JPWO2018221598A1 - Infrared and visible light control devices - Google Patents

Infrared and visible light control devices Download PDF

Info

Publication number
JPWO2018221598A1
JPWO2018221598A1 JP2019521273A JP2019521273A JPWO2018221598A1 JP WO2018221598 A1 JPWO2018221598 A1 JP WO2018221598A1 JP 2019521273 A JP2019521273 A JP 2019521273A JP 2019521273 A JP2019521273 A JP 2019521273A JP WO2018221598 A1 JPWO2018221598 A1 JP WO2018221598A1
Authority
JP
Japan
Prior art keywords
light
polarizing plate
control device
phase
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019521273A
Other languages
Japanese (ja)
Other versions
JP7111703B2 (en
Inventor
典明 望月
典明 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Polatechno Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Polatechno Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd, Polatechno Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2018221598A1 publication Critical patent/JPWO2018221598A1/en
Application granted granted Critical
Publication of JP7111703B2 publication Critical patent/JP7111703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Abstract

本願は、入射時の赤外域の光及び可視域の光を、検出される側において、それぞれ異なる偏光として出射することを可能とし、かつ、それら偏光によって光量制御を可能とする光制御装置を提供する。具体的には、赤外域の光に対して偏光性能を有する少なくとも1つの偏光板と、可視域の光に対して偏光性能を有する少なくとも1つの偏光板、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御する光制御装置を提供する。The present application provides a light control device capable of emitting light in the infrared region and light in the visible region at the time of incidence as different polarizations on the side to be detected, and controlling the light amount by the polarizations. To do. Specifically, at least one polarizing plate having polarization performance for light in the infrared range, at least one polarizing plate having polarization performance for light in the visible range, and a medium having a phase or phase controllable Provided is a light control device including a medium, which controls incident light in the infrared region and light in the visible region into polarized lights different from each other to control transmitted light in the infrared region and transmitted light in the visible region.

Description

本発明は、赤外域及び可視域の光を制御する光制御装置に関する。   The present invention relates to a light control device that controls light in an infrared region and a visible region.

光の透過・遮へい機能を有する偏光板は、光のスイッチング機能を有する液晶とともに液晶ディスプレイ(Liquid Crystal Display:LCD)等の表示装置に用いられる。このLCDの適用分野も初期の頃の電卓および時計等の小型機器から、ノートパソコン、ワープロ、液晶プロジェクター、液晶テレビ、カーナビゲーション、及び屋内外の情報表示装置、計測機器等が挙げられる。また偏光機能を有するレンズへの適用も可能であり、視認性の向上したサングラスや、近年では3Dテレビなどに対応する偏光メガネなどへの応用がなされている。   BACKGROUND ART A polarizing plate having a light transmitting / shielding function is used for a display device such as a liquid crystal display (LCD) together with a liquid crystal having a light switching function. The field of application of this LCD includes small devices such as calculators and watches in the early days, notebook computers, word processors, liquid crystal projectors, liquid crystal televisions, car navigation systems, indoor and outdoor information display devices, measuring devices, and the like. Further, the present invention can be applied to a lens having a polarizing function, and is applied to sunglasses with improved visibility, and in recent years, polarized glasses compatible with 3D televisions and the like.

一般的な偏光板は、延伸配向したポリビニルアルコール又はその誘導体のフィルムあるいは、ポリ塩化ビニルフィルムの脱塩酸又はポリビニルアルコール系フィルムの脱水によりポリエンを生成して配向せしめたポリエン系のフィルムなどの偏光膜基材に、偏光素子としてヨウ素や二色性染料を染色乃至は含有せしめて製造される。これらのうち、偏光素子としてヨウ素を用いたヨウ素系偏光膜は、偏光性能には優れるものの、水および熱に対して弱く、高温、高湿の状態で長時間使用する場合にはその耐久性に問題がある。一方、偏光素子として二色性染料を用いた染料系偏光膜はヨウ素系偏光膜に比べ、耐湿性および耐熱性は優れるものの、一般に偏光性能が十分でない。つまり、可視波長域向けの波長に対する偏光機能を有する偏光板であって、赤外波長域向けの偏光板ではなかった。   A general polarizing plate is a polarizing film such as a stretch-oriented film of polyvinyl alcohol or a derivative thereof, or a polyene-based film oriented by generating polyene by dehydrochlorination of a polyvinyl chloride film or dehydration of a polyvinyl alcohol-based film. The substrate is produced by dyeing or containing iodine or a dichroic dye as a polarizing element. Of these, the iodine-based polarizing film using iodine as a polarizing element has excellent polarization performance, but is weak to water and heat, and has poor durability when used for a long time at high temperature and high humidity. There's a problem. On the other hand, a dye-based polarizing film using a dichroic dye as a polarizing element has better moisture resistance and heat resistance than an iodine-based polarizing film, but generally has insufficient polarizing performance. In other words, the polarizing plate has a polarizing function for a wavelength in the visible wavelength range, and is not a polarizing plate for the infrared wavelength range.

近年では、タッチパネル向け認識光源や防犯カメラ、センサー、偽造防止、通信機器等の用途において、可視域波長向けの偏光板だけでなく、赤外線領域に用いられる偏光板が求められている。そういった要望に対して、特許文献1のようにヨウ素系偏光板をポリエン化した赤外偏光板や、特許文献2または3のようなワイヤーグリットを応用した赤外偏光板や、特許文献4のような微粒子を含んだガラスを延伸した赤外偏光子や、特許文献5または6のようなコレステリック液晶を用いたタイプが報告されている。特許文献1では耐久性が弱く、耐熱性や湿熱耐久性、および耐光性が弱く実用性に至っていない。特許文献2または3のようなワイヤグリッドタイプは、フィルムタイプにも加工が可能であると同時に、製品として安定していることから普及が進みつつある。しかしながら、表面にナノレベルの凹凸がないと光学特性を維持でないことから、表面に触れてはならず、そのため使用される用途は制限され、さらには反射防止や防呟(アンチグレア)加工をすることが難しい。特許文献4のような微粒子を含んだガラス延伸タイプは高い耐久性を有し、高い二色性を有していることから実用性に至っている。しかしながら、微粒子を含みながら延伸されたガラスであるため、素子そのものが割れやすく、もろく、かつ、従来の偏光板のような柔軟性が無くいために表面加工や他の基板との貼合が難しいという問題点があった。特許文献5及び特許文献6の技術は、古くから公開されている円偏光を用いた技術ではあるが、視認する角度によって色が変わってしまうことや、基本的に、反射を利用した偏光板であるため、迷光や絶対偏光光を形成させることが難しかった。つまり、一般的なヨウ素系偏光板のように吸収型偏光素子であって、フィルムタイプで柔軟性があり、かつ、高い耐久性を有する赤外線波長領域に対応した偏光板は無かった。また、更には、それは赤外域の偏光板の機能を有するだけであり、可視域の偏光を制御しうるものではなかった。   In recent years, in applications such as recognition light sources for touch panels, security cameras, sensors, forgery prevention, and communication devices, not only polarizing plates for visible wavelengths but also polarizing plates for infrared regions have been required. In response to such demands, an infrared polarizing plate obtained by polyene-forming an iodine-based polarizing plate as in Patent Document 1, an infrared polarizing plate to which wire grit is applied as in Patent Document 2 or 3, and a Patent Document 4 An infrared polarizer obtained by stretching glass containing fine particles and a type using a cholesteric liquid crystal as disclosed in Patent Document 5 or 6 are reported. In Patent Literature 1, the durability is weak, and the heat resistance, the wet heat durability, and the light resistance are weak, so that it is not practical. The wire grid type as disclosed in Patent Literature 2 or 3 can be processed into a film type, and at the same time, is spreading as it is stable as a product. However, if the surface does not have nano-level irregularities, the optical properties are not maintained, so the surface must not be touched. Therefore, its use is limited, and furthermore, anti-reflection or anti-glare processing is required. Is difficult. The glass-stretched type containing fine particles as in Patent Document 4 has high durability and high dichroism, and thus has reached practical use. However, since it is glass that is stretched while containing fine particles, the element itself is easily broken, fragile, and it is difficult to perform surface processing and bonding to other substrates because it lacks flexibility like a conventional polarizing plate. There was a problem. The techniques of Patent Literature 5 and Patent Literature 6 are techniques using circularly polarized light that have been published for a long time. However, the color changes depending on the viewing angle, and basically, a polarizing plate using reflection is used. Therefore, it was difficult to form stray light or absolutely polarized light. That is, there is no polarizing plate that is an absorption type polarizing element like a general iodine-based polarizing plate, is a film type, has flexibility, and has a high durability corresponding to an infrared wavelength region. Furthermore, it only has the function of a polarizing plate in the infrared region, and cannot control the polarization in the visible region.

よって、これまでに赤外域の偏光と可視域の偏光のそれぞれを制御し得ても、同時にそれぞれの領域の偏光光を制御しうる偏光板を得ることは出来ていなかった。   Therefore, even though each of the polarized light in the infrared region and the polarized light in the visible region can be controlled, a polarizing plate that can simultaneously control the polarized light in each region has not been obtained.

加えて、可視と赤外光を切替えて、それぞれ独立にスイッチング出来る素子は存在しなかった。   In addition, there has been no device that can switch between visible and infrared light and switch independently.

US2,494,686号明細書US 2,494,686 特開2016−148871号公報JP-A-2006-148871 特表2006−507517号公報JP 2006-507517 A 特開2004−86100号公報JP-A-2004-86100 国際公開第2015/087709号WO 2015/087709 特開2013−064798号公報JP 2013-064798 A

偏光とその応用、共立出版社, 第2章(p14-30)Polarization and its applications, Kyoritsu Shuppansha, Chapter 2 (p14-30)

本願は、入射した赤外域の波長の光と可視域の波長の光を、同時にそれぞれ異なる偏光光になるように制御することが出来る光制御装置を提供することを目的とする。   It is an object of the present application to provide a light control device capable of controlling incident light having a wavelength in the infrared region and light having a wavelength in the visible region so as to be simultaneously different polarized lights.

本願はさらに、入射した赤外域の偏光と可視域の偏光を同時にそれぞれの領域の偏光光を制御しうる光学制御を提供することを目的とする。加えて、同一光源からの赤外域の光と可視域の光を、検出される側とにおいて、赤外域と可視域のそれぞれの領域で切替えて光量を制御できる光学システム、つまりは、可視光と赤外光とを動的に切替スイッチング出来る素子を提供することを目的とする。   It is another object of the present invention to provide an optical control capable of simultaneously controlling the incident polarized light in the infrared region and the polarized light in the visible region in the respective regions. In addition, the optical system that can control the amount of light by switching the infrared light and the visible light from the same light source in the infrared and visible regions on the side to be detected, that is, the visible light It is an object of the present invention to provide an element capable of dynamically switching between infrared light and switching.

本発明者らは、上記課題を解決すべく鋭意研究を進めた結果、位相を有する媒体または位相制御可能な媒体を用いて、赤外域の光と可視域の光をそれぞれ異なる偏光光へと制御することにより、入射時の赤外域の光の偏光と、入射時の可視域の光の偏光が、検出される側において、赤外域と可視域においてそれぞれ異なる偏光を出射することが出来ることを見出した。   The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, using a medium having a phase or a medium capable of controlling the phase, the light in the infrared region and the light in the visible region are respectively controlled to different polarized lights. By doing so, it has been found that the polarization of light in the infrared region at the time of incidence and the polarization of light in the visible region at the time of incidence can emit different polarizations in the infrared region and the visible region on the side where detection is performed. Was.

加えて本発明者らは、可視域の光と赤外域の光を同時に用いた光制御装置であって、赤外域の光に対して偏光性能を有する少なくとも1つの偏光板と、可視域の光に対して偏光性能を有する少なくとも1つの偏光板を具備した光制御装置において、動的に位相を制御可能な媒体により、赤外域の透過光の量と可視域の透過光の量とを制御可能とし、さらには赤外域の光と可視域の光とのスイッチング素子として機能可能な光制御装置を見出した。そしてさらに、同一光源を用いながらも、入射時の赤外域の光量と可視域の光量が、検出される側とにおいて、赤外域と可視域において、それぞれの領域で切替えて光量を制御できる光学システムを見出した。   In addition, the present inventors provide a light control device that simultaneously uses visible light and infrared light, wherein at least one polarizing plate having polarization performance with respect to infrared light is provided. In a light control device equipped with at least one polarizing plate having polarization performance with respect to the above, the amount of transmitted light in the infrared region and the amount of transmitted light in the visible region can be controlled by a medium capable of dynamically controlling the phase. Further, the present inventors have found a light control device that can function as a switching element for switching between infrared light and visible light. An optical system that can control the light quantity by switching between the infrared light quantity and the visible light quantity at the incident side, in the infrared light range and the visible light range, while using the same light source. Was found.

すなわち、本発明の要旨構成は以下に示すとおりである。
1)
赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御する光制御装置。
2)
位相を有する媒体または位相制御可能な媒体の位相差値Rλを示しているときの角度と、赤外域で直線偏光を発現しているときの角度との間の角度θiが0≦θi<180°の範囲となる1)に記載の光制御装置。
3)
位相を有する媒体または位相制御可能な媒体の位相差値Rλを示している角度と、可視域において直線偏光を発現しているときの角度との間の角度θvが−90°<θv<180°の範囲となる1)または2)に記載の光制御装置。
4)
赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(1)または数式(2)の関係を満たす1)〜3)のいずれか一項に記載の光制御装置:
Vλ−RD≦Rλ≦Vλ+RD 数式(1)
(ただし、RDは0〜40nmを示す)
Iλ/2−RD≦Rλ≦Iλ/2+RD 数式(2)
(ただし、RDは0〜40nmを示す)。
5)
赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(3)または数式(4)の関係を満たす1)〜3)のいずれか一項に記載の光制御装置:
Vλ/2−RD≦Rλ≦Vλ/2+RD 数式(3)
(ただし、RDは0〜40nmを示す)
Iλ/4−RD≦Rλ≦Iλ/4+RD 数式(4)
(ただし、RDは0〜40nmを示す)。
6)
赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(5)または数式(6)の関係を満たす1)〜3)のいずれか一項に記載の光制御装置。
Vλ×3/2−RD≦Rλ≦Vλ×3/2+RD 数式(5)
(ただし、RDは0〜40nmを示す。)
Iλ×1/2−RD≦Rλ≦Iλ×1/2+RD 数式(6)
(ただし、RDは0〜40nmを示す。)
7)
可視域の光と赤外域の光を同時に制御するための、1)〜6)のいずれか一項に記載の光制御装置であって、前記位相制御可能な媒体が動的に位相制御可能な媒体である、光制御装置。
8)
前記動的に位相制御可能な媒体が液晶パネル(液晶セル)である7)に記載の光制御装置。
9)
前記液晶パネル(液晶セル)で使用している液晶が、TN液晶(Twisted Nematic液晶)、または、STN液晶(Super Twisted Nematic液晶)である8)に記載の光制御装置。
10)
可視域の光と赤外域の光の各々の透過対非透過のコントラスト比が10以上である7)〜9)のいずれか一項に記載の光制御装置。
11)
可視域の光と赤外域の光に対して偏光性能を有する1つの偏光板(VIS−IR偏光板)を含む1)〜10)のいずれか一項に記載の光制御装置。
12)
前記VIS−IR偏光板において赤外域の光の直交透過率と可視域の光の直交透過率との差が1%以下である11)に記載の光制御装置。
13)
前記IR偏光板において赤外域の光の直交透過率と、可視域の光の直交透過率との差が10%以上である1)〜12)のいずれか一項に記載の光制御装置。
14)
前記IR偏光板において赤外域の光の直交透過率が1%以下、かつ可視域の光の透過率との差が10%以上である偏光板と、前記VIS偏光板が赤外域で高い透過率を示し、赤外域の光の透過に影響しにくいことを示し、かつ、可視域の光の直交透過率が1%以下を示す少なくとも1つの偏光板とを含む、1)〜13)のいずれか一項に記載の光制御装置。
15)
前記IR偏光板または前記VIS−IR偏光板が吸収型偏光板である1)〜14)のいずれか一項に記載の光制御装置。
16)
前記IR偏光板または前記VIS−IR偏光板がフィルムである1)〜15)のいずれか一項に記載の光制御装置。
17)
位相差を有する媒体または位相制御可能な媒体と、少なくとも1つの偏光板が積層されている1)〜16)のいずれか一項に記載の光制御装置。
18)
1)〜17)のいずれか一項に記載の光制御装置を備える液晶表示装置、偽造防止装置、またはセンサー。
That is, the gist configuration of the present invention is as follows.
1)
At least one polarizing plate (IR polarizing plate) having polarization performance for infrared light, at least one polarizing plate (VIS polarizing plate) having polarization performance for visible light, and a medium having a phase or An optical control device that includes a medium whose phase can be controlled and controls transmitted light in an infrared region and transmitted light in a visible region by converting incident infrared light and visible light into different polarized lights.
2)
The angle θi between the angle when the phase difference value Rλ of the medium having the phase or the phase controllable medium is indicated and the angle when linearly polarized light is developed in the infrared region is 0 ≦ θi <180 ° The light control device according to 1), wherein
3)
The angle θv between the angle indicating the phase difference value Rλ of the medium having a phase or the medium capable of controlling the phase and the angle at which linearly polarized light is developed in the visible region is −90 ° <θv <180 °. The light control device according to 1) or 2), wherein
4)
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, The light control device according to any one of (1) to (3), which satisfies the relationship of (1) or Expression (2):
Vλ−RD ≦ Rλ ≦ Vλ + RD Equation (1)
(However, RD indicates 0 to 40 nm)
Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Equation (2)
(However, RD shows 0 to 40 nm).
5)
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, The light control device according to any one of (1) to (3), which satisfies the relationship of (3) or Expression (4):
Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Equation (3)
(However, RD indicates 0 to 40 nm)
Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Equation (4)
(However, RD shows 0 to 40 nm).
6)
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, (5) The light control device according to any one of (1) to (3), which satisfies the relationship of Expression (6).
Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Equation (5)
(However, RD shows 0 to 40 nm.)
Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Equation (6)
(However, RD shows 0 to 40 nm.)
7)
The light control device according to any one of 1) to 6) for simultaneously controlling visible light and infrared light, wherein the phase controllable medium is capable of dynamically controlling the phase. Light control device that is the medium.
8)
The light control device according to 7), wherein the medium whose phase can be dynamically controlled is a liquid crystal panel (liquid crystal cell).
9)
The light control device according to 8), wherein the liquid crystal used in the liquid crystal panel (liquid crystal cell) is a TN liquid crystal (Twisted Nematic liquid crystal) or an STN liquid crystal (Super Twisted Nematic liquid crystal).
10)
The light control device according to any one of 7) to 9), wherein a contrast ratio between transmitted light and non-transmitted light of visible light and infrared light is 10 or more.
11)
The light control device according to any one of 1) to 10), including one polarizing plate (VIS-IR polarizing plate) having polarization performance with respect to visible light and infrared light.
12)
The light control device according to 11), wherein a difference between orthogonal transmittance of infrared light and orthogonal transmittance of visible light in the VIS-IR polarizing plate is 1% or less.
13)
The light control device according to any one of 1) to 12), wherein a difference between an orthogonal transmittance of light in an infrared region and an orthogonal transmittance of light in a visible region in the IR polarizing plate is 10% or more.
14)
A polarizing plate having an IR polarizing plate having an orthogonal transmittance of infrared light of 1% or less and a difference from a visible light transmittance of 10% or more, and the VIS polarizing plate having a high transmittance in an infrared region; Any of 1) to 13), including at least one polarizing plate which indicates that the transmission of light in the infrared region is hardly affected and that the orthogonal transmittance of light in the visible region is 1% or less. The light control device according to claim 1.
15)
The light control device according to any one of 1) to 14), wherein the IR polarizing plate or the VIS-IR polarizing plate is an absorption polarizing plate.
16)
The light control device according to any one of 1) to 15), wherein the IR polarizing plate or the VIS-IR polarizing plate is a film.
17)
The light control device according to any one of 1) to 16), wherein a medium having a phase difference or a medium whose phase can be controlled and at least one polarizing plate are laminated.
18)
A liquid crystal display device, a forgery prevention device, or a sensor including the light control device according to any one of 1) to 17).

本発明により、入射時の赤外域の光及び可視域の光を、検出される側において、それぞれ異なる偏光として出射することを可能とし、かつ、それら偏光によって光量の制御を可能とする。   According to the present invention, light in the infrared region and light in the visible region at the time of incidence can be emitted as different polarized lights on the side to be detected, and the amount of light can be controlled by the polarized lights.

一態様において、本発明により、同一光源からの入射時の赤外域の光の量と可視域の光の量が、検出される側において、赤外域の光と可視域の光が、それぞれの領域で透過または非透過となるように切替えを行うことにより、それぞれの光の量の制御を可能とする。   In one embodiment, according to the present invention, the amount of light in the infrared region and the amount of light in the visible region when incident from the same light source are detected. By performing switching so that the light is transmitted or non-transmitted, the amount of each light can be controlled.

本発明の光制御装置は、赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)と、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御することを特徴とする。   The light control device of the present invention includes at least one polarizing plate (IR polarizing plate) having polarization performance for infrared light and at least one polarizing plate (VIS polarization) having polarization performance for visible light. Plate) and a medium having a phase or a phase-controllable medium, and the incident infrared light and visible light are converted into different polarized lights, so that infrared transmitted light and visible light are transmitted. Is controlled.

一態様において、本発明の光制御装置は、可視域の光と赤外域の光が同時に入射した際に、動的に位相制御可能な媒体を含み、赤外域の光と可視域の光をそれぞれ異なる偏光光になるよう制御することにより、赤外域の透過光と可視域の透過光を制御することを特徴とする。   In one embodiment, the light control device of the present invention includes a medium capable of dynamically controlling the phase when light in the visible region and light in the infrared region are simultaneously incident, and converts the light in the infrared region and the light in the visible region respectively. It is characterized in that the transmitted light in the infrared region and the transmitted light in the visible region are controlled by controlling the polarized light to be different.

上記IR偏光板は、赤外域の波長において偏光制御可能な偏光板であれば特に限定されない。該偏光板としては、例えば、特許文献1のようなヨウ素系偏光板を応用したポリエンタイプ、特許文献2、特許文献3のようなワイヤーグリッド型偏光板、特許文献4のようにガラスに金属粒子を混合して延伸するガラス偏光板や、染料を含んだ染料系偏光板等が挙げられるが、本願では、染料系偏光板が、好ましく用いられる。この染料系偏光板は、フィルムタイプとすることが可能であり、他の偏光板、位相差板等との積層が容易であり、フレキシブル、かつ、光学制御が容易であるという特長を有している。   The IR polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at a wavelength in the infrared region. Examples of the polarizing plate include a polyene type to which an iodine-based polarizing plate is applied as in Patent Literature 1, a wire grid type polarizing plate as in Patent Literatures 2 and 3, and metal particles in glass as in Patent Literature 4. And a polarizing plate containing a dye, and a dye-based polarizing plate containing a dye. The dye-based polarizing plate is preferably used in the present application. This dye-based polarizing plate can be made into a film type, is easily laminated with another polarizing plate, a retardation plate, etc., is flexible, and has a feature that optical control is easy. I have.

上記IR偏光板は、700〜1400nmの一部又は全部の波長域の光に対して偏光性能を有している。   The IR polarizing plate has a polarization performance with respect to light in a part or the whole wavelength range of 700 to 1400 nm.

上記VIS偏光板とは、可視域の波長において偏光制御可能な偏光板であれば特に限定されない。該偏光板としては、例えば、ヨウ素系偏光板、染料系偏光板、特定の波長のみを偏光制御できる染料系偏光板、ポリエンを利用したタイプの偏光板などであってもよいが、特定の波長のみを偏光制御可能な染料系偏光板、または特定の波長のみを偏光可能な染料系偏光板を複数種類組み合わせ、特定波長の光のみ偏光制御可能な偏光素子とすることが好ましい。特定波長の光のみに対する偏光性能を備えることによって、特定波長での偏光を検出、または制御可能となるために好ましい。   The VIS polarizing plate is not particularly limited as long as it is a polarizing plate capable of controlling polarization at a wavelength in the visible region. As the polarizing plate, for example, an iodine-based polarizing plate, a dye-based polarizing plate, a dye-based polarizing plate capable of controlling polarization only at a specific wavelength, a polarizing plate of a type using a polyene, and the like may be used. It is preferable to combine a plurality of types of dye-based polarizing plates that can control only the polarization of the dye, or a plurality of types of dye-based polarizing plates that can polarize only the specific wavelength, to obtain a polarizing element that can control the polarization of only the light of the specific wavelength. It is preferable to provide polarization performance only for light of a specific wavelength, since it becomes possible to detect or control polarization at a specific wavelength.

上記VIS偏光板は、400〜700nmの一部又は全部の波長域の光に対して偏光性能を有している。赤外域の透過率が高く吸収を有してないことが好ましく、赤外域の光が
可視透過率より高ければ、特に限定されるものではない。“吸収を有さず”とは赤外域で高い透過率を有し、赤外域の光の透過に影響がしにくいことを示すが、通常、一般的な偏光板の単体透過率は30〜45%であるため、それ同等以上の単体透過率を赤外域の各波長に持つ場合、赤外光の透過機能を持つ偏光板として本願の可視(VIS)偏光板として使用することが出来る。具体的には赤外域の透過率が40%以上、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%、特に好ましくは80%以上が好ましい。特に、2枚のVIS偏光板を直交にした場合の赤外域の透過率が30%以上、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは60%、特に好ましくは70%以上であることが特に好ましいVIS偏光板として用いる事が出来る。
The VIS polarizing plate has polarization performance for light in a part or all of the wavelength range of 400 to 700 nm. It is preferable that the transmittance in the infrared region is high and has no absorption, and there is no particular limitation as long as the light in the infrared region is higher than the visible transmittance. "No absorption" indicates that the film has a high transmittance in the infrared region and has little effect on the transmission of light in the infrared region. However, the single transmittance of a general polarizing plate is usually 30 to 45. %, It can be used as the visible (VIS) polarizing plate of the present invention as a polarizing plate having a function of transmitting infrared light when a single transmittance equal to or higher than that at each wavelength in the infrared region. Specifically, the transmittance in the infrared region is at least 40%, preferably at least 50%, more preferably at least 60%, further preferably at least 70%, particularly preferably at least 80%. In particular, when the two VIS polarizing plates are orthogonal to each other, the transmittance in the infrared region is 30% or more, preferably 40% or more, more preferably 50% or more, still more preferably 60%, and particularly preferably 70% or more. It can be used as a particularly preferred VIS polarizing plate.

上記位相を有する媒体としては、位相差板、波長板、位相差フィルムと言われるもの等が挙げられる。   Examples of the medium having the above-mentioned phase include those called retardation films, wave plates, and retardation films.

また、位相制御可能な媒体としては、一般的に液晶モニタ等で用いられる液晶を封入し、電気等により位相を制御可能な液晶パネル(液晶セル)等が挙げられる。   Examples of the medium whose phase can be controlled include a liquid crystal panel (liquid crystal cell) in which liquid crystal generally used in a liquid crystal monitor or the like is sealed and whose phase can be controlled by electricity or the like.

ここで、「位相制御可能」とは、波としての光の位相を制御可能であることを意味する。偏光性能に着目した場合、例えば、波長板や位相制御可能な媒体等(波長板等)は、直線偏光の光に所定の位相差を与える光学機能素子であり、偏光は特定の軸の光に対して、その他の軸(例えば90°)において、異なる位相を設けることが可能である。すなわち、一つの偏光光に対して、その光路上に波長板等を設けることにより、その逆の軸の偏光としたり、円偏光、楕円偏光などを新たに付与することが可能となる。したがって、波長板等は、配向した複屈折材料(例えば、延伸フィルム)などを利用して直交する2つの偏光成分に位相差をつけることにより、入射した光の偏光の状態を変えることが出来る素子と言える。この波長板等は、例えば、特定の光の波長をλとした場合、そのλ/2の位相差板の遅相軸を偏光の軸に対して45°に設置することにより、波長板等に入射した直線偏光を90°回転させて、入射した偏光軸とは直交(90°)方向に偏光軸を有する偏光を出射することが出来る。また、λ/2の位相差板の遅相軸を偏光の軸に対して22.5°に設置することにより、波長板(位相差板)に入射した直線偏光を45°回転させて、入射した偏光軸とは45°傾けた偏光を持った光を出射させることが出来る。さらに、λ/4の位相差板の遅相軸を偏光の軸に対して45°に設置した場合には、波長板(位相差板)に入射した直線偏光を、円偏光として出射させることが出来る。   Here, “phase controllable” means that the phase of light as a wave can be controlled. When focusing on the polarization performance, for example, a wavelength plate or a phase controllable medium (wave plate or the like) is an optical functional element that gives a predetermined phase difference to linearly polarized light, and polarized light is applied to light of a specific axis. On the other hand, it is possible to provide different phases on other axes (eg 90 °). That is, by providing a wavelength plate or the like on the optical path for one polarized light, it becomes possible to make the polarized light of the opposite axis, or to newly impart circularly polarized light, elliptically polarized light, or the like. Therefore, a wave plate or the like can change the polarization state of incident light by giving a phase difference between two orthogonal polarization components using an oriented birefringent material (eg, a stretched film) or the like. It can be said. For example, when the wavelength of a specific light is λ, the retardation plate of the λ / 2 retardation plate is set at 45 ° with respect to the axis of the polarized light, so that the wavelength plate or the like can be used as a wavelength plate or the like. By rotating the incident linearly polarized light by 90 °, polarized light having a polarization axis in a direction (90 °) orthogonal to the incident polarization axis can be emitted. Also, by setting the slow axis of the λ / 2 retardation plate at 22.5 ° with respect to the axis of the polarized light, the linearly polarized light incident on the wave plate (retardation plate) is rotated by 45 ° to be incident. Can be emitted with polarized light that is inclined at 45 ° to the polarized axis. Further, when the slow axis of the λ / 4 retardation plate is set at 45 ° with respect to the polarization axis, linearly polarized light incident on the wave plate (retardation plate) can be emitted as circularly polarized light. I can do it.

上記位相差板、波長板、位相差フィルムを用いうるものとしては、フィルムの光の遅相軸もしくは進相軸を偏光板の吸収軸に対して回転出来るものであれば特に限定されない。   The retardation plate, wavelength plate, and retardation film can be used as long as the slow axis or fast axis of the light of the film can be rotated with respect to the absorption axis of the polarizing plate.

位相制御可能な液晶パネル(液晶セル)は、電気的に位相を制御する媒体である。その制御する液晶駆動の方式としては、TN(Twisted Nematic)、STN(Super Twisted Nematic)、IPS(In−Plane−Switiching)、VA(Virtical Alagnment)など、様々な方式があるが、可視域の光と赤外域の光の位相を制御可能な液晶及び制御方式であれば特に限定されない。好ましくは、TN(Twisted Nematic)、STN(Super Twisted Nematic)等が挙げられる。これらは駆動電圧が低く、価格も安く、かつ、0−90°の偏光旋回が制御しやすいため好ましい。   A phase controllable liquid crystal panel (liquid crystal cell) is a medium for electrically controlling the phase. As a method of controlling the liquid crystal driving, there are various methods such as TN (Twisted Nematic), STN (Super Twisted Nematic), IPS (In-Plane-Switching), and VA (Virtual Allocation). There is no particular limitation as long as the liquid crystal and the control method can control the phase of light in the infrared region. Preferably, TN (Twisted Nematic), STN (Super Twisted Nematic) or the like is used. These are preferred because the driving voltage is low, the price is low, and the polarization rotation of 0-90 ° is easily controlled.

上記光制御装置は、位相を有する媒体または位相制御可能な媒体によって、赤外域の光と可視域の光をそれぞれ異なる偏光光になるよう制御する。それにより、入射時の赤外域の光の偏光と、入射時の可視域の光の偏光とが、それぞれ検出される側において、異なる偏光として感知することが出来る。具体的には、人間の目で視認可能な可視域の光と、視認困難な赤外域の光を、それぞれ同時に偏光制御することにより、可視域の光と赤外域の光を同時に、光量調整することを可能とし、可視域の光を透過、あるいは非透過となるよう制御しながら、赤外域の光は透過させ続けることが可能となる。また、この逆の制御も可能であり、つまり、赤外域の光を透過、あるいは非透過となるよう制御しながら、可視域の光は透過させ続けることも可能となり、可視域の光と赤外域の光それぞれの偏光や光量を同時に制御可能な光制御装置を提供することが可能となる。   The light control device controls the light in the infrared region and the light in the visible region to be polarized lights different from each other by a medium having a phase or a medium capable of controlling the phase. Thereby, the polarization of the light in the infrared region at the time of incidence and the polarization of the light in the visible region at the time of incidence can be sensed as different polarizations on the respective sides to be detected. Specifically, by controlling the polarization of the visible light that is visible to the human eye and the infrared light that is hardly visible at the same time, the light amount of the visible light and the infrared light is simultaneously adjusted. It is possible to continuously transmit the light in the infrared region while controlling the transmission or non-transmission of the light in the visible region. The reverse control is also possible, that is, it is possible to continue transmitting the visible light while controlling the transmission or non-transmission of the infrared light. It is possible to provide a light control device capable of simultaneously controlling the polarization and light amount of each of the lights.

従来、赤外線センサーと可視カメラは、赤外域の光の検知、及び可視域の光の検知に、それぞれ別の種類の検知器を用いる必要があったが、本発明の装置を用いることにより、赤外線センサーと可視カメラを一つ光制御装置で制御することが可能となる。例えば、携帯電話等のカメラでは、一般的に赤外域用の認証カメラと可視域用のカメラとで別々の光制御装置が必要であったが、上記光制御装置を用いることにより、可視域の光と赤外域の光の透過あるいは非透過の切替えが可能なため、赤外域認証と、可視域写真撮影等が一つの光制御装置を用いて行うことが可能となる。さらに、この光制御装置を応用することで、高度なセキュリティ等に応用も可能である。また、光透過型装置、赤外〜可視域の円偏光制御及び直線偏光制御等が可能であることから、これらを応用することにより、例えば、光反射偏光機能を応用した装置やセキュリティ用途等への応用も可能となる。   Conventionally, the infrared sensor and the visible camera need to use different types of detectors for detection of infrared light and detection of visible light, respectively. One sensor and one visible camera can be controlled by the light control device. For example, in a camera such as a mobile phone, a separate light control device is generally required for an authentication camera for the infrared region and a camera for the visible region. Since the transmission and non-transmission of light and infrared light can be switched, it is possible to perform infrared region authentication, visible region photographing, and the like using one light control device. Further, by applying this light control device, it is possible to apply it to advanced security and the like. In addition, since it is possible to control light transmission type devices, circular polarization control in the infrared to visible range and linear polarization control, etc., by applying these, for example, to devices using the light reflection polarization function, security applications, etc. Can also be applied.

一態様において、位相を有する媒体または位相制御可能な媒体(位相差板)の位相差値Rλが発現している場合の角度(入射光の位相)と、赤外域で直線偏光を発現(出射)している場合の角度(出射光の位相)との間の角度(位相差)θiが0≦θi<180°の範囲である光制御装置であることが好ましい。上記角度θiが0°、つまり同軸に設置した場合、赤外域の偏光は、位相差板よって影響を受けない、または、受けにくい光になり、また、λ/2の位相差値である位相差板を設けた場合には、上記角度θiを45°に設置することにより、入射した直線偏光とは90°反転し逆の軸を持つ偏光を出射出来る。   In one embodiment, an angle (phase of incident light) when a phase difference value Rλ of a medium having a phase or a phase controllable medium (a phase difference plate) is developed, and linearly polarized light is produced (emitted) in an infrared region. It is preferable that the angle (phase difference) θi between the angle and the angle (the phase of the emitted light) in this case be in the range of 0 ≦ θi <180 °. When the angle θi is 0 °, that is, when installed coaxially, the polarized light in the infrared region becomes light which is not affected or hardly affected by the retardation plate, and the phase difference which is the phase difference value of λ / 2. When a plate is provided, by setting the angle θi at 45 °, it is possible to emit polarized light having an axis which is inverted by 90 ° from the incident linearly polarized light and has an opposite axis.

さらに、位相差板の位相差値Rλが発現している角度(入射光の位相)と、可視域において直線偏光を発現している場合の角度(出射光の位相)との間の角度(位相差)θvが−90°<θv<180°の範囲である光制御装置であることにより、可視域の位相差も制御できるようになる。θvとθiは同じであっても良いが、異なっていても良く、位相差板により、特定の波長の光の偏光状態を制御可能であれば良い。つまり、用いる位相差板の枚数を1枚と限定せず、一般的な液晶ディスプレイが1/4λ板や1/2λ板等を組み合わせて用いるように、本発明の光制御装置においても複数の位相差板を用いても良い。   Further, the angle (position) between the angle at which the phase difference value Rλ of the retardation plate is developed (the phase of the incident light) and the angle when the linearly polarized light is developed in the visible region (the phase of the emitted light). With the light control device in which (phase difference) θv is in the range of −90 ° <θv <180 °, the phase difference in the visible region can also be controlled. θv and θi may be the same, but may be different, as long as the polarization state of light of a specific wavelength can be controlled by the phase difference plate. In other words, the number of retardation plates to be used is not limited to one, and the light control device of the present invention has a plurality of positions like a general liquid crystal display using a combination of a 4λ plate and a や λ plate. A phase difference plate may be used.

赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差板の誤差をRD(Retarder Dispersion)、位相差板の位相差値をRλとした場合、下記数式(1)または数式(2)の関係を満たす光制御装置は、可視域ではVλを提供可能な位相差板として機能し、赤外域ではIλ/2を提供可能な位相差板として機能する。
Vλ−RD≦Rλ≦Vλ+RD 数式(1)
(ただし、RDは0〜40nmを示す)
Iλ/2−RD≦Rλ≦Iλ/2+RD 数式(2)
(ただし、RDは0〜40nmを示す)
上記光制御装置において、Rλを有する位相差板の遅相軸を、入射する直線偏光の光に対して45°に設けた場合には、可視域においては、入射時の偏光光を維持可能な位相差板として機能し続けるが、赤外域においてはλ/2偏光板として機能することにより入射偏光軸の逆偏光軸を出射可能となる。このRλを有する位相差板の遅相軸を、入射する直線偏光の光に対して45°に設けた場合であって、かつ、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合には、可視域の光は透過可能であるが、赤外域の光は吸収可能である光制御装置を提供することができる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、上記数式(1)、または数式(2)の関係を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。上記RDは、0〜40nmの範囲であることが好ましく、より好ましくは0〜25nm、さらに好ましくは0〜15nm、特に好ましくは0〜5nmの範囲である。上記位相を用いた偏光軸の制御は、非特許文献1等を参考に行うことが可能である。
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference plate is RD (Retarder Dispersion), and the phase difference value of the phase difference plate is Rλ, the following equation (1) or equation: The light control device satisfying the relationship (2) functions as a phase plate capable of providing Vλ in the visible region, and functions as a phase plate capable of providing Iλ / 2 in the infrared region.
Vλ−RD ≦ Rλ ≦ Vλ + RD Equation (1)
(However, RD indicates 0 to 40 nm)
Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Equation (2)
(However, RD indicates 0 to 40 nm)
In the above light control device, when the slow axis of the retardation plate having Rλ is provided at 45 ° with respect to the incident linearly polarized light, the polarized light at the time of incidence can be maintained in the visible region. Although it continues to function as a retardation plate, in the infrared region, by functioning as a λ / 2 polarizing plate, it becomes possible to emit a reverse polarization axis to the incident polarization axis. In the case where the slow axis of the retardation plate having this Rλ is provided at 45 ° with respect to the incident linearly polarized light, and a polarizing plate having an absorption axis orthogonal to the incident axis is provided on the emission side. In this case, it is possible to provide a light control device capable of transmitting light in the visible region but absorbing light in the infrared region. When it is desired that both the light in the visible region and the light in the infrared region are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. As described above, by controlling the slow axis of the retardation plate having Rλ satisfying the relationship of the above equation (1) or equation (2), the axis of linearly polarized light, elliptically polarized light, and the like can be controlled. . The RD is preferably in the range of 0 to 40 nm, more preferably 0 to 25 nm, further preferably 0 to 15 nm, and particularly preferably 0 to 5 nm. The control of the polarization axis using the phase can be performed with reference to Non-Patent Document 1 and the like.

また、下記数式(3)または数式(4)の関係を満たす光制御装置は、可視域においてはλ/2を提供可能な位相差板として機能し、赤外域においてはλ/4を提供可能な位相差板として機能する。なお、Iλ、Vλ、RD、及びRλは上で定義した通りである。
Vλ/2−RD≦Rλ≦Vλ/2+RD 数式(3)
(ただし、RDは0〜40nmを示す)
Iλ/4−RD≦Rλ≦Iλ/4+RD 数式(4)
(ただし、RDは0〜40nmを示す)
上記光制御装置において、Rλを有する位相差板の遅相軸を、直線偏光の光が入射する45°に設けることにより、可視域においては、λ/2偏光板として機能し、入射した偏光光の逆偏光を出射することが可能となり、赤外域においては、λ/4偏光板として機能可能な位相差板として機能し、入射した偏光光を円偏光にして出射することが可能となる。これにより、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合、可視域は直線偏光のまま偏光制御可能となるのに対して、赤外域は円偏光光として制御可能となる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、数式(3)、数式(4)を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。上記構成とした場合、可視域での反射制御が可能で、かつ、赤外域の透過制御も可能となる。好ましい構成としては、例えば、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域、および、赤外域を制御しうる偏光板の構成でも良いが、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域を制御しうる偏光板、赤外域を制御しうる偏光板、の順などが例示されるが、構成は限定されない。さらに、本方法を用いると赤外域においては反射した光が偏光を有していることを応用した偏光制御も可能となる。例えば、偏光板一枚での反射制御を行う場合、赤外域においては、偏光板、λ/4位相差板、反射板の順番で積層し、偏光板の吸収軸に対して位相差板の遅相軸を直線偏光の光が入射する45°で設置した場合、偏光板から光を入射した直線偏光は、位相差板によって円偏光に変換され、また、反射板により反射された光は、逆円偏光に変換され、結果的に反射防止可能な機能を発現できる。しかし、この場合、可視域の光は直線偏光の状態を維持し続けるため、光は反射され、反射光を検出可能となる。さらには、この反射で用いる場合においても、赤外偏光板の吸収軸に対して位相差板の遅相軸を0°に設置することにより、赤外域の偏光は直線偏光の状態で維持するため、可視域の光と赤外域の光のいずれも反射可能な光制御装置として機能する。本光制御装置の場合、RDは0〜40nmの範囲であることが良く、好ましくは0〜25nm、より好ましくは0〜15nm、特に好ましくは0〜5nmの範囲であることが良い。
Further, the light control device that satisfies the relationship of the following Expression (3) or Expression (4) functions as a phase difference plate that can provide λ / 2 in the visible region, and can provide λ / 4 in the infrared region. Functions as a phase difference plate. Note that Iλ, Vλ, RD, and Rλ are as defined above.
Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Equation (3)
(However, RD indicates 0 to 40 nm)
Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Equation (4)
(However, RD indicates 0 to 40 nm)
In the above light control device, by providing the slow axis of the retardation plate having Rλ at 45 ° where linearly polarized light is incident, it functions as a λ / 2 polarizing plate in the visible region, In the infrared region, it functions as a retardation plate that can function as a λ / 4 polarizing plate, and can output incident polarized light as circularly polarized light. Thereby, when a polarizing plate having an absorption axis orthogonal to the incident axis is provided on the emission side, the visible region can be controlled in polarization while keeping linearly polarized light, whereas the infrared region can be controlled as circularly polarized light. . When it is desired that both the light in the visible region and the light in the infrared region are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. As described above, by controlling the slow axis of the retardation plate having Rλ that satisfies Expressions (3) and (4), the axis of linearly polarized light, the elliptically polarized light, and the like can also be controlled. In the case of the above configuration, reflection control in the visible region is possible, and transmission control in the infrared region is also possible. As a preferable configuration, for example, a visible region, and a polarizing plate capable of controlling the infrared region, a medium having a phase or a phase controllable medium, a visible region, and a configuration of a polarizing plate capable of controlling the infrared region may be used. , Visible region, and a polarizing plate capable of controlling the infrared region, a medium having a phase or a medium capable of controlling the phase, a polarizing plate capable of controlling the visible region, a polarizing plate capable of controlling the infrared region, and the like are exemplified. However, the configuration is not limited. Furthermore, the use of this method also enables polarization control utilizing the fact that reflected light has polarization in the infrared region. For example, when performing reflection control with a single polarizing plate, in the infrared region, a polarizing plate, a λ / 4 retardation plate, and a reflecting plate are laminated in this order, and the retardation of the retardation plate is delayed with respect to the absorption axis of the polarizing plate. When the phase axis is set at 45 ° where linearly polarized light is incident, the linearly polarized light that has entered the light from the polarizing plate is converted into circularly polarized light by the phase difference plate, and the light reflected by the reflecting plate is inverted. The light is converted into circularly polarized light, and as a result, a function capable of preventing reflection can be realized. However, in this case, since the light in the visible region continues to maintain the state of linearly polarized light, the light is reflected, and the reflected light can be detected. Further, even in the case of using this reflection, by setting the slow axis of the retardation plate at 0 ° with respect to the absorption axis of the infrared polarizing plate, the polarized light in the infrared region is maintained in a linearly polarized state. Function as a light control device that can reflect both visible light and infrared light. In the case of the present light control device, the RD is preferably in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.

また、下記数式(5)または数式(6)の関係を満たす光制御装置は、可視域においては3/2λを提供可能な位相差板として機能し、赤外域においては1/2λを提供可能な位相差板として機能する。なお、Iλ、Vλ、RD、及びRλは上で定義した通りである。
Vλ×3/2−RD≦Rλ≦Vλ×3/2+RD 数式(5)
(ただし、RDは0〜40nmを示す)
Iλ×1/2−RD≦Rλ≦Iλ×1/2+RD 数式(6)
(ただし、RDは0〜40nmを示す)
上記光制御装置において、Rλを有する位相差板の遅相軸を、直線偏光の光が入射する45°に設けることによって、可視域においては、3/2λ偏光板としてとして機能することり、入射した偏光光の円偏光を出射することが可能となり、赤外域においては、λ/2偏光板として、入射した偏光光を逆軸に出射可能な位相差板として機能するに至る。これにより、出射側に入射軸と直交の吸収軸を有する偏光板を設けた場合、可視域の偏光光は円偏光として制御可能となるのに対して、赤外域は直線偏光光として制御可能となる。可視域の光、および、赤外域の光を両方ともに非透過(吸収)したい場合には、Rλを有する位相差板の遅相軸を45°ではなく0°に設置すればよい。このように、数式(5)、数式(6)を満たすRλを有する位相差板の遅相軸を制御することにより、直線偏光の軸、および、楕円偏光等も制御可能となる。好ましい構成としては、例えば、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域、および、赤外域を制御しうる偏光板の構成でも良いが、可視域、および、赤外域を制御しうる偏光板、位相を有する媒体または位相制御可能な媒体、可視域を制御しうる偏光板、赤外域を制御しうる偏光板、の順などが例示されるが、構成は限定されない。さらに、本方法を用いると赤外域においては反射した光が偏光を有していることを応用した偏光制御も可能となる。上記構成とした場合、可視域での反射制御が可能で、かつ、赤外域の透過制御も可能となる。例えば、偏光板一枚での反射制御行う場合、可視域においては、偏光板、3/4λ偏光板、反射板の順番で積層し、反射板の上に偏光板の吸収軸に対して位相差板の遅相軸を45°で設置することにより、偏光板から光を入射直線偏光は、位相差板によって円偏光に変換され、また、反射板により反射された光は、逆円偏光に変換され、結果的に反射を防止可能な機能を発現できる。しかし、この場合、赤外域の光は直線偏光の状態を維持し続けるため、光は反射され、反射光を検出可能となる。さらには、この反射で用いる場合においても、位相差板の遅相軸を0°に設置することにより、可視域の光と赤外域の光のいずれ反射可能な光制御装置として機能する。本光制御装置の場合、RDは0〜40nmの範囲であることが良く、好ましくは0〜25nm、より好ましくは0〜15nm、特に好ましくは0〜5nmの範囲であることが良い。
Further, the light control device satisfying the relationship of the following Expression (5) or Expression (6) functions as a phase difference plate that can provide 3 / 2λ in the visible region, and can provide 1 / 2λ in the infrared region. Functions as a phase difference plate. Note that Iλ, Vλ, RD, and Rλ are as defined above.
Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Equation (5)
(However, RD indicates 0 to 40 nm)
Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Equation (6)
(However, RD indicates 0 to 40 nm)
In the above light control device, by providing the slow axis of the retardation plate having Rλ at 45 ° where linearly polarized light is incident, the retardation plate functions as a 3 / 2λ polarizing plate in the visible region or is incident. It becomes possible to emit circularly polarized light of the polarized light, and in the infrared region, it functions as a λ / 2 polarizer as a phase difference plate capable of emitting incident polarized light in the opposite axis. Thus, when a polarizing plate having an absorption axis perpendicular to the incident axis is provided on the emission side, the polarized light in the visible region can be controlled as circularly polarized light, whereas the infrared region can be controlled as linearly polarized light. Become. When it is desired that both the light in the visible region and the light in the infrared region are not transmitted (absorbed), the slow axis of the retardation plate having Rλ may be set at 0 ° instead of 45 °. As described above, by controlling the slow axis of the retardation plate having Rλ satisfying Expressions (5) and (6), the axis of linearly polarized light, elliptically polarized light, and the like can be controlled. As a preferable configuration, for example, a visible region, and a polarizing plate capable of controlling the infrared region, a medium having a phase or a phase controllable medium, a visible region, and a configuration of a polarizing plate capable of controlling the infrared region may be used. , Visible region, and a polarizing plate capable of controlling the infrared region, a medium having a phase or a medium capable of controlling the phase, a polarizing plate capable of controlling the visible region, a polarizing plate capable of controlling the infrared region, and the like are exemplified. However, the configuration is not limited. Furthermore, the use of this method also enables polarization control utilizing the fact that reflected light has polarization in the infrared region. In the case of the above configuration, reflection control in the visible region is possible, and transmission control in the infrared region is also possible. For example, when performing reflection control with a single polarizing plate, in the visible region, a polarizing plate, a / λ polarizing plate, and a reflecting plate are laminated in this order, and a phase difference is formed on the reflecting plate with respect to the absorption axis of the polarizing plate. By setting the slow axis of the plate at 45 °, light is incident from the polarizing plate. Linearly polarized light is converted to circularly polarized light by the phase difference plate, and light reflected by the reflecting plate is converted to inverted circularly polarized light. As a result, a function capable of preventing reflection can be realized. However, in this case, since the light in the infrared region keeps maintaining the state of linearly polarized light, the light is reflected and the reflected light can be detected. Further, even in the case of using this reflection, by setting the slow axis of the retardation plate at 0 °, it functions as a light control device capable of reflecting either visible light or infrared light. In the case of the present light control device, the RD is preferably in the range of 0 to 40 nm, preferably 0 to 25 nm, more preferably 0 to 15 nm, and particularly preferably 0 to 5 nm.

本発明の光制御装置の上記IR偏光板において、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の赤外域(700〜1400nmの波長)の光の透過率(赤外域の光の直交透過率)と、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の可視域(400〜700nmの波長)の光の透過率(可視域の光の直交透過率)との差が10%以上であることにより、可視域の光と赤外域の光の偏光制御がさらに容易となるため好ましい。例えば、偏光板が赤外域の光に対して偏光性能を有しており、かつ、可視域の光に対しても偏光性能を有している場合、位相差板によって、それぞれの領域の光の偏光を制御可能であるが、偏光板一枚で400〜1400nmの光の100%の偏光度を有すると、赤外域の光に対してのみ偏光性能を付与する、もしくは、可視域の光に対してのみ偏光性能を付与することが難しくなる。それに対して、それぞれの波長領域の光に対して偏光性能を有する偏光板を用いることにより、波長に合わせて適切な偏光板を選択することにより、偏光制御が様々な波長で可能となる。つまりは、赤外域においては赤外域の光の波長のみで制御可能な偏光板を用い、可視域においては可視域の光の波長のみで制御可能な偏光板を用いることが様々な波長で偏光制御、または、透過率制御が出来るため好ましい。しかしながら、赤外域に偏光性能を有する偏光板は、可視域においても偏光性能を有する場合もあることから、必ずしも、赤外域に偏光性能を有するのみとは限らない。ただし、本発明の光制御装置の機能としては、赤外域の光と可視域の光とで異なる位相(偏光)を付与した光を出射することが重要であるため、それらの検出光量(エネルギー)の大小(S/N比)が明瞭になれば十分である。そのため、IR偏光板において、全波長で100%の偏光性能を付与させるのではなく、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の700〜1400nmの光の透過率と、吸収軸が直交するように2枚の前記偏光板を重ね合わせた場合の400〜700nmの光の透過率との差が10%以上であることにより、可視域の光と赤外域の光の偏光制御がさらに容易となるため好ましく、透過率の差は、より好ましくは20%、さらに好ましくは30%、特に好ましくは40%以上である。   In the IR polarizing plate of the light control device of the present invention, the transmittance of light in the infrared region (wavelength of 700 to 1400 nm) (in the infrared region) when the two polarizing plates are overlapped so that the absorption axes are orthogonal to each other. Orthogonal transmittance of light) and transmittance of light in the visible region (wavelength of 400 to 700 nm) when two polarizing plates are overlapped so that the absorption axes are orthogonal (orthogonal transmittance of light in the visible region). ) Is preferably 10% or more, because the polarization control of light in the visible region and light in the infrared region is further facilitated. For example, when the polarizing plate has polarization performance for light in the infrared range and also has polarization performance for light in the visible range, the phase difference plate allows Although the polarization can be controlled, if one polarizing plate has a degree of polarization of 100% of the light of 400 to 1400 nm, it imparts polarization performance only to light in the infrared region, or to light in the visible region. It becomes difficult to provide the polarization performance only when it is used. On the other hand, by using a polarizing plate having polarization performance for light in each wavelength region, by selecting an appropriate polarizing plate according to the wavelength, polarization control can be performed at various wavelengths. In other words, in the infrared region, a polarizing plate that can be controlled only by the wavelength of infrared light is used, and in the visible region, a polarizing plate that can be controlled only by the wavelength of visible light is used. Or, it is preferable because transmittance can be controlled. However, a polarizing plate having polarization performance in the infrared region may have polarization performance also in the visible region, and thus does not necessarily have only polarization performance in the infrared region. However, as the function of the light control device of the present invention, it is important to emit light having different phases (polarized light) between infrared light and visible light, and thus the detected light amounts (energy) It is sufficient that the magnitude (S / N ratio) of the becomes clear. Therefore, in the IR polarizing plate, the transmittance of light of 700 to 1400 nm when the two polarizing plates are superimposed so that the absorption axes are orthogonal to each other, instead of providing the polarizing performance of 100% at all wavelengths, is obtained. When the difference between the transmittance of light of 400 to 700 nm and the transmittance of light of 400 to 700 nm is 10% or more when the two polarizing plates are overlapped so that the absorption axes are orthogonal to each other, the light of visible light and the light of infrared light are Preferably, the polarization control is further facilitated, and the difference in transmittance is more preferably 20%, further preferably 30%, and particularly preferably 40% or more.

赤外域の光の波長の範囲で直交透過率が1%以下であるIR偏光板と、赤外域の光の波長の範囲に光の吸収を有さず、かつ、偏光板の直交透過率が1%以下を示す少なくとも1つのVIS偏光板を含むことを特徴とした光制御装置は、赤外域の光に対する偏光性能と可視域の光に対する偏光性能のそれぞれを制御可能とするため好ましい。さらに、上記光制御装置は赤外域の光と可視域の光のコントラストをそれぞれ向上するため好ましい。また、それぞれの偏光板を別軸に用いることも可能であり、それぞれの偏光の軸制御をしたい波長、波長軸で、可視域の光と赤外域の光とを分けて光制御することが可能となる。赤外域の光と可視域の光のそれぞれの直交透過率としては、それぞれ独立に、1%以下であることで十分に光制御は可能となるが、好ましくは0.3%以下、より好ましくは0.1%以下、さらに好ましくは0.01%以下、特に好ましくは0.005%以下であることが良い。例えば、平行透過率40%であった場合、直交透過率が0.1%とすると、その比である40:0.1、つまりは400:1のコントラスト比を提供しうる。つまり、偏光板のコントラストが本発明の光学制御装置に与える影響は大きいため、上記、範囲に制御することが好ましい。   An IR polarizer having an orthogonal transmittance of 1% or less in a wavelength range of light in the infrared region, and an orthogonal polarizer having no light absorption in the wavelength range of light in the infrared region and having an orthogonal transmittance of 1%. % Is preferable because it can control the polarization performance for infrared light and the polarization performance for visible light, respectively. Further, the above-mentioned light control device is preferable for improving the contrast between infrared light and visible light. In addition, it is possible to use each polarizing plate on a different axis, and it is possible to separately control the visible light and the infrared light by the wavelength and wavelength axis for controlling the axis of each polarized light. Becomes As the orthogonal transmittance of each of the infrared light and the visible light, if it is independently 1% or less, the light can be sufficiently controlled, but preferably 0.3% or less, more preferably 0.3% or less. The content is preferably 0.1% or less, more preferably 0.01% or less, and particularly preferably 0.005% or less. For example, if the parallel transmittance is 40% and the orthogonal transmittance is 0.1%, a contrast ratio of 40: 0.1, that is, 400: 1, which is the ratio, can be provided. That is, since the contrast of the polarizing plate greatly affects the optical control device of the present invention, it is preferable to control the optical control device within the above range.

本発明の光制御装置における、赤外域の光と可視域の光の制御に関して、その透過・非透過(遮光)切替え時に必要な光量のコントラストとしては、一般的な紙媒体におけるコントラストの比率が必要と言われている。つまりは、透過と遮光のコントラスト比としては10対1以上、好ましくは100対1以上、更に好ましくは1000対1以上であれば良い。   Regarding the control of light in the infrared region and light in the visible region in the light control device of the present invention, the contrast of the amount of light required when switching between transmission and non-transmission (shielding) is required to be the ratio of the contrast of a general paper medium. It is said that. In other words, the contrast ratio between transmission and light shielding should be 10: 1 or more, preferably 100: 1 or more, and more preferably 1000: 1 or more.

上記光制御装置を構築する際、IR偏光板の少なくとも1つが吸収型偏光板であることが好ましい。上記吸収型偏光板は、迷光を発生させない特徴を有する。前記IR偏光板としては、ワイヤーグリット型が一般的ではあるが、光の屈折や反射等を制御して偏光機能を発現している偏光板の場合、散乱光や集光、明暗の激しい物、不特定形状、光の重なり、光の位置が動くものなどの状況などによる光の反射、屈折、共鳴(共振)、位相が変調などにより、本来の波長以外の光や強度の光が発現する。この場合、本来の波長以外の光や強度の光が迷光となる。こうした迷光を発生させないことが、誤った検出を防ぐためには重要となる。つまりは、迷光を発生させない偏光板を用いることが好ましい。例えば、IR偏光板が吸収型偏光板である場合、迷光等ができにくいため光学制御が容易あることから、好ましく用いることができる。   In constructing the light control device, it is preferable that at least one of the IR polarizing plates is an absorption polarizing plate. The absorption type polarizing plate has a feature that does not generate stray light. As the IR polarizing plate, a wire grit type is generally used, but in the case of a polarizing plate that expresses a polarizing function by controlling refraction or reflection of light, a scattered light, a condensed light, an object with intense brightness and darkness, Light having a wavelength other than the original wavelength or light having an intensity is generated due to reflection, refraction, resonance (resonance), phase modulation, or the like of light due to an unspecified shape, overlap of light, movement of light position, or the like. In this case, light having a wavelength other than the original wavelength or light having an intensity becomes stray light. It is important not to generate such stray light in order to prevent erroneous detection. That is, it is preferable to use a polarizing plate that does not generate stray light. For example, when the IR polarizing plate is an absorption polarizing plate, it can be preferably used because optical control is easy because stray light and the like are hardly generated.

上記各偏光板は、積層が容易であり、かつフレキシブル化が可能であり、フレキシブル化するためには、IR偏光板の少なくとも1つがフィルムであることが好ましい。特に、積層が可能であるため、位相を有する媒体または位相制御可能な媒体と積層させることが好ましい。積層させることによって、界面反射等の影響による透過率低下が起こりにくく、光制御を行う上で好ましい。   Each of the above polarizing plates can be easily laminated and can be made flexible. In order to make the polarizing plates flexible, it is preferable that at least one of the IR polarizing plates is a film. In particular, since lamination is possible, it is preferable to laminate with a medium having a phase or a medium whose phase can be controlled. By laminating, it is difficult to reduce the transmittance due to the influence of interface reflection and the like, which is preferable for light control.

また、上記各偏光板、位相を有する媒体または位相制御可能な媒体は、それぞれ光や電気等の信号により回転させ、各々を所望の角度となるよう設定すること、また設定を変更することが可能である。   In addition, each of the above-described polarizing plates, a medium having a phase, or a medium whose phase can be controlled can be rotated by a signal such as light or electricity, and each can be set to a desired angle, and the setting can be changed. It is.

上記光制御装置は、赤外域の光と可視域の光に対して、それぞれ偏光を同時に制御することが可能であるため、人間の目で認識可能な可視域の光と認識困難な赤外域の光の偏光をそれぞれ同時に制御可能である。そのため、赤外域の光と可視域の光に対する検知の切替が可能な液晶表示装置、赤外域の光と可視域の光の偏光を制御可能なカメラ等の撮影装置、高度なセキュリティを提供可能な偽造防止装置、または、赤外域の光と可視域の光のそれぞれで機能するセンサー等、様々な用途に上記光制御装置を応用することが可能であり、各種用途と光制御装置を組合せたシステムとして用いることも可能である。   The light control device can simultaneously control the polarization of light in the infrared region and light in the visible region at the same time, so that light in the visible region that can be recognized by human eyes and infrared light that is difficult to recognize The polarization of the light can be controlled simultaneously. Therefore, it is possible to provide a liquid crystal display device capable of switching detection between infrared light and visible light, a photographing device such as a camera capable of controlling the polarization of infrared light and visible light, and high security. It is possible to apply the light control device to various applications such as a forgery prevention device or a sensor that functions with infrared light and visible light, and a system that combines the light control device with various applications. It is also possible to use as.

<実施例>
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
<Example>
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

<赤外域の光に対して偏光性能を有する偏光板(IR偏光板)の作製>
下記化学式(1)のアゾ化合物を0.3%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを5分間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD−80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし835nmを中心に高い偏光機能を持つ偏光板を得た。該偏光板をIR偏光板として用いた。
<Preparation of polarizing plate (IR polarizing plate) having polarization performance for infrared light>
A 45 ° C. aqueous solution containing the azo compound of the following chemical formula (1) at a concentration of 0.3% and the sodium sulfate at a concentration of 0.1% was prepared as a staining solution. A 75 μm-thick polyvinyl alcohol film was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of a 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining the tension state, to obtain a polarizing element. A triacetylcellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name: TD-80U) obtained by alkali treatment was laminated on both sides of this polarizing element via an adhesive of a polyvinyl alcohol aqueous solution, and 835 nm was applied. A polarizing plate having a high polarizing function at the center was obtained. The polarizing plate was used as an IR polarizing plate.

<可視域の光に対して偏光性能を有する偏光板(VIS偏光板)の作製>
Kayarus Supra Orange 2GL(日本化薬株式会社製)を0.02%の濃度に、C.I.Direct Red 81を0.01%の濃度に、Blue KW(日本化薬株式会社製)を0.04%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを3分30秒間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD−80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし400〜650nmの可視域に偏光機能を持つ偏光板を得た。該偏光板をVIS偏光板として用いた。
<Preparation of polarizing plate (VIS polarizing plate) having polarization performance for visible light>
Kayarus Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) was added to C.I. I. Prepare a 45 ° C. aqueous solution in which Direct Red 81 has a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku) has a concentration of 0.04%, and sodium sulfate has a concentration of 0.1%. A staining solution was used. A 75 μm-thick polyvinyl alcohol film was immersed in the staining solution for 3 minutes and 30 seconds. Next, the film was stretched 5 times in a solution of a 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining the tension state, to obtain a polarizing element. A triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name: TD-80U) obtained by alkali treatment was laminated on both sides of the polarizing element via an adhesive of an aqueous polyvinyl alcohol solution. A polarizing plate having a polarizing function in the visible region of 650 nm was obtained. The polarizing plate was used as a VIS polarizing plate.

<赤外域の光と可視域の光を制御可能な偏光板(VIS−IR偏光板)の作製>
上記の化学式(1)のアゾ化合物を0.6%の濃度に、Kayarus Supra Orange 2GL(日本化薬株式会社製)を0.02%の濃度に、C.I.Direct Red 81を0.01%の濃度に、Blue KW(日本化薬株式会社製)を0.04%の濃度に、及び芒硝を0.1%の濃度にした45℃の水溶液を用意して染色液とした。該染色液に、厚さ75μmのポリビニルアルコールフィルムを5分間浸漬した。次に、該フィルムを、3%ホウ酸水溶液を50℃とした溶液中で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光素子を得た。この偏光素子の両面に、アルカリ処理して得られたトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD−80U)をポリビニルアルコール水溶液の接着剤を介して両面にラミネートし400〜900nmに偏光機能を持つ偏光板を得た。該偏光板をVIS−IR偏光板として用いた。
<Preparation of polarizing plate (VIS-IR polarizing plate) capable of controlling infrared light and visible light>
The azo compound of the above chemical formula (1) was brought to a concentration of 0.6%, Kayarus Supra Orange 2GL (manufactured by Nippon Kayaku Co., Ltd.) to a concentration of 0.02% and C.I. I. Prepare a 45 ° C. aqueous solution in which Direct Red 81 has a concentration of 0.01%, Blue KW (manufactured by Nippon Kayaku) has a concentration of 0.04%, and sodium sulfate has a concentration of 0.1%. A staining solution was used. A 75 μm-thick polyvinyl alcohol film was immersed in the staining solution for 5 minutes. Next, the film was stretched 5 times in a solution of a 3% boric acid aqueous solution at 50 ° C., washed with water and dried while maintaining the tension state, to obtain a polarizing element. A triacetyl cellulose film (TAC film; manufactured by Fuji Photo Film Co., Ltd .; trade name: TD-80U) obtained by alkali treatment was laminated on both sides of the polarizing element via an adhesive of an aqueous polyvinyl alcohol solution. A polarizing plate having a polarizing function at 900 nm was obtained. The polarizing plate was used as a VIS-IR polarizing plate.

<偏光素子の透過率の測定>
(偏光板の透過率測定)
得られた各偏光板ついて、分光光度計(日立製作所製 U−4100)を用いて、380〜1100nmにおいて、各波長の単体透過率(Ts)、平行透過率(Tp)、直交透過率(Tc)、偏光度(ρ)を測定した。単体透過率(Ts)とは偏光板一枚を測定して得られる透過率であり、平行透過率(Tp)とは偏光板2枚のそれぞれの光の吸収軸を平行にして測定して得られる透過率であり、直交透過率(Tc)とは偏光板2枚のそれぞれの光の吸収軸を直交にして測定して得られる透過率であり、偏光度は数式(7)によって算出して得られる値である。
<Measurement of transmittance of polarizing element>
(Measurement of transmittance of polarizing plate)
Using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), each of the obtained polarizing plates was used at 380 to 1100 nm at a single transmittance (Ts), a parallel transmittance (Tp), and a cross transmittance (Tc) at each wavelength. ) And the degree of polarization (ρ) were measured. The single transmittance (Ts) is the transmittance obtained by measuring one polarizing plate, and the parallel transmittance (Tp) is obtained by measuring the two light absorbing axes of the two polarizing plates in parallel. The orthogonal transmittance (Tc) is a transmittance obtained by measuring the respective light absorption axes of two polarizing plates at right angles, and the degree of polarization is calculated by the equation (7). The value obtained.

偏光度(%)=100×[(Tp−Tc)/(Tp+Tc)]1/2 数式(7)Degree of polarization (%) = 100 × [(Tp−Tc) / (Tp + Tc)] 1/2 Equation (7)

得られた各偏光板の420nm、555nm、830nm、840nmの波長における単体透過率(Ts)、平行透過率(Tp)、直交透過率(Tc)を下記に示す。表1にはIR偏光板を用いた場合の値を、表2にはVIS偏光板を用いた場合の値を、表3にはVIS−IR偏光板を用いた場合の値をそれぞれ示す。   The individual transmittances (Ts), parallel transmittances (Tp), and orthogonal transmittances (Tc) of the obtained polarizing plates at wavelengths of 420 nm, 555 nm, 830 nm, and 840 nm are shown below. Table 1 shows values when an IR polarizing plate is used, Table 2 shows values when a VIS polarizing plate is used, and Table 3 shows values when a VIS-IR polarizing plate is used.

<実施例A1〜A4>
光制御装置の作製、評価
上記U−4100の光源部から出射された光を、光源側からみてVIS−IR偏光板、位相差板、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU−4100の検出部に入射されるようにした。位相差板として420nmおよび840nmの各波長において420nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS−IR偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、VIS偏光板、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表4で示す。表4の0°とは、VIS−IR偏光板の吸収軸に対して、位相差板であれば遅相軸が0°、VIS偏光板またはIR偏光板であれば吸収軸が0°(同軸)に設置されていることを示す。45°及び90°も同様である。StとはU−4100にて検出された透過率が強(30〜50%)であることを示し、MiとはU−4100にて検出された透過率が中(10〜25%)であることを示し、WeとはU−4100にて検出された透過率が弱(0〜2%)であることを示す。
<Examples A1 to A4>
Production and evaluation of light control device The light emitted from the light source unit of the above U-4100 was configured as a VIS-IR polarizing plate, a retardation plate, a VIS polarizing plate, and an IR polarizing plate in this order when viewed from the light source side. The light was applied to the apparatus, and the transmitted light was allowed to enter the detection unit of U-4100. As the retardation plate, a polycarbonate-based retardation plate exhibiting a retardation value of 420 nm at each wavelength of 420 nm and 840 nm was used. The transmittance was measured when the slow axis of this retardation plate was inclined at 0 ° and 45 ° with respect to the VIS-IR polarizing plate. At that time, the measurement was carried out while changing the respective polarization axes of the VIS polarizing plate and the IR polarizing plate. The results are shown in Table 4. 0 ° in Table 4 means that the retardation plate has a slow axis of 0 ° with respect to the absorption axis of the VIS-IR polarizing plate, and the VIS polarizing plate or the IR polarizing plate has a absorption axis of 0 ° (coaxial). ). The same applies to 45 ° and 90 °. St indicates that the transmittance detected by U-4100 is strong (30 to 50%), and Mi indicates that the transmittance detected by U-4100 is medium (10 to 25%). "We" indicates that the transmittance detected by U-4100 is weak (0 to 2%).

<実施例A5〜A8>
420nmおよび840nmの各波長において210nmの位相差値を示すポリカーボネート系位相差板を用いた以外は、実施例1〜4と同様に光制御装置を評価した。結果を表5で示す。
<Examples A5 to A8>
The light control device was evaluated in the same manner as in Examples 1 to 4, except that a polycarbonate-based retardation plate showing a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used. The results are shown in Table 5.

<実施例A9〜A12>
555nmおよび830nmの各波長において415nmの位相差値を示すポリカーボネート系位相差板を用いた以外は、実施例1〜4と同様に光制御装置を評価した。結果を表6で示す。
<Examples A9 to A12>
The light control device was evaluated in the same manner as in Examples 1 to 4, except that a polycarbonate-based retardation plate showing a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used. The results are shown in Table 6.

<実施例A13〜A14>
上記U−4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板、位相差板、反射板の順で構成とした光制御装置に照射し、その反射光がU−4100の検出部に入射されるようにした。位相差板として420nmおよび840nmの各波長において210nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表7で示す。表7の0°とは、VIS偏光板の吸収軸に対して、位相差板であれば遅相軸が0°、IR偏光板であれば吸収軸が0°(同軸)に設置されていることを示す。45°及び90°も同様である。St、(Mi)、及びWeは表4と同じことを意味する。
<Examples A13 to A14>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device having a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate in this order as viewed from the light source side. -4100. As the retardation plate, a polycarbonate-based retardation plate exhibiting a retardation value of 210 nm at each wavelength of 420 nm and 840 nm was used. The transmittance was measured when the slow axis of this retardation plate was inclined at 0 ° and 45 ° with respect to the VIS polarizing plate. At that time, the measurement was performed while variously changing the respective polarization axes of the IR polarizing plate. The results are shown in Table 7. 0 ° in Table 7 means that the retardation plate has a slow axis of 0 ° and the IR polarizing plate has an absorption axis of 0 ° (coaxial) with respect to the absorption axis of the VIS polarizing plate. Indicates that The same applies to 45 ° and 90 °. St, (Mi), and We mean the same as in Table 4.

<実施例A15〜A16>
上記U−4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板、位相差板、反射板の順で構成とした光制御装置に照射し、その反射光がU−4100の検出部に入射されるようにした。位相差板として555nmおよび830nmの各波長において415nmの位相差値を示すポリカーボネート系位相差板を用いた。この位相差板の遅相軸をVIS偏光板に対して0°、および、45°に傾けた場合の透過率を測定した。その際、IR偏光板のそれぞれの偏光軸を種々変えて測定した。結果を表8で示す。表8の0°、45°、90°、St、(Mi)、及びWeは表7と同じことを意味する。
<Examples A15 to A16>
The light emitted from the light source unit of the U-4100 is irradiated to a light control device having a VIS polarizing plate, an IR polarizing plate, a retardation plate, and a reflecting plate in this order as viewed from the light source side. -4100. As the retardation plate, a polycarbonate-based retardation plate exhibiting a retardation value of 415 nm at each wavelength of 555 nm and 830 nm was used. The transmittance was measured when the slow axis of this retardation plate was inclined at 0 ° and 45 ° with respect to the VIS polarizing plate. At that time, the measurement was performed while variously changing the respective polarization axes of the IR polarizing plate. The results are shown in Table 8. In Table 8, 0 °, 45 °, 90 °, St, (Mi), and We mean the same as in Table 7.

<比較例A1〜A4>
実施例A1〜A4から位相差板を除いた光制御装置(比較例1〜4)を用いて透過率を測定した結果を表9に示す。従来の偏光板と同じく、それぞれの波長において偏光板の吸収軸が直交された状態であれば、透過率が低下し、吸収軸が平行であれば透過率が高くなる結果であった。従来の偏光板の機能である平行位と直交位での透過率を制御できるだけであって、それぞれの波長での透過率を個別に制御しうる光学装置にはならなかった。
<Comparative Examples A1 to A4>
Table 9 shows the results of measuring the transmittance using the light control devices (Comparative Examples 1 to 4) in which the retardation plates were removed from Examples A1 to A4. As in the case of the conventional polarizing plate, the transmittance decreased when the absorption axes of the polarizing plates were orthogonal to each other at each wavelength, and the transmittance increased when the absorption axes were parallel. The optical device can only control the transmittance at the parallel position and the orthogonal position, which are the functions of the conventional polarizing plate, and cannot provide an optical device that can individually control the transmittance at each wavelength.

<比較例A5〜A6>
実施例A13〜A14から位相差板を除いた光制御装置(比較例5〜6)を用いて透過率を測定した結果を表10に示す。従来の1枚の偏光板を鏡の上に置いた時と同様に、透過率の変化は全く見られず、入射した光が可視域の光と赤外域の光で変化は見られなかった。
<Comparative Examples A5 to A6>
Table 10 shows the results of measuring the transmittances using the light control devices (Comparative Examples 5 to 6) in which the phase difference plates were removed from Examples A13 to A14. As in the case where one conventional polarizing plate was placed on a mirror, no change was observed in the transmittance, and no change was observed in the incident light between visible light and infrared light.

実施例A1〜A12の結果から、それぞれの光制御装置において、同一の光源に対して、赤外域の光と可視域の光の量をそれぞれ制御可能であることが分かる。また、実施例A5〜A8と実施例A13〜A14、および、実施例A9〜A12と実施例A15〜A16のそれぞれにおいて、光の透過時の光制御による結果と、反射時の光制御により得られる結果とは、異なることが分かる。以上の結果により、本発明で得られる光制御装置は、可視域の光および赤外域の光を有する同一光源を用いた場合であっても、可視域の光および赤外域の光をそれぞれ異なる光量および偏光に変換できる装置として有効であることが示された。   From the results of Examples A1 to A12, it can be seen that the respective light control devices can control the amounts of infrared light and visible light with respect to the same light source. In each of Examples A5 to A8 and Examples A13 to A14, and Examples A9 to A12 and Examples A15 to A16, the result is obtained by light control at the time of transmission of light and the result of light control at the time of reflection. It turns out that the result is different. According to the above results, the light control device obtained by the present invention is capable of emitting visible light and infrared light with different light amounts even when the same light source having visible light and infrared light is used. And it was shown to be effective as a device capable of converting into polarized light.

<実施例B1>
上記U−4100の光源部から出射された光を、光源側からみてVIS−IR偏光板、STN型液晶セル、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU−4100の検出部に入射されるようにした。その際、VIS−IR偏光板の吸収軸に対してVIS偏光板の吸収軸を平行になるように積層し、VIS−IR偏光板の吸収軸に対してIR偏光板の吸収軸を90°になるように積層して用いた。液晶セルへの貼合については、STNセルへ電圧が印加された時、可視域で最低透過率になるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/2λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光の測定結果を表4で示す。VIS−IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU−4100の検出部に入射された時の光量(%)を示している。
<Example B1>
The light emitted from the light source unit of the U-4100 is applied to a light control device configured in the order of a VIS-IR polarizing plate, an STN-type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate as viewed from the light source side, and transmitted. This light was made to enter the detection unit of U-4100. At this time, the VIS-IR polarizer is laminated so that the absorption axis of the VIS polarizer is parallel to the absorption axis of the VIS-IR polarizer, and the absorption axis of the IR polarizer is set to 90 ° with respect to the absorption axis of the VIS-IR polarizer. They were used in a laminated manner. As to the bonding to the liquid crystal cell, the one to which each polarizing plate was bonded so as to have the lowest transmittance in the visible region when a voltage was applied to the STN cell was used as a measurement sample of the present invention. The STN type liquid crystal cell is arranged so as to have a slow axis in a 45 ° direction when an initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/100 at 420 nm and 840 nm. One having a phase of 2λ was used. Table 4 shows the measurement results of the light at the wavelength of 420 nm and the wavelength of 840 nm when the voltage is turned ON and OFF. Based on the amount of light transmitted through only the VIS-IR polarizing plate, the amount of light (%) when entering the detection unit of U-4100 after passing through the light control device is shown.

<実施例B2>
上記U−4100の光源部から出射された光を、光源側からみてVIS−IR偏光板、STN型液晶セル、VIS偏光板、IR偏光板の順で構成とした光制御装置に照射し、透過した光がU−4100の検出部に入射されるようにした。その際、VIS−IR偏光板の吸収軸に対してVIS偏光板の吸収軸を直交になるように積層し、VIS−IR偏光板の吸収軸に対してIR偏光板の吸収軸を0°になるように積層して用いた。液晶セルへの貼合については、STNセルへ電圧が印加されていない時に、可視域で最も透過率が低くなるになるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/2λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光をその結果を表4で示す。VIS−IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU−4100の検出部に入射された光量(%)を示している。
<Example B2>
The light emitted from the light source unit of the U-4100 is applied to a light control device configured in the order of a VIS-IR polarizing plate, an STN-type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate as viewed from the light source side, and transmitted. This light was made to enter the detection unit of U-4100. At that time, the VIS polarizing plate is laminated so that the absorption axis of the VIS polarizing plate is perpendicular to the absorption axis of the VIS-IR polarizing plate, and the absorption axis of the IR polarizing plate is set to 0 ° with respect to the absorption axis of the VIS-IR polarizing plate. They were used in a laminated manner. Regarding the bonding to the liquid crystal cell, the one in which each polarizing plate was bonded so that the transmittance was lowest in the visible region when no voltage was applied to the STN cell was used as the measurement sample of the present application. The STN type liquid crystal cell is arranged so as to have a slow axis in a 45 ° direction when an initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/100 at 420 nm and 840 nm. One having a phase of 2λ was used. Table 4 shows the results of the light at the wavelength of 420 nm and the wavelength of 840 nm when the voltage is turned ON and OFF. Based on the amount of light transmitted through only the VIS-IR polarizing plate, the amount of light (%) incident on the detection unit of U-4100 after passing through the light control device is shown.

<実施例B3>
上記U−4100の光源部から出射された光を、光源側からみてVIS偏光板、IR偏光板の構成、STN型液晶セル、反射板の順に入射され、反射した光がU−4100の検出部に入射されるようにした。IR偏光板は、VIS偏光板の吸収軸に対して45°に貼合し、液晶セルへの貼合については、STNセルへ電圧が印加されていない時に、赤外域で最も反射率が低くになるように各偏光板を貼合したものを本願の測定試料として用いた。STN型液晶セルは、電圧の印加時には初期の軸を0°とした時に45°方向に遅相軸を持つように配置され、その位相差は420nm、および、840nmのそれぞれの波長において、1/4λとなる位相を有しているものを用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光の測定結果を表4で示す。VIS−IR偏光板および反射板のみを設置してそれから反射した光量に基づいて、上記光制御装置から反射後にU−4100の検出部に入射された光量(%)を示している。
<Example B3>
The light emitted from the light source unit of the U-4100 is incident on the VIS polarizing plate, the configuration of the IR polarizing plate, the STN type liquid crystal cell, and the reflecting plate in this order as viewed from the light source side, and the reflected light is detected by the detecting unit of the U-4100. Was made to enter. The IR polarizing plate is bonded at 45 ° to the absorption axis of the VIS polarizing plate. For bonding to the liquid crystal cell, when no voltage is applied to the STN cell, the reflectance is the lowest in the infrared region. What adhered each polarizing plate so that it might be used as a measurement sample of this application. The STN type liquid crystal cell is arranged so as to have a slow axis in a 45 ° direction when an initial axis is set to 0 ° when a voltage is applied, and the phase difference is 1/100 at 420 nm and 840 nm. One having a phase of 4λ was used. Table 4 shows the measurement results of the light at the wavelength of 420 nm and the wavelength of 840 nm when the voltage is turned ON and OFF. Based on the amount of light reflected from only the VIS-IR polarizing plate and the reflecting plate, the amount of light (%) incident on the detection unit of U-4100 after reflection from the light control device is shown.

<実施例B4>
光制御装置の評価として、上記U−4100の光源部から出射された光を、光源側からみてVIS−IR偏光板、TN型液晶セル、VIS偏光板、IR偏光板の構成で、U−4100の検出部に入射されるようにした。その際、VIS−IR偏光板の吸収軸に対してVIS偏光板の吸収軸を平行になるように積層し、VIS−IR偏光板の吸収軸に対してIR偏光板の吸収軸を90°になるように積層して用いた。液晶セルへの貼合については、TNセルへ電圧が印加された時、赤外域用偏光板によって赤外域の透過率が最低になるように偏光板を貼合したものを本願の測定試料として用いた。その折、電圧をON、OFFさせた時の420nmの波長と840nmの波長のそれぞれの光をその結果を表11で示す。結果は、VIS−IR偏光板のみを設置してそれを透過した光量に基づいて、上記光制御装置を透過後にU−4100の検出部に入射された光量(%)を示している。
<Example B4>
As the evaluation of the light control device, the light emitted from the light source unit of the above U-4100 was viewed from the light source side, and was constituted by a VIS-IR polarizing plate, a TN type liquid crystal cell, a VIS polarizing plate, and an IR polarizing plate. In the detection section. At this time, the VIS-IR polarizer is laminated so that the absorption axis of the VIS polarizer is parallel to the absorption axis of the VIS-IR polarizer, and the absorption axis of the IR polarizer is set to 90 ° with respect to the absorption axis of the VIS-IR polarizer. They were used in a laminated manner. As for the bonding to the liquid crystal cell, when a voltage is applied to the TN cell, the polarizing plate for infrared region is bonded to the polarizing plate so that the transmittance in the infrared region is minimized. Was. Table 11 shows the results of the light at the wavelength of 420 nm and the wavelength of 840 nm when the voltage is turned ON and OFF. The results show the amount of light (%) incident on the detection unit of U-4100 after passing through the light control device and based on the amount of light transmitted through only the VIS-IR polarizing plate.

実施例B1〜B4の結果から、それぞれの光制御装置において、同一の光源を用いながら、赤外域の光と可視域の光の量をそれぞれ独自に動的に制御出来ていることが分かる。特に実施例B1およびB2では、透過時の可視域の光と赤外域の光に対する光制御、すなわち、動的に位相が発現する媒体により、可視域の光と赤外域の光の透過率の切替が可能であることが分かった。また、実施例B3では、反射板を用いた場合でも上記光制御装置の光制御が有効であることが分かった。以上の結果から、本発明で得られる光制御装置は、同一の光源を用いた場合であっても、可視域の光と赤外域の光でそれぞれの透過率を簡易に切替えて制御することが可能な装置として有効であることが示された。   From the results of Examples B1 to B4, it can be seen that in each light control device, the amount of infrared light and visible light can be dynamically controlled independently using the same light source. In particular, in Examples B1 and B2, light control for visible light and infrared light at the time of transmission, that is, switching of the transmittance of visible light and infrared light by a medium that dynamically develops a phase. Turned out to be possible. In addition, in Example B3, it was found that the light control of the light control device was effective even when the reflection plate was used. From the above results, the light control device obtained in the present invention can control by simply switching the respective transmittances between visible light and infrared light even if the same light source is used. It has been shown to be effective as a possible device.

入射した赤外域の波長の光と可視域の波長の光の偏光を、同時にそれぞれ異なる偏光になるように制御することを可能とし、赤外域の光と可視域の光に対する検知の切替えが可能な液晶表示装置、赤外域の光と可視域の光の偏光を制御可能なカメラ等の撮影装置、高度なセキュリティを提供可能な偽造防止装置、または、赤外域の光と可視域の光のそれぞれで機能するセンサー等、様々な用途に応用することが可能である。
It is possible to control the polarization of incident infrared light and visible light at the same time so that they are different from each other, and switch between detection of infrared light and visible light. Liquid crystal display devices, imaging devices such as cameras that can control the polarization of infrared light and visible light, anti-counterfeiting devices that can provide advanced security, or infrared light and visible light It can be applied to various uses such as a functioning sensor.

Claims (18)

赤外域の光に対して偏光性能を有する少なくとも1つの偏光板(IR偏光板)、可視域の光に対して偏光性能を有する少なくとも1つの偏光板(VIS偏光板)、及び位相を有する媒体または位相制御可能な媒体を含み、入射した赤外域の光と可視域の光を、それぞれ異なる偏光光にすることにより、赤外域の透過光と可視域の透過光を制御する光制御装置。   At least one polarizing plate (IR polarizing plate) having polarization performance for infrared light, at least one polarizing plate (VIS polarizing plate) having polarization performance for visible light, and a medium having a phase or An optical control device that includes a medium whose phase can be controlled and controls transmitted light in an infrared region and transmitted light in a visible region by converting incident infrared light and visible light into different polarized lights. 位相を有する媒体または位相制御可能な媒体の位相差値Rλを示しているときの角度と、赤外域で直線偏光を発現しているときの角度との間の角度θiが0≦θi<180°の範囲となる請求項1に記載の光制御装置。   The angle θi between the angle when the phase difference value Rλ of the medium having the phase or the phase controllable medium is indicated and the angle when linearly polarized light is developed in the infrared region is 0 ≦ θi <180 ° The light control device according to claim 1, wherein: 位相を有する媒体または位相制御可能な媒体の位相差値Rλを示している角度と、可視域において直線偏光を発現しているときの角度との間の角度θvが−90°<θv<180°の範囲となる請求項1または2に記載の光制御装置。   The angle θv between the angle indicating the phase difference value Rλ of the medium having a phase or the medium capable of controlling the phase and the angle at which linearly polarized light is developed in the visible region is −90 ° <θv <180 °. The light control device according to claim 1 or 2, wherein 赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(1)または数式(2)の関係を満たす請求項1〜3のいずれか一項に記載の光制御装置:
Vλ−RD≦Rλ≦Vλ+RD 数式(1)
(ただし、RDは0〜40nmを示す)
Iλ/2−RD≦Rλ≦Iλ/2+RD 数式(2)
(ただし、RDは0〜40nmを示す)。
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, The light control device according to any one of claims 1 to 3, which satisfies the relationship of (1) or (2).
Vλ−RD ≦ Rλ ≦ Vλ + RD Equation (1)
(However, RD indicates 0 to 40 nm)
Iλ / 2−RD ≦ Rλ ≦ Iλ / 2 + RD Equation (2)
(However, RD shows 0 to 40 nm).
赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(3)または数式(4)の関係を満たす請求項1〜3のいずれか一項に記載の光制御装置:
Vλ/2−RD≦Rλ≦Vλ/2+RD 数式(3)
(ただし、RDは0〜40nmを示す)
Iλ/4−RD≦Rλ≦Iλ/4+RD 数式(4)
(ただし、RDは0〜40nmを示す)。
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, The light control device according to any one of claims 1 to 3, which satisfies the relationship of (3) or (4):
Vλ / 2−RD ≦ Rλ ≦ Vλ / 2 + RD Equation (3)
(However, RD indicates 0 to 40 nm)
Iλ / 4−RD ≦ Rλ ≦ Iλ / 4 + RD Equation (4)
(However, RD shows 0 to 40 nm).
赤外域の光の波長をIλ、可視域の光の波長をVλ、位相差値の誤差をRD、位相を有する媒体または位相制御可能な媒体の位相差値をRλとした場合、それぞれが下記数式(5)または数式(6)の関係を満たす請求項1〜3のいずれか一項に記載の光制御装置。
Vλ×3/2−RD≦Rλ≦Vλ×3/2+RD 数式(5)
(ただし、RDは0〜40nmを示す。)
Iλ×1/2−RD≦Rλ≦Iλ×1/2+RD 数式(6)
(ただし、RDは0〜40nmを示す。)
When the wavelength of light in the infrared region is Iλ, the wavelength of light in the visible region is Vλ, the error of the phase difference value is RD, and the phase difference value of a medium having a phase or a phase controllable medium is Rλ, The light control device according to any one of claims 1 to 3, wherein the light control device satisfies the relationship of (5) or Expression (6).
Vλ × 3 / 2−RD ≦ Rλ ≦ Vλ × 3/2 + RD Equation (5)
(However, RD shows 0 to 40 nm.)
Iλ × 1 / 2−RD ≦ Rλ ≦ Iλ × 1/2 + RD Equation (6)
(However, RD shows 0 to 40 nm.)
可視域の光と赤外域の光を同時に制御するための、請求項1〜6のいずれか一項に記載の光制御装置であって、前記位相制御可能な媒体が動的に位相制御可能な媒体である、光制御装置。   The light control device according to any one of claims 1 to 6, for simultaneously controlling visible light and infrared light, wherein the phase controllable medium is capable of dynamically controlling the phase. Light control device that is the medium. 前記動的に位相制御可能な媒体が液晶パネル(液晶セル)である請求項7に記載の光制御装置。   The light control device according to claim 7, wherein the medium whose phase can be dynamically controlled is a liquid crystal panel (liquid crystal cell). 前記液晶パネル(液晶セル)で使用している液晶が、TN液晶(Twisted Nematic液晶)、または、STN液晶(Super Twisted Nematic液晶)である請求項8に記載の光制御装置。   The light control device according to claim 8, wherein the liquid crystal used in the liquid crystal panel (liquid crystal cell) is a TN liquid crystal (Twisted Nematic liquid crystal) or an STN liquid crystal (Super Twisted Nematic liquid crystal). 可視域の光と赤外域の光の各々の透過対非透過のコントラスト比が10以上である請求項7〜9のいずれか一項に記載の光制御装置。   The light control device according to any one of claims 7 to 9, wherein a contrast ratio of transmission to non-transmission of each of visible light and infrared light is 10 or more. 可視域の光と赤外域の光に対して偏光性能を有する1つの偏光板(VIS−IR偏光板)を含む請求項1〜10のいずれか一項に記載の光制御装置。   The light control device according to any one of claims 1 to 10, further comprising one polarizing plate (VIS-IR polarizing plate) having polarization performance with respect to visible light and infrared light. 前記VIS−IR偏光板において赤外域の光の直交透過率と可視域の光の直交透過率との差が1%以下である請求項11に記載の光制御装置。   The light control device according to claim 11, wherein a difference between an orthogonal transmittance of infrared light and an orthogonal transmittance of visible light in the VIS-IR polarizing plate is 1% or less. 前記IR偏光板において赤外域の光の直交透過率と、可視域の光の直交透過率との差が10%以上である請求項1〜12のいずれか一項に記載の光制御装置。   The light control device according to claim 1, wherein a difference between an orthogonal transmittance of light in an infrared region and an orthogonal transmittance of light in a visible region in the IR polarizing plate is 10% or more. 前記IR偏光板において赤外域の光の直交透過率が1%以下、かつ可視域の光の透過率との差が10%以上である偏光板と、前記VIS偏光板が赤外域で高い透過率を示し、赤外域の光の透過に影響しにくいことを示し、かつ、可視域の光の直交透過率が1%以下を示す少なくとも1つの偏光板とを含む、請求項1〜13のいずれか一項に記載の光制御装置。   A polarizing plate having an IR polarizing plate having an orthogonal transmittance of infrared light of 1% or less and a difference from a visible light transmittance of 10% or more, and the VIS polarizing plate having a high transmittance in an infrared region; And at least one polarizing plate that indicates that it has little effect on the transmission of light in the infrared region and that has an orthogonal transmittance of 1% or less for light in the visible region. The light control device according to claim 1. 前記IR偏光板または前記VIS−IR偏光板が吸収型偏光板である請求項1〜14のいずれか一項に記載の光制御装置。   The light control device according to any one of claims 1 to 14, wherein the IR polarizing plate or the VIS-IR polarizing plate is an absorption polarizing plate. 前記IR偏光板または前記VIS−IR偏光板がフィルムである請求項1〜15のいずれか一項に記載の光制御装置。   The light control device according to any one of claims 1 to 15, wherein the IR polarizing plate or the VIS-IR polarizing plate is a film. 位相差を有する媒体または位相制御可能な媒体と、少なくとも1つの偏光板が積層されている請求項1〜16のいずれか一項に記載の光制御装置。   The light control device according to any one of claims 1 to 16, wherein a medium having a phase difference or a phase controllable medium and at least one polarizing plate are laminated. 請求項1〜17のいずれか一項に記載の光制御装置を備える液晶表示装置、偽造防止装置、またはセンサー。
A liquid crystal display device, a forgery prevention device, or a sensor comprising the light control device according to claim 1.
JP2019521273A 2017-06-02 2018-05-30 Infrared and visible light control device Active JP7111703B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017109964 2017-06-02
JP2017109963 2017-06-02
JP2017109964 2017-06-02
JP2017109963 2017-06-02
PCT/JP2018/020781 WO2018221598A1 (en) 2017-06-02 2018-05-30 Light control device for infrared region and visible region

Publications (2)

Publication Number Publication Date
JPWO2018221598A1 true JPWO2018221598A1 (en) 2020-04-02
JP7111703B2 JP7111703B2 (en) 2022-08-02

Family

ID=64455085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019521273A Active JP7111703B2 (en) 2017-06-02 2018-05-30 Infrared and visible light control device

Country Status (4)

Country Link
JP (1) JP7111703B2 (en)
CN (1) CN110622061B (en)
TW (1) TWI763860B (en)
WO (1) WO2018221598A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215751A1 (en) * 2021-04-09 2022-10-13 富士フイルム株式会社 Light absorption anisotropic layer, laminate, display device, infrared light irradiation device, and infrared light sensing device
WO2024024693A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Polarizing plate
WO2024024174A1 (en) * 2022-07-29 2024-02-01 富士フイルム株式会社 Lens device, multispectral camera, control device, control method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009584A (en) * 2008-05-29 2010-01-14 Sony Corp Display device
CN103424920A (en) * 2013-04-01 2013-12-04 友达光电股份有限公司 Light valve component allowing adjustment of penetration rate of infrared light
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
WO2016136784A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Near-infrared-absorbing composition, cured film, near-infrared-absorbing filter, solid-state imaging element, and infrared sensor
JP2017074177A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Different wavelength light selection device and endoscopic device using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267561A1 (en) * 2009-05-15 2011-11-03 Sharp Kabushiki Kaisha Display device
CN102230987B (en) * 2011-07-08 2012-07-25 华中科技大学 Oval light polarizer
WO2015033932A1 (en) * 2013-09-03 2015-03-12 富士フイルム株式会社 Optical filter and optical-filter-equipped display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009584A (en) * 2008-05-29 2010-01-14 Sony Corp Display device
CN103424920A (en) * 2013-04-01 2013-12-04 友达光电股份有限公司 Light valve component allowing adjustment of penetration rate of infrared light
WO2015015717A1 (en) * 2013-07-30 2015-02-05 パナソニックIpマネジメント株式会社 Imaging device and imaging system, electronic mirroring system, and distance measurement device using same
WO2016136784A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Near-infrared-absorbing composition, cured film, near-infrared-absorbing filter, solid-state imaging element, and infrared sensor
JP2017074177A (en) * 2015-10-14 2017-04-20 株式会社 オルタステクノロジー Different wavelength light selection device and endoscopic device using the same

Also Published As

Publication number Publication date
CN110622061B (en) 2022-09-27
WO2018221598A1 (en) 2018-12-06
TWI763860B (en) 2022-05-11
TW201908780A (en) 2019-03-01
CN110622061A (en) 2019-12-27
JP7111703B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
EP1664911B1 (en) Mirror with built-in display
CN108700702B (en) Transmittance variable film
US10023123B2 (en) Image display mirror for a vehicle
US10377312B2 (en) Image display mirror for a vehicle
TW200526998A (en) Mirror with built-in display
WO2014059756A1 (en) Liquid crystal display device, special glasses and displaying system
JP7111703B2 (en) Infrared and visible light control device
JP7182552B2 (en) Optical system and display device
CN105793763A (en) See-through head mounted display with liquid crystal module for adjusting brightness ration of combined images
TW201502661A (en) Liquid crystal display device
JP2022504675A (en) Polarization filter with angle-sensitive transmittance
JP2016141257A (en) Vehicle including mirror with video display device
KR20200033896A (en) Display device and infrared light blocking film
JP3908470B2 (en) Manufacturing method of polarizing plate
JP2019504361A (en) Polarizer
JP2023513723A (en) Optics for Integrated IR, Visible Cameras for Depth Sensing, and Systems Incorporating Them
US9868400B2 (en) Image display mirror for a vehicle
EP4121805A1 (en) Liquid crystal reflective polarizer and pancake lens assembly having the same
JP6677494B2 (en) Video display mirror for vehicles
JP2022542049A (en) An optical system that displays a magnified virtual image
JP2019078886A (en) Reflection adjusting element and reflection adjusting system including the same
JP2007212831A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7111703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150