infrared region, and cannot control the polarization in the visible region.
  • An object of the present application is to provide a light control apparatus that can control incident infrared wavelength light and visible wavelength light so that they simultaneously become different polarized lights.
  • an optical system capable of controlling the amount of light by switching between infrared light and visible light from the same light source in the infrared region and visible region on the detected side, that is, visible light
  • An object is to provide an element capable of dynamically switching between infrared light and switching.
  • the inventors of the present invention controlled infrared light and visible light to different polarized light using a medium having a phase or a medium capable of phase control. As a result, it is found that the polarized light of the infrared light at the time of incidence and the polarized light of the visible light at the time of incidence can emit different polarized light in the infrared region and the visible region on the detection side. It was.
  • the inventors of the present invention are light control devices that use light in the visible region and light in the infrared region at the same time, comprising at least one polarizing plate having polarization performance with respect to light in the infrared region, and light in the visible region. Controlling the amount of transmitted light in the infrared region and the amount of transmitted light in the visible region with a medium that can dynamically control the phase in a light control device equipped with at least one polarizing plate having polarization performance And a light control device that can function as a switching element between infrared light and visible light.
  • an optical system capable of controlling the light amount by switching between the infrared region and the visible region in the infrared region and the visible region on the side where the light amount in the infrared region and the light amount in the visible region are detected. I found.
  • the gist configuration of the present invention is as follows. 1) At least one polarizing plate (IR polarizing plate) having polarization performance with respect to light in the infrared region, at least one polarizing plate (VIS polarizing plate) having polarization performance with respect to light in the visible region, and a medium having a phase or A light control device that includes a phase-controllable medium and controls incident light in the infrared region and transmitted light in the visible region by changing incident infrared light and visible light to different polarized lights.
  • IR polarizing plate polarizing plate
  • VIS polarizing plate polarizing plate having polarization performance with respect to light in the visible region
  • a light control device that includes a phase-controllable medium and controls incident light in the infrared region and transmitted light in the visible region by changing incident infrared light and visible light to different polarized lights.
  • a liquid crystal used in the liquid crystal panel is a TN liquid crystal (Twisted Nematic liquid crystal) or a STN liquid crystal (Super Twisted Nematic liquid crystal).
  • a contrast ratio of transmission to non-transmission of each of visible light and infrared light is 10 or more.
  • the light control device according to any one of 1) to 10 including one polarizing plate (VIS-IR polarizing plate) having polarization performance with respect to visible light and infrared light.
  • Any one of 1) to 13), including at least one polarizing plate that is less susceptible to the transmission of light in the infrared region and that has an orthogonal transmittance of light in the visible region of 1% or less The light control device according to one item. 15) The light control device according to any one of 1) to 14), wherein the IR polarizing plate or the VIS-IR polarizing plate is an absorption-type polarizing plate.
  • the light control device according to any one of 1) to 15), wherein the IR polarizing plate or the VIS-IR polarizing plate is a film. 17) The light control device according to any one of 1) to 16), wherein a medium having a phase difference or a medium capable of phase control and at least one polarizing plate are laminated. 18) A liquid crystal display device, an anti-counterfeiting device, or a sensor comprising the light control device according to any one of 1) to 17).
  • the present invention it is possible to emit light in the infrared region and light in the visible region at the time of incidence as different polarized lights on the detected side, and to control the light amount by the polarized light.
  • the amount of light in the infrared region and the amount of light in the visible region upon incidence from the same light source are detected on the side where the light in the infrared region and the light in the visible region are in the respective regions.
  • the light control device of the present invention includes at least one polarizing plate (IR polarizing plate) having polarization performance for infrared light and at least one polarizing plate (VIS polarization) having polarization performance for visible light. Plate), and a medium having a phase or a phase-controllable medium, and the incident infrared light and visible light are converted into different polarized lights, respectively, so that the infrared transmitted light and the visible transmitted light are different from each other. It is characterized by controlling.
  • the light control device of the present invention includes a medium capable of dynamically controlling the phase when light in the visible range and light in the infrared range are incident simultaneously, and each of the light in the infrared range and the light in the visible range is included. It is characterized by controlling the transmitted light in the infrared region and the transmitted light in the visible region by controlling to be different polarized light.
  • the IR polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at wavelengths in the infrared region.
  • the polarizing plate include a polyene type using an iodine-based polarizing plate as in Patent Document 1, a wire grid type polarizing plate as in Patent Document 2 and Patent Document 3, and metal particles on glass as in Patent Document 4.
  • Examples thereof include a glass polarizing plate that is mixed and stretched, and a dye-based polarizing plate containing a dye.
  • a dye-based polarizing plate is preferably used. This dye-based polarizing plate can be made into a film type, and can be easily laminated with other polarizing plates, retardation plates, etc., and has a feature that it is flexible and easy to optically control. Yes.
  • the IR polarizing plate has polarization performance with respect to light in part or all of the wavelength range of 700 to 1400 nm.
  • the VIS polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at a visible wavelength.
  • the polarizing plate may be, for example, an iodine-based polarizing plate, a dye-based polarizing plate, a dye-based polarizing plate capable of controlling polarization only at a specific wavelength, a polarizing plate of a type using polyene, etc. It is preferable to combine a plurality of types of dye-type polarizing plates capable of controlling only the polarization or dye-type polarizing plates capable of polarizing only a specific wavelength to obtain a polarizing element capable of controlling the polarization of only light having a specific wavelength. By providing a polarization performance for only light of a specific wavelength, it is preferable because polarization at a specific wavelength can be detected or controlled.
  • the VIS polarizing plate has polarization performance with respect to light in a part or all of the wavelength region of 400 to 700 nm. It is preferable that the transmittance in the infrared region is high and has no absorption, and is not particularly limited as long as the light in the infrared region is higher than the visible transmittance. “Non-absorbing” means high transmittance in the infrared region, and hardly affects the transmission of light in the infrared region. Therefore, if each wavelength in the infrared region has a single transmittance equal to or higher than that, it can be used as a visible (VIS) polarizing plate of the present application as a polarizing plate having a function of transmitting infrared light.
  • VIS visible
  • the transmittance in the infrared region is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70%, and particularly preferably 80% or more.
  • the transmittance in the infrared region when two VIS polarizing plates are orthogonal to each other is 30% or more, preferably 40% or more, more preferably 50% or more, further preferably 60%, particularly preferably 70% or more. It can be used as a particularly preferred VIS polarizing plate.
  • Examples of the medium having the above phase include those referred to as a retardation plate, a wave plate, and a retardation film.
  • examples of the medium capable of phase control include a liquid crystal panel (liquid crystal cell) in which a liquid crystal generally used in a liquid crystal monitor or the like is sealed and the phase can be controlled by electricity or the like.
  • phase controllable means that the phase of light as a wave can be controlled.
  • a wave plate, a phase controllable medium, etc. are optical functional elements that give a predetermined phase difference to linearly polarized light.
  • different phases can be provided in other axes (for example 90 °). In other words, by providing a wavelength plate or the like on the optical path for one polarized light, it becomes possible to obtain polarized light of the opposite axis, or newly add circularly polarized light, elliptically polarized light, or the like.
  • a wave plate or the like is an element that can change the polarization state of incident light by providing a phase difference between two orthogonal polarization components using an oriented birefringent material (for example, a stretched film). It can be said.
  • the wave plate is set to 45 ° with respect to the axis of polarization by setting the slow axis of the phase difference plate of ⁇ / 2 to 45 °.
  • the incident linearly polarized light can be rotated by 90 °, and polarized light having a polarization axis in a direction orthogonal (90 °) to the incident polarization axis can be emitted.
  • the linearly polarized light incident on the wave plate (retardation plate) is rotated by 45 ° and incident. It is possible to emit light having a polarization inclined by 45 ° with respect to the polarization axis.
  • the slow axis of the ⁇ / 4 retardation plate is set at 45 ° with respect to the polarization axis, linearly polarized light incident on the wave plate (retardation plate) can be emitted as circularly polarized light. I can do it.
  • the retardation plate, wave plate, and retardation film that can be used are not particularly limited as long as the slow axis or the fast axis of the film light can be rotated with respect to the absorption axis of the polarizing plate.
  • a liquid crystal panel (liquid crystal cell) capable of phase control is a medium for electrically controlling the phase.
  • liquid crystal driving methods to be controlled such as TN (Twisted Nematic), STN (Super Twisted Nematic), IPS (In-Plane-Switching), and VA (Virtual Allocation).
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • IPS In-Plane-Switching
  • VA Virtual Allocation
  • the liquid crystal and control method can control the phase of light in the infrared region.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Virtual Allocation
  • the light control device controls the light in the infrared region and the light in the visible region to be different polarized lights by a medium having a phase or a medium capable of phase control.
  • a medium having a phase or a medium capable of phase control controls the polarization of infrared light at the time of incidence and the polarization of light at the time of incidence.
  • the amount of light in the visible region and the amount of light in the infrared region are adjusted simultaneously by simultaneously controlling the polarization of light in the visible region visible to the human eye and light in the infrared region that is difficult to visually recognize. This makes it possible to continue to transmit light in the infrared region while controlling to transmit or not transmit light in the visible region.
  • the reverse control is also possible, that is, it is possible to continue to transmit light in the visible region while controlling to transmit or not transmit light in the infrared region. It is possible to provide a light control device capable of simultaneously controlling the polarization and light quantity of each of the light.
  • an infrared sensor and a visible camera had to use different types of detectors for detecting light in the infrared region and for detecting light in the visible region. It is possible to control the sensor and the visible camera with one light control device.
  • a camera such as a mobile phone generally requires separate light control devices for an infrared authentication camera and a visible camera, but by using the light control device, a visible light control device can be used. Since it is possible to switch between transmission and non-transmission of light and infrared light, it is possible to perform infrared region authentication and visible region photography using a single light control device. Furthermore, by applying this light control device, it can be applied to advanced security.
  • the light control device has an angle (phase difference) ⁇ i in the range of 0 ⁇ ⁇ i ⁇ 180 ° with respect to the angle (phase of the emitted light).
  • the angle ⁇ i is 0 °, that is, when it is installed coaxially, the polarized light in the infrared region becomes light that is not influenced or hardly received by the phase difference plate, and a phase difference that is a phase difference value of ⁇ / 2.
  • a plate by setting the angle ⁇ i to 45 °, it is possible to emit polarized light having an axis opposite to that of the incident linearly polarized light by 90 °.
  • the angle (position) between the angle (phase of incident light) where the phase difference value R ⁇ of the phase difference plate is expressed and the angle (phase of outgoing light) when linearly polarized light is expressed in the visible range.
  • the phase difference in the visible range can be controlled by the light control device in which the phase difference ⁇ v is in the range of ⁇ 90 ° ⁇ v ⁇ 180 °.
  • ⁇ v and ⁇ i may be the same or different from each other, as long as the polarization state of light having a specific wavelength can be controlled by the phase difference plate.
  • the number of retardation plates to be used is not limited to one, and the light control device of the present invention also has a plurality of positions so that a general liquid crystal display uses a combination of a 1 / 4 ⁇ plate, a 1 / 2 ⁇ plate, or the like.
  • a phase difference plate may be used.
  • the wavelength of light in the infrared region is I ⁇
  • the wavelength of light in the visible region is V ⁇
  • the retardation plate error is RD (Retarder Dispersion)
  • the retardation value of the retardation plate is R ⁇
  • the light control device satisfying the relationship (2) functions as a phase difference plate capable of providing V ⁇ in the visible range, and functions as a phase difference plate capable of providing I ⁇ / 2 in the infrared range.
  • V ⁇ RD ⁇ R ⁇ ⁇ V ⁇ + RD Formula (1) (However, RD indicates 0 to 40 nm) I ⁇ / 2 ⁇ RD ⁇ R ⁇ ⁇ I ⁇ / 2 + RD Formula (2) (However, RD indicates 0 to 40 nm)
  • the slow axis of the retardation plate having R ⁇ is set at 45 ° with respect to the incident linearly polarized light
  • the polarized light at the time of incidence can be maintained in the visible range.
  • it continues to function as a retardation plate, in the infrared region, it can function as a ⁇ / 2 polarizing plate to emit a reverse polarization axis of the incident polarization axis.
  • the slow axis of the retardation plate having R ⁇ When the slow axis of the retardation plate having R ⁇ is provided at 45 ° with respect to incident linearly polarized light, a polarizing plate having an absorption axis perpendicular to the incident axis is provided on the output side. In this case, it is possible to provide a light control device that can transmit light in the visible range but can absorb light in the infrared range. When it is desired that both visible light and infrared light are not transmitted (absorbed), the slow axis of the retardation plate having R ⁇ may be set at 0 ° instead of 45 °.
  • the axis of linearly polarized light and elliptically polarized light can be controlled.
  • the RD is preferably in the range of 0 to 40 nm, more preferably 0 to 25 nm, still more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm. Control of the polarization axis using the phase can be performed with reference to Non-Patent Document 1 and the like.
  • the light control device that satisfies the relationship of the following formula (3) or formula (4) functions as a retardation plate that can provide ⁇ / 2 in the visible range, and can provide ⁇ / 4 in the infrared range. Functions as a phase difference plate. Note that I ⁇ , V ⁇ , RD, and R ⁇ are as defined above.
  • the slow axis of the retardation plate having R ⁇ may be set at 0 ° instead of 45 °.
  • the axis of linearly polarized light and elliptically polarized light can be controlled.
  • a polarizing plate capable of controlling the visible region and the infrared region a medium having a phase or a medium capable of phase control, a polarizing plate capable of controlling the visible region and the infrared region may be used.
  • Illustrative examples include: a polarizing plate capable of controlling the visible region and the infrared region; a medium having a phase or a phase-controllable medium; a polarizing plate capable of controlling the visible region; and a polarizing plate capable of controlling the infrared region.
  • the configuration is not limited.
  • polarization control can be performed by applying the fact that reflected light has polarization in the infrared region.
  • the polarizing plate, the ⁇ / 4 retardation plate, and the reflection plate are laminated in this order, and the retardation plate is delayed with respect to the absorption axis of the polarizing plate.
  • the phase axis is set at 45 ° where linearly polarized light is incident, the linearly polarized light incident from the polarizing plate is converted into circularly polarized light by the phase difference plate, and the light reflected by the reflecting plate is reversed.
  • RD may be in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.
  • the light control device that satisfies the relationship of the following formula (5) or formula (6) functions as a phase difference plate that can provide 3 / 2 ⁇ in the visible range, and can provide 1 / 2 ⁇ in the infrared range. Functions as a phase difference plate. Note that I ⁇ , V ⁇ , RD, and R ⁇ are as defined above.
  • the linearly polarized light axis, the elliptically polarized light, and the like can be controlled.
  • a polarizing plate capable of controlling the visible region and the infrared region a medium having a phase or a medium capable of phase control, a polarizing plate capable of controlling the visible region and the infrared region may be used.
  • Illustrative examples include: a polarizing plate capable of controlling the visible region and the infrared region; a medium having a phase or a phase-controllable medium; a polarizing plate capable of controlling the visible region; and a polarizing plate capable of controlling the infrared region.
  • the configuration is not limited.
  • polarization control can be performed by applying the fact that reflected light has polarization in the infrared region. With the above configuration, reflection control in the visible range is possible, and transmission control in the infrared range is also possible.
  • a polarizing plate, a 3 / 4 ⁇ polarizing plate, and a reflecting plate are laminated in this order, and the phase difference with respect to the absorption axis of the polarizing plate is formed on the reflecting plate.
  • the slow axis of the plate By setting the slow axis of the plate at 45 °, the incident linearly polarized light from the polarizing plate is converted to circularly polarized light by the phase difference plate, and the light reflected by the reflecting plate is converted to reverse circularly polarized light.
  • a function capable of preventing reflection can be exhibited.
  • RD may be in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.
  • the transmittance of light in the infrared region (wavelength of 700 to 1400 nm) when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other (in the infrared region).
  • the orthogonal transmittance of light and the transmittance of light in the visible region (wavelength of 400 to 700 nm) (orthogonal transmittance of light in the visible region) when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other ) Is preferably 10% or more because polarization control of visible light and infrared light becomes easier.
  • the retardation plate Polarization can be controlled, but if one polarizing plate has a degree of polarization of 100% of light of 400 to 1400 nm, it imparts polarization performance only to infrared light, or to visible light It becomes difficult to impart polarization performance only.
  • polarization control can be performed at various wavelengths by selecting an appropriate polarizing plate according to the wavelength.
  • polarization control at various wavelengths it is preferable because the transmittance can be controlled.
  • a polarizing plate having polarization performance in the infrared region may also have polarization performance in the visible region, it does not necessarily have only polarization performance in the infrared region.
  • the IR polarizing plate does not give 100% polarization performance at all wavelengths, but has a light transmittance of 700 to 1400 nm when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other.
  • the difference between the light transmittance of 400 to 700 nm when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other is 10% or more, so that the light in the visible region and the light in the infrared region are This is preferable because polarization control is further facilitated, and the difference in transmittance is more preferably 20%, still more preferably 30%, and particularly preferably 40% or more.
  • An IR polarizing plate having an orthogonal transmittance of 1% or less in the wavelength range of light in the infrared region, and no absorption of light in the wavelength range of light in the infrared region, and the orthogonal transmittance of the polarizing plate is 1
  • the light control device including at least one VIS polarizing plate exhibiting% or less is preferable because the polarization performance with respect to light in the infrared region and the polarization performance with respect to light in the visible region can be controlled. Furthermore, the light control device is preferable because it improves the contrast between light in the infrared region and light in the visible region.
  • each polarizing plate on a different axis, and it is possible to control light separately for visible light and infrared light at the wavelength and wavelength axis for which each polarization axis is to be controlled. It becomes.
  • the orthogonal transmittance of each of the light in the infrared region and the light in the visible region can be sufficiently controlled by being independently 1% or less, preferably 0.3% or less, more preferably It may be 0.1% or less, more preferably 0.01% or less, and particularly preferably 0.005% or less.
  • the parallel transmittance is 40%
  • the orthogonal transmittance when the orthogonal transmittance is 0.1%
  • the contrast ratio of 40: 0.1, that is, 400: 1 can be provided. That is, since the influence of the contrast of the polarizing plate on the optical control device of the present invention is large, it is preferable to control within the above range.
  • the contrast of the amount of light required when switching between transmission and non-transmission is required to be the contrast ratio of a general paper medium. It is said. That is, the contrast ratio between transmission and light shielding is 10 to 1 or more, preferably 100 to 1 or more, more preferably 1000 to 1 or more.
  • the IR polarizing plates When constructing the light control device, it is preferable that at least one of the IR polarizing plates is an absorptive polarizing plate.
  • the absorptive polarizing plate is characterized by not generating stray light.
  • a wire grid type As the IR polarizing plate, a wire grid type is generally used.
  • Light of a wavelength other than the original wavelength or intensity of light appears due to light reflection, refraction, resonance (resonance), phase modulation, etc. due to conditions such as unspecified shape, overlapping of light, or movement of the light position. In this case, light having a wavelength other than the original wavelength or light having an intensity becomes stray light. It is important not to generate such stray light in order to prevent erroneous detection.
  • a polarizing plate that does not generate stray light.
  • the IR polarizing plate is an absorptive polarizing plate, stray light or the like is hardly generated, and thus optical control is easy, so that it can be preferably used.
  • Each of the above polarizing plates can be easily laminated and can be made flexible, and at least one of the IR polarizing plates is preferably a film in order to make it flexible.
  • lamination since lamination is possible, lamination with a medium having a phase or a medium capable of phase control is preferable. By laminating, a decrease in transmittance due to the influence of interface reflection or the like is unlikely to occur, which is preferable in controlling light.
  • each polarizing plate, medium having phase or medium capable of phase control is rotated by a signal such as light or electricity, and each can be set to a desired angle, and the setting can be changed. It is.
  • the light control device can control the polarization of infrared light and visible light at the same time, so that visible light that can be recognized by human eyes and infrared light that is difficult to recognize.
  • the polarization of light can be controlled simultaneously. Therefore, it is possible to provide a liquid crystal display device capable of switching between detection of infrared light and visible light, a photographing device such as a camera capable of controlling polarization of infrared light and visible light, and high security.
  • the above-mentioned light control device can be applied to various applications such as anti-counterfeiting devices or sensors that function in infrared light and visible light respectively, and a system that combines various applications and light control devices. Can also be used.
  • polarizing plate (IR polarizing plate) having polarization performance for infrared light
  • An aqueous solution at 45 ° C. having an azo compound of the following chemical formula (1) at a concentration of 0.3% and mirabilite at a concentration of 0.1% was prepared as a staining solution.
  • a polyvinyl alcohol film having a thickness of 75 ⁇ m was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element.
  • a triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 835 nm is laminated.
  • a polarizing plate having a high polarization function at the center was obtained. The polarizing plate was used as an IR polarizing plate.
  • polarizing plate (VIS polarizing plate) having polarization performance for visible light> Kayarus Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.02%, C.I. I. Prepare a 45 ° C. aqueous solution with Direct Red 81 at a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.04%, and sodium nitrate at a concentration of 0.1%. A staining solution was obtained. A 75 ⁇ m-thick polyvinyl alcohol film was immersed in the staining solution for 3 minutes and 30 seconds.
  • the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element.
  • a triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 400- A polarizing plate having a polarizing function in the visible region of 650 nm was obtained.
  • the polarizing plate was used as a VIS polarizing plate.
  • polarizing plate capable of controlling light in the infrared region and light in the visible region
  • the azo compound of the above chemical formula (1) is at a concentration of 0.6%, Kayarusu Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.02%, C.I. I. Prepare a 45 ° C. aqueous solution with Direct Red 81 at a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.04%, and sodium nitrate at a concentration of 0.1%. A staining solution was obtained.
  • a polyvinyl alcohol film having a thickness of 75 ⁇ m was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element.
  • a triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 400- A polarizing plate having a polarizing function at 900 nm was obtained. The polarizing plate was used as a VIS-IR polarizing plate.
  • ⁇ Measurement of transmittance of polarizing element> (Measurement of transmittance of polarizing plate) For each of the obtained polarizing plates, using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), the single transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) at each wavelength at 380 to 1100 nm. ), And the degree of polarization ( ⁇ ) was measured.
  • the single transmittance (Ts) is the transmittance obtained by measuring one polarizing plate
  • the parallel transmittance (Tp) is obtained by measuring the respective light absorption axes of the two polarizing plates in parallel.
  • the orthogonal transmittance (Tc) is a transmittance obtained by measuring the light absorption axes of the two polarizing plates orthogonal to each other, and the degree of polarization is calculated by Equation (7). This is the value obtained.
  • the single transmittance (Ts), parallel transmittance (Tp), and orthogonal transmittance (Tc) at wavelengths of 420 nm, 555 nm, 830 nm, and 840 nm of the obtained polarizing plates are shown below.
  • Table 1 shows values when an IR polarizing plate is used
  • Table 2 shows values when a VIS polarizing plate is used
  • Table 3 shows values when a VIS-IR polarizing plate is used.
  • Examples A1 to A4> Production and Evaluation of Light Control Device Light control in which light emitted from the light source unit of U-4100 is configured in the order of VIS-IR polarizing plate, retardation plate, VIS polarizing plate, and IR polarizing plate when viewed from the light source side. The device was irradiated with light so that the transmitted light was incident on the detection unit of U-4100. A polycarbonate retardation plate showing a retardation value of 420 nm at each wavelength of 420 nm and 840 nm was used as the retardation plate. The transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS-IR polarizing plate.
  • the 0 ° in Table 4 means that the retardation axis is 0 ° with respect to the absorption axis of the VIS-IR polarizing plate, and the slow axis is 0 ° with the VIS polarizing plate or IR polarizing plate (coaxial). ) Is installed. The same applies to 45 ° and 90 °. St indicates that the transmittance detected by U-4100 is strong (30-50%), and Mi indicates that the transmittance detected by U-4100 is medium (10-25%). “We” indicates that the transmittance detected by U-4100 is weak (0 to 2%).
  • Examples A5 to A8> The light control device was evaluated in the same manner as in Examples 1 to 4 except that a polycarbonate phase difference plate showing a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used. The results are shown in Table 5.
  • Examples A9 to A12 The light control device was evaluated in the same manner as in Examples 1 to 4, except that a polycarbonate phase difference plate showing a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used. The results are shown in Table 6.
  • Examples A13 to A14> The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate when viewed from the light source side, and the reflected light is reflected by U -4100 was made incident on the detection unit.
  • a polycarbonate retardation plate showing a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used as the retardation plate.
  • the transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS polarizing plate.
  • Examples A15 to A16> The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate when viewed from the light source side, and the reflected light is reflected by U -4100 was made incident on the detection unit.
  • a polycarbonate retardation plate showing a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used as the retardation plate.
  • the transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS polarizing plate.
  • Table 9 shows the results of measuring the transmittance using the light control device (Comparative Examples 1 to 4) obtained by removing the retardation plate from Examples A1 to A4.
  • the conventional polarizing plate if the absorption axis of the polarizing plate is orthogonal to each wavelength, the transmittance is lowered, and if the absorption axis is parallel, the transmittance is increased. It has only been possible to control the transmissivity at the parallel position and the orthogonal position, which is a function of a conventional polarizing plate, but it has not become an optical apparatus capable of individually controlling the transmissivity at each wavelength.
  • Table 10 shows the results of measuring the transmittance using the light control device (Comparative Examples 5 to 6) obtained by removing the retardation plate from Examples A13 to A14. As in the case of placing a conventional polarizing plate on a mirror, no change in transmittance was observed, and no change was observed in incident light between visible light and infrared light.
  • each light control device can control the amount of light in the infrared region and the light in the visible region with respect to the same light source. Further, in each of Examples A5 to A8 and Examples A13 to A14, and Examples A9 to A12 and Examples A15 to A16, the results obtained by the light control during light transmission and the light control during reflection are obtained. It can be seen that the results are different. Based on the above results, the light control device obtained by the present invention uses different amounts of light in the visible region and in the infrared region, even when the same light source having visible light and infrared light is used. It has been shown to be effective as a device capable of converting into polarized light.
  • Example B1> The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS-IR polarizing plate, an STN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate when viewed from the light source side, and transmitted.
  • the incident light is made incident on the detection unit of U-4100.
  • the absorption axis of the VIS-IR polarizing plate is laminated so that the absorption axis of the VIS-IR polarizing plate is parallel to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is 90 ° with respect to the absorption axis of the VIS-IR polarizing plate. It was used by laminating. As for the bonding to the liquid crystal cell, when the voltage was applied to the STN cell, each polarizing plate was bonded so as to have the lowest transmittance in the visible region, and used as the measurement sample of the present application.
  • the STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm.
  • the one having a phase of 2 ⁇ was used.
  • Table 4 shows the measurement results of light of 420 nm wavelength and 840 nm wavelength when the voltage is turned on and off. Based on the amount of light transmitted through the VIS-IR polarizing plate alone, the amount of light (%) when the light enters the detection unit of the U-4100 after passing through the light control device is shown.
  • Example B2> The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS-IR polarizing plate, an STN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate when viewed from the light source side, and transmitted.
  • the incident light is made incident on the detection unit of U-4100.
  • the absorption axis of the VIS-IR polarizing plate is stacked so that the absorption axis of the VIS polarizing plate is perpendicular to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is set to 0 ° with respect to the absorption axis of the VIS-IR polarizing plate. It was used by laminating. Regarding the bonding to the liquid crystal cell, when the voltage was not applied to the STN cell, each polarizing plate was bonded so as to have the lowest transmittance in the visible region, and used as a measurement sample of the present application.
  • the STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm.
  • the one having a phase of 2 ⁇ was used.
  • Table 4 shows the results of light having a wavelength of 420 nm and a wavelength of 840 nm when the voltage is turned on and off. Based on the amount of light transmitted through the VIS-IR polarizing plate alone, the amount of light (%) incident on the detection unit of U-4100 after passing through the light control device is shown.
  • Example B3> The light emitted from the light source unit of the U-4100 is incident on the light source side in the order of the VIS polarizing plate, the configuration of the IR polarizing plate, the STN type liquid crystal cell, and the reflecting plate, and the reflected light is detected by the detecting unit of the U-4100 It was made to enter.
  • the IR polarizing plate is bonded at 45 ° with respect to the absorption axis of the VIS polarizing plate, and the bonding to the liquid crystal cell has the lowest reflectance in the infrared region when no voltage is applied to the STN cell. What stuck each polarizing plate was used as a measurement sample of this application.
  • the STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm.
  • the one having a phase of 4 ⁇ was used.
  • Table 4 shows the measurement results of light of 420 nm wavelength and 840 nm wavelength when the voltage is turned on and off. Based on the amount of light reflected from the VIS-IR polarizing plate and the reflector, only the amount of light (%) incident on the detection unit of U-4100 after reflection from the light control device is shown.
  • the light emitted from the light source unit of the above U-4100 is configured as a VIS-IR polarizing plate, a TN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate as viewed from the light source side. It was made to enter into the detection part.
  • the absorption axis of the VIS-IR polarizing plate is laminated so that the absorption axis of the VIS-IR polarizing plate is parallel to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is 90 ° with respect to the absorption axis of the VIS-IR polarizing plate.
  • each light control device can independently and independently control the amount of light in the infrared region and the light in the visible region while using the same light source.
  • optical control for visible light and infrared light during transmission that is, switching of transmittance of visible light and infrared light by a medium that dynamically develops a phase.
  • Example B3 it was found that the light control of the light control device is effective even when a reflector is used. From the above results, the light control device obtained by the present invention can easily switch the transmittance between visible light and infrared light even when the same light source is used. It has been shown to be effective as a possible device.
  • Liquid crystal display devices photographing devices such as cameras that can control the polarization of infrared light and visible light, anti-counterfeiting devices that can provide advanced security, or infrared light and visible light It can be applied to various applications such as a functioning sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The present invention provides a light control device whereby light in the infrared region and light in the visible region at the time of incidence thereof can be emitted each with different polarization on a detection side thereof, and light quantity of the light can be controlled by the polarization thereof. Specifically, the present invention provides a light control device including at least one polarizing plate having polarization performance for light in the infrared region, at least one polarizing plate having polarization performance for light in the visible region, and a medium having a phase or a medium capable of phase control, the light control device converting incident light in the infrared region and incident light in the visible region each into different polarized light and thereby controlling transmitted light in the infrared region and transmitted light in the visible region.

Description

赤外域及び可視域の光制御装置Infrared and visible light control devices
 本発明は、赤外域及び可視域の光を制御する光制御装置に関する。 The present invention relates to a light control device that controls light in the infrared region and the visible region.
 光の透過・遮へい機能を有する偏光板は、光のスイッチング機能を有する液晶とともに液晶ディスプレイ(Liquid Crystal Display:LCD)等の表示装置に用いられる。このLCDの適用分野も初期の頃の電卓および時計等の小型機器から、ノートパソコン、ワープロ、液晶プロジェクター、液晶テレビ、カーナビゲーション、及び屋内外の情報表示装置、計測機器等が挙げられる。また偏光機能を有するレンズへの適用も可能であり、視認性の向上したサングラスや、近年では3Dテレビなどに対応する偏光メガネなどへの応用がなされている。 A polarizing plate having a light transmission / shielding function is used in a display device such as a liquid crystal display (LCD) together with a liquid crystal having a light switching function. Applications of this LCD include small computers such as calculators and watches in the early days, notebook computers, word processors, liquid crystal projectors, liquid crystal televisions, car navigation systems, indoor and outdoor information display devices, measuring devices, and the like. Further, it can be applied to a lens having a polarization function, and has been applied to sunglasses with improved visibility, and in recent years to polarized glasses compatible with 3D televisions.
 一般的な偏光板は、延伸配向したポリビニルアルコール又はその誘導体のフィルムあるいは、ポリ塩化ビニルフィルムの脱塩酸又はポリビニルアルコール系フィルムの脱水によりポリエンを生成して配向せしめたポリエン系のフィルムなどの偏光膜基材に、偏光素子としてヨウ素や二色性染料を染色乃至は含有せしめて製造される。これらのうち、偏光素子としてヨウ素を用いたヨウ素系偏光膜は、偏光性能には優れるものの、水および熱に対して弱く、高温、高湿の状態で長時間使用する場合にはその耐久性に問題がある。一方、偏光素子として二色性染料を用いた染料系偏光膜はヨウ素系偏光膜に比べ、耐湿性および耐熱性は優れるものの、一般に偏光性能が十分でない。つまり、可視波長域向けの波長に対する偏光機能を有する偏光板であって、赤外波長域向けの偏光板ではなかった。 A general polarizing plate is a polarizing film such as a stretched and oriented film of polyvinyl alcohol or a derivative thereof, or a polyene film obtained by orienting a polyene by dehydrochlorination of a polyvinyl chloride film or dehydration of a polyvinyl alcohol film. The substrate is produced by dyeing or containing iodine or a dichroic dye as a polarizing element. Among these, an iodine-based polarizing film using iodine as a polarizing element is excellent in polarization performance, but is weak against water and heat, and is durable when used for a long time at high temperature and high humidity. There's a problem. On the other hand, although a dye-type polarizing film using a dichroic dye as a polarizing element is superior in moisture resistance and heat resistance to an iodine-type polarizing film, the polarizing performance is generally not sufficient. That is, the polarizing plate has a polarizing function with respect to the wavelength for the visible wavelength range, and is not the polarizing plate for the infrared wavelength range.
 近年では、タッチパネル向け認識光源や防犯カメラ、センサー、偽造防止、通信機器等の用途において、可視域波長向けの偏光板だけでなく、赤外線領域に用いられる偏光板が求められている。そういった要望に対して、特許文献1のようにヨウ素系偏光板をポリエン化した赤外偏光板や、特許文献2または3のようなワイヤーグリットを応用した赤外偏光板や、特許文献4のような微粒子を含んだガラスを延伸した赤外偏光子や、特許文献5または6のようなコレステリック液晶を用いたタイプが報告されている。特許文献1では耐久性が弱く、耐熱性や湿熱耐久性、および耐光性が弱く実用性に至っていない。特許文献2または3のようなワイヤグリッドタイプは、フィルムタイプにも加工が可能であると同時に、製品として安定していることから普及が進みつつある。しかしながら、表面にナノレベルの凹凸がないと光学特性を維持でないことから、表面に触れてはならず、そのため使用される用途は制限され、さらには反射防止や防呟(アンチグレア)加工をすることが難しい。特許文献4のような微粒子を含んだガラス延伸タイプは高い耐久性を有し、高い二色性を有していることから実用性に至っている。しかしながら、微粒子を含みながら延伸されたガラスであるため、素子そのものが割れやすく、もろく、かつ、従来の偏光板のような柔軟性が無くいために表面加工や他の基板との貼合が難しいという問題点があった。特許文献5及び特許文献6の技術は、古くから公開されている円偏光を用いた技術ではあるが、視認する角度によって色が変わってしまうことや、基本的に、反射を利用した偏光板であるため、迷光や絶対偏光光を形成させることが難しかった。つまり、一般的なヨウ素系偏光板のように吸収型偏光素子であって、フィルムタイプで柔軟性があり、かつ、高い耐久性を有する赤外線波長領域に対応した偏光板は無かった。また、更には、それは赤外域の偏光板の機能を有するだけであり、可視域の偏光を制御しうるものではなかった。 In recent years, in applications such as recognition light sources for touch panels, security cameras, sensors, anti-counterfeiting, and communication devices, polarizing plates used in the infrared region as well as polarizing plates for visible wavelengths are required. In response to such a request, an infrared polarizing plate obtained by polyeneizing an iodine-based polarizing plate as in Patent Document 1, an infrared polarizing plate using wire grit as in Patent Document 2 or 3, and Patent Document 4 A type using an infrared polarizer obtained by stretching glass containing fine particles or a cholesteric liquid crystal as disclosed in Patent Document 5 or 6 has been reported. In patent document 1, durability is weak, heat resistance, wet heat durability, and light resistance are weak, and it has not reached practicality. The wire grid type as disclosed in Patent Document 2 or 3 can be processed into a film type, and at the same time, is becoming popular because it is stable as a product. However, since the optical properties cannot be maintained if there are no nano level irregularities on the surface, the surface must not be touched, and therefore the applications used are limited, and antireflection and anti-glare processing is also required. Is difficult. The glass drawing type containing fine particles as in Patent Document 4 has high durability and high dichroism, and thus has practicality. However, because it is a stretched glass containing fine particles, the element itself is easily broken, fragile, and lacks flexibility like a conventional polarizing plate, so it is difficult to perform surface processing and bonding with other substrates. There was a problem. Although the techniques of Patent Document 5 and Patent Document 6 are techniques using circularly polarized light that have been published for a long time, the color changes depending on the viewing angle, and basically a polarizing plate using reflection. For this reason, it is difficult to form stray light or absolute polarized light. That is, there is no polarizing plate corresponding to an infrared wavelength region which is an absorptive polarizing element like a general iodine-based polarizing plate, is flexible in film type and has high durability. Furthermore, it only has the function of a polarizing plate in the infrared region, and cannot control the polarization in the visible region.
 よって、これまでに赤外域の偏光と可視域の偏光のそれぞれを制御し得ても、同時にそれぞれの領域の偏光光を制御しうる偏光板を得ることは出来ていなかった。 Thus, even though it has been possible to control each of the polarized light in the infrared region and the polarized light in the visible region, it has not been possible to obtain a polarizing plate capable of controlling the polarized light in each region at the same time.
 加えて、可視と赤外光を切替えて、それぞれ独立にスイッチング出来る素子は存在しなかった。 In addition, there was no element that could switch between visible and infrared light and switched independently.
US2,494,686号明細書US 2,494,686 specification 特開2016-148871号公報Japanese Patent Laid-Open No. 2016-148871 特表2006-507517号公報Special table 2006-507517 特開2004-86100号公報JP 2004-86100 A 国際公開第2015/087709号International Publication No. 2015/087709 特開2013-064798号公報JP 2013-064798 A
 本願は、入射した赤外域の波長の光と可視域の波長の光を、同時にそれぞれ異なる偏光光になるように制御することが出来る光制御装置を提供することを目的とする。 An object of the present application is to provide a light control apparatus that can control incident infrared wavelength light and visible wavelength light so that they simultaneously become different polarized lights.
 本願はさらに、入射した赤外域の偏光と可視域の偏光を同時にそれぞれの領域の偏光光を制御しうる光学制御を提供することを目的とする。加えて、同一光源からの赤外域の光と可視域の光を、検出される側とにおいて、赤外域と可視域のそれぞれの領域で切替えて光量を制御できる光学システム、つまりは、可視光と赤外光とを動的に切替スイッチング出来る素子を提供することを目的とする。 It is another object of the present application to provide optical control capable of simultaneously controlling incident polarized light in the infrared region and polarized light in the visible region in each region. In addition, an optical system capable of controlling the amount of light by switching between infrared light and visible light from the same light source in the infrared region and visible region on the detected side, that is, visible light An object is to provide an element capable of dynamically switching between infrared light and switching.
 本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、位相を有する媒体または位相制御可能な媒体を用いて、赤外域の光と可視域の光をそれぞれ異なる偏光光へと制御することにより、入射時の赤外域の光の偏光と、入射時の可視域の光の偏光が、検出される側において、赤外域と可視域においてそれぞれ異なる偏光を出射することが出来ることを見出した。 As a result of diligent research to solve the above problems, the inventors of the present invention controlled infrared light and visible light to different polarized light using a medium having a phase or a medium capable of phase control. As a result, it is found that the polarized light of the infrared light at the time of incidence and the polarized light of the visible light at the time of incidence can emit different polarized light in the infrared region and the visible region on the detection side. It was.
 加えて本発明者らは、可視域の光と赤外域の光を同時に用いた光制御装置であって、赤外域の光に対して偏光性能を有する少なくとも1つの偏光板と、可視域の光に対して偏光性能を有する少なくとも1つの偏光板を具備した光制御装置において、動的に位相を制御可能な媒体により、赤外域の透過光の量と可視域の透過光の量とを制御可能とし、さらには赤外域の光と可視域の光とのスイッチング素子として機能可能な光制御装置を見出した。そしてさらに、同一光源を用いながらも、入射時の赤外域の光量と可視域の光量が、検出される側とにおいて、赤外域と可視域において、それぞれの領域で切替えて光量を制御できる光学システムを見出した。 In addition, the inventors of the present invention are light control devices that use light in the visible region and light in the infrared region at the same time, comprising at least one polarizing plate having polarization performance with respect to light in the infrared region, and light in the visible region. Controlling the amount of transmitted light in the infrared region and the amount of transmitted light in the visible region with a medium that can dynamically control the phase in a light control device equipped with at least one polarizing plate having polarization performance And a light control device that can function as a switching element between infrared light and visible light. Furthermore, while using the same light source, an optical system capable of controlling the light amount by switching between the infrared region and the visible region in the infrared region and the visible region on the side where the light amount in the infrared region and the light amount in the visible region are detected. I found.
 すなわち、本発明の要旨構成は以下に示すとおりである。
1)
 赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御する光制御装置。
2)
 位相を有する媒体または位相制御可能な媒体の位相差値Rλを示しているときの角度と、赤外域で直線偏光を発現しているときの角度との間の角度θiが0≦θi<180°の範囲となる1)に記載の光制御装置。
3)
 位相を有する媒体または位相制御可能な媒体の位相差値Rλを示している角度と、可視域において直線偏光を発現しているときの角度との間の角度θvが-90°<θv<180°の範囲となる1)または2)に記載の光制御装置。
4)
 赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(1)または数式(2)の関係を満たす1)~3)のいずれか一項に記載の光制御装置:
  Vλ-RD≦Rλ≦Vλ+RD          数式(1)
(ただし、RDは0~40nmを示す)
  Iλ/2-RD≦Rλ≦Iλ/2+RD      数式(2)
(ただし、RDは0~40nmを示す)。
5)
 赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(3)または数式(4)の関係を満たす1)~3)のいずれか一項に記載の光制御装置:
  Vλ/2-RD≦Rλ≦Vλ/2+RD      数式(3)
(ただし、RDは0~40nmを示す)
  Iλ/4-RD≦Rλ≦Iλ/4+RD      数式(4)
(ただし、RDは0~40nmを示す)。
6)
 赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(5)または数式(6)の関係を満たす1)~3)のいずれか一項に記載の光制御装置。
  Vλ×3/2-RD≦Rλ≦Vλ×3/2+RD  数式(5)
(ただし、RDは0~40nmを示す。)
  Iλ×1/2-RD≦Rλ≦Iλ×1/2+RD  数式(6)
(ただし、RDは0~40nmを示す。)
7)
 可視域の光と赤外域の光を同時に制御するための、1)~6)のいずれか一項に記載の光制御装置であって、前記位相制御可能な媒体が動的に位相制御可能な媒体である、光制御装置。
8)
 前記動的に位相制御可能な媒体が液晶パネル(液晶セル)である7)に記載の光制御装置。
9)
 前記液晶パネル(液晶セル)で使用している液晶が、TN液晶(Twisted Nematic液晶)、または、STN液晶(Super Twisted Nematic液晶)である8)に記載の光制御装置。
10)
 可視域の光と赤外域の光の各々の透過対非透過のコントラスト比が10以上である7)~9)のいずれか一項に記載の光制御装置。
11)
 可視域の光と赤外域の光に対して偏光性能を有する1つの偏光板(VIS-IR偏光板)を含む1)~10)のいずれか一項に記載の光制御装置。
12)
 前記VIS-IR偏光板において赤外域の光の直交透過率と可視域の光の直交透過率との差が1%以下である11)に記載の光制御装置。
13)
 前記IR偏光板において赤外域の光の直交透過率と、可視域の光の直交透過率との差が10%以上である1)~12)のいずれか一項に記載の光制御装置。
14)
 前記IR偏光板において赤外域の光の直交透過率が1%以下、かつ可視域の光の透過率との差が10%以上である偏光板と、前記VIS偏光板が赤外域で高い透過率を示し、赤外域の光の透過に影響しにくいことを示し、かつ、可視域の光の直交透過率が1%以下を示す少なくとも1つの偏光板とを含む、1)~13)のいずれか一項に記載の光制御装置。
15)
 前記IR偏光板または前記VIS-IR偏光板が吸収型偏光板である1)~14)のいずれか一項に記載の光制御装置。
16)
 前記IR偏光板または前記VIS-IR偏光板がフィルムである1)~15)のいずれか一項に記載の光制御装置。
17)
 位相差を有する媒体または位相制御可能な媒体と、少なくとも1つの偏光板が積層されている1)~16)のいずれか一項に記載の光制御装置。
18)
 1)~17)のいずれか一項に記載の光制御装置を備える液晶表示装置、偽造防止装置、またはセンサー。
That is, the gist configuration of the present invention is as follows.
1)
At least one polarizing plate (IR polarizing plate) having polarization performance with respect to light in the infrared region, at least one polarizing plate (VIS polarizing plate) having polarization performance with respect to light in the visible region, and a medium having a phase or A light control device that includes a phase-controllable medium and controls incident light in the infrared region and transmitted light in the visible region by changing incident infrared light and visible light to different polarized lights.
2)
An angle θi between an angle when the phase difference value Rλ of a medium having phase or a phase controllable medium is shown and an angle when linearly polarized light is expressed in the infrared region is 0 ≦ θi <180 ° The light control device according to 1), which falls within a range of
3)
An angle θv between an angle indicating a phase difference value Rλ of a medium having a phase or a phase controllable medium and an angle when linearly polarized light is expressed in the visible range is −90 ° <θv <180 ° The light control device according to 1) or 2), which falls within the range of
4)
When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, (1) or the light control apparatus according to any one of 1) to 3) that satisfies the relationship of the mathematical formula (2):
Vλ−RD ≦ Rλ ≦ Vλ + RD Formula (1)
(However, RD indicates 0 to 40 nm)
Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Formula (2)
(However, RD indicates 0 to 40 nm).
5)
When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, (3) or the light control device according to any one of 1) to 3) satisfying the relationship of the mathematical formula (4):
Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Formula (3)
(However, RD indicates 0 to 40 nm)
Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Formula (4)
(However, RD indicates 0 to 40 nm).
6)
When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, The light control device according to any one of 1) to 3) satisfying a relationship of (5) or Formula (6).
Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Formula (5)
(However, RD indicates 0 to 40 nm.)
Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Formula (6)
(However, RD indicates 0 to 40 nm.)
7)
The light control device according to any one of 1) to 6) for simultaneously controlling visible light and infrared light, wherein the phase-controllable medium can dynamically control the phase. Light control device that is a medium.
8)
7. The light control device according to 7), wherein the medium capable of dynamically controlling the phase is a liquid crystal panel (liquid crystal cell).
9)
The light control device according to 8), wherein a liquid crystal used in the liquid crystal panel (liquid crystal cell) is a TN liquid crystal (Twisted Nematic liquid crystal) or a STN liquid crystal (Super Twisted Nematic liquid crystal).
10)
The light control device according to any one of 7) to 9), wherein a contrast ratio of transmission to non-transmission of each of visible light and infrared light is 10 or more.
11)
The light control device according to any one of 1) to 10), including one polarizing plate (VIS-IR polarizing plate) having polarization performance with respect to visible light and infrared light.
12)
The light control device according to 11), wherein the difference between the orthogonal transmittance of light in the infrared region and the orthogonal transmittance of light in the visible region is 1% or less in the VIS-IR polarizing plate.
13)
The light control device according to any one of 1) to 12), wherein a difference between the orthogonal transmittance of light in the infrared region and the orthogonal transmittance of light in the visible region is 10% or more in the IR polarizing plate.
14)
In the IR polarizing plate, a polarizing plate in which the orthogonal transmittance of light in the infrared region is 1% or less and a difference from the transmittance of light in the visible region is 10% or more, and the VIS polarizing plate has a high transmittance in the infrared region. Any one of 1) to 13), including at least one polarizing plate that is less susceptible to the transmission of light in the infrared region and that has an orthogonal transmittance of light in the visible region of 1% or less The light control device according to one item.
15)
The light control device according to any one of 1) to 14), wherein the IR polarizing plate or the VIS-IR polarizing plate is an absorption-type polarizing plate.
16)
The light control device according to any one of 1) to 15), wherein the IR polarizing plate or the VIS-IR polarizing plate is a film.
17)
The light control device according to any one of 1) to 16), wherein a medium having a phase difference or a medium capable of phase control and at least one polarizing plate are laminated.
18)
A liquid crystal display device, an anti-counterfeiting device, or a sensor comprising the light control device according to any one of 1) to 17).
 本発明により、入射時の赤外域の光及び可視域の光を、検出される側において、それぞれ異なる偏光として出射することを可能とし、かつ、それら偏光によって光量の制御を可能とする。 According to the present invention, it is possible to emit light in the infrared region and light in the visible region at the time of incidence as different polarized lights on the detected side, and to control the light amount by the polarized light.
 一態様において、本発明により、同一光源からの入射時の赤外域の光の量と可視域の光の量が、検出される側において、赤外域の光と可視域の光が、それぞれの領域で透過または非透過となるように切替えを行うことにより、それぞれの光の量の制御を可能とする。 In one aspect, according to the present invention, the amount of light in the infrared region and the amount of light in the visible region upon incidence from the same light source are detected on the side where the light in the infrared region and the light in the visible region are in the respective regions. By switching so as to be transmissive or non-transmissive, the amount of each light can be controlled.
 本発明の光制御装置は、赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)と、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御することを特徴とする。 The light control device of the present invention includes at least one polarizing plate (IR polarizing plate) having polarization performance for infrared light and at least one polarizing plate (VIS polarization) having polarization performance for visible light. Plate), and a medium having a phase or a phase-controllable medium, and the incident infrared light and visible light are converted into different polarized lights, respectively, so that the infrared transmitted light and the visible transmitted light are different from each other. It is characterized by controlling.
 一態様において、本発明の光制御装置は、可視域の光と赤外域の光が同時に入射した際に、動的に位相制御可能な媒体を含み、赤外域の光と可視域の光をそれぞれ異なる偏光光になるよう制御することにより、赤外域の透過光と可視域の透過光を制御することを特徴とする。 In one aspect, the light control device of the present invention includes a medium capable of dynamically controlling the phase when light in the visible range and light in the infrared range are incident simultaneously, and each of the light in the infrared range and the light in the visible range is included. It is characterized by controlling the transmitted light in the infrared region and the transmitted light in the visible region by controlling to be different polarized light.
 上記IR偏光板は、赤外域の波長において偏光制御可能な偏光板であれば特に限定されない。該偏光板としては、例えば、特許文献1のようなヨウ素系偏光板を応用したポリエンタイプ、特許文献2、特許文献3のようなワイヤーグリッド型偏光板、特許文献4のようにガラスに金属粒子を混合して延伸するガラス偏光板や、染料を含んだ染料系偏光板等が挙げられるが、本願では、染料系偏光板が、好ましく用いられる。この染料系偏光板は、フィルムタイプとすることが可能であり、他の偏光板、位相差板等との積層が容易であり、フレキシブル、かつ、光学制御が容易であるという特長を有している。 The IR polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at wavelengths in the infrared region. Examples of the polarizing plate include a polyene type using an iodine-based polarizing plate as in Patent Document 1, a wire grid type polarizing plate as in Patent Document 2 and Patent Document 3, and metal particles on glass as in Patent Document 4. Examples thereof include a glass polarizing plate that is mixed and stretched, and a dye-based polarizing plate containing a dye. In the present application, a dye-based polarizing plate is preferably used. This dye-based polarizing plate can be made into a film type, and can be easily laminated with other polarizing plates, retardation plates, etc., and has a feature that it is flexible and easy to optically control. Yes.
 上記IR偏光板は、700~1400nmの一部又は全部の波長域の光に対して偏光性能を有している。 The IR polarizing plate has polarization performance with respect to light in part or all of the wavelength range of 700 to 1400 nm.
 上記VIS偏光板とは、可視域の波長において偏光制御可能な偏光板であれば特に限定されない。該偏光板としては、例えば、ヨウ素系偏光板、染料系偏光板、特定の波長のみを偏光制御できる染料系偏光板、ポリエンを利用したタイプの偏光板などであってもよいが、特定の波長のみを偏光制御可能な染料系偏光板、または特定の波長のみを偏光可能な染料系偏光板を複数種類組み合わせ、特定波長の光のみ偏光制御可能な偏光素子とすることが好ましい。特定波長の光のみに対する偏光性能を備えることによって、特定波長での偏光を検出、または制御可能となるために好ましい。 The VIS polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at a visible wavelength. The polarizing plate may be, for example, an iodine-based polarizing plate, a dye-based polarizing plate, a dye-based polarizing plate capable of controlling polarization only at a specific wavelength, a polarizing plate of a type using polyene, etc. It is preferable to combine a plurality of types of dye-type polarizing plates capable of controlling only the polarization or dye-type polarizing plates capable of polarizing only a specific wavelength to obtain a polarizing element capable of controlling the polarization of only light having a specific wavelength. By providing a polarization performance for only light of a specific wavelength, it is preferable because polarization at a specific wavelength can be detected or controlled.
 上記VIS偏光板は、400~700nmの一部又は全部の波長域の光に対して偏光性能を有している。赤外域の透過率が高く吸収を有してないことが好ましく、赤外域の光が
可視透過率より高ければ、特に限定されるものではない。“吸収を有さず”とは赤外域で高い透過率を有し、赤外域の光の透過に影響がしにくいことを示すが、通常、一般的な偏光板の単体透過率は30~45%であるため、それ同等以上の単体透過率を赤外域の各波長に持つ場合、赤外光の透過機能を持つ偏光板として本願の可視(VIS)偏光板として使用することが出来る。具体的には赤外域の透過率が40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%、特に好ましくは80%以上が好ましい。特に、2枚のVIS偏光板を直交にした場合の赤外域の透過率が30%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%、特に好ましくは70%以上であることが特に好ましいVIS偏光板として用いる事が出来る。
The VIS polarizing plate has polarization performance with respect to light in a part or all of the wavelength region of 400 to 700 nm. It is preferable that the transmittance in the infrared region is high and has no absorption, and is not particularly limited as long as the light in the infrared region is higher than the visible transmittance. “Non-absorbing” means high transmittance in the infrared region, and hardly affects the transmission of light in the infrared region. Therefore, if each wavelength in the infrared region has a single transmittance equal to or higher than that, it can be used as a visible (VIS) polarizing plate of the present application as a polarizing plate having a function of transmitting infrared light. Specifically, the transmittance in the infrared region is 40% or more, preferably 50% or more, more preferably 60% or more, still more preferably 70%, and particularly preferably 80% or more. In particular, the transmittance in the infrared region when two VIS polarizing plates are orthogonal to each other is 30% or more, preferably 40% or more, more preferably 50% or more, further preferably 60%, particularly preferably 70% or more. It can be used as a particularly preferred VIS polarizing plate.
 上記位相を有する媒体としては、位相差板、波長板、位相差フィルムと言われるもの等が挙げられる。 Examples of the medium having the above phase include those referred to as a retardation plate, a wave plate, and a retardation film.
 また、位相制御可能な媒体としては、一般的に液晶モニタ等で用いられる液晶を封入し、電気等により位相を制御可能な液晶パネル(液晶セル)等が挙げられる。 Also, examples of the medium capable of phase control include a liquid crystal panel (liquid crystal cell) in which a liquid crystal generally used in a liquid crystal monitor or the like is sealed and the phase can be controlled by electricity or the like.
 ここで、「位相制御可能」とは、波としての光の位相を制御可能であることを意味する。偏光性能に着目した場合、例えば、波長板や位相制御可能な媒体等(波長板等)は、直線偏光の光に所定の位相差を与える光学機能素子であり、偏光は特定の軸の光に対して、その他の軸(例えば90°)において、異なる位相を設けることが可能である。すなわち、一つの偏光光に対して、その光路上に波長板等を設けることにより、その逆の軸の偏光としたり、円偏光、楕円偏光などを新たに付与することが可能となる。したがって、波長板等は、配向した複屈折材料(例えば、延伸フィルム)などを利用して直交する2つの偏光成分に位相差をつけることにより、入射した光の偏光の状態を変えることが出来る素子と言える。この波長板等は、例えば、特定の光の波長をλとした場合、そのλ/2の位相差板の遅相軸を偏光の軸に対して45°に設置することにより、波長板等に入射した直線偏光を90°回転させて、入射した偏光軸とは直交(90°)方向に偏光軸を有する偏光を出射することが出来る。また、λ/2の位相差板の遅相軸を偏光の軸に対して22.5°に設置することにより、波長板(位相差板)に入射した直線偏光を45°回転させて、入射した偏光軸とは45°傾けた偏光を持った光を出射させることが出来る。さらに、λ/4の位相差板の遅相軸を偏光の軸に対して45°に設置した場合には、波長板(位相差板)に入射した直線偏光を、円偏光として出射させることが出来る。 Here, “phase controllable” means that the phase of light as a wave can be controlled. When focusing on polarization performance, for example, a wave plate, a phase controllable medium, etc. (wave plate, etc.) are optical functional elements that give a predetermined phase difference to linearly polarized light. On the other hand, different phases can be provided in other axes (for example 90 °). In other words, by providing a wavelength plate or the like on the optical path for one polarized light, it becomes possible to obtain polarized light of the opposite axis, or newly add circularly polarized light, elliptically polarized light, or the like. Therefore, a wave plate or the like is an element that can change the polarization state of incident light by providing a phase difference between two orthogonal polarization components using an oriented birefringent material (for example, a stretched film). It can be said. For example, when the wavelength of the specific light is λ, the wave plate is set to 45 ° with respect to the axis of polarization by setting the slow axis of the phase difference plate of λ / 2 to 45 °. The incident linearly polarized light can be rotated by 90 °, and polarized light having a polarization axis in a direction orthogonal (90 °) to the incident polarization axis can be emitted. Also, by setting the slow axis of the λ / 2 retardation plate to 22.5 ° with respect to the polarization axis, the linearly polarized light incident on the wave plate (retardation plate) is rotated by 45 ° and incident. It is possible to emit light having a polarization inclined by 45 ° with respect to the polarization axis. Further, when the slow axis of the λ / 4 retardation plate is set at 45 ° with respect to the polarization axis, linearly polarized light incident on the wave plate (retardation plate) can be emitted as circularly polarized light. I can do it.
 上記位相差板、波長板、位相差フィルムを用いうるものとしては、フィルムの光の遅相軸もしくは進相軸を偏光板の吸収軸に対して回転出来るものであれば特に限定されない。 The retardation plate, wave plate, and retardation film that can be used are not particularly limited as long as the slow axis or the fast axis of the film light can be rotated with respect to the absorption axis of the polarizing plate.
 位相制御可能な液晶パネル(液晶セル)は、電気的に位相を制御する媒体である。その制御する液晶駆動の方式としては、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In-Plane-Switiching)、VA(Virtical Alagnment)など、様々な方式があるが、可視域の光と赤外域の光の位相を制御可能な液晶及び制御方式であれば特に限定されない。好ましくは、TN(Twisted Nematic)、STN(Super Twisted Nematic)等が挙げられる。これらは駆動電圧が低く、価格も安く、かつ、0-90°の偏光旋回が制御しやすいため好ましい。 A liquid crystal panel (liquid crystal cell) capable of phase control is a medium for electrically controlling the phase. There are various liquid crystal driving methods to be controlled, such as TN (Twisted Nematic), STN (Super Twisted Nematic), IPS (In-Plane-Switching), and VA (Virtual Allocation). As long as the liquid crystal and control method can control the phase of light in the infrared region. Preferably, TN (Twisted Nematic), STN (Super Twisted Nematic), etc. are mentioned. These are preferable because the driving voltage is low, the price is low, and the polarization rotation of 0-90 ° is easy to control.
 上記光制御装置は、位相を有する媒体または位相制御可能な媒体によって、赤外域の光と可視域の光をそれぞれ異なる偏光光になるよう制御する。それにより、入射時の赤外域の光の偏光と、入射時の可視域の光の偏光とが、それぞれ検出される側において、異なる偏光として感知することが出来る。具体的には、人間の目で視認可能な可視域の光と、視認困難な赤外域の光を、それぞれ同時に偏光制御することにより、可視域の光と赤外域の光を同時に、光量調整することを可能とし、可視域の光を透過、あるいは非透過となるよう制御しながら、赤外域の光は透過させ続けることが可能となる。また、この逆の制御も可能であり、つまり、赤外域の光を透過、あるいは非透過となるよう制御しながら、可視域の光は透過させ続けることも可能となり、可視域の光と赤外域の光それぞれの偏光や光量を同時に制御可能な光制御装置を提供することが可能となる。 The light control device controls the light in the infrared region and the light in the visible region to be different polarized lights by a medium having a phase or a medium capable of phase control. Thereby, the polarization of infrared light at the time of incidence and the polarization of light at the time of incidence can be perceived as different polarizations on the detected side. Specifically, the amount of light in the visible region and the amount of light in the infrared region are adjusted simultaneously by simultaneously controlling the polarization of light in the visible region visible to the human eye and light in the infrared region that is difficult to visually recognize. This makes it possible to continue to transmit light in the infrared region while controlling to transmit or not transmit light in the visible region. In addition, the reverse control is also possible, that is, it is possible to continue to transmit light in the visible region while controlling to transmit or not transmit light in the infrared region. It is possible to provide a light control device capable of simultaneously controlling the polarization and light quantity of each of the light.
 従来、赤外線センサーと可視カメラは、赤外域の光の検知、及び可視域の光の検知に、それぞれ別の種類の検知器を用いる必要があったが、本発明の装置を用いることにより、赤外線センサーと可視カメラを一つ光制御装置で制御することが可能となる。例えば、携帯電話等のカメラでは、一般的に赤外域用の認証カメラと可視域用のカメラとで別々の光制御装置が必要であったが、上記光制御装置を用いることにより、可視域の光と赤外域の光の透過あるいは非透過の切替えが可能なため、赤外域認証と、可視域写真撮影等が一つの光制御装置を用いて行うことが可能となる。さらに、この光制御装置を応用することで、高度なセキュリティ等に応用も可能である。また、光透過型装置、赤外~可視域の円偏光制御及び直線偏光制御等が可能であることから、これらを応用することにより、例えば、光反射偏光機能を応用した装置やセキュリティ用途等への応用も可能となる。 Conventionally, an infrared sensor and a visible camera had to use different types of detectors for detecting light in the infrared region and for detecting light in the visible region. It is possible to control the sensor and the visible camera with one light control device. For example, a camera such as a mobile phone generally requires separate light control devices for an infrared authentication camera and a visible camera, but by using the light control device, a visible light control device can be used. Since it is possible to switch between transmission and non-transmission of light and infrared light, it is possible to perform infrared region authentication and visible region photography using a single light control device. Furthermore, by applying this light control device, it can be applied to advanced security. In addition, since it is possible to control light transmission type devices, circularly polarized light control and linearly polarized light control in the infrared to visible region, application of these to, for example, devices that apply the light reflection polarization function, security applications, etc. Can also be applied.
 一態様において、位相を有する媒体または位相制御可能な媒体(位相差板)の位相差値Rλが発現している場合の角度(入射光の位相)と、赤外域で直線偏光を発現(出射)している場合の角度(出射光の位相)との間の角度(位相差)θiが0≦θi<180°の範囲である光制御装置であることが好ましい。上記角度θiが0°、つまり同軸に設置した場合、赤外域の偏光は、位相差板よって影響を受けない、または、受けにくい光になり、また、λ/2の位相差値である位相差板を設けた場合には、上記角度θiを45°に設置することにより、入射した直線偏光とは90°反転し逆の軸を持つ偏光を出射出来る。 In one aspect, an angle (phase of incident light) when a phase difference value Rλ of a medium having a phase or a phase controllable medium (phase difference plate) is expressed, and linearly polarized light is emitted (emitted) It is preferable that the light control device has an angle (phase difference) θi in the range of 0 ≦ θi <180 ° with respect to the angle (phase of the emitted light). When the angle θi is 0 °, that is, when it is installed coaxially, the polarized light in the infrared region becomes light that is not influenced or hardly received by the phase difference plate, and a phase difference that is a phase difference value of λ / 2. When a plate is provided, by setting the angle θi to 45 °, it is possible to emit polarized light having an axis opposite to that of the incident linearly polarized light by 90 °.
 さらに、位相差板の位相差値Rλが発現している角度(入射光の位相)と、可視域において直線偏光を発現している場合の角度(出射光の位相)との間の角度(位相差)θvが-90°<θv<180°の範囲である光制御装置であることにより、可視域の位相差も制御できるようになる。θvとθiは同じであっても良いが、異なっていても良く、位相差板により、特定の波長の光の偏光状態を制御可能であれば良い。つまり、用いる位相差板の枚数を1枚と限定せず、一般的な液晶ディスプレイが1/4λ板や1/2λ板等を組み合わせて用いるように、本発明の光制御装置においても複数の位相差板を用いても良い。 Furthermore, the angle (position) between the angle (phase of incident light) where the phase difference value Rλ of the phase difference plate is expressed and the angle (phase of outgoing light) when linearly polarized light is expressed in the visible range. The phase difference in the visible range can be controlled by the light control device in which the phase difference θv is in the range of −90 ° <θv <180 °. θv and θi may be the same or different from each other, as long as the polarization state of light having a specific wavelength can be controlled by the phase difference plate. That is, the number of retardation plates to be used is not limited to one, and the light control device of the present invention also has a plurality of positions so that a general liquid crystal display uses a combination of a 1 / 4λ plate, a 1 / 2λ plate, or the like. A phase difference plate may be used.
 赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差板の誤差をRD(Retarder Dispersion)、位相差板の位相差値をRλとした場合、下記数式(1)または数式(2)の関係を満たす光制御装置は、可視域ではVλを提供可能な位相差板として機能し、赤外域ではIλ/2を提供可能な位相差板として機能する。
   Vλ-RD≦Rλ≦Vλ+RD          数式(1)
(ただし、RDは0~40nmを示す)
   Iλ/2-RD≦Rλ≦Iλ/2+RD      数式(2)
(ただし、RDは0~40nmを示す)
 上記光制御装置において、Rλを有する位相差板の遅相軸を、入射する直線偏光の光に対して45°に設けた場合には、可視域においては、入射時の偏光光を維持可能な位相差板として機能し続けるが、赤外域においてはλ/2偏光板として機能することにより入射偏光軸の逆偏光軸を出射可能となる。このRλを有する位相差板の遅相軸を、入射する直線偏光の光に対して45°に設けた場合であって、かつ、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合には、可視域の光は透過可能であるが、赤外域の光は吸収可能である光制御装置を提供することができる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、上記数式(1)、または数式(2)の関係を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。上記RDは、0~40nmの範囲であることが好ましく、より好ましくは0~25nm、さらに好ましくは0~15nm、特に好ましくは0~5nmの範囲である。上記位相を用いた偏光軸の制御は、非特許文献1等を参考に行うことが可能である。
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the retardation plate error is RD (Retarder Dispersion), and the retardation value of the retardation plate is Rλ, the following formula (1) or formula The light control device satisfying the relationship (2) functions as a phase difference plate capable of providing Vλ in the visible range, and functions as a phase difference plate capable of providing Iλ / 2 in the infrared range.
Vλ−RD ≦ Rλ ≦ Vλ + RD Formula (1)
(However, RD indicates 0 to 40 nm)
Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Formula (2)
(However, RD indicates 0 to 40 nm)
In the above light control device, when the slow axis of the retardation plate having Rλ is set at 45 ° with respect to the incident linearly polarized light, the polarized light at the time of incidence can be maintained in the visible range. Although it continues to function as a retardation plate, in the infrared region, it can function as a λ / 2 polarizing plate to emit a reverse polarization axis of the incident polarization axis. When the slow axis of the retardation plate having Rλ is provided at 45 ° with respect to incident linearly polarized light, a polarizing plate having an absorption axis perpendicular to the incident axis is provided on the output side. In this case, it is possible to provide a light control device that can transmit light in the visible range but can absorb light in the infrared range. When it is desired that both visible light and infrared light are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. Thus, by controlling the slow axis of the retardation plate having Rλ that satisfies the relationship of the above formula (1) or formula (2), the axis of linearly polarized light and elliptically polarized light can be controlled. . The RD is preferably in the range of 0 to 40 nm, more preferably 0 to 25 nm, still more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm. Control of the polarization axis using the phase can be performed with reference to Non-Patent Document 1 and the like.
 また、下記数式(3)または数式(4)の関係を満たす光制御装置は、可視域においてはλ/2を提供可能な位相差板として機能し、赤外域においてはλ/4を提供可能な位相差板として機能する。なお、Iλ、Vλ、RD、及びRλは上で定義した通りである。
   Vλ/2-RD≦Rλ≦Vλ/2+RD      数式(3)
(ただし、RDは0~40nmを示す)
   Iλ/4-RD≦Rλ≦Iλ/4+RD      数式(4)
(ただし、RDは0~40nmを示す)
 上記光制御装置において、Rλを有する位相差板の遅相軸を、直線偏光の光が入射する45°に設けることにより、可視域においては、λ/2偏光板として機能し、入射した偏光光の逆偏光を出射することが可能となり、赤外域においては、λ/4偏光板として機能可能な位相差板として機能し、入射した偏光光を円偏光にして出射することが可能となる。これにより、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合、可視域は直線偏光のまま偏光制御可能となるのに対して、赤外域は円偏光光として制御可能となる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、数式(3)、数式(4)を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。上記構成とした場合、可視域での反射制御が可能で、かつ、赤外域の透過制御も可能となる。好ましい構成としては、例えば、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域、および、赤外域を制御しうる偏光板の構成でも良いが、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域を制御しうる偏光板、赤外域を制御しうる偏光板、の順などが例示されるが、構成は限定されない。さらに、本方法を用いると赤外域においては反射した光が偏光を有していることを応用した偏光制御も可能となる。例えば、偏光板一枚での反射制御を行う場合、赤外域においては、偏光板、λ/4位相差板、反射板の順番で積層し、偏光板の吸収軸に対して位相差板の遅相軸を直線偏光の光が入射する45°で設置した場合、偏光板から光を入射した直線偏光は、位相差板によって円偏光に変換され、また、反射板により反射された光は、逆円偏光に変換され、結果的に反射防止可能な機能を発現できる。しかし、この場合、可視域の光は直線偏光の状態を維持し続けるため、光は反射され、反射光を検出可能となる。さらには、この反射で用いる場合においても、赤外偏光板の吸収軸に対して位相差板の遅相軸を0°に設置することにより、赤外域の偏光は直線偏光の状態で維持するため、可視域の光と赤外域の光のいずれも反射可能な光制御装置として機能する。本光制御装置の場合、RDは0~40nmの範囲であることが良く、好ましくは0~25nm、より好ましくは0~15nm、特に好ましくは0~5nmの範囲であることが良い。
In addition, the light control device that satisfies the relationship of the following formula (3) or formula (4) functions as a retardation plate that can provide λ / 2 in the visible range, and can provide λ / 4 in the infrared range. Functions as a phase difference plate. Note that Iλ, Vλ, RD, and Rλ are as defined above.
Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Formula (3)
(However, RD indicates 0 to 40 nm)
Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Formula (4)
(However, RD indicates 0 to 40 nm)
In the above light control device, by providing the slow axis of the retardation plate having Rλ at 45 ° where linearly polarized light is incident, it functions as a λ / 2 polarizing plate in the visible region, and the incident polarized light. In the infrared region, it functions as a retardation plate that can function as a λ / 4 polarizing plate, and the incident polarized light can be emitted as circularly polarized light. As a result, when a polarizing plate having an absorption axis orthogonal to the incident axis is provided on the exit side, the polarization can be controlled while the linear region is linearly polarized, whereas the infrared region can be controlled as circularly polarized light. . When it is desired that both visible light and infrared light are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. As described above, by controlling the slow axis of the retardation plate having Rλ satisfying the mathematical expressions (3) and (4), the axis of linearly polarized light and elliptically polarized light can be controlled. With the above configuration, reflection control in the visible range is possible, and transmission control in the infrared range is also possible. As a preferable configuration, for example, a polarizing plate capable of controlling the visible region and the infrared region, a medium having a phase or a medium capable of phase control, a polarizing plate capable of controlling the visible region and the infrared region may be used. Illustrative examples include: a polarizing plate capable of controlling the visible region and the infrared region; a medium having a phase or a phase-controllable medium; a polarizing plate capable of controlling the visible region; and a polarizing plate capable of controlling the infrared region. However, the configuration is not limited. Furthermore, when this method is used, polarization control can be performed by applying the fact that reflected light has polarization in the infrared region. For example, when performing reflection control with a single polarizing plate, in the infrared region, the polarizing plate, the λ / 4 retardation plate, and the reflection plate are laminated in this order, and the retardation plate is delayed with respect to the absorption axis of the polarizing plate. When the phase axis is set at 45 ° where linearly polarized light is incident, the linearly polarized light incident from the polarizing plate is converted into circularly polarized light by the phase difference plate, and the light reflected by the reflecting plate is reversed. It is converted into circularly polarized light, and as a result, a function capable of preventing reflection can be exhibited. However, in this case, since the light in the visible range continues to maintain the state of linear polarization, the light is reflected and the reflected light can be detected. Furthermore, even in the case of use in this reflection, by setting the slow axis of the retardation plate to 0 ° with respect to the absorption axis of the infrared polarizing plate, the infrared polarized light is maintained in a linearly polarized state. It functions as a light control device capable of reflecting both visible light and infrared light. In the case of this light control apparatus, RD may be in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.
 また、下記数式(5)または数式(6)の関係を満たす光制御装置は、可視域においては3/2λを提供可能な位相差板として機能し、赤外域においては1/2λを提供可能な位相差板として機能する。なお、Iλ、Vλ、RD、及びRλは上で定義した通りである。
   Vλ×3/2-RD≦Rλ≦Vλ×3/2+RD  数式(5)
(ただし、RDは0~40nmを示す)
   Iλ×1/2-RD≦Rλ≦Iλ×1/2+RD  数式(6)
(ただし、RDは0~40nmを示す)
 上記光制御装置において、Rλを有する位相差板の遅相軸を、直線偏光の光が入射する45°に設けることによって、可視域においては、3/2λ偏光板としてとして機能することり、入射した偏光光の円偏光を出射することが可能となり、赤外域においては、λ/2偏光板として、入射した偏光光を逆軸に出射可能な位相差板として機能するに至る。これにより、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合、可視域の偏光光は円偏光として制御可能となるのに対して、赤外域は直線偏光光として制御可能となる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、数式(5)、数式(6)を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。好ましい構成としては、例えば、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域、および、赤外域を制御しうる偏光板の構成でも良いが、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域を制御しうる偏光板、赤外域を制御しうる偏光板、の順などが例示されるが、構成は限定されない。さらに、本方法を用いると赤外域においては反射した光が偏光を有していることを応用した偏光制御も可能となる。上記構成とした場合、可視域での反射制御が可能で、かつ、赤外域の透過制御も可能となる。例えば、偏光板一枚での反射制御行う場合、可視域においては、偏光板、3/4λ偏光板、反射板の順番で積層し、反射板の上に偏光板の吸収軸に対して位相差板の遅相軸を45°で設置することにより、偏光板から光を入射直線偏光は、位相差板によって円偏光に変換され、また、反射板により反射された光は、逆円偏光に変換され、結果的に反射を防止可能な機能を発現できる。しかし、この場合、赤外域の光は直線偏光の状態を維持し続けるため、光は反射され、反射光を検出可能となる。さらには、この反射で用いる場合においても、位相差板の遅相軸を0°に設置することにより、可視域の光と赤外域の光のいずれ反射可能な光制御装置として機能する。本光制御装置の場合、RDは0~40nmの範囲であることが良く、好ましくは0~25nm、より好ましくは0~15nm、特に好ましくは0~5nmの範囲であることが良い。
In addition, the light control device that satisfies the relationship of the following formula (5) or formula (6) functions as a phase difference plate that can provide 3 / 2λ in the visible range, and can provide 1 / 2λ in the infrared range. Functions as a phase difference plate. Note that Iλ, Vλ, RD, and Rλ are as defined above.
Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Formula (5)
(However, RD indicates 0 to 40 nm)
Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Formula (6)
(However, RD indicates 0 to 40 nm)
In the above light control device, by providing the slow axis of the retardation plate having Rλ at 45 ° where linearly polarized light is incident, it functions as a 3 / 2λ polarizing plate in the visible region or is incident. It becomes possible to emit circularly polarized light of polarized light, and in the infrared region, it functions as a retardation plate capable of emitting incident polarized light on the opposite axis as a λ / 2 polarizing plate. As a result, when a polarizing plate having an absorption axis orthogonal to the incident axis is provided on the output side, the polarized light in the visible range can be controlled as circularly polarized light, whereas the infrared region can be controlled as linearly polarized light. Become. When it is desired that both visible light and infrared light are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. As described above, by controlling the slow axis of the retardation plate having Rλ satisfying the mathematical expressions (5) and (6), the linearly polarized light axis, the elliptically polarized light, and the like can be controlled. As a preferable configuration, for example, a polarizing plate capable of controlling the visible region and the infrared region, a medium having a phase or a medium capable of phase control, a polarizing plate capable of controlling the visible region and the infrared region may be used. Illustrative examples include: a polarizing plate capable of controlling the visible region and the infrared region; a medium having a phase or a phase-controllable medium; a polarizing plate capable of controlling the visible region; and a polarizing plate capable of controlling the infrared region. However, the configuration is not limited. Furthermore, when this method is used, polarization control can be performed by applying the fact that reflected light has polarization in the infrared region. With the above configuration, reflection control in the visible range is possible, and transmission control in the infrared range is also possible. For example, when performing reflection control with a single polarizing plate, in the visible range, a polarizing plate, a 3 / 4λ polarizing plate, and a reflecting plate are laminated in this order, and the phase difference with respect to the absorption axis of the polarizing plate is formed on the reflecting plate. By setting the slow axis of the plate at 45 °, the incident linearly polarized light from the polarizing plate is converted to circularly polarized light by the phase difference plate, and the light reflected by the reflecting plate is converted to reverse circularly polarized light. As a result, a function capable of preventing reflection can be exhibited. However, in this case, since the light in the infrared region continues to maintain the state of linear polarization, the light is reflected and the reflected light can be detected. Furthermore, even when used in this reflection, by setting the slow axis of the phase difference plate to 0 °, it functions as a light control device that can reflect either visible light or infrared light. In the case of this light control apparatus, RD may be in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.
 本発明の光制御装置の上記IR偏光板において、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の赤外域(700~1400nmの波長)の光の透過率(赤外域の光の直交透過率)と、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の可視域(400~700nmの波長)の光の透過率(可視域の光の直交透過率)との差が10%以上であることにより、可視域の光と赤外域の光の偏光制御がさらに容易となるため好ましい。例えば、偏光板が赤外域の光に対して偏光性能を有しており、かつ、可視域の光に対しても偏光性能を有している場合、位相差板によって、それぞれの領域の光の偏光を制御可能であるが、偏光板一枚で400~1400nmの光の100%の偏光度を有すると、赤外域の光に対してのみ偏光性能を付与する、もしくは、可視域の光に対してのみ偏光性能を付与することが難しくなる。それに対して、それぞれの波長領域の光に対して偏光性能を有する偏光板を用いることにより、波長に合わせて適切な偏光板を選択することにより、偏光制御が様々な波長で可能となる。つまりは、赤外域においては赤外域の光の波長のみで制御可能な偏光板を用い、可視域においては可視域の光の波長のみで制御可能な偏光板を用いることが様々な波長で偏光制御、または、透過率制御が出来るため好ましい。しかしながら、赤外域に偏光性能を有する偏光板は、可視域においても偏光性能を有する場合もあることから、必ずしも、赤外域に偏光性能を有するのみとは限らない。ただし、本発明の光制御装置の機能としては、赤外域の光と可視域の光とで異なる位相(偏光)を付与した光を出射することが重要であるため、それらの検出光量(エネルギー)の大小(S/N比)が明瞭になれば十分である。そのため、IR偏光板において、全波長で100%の偏光性能を付与させるのではなく、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の700~1400nmの光の透過率と、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の400~700nmの光の透過率との差が10%以上であることにより、可視域の光と赤外域の光の偏光制御がさらに容易となるため好ましく、透過率の差は、より好ましくは20%、さらに好ましくは30%、特に好ましくは40%以上である。 In the IR polarizing plate of the light control device of the present invention, the transmittance of light in the infrared region (wavelength of 700 to 1400 nm) when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other (in the infrared region). (The orthogonal transmittance of light) and the transmittance of light in the visible region (wavelength of 400 to 700 nm) (orthogonal transmittance of light in the visible region) when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other ) Is preferably 10% or more because polarization control of visible light and infrared light becomes easier. For example, when the polarizing plate has polarization performance for infrared light and also has polarization performance for visible light, the retardation plate Polarization can be controlled, but if one polarizing plate has a degree of polarization of 100% of light of 400 to 1400 nm, it imparts polarization performance only to infrared light, or to visible light It becomes difficult to impart polarization performance only. On the other hand, by using a polarizing plate having polarization performance for light in each wavelength region, polarization control can be performed at various wavelengths by selecting an appropriate polarizing plate according to the wavelength. In other words, using a polarizing plate that can be controlled only by the wavelength of light in the infrared region in the infrared region, and using a polarizing plate that can be controlled only by the wavelength of light in the visible region in the infrared region, polarization control at various wavelengths. Or, it is preferable because the transmittance can be controlled. However, since a polarizing plate having polarization performance in the infrared region may also have polarization performance in the visible region, it does not necessarily have only polarization performance in the infrared region. However, as a function of the light control device of the present invention, it is important to emit light having different phases (polarized light) between infrared light and visible light. It is sufficient that the size (S / N ratio) becomes clear. Therefore, the IR polarizing plate does not give 100% polarization performance at all wavelengths, but has a light transmittance of 700 to 1400 nm when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other. The difference between the light transmittance of 400 to 700 nm when the two polarizing plates are stacked so that the absorption axes are orthogonal to each other is 10% or more, so that the light in the visible region and the light in the infrared region are This is preferable because polarization control is further facilitated, and the difference in transmittance is more preferably 20%, still more preferably 30%, and particularly preferably 40% or more.
 赤外域の光の波長の範囲で直交透過率が1%以下であるIR偏光板と、赤外域の光の波長の範囲に光の吸収を有さず、かつ、偏光板の直交透過率が1%以下を示す少なくとも1つのVIS偏光板を含むことを特徴とした光制御装置は、赤外域の光に対する偏光性能と可視域の光に対する偏光性能のそれぞれを制御可能とするため好ましい。さらに、上記光制御装置は赤外域の光と可視域の光のコントラストをそれぞれ向上するため好ましい。また、それぞれの偏光板を別軸に用いることも可能であり、それぞれの偏光の軸制御をしたい波長、波長軸で、可視域の光と赤外域の光とを分けて光制御することが可能となる。赤外域の光と可視域の光のそれぞれの直交透過率としては、それぞれ独立に、1%以下であることで十分に光制御は可能となるが、好ましくは0.3%以下、より好ましくは0.1%以下、さらに好ましくは0.01%以下、特に好ましくは0.005%以下であることが良い。例えば、平行透過率40%であった場合、直交透過率が0.1%とすると、その比である40:0.1、つまりは400:1のコントラスト比を提供しうる。つまり、偏光板のコントラストが本発明の光学制御装置に与える影響は大きいため、上記、範囲に制御することが好ましい。 An IR polarizing plate having an orthogonal transmittance of 1% or less in the wavelength range of light in the infrared region, and no absorption of light in the wavelength range of light in the infrared region, and the orthogonal transmittance of the polarizing plate is 1 The light control device including at least one VIS polarizing plate exhibiting% or less is preferable because the polarization performance with respect to light in the infrared region and the polarization performance with respect to light in the visible region can be controlled. Furthermore, the light control device is preferable because it improves the contrast between light in the infrared region and light in the visible region. In addition, it is possible to use each polarizing plate on a different axis, and it is possible to control light separately for visible light and infrared light at the wavelength and wavelength axis for which each polarization axis is to be controlled. It becomes. The orthogonal transmittance of each of the light in the infrared region and the light in the visible region can be sufficiently controlled by being independently 1% or less, preferably 0.3% or less, more preferably It may be 0.1% or less, more preferably 0.01% or less, and particularly preferably 0.005% or less. For example, when the parallel transmittance is 40%, when the orthogonal transmittance is 0.1%, the contrast ratio of 40: 0.1, that is, 400: 1 can be provided. That is, since the influence of the contrast of the polarizing plate on the optical control device of the present invention is large, it is preferable to control within the above range.
 本発明の光制御装置における、赤外域の光と可視域の光の制御に関して、その透過・非透過(遮光)切替え時に必要な光量のコントラストとしては、一般的な紙媒体におけるコントラストの比率が必要と言われている。つまりは、透過と遮光のコントラスト比としては10対1以上、好ましくは100対1以上、更に好ましくは1000対1以上であれば良い。 Regarding the control of infrared light and visible light in the light control device of the present invention, the contrast of the amount of light required when switching between transmission and non-transmission (light-shielding) is required to be the contrast ratio of a general paper medium. It is said. That is, the contrast ratio between transmission and light shielding is 10 to 1 or more, preferably 100 to 1 or more, more preferably 1000 to 1 or more.
 上記光制御装置を構築する際、IR偏光板の少なくとも1つが吸収型偏光板であることが好ましい。上記吸収型偏光板は、迷光を発生させない特徴を有する。前記IR偏光板としては、ワイヤーグリット型が一般的ではあるが、光の屈折や反射等を制御して偏光機能を発現している偏光板の場合、散乱光や集光、明暗の激しい物、不特定形状、光の重なり、光の位置が動くものなどの状況などによる光の反射、屈折、共鳴(共振)、位相が変調などにより、本来の波長以外の光や強度の光が発現する。この場合、本来の波長以外の光や強度の光が迷光となる。こうした迷光を発生させないことが、誤った検出を防ぐためには重要となる。つまりは、迷光を発生させない偏光板を用いることが好ましい。例えば、IR偏光板が吸収型偏光板である場合、迷光等ができにくいため光学制御が容易あることから、好ましく用いることができる。 When constructing the light control device, it is preferable that at least one of the IR polarizing plates is an absorptive polarizing plate. The absorptive polarizing plate is characterized by not generating stray light. As the IR polarizing plate, a wire grid type is generally used. Light of a wavelength other than the original wavelength or intensity of light appears due to light reflection, refraction, resonance (resonance), phase modulation, etc. due to conditions such as unspecified shape, overlapping of light, or movement of the light position. In this case, light having a wavelength other than the original wavelength or light having an intensity becomes stray light. It is important not to generate such stray light in order to prevent erroneous detection. That is, it is preferable to use a polarizing plate that does not generate stray light. For example, when the IR polarizing plate is an absorptive polarizing plate, stray light or the like is hardly generated, and thus optical control is easy, so that it can be preferably used.
 上記各偏光板は、積層が容易であり、かつフレキシブル化が可能であり、フレキシブル化するためには、IR偏光板の少なくとも1つがフィルムであることが好ましい。特に、積層が可能であるため、位相を有する媒体または位相制御可能な媒体と積層させることが好ましい。積層させることによって、界面反射等の影響による透過率低下が起こりにくく、光制御を行う上で好ましい。 Each of the above polarizing plates can be easily laminated and can be made flexible, and at least one of the IR polarizing plates is preferably a film in order to make it flexible. In particular, since lamination is possible, lamination with a medium having a phase or a medium capable of phase control is preferable. By laminating, a decrease in transmittance due to the influence of interface reflection or the like is unlikely to occur, which is preferable in controlling light.
 また、上記各偏光板、位相を有する媒体または位相制御可能な媒体は、それぞれ光や電気等の信号により回転させ、各々を所望の角度となるよう設定すること、また設定を変更することが可能である。 In addition, each polarizing plate, medium having phase or medium capable of phase control is rotated by a signal such as light or electricity, and each can be set to a desired angle, and the setting can be changed. It is.
 上記光制御装置は、赤外域の光と可視域の光に対して、それぞれ偏光を同時に制御することが可能であるため、人間の目で認識可能な可視域の光と認識困難な赤外域の光の偏光をそれぞれ同時に制御可能である。そのため、赤外域の光と可視域の光に対する検知の切替が可能な液晶表示装置、赤外域の光と可視域の光の偏光を制御可能なカメラ等の撮影装置、高度なセキュリティを提供可能な偽造防止装置、または、赤外域の光と可視域の光のそれぞれで機能するセンサー等、様々な用途に上記光制御装置を応用することが可能であり、各種用途と光制御装置を組合せたシステムとして用いることも可能である。 The light control device can control the polarization of infrared light and visible light at the same time, so that visible light that can be recognized by human eyes and infrared light that is difficult to recognize. The polarization of light can be controlled simultaneously. Therefore, it is possible to provide a liquid crystal display device capable of switching between detection of infrared light and visible light, a photographing device such as a camera capable of controlling polarization of infrared light and visible light, and high security. The above-mentioned light control device can be applied to various applications such as anti-counterfeiting devices or sensors that function in infrared light and visible light respectively, and a system that combines various applications and light control devices. Can also be used.
<実施例>
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
<Example>
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.
<赤外域の光に対して偏光性能を有する偏光板(IR偏光板)の作製>
 下記化学式(1)のアゾ化合物を0.3%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを5分間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD-80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし835nmを中心に高い偏光機能を持つ偏光板を得た。該偏光板をIR偏光板として用いた。
<Preparation of polarizing plate (IR polarizing plate) having polarization performance for infrared light>
An aqueous solution at 45 ° C. having an azo compound of the following chemical formula (1) at a concentration of 0.3% and mirabilite at a concentration of 0.1% was prepared as a staining solution. A polyvinyl alcohol film having a thickness of 75 μm was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element. A triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 835 nm is laminated. A polarizing plate having a high polarization function at the center was obtained. The polarizing plate was used as an IR polarizing plate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
<可視域の光に対して偏光性能を有する偏光板(VIS偏光板)の作製>
 Kayarus Supra Orange 2GL(日本化薬株式会社製)を0.02%の濃度に、C.I.Direct Red 81を0.01%の濃度に、Blue KW(日本化薬株式会社製)を0.04%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを3分30秒間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD-80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし400~650nmの可視域に偏光機能を持つ偏光板を得た。該偏光板をVIS偏光板として用いた。
<Preparation of polarizing plate (VIS polarizing plate) having polarization performance for visible light>
Kayarus Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.02%, C.I. I. Prepare a 45 ° C. aqueous solution with Direct Red 81 at a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.04%, and sodium nitrate at a concentration of 0.1%. A staining solution was obtained. A 75 μm-thick polyvinyl alcohol film was immersed in the staining solution for 3 minutes and 30 seconds. Next, the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element. A triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 400- A polarizing plate having a polarizing function in the visible region of 650 nm was obtained. The polarizing plate was used as a VIS polarizing plate.
<赤外域の光と可視域の光を制御可能な偏光板(VIS-IR偏光板)の作製>
 上記の化学式(1)のアゾ化合物を0.6%の濃度に、Kayarus Supra Orange 2GL(日本化薬株式会社製)を0.02%の濃度に、C.I.Direct Red 81を0.01%の濃度に、Blue KW(日本化薬株式会社製)を0.04%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを5分間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD-80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし400~900nmに偏光機能を持つ偏光板を得た。該偏光板をVIS-IR偏光板として用いた。
<Production of polarizing plate (VIS-IR polarizing plate) capable of controlling light in the infrared region and light in the visible region>
The azo compound of the above chemical formula (1) is at a concentration of 0.6%, Kayarusu Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.02%, C.I. I. Prepare a 45 ° C. aqueous solution with Direct Red 81 at a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku Co., Ltd.) at a concentration of 0.04%, and sodium nitrate at a concentration of 0.1%. A staining solution was obtained. A polyvinyl alcohol film having a thickness of 75 μm was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining a tensioned state to obtain a polarizing element. A triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name TD-80U) obtained by alkali treatment is laminated on both sides of this polarizing element via an adhesive of polyvinyl alcohol aqueous solution, and 400- A polarizing plate having a polarizing function at 900 nm was obtained. The polarizing plate was used as a VIS-IR polarizing plate.
<偏光素子の透過率の測定>
(偏光板の透過率測定)
 得られた各偏光板ついて、分光光度計(日立製作所製 U-4100)を用いて、380~1100nmにおいて、各波長の単体透過率(Ts)、平行透過率(Tp)、直交透過率(Tc)、偏光度(ρ)を測定した。単体透過率(Ts)とは偏光板一枚を測定して得られる透過率であり、平行透過率(Tp)とは偏光板2枚のそれぞれの光の吸収軸を平行にして測定して得られる透過率であり、直交透過率(Tc)とは偏光板2枚のそれぞれの光の吸収軸を直交にして測定して得られる透過率であり、偏光度は数式(7)によって算出して得られる値である。
<Measurement of transmittance of polarizing element>
(Measurement of transmittance of polarizing plate)
For each of the obtained polarizing plates, using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), the single transmittance (Ts), the parallel transmittance (Tp), and the orthogonal transmittance (Tc) at each wavelength at 380 to 1100 nm. ), And the degree of polarization (ρ) was measured. The single transmittance (Ts) is the transmittance obtained by measuring one polarizing plate, and the parallel transmittance (Tp) is obtained by measuring the respective light absorption axes of the two polarizing plates in parallel. The orthogonal transmittance (Tc) is a transmittance obtained by measuring the light absorption axes of the two polarizing plates orthogonal to each other, and the degree of polarization is calculated by Equation (7). This is the value obtained.
   偏光度(%)=100×[(Tp-Tc)/(Tp+Tc)]1/2  数式(7) Polarization degree (%) = 100 × [(Tp−Tc) / (Tp + Tc)] 1/2 Formula (7)
 得られた各偏光板の420nm、555nm、830nm、840nmの波長における単体透過率(Ts)、平行透過率(Tp)、直交透過率(Tc)を下記に示す。表1にはIR偏光板を用いた場合の値を、表2にはVIS偏光板を用いた場合の値を、表3にはVIS-IR偏光板を用いた場合の値をそれぞれ示す。 The single transmittance (Ts), parallel transmittance (Tp), and orthogonal transmittance (Tc) at wavelengths of 420 nm, 555 nm, 830 nm, and 840 nm of the obtained polarizing plates are shown below. Table 1 shows values when an IR polarizing plate is used, Table 2 shows values when a VIS polarizing plate is used, and Table 3 shows values when a VIS-IR polarizing plate is used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例A1~A4>
 光制御装置の作製、評価
 上記U-4100の光源部から出射された光を、光源側からみてVIS-IR偏光板、位相差板、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU-4100の検出部に入射されるようにした。位相差板として420nmおよび840nmの各波長において420nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS-IR偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、VIS偏光板、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表4で示す。表4の0°とは、VIS-IR偏光板の吸収軸に対して、位相差板であれば遅相軸が0°、VIS偏光板またはIR偏光板であれば吸収軸が0°(同軸)に設置されていることを示す。45°及び90°も同様である。StとはU-4100にて検出された透過率が強(30~50%)であることを示し、MiとはU-4100にて検出された透過率が中(10~25%)であることを示し、WeとはU-4100にて検出された透過率が弱(0~2%)であることを示す。
<Examples A1 to A4>
Production and Evaluation of Light Control Device Light control in which light emitted from the light source unit of U-4100 is configured in the order of VIS-IR polarizing plate, retardation plate, VIS polarizing plate, and IR polarizing plate when viewed from the light source side. The device was irradiated with light so that the transmitted light was incident on the detection unit of U-4100. A polycarbonate retardation plate showing a retardation value of 420 nm at each wavelength of 420 nm and 840 nm was used as the retardation plate. The transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS-IR polarizing plate. At that time, the measurement was performed by changing various polarization axes of the VIS polarizing plate and the IR polarizing plate. The results are shown in Table 4. The 0 ° in Table 4 means that the retardation axis is 0 ° with respect to the absorption axis of the VIS-IR polarizing plate, and the slow axis is 0 ° with the VIS polarizing plate or IR polarizing plate (coaxial). ) Is installed. The same applies to 45 ° and 90 °. St indicates that the transmittance detected by U-4100 is strong (30-50%), and Mi indicates that the transmittance detected by U-4100 is medium (10-25%). “We” indicates that the transmittance detected by U-4100 is weak (0 to 2%).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<実施例A5~A8>
 420nmおよび840nmの各波長において210nmの位相差値を示すポリカーボネート系位相差板を用いた以外は、実施例1~4と同様に光制御装置を評価した。結果を表5で示す。
<Examples A5 to A8>
The light control device was evaluated in the same manner as in Examples 1 to 4 except that a polycarbonate phase difference plate showing a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<実施例A9~A12>
 555nmおよび830nmの各波長において415nmの位相差値を示すポリカーボネート系位相差板を用いた以外は、実施例1~4と同様に光制御装置を評価した。結果を表6で示す。
<Examples A9 to A12>
The light control device was evaluated in the same manner as in Examples 1 to 4, except that a polycarbonate phase difference plate showing a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例A13~A14>
 上記U-4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板、位相差板、反射板の順で構成とした光制御装置に照射し、その反射光がU-4100の検出部に入射されるようにした。位相差板として420nmおよび840nmの各波長において210nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表7で示す。表7の0°とは、VIS偏光板の吸収軸に対して、位相差板であれば遅相軸が0°、IR偏光板であれば吸収軸が0°(同軸)に設置されていることを示す。45°及び90°も同様である。St、(Mi)、及びWeは表4と同じことを意味する。
<Examples A13 to A14>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate when viewed from the light source side, and the reflected light is reflected by U -4100 was made incident on the detection unit. A polycarbonate retardation plate showing a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used as the retardation plate. The transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS polarizing plate. At that time, the measurement was performed by changing various polarization axes of the IR polarizing plate. The results are shown in Table 7. “0 °” in Table 7 indicates that the retardation axis is 0 ° with respect to the absorption axis of the VIS polarizing plate, and the absorption axis is 0 ° (coaxial) with the IR polarizing plate. It shows that. The same applies to 45 ° and 90 °. St, (Mi), and We mean the same as in Table 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例A15~A16>
 上記U-4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板、位相差板、反射板の順で構成とした光制御装置に照射し、その反射光がU-4100の検出部に入射されるようにした。位相差板として555nmおよび830nmの各波長において415nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表8で示す。表8の0°、45°、90°、St、(Mi)、及びWeは表7と同じことを意味する。
<Examples A15 to A16>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate when viewed from the light source side, and the reflected light is reflected by U -4100 was made incident on the detection unit. A polycarbonate retardation plate showing a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used as the retardation plate. The transmittance was measured when the slow axis of this retardation plate was tilted at 0 ° and 45 ° with respect to the VIS polarizing plate. At that time, the measurement was performed by changing various polarization axes of the IR polarizing plate. The results are shown in Table 8. In Table 8, 0 °, 45 °, 90 °, St, (Mi), and We mean the same as in Table 7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<比較例A1~A4>
 実施例A1~A4から位相差板を除いた光制御装置(比較例1~4)を用いて透過率を測定した結果を表9に示す。従来の偏光板と同じく、それぞれの波長において偏光板の吸収軸が直交された状態であれば、透過率が低下し、吸収軸が平行であれば透過率が高くなる結果であった。従来の偏光板の機能である平行位と直交位での透過率を制御できるだけであって、それぞれの波長での透過率を個別に制御しうる光学装置にはならなかった。
<Comparative Examples A1 to A4>
Table 9 shows the results of measuring the transmittance using the light control device (Comparative Examples 1 to 4) obtained by removing the retardation plate from Examples A1 to A4. As in the case of the conventional polarizing plate, if the absorption axis of the polarizing plate is orthogonal to each wavelength, the transmittance is lowered, and if the absorption axis is parallel, the transmittance is increased. It has only been possible to control the transmissivity at the parallel position and the orthogonal position, which is a function of a conventional polarizing plate, but it has not become an optical apparatus capable of individually controlling the transmissivity at each wavelength.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<比較例A5~A6>
 実施例A13~A14から位相差板を除いた光制御装置(比較例5~6)を用いて透過率を測定した結果を表10に示す。従来の1枚の偏光板を鏡の上に置いた時と同様に、透過率の変化は全く見られず、入射した光が可視域の光と赤外域の光で変化は見られなかった。
<Comparative Examples A5 to A6>
Table 10 shows the results of measuring the transmittance using the light control device (Comparative Examples 5 to 6) obtained by removing the retardation plate from Examples A13 to A14. As in the case of placing a conventional polarizing plate on a mirror, no change in transmittance was observed, and no change was observed in incident light between visible light and infrared light.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例A1~A12の結果から、それぞれの光制御装置において、同一の光源に対して、赤外域の光と可視域の光の量をそれぞれ制御可能であることが分かる。また、実施例A5~A8と実施例A13~A14、および、実施例A9~A12と実施例A15~A16のそれぞれにおいて、光の透過時の光制御による結果と、反射時の光制御により得られる結果とは、異なることが分かる。以上の結果により、本発明で得られる光制御装置は、可視域の光および赤外域の光を有する同一光源を用いた場合であっても、可視域の光および赤外域の光をそれぞれ異なる光量および偏光に変換できる装置として有効であることが示された。 From the results of Examples A1 to A12, it can be seen that each light control device can control the amount of light in the infrared region and the light in the visible region with respect to the same light source. Further, in each of Examples A5 to A8 and Examples A13 to A14, and Examples A9 to A12 and Examples A15 to A16, the results obtained by the light control during light transmission and the light control during reflection are obtained. It can be seen that the results are different. Based on the above results, the light control device obtained by the present invention uses different amounts of light in the visible region and in the infrared region, even when the same light source having visible light and infrared light is used. It has been shown to be effective as a device capable of converting into polarized light.
<実施例B1>
 上記U-4100の光源部から出射された光を、光源側からみてVIS-IR偏光板、STN型液晶セル、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU-4100の検出部に入射されるようにした。その際、VIS-IR偏光板の吸収軸に対してVIS偏光板の吸収軸を平行になるように積層し、VIS-IR偏光板の吸収軸に対してIR偏光板の吸収軸を90°になるように積層して用いた。液晶セルへの貼合については、STNセルへ電圧が印加された時、可視域で最低透過率になるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/2λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光の測定結果を表4で示す。VIS-IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU-4100の検出部に入射された時の光量(%)を示している。
<Example B1>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS-IR polarizing plate, an STN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate when viewed from the light source side, and transmitted. The incident light is made incident on the detection unit of U-4100. At that time, the absorption axis of the VIS-IR polarizing plate is laminated so that the absorption axis of the VIS-IR polarizing plate is parallel to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is 90 ° with respect to the absorption axis of the VIS-IR polarizing plate. It was used by laminating. As for the bonding to the liquid crystal cell, when the voltage was applied to the STN cell, each polarizing plate was bonded so as to have the lowest transmittance in the visible region, and used as the measurement sample of the present application. The STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm. The one having a phase of 2λ was used. At that time, Table 4 shows the measurement results of light of 420 nm wavelength and 840 nm wavelength when the voltage is turned on and off. Based on the amount of light transmitted through the VIS-IR polarizing plate alone, the amount of light (%) when the light enters the detection unit of the U-4100 after passing through the light control device is shown.
<実施例B2>
 上記U-4100の光源部から出射された光を、光源側からみてVIS-IR偏光板、STN型液晶セル、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU-4100の検出部に入射されるようにした。その際、VIS-IR偏光板の吸収軸に対してVIS偏光板の吸収軸を直交になるように積層し、VIS-IR偏光板の吸収軸に対してIR偏光板の吸収軸を0°になるように積層して用いた。液晶セルへの貼合については、STNセルへ電圧が印加されていない時に、可視域で最も透過率が低くなるになるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/2λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光をその結果を表4で示す。VIS-IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU-4100の検出部に入射された光量(%)を示している。
<Example B2>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device configured in the order of a VIS-IR polarizing plate, an STN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate when viewed from the light source side, and transmitted. The incident light is made incident on the detection unit of U-4100. At that time, the absorption axis of the VIS-IR polarizing plate is stacked so that the absorption axis of the VIS polarizing plate is perpendicular to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is set to 0 ° with respect to the absorption axis of the VIS-IR polarizing plate. It was used by laminating. Regarding the bonding to the liquid crystal cell, when the voltage was not applied to the STN cell, each polarizing plate was bonded so as to have the lowest transmittance in the visible region, and used as a measurement sample of the present application. The STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm. The one having a phase of 2λ was used. Table 4 shows the results of light having a wavelength of 420 nm and a wavelength of 840 nm when the voltage is turned on and off. Based on the amount of light transmitted through the VIS-IR polarizing plate alone, the amount of light (%) incident on the detection unit of U-4100 after passing through the light control device is shown.
<実施例B3>
 上記U-4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板の構成、STN型液晶セル、反射板の順に入射され、反射した光がU-4100の検出部に入射されるようにした。IR偏光板は、VIS偏光板の吸収軸に対して45°に貼合し、液晶セルへの貼合については、STNセルへ電圧が印加されていない時に、赤外域で最も反射率が低くになるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/4λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光の測定結果を表4で示す。VIS-IR偏光板および反射板のみを設置してそれから反射した光量に基づいて、上記光制御装置から反射後にU-4100の検出部に入射された光量(%)を示している。
<Example B3>
The light emitted from the light source unit of the U-4100 is incident on the light source side in the order of the VIS polarizing plate, the configuration of the IR polarizing plate, the STN type liquid crystal cell, and the reflecting plate, and the reflected light is detected by the detecting unit of the U-4100 It was made to enter. The IR polarizing plate is bonded at 45 ° with respect to the absorption axis of the VIS polarizing plate, and the bonding to the liquid crystal cell has the lowest reflectance in the infrared region when no voltage is applied to the STN cell. What stuck each polarizing plate was used as a measurement sample of this application. The STN type liquid crystal cell is arranged so as to have a slow axis in the 45 ° direction when the initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/1 at each wavelength of 420 nm and 840 nm. The one having a phase of 4λ was used. At that time, Table 4 shows the measurement results of light of 420 nm wavelength and 840 nm wavelength when the voltage is turned on and off. Based on the amount of light reflected from the VIS-IR polarizing plate and the reflector, only the amount of light (%) incident on the detection unit of U-4100 after reflection from the light control device is shown.
<実施例B4>
 光制御装置の評価として、上記U-4100の光源部から出射された光を、光源側からみてVIS-IR偏光板、TN型液晶セル、VIS偏光板、IR偏光板の構成で、U-4100の検出部に入射されるようにした。その際、VIS-IR偏光板の吸収軸に対してVIS偏光板の吸収軸を平行になるように積層し、VIS-IR偏光板の吸収軸に対してIR偏光板の吸収軸を90°になるように積層して用いた。液晶セルへの貼合については、TNセルへ電圧が印加された時、赤外域用偏光板によって赤外域の透過率が最低になるように偏光板を貼合したものを本願の測定試料として用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光をその結果を表11で示す。結果は、VIS-IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU-4100の検出部に入射された光量(%)を示している。
<Example B4>
As an evaluation of the light control device, the light emitted from the light source unit of the above U-4100 is configured as a VIS-IR polarizing plate, a TN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate as viewed from the light source side. It was made to enter into the detection part. At that time, the absorption axis of the VIS-IR polarizing plate is laminated so that the absorption axis of the VIS-IR polarizing plate is parallel to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is 90 ° with respect to the absorption axis of the VIS-IR polarizing plate. It was used by laminating. Regarding the bonding to the liquid crystal cell, when a voltage is applied to the TN cell, the polarizing plate is bonded so that the transmittance in the infrared region is minimized by the polarizing plate for infrared region, and used as the measurement sample of the present application. It was. Table 11 shows the results of light having a wavelength of 420 nm and a wavelength of 840 nm when the voltage is turned on and off. The result shows the amount of light (%) incident on the detection unit of U-4100 after passing through the light control device, based on the amount of light transmitted through the VIS-IR polarizing plate alone.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例B1~B4の結果から、それぞれの光制御装置において、同一の光源を用いながら、赤外域の光と可視域の光の量をそれぞれ独自に動的に制御出来ていることが分かる。特に実施例B1およびB2では、透過時の可視域の光と赤外域の光に対する光制御、すなわち、動的に位相が発現する媒体により、可視域の光と赤外域の光の透過率の切替が可能であることが分かった。また、実施例B3では、反射板を用いた場合でも上記光制御装置の光制御が有効であることが分かった。以上の結果から、本発明で得られる光制御装置は、同一の光源を用いた場合であっても、可視域の光と赤外域の光でそれぞれの透過率を簡易に切替えて制御することが可能な装置として有効であることが示された。 From the results of Examples B1 to B4, it can be seen that each light control device can independently and independently control the amount of light in the infrared region and the light in the visible region while using the same light source. In particular, in Examples B1 and B2, optical control for visible light and infrared light during transmission, that is, switching of transmittance of visible light and infrared light by a medium that dynamically develops a phase. Was found to be possible. Moreover, in Example B3, it was found that the light control of the light control device is effective even when a reflector is used. From the above results, the light control device obtained by the present invention can easily switch the transmittance between visible light and infrared light even when the same light source is used. It has been shown to be effective as a possible device.
 入射した赤外域の波長の光と可視域の波長の光の偏光を、同時にそれぞれ異なる偏光になるように制御することを可能とし、赤外域の光と可視域の光に対する検知の切替えが可能な液晶表示装置、赤外域の光と可視域の光の偏光を制御可能なカメラ等の撮影装置、高度なセキュリティを提供可能な偽造防止装置、または、赤外域の光と可視域の光のそれぞれで機能するセンサー等、様々な用途に応用することが可能である。
 
It is possible to control the polarization of incident infrared wavelength light and visible wavelength light so that they are simultaneously different polarizations, and it is possible to switch between detection of infrared light and visible light. Liquid crystal display devices, photographing devices such as cameras that can control the polarization of infrared light and visible light, anti-counterfeiting devices that can provide advanced security, or infrared light and visible light It can be applied to various applications such as a functioning sensor.

Claims (18)

  1.  赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御する光制御装置。 At least one polarizing plate (IR polarizing plate) having polarization performance with respect to light in the infrared region, at least one polarizing plate (VIS polarizing plate) having polarization performance with respect to light in the visible region, and a medium having a phase or A light control device that includes a phase-controllable medium and controls incident light in the infrared region and transmitted light in the visible region by changing incident infrared light and visible light to different polarized lights.
  2.  位相を有する媒体または位相制御可能な媒体の位相差値Rλを示しているときの角度と、赤外域で直線偏光を発現しているときの角度との間の角度θiが0≦θi<180°の範囲となる請求項1に記載の光制御装置。 An angle θi between an angle when the phase difference value Rλ of a medium having phase or a phase controllable medium is shown and an angle when linearly polarized light is expressed in the infrared region is 0 ≦ θi <180 ° The light control device according to claim 1, which falls within the range.
  3.  位相を有する媒体または位相制御可能な媒体の位相差値Rλを示している角度と、可視域において直線偏光を発現しているときの角度との間の角度θvが-90°<θv<180°の範囲となる請求項1または2に記載の光制御装置。 An angle θv between an angle indicating a phase difference value Rλ of a medium having a phase or a phase controllable medium and an angle when linearly polarized light is expressed in the visible range is −90 ° <θv <180 ° The light control device according to claim 1, wherein the light control device falls within the range.
  4.  赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(1)または数式(2)の関係を満たす請求項1~3のいずれか一項に記載の光制御装置:
      Vλ-RD≦Rλ≦Vλ+RD          数式(1)
    (ただし、RDは0~40nmを示す)
      Iλ/2-RD≦Rλ≦Iλ/2+RD      数式(2)
    (ただし、RDは0~40nmを示す)。
    When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, The light control device according to any one of claims 1 to 3, wherein the light control device satisfies the relationship of (1) or formula (2):
    Vλ−RD ≦ Rλ ≦ Vλ + RD Formula (1)
    (However, RD indicates 0 to 40 nm)
    Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Formula (2)
    (However, RD indicates 0 to 40 nm).
  5.  赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(3)または数式(4)の関係を満たす請求項1~3のいずれか一項に記載の光制御装置:
      Vλ/2-RD≦Rλ≦Vλ/2+RD      数式(3)
    (ただし、RDは0~40nmを示す)
      Iλ/4-RD≦Rλ≦Iλ/4+RD      数式(4)
    (ただし、RDは0~40nmを示す)。
    When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, The light control apparatus according to any one of claims 1 to 3, wherein the light control apparatus satisfies the relationship of (3) or (4):
    Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Formula (3)
    (However, RD indicates 0 to 40 nm)
    Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Formula (4)
    (However, RD indicates 0 to 40 nm).
  6.  赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(5)または数式(6)の関係を満たす請求項1~3のいずれか一項に記載の光制御装置。
      Vλ×3/2-RD≦Rλ≦Vλ×3/2+RD  数式(5)
    (ただし、RDは0~40nmを示す。)
      Iλ×1/2-RD≦Rλ≦Iλ×1/2+RD  数式(6)
    (ただし、RDは0~40nmを示す。)
    When the wavelength of the light in the infrared region is Iλ, the wavelength of the light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of the medium having the phase or the phase controllable medium is Rλ, respectively, The light control apparatus according to any one of claims 1 to 3, wherein the light control apparatus satisfies the relationship of (5) or (6).
    Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Formula (5)
    (However, RD indicates 0 to 40 nm.)
    Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Formula (6)
    (However, RD indicates 0 to 40 nm.)
  7.  可視域の光と赤外域の光を同時に制御するための、請求項1~6のいずれか一項に記載の光制御装置であって、前記位相制御可能な媒体が動的に位相制御可能な媒体である、光制御装置。 The light control apparatus according to any one of claims 1 to 6, wherein the light in the visible region and the light in the infrared region are controlled simultaneously, wherein the phase-controllable medium is dynamically phase-controllable. Light control device that is a medium.
  8.  前記動的に位相制御可能な媒体が液晶パネル(液晶セル)である請求項7に記載の光制御装置。 The light control device according to claim 7, wherein the medium capable of phase control is a liquid crystal panel (liquid crystal cell).
  9.  前記液晶パネル(液晶セル)で使用している液晶が、TN液晶(Twisted Nematic液晶)、または、STN液晶(Super Twisted Nematic液晶)である請求項8に記載の光制御装置。 The light control device according to claim 8, wherein the liquid crystal used in the liquid crystal panel (liquid crystal cell) is a TN liquid crystal (Twisted Nematic liquid crystal) or a STN liquid crystal (Super Twisted Nematic liquid crystal).
  10.  可視域の光と赤外域の光の各々の透過対非透過のコントラスト比が10以上である請求項7~9のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 7 to 9, wherein a contrast ratio of transmission to non-transmission of each of visible light and infrared light is 10 or more.
  11.  可視域の光と赤外域の光に対して偏光性能を有する1つの偏光板(VIS-IR偏光板)を含む請求項1~10のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 1 to 10, comprising one polarizing plate (VIS-IR polarizing plate) having polarization performance with respect to visible light and infrared light.
  12.  前記VIS-IR偏光板において赤外域の光の直交透過率と可視域の光の直交透過率との差が1%以下である請求項11に記載の光制御装置。 The light control device according to claim 11, wherein the difference between the orthogonal transmittance of infrared light and the orthogonal transmittance of visible light in the VIS-IR polarizing plate is 1% or less.
  13.  前記IR偏光板において赤外域の光の直交透過率と、可視域の光の直交透過率との差が10%以上である請求項1~12のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 1 to 12, wherein a difference between the orthogonal transmittance of light in the infrared region and the orthogonal transmittance of light in the visible region is 10% or more in the IR polarizing plate.
  14.  前記IR偏光板において赤外域の光の直交透過率が1%以下、かつ可視域の光の透過率との差が10%以上である偏光板と、前記VIS偏光板が赤外域で高い透過率を示し、赤外域の光の透過に影響しにくいことを示し、かつ、可視域の光の直交透過率が1%以下を示す少なくとも1つの偏光板とを含む、請求項1~13のいずれか一項に記載の光制御装置。 In the IR polarizing plate, a polarizing plate in which the orthogonal transmittance of light in the infrared region is 1% or less and a difference from the transmittance of light in the visible region is 10% or more, and the VIS polarizing plate has a high transmittance in the infrared region. And at least one polarizing plate showing that it is difficult to affect the transmission of light in the infrared region and has an orthogonal transmittance of light in the visible region of 1% or less. The light control device according to one item.
  15.  前記IR偏光板または前記VIS-IR偏光板が吸収型偏光板である請求項1~14のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 1 to 14, wherein the IR polarizing plate or the VIS-IR polarizing plate is an absorption-type polarizing plate.
  16.  前記IR偏光板または前記VIS-IR偏光板がフィルムである請求項1~15のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 1 to 15, wherein the IR polarizing plate or the VIS-IR polarizing plate is a film.
  17.  位相差を有する媒体または位相制御可能な媒体と、少なくとも1つの偏光板が積層されている請求項1~16のいずれか一項に記載の光制御装置。 The light control device according to any one of claims 1 to 16, wherein a medium having a phase difference or a medium capable of phase control and at least one polarizing plate are laminated.
  18.  請求項1~17のいずれか一項に記載の光制御装置を備える液晶表示装置、偽造防止装置、またはセンサー。
     
    A liquid crystal display device, a forgery prevention device, or a sensor comprising the light control device according to any one of claims 1 to 17.
PCT/JP2018/020781 2017-06-02 2018-05-30 Light control device for infrared region and visible region WO2018221598A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019521273A JP7111703B2 (en) 2017-06-02 2018-05-30 Infrared and visible light control device
CN201880032295.7A CN110622061B (en) 2017-06-02 2018-05-30 Light control device for infrared light region and visible light region

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017109963 2017-06-02
JP2017109964 2017-06-02
JP2017-109964 2017-06-02
JP2017-109963 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018221598A1 true WO2018221598A1 (en) 2018-12-06

Family

ID=64455085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020781 WO2018221598A1 (en) 2017-06-02 2018-05-30 Light control device for infrared region and visible region

Country Status (4)

Country Link
JP (1) JP7111703B2 (en)
CN (1) CN110622061B (en)
TW (1) TWI763860B (en)
WO (1) WO2018221598A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215751A1 (en) * 2021-04-09 2022-10-13 富士フイルム株式会社 Light absorption anisotropic layer, laminate, display device, infrared light irradiation device, and infrared light sensing device
WO2024024174A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Lens device, multispectral camera, control device, control method, and program
WO2024024693A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Polarizing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009584A (en) * 2008-05-29 2010-01-14 Sony Corp Display device
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
JP2017074177A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Different wavelength light selection device and endoscopic device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383718A4 (en) * 2009-05-15 2013-07-24 Sharp Kk Display apparatus
CN102230987B (en) * 2011-07-08 2012-07-25 华中科技大学 Oval light polarizer
CN103424920A (en) * 2013-04-01 2013-12-04 友达光电股份有限公司 Light valve component allowing adjustment of penetration rate of infrared light
WO2015033932A1 (en) * 2013-09-03 2015-03-12 富士フイルム株式会社 Optical filter and optical-filter-equipped display device
WO2016136784A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Near-infrared-absorbing composition, cured film, near-infrared-absorbing filter, solid-state imaging element, and infrared sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009584A (en) * 2008-05-29 2010-01-14 Sony Corp Display device
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
JP2017074177A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Different wavelength light selection device and endoscopic device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215751A1 (en) * 2021-04-09 2022-10-13 富士フイルム株式会社 Light absorption anisotropic layer, laminate, display device, infrared light irradiation device, and infrared light sensing device
WO2024024174A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Lens device, multispectral camera, control device, control method, and program
WO2024024693A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Polarizing plate

Also Published As

Publication number Publication date
CN110622061B (en) 2022-09-27
CN110622061A (en) 2019-12-27
TWI763860B (en) 2022-05-11
JPWO2018221598A1 (en) 2020-04-02
JP7111703B2 (en) 2022-08-02
TW201908780A (en) 2019-03-01

Similar Documents

Publication Publication Date Title
EP1664911B1 (en) Mirror with built-in display
US7379243B2 (en) Mirror with built-in display
US10023123B2 (en) Image display mirror for a vehicle
US10377312B2 (en) Image display mirror for a vehicle
CN108700702B (en) Transmittance variable film
TW200526998A (en) Mirror with built-in display
WO2014059756A1 (en) Liquid crystal display device, special glasses and displaying system
CN110573927B (en) Variable transmittance device
JP6425570B2 (en) Vehicle with mirror with image display
WO2015077724A1 (en) Optical film stack including retardation layer
JP7111703B2 (en) Infrared and visible light control device
CN113167951A (en) Polarization based optical filter with angle sensitive transmission
TW201502661A (en) Liquid crystal display device
US20170068106A1 (en) Polarizing plate, anti-reflective laminate, and image display system
KR20200033896A (en) Display device and infrared light blocking film
JP3908470B2 (en) Manufacturing method of polarizing plate
US9868400B2 (en) Image display mirror for a vehicle
JP2020531899A (en) Optical film, optics and video equipment
JP6677494B2 (en) Video display mirror for vehicles
WO2024101300A1 (en) Optical system and virtual reality display device
KR20170081339A (en) Optical Film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809405

Country of ref document: EP

Kind code of ref document: A1