WO2018221458A1 - Updating device, control method, program, and storage medium - Google Patents

Updating device, control method, program, and storage medium Download PDF

Info

Publication number
WO2018221458A1
WO2018221458A1 PCT/JP2018/020370 JP2018020370W WO2018221458A1 WO 2018221458 A1 WO2018221458 A1 WO 2018221458A1 JP 2018020370 W JP2018020370 W JP 2018020370W WO 2018221458 A1 WO2018221458 A1 WO 2018221458A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
voxel
map
point cloud
data
Prior art date
Application number
PCT/JP2018/020370
Other languages
French (fr)
Japanese (ja)
Inventor
和紀 小山
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018221458A1 publication Critical patent/WO2018221458A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram

Definitions

  • the present invention relates to a technique for updating a map.
  • Patent Document 1 discloses that difference information representing a difference between a position of a moving object and a traveling position of the moving object on map data is associated with the position information and stored in the difference database.
  • a map data update system configured to set information indicating whether or not to update the map data corresponding to the position information based on the difference information corresponding to the position information stored in is disclosed.
  • Patent Document 1 does not disclose how to update the information of the point cloud stored in the map data.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide an update device that can suitably update a map including point cloud information.
  • the invention according to claim 1 is an update device, which has a difference greater than or equal to a predetermined value from map point cloud information assigned to each of a plurality of areas of map information, and is based on a reference position measured by a measurement unit Based on an acquisition unit that acquires measurement point cloud information about each measurement distance to a plurality of positions from a plurality of moving bodies, and a matching result of the measurement point group information and map point group information for each of the plurality of moving bodies And an update unit that updates information of a region that satisfies a predetermined condition among the plurality of regions.
  • the invention according to claim 9 is a control method executed by the updating device, and has a difference greater than or equal to a predetermined value from the map point cloud information assigned to each of the plurality of areas of the map information, and is measured by the measurement unit.
  • the invention according to claim 10 is a program executed by a computer, and has a map point cloud information given for each of a plurality of areas of map information and a difference of a predetermined value or more, and is measured by a measurement unit.
  • An acquisition unit that acquires measurement point cloud information related to each measurement distance from a reference position to a plurality of positions from a plurality of moving bodies, and verification of the measurement point group information and map point group information for each of the plurality of moving bodies Based on the result, the computer is caused to function as an update unit that updates information of a region satisfying a predetermined condition among the plurality of regions.
  • the block configuration of a vehicle equipment and a server apparatus is shown.
  • An example of the schematic data structure of voxel data is shown.
  • a specific example of NDT scan matching will be described.
  • a specific example of NDT scan matching in which a weighting value is set for each voxel will be described.
  • a specific example of NDT scan matching related to the change of the weighting value will be shown. It is a flowchart which shows the process sequence which an onboard equipment performs. It is a flowchart which shows the process sequence which a server apparatus performs.
  • the update device has a difference greater than or equal to a predetermined value from the map point cloud information assigned to each of the plurality of areas of the map information, and is based on the reference position measured by the measurement unit. Based on an acquisition unit that acquires measurement point cloud information about each measurement distance to a plurality of positions from a plurality of moving bodies, and a matching result of the measurement point group information and map point group information for each of the plurality of moving bodies And an update unit that updates information of a region that satisfies a predetermined condition among the plurality of regions.
  • the update device can preferably update the information for the region where it is estimated that the static structure is changed.
  • the updating unit determines a region that satisfies the predetermined condition based on a result of collation of the measurement point group information and map point group information, and the measurement point group corresponding to the region. Based on the information, the information of the area is updated.
  • the update device can determine an area that needs to be updated, and suitably update the information of the area.
  • the updating unit determines a region where the evaluation values for each of the plurality of regions calculated from the matching result of the measurement point group information and the map point group information are similar to each other with the predetermined condition. Determine as the area to fill.
  • the update device is an area where the map point cloud information and the measurement point cloud information are separated from each other, and the area where the evaluation value indicating the matching result is similar is the area where the static structure has changed. Therefore, the data in the area can be updated appropriately.
  • the updating unit updates information on a region that satisfies the predetermined condition based on measurement point group information in which an evaluation value calculated from the collation result is higher than a predetermined value.
  • the update device can accurately update the region information based on the highly reliable measurement point cloud information.
  • the updating unit sets a region where the number of the measurement point group information for each of the plurality of regions acquired by the acquiring unit is a predetermined number or more as a region that satisfies the predetermined condition. decide.
  • the update device can specify a region where the measurement point group information and the map point group information are separated from each other by a statistical method, and can appropriately update the information of the region.
  • the update device further includes a storage unit that stores map information for distribution including map point cloud information for each of the plurality of areas, and the update unit satisfies the predetermined condition.
  • the map point cloud information of the distribution map information corresponding to the area is updated.
  • the update device can suitably update the map point cloud information for each area included in the map information stored for distribution.
  • the distribution map information includes reliability information related to reliability for each of the plurality of regions
  • the update unit acquires the measurement point acquired by the acquisition unit.
  • the number of group information is larger, the reliability indicated by the reliability information for the area is lowered, and the map point group information of the distribution map information corresponding to the area satisfying the predetermined condition is updated.
  • Initialize reliability information According to this aspect, the update device can accurately update the reliability information for each region recorded in the distribution map information.
  • the update device after the generation of the information of the region that satisfies the predetermined condition, is configured to perform measurement point group information of the region different from the first point group information used for generating the information.
  • a verification unit that verifies the reliability of the generated information based on the collation result is further provided. According to this aspect, the update device can verify the reliability of the information in the generated region and reflect only the reliable information in the distribution map information.
  • a control method executed by the updating device comprising map point cloud information given for each of a plurality of areas of map information and a difference greater than or equal to a predetermined value, and measuring An acquisition step of acquiring measurement point group information about each measurement distance from a reference position to a plurality of positions measured by a unit from a plurality of moving bodies, and the measurement point group information for each of the plurality of moving bodies, and An update step of updating information on a region satisfying a predetermined condition among the plurality of regions based on a collation result of the map point cloud information.
  • the update device can suitably update the information for the region where it is estimated that the static structure has changed.
  • a program executed by a computer the map point cloud information assigned to each of a plurality of areas of map information and a difference greater than or equal to a predetermined value
  • An acquisition unit that acquires measurement point group information about each measurement distance from a reference position to a plurality of positions from a plurality of moving bodies, and the measurement point group information and map points for each of the plurality of moving bodies
  • the computer is caused to function as an update unit that updates information of a region satisfying a predetermined condition among the plurality of regions.
  • the computer can preferably update the information on the region where the static structure is estimated to have changed.
  • the program is stored in a storage medium.
  • FIG. 1 is a schematic configuration of a driving support system according to the present embodiment.
  • the driving support system includes an in-vehicle device 1 that moves together with a vehicle, and a server device 2 that distributes map information.
  • FIG. 1 only one set of the in-vehicle device 1 and the vehicle that communicates with the server device 2 is displayed, but actually there are a plurality of sets of the in-vehicle device 1 and the vehicle at different positions.
  • the in-vehicle device 1 is electrically connected to an external sensor such as a lidar (Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging), an internal sensor such as a gyro sensor or a vehicle speed sensor, and based on these outputs.
  • a lidar Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging
  • an internal sensor such as a gyro sensor or a vehicle speed sensor
  • the in-vehicle device 1 stores a map database (DB: DataBase) 10 including voxel data.
  • DB DataBase
  • the voxel data is data in which position information of a stationary structure is recorded for each area (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of areas.
  • the voxel data includes data representing point cloud data measured for stationary structures in each voxel by a normal distribution, and is used for scan matching using NDT (Normal Distributions Transform) as will be described later.
  • the in-vehicle device 1 performs scan matching based on NDT based on the point cloud data output by the lidar and the voxel data corresponding to the voxel to which the point cloud data belongs. And the vehicle equipment 1 transmits the information regarding the said voxel (it is also called "matching fall information D1") to the server apparatus 2, when the voxel with low matching precision is detected.
  • the vehicle-mounted device 1 receives information specifying a specific voxel (also referred to as “request signal D2”) from the server device 2, measurement data (“measurement data D3” by a lidar or the like in the specified voxel is received. Is also transmitted to the server device 2.
  • the server device 2 performs data communication with the in-vehicle device 1 corresponding to a plurality of vehicles.
  • the server device 2 stores a distribution map DB 20 for distribution to the vehicle-mounted device 1 corresponding to a plurality of vehicles, and the distribution map DB 20 includes voxel data corresponding to each voxel.
  • the server device 2 accumulates the matching decrease information D1 received from the in-vehicle device 1, and determines whether or not the voxel data needs to be updated for a specific voxel based on the accumulated matching decrease information D1.
  • the server apparatus 2 judges that the update of the voxel data with respect to a specific voxel is required, it transmits the request signal D2 which designated the said voxel to each vehicle equipment 1. And the server apparatus 2 receives the measurement data D3 from the vehicle equipment 1 as a response of the request signal D2. And the server apparatus 2 performs the process required for the update of the target voxel data based on the matching fall information D1 and the measurement data D3.
  • the server device 2 is an example of an “update device” in the present invention
  • the distribution map DB 20 is an example of “distribution map information” in the present invention.
  • FIG. 2A shows a block diagram illustrating a functional configuration of the vehicle-mounted device 1.
  • the in-vehicle device 1 mainly includes a communication unit 11, a storage unit 12, a sensor unit 13, an input unit 14, a control unit 15, and an output unit 16.
  • the communication unit 11, the storage unit 12, the sensor unit 13, the input unit 14, the control unit 15, and the output unit 16 are connected to each other via a bus line.
  • the communication unit 11 receives the map information distributed from the server device 2 based on the control of the control unit 15 or transmits the matching degradation information D1 generated by the control unit 15 to the server device 2. Moreover, the communication part 11 transmits the measurement data D3 to the server apparatus 2 based on control of the control part 15, when the request signal D2 is received. Moreover, the communication part 11 transmits the signal for controlling a vehicle to a vehicle, or receives the signal regarding the state of a vehicle from a vehicle.
  • the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process.
  • the storage unit 12 stores a map DB 10 including voxel data.
  • the sensor unit 13 includes a rider 30, a camera 31, a GPS receiver 32, a gyro sensor 33, and a speed sensor 34.
  • the lidar 30 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group data.
  • the lidar 30 scans data based on an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and a light reception signal output by the light receiving unit.
  • Output unit is
  • the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
  • the lidar 30 is an example of the “measurement unit” in the present invention, and the point cloud data output from the lidar 30 is an example of the “measurement point cloud information” in the present invention.
  • the input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, and accepts an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like.
  • the generated input signal is supplied to the control unit 15.
  • the output unit 16 is, for example, a display or a speaker that performs output based on the control of the control unit 15.
  • the control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1. For example, the control unit 15 estimates the host vehicle position by performing scan matching based on NDT based on the point cloud data output from the lidar 30 and the voxel data corresponding to the voxel to which the point cloud data belongs. Do. Further, the control unit 15 detects a voxel that is estimated to have low matching accuracy based on an evaluation value for each voxel obtained by scan matching based on NDT. And the control part 15 produces
  • control unit 15 determines that the voxel specified by the request signal D2 received from the server device 2 belongs to the measurement range of the rider 30, the point cloud data belonging to the voxel from the point cloud data output by the rider 30. Is extracted and transmitted to the server device 2 as measurement data D3.
  • FIG. 2B shows a schematic configuration of the server device 2.
  • the server device 2 includes a communication unit 21, a storage unit 22, and a control unit 25.
  • the communication unit 21, the storage unit 22, and the control unit 25 are connected to each other via a bus line.
  • the communication unit 21 communicates various data with the in-vehicle device 1 based on the control of the control unit 25.
  • the storage unit 22 stores a program for controlling the operation of the server device 2 and holds information necessary for the operation of the server device 2.
  • the storage unit 22 stores the distribution map DB 20 and also stores the matching decrease information D1 and the measurement data D3 transmitted from the plurality of in-vehicle devices 1.
  • the control unit 25 includes a CPU, a ROM, a RAM, and the like (not shown), and performs various controls on each component in the server device 2.
  • the control unit 25 accumulates the matching decrease information D1 received from the in-vehicle device 1 in the storage unit 22, and determines whether or not it is necessary to update voxel data for a specific voxel based on the accumulated matching decrease information D1. . And when the control part 25 judges that the update of the voxel data with respect to a specific voxel is required, the request signal D2 which designated the said voxel is transmitted to each vehicle equipment 1 by the communication part 21.
  • control unit 25 updates the voxel data included in the distribution map DB 20 based on the point cloud data included in the matching degradation information D1 and the point cloud data indicated by the measurement data D3 received from the in-vehicle device 1 based on the request signal D2. Perform processing.
  • the control unit 25 is an example of an “acquisition unit”, “update unit”, “verification unit”, and “computer” that executes a program in the present invention.
  • FIG. 3 shows an example of a schematic data structure of voxel data.
  • the voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution.
  • the voxel ID, voxel coordinates, average vector, and covariance matrix are used. And a weight value and point cloud number information.
  • “voxel coordinates” indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel.
  • Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates.
  • the voxel coordinates may be used as a voxel ID.
  • Average vector and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
  • the average vector and covariance matrix included in the voxel data are an example of “map point cloud information” in the present invention.
  • the “weighting value” is set to a value corresponding to the reliability of the voxel data (particularly the average vector and covariance matrix) of the target voxel, and represents a weighting value for the target voxel set in the scan matching.
  • the weighting value is an example of “reliability information” in the present invention.
  • “Point cloud number information” is information indicating the number of point clouds used for calculating the corresponding average vector and covariance matrix.
  • the point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
  • the vehicle-mounted device 1 normalizes the value (evaluation value) of the evaluation function obtained by NDT scan matching based on the number of point groups measured in the voxel and is included in the voxel data.
  • the weighted value is used for calculation.
  • the in-vehicle device 1 accurately specifies voxels with relatively low scan matching accuracy based on the evaluation value, and suitably improves the position estimation accuracy based on NDT scan matching.
  • T x indicates the amount of movement in the x direction
  • t y indicates the amount of movement in the y direction
  • indicates the rotation angle (ie, yaw angle) in the xy plane.
  • the vertical movement amount, pitch angle, and roll angle are small enough to be ignored, although they are caused by road gradients and vibrations.
  • the in-vehicle device 1 uses the coordinate-converted point group, the average vector ⁇ k and the covariance matrix V k included in the voxel data, and the voxel k represented by the following equation (4).
  • a comprehensive evaluation function “E” (also referred to as “overall evaluation function”) for all voxels to be matched indicated by the evaluation function “E k ” and Expression (5) is calculated.
  • the in-vehicle device 1 normalizes the evaluation function E k by the number of point groups N k .
  • the vehicle-mounted device 1 evaluated based on the value of the function E k, it is the degree of matching to accurately identify the relatively low voxel.
  • the in-vehicle device 1 multiplies each voxel by a weighting value corresponding to the reliability of each voxel data (average vector, covariance matrix).
  • the in-vehicle device 1 relatively reduces the weighting of the evaluation function E k of the voxel with low reliability, and suitably improves the position estimation accuracy by NDT matching.
  • the vehicle-mounted device 1 calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method.
  • the in-vehicle device 1 estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver 32 or the like.
  • FIG. 4 (A) shows, in circles, point groups measured by a rider or the like when traveling with a measurement maintenance vehicle for map creation in four adjacent voxels “B1” to “B4”. It is the figure which showed the two-dimensional normal distribution created from Formula (1) and Formula (2) based on this by gradation.
  • the average and variance of the normal distribution shown in FIG. 4A correspond to the average vector and covariance matrix in the voxel data, respectively.
  • FIG. 4B is a diagram showing the point cloud acquired by the lidar 30 while the vehicle-mounted device 1 is traveling in FIG.
  • the position of the point cloud of the lidar 30 indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 32 or the like.
  • FIG. 4C is a diagram illustrating a state after the point cloud (star) acquired by the vehicle-mounted device 1 is moved based on the matching result of the NDT scan matching.
  • a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 4 (A) and 4 (B).
  • the calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement and maintenance vehicle and the point cloud (star) acquired by the in-vehicle device 1 is suitably reduced.
  • the evaluation functions E1 to E4 and the comprehensive evaluation function E are values that are not easily affected by the number of point groups in the voxel, so that the degree of matching between the voxels can be easily compared.
  • a weight value is set for each voxel. Therefore, it is possible to increase the degree of matching of voxels by increasing the weighting of voxels with high reliability.
  • FIG. 5A is a diagram showing a matching result when the weighting values for voxels B1 to B4 are all equal (that is, the same diagram as FIG. 4C).
  • FIG. 5B is a diagram illustrating a matching result when the weighting value of the voxel B1 is 10 times the weighting value of the other voxels.
  • FIG. 5C is a diagram showing a matching result when the weighting value of the voxel B3 is 10 times the weighting value of the other voxels.
  • the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
  • the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
  • the in-vehicle device 1 detects such a voxel k, the in-vehicle device 1 transmits matching lowering information D1 related to the voxel k to the server device 2.
  • the matching reduction information D1 includes, for example, the point cloud data of the rider 30 used for calculation of the evaluation function E k , time information, estimated vehicle position information, comprehensive evaluation function E, evaluation function E k , voxel ID, And the number N k of point groups.
  • the server device 2 determines whether the event (a) or the event (c) is applied to the voxel k by a statistical method based on the plurality of matching decrease information D1 regarding the target voxel k received from the vehicle-mounted devices 1 of the plurality of vehicles. Determine if it has occurred.
  • the vehicle-mounted device 1 calculates the reference value F k in the above-described determination formula based on the following formula (9).
  • the reference value F k corresponds to the comprehensive evaluation function E that is weighted based on the weight value w k of the target voxel k.
  • the vehicle-mounted device 1 can be suitably detect a relatively small evaluation function E k as compared with other evaluation functions E k.
  • in-vehicle device 1 detects a voxel with a small number of point groups N k in the voxel in addition to or instead of detecting an evaluation function E k that is smaller than other evaluation functions E k .
  • the matching reduction information D1 for the voxel may be transmitted to the server device 2.
  • evaluation for function E k is normalized by point group number N k, even if the event (a) or event number point group due to (c) N k is small, evaluation there is a case where the value of the function E k is not smaller than the value of the other evaluation functions E k.
  • the vehicle-mounted device 1 determines that there is a high possibility that either the event (a) or the event (c) has occurred when a voxel having a point cloud number Nk smaller than a predetermined threshold is detected.
  • the matching reduction information D1 for the voxel is transmitted to the server device 2.
  • the in-vehicle device 1 refers to the point cloud number information of the voxel data and sets the above-described threshold according to the point cloud number information. In this case, the in-vehicle device 1 sets the above threshold value smaller as the point cloud number indicated by the point cloud number information is smaller. Thereby, the vehicle equipment 1 can determine suitably by the above-mentioned threshold value whether the number of point groups Nk is smaller than the number of point groups which should be acquired originally.
  • the in-vehicle device 1 is a case where the voxel k having a smaller evaluation function E k than the other evaluation functions E k is detected based on the equation (7) and the number of point groups in the voxel k.
  • the matching decrease information D1 for the voxel k may be transmitted to the server device 2.
  • the weight change processing server device 2 accumulates the matching decrease information D1 received from the vehicle-mounted devices 1 of a plurality of vehicles for each voxel ID, and either the event (a) or the event (c) described above for each voxel ID. It is statistically determined whether or not the above has occurred.
  • the server apparatus 2 when there is a voxel in which the number of matching degradation information D1 for each voxel ID is accumulated more than a predetermined number, the server apparatus 2 has a high possibility that the event (c) has occurred and corresponds to the voxel.
  • the voxel data to be determined is low in reliability. Therefore, the server apparatus 2 decreases the weight value included in the voxel data corresponding to the voxel.
  • the server device 2 may set the weighting value to be smaller as the number of matching deterioration information D1 is larger. By doing in this way, the server apparatus 2 reduces the weighting of the voxel that is likely to have the event (c), and performs the vehicle position estimation based on the map information distributed from the server apparatus 2
  • the position estimation accuracy at 1 is preferably improved.
  • FIG. 6A is a diagram showing a point cloud (star symbol) acquired by the vehicle-mounted device 1 when the stationary structure at the position of the voxel B3 changes.
  • the point cloud (circle mark) which the measurement maintenance vehicle acquired at the time of producing voxel data before a stationary structure changes is also shown.
  • FIG. 6A when the stationary structure at the position of the voxel B3 changes, the number of point groups acquired by the rider 30 in the voxel 3 decreases, or the points acquired by the measurement and maintenance vehicle A point group out of the group is acquired by the lidar 30. The same applies when a dynamic object enters a position in the voxel B3.
  • FIG. 6B is a diagram showing a matching result when the weighting values for the voxels B1 to B4 are all equal. Due to the influence of the deviation of the voxel B3, the deviation between the circle mark and the star mark of the voxels B1, B2, B4 is also large. Therefore, the matching is shifted, and an error occurs in the position estimation result.
  • the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
  • Equation (7) the left side of Equation (7) is as follows.
  • FIG. 6C shows the matching result after changing the weighting value of voxel B3.
  • the server device 2 sets the weighting value of the voxel B3 to 1/10 based on the matching reduction information D1 of the voxel B3 transmitted from the vehicle-mounted devices 1 of a plurality of vehicles.
  • the influence of the deviation of the voxel B3 is weakened, and the deviation between the circle mark and the star mark of the voxels B1, B2, B4 is reduced.
  • the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
  • Equation (7) the left side of Equation (7) is as follows.
  • the voxel data correction processing server device 2 determines whether or not it is necessary to correct voxel data such as an average vector and a covariance matrix related to the voxel with respect to the voxel whose weight value is lowered by the above-described weight change processing.
  • the server device 2 determines whether or not the evaluation function E k included in the matching decrease information D1 of the target voxel is similar.
  • the server device 2 determines that the evaluation functions E k included in the matching degradation information D1 are similar, it can be assumed that the stationary structure has changed, so that the correction of the voxel data for the target voxel is performed. Is determined to be necessary.
  • the server device 2 calculates the index value in accordance with the above-described presence / absence of the similarity or the variance of the evaluation function E k included in the matching reduction information D1, and compares the calculated value with a predetermined threshold value. You may determine by doing.
  • the server device 2 transmits a request signal D2 designating the target voxel Btag to each vehicle-mounted device 1. .
  • the server device 2 corrects the voxel data for the target voxel Btag based on the measurement data of the target voxel Btag included in the matching degradation information D1 and the measurement data D3 received as a response to the request signal D2.
  • the server device 2 preferably uses the NDT data (that is, the average vector, covariance matrix, point cloud number information, etc.) of the target voxel Btag based on the measurement data for which the comprehensive evaluation function E is equal to or greater than a predetermined value. Generate.
  • the comprehensive evaluation function E is high, the vehicle position can be estimated with high accuracy, and it is estimated that the measurement data used for calculating the comprehensive evaluation function E is also highly reliable.
  • the server device 2 determines whether or not the measurement data is to be used for updating the voxel data based on the comprehensive evaluation function E.
  • the server device 2 performs verification on the reliability (validity) of the generated NDT data.
  • the server device 2 performs matching between the generated NDT data and measurement data D3 not used for generating the NDT data, and performs the above-described verification based on the evaluation value obtained by the matching.
  • the server device 2 may acquire the plurality of evaluation values by performing the above-described matching on the plurality of measurement data D3, and perform the above-described verification based on the plurality of acquired evaluation values.
  • a predetermined ratio for example, 90%
  • the generated NDT data is highly reliable and updatable data.
  • the server device 2 determines that the generated NDT data is reliable as a result of the above verification, the server device 2 updates the voxel data of the target voxel Btag of the distribution map DB 20 with the generated NDT data. Further, the server device 2 sets the weighting value of the voxel data of the target voxel Btag to an initial value (for example, 1). Then, the server device 2 distributes the updated map data including the updated voxel data to the vehicle-mounted device 1 of each vehicle at a predetermined timing, thereby converting the voxel data in the map DB 10 into the voxel data in the distribution map DB 20. Synchronize with. By doing in this way, the server apparatus 2 can improve the position estimation precision around the object voxel Btag which the vehicle equipment 1 performs suitably.
  • FIG. 7 is an example of a flowchart showing a processing procedure executed by the in-vehicle device 1 in this embodiment.
  • the in-vehicle device 1 repeatedly executes the process of the flowchart of FIG.
  • the in-vehicle device 1 sets an initial value of the vehicle position based on the output of the GPS receiver 32 or the like (step S101).
  • the vehicle-mounted device 1 acquires the vehicle body speed from the speed sensor 34 and also acquires the angular velocity in the yaw direction from the gyro sensor 33 (step S102).
  • the vehicle equipment 1 calculates the moving distance of a vehicle and the azimuth
  • the vehicle-mounted device 1 adds the movement distance and the azimuth change calculated in step S103 to the estimated host vehicle position one time before, and calculates a predicted position (step S104). And the vehicle equipment 1 acquires the voxel data of the voxel which exists around the own vehicle position with reference to map DB10 based on the estimated position calculated by step S104 (step S105). Further, the in-vehicle device 1 divides the scan data obtained from the lidar 30 for each voxel based on the predicted position calculated in step S104 (step S106). And the vehicle equipment 1 calculates NDT scan matching using an evaluation function (step S107). In this case, the in-vehicle device 1 calculates the evaluation function E k and the comprehensive evaluation function E based on the equations (4) and (5), and calculates the estimation parameter P that maximizes the comprehensive evaluation function E.
  • the vehicle unit 1 when the synthetic evaluation function E has identified the estimated parameter P becomes maximum (step S108; Yes), by using the synthetic evaluation function E and the weighting values w k of each voxel, formula (9)
  • the reference value Fk is calculated based on (Step S109).
  • the in-vehicle device 1 compares the reference value F k with the evaluation function E k for each voxel (step S110), and determines whether there is a voxel whose comparison result is smaller than the predetermined value A (step S111). ). That is, the in-vehicle device 1 determines whether or not there is an evaluation function E k that satisfies the equation (7).
  • step S111 the vehicle-mounted device 1 measures the point cloud data, the time, the estimated position, the comprehensive evaluation function E, and the voxel ID of the target voxel. Then, the matching reduction information D1 including the evaluation function E k and the point cloud number N k is transmitted to the server device 2 (step S112). Note that the in-vehicle device 1 is based on the magnitude of the point cloud number N k as described in the section “(1) Matching degradation information transmission process ” instead of or in addition to the determination in step S111. It may be determined whether or not the matching degradation information D1 needs to be transmitted.
  • step S111 when there is no voxel whose comparison result is smaller than the predetermined value A (step S111; No), the in-vehicle device 1 returns the process to step S102.
  • the in-vehicle device 1 calculates the estimated own vehicle position at the current time by applying the estimated parameter P that maximizes the comprehensive evaluation function E to the predicted position in step S104 after the determination in step S111.
  • the in-vehicle device 1 determines whether or not the request signal D2 designating the voxel around the vehicle position is received from the server device 2 in step S113 (step S113). And the vehicle equipment 1 will receive the request signal D2 which designated the voxel around the own vehicle position from the server apparatus 2 (step S113; Yes), and the scan data of the lidar 30 corresponding to the voxel designated by the request signal D2 ( Point cloud data) is transmitted to the server apparatus 2 as measurement data D3 (step S114). At this time, the in-vehicle device 1 may include the comprehensive evaluation function E at the time when the scan data is acquired in the measurement data D3 in addition to the scan data.
  • the comprehensive evaluation function E included in the measurement data D3 is used in the processing of the server device 2 described later.
  • the vehicle equipment 1 returns a process to step S102, after performing step S114, or when it is judged by step S113 that the request signal D2 which designated the voxel around the own vehicle position is not received.
  • FIG. 8 is an example of a flowchart showing a processing procedure executed by the server device 2 in the present embodiment.
  • the server device 2 repeatedly executes the process of the flowchart of FIG.
  • the server device 2 receives the matching decrease information D1 from the in-vehicle device 1 mounted on the vehicle (step S201). And the server apparatus 2 memorize
  • the server device 2 refers to the storage unit 22 and determines whether there is a voxel in which the number of matching degradation information D1 is greater than a predetermined value (step S202). Then, when there is a voxel in which the number of matching decrease information D1 is larger than a predetermined value (step S202; Yes), the server device 2 stores the corresponding voxel distribution map DB 20 as the number of matching decrease information D1 increases.
  • the weighted value w k thus set is set small (step S203). Thereby, the server device 2 relatively reduces the matching degree before updating the voxel data for the voxel whose static structure has changed, and preferably reduces the position estimation accuracy before the voxel data is updated. Can be suppressed.
  • the initial value of the weighting value w k stored in the distribution map DB 20 is set to an initial value (for example, 1) common to the voxels, for example.
  • the server device 2 determines whether or not to correct the voxel data of the voxel whose weight value w k is reduced (step S204). In this case, for example, the server device 2 performs the above-described determination based on whether or not the evaluation function E k included in the plurality of matching deterioration information D1 of the target voxel is similar.
  • the server device 2 determines that the voxel data should be corrected (step S204; Yes)
  • the server device 2 transmits a request signal D2 for requesting scan data of the target voxel Btag to the vehicle-mounted device 1 of each vehicle (step S204).
  • the server apparatus 2 receives the measurement data D3 containing the scan data of the object voxel Btag from the vehicle equipment 1 of each vehicle as a response of the request signal D2, and memorize
  • the measurement data D3 includes, in addition to the scan data, a comprehensive evaluation function E at the time when the scan data is acquired.
  • the server apparatus 2 determines that the voxel data need not be corrected (step S204; No)
  • the process returns to step S201.
  • the server device 2 has measured data with a high overall evaluation function E (both measurement data and measurement data D3 included in the matching reduction information D1). It is determined whether or not (including) has been accumulated (step S207). Specifically, the server device 2 determines whether or not a predetermined number or more of measurement data whose comprehensive evaluation function E is higher than a predetermined threshold is accumulated. Thereby, the server device 2 determines whether or not measurement data necessary for updating the voxel data has been collected.
  • step S207 when measurement data having a high comprehensive evaluation function E is accumulated (step S207; Yes), the server device 2 constructs point cloud data of the target voxel by weighted averaging based on the value of the comprehensive evaluation function E. (Step S208). Thereby, when constructing the point cloud data of the target voxel, the server device 2 constructs highly accurate point cloud data by increasing the weighting of scan data with higher reliability.
  • step S207 when the measurement data D3 having a high comprehensive evaluation function E is not accumulated (step S207; No), the server apparatus 2 returns the process to step S201.
  • the server device 2 outputs a predetermined warning to the administrator, and informs that there is a voxel whose voxel data should be corrected and that the measurement maintenance vehicle travels on a road where the voxel falls within the measurement range.
  • the administrator may be notified that the point cloud data needs to be measured.
  • the server device 2 generates NDT data (that is, average vector, covariance matrix, point group number information, etc.) from the point cloud data constructed in step S208 (step S209). Then, the server device 2 verifies the generated NDT data using other measurement data D3 acquired from the vehicle (that is, measurement data D3 not used for generating NDT data) (step S210). In this case, for example, the server device 2 performs matching between the generated NDT data and verification measurement data D3, and performs the above-described verification based on the evaluation value obtained by the matching.
  • NDT data that is, average vector, covariance matrix, point group number information, etc.
  • step S211 When the server device 2 determines that the generated NDT data is reliable as a result of the verification in step S210 (step S211; Yes), the target voxel data in the distribution map DB 20 is based on the processing result in step S209. Is updated (step S212). And the server apparatus 2 sets the weighting value of the voxel which updated the voxel data to an initial value (step S212). On the other hand, when the server device 2 determines that the reliability of the generated NDT data is low as a result of the verification in step S210 (step S211; No), the server device 2 does not update the voxel data in the distribution map DB 20, and performs step S201. Return processing to.
  • the server device 2 outputs a predetermined warning to the administrator, and informs that there is a voxel whose voxel data should be corrected and that the measurement maintenance vehicle travels on a road where the voxel falls within the measurement range.
  • the administrator may be notified that the point cloud data needs to be measured.
  • the server device 2 matches the point cloud data measured by the rider 30 with the point cloud data indicated by the voxel data included in the map DB 10 from the in-vehicle devices 1 of a plurality of vehicles.
  • the matching reduction information D1 regarding the voxel with a low degree is received.
  • the server apparatus 2 determines the object voxel Btag used as update object based on the matching fall information D1, and updates the voxel data of the object voxel Btag based on measurement data with high comprehensive evaluation function E.
  • the server apparatus 2 can perform the update process of voxel data exactly.
  • the voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG.
  • the voxel data may include point cloud data measured by a measurement and maintenance vehicle used when calculating an average vector and a covariance matrix.
  • the point cloud data included in the voxel data is an example of “map point cloud information” in the present invention.
  • the present embodiment is not limited to scan matching by NDT, and other scan matching such as ICP (Iterative Closest Point) may be applied.
  • the in-vehicle device 1 identifies a voxel having a relatively low matching degree based on the evaluation value for each voxel for which the degree of matching is evaluated, and the matching reduction information D1 for the voxel. Is transmitted to the server device 2. And the server apparatus 2 performs update of a weighting value, transmission of the request signal D2, reception of the measurement data D3, etc. similarly to the flowchart of FIG.
  • the server device 2 generates voxel data (in this case, point cloud data) of the target voxel Btag based on measurement data having a high evaluation value, and updates the voxel data in the distribution map DB 20.
  • the scan matching method applicable to the present invention is not limited to NDT scan matching.
  • the server device 2 performs the matching between the generated NDT data and the measurement data D3, instead of performing the matching between the generated point data of the target voxel Btag and the measurement data D3.
  • Matching with the point cloud data may be performed.
  • the server device 2 calculates an evaluation value indicating the degree of matching based on the above-described algorithm for matching point groups such as ICP, and based on the calculated evaluation value, the NDT data in step S211 is calculated. Judgment of reliability is performed.
  • a function corresponding to the in-vehicle device 1 may be built in the vehicle.
  • an electronic control unit (ECU) of the vehicle executes a process corresponding to the control unit 15 of the in-vehicle device 1 by executing a program stored in the memory of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

A server device 2 receives, from onboard devices 1 of a plurality of vehicles, matching decrease information D1 relating to voxels for which the degree of matching between point group data measured by a lidar 30 and point group data indicated by voxel data included in a map DB10 is low. The server device 2 then determines an object voxel Btag as a voxel to be updated on the basis of the matching decrease information D1, and updates the voxel data of the object voxel Btag on the basis of measurement data for which an overall evaluation function E is high.

Description

更新装置、制御方法、プログラム及び記憶媒体Update device, control method, program, and storage medium
 本発明は、地図を更新する技術に関する。 The present invention relates to a technique for updating a map.
 従来から、車両に設置されたセンサの出力に基づき地図データを更新する技術が知られている。例えば、特許文献1には、移動体の位置と地図データ上の移動体の走行位置との差分を表す差分情報と位置情報とを対応付けて差分データベースに格納し、位置情報毎に、差分データベースに格納された位置情報に対応する差分情報に基づいて、位置情報に対応する地図データを更新するか否かを表す情報を設定するように構成した地図データ更新システムが開示されている。 Conventionally, a technique for updating map data based on the output of a sensor installed in a vehicle is known. For example, Patent Document 1 discloses that difference information representing a difference between a position of a moving object and a traveling position of the moving object on map data is associated with the position information and stored in the difference database. A map data update system configured to set information indicating whether or not to update the map data corresponding to the position information based on the difference information corresponding to the position information stored in is disclosed.
特開2016-180980号公報Japanese Unexamined Patent Publication No. 2016-180980
 自動運転等を目的とした地図データには、道路周辺の静止構造物の詳細な位置を把握するために測距センサなどにより計測した点群の情報が記憶される場合がある。特許文献1には、地図データに記憶された点群の情報をどのように更新するかについて、何ら開示されていない。 In the map data for the purpose of automatic driving or the like, there is a case where information of a point cloud measured by a distance measuring sensor or the like is stored in order to grasp a detailed position of a stationary structure around the road. Patent Document 1 does not disclose how to update the information of the point cloud stored in the map data.
 本発明は、上記のような課題を解決するためになされたものであり、点群情報を含む地図を好適に更新することが可能な更新装置を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and has as its main object to provide an update device that can suitably update a map including point cloud information.
 請求項1に記載の発明は、更新装置であって、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部と、を有する。 The invention according to claim 1 is an update device, which has a difference greater than or equal to a predetermined value from map point cloud information assigned to each of a plurality of areas of map information, and is based on a reference position measured by a measurement unit Based on an acquisition unit that acquires measurement point cloud information about each measurement distance to a plurality of positions from a plurality of moving bodies, and a matching result of the measurement point group information and map point group information for each of the plurality of moving bodies And an update unit that updates information of a region that satisfies a predetermined condition among the plurality of regions.
 請求項9に記載の発明は、更新装置が実行する制御方法であって、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得工程と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新工程と、を有する。 The invention according to claim 9 is a control method executed by the updating device, and has a difference greater than or equal to a predetermined value from the map point cloud information assigned to each of the plurality of areas of the map information, and is measured by the measurement unit. In addition, an acquisition step of acquiring measurement point group information regarding each measurement distance from the reference position to a plurality of positions from a plurality of moving bodies, and the measurement point group information and map point group information for each of the plurality of moving bodies. And updating the information of the region satisfying a predetermined condition among the plurality of regions based on the collation result.
 請求項10に記載の発明は、コンピュータが実行するプログラムであって、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部として前記コンピュータを機能させる。 The invention according to claim 10 is a program executed by a computer, and has a map point cloud information given for each of a plurality of areas of map information and a difference of a predetermined value or more, and is measured by a measurement unit. An acquisition unit that acquires measurement point cloud information related to each measurement distance from a reference position to a plurality of positions from a plurality of moving bodies, and verification of the measurement point group information and map point group information for each of the plurality of moving bodies Based on the result, the computer is caused to function as an update unit that updates information of a region satisfying a predetermined condition among the plurality of regions.
運転支援システムの概略構成である。It is a schematic structure of a driving assistance system. 車載機及びサーバ装置のブロック構成を示す。The block configuration of a vehicle equipment and a server apparatus is shown. ボクセルデータの概略的なデータ構造の一例を示す。An example of the schematic data structure of voxel data is shown. NDTスキャンマッチングの具体例を示す。A specific example of NDT scan matching will be described. ボクセルごとに重み付け値が設定されたNDTスキャンマッチングの具体例を示す。A specific example of NDT scan matching in which a weighting value is set for each voxel will be described. 重み付け値の変更に関するNDTスキャンマッチングの具体例を示す。A specific example of NDT scan matching related to the change of the weighting value will be shown. 車載機が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which an onboard equipment performs. サーバ装置が実行する処理手順を示すフローチャートである。It is a flowchart which shows the process sequence which a server apparatus performs.
 本発明の好適な実施形態によれば、更新装置は、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部と、を有する。ここで、「所定値以上の差分を有する」とは、言い換えると、対象の地図点群情報と計測点群情報とのマッチングを行った場合に、マッチングの度合いを示す指標(例えば評価値)が所定値以下となることを指す。所定値は、地図点群情報と計測点群情報とが乖離しているか否かを判定する閾値に相当し、例えば実験等に基づき設定される。この態様によれば、更新装置は、静的構造物に変化が生じていると推定される領域に対する情報を好適に更新することができる。 According to a preferred embodiment of the present invention, the update device has a difference greater than or equal to a predetermined value from the map point cloud information assigned to each of the plurality of areas of the map information, and is based on the reference position measured by the measurement unit. Based on an acquisition unit that acquires measurement point cloud information about each measurement distance to a plurality of positions from a plurality of moving bodies, and a matching result of the measurement point group information and map point group information for each of the plurality of moving bodies And an update unit that updates information of a region that satisfies a predetermined condition among the plurality of regions. Here, “having a difference greater than or equal to a predetermined value” means that an index (for example, an evaluation value) indicating the degree of matching is obtained when matching between the target map point cloud information and the measurement point cloud information is performed. It means that it becomes below a predetermined value. The predetermined value corresponds to a threshold value for determining whether or not the map point group information and the measurement point group information are deviated, and is set based on, for example, an experiment. According to this aspect, the update device can preferably update the information for the region where it is estimated that the static structure is changed.
 上記更新装置の他の一態様では、前記更新部は、前記計測点群情報及び地図点群情報の照合結果に基づき、前記所定条件を満たす領域を決定し、当該領域に対応する前記計測点群情報に基づき、当該領域の情報を更新する。この態様により、更新装置は、更新が必要な領域を決定し、当該領域の情報を好適に更新することができる。 In another aspect of the updating device, the updating unit determines a region that satisfies the predetermined condition based on a result of collation of the measurement point group information and map point group information, and the measurement point group corresponding to the region. Based on the information, the information of the area is updated. According to this aspect, the update device can determine an area that needs to be updated, and suitably update the information of the area.
 上記更新装置の他の一態様では、前記更新部は、前記計測点群情報及び地図点群情報の照合結果から算出される前記複数の領域毎の評価値が類似する領域を、前記所定条件を満たす領域として決定する。この態様により、更新装置は、地図点群情報と計測点群情報とが乖離している領域であって、照合結果を示す評価値が類似した領域について、静的構造物の変化があった領域とみなし、当該領域のデータを好適に更新することができる。 In another aspect of the updating device, the updating unit determines a region where the evaluation values for each of the plurality of regions calculated from the matching result of the measurement point group information and the map point group information are similar to each other with the predetermined condition. Determine as the area to fill. According to this aspect, the update device is an area where the map point cloud information and the measurement point cloud information are separated from each other, and the area where the evaluation value indicating the matching result is similar is the area where the static structure has changed. Therefore, the data in the area can be updated appropriately.
 上記更新装置の他の一態様では、前記更新部は、前記照合結果から算出される評価値が所定値より高い計測点群情報に基づき、前記所定条件を満たす領域の情報を更新する。この態様により、更新装置は、信頼性が高い計測点群情報に基づいて、領域の情報を的確に更新することができる。 In another aspect of the updating apparatus, the updating unit updates information on a region that satisfies the predetermined condition based on measurement point group information in which an evaluation value calculated from the collation result is higher than a predetermined value. According to this aspect, the update device can accurately update the region information based on the highly reliable measurement point cloud information.
 上記更新装置の他の一態様では、前記更新部は、前記取得部が取得した前記複数の領域毎の前記計測点群情報の数が所定個数以上となる領域を、前記所定条件を満たす領域として決定する。この態様によれば、更新装置は、計測点群情報と地図点群情報とが乖離している領域を統計的手法により特定し、当該領域の情報を好適に更新することができる。 In another aspect of the updating apparatus, the updating unit sets a region where the number of the measurement point group information for each of the plurality of regions acquired by the acquiring unit is a predetermined number or more as a region that satisfies the predetermined condition. decide. According to this aspect, the update device can specify a region where the measurement point group information and the map point group information are separated from each other by a statistical method, and can appropriately update the information of the region.
 上記更新装置の他の一態様では、更新装置は、前記複数の領域毎の地図点群情報が含まれる配信用地図情報を記憶する記憶部をさらに備え、前記更新部は、前記所定条件を満たす領域に対応する前記配信用地図情報の地図点群情報を更新する。この態様により、更新装置は、配信用に記憶した地図情報に含まれる領域毎の地図点群情報を好適に更新することができる。 In another aspect of the update device, the update device further includes a storage unit that stores map information for distribution including map point cloud information for each of the plurality of areas, and the update unit satisfies the predetermined condition. The map point cloud information of the distribution map information corresponding to the area is updated. According to this aspect, the update device can suitably update the map point cloud information for each area included in the map information stored for distribution.
 上記更新装置の他の一態様では、前記配信用地図情報には、前記複数の領域毎に信頼度に関する信頼度情報が含まれており、前記更新部は、前記取得部が取得する前記計測点群情報の数が多い領域ほど、当該領域に対する信頼度情報が示す信頼度を下げ、前記所定条件を満たす領域に対応する前記配信用地図情報の地図点群情報を更新した場合に、当該領域に対する信頼度情報を初期化する。この態様により、更新装置は、配信用地図情報に記録する領域毎の信頼度情報を的確に更新することができる。 In another aspect of the update device, the distribution map information includes reliability information related to reliability for each of the plurality of regions, and the update unit acquires the measurement point acquired by the acquisition unit. When the number of group information is larger, the reliability indicated by the reliability information for the area is lowered, and the map point group information of the distribution map information corresponding to the area satisfying the predetermined condition is updated. Initialize reliability information. According to this aspect, the update device can accurately update the reliability information for each region recorded in the distribution map information.
上記更新装置の他の一態様では、更新装置は、前記所定条件を満たす領域の情報の生成後、当該情報の生成に用いた第1点群情報とは異なる当該領域の計測点群情報との照合結果に基づき、生成した情報の信頼性を検証する検証部をさらに備える。この態様により、更新装置は、生成した領域の情報の信頼性を検証し、信頼性がある情報のみを配信用地図情報に反映させることができる。 In another aspect of the above update device, after the generation of the information of the region that satisfies the predetermined condition, the update device is configured to perform measurement point group information of the region different from the first point group information used for generating the information. A verification unit that verifies the reliability of the generated information based on the collation result is further provided. According to this aspect, the update device can verify the reliability of the information in the generated region and reflect only the reliable information in the distribution map information.
 本発明の他の好適な実施形態によれば、更新装置が実行する制御方法であって、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得工程と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新工程と、を有する。更新装置は、この制御方法を実行することで、静的構造物に変化が生じていると推定される領域に対する情報を好適に更新することができる。 According to another preferred embodiment of the present invention, there is provided a control method executed by the updating device, comprising map point cloud information given for each of a plurality of areas of map information and a difference greater than or equal to a predetermined value, and measuring An acquisition step of acquiring measurement point group information about each measurement distance from a reference position to a plurality of positions measured by a unit from a plurality of moving bodies, and the measurement point group information for each of the plurality of moving bodies, and An update step of updating information on a region satisfying a predetermined condition among the plurality of regions based on a collation result of the map point cloud information. By executing this control method, the update device can suitably update the information for the region where it is estimated that the static structure has changed.
 本発明の他の好適な実施形態によれば、コンピュータが実行するプログラムであって、地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部
として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、静的構造物に変化が生じていると推定される領域に対する情報を好適に更新することができる。好適には、上記プログラムは、記憶媒体に記憶される。
According to another preferred embodiment of the present invention, there is provided a program executed by a computer, the map point cloud information assigned to each of a plurality of areas of map information and a difference greater than or equal to a predetermined value, An acquisition unit that acquires measurement point group information about each measurement distance from a reference position to a plurality of positions from a plurality of moving bodies, and the measurement point group information and map points for each of the plurality of moving bodies Based on the group information collation result, the computer is caused to function as an update unit that updates information of a region satisfying a predetermined condition among the plurality of regions. By executing this program, the computer can preferably update the information on the region where the static structure is estimated to have changed. Preferably, the program is stored in a storage medium.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [運転支援システムの概要]
 図1は、本実施例に係る運転支援システムの概略構成である。運転支援システムは、車両と共に移動する車載機1と、地図情報の配信を行うサーバ装置2と、を備える。なお、図1では、サーバ装置2と通信を行う車載機1及び車両が1組のみ表示されているが、実際には、異なる位置に複数の車載機1及び車両の組が存在する。
[Outline of driving support system]
FIG. 1 is a schematic configuration of a driving support system according to the present embodiment. The driving support system includes an in-vehicle device 1 that moves together with a vehicle, and a server device 2 that distributes map information. In FIG. 1, only one set of the in-vehicle device 1 and the vehicle that communicates with the server device 2 is displayed, but actually there are a plurality of sets of the in-vehicle device 1 and the vehicle at different positions.
 車載機1は、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)などの外界センサ、ジャイロセンサや車速センサなどの内界センサと電気的に接続し、これらの出力に基づき、車載機1が搭載される車両の位置(「自車位置」とも呼ぶ。)の推定を行う。そして、車載機1は、自車位置の推定結果に基づき、設定された目的地への経路に沿って走行するように、車両の自動運転制御などを行う。車載機1は、ボクセルデータを含む地図データベース(DB:DataBase)10を記憶する。ボクセルデータは、3次元空間を複数の領域に分割した場合の各領域(「ボクセル」とも呼ぶ。)ごとに静止構造物の位置情報等を記録したデータである。ボクセルデータは、各ボクセル内の静止構造物の計測された点群データを正規分布により表したデータを含み、後述するように、NDT(Normal Distributions Transform)を用いたスキャンマッチングに用いられる。 The in-vehicle device 1 is electrically connected to an external sensor such as a lidar (Lidal: Light Detection and Ranging, or Laser Illuminated Detection And Ranging), an internal sensor such as a gyro sensor or a vehicle speed sensor, and based on these outputs. The position of the vehicle on which the in-vehicle device 1 is mounted (also referred to as “own vehicle position”) is estimated. And the vehicle equipment 1 performs automatic driving | operation control etc. of a vehicle so that it drive | works along the path | route to the set destination based on the estimation result of the own vehicle position. The in-vehicle device 1 stores a map database (DB: DataBase) 10 including voxel data. The voxel data is data in which position information of a stationary structure is recorded for each area (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of areas. The voxel data includes data representing point cloud data measured for stationary structures in each voxel by a normal distribution, and is used for scan matching using NDT (Normal Distributions Transform) as will be described later.
 車載機1は、ライダが出力する点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDTに基づくスキャンマッチングを行う。そして、車載機1は、マッチングの精度が低いボクセルを検出した場合に、当該ボクセルに関する情報(「マッチング低下情報D1」とも呼ぶ。)を、サーバ装置2へ送信する。また、車載機1は、サーバ装置2から特定のボクセルを指定した情報(「要求信号D2」とも呼ぶ。)を受信した場合に、指定されたボクセル内におけるライダ等による計測データ(「計測データD3」とも呼ぶ。)を、サーバ装置2へ送信する。 The in-vehicle device 1 performs scan matching based on NDT based on the point cloud data output by the lidar and the voxel data corresponding to the voxel to which the point cloud data belongs. And the vehicle equipment 1 transmits the information regarding the said voxel (it is also called "matching fall information D1") to the server apparatus 2, when the voxel with low matching precision is detected. In addition, when the vehicle-mounted device 1 receives information specifying a specific voxel (also referred to as “request signal D2”) from the server device 2, measurement data (“measurement data D3” by a lidar or the like in the specified voxel is received. Is also transmitted to the server device 2.
 サーバ装置2は、複数の車両に対応する車載機1とデータ通信を行う。サーバ装置2は、複数の車両に対応する車載機1に配信するための配信地図DB20を記憶し、配信地図DB20には各ボクセルに対応するボクセルデータが含まれている。サーバ装置2は、車載機1から受信するマッチング低下情報D1を蓄積し、蓄積したマッチング低下情報D1に基づき特定のボクセルに対するボクセルデータの更新の要否を判定する。そして、サーバ装置2は、特定のボクセルに対するボクセルデータの更新が必要と判断した場合に、当該ボクセルを指定した要求信号D2を各車載機1へ送信する。そして、サーバ装置2は、要求信号D2の応答として車載機1から計測データD3を受信する。そして、サーバ装置2は、マッチング低下情報D1及び計測データD3に基づき、対象のボクセルデータの更新に必要な処理を実行する。サーバ装置2は、本発明における「更新装置」の一例であり、配信地図DB20は、本発明における「配信用地図情報」の一例である。 The server device 2 performs data communication with the in-vehicle device 1 corresponding to a plurality of vehicles. The server device 2 stores a distribution map DB 20 for distribution to the vehicle-mounted device 1 corresponding to a plurality of vehicles, and the distribution map DB 20 includes voxel data corresponding to each voxel. The server device 2 accumulates the matching decrease information D1 received from the in-vehicle device 1, and determines whether or not the voxel data needs to be updated for a specific voxel based on the accumulated matching decrease information D1. And when the server apparatus 2 judges that the update of the voxel data with respect to a specific voxel is required, it transmits the request signal D2 which designated the said voxel to each vehicle equipment 1. And the server apparatus 2 receives the measurement data D3 from the vehicle equipment 1 as a response of the request signal D2. And the server apparatus 2 performs the process required for the update of the target voxel data based on the matching fall information D1 and the measurement data D3. The server device 2 is an example of an “update device” in the present invention, and the distribution map DB 20 is an example of “distribution map information” in the present invention.
 [車載機の構成]
 図2(A)は、車載機1の機能的構成を表すブロック図を示す。図2(A)に示すように、車載機1は、主に、通信部11と、記憶部12と、センサ部13と、入力部14と、制御部15と、出力部16とを有する。通信部11、記憶部12、センサ部13、入力部14、制御部15及び出力部16は、バスラインを介して相互に接続されている。
[Configuration of in-vehicle device]
FIG. 2A shows a block diagram illustrating a functional configuration of the vehicle-mounted device 1. As shown in FIG. 2A, the in-vehicle device 1 mainly includes a communication unit 11, a storage unit 12, a sensor unit 13, an input unit 14, a control unit 15, and an output unit 16. The communication unit 11, the storage unit 12, the sensor unit 13, the input unit 14, the control unit 15, and the output unit 16 are connected to each other via a bus line.
 通信部11は、制御部15の制御に基づき、サーバ装置2から配信される地図情報を受信したり、制御部15が生成したマッチング低下情報D1をサーバ装置2へ送信したりする。また、通信部11は、要求信号D2を受信した場合に、制御部15の制御に基づき、計測データD3をサーバ装置2へ送信する。また、通信部11は、車両を制御するための信号を車両に送信したり、車両の状態に関する信号を車両から受信したりする。 The communication unit 11 receives the map information distributed from the server device 2 based on the control of the control unit 15 or transmits the matching degradation information D1 generated by the control unit 15 to the server device 2. Moreover, the communication part 11 transmits the measurement data D3 to the server apparatus 2 based on control of the control part 15, when the request signal D2 is received. Moreover, the communication part 11 transmits the signal for controlling a vehicle to a vehicle, or receives the signal regarding the state of a vehicle from a vehicle.
 記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行する為に必要な情報を記憶する。本実施例では、記憶部12は、ボクセルデータを含む地図DB10を記憶する。 The storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process. In the present embodiment, the storage unit 12 stores a map DB 10 including voxel data.
 センサ部13は、ライダ30と、カメラ31と、GPS受信機32と、ジャイロセンサ33と、速度センサ34とを含む。ライダ30は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に測定し、当該物体の位置を示す3次元の点群データを生成する。この場合、ライダ30は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。ライダ30は、本発明における「計測部」の一例であり、ライダ30が出力する点群データは、本発明における「計測点群情報」の一例である。 The sensor unit 13 includes a rider 30, a camera 31, a GPS receiver 32, a gyro sensor 33, and a speed sensor 34. The lidar 30 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world, and a three-dimensional point indicating the position of the object Generate group data. In this case, the lidar 30 scans data based on an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and a light reception signal output by the light receiving unit. Output unit. The scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal. The lidar 30 is an example of the “measurement unit” in the present invention, and the point cloud data output from the lidar 30 is an example of the “measurement point cloud information” in the present invention.
 入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等であり、経路探索のための目的地を指定する入力、自動運転のオン及びオフを指定する入力などを受け付け、生成した入力信号を制御部15へ供給する。出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。 The input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate, and accepts an input for specifying a destination for route search, an input for specifying on / off of automatic driving, and the like. The generated input signal is supplied to the control unit 15. The output unit 16 is, for example, a display or a speaker that performs output based on the control of the control unit 15.
 制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。例えば、制御部15は、ライダ30から出力される点群データと、当該点群データが属するボクセルに対応するボクセルデータとに基づき、NDTに基づくスキャンマッチングを行うことで、自車位置の推定を行う。また、制御部15は、NDTに基づくスキャンマッチングにより得られるボクセルごとの評価値に基づき、マッチング精度が低いと推定されるボクセルを検出する。そして、制御部15は、検出したボクセルに対応するマッチング低下情報D1を生成し、通信部11によりマッチング低下情報D1をサーバ装置2へ送信する。また、制御部15は、サーバ装置2から受信した要求信号D2が指定するボクセルがライダ30の計測範囲内に属すると判断した場合、ライダ30が出力する点群データから当該ボクセルに属する点群データを抽出し、計測データD3としてサーバ装置2へ送信する。 The control unit 15 includes a CPU that executes a program and controls the entire vehicle-mounted device 1. For example, the control unit 15 estimates the host vehicle position by performing scan matching based on NDT based on the point cloud data output from the lidar 30 and the voxel data corresponding to the voxel to which the point cloud data belongs. Do. Further, the control unit 15 detects a voxel that is estimated to have low matching accuracy based on an evaluation value for each voxel obtained by scan matching based on NDT. And the control part 15 produces | generates the matching fall information D1 corresponding to the detected voxel, and transmits the matching fall information D1 to the server apparatus 2 by the communication part 11. FIG. Further, when the control unit 15 determines that the voxel specified by the request signal D2 received from the server device 2 belongs to the measurement range of the rider 30, the point cloud data belonging to the voxel from the point cloud data output by the rider 30. Is extracted and transmitted to the server device 2 as measurement data D3.
 [サーバ装置の構成]
 図2(B)は、サーバ装置2の概略構成を示す。図2(B)に示すように、サーバ装置2は、通信部21と、記憶部22と、制御部25とを有する。通信部21、記憶部22、及び制御部25は、バスラインを介して相互に接続されている。
[Configuration of server device]
FIG. 2B shows a schematic configuration of the server device 2. As illustrated in FIG. 2B, the server device 2 includes a communication unit 21, a storage unit 22, and a control unit 25. The communication unit 21, the storage unit 22, and the control unit 25 are connected to each other via a bus line.
 通信部21は、制御部25の制御に基づき、車載機1と各種データの通信を行う。記憶部22は、サーバ装置2の動作を制御するためのプログラムを保存したり、サーバ装置2の動作に必要な情報を保持したりする。また、記憶部22は、配信地図DB20を記憶し、複数の車載機1から送信されるマッチング低下情報D1及び計測データD3についても記憶する。 The communication unit 21 communicates various data with the in-vehicle device 1 based on the control of the control unit 25. The storage unit 22 stores a program for controlling the operation of the server device 2 and holds information necessary for the operation of the server device 2. In addition, the storage unit 22 stores the distribution map DB 20 and also stores the matching decrease information D1 and the measurement data D3 transmitted from the plurality of in-vehicle devices 1.
 制御部25は、図示しないCPU、ROM及びRAMなどを備え、サーバ装置2内の各構成要素に対して種々の制御を行う。本実施例では、制御部25は、車載機1から受信するマッチング低下情報D1を記憶部22に蓄積し、蓄積したマッチング低下情報D1に基づき特定のボクセルに対するボクセルデータの更新の要否を判定する。そして、制御部25は、特定のボクセルに対するボクセルデータの更新が必要と判断した場合に、当該ボクセルを指定した要求信号D2を通信部21により各車載機1へ送信する。そして、制御部25は、マッチング低下情報D1に含まれる点群データ及び要求信号D2に基づき車載機1から受信する計測データD3が示す点群データに基づき、配信地図DB20に含まれるボクセルデータの更新処理などを行う。制御部25は、本発明における「取得部」、「更新部」、「検証部」及びプログラムを実行する「コンピュータ」の一例である。 The control unit 25 includes a CPU, a ROM, a RAM, and the like (not shown), and performs various controls on each component in the server device 2. In the present embodiment, the control unit 25 accumulates the matching decrease information D1 received from the in-vehicle device 1 in the storage unit 22, and determines whether or not it is necessary to update voxel data for a specific voxel based on the accumulated matching decrease information D1. . And when the control part 25 judges that the update of the voxel data with respect to a specific voxel is required, the request signal D2 which designated the said voxel is transmitted to each vehicle equipment 1 by the communication part 21. FIG. Then, the control unit 25 updates the voxel data included in the distribution map DB 20 based on the point cloud data included in the matching degradation information D1 and the point cloud data indicated by the measurement data D3 received from the in-vehicle device 1 based on the request signal D2. Perform processing. The control unit 25 is an example of an “acquisition unit”, “update unit”, “verification unit”, and “computer” that executes a program in the present invention.
 [NDTに基づくスキャンマッチング]
 次に、本実施例におけるNDTに基づくスキャンマッチングについて説明する。
[Scan matching based on NDT]
Next, scan matching based on NDT in the present embodiment will be described.
 (1)ボクセルデータのデータ構造
まず、NDTに基づくスキャンマッチングに用いるボクセルデータについて説明する。図3は、ボクセルデータの概略的なデータ構造の一例を示す。
(1) Data structure of voxel data First, voxel data used for scan matching based on NDT will be described. FIG. 3 shows an example of a schematic data structure of voxel data.
 ボクセルデータは、ボクセル内の点群を正規分布で表現する場合のパラメータの情報を含み、本実施例では、図3に示すように、ボクセルIDと、ボクセル座標と、平均ベクトルと、共分散行列と、重み付け値と、点群数情報とを含む。ここで、「ボクセル座標」は、各ボクセルの中心位置などの基準となる位置の絶対的な3次元座標を示す。なお、各ボクセルは、空間を格子状に分割した立方体であり、予め形状及び大きさが定められているため、ボクセル座標により各ボクセルの空間を特定することが可能である。ボクセル座標は、ボクセルIDとして用いられてもよい。 The voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution. In this embodiment, as shown in FIG. 3, the voxel ID, voxel coordinates, average vector, and covariance matrix are used. And a weight value and point cloud number information. Here, “voxel coordinates” indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel. Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates. The voxel coordinates may be used as a voxel ID.
 「平均ベクトル」及び「共分散行列」は、対象のボクセル内での点群を正規分布で表現する場合のパラメータに相当する平均ベクトル及び共分散行列を示し、任意のボクセル「k」内の任意の点「i」の座標を “Average vector” and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
Figure JPOXMLDOC01-appb-M000001
と定義し、ボクセルk内での点群数を「N」とすると、ボクセルkでの平均ベクトル「μ」及び共分散行列「V」は、それぞれ以下の式(1)及び式(2)により表される。
Figure JPOXMLDOC01-appb-M000001
Is defined as, when a point number set in the voxel k to "N k", mean vector "mu k" and the covariance matrix "V k" at the voxel k, respectively the following formulas (1) and ( 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 なお、ボクセルデータに含まれる平均ベクトル及び共分散行列は、本発明における「地図点群情報」の一例である。
Figure JPOXMLDOC01-appb-M000003
The average vector and covariance matrix included in the voxel data are an example of “map point cloud information” in the present invention.
 「重み付け値」は、対象のボクセルのボクセルデータ(特に平均ベクトル及び共分散行列)の信頼度に応じた値に設定され、スキャンマッチングにおいて設定される対象のボクセルに対する重み付けの値を表す。重み付け値は、本発明における「信頼度情報」の一例である。「点群数情報」は、対応する平均ベクトル及び共分散行列の算出に用いた点群の数を示す情報である。点群数情報は、具体的な点群の数を示す情報であってもよく、点群数のレベル(例えば、大、中、小など)を示す情報であってもよい。 The “weighting value” is set to a value corresponding to the reliability of the voxel data (particularly the average vector and covariance matrix) of the target voxel, and represents a weighting value for the target voxel set in the scan matching. The weighting value is an example of “reliability information” in the present invention. “Point cloud number information” is information indicating the number of point clouds used for calculating the corresponding average vector and covariance matrix. The point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
 (2)スキャンマッチングの概要
 次に、ボクセルデータを用いたNDTによるスキャンマッチングについて説明する。本実施例では、後述するように、車載機1は、NDTスキャンマッチングにより得られる評価関数の値(評価値)を、ボクセル内で計測された点群数により正規化すると共に、ボクセルデータに含まれる重み付け値を用いて重み付けして算出する。これにより、車載機1は、評価値に基づきスキャンマッチングの精度が相対的に低いボクセルを的確に特定すると共に、NDTスキャンマッチングに基づく位置推定精度を好適に向上させる。
(2) Outline of Scan Matching Next, scan matching by NDT using voxel data will be described. In the present embodiment, as will be described later, the vehicle-mounted device 1 normalizes the value (evaluation value) of the evaluation function obtained by NDT scan matching based on the number of point groups measured in the voxel and is included in the voxel data. The weighted value is used for calculation. As a result, the in-vehicle device 1 accurately specifies voxels with relatively low scan matching accuracy based on the evaluation value, and suitably improves the position estimation accuracy based on NDT scan matching.
 車両を想定したNDTによるスキャンマッチングは、道路平面(ここではxy座標とする)内の移動量及び車両の向きを要素とした以下の推定パラメータ「P」を推定することとなる。 Scan matching by NDT assuming a vehicle is to estimate the following estimated parameter “P” with the amount of movement in the road plane (here, xy coordinates) and the direction of the vehicle as elements.
Figure JPOXMLDOC01-appb-M000004
 「t」は、x方向の移動量を示し、「t」は、y方向の移動量を示し、「Ψ」は、xy平面内での回転角(即ちヨー角)を示す。なお、垂直方向移動量、ピッチ角、ロール角は、道路勾配や振動によって生じるものの、無視できる程度に小さい。
Figure JPOXMLDOC01-appb-M000004
“T x ” indicates the amount of movement in the x direction, “t y ” indicates the amount of movement in the y direction, and “Ψ” indicates the rotation angle (ie, yaw angle) in the xy plane. The vertical movement amount, pitch angle, and roll angle are small enough to be ignored, although they are caused by road gradients and vibrations.
 上述の推定パラメータPを用い、ライダ30により得られた点群データの任意の点の座標[x(i)、y(i)、z(i)]を座標変換すると、変換後の座標「X′(i)」は、以下の式(3)により表される。 When the coordinates [x k (i), y k (i), z k (i)] T of the arbitrary point of the point group data obtained by the lidar 30 are subjected to coordinate conversion using the above-described estimation parameter P, the converted value The coordinates “X ′ k (i)” are expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000005
 そして、本実施例では、車載機1は、座標変換した点群と、ボクセルデータに含まれる平均ベクトルμと共分散行列Vとを用い、以下の式(4)により示されるボクセルkの評価関数「E」及び式(5)により示されるマッチングの対象となる全てのボクセルを対象とした総合的な評価関数「E」(「総合評価関数」とも呼ぶ。)を算出する。
Figure JPOXMLDOC01-appb-M000005
In this embodiment, the in-vehicle device 1 uses the coordinate-converted point group, the average vector μ k and the covariance matrix V k included in the voxel data, and the voxel k represented by the following equation (4). A comprehensive evaluation function “E” (also referred to as “overall evaluation function”) for all voxels to be matched indicated by the evaluation function “E k ” and Expression (5) is calculated.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 「M」は、マッチングの対象となるボクセルの数を示し、「w」は、ボクセルkに対する重み付け値を示す。式(4)により、重み付け値wが大きいほど、評価関数Eは大きい値となる。また、点群数Nによる正規化を行っているので、点群の数による違いを少なくしている。なお、ライダ30により得られる点群データの座標は、自車位置に対する相対座標であり、ボクセルデータの平均ベクトルは絶対座標であることから、式(4)を算出する際には、例えば、ライダ30により得られる点群データの座標を、GPS受信機32の出力等から予測した自車位置に基づき座標変換する。
Figure JPOXMLDOC01-appb-M000007
“M” indicates the number of voxels to be matched, and “w k ” indicates a weighting value for voxel k. According to Expression (4), the evaluation function E k becomes a larger value as the weighting value w k is larger. In addition, since normalization is performed using the number of point groups N k , differences due to the number of point groups are reduced. The coordinates of the point cloud data obtained by the lidar 30 are relative coordinates with respect to the vehicle position, and the average vector of the voxel data is an absolute coordinate. Therefore, when calculating the equation (4), for example, the lidar The coordinates of the point cloud data obtained by 30 are converted based on the vehicle position predicted from the output of the GPS receiver 32 or the like.
 一方、従来のNDTマッチングで用いられるボクセルkの評価関数Eは、以下の式(6)により示される。 On the other hand, the evaluation function E k of the voxel k used in the conventional NDT matching is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000008
 式(4)及び式(6)を比較して明らかなように、本実施例では、車載機1は、点群数Nにより評価関数Eを正規化している。これにより、車載機1は、後述するように、評価関数Eの値に基づき、マッチングの度合いが相対的に低いボクセルを的確に特定することができる。また、車載機1は、各ボクセルに対し、それぞれのボクセルデータ(平均ベクトル、共分散行列)に対する信頼度に応じた重み付け値を乗じている。これにより、車載機1は、信頼度が低いボクセルの評価関数Eの重み付けを相対的に小さくし、NDTマッチングによる位置推定精度を好適に向上させる。
Figure JPOXMLDOC01-appb-M000008
As is clear from the comparison between the equations (4) and (6), in the present embodiment, the in-vehicle device 1 normalizes the evaluation function E k by the number of point groups N k . Thus, the vehicle-mounted device 1, as described later, evaluated based on the value of the function E k, it is the degree of matching to accurately identify the relatively low voxel. The in-vehicle device 1 multiplies each voxel by a weighting value corresponding to the reliability of each voxel data (average vector, covariance matrix). As a result, the in-vehicle device 1 relatively reduces the weighting of the evaluation function E k of the voxel with low reliability, and suitably improves the position estimation accuracy by NDT matching.
 その後、車載機1は、ニュートン法などの任意の求根アルゴリズムにより総合評価関数Eが最大となるとなる推定パラメータPを算出する。そして、車載機1は、GPS受信機32の出力等から予測した自車位置に対し、推定パラメータPを適用することで、高精度な自車位置を推定する。 Thereafter, the vehicle-mounted device 1 calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method. The in-vehicle device 1 estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver 32 or the like.
 (3)スキャンマッチングの具体例
 次に、NDTスキャンマッチングの具体例について説明する。以下では、説明便宜上、2次元平面の場合を例に説明する。
(3) Specific Example of Scan Matching Next, a specific example of NDT scan matching will be described. Hereinafter, for convenience of explanation, the case of a two-dimensional plane will be described as an example.
 図4(A)は、4つの隣接するボクセル「B1」~「B4」において、地図作成用の計測整備車両で走行したときにライダ等により計測した点群を丸印により示し、これらの点群に基づき式(1)と式(2)から作成した2次元正規分布をグラデーションにより示した図である。図4(A)に示す正規分布の平均、分散は、ボクセルデータにおける平均ベクトル、共分散行列にそれぞれ相当する。 FIG. 4 (A) shows, in circles, point groups measured by a rider or the like when traveling with a measurement maintenance vehicle for map creation in four adjacent voxels “B1” to “B4”. It is the figure which showed the two-dimensional normal distribution created from Formula (1) and Formula (2) based on this by gradation. The average and variance of the normal distribution shown in FIG. 4A correspond to the average vector and covariance matrix in the voxel data, respectively.
 図4(B)は、図4(A)において、車載機1が走行中にライダ30により取得した点群を星印により示した図である。星印により示されるライダ30の点群の位置は、GPS受信機32等の出力による推定位置に基づき各ボクセルB1~B4との位置合わせが行われている。図4(B)の例では、計測整備車両が計測した点群(丸印)と、車載機1が取得した点群(星印)との間にずれが生じている。 FIG. 4B is a diagram showing the point cloud acquired by the lidar 30 while the vehicle-mounted device 1 is traveling in FIG. The position of the point cloud of the lidar 30 indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 32 or the like. In the example of FIG. 4B, there is a deviation between the point group (circle) measured by the measurement and maintenance vehicle and the point group (star) acquired by the in-vehicle device 1.
 図4(C)は、NDTスキャンマッチングのマッチング結果に基づき車載機1が取得した点群(星印)を移動させた後の状態を示す図である。図4(C)では、図4(A)、(B)に示す正規分布の平均及び分散に基づき、式(4)及び式(5)に示す評価関数Eが最大となるパラメータPを算出し、算出したパラメータPを図4(B)に示す星印の点群に適用している。この場合、計測整備車両が計測した点群(丸印)と、車載機1が取得した点群(星印)との間のずれが好適に低減されている。 FIG. 4C is a diagram illustrating a state after the point cloud (star) acquired by the vehicle-mounted device 1 is moved based on the matching result of the NDT scan matching. In FIG. 4C, a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 4 (A) and 4 (B). The calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement and maintenance vehicle and the point cloud (star) acquired by the in-vehicle device 1 is suitably reduced.
 ここで、ボクセルB1~B4に対応する評価関数「E1」~「E4」及び総合評価関数Eを、従来から用いられている一般式(6)により算出した場合、これらの値は以下のようになる。 Here, when the evaluation functions “E1” to “E4” and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the general formula (6) conventionally used, these values are as follows: Become.
       E1=1.3290
       E2=1.1365
       E3=1.1100
       E4=0.9686
       E =4.5441
 この場合、ボクセル内の点群数が多いほど評価関数の値も大きくなるため、ボクセル間でのマッチングの度合いが比較しにくい。この例では、各ボクセルの評価関数E1~E4に大きな違いは無いが、ボクセルに含まれる点群の数による差が多少ある。
E1 = 1.3290
E2 = 1.1365
E3 = 1.1100
E4 = 0.9686
E = 4.5441
In this case, since the value of the evaluation function increases as the number of point groups in the voxel increases, it is difficult to compare the degree of matching between voxels. In this example, there is no significant difference in the evaluation functions E1 to E4 of each voxel, but there are some differences depending on the number of point groups included in the voxel.
 一方、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eを本実施例に基づく式(4)により算出した場合、これらの値は以下のようになる。なお、ここでは、ボクセルB1~B4に対する重み付け値は全て等しいとする。 On the other hand, when the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the equation (4) based on the present embodiment, these values are as follows. Here, it is assumed that the weighting values for voxels B1 to B4 are all equal.
       E1=0.1208
       E2=0.1136
       E3=0.1233
       E4=0.1211
       E =0.4789
 この場合、評価関数E1~E4及び総合評価関数Eは、ボクセル内の点群数に影響されにくい値となるため、ボクセル間でのマッチングの度合いが比較しやすくなる。
E1 = 0.1208
E2 = 0.136
E3 = 0.1233
E4 = 0.1211
E = 0.4789
In this case, the evaluation functions E1 to E4 and the comprehensive evaluation function E are values that are not easily affected by the number of point groups in the voxel, so that the degree of matching between the voxels can be easily compared.
 また、本実施例では、各ボクセルに重み付け値が設定されている。従って、信頼度の高いボクセルは重み付けを大きくすることで、そのボクセルのマッチング度合いを高めることが可能となっている。 In this embodiment, a weight value is set for each voxel. Therefore, it is possible to increase the degree of matching of voxels by increasing the weighting of voxels with high reliability.
 図5(A)は、ボクセルB1~B4に対する重み付け値を全て等しくした場合のマッチング結果を示す図(即ち図4(C)と同一の図)である。図5(B)は、ボクセルB1の重み付け値を他のボクセルの重み付け値の10倍とした場合のマッチング結果を示す図である。図5(C)は、ボクセルB3の重み付け値を他のボクセルの重み付け値の10倍とした場合のマッチング結果を示す図である。 FIG. 5A is a diagram showing a matching result when the weighting values for voxels B1 to B4 are all equal (that is, the same diagram as FIG. 4C). FIG. 5B is a diagram illustrating a matching result when the weighting value of the voxel B1 is 10 times the weighting value of the other voxels. FIG. 5C is a diagram showing a matching result when the weighting value of the voxel B3 is 10 times the weighting value of the other voxels.
 図5(B)の例では、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。 In the example of FIG. 5B, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
       E1=0.3720
       E2=0.0350
       E3=0.0379
       E4=0.0373
       E =0.4823
 このように、図5(B)の例では、ボクセルB1に対応する評価関数E1の値が高くなるようにマッチングが行われ、ボクセルB1におけるマッチングの度合いが高められている。よって、ボクセルB1の丸印と星印のずれが少なくなっている。また、点群の数で正規化しているため、評価関数の値は小さくなったが、それぞれの評価関数値は重み付け値と同程度の割合になっている。
E1 = 0.3720
E2 = 0.0350
E3 = 0.0379
E4 = 0.0373
E = 0.4823
Thus, in the example of FIG. 5B, matching is performed so that the value of the evaluation function E1 corresponding to the voxel B1 is high, and the degree of matching in the voxel B1 is increased. Therefore, the deviation between the circle and star of voxel B1 is reduced. Moreover, since the value of the evaluation function is small because it is normalized by the number of point groups, each evaluation function value has a ratio similar to the weighting value.
 また、図5(C)の例では、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。 In the example of FIG. 5C, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
       E1=0.0368
       E2=0.0341
       E3=0.3822
       E4=0.0365
       E =0.4896
 このように、図5(C)の例では、ボクセルB3に対応する評価関数E3の値が高くなるようにマッチングが行われ、ボクセルB3におけるマッチングの度合いが高められている。よって、ボクセルB3の丸印と星印のずれが少なくなっている。
E1 = 0.0368
E2 = 0.0341
E3 = 0.3822
E4 = 0.0365
E = 0.4896
As described above, in the example of FIG. 5C, matching is performed such that the value of the evaluation function E3 corresponding to the voxel B3 is high, and the degree of matching in the voxel B3 is increased. Therefore, the deviation between the circle mark and the star mark of the voxel B3 is reduced.
 [地図更新処理]
 次に、配信地図DB20の更新処理に関連する処理について説明する。
[Map update processing]
Next, processing related to the update processing of the distribution map DB 20 will be described.
 (1)マッチング低下情報の送信処理
 車載機1は、総合評価関数Eと評価関数Eに基づき、静的構造物の変化が生じた(即ち配信地図DB20の更新が必要な)可能性があるボクセルを特定し、当該ボクセルに関する情報を、マッチング低下情報D1としてサーバ装置2に送信する。
(1) Transmission processing of matching deterioration information In the in- vehicle device 1, there is a possibility that a static structure has changed (that is, the distribution map DB 20 needs to be updated) based on the comprehensive evaluation function E and the evaluation function E k. The voxel is specified, and information related to the voxel is transmitted to the server apparatus 2 as matching reduction information D1.
 一般に、総合評価関数E又は評価関数Eが低くなる場合(即ちマッチング度合いが低くなる場合)は、以下の3つの事象:
       (a)ボクセル内に動的な物体が含まれている
       (b)予測した自車位置の誤差が多く、正確なマッチングができていない
       (c)ボクセル内の静的な物体が変化(生成、消滅も含む)した
のいずれかが生じていると推測される。ここで、本実施例では、評価関数Eは、点群数Nにより正規化されているため、各評価関数E及びその総和である総合評価関数Eは、点群数Nによる影響を受けない。よって、総合評価関数Eが所定値より大きい場合には、事象(b)が生じていないと判断することが可能である。
In general, when the overall evaluation function E or the evaluation function E k becomes low (that is, when the matching degree becomes low), the following three events:
(A) A dynamic object is included in the voxel. (B) There are many errors in the predicted vehicle position and accurate matching is not possible. (C) A static object in the voxel is changed (generated, It is presumed that one of them has occurred). Here, in this embodiment, since the evaluation function E k is normalized by the point group number N k , each evaluation function E k and the total evaluation function E that is the sum thereof are affected by the point group number N k . Not receive. Therefore, when the comprehensive evaluation function E is larger than the predetermined value, it can be determined that the event (b) has not occurred.
 一方、評価関数Eのうち、他の評価関数Eと比べて小さい評価関数Eが存在する場合、当該評価関数Eに対応するボクセルkには、事象(a)又は事象(c)が生じている疑いがある。よって、車載機1は、そのようなボクセルkを検知した場合には、当該ボクセルkに関するマッチング低下情報D1をサーバ装置2へ送信する。ここで、マッチング低下情報D1には、例えば、評価関数Eの算出に用いたライダ30の点群データ、時刻情報、推定自車位置情報、総合評価関数E、評価関数E、ボクセルID、及び点群数Nが含まれる。その後、サーバ装置2は、複数の車両の車載機1から受信した対象のボクセルkに関する複数のマッチング低下情報D1に基づき、統計的手法によりボクセルkに事象(a)又は事象(c)のいずれが生じているか判定する。 On the other hand, among the evaluation function E k, if the smallest evaluation function E k as compared with other evaluation functions E k exists, the voxel k corresponding to the evaluation function E k, event (a) or event (c) Is suspected of occurring. Therefore, when the in-vehicle device 1 detects such a voxel k, the in-vehicle device 1 transmits matching lowering information D1 related to the voxel k to the server device 2. Here, the matching reduction information D1 includes, for example, the point cloud data of the rider 30 used for calculation of the evaluation function E k , time information, estimated vehicle position information, comprehensive evaluation function E, evaluation function E k , voxel ID, And the number N k of point groups. Thereafter, the server device 2 determines whether the event (a) or the event (c) is applied to the voxel k by a statistical method based on the plurality of matching decrease information D1 regarding the target voxel k received from the vehicle-mounted devices 1 of the plurality of vehicles. Determine if it has occurred.
 ここで、評価関数Eのうち、他の評価関数Eと比べて小さい評価関数Eを検出する方法の一例を示す。車載機1は、評価関数Eを後述する基準値「F」で割った値が所定値「A」より小さい場合、即ち、以下の式(7)の条件式
       E/F < A  式(7)
が成立する場合、当該評価関数Eが他の評価関数Eと比べて相対的に小さいと判断し、当該評価関数Eのボクセルに対するマッチング低下情報D1をサーバ装置2へ送信する。なお、式(7)は、以下の式(8)と等価な式である。
Here, an example of a method for detecting an evaluation function E k that is smaller than other evaluation functions E k out of the evaluation functions E k will be described. When the value obtained by dividing the evaluation function E k by a reference value “F k ”, which will be described later, is smaller than the predetermined value “A”, the in-vehicle device 1, that is, the conditional expression E k / F k <A Formula (7)
Is satisfied, it is determined that the evaluation function E k is relatively smaller than the other evaluation functions E k, and matching reduction information D1 for the voxel of the evaluation function E k is transmitted to the server device 2. Expression (7) is an expression equivalent to the following expression (8).
       E < A・F  式(8)
 ここで、車載機1は、上述の判定式における基準値Fを、以下の式(9)に基づき算出する。
E k <A · F k formula (8)
Here, the vehicle-mounted device 1 calculates the reference value F k in the above-described determination formula based on the following formula (9).
Figure JPOXMLDOC01-appb-M000009
 式(9)に示すように、基準値Fは、対象となるボクセルkの重み付け値wに基づく重み付けがなされた総合評価関数Eに相当する。このようにすることで、車載機1は、他の評価関数Eと比べて相対的に小さい評価関数Eを好適に検出することができる。
Figure JPOXMLDOC01-appb-M000009
As shown in Expression (9), the reference value F k corresponds to the comprehensive evaluation function E that is weighted based on the weight value w k of the target voxel k. By doing so, the vehicle-mounted device 1 can be suitably detect a relatively small evaluation function E k as compared with other evaluation functions E k.
 また、車載機1は、他の評価関数Eと比べて小さい評価関数Eを検出した場合に加えて、またはこれに代えて、ボクセル内での点群数Nが少ないボクセルを検出した場合に、当該ボクセルに対するマッチング低下情報D1をサーバ装置2へ送信してもよい。本実施例では、評価関数Eは点群数Nにより正規化されているため、事象(a)又は事象(c)に起因して点群数Nが少ない場合であっても、評価関数Eの値が他の評価関数Eの値と比べて小さくならない場合がある。従って、車載機1は、点群数Nが所定の閾値より小さいボクセルを検出した場合に、事象(a)又は事象(c)のいずれかが生じている可能性が高いと判断し、当該ボクセルに対するマッチング低下情報D1をサーバ装置2へ送信する。 In addition, in-vehicle device 1 detects a voxel with a small number of point groups N k in the voxel in addition to or instead of detecting an evaluation function E k that is smaller than other evaluation functions E k . In this case, the matching reduction information D1 for the voxel may be transmitted to the server device 2. In this embodiment, evaluation for function E k is normalized by point group number N k, even if the event (a) or event number point group due to (c) N k is small, evaluation there is a case where the value of the function E k is not smaller than the value of the other evaluation functions E k. Therefore, the vehicle-mounted device 1 determines that there is a high possibility that either the event (a) or the event (c) has occurred when a voxel having a point cloud number Nk smaller than a predetermined threshold is detected. The matching reduction information D1 for the voxel is transmitted to the server device 2.
 この場合、好適には、車載機1は、ボクセルデータの点群数情報を参照し、点群数情報に応じて上述の閾値を設定する。この場合、車載機1は、点群数情報が示す点群数が小さいほど、上述の閾値を小さく設定する。これにより、車載機1は、点群数Nが本来取得すべき点群数よりも少ないか否かを上述の閾値により好適に判定することができる。なお、車載機1は、式(7)等に基づき他の評価関数Eと比べて小さい評価関数Eとなるボクセルkを検出した場合であって、かつ、当該ボクセルkでの点群数Nが閾値より小さい場合に、当該ボクセルkに対するマッチング低下情報D1をサーバ装置2へ送信してもよい。 In this case, preferably, the in-vehicle device 1 refers to the point cloud number information of the voxel data and sets the above-described threshold according to the point cloud number information. In this case, the in-vehicle device 1 sets the above threshold value smaller as the point cloud number indicated by the point cloud number information is smaller. Thereby, the vehicle equipment 1 can determine suitably by the above-mentioned threshold value whether the number of point groups Nk is smaller than the number of point groups which should be acquired originally. The in-vehicle device 1 is a case where the voxel k having a smaller evaluation function E k than the other evaluation functions E k is detected based on the equation (7) and the number of point groups in the voxel k. When N k is smaller than the threshold value, the matching decrease information D1 for the voxel k may be transmitted to the server device 2.
 (2)重み付け変更処理
 サーバ装置2は、複数の車両の車載機1から受信するマッチング低下情報D1をボクセルIDごとに蓄積し、ボクセルIDごとに上述した事象(a)又は事象(c)のいずれが生じているかの判定を統計的に行う。
(2) The weight change processing server device 2 accumulates the matching decrease information D1 received from the vehicle-mounted devices 1 of a plurality of vehicles for each voxel ID, and either the event (a) or the event (c) described above for each voxel ID. It is statistically determined whether or not the above has occurred.
 例えば、サーバ装置2は、ボクセルIDごとのマッチング低下情報D1の数が所定数以上蓄積されたボクセルが存在する場合、当該ボクセルは事象(c)が生じている可能性が高く、当該ボクセルに対応するボクセルデータの信頼性が低いと判断する。よって、サーバ装置2は、当該ボクセルに対応するボクセルデータに含まれる重み付け値を下げる。このとき、好適には、サーバ装置2は、マッチング低下情報D1の数が多いほど、重み付け値を小さく設定するとよい。このようにすることで、サーバ装置2は、事象(c)が生じている可能性が高いボクセルの重み付けを小さくし、サーバ装置2から配信された地図情報に基づき自車位置推定を行う車載機1での位置推定精度を好適に向上させる。 For example, when there is a voxel in which the number of matching degradation information D1 for each voxel ID is accumulated more than a predetermined number, the server apparatus 2 has a high possibility that the event (c) has occurred and corresponds to the voxel. The voxel data to be determined is low in reliability. Therefore, the server apparatus 2 decreases the weight value included in the voxel data corresponding to the voxel. At this time, preferably, the server device 2 may set the weighting value to be smaller as the number of matching deterioration information D1 is larger. By doing in this way, the server apparatus 2 reduces the weighting of the voxel that is likely to have the event (c), and performs the vehicle position estimation based on the map information distributed from the server apparatus 2 The position estimation accuracy at 1 is preferably improved.
 ここで、重み付け値を変更する具体例について、図6を参照して説明する。 Here, a specific example of changing the weighting value will be described with reference to FIG.
 図6(A)は、ボクセルB3の位置の静止構造物が変化した場合の車載機1が取得した点群(星印)を示した図である。なお、静止構造物が変化する前にボクセルデータを作成した時点の、計測整備車両が取得した点群(丸印)も示してある。図6(A)に示すように、ボクセルB3の位置の静止構造物が変化した場合には、ボクセル3内でライダ30により取得する点群の数が少なくなったり、計測整備車両が取得した点群と外れた点群がライダ30により取得されたりする。ボクセルB3内の位置に動的物体が入った場合も同様となる。 FIG. 6A is a diagram showing a point cloud (star symbol) acquired by the vehicle-mounted device 1 when the stationary structure at the position of the voxel B3 changes. In addition, the point cloud (circle mark) which the measurement maintenance vehicle acquired at the time of producing voxel data before a stationary structure changes is also shown. As shown in FIG. 6A, when the stationary structure at the position of the voxel B3 changes, the number of point groups acquired by the rider 30 in the voxel 3 decreases, or the points acquired by the measurement and maintenance vehicle A point group out of the group is acquired by the lidar 30. The same applies when a dynamic object enters a position in the voxel B3.
 図6(B)は、ボクセルB1~B4に対する重み付け値を全て等しくした場合のマッチング結果を示す図である。ボクセルB3のずれの影響により、ボクセルB1,B2,B4の丸印と星印のずれも大きくなっている。したがって、マッチングがずれたものとなり,位置推定結果に誤差が生じていることとなる。この場合、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。 FIG. 6B is a diagram showing a matching result when the weighting values for the voxels B1 to B4 are all equal. Due to the influence of the deviation of the voxel B3, the deviation between the circle mark and the star mark of the voxels B1, B2, B4 is also large. Therefore, the matching is shifted, and an error occurs in the position estimation result. In this case, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
       E1=0.1188
       E2=0.1150
       E3=0.0568
       E4=0.1120
       E =0.4026
 この場合、他と比べてボクセルB3の評価関数E3の値が小さくなっている。式(9)を計算すると、
E1 = 0.1188
E2 = 0.150
E3 = 0.0568
E4 = 0.1120
E = 0.4026
In this case, the value of the evaluation function E3 of the voxel B3 is smaller than the others. When equation (9) is calculated,
       F1=F2=F3=F4≒0.1007
となるため、式(7)の左辺は以下のようになる。
F1 = F2 = F3 = F4≈0.1007
Therefore, the left side of Equation (7) is as follows.
       E1/F1≒1.1803
       E2/F2≒1.1426
       E3/F3≒0.5643
       E4/F4≒1.1128
 したがって、例えば所定値Aが0.7の場合,E3/F3は式(7)の条件式を満たすことになる。よって、この場合、車載機1は、評価関数E3が他の評価関数と比べて相対的に小さいと判断し、ボクセルB3に関するマッチング低下情報D1をサーバ装置2へ送信する。
E1 / F1≈1.1803
E2 / F2≈1.1426
E3 / F3≈0.5643
E4 / F4≈1.1128
Therefore, for example, when the predetermined value A is 0.7, E3 / F3 satisfies the conditional expression (7). Therefore, in this case, the in-vehicle device 1 determines that the evaluation function E3 is relatively smaller than the other evaluation functions, and transmits the matching reduction information D1 related to the voxel B3 to the server device 2.
 図6(C)は、ボクセルB3の重み付け値を変更後のマッチング結果を示す。図6(C)の例では、サーバ装置2は、複数の車両の車載機1から送信されたボクセルB3のマッチング低下情報D1に基づき、ボクセルB3の重み付け値を1/10に設定している。これにより、ボクセルB3のずれの影響が弱まり、ボクセルB1,B2,B4の丸印と星印のずれが少なくなる。この場合、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。 FIG. 6C shows the matching result after changing the weighting value of voxel B3. In the example of FIG. 6C, the server device 2 sets the weighting value of the voxel B3 to 1/10 based on the matching reduction information D1 of the voxel B3 transmitted from the vehicle-mounted devices 1 of a plurality of vehicles. Thereby, the influence of the deviation of the voxel B3 is weakened, and the deviation between the circle mark and the star mark of the voxels B1, B2, B4 is reduced. In this case, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
       E1=0.1559
       E2=0.1474
       E3=0.0039
       E4=0.1557
       E =0.4629
 このように、ボクセルB3に対する重み付け値を1/10に設定した場合、ボクセルB3以外のボクセルに対するマッチング度合いを高めるようにマッチングが行われる。その結果、信頼度が低いボクセルB3の影響度を低くした位置推定が可能となる。なお,この場合,式(9)を計算すると、
E1 = 0.1559
E2 = 0.1474
E3 = 0.039
E4 = 0.1557
E = 0.4629
Thus, when the weighting value for voxel B3 is set to 1/10, matching is performed so as to increase the degree of matching for voxels other than voxel B3. As a result, it is possible to estimate the position with a low influence degree of the voxel B3 having low reliability. In this case, if equation (9) is calculated,
       F1=F2=F4≒0.1493、F3≒0.0149
となるため、式(7)の左辺は以下のようになる。
F1 = F2 = F4≈0.1493, F3≈0.0149
Therefore, the left side of Equation (7) is as follows.
       E1/F1≒1.0442
       E2/F2≒0.9873
       E3/F3≒0.2617
       E4/F4≒1.0429
 したがって、式(7)の条件を満たすため、この場合も、ボクセルB3に関するマッチング低下情報D1をサーバ装置2へ送信することになる。
E1 / F1≈1.0442
E2 / F2≈0.9873
E3 / F3≈0.2617
E4 / F4≈1.0429
Therefore, in order to satisfy the condition of Expression (7), the matching degradation information D1 related to the voxel B3 is transmitted to the server device 2 in this case as well.
 このように,評価関数Eを基準値Fで正規化することで、重み付け値に影響されない条件判断が可能となる。 In this way, by normalizing the evaluation function E k with the reference value F k , it is possible to determine a condition that is not affected by the weighting value.
 (3)ボクセルデータ修正処理
 サーバ装置2は、上述の重み付け変更処理により重み付け値を下げたボクセルに対し、当該ボクセルに関する平均ベクトル及び共分散行列などのボクセルデータの修正の要否を判定する。
(3) The voxel data correction processing server device 2 determines whether or not it is necessary to correct voxel data such as an average vector and a covariance matrix related to the voxel with respect to the voxel whose weight value is lowered by the above-described weight change processing.
 例えば、サーバ装置2は、対象となるボクセルのマッチング低下情報D1に含まれる評価関数Eの類似の有無を判定する。そして、サーバ装置2は、各マッチング低下情報D1に含まれる評価関数Eが類似していると判断した場合、静止構造物が変化したためであると推定できるため,対象のボクセルに対するボクセルデータの修正が必要であると判断する。この場合、サーバ装置2は、上述の類似の有無を、例えば、マッチング低下情報D1に含まれる評価関数Eの分散又は分散に準ずる指標値を算出し、その算出値と所定の閾値とを比較することにより判定してもよい。そして、サーバ装置2は、ボクセルデータの修正が必要と判断したボクセル(「対象ボクセルBtag」とも呼ぶ。)が存在する場合、当該対象ボクセルBtagを指定した要求信号D2を各車載機1へ送信する。 For example, the server device 2 determines whether or not the evaluation function E k included in the matching decrease information D1 of the target voxel is similar. When the server device 2 determines that the evaluation functions E k included in the matching degradation information D1 are similar, it can be assumed that the stationary structure has changed, so that the correction of the voxel data for the target voxel is performed. Is determined to be necessary. In this case, the server device 2 calculates the index value in accordance with the above-described presence / absence of the similarity or the variance of the evaluation function E k included in the matching reduction information D1, and compares the calculated value with a predetermined threshold value. You may determine by doing. When there is a voxel that is determined to require correction of the voxel data (also referred to as “target voxel Btag”), the server device 2 transmits a request signal D2 designating the target voxel Btag to each vehicle-mounted device 1. .
 次に、サーバ装置2は、マッチング低下情報D1に含まれる対象ボクセルBtagの計測データ及び要求信号D2の応答として受信した計測データD3に基づき、対象ボクセルBtagに対するボクセルデータの修正を行う。この場合、好適には、サーバ装置2は、総合評価関数Eが所定値以上となる計測データに基づき、対象ボクセルBtagのNDTのデータ(即ち平均ベクトル、共分散行列、点群数情報等)を生成する。一般に、総合評価関数Eが高い場合には、高精度に自車位置推定ができており、当該総合評価関数Eの算出に用いた計測データについても信頼度が高いことが推定される。以上を勘案し、サーバ装置2は、ボクセルデータの更新に用いるべき計測データであるか否かを総合評価関数Eに基づき判定する。 Next, the server device 2 corrects the voxel data for the target voxel Btag based on the measurement data of the target voxel Btag included in the matching degradation information D1 and the measurement data D3 received as a response to the request signal D2. In this case, the server device 2 preferably uses the NDT data (that is, the average vector, covariance matrix, point cloud number information, etc.) of the target voxel Btag based on the measurement data for which the comprehensive evaluation function E is equal to or greater than a predetermined value. Generate. Generally, when the comprehensive evaluation function E is high, the vehicle position can be estimated with high accuracy, and it is estimated that the measurement data used for calculating the comprehensive evaluation function E is also highly reliable. Considering the above, the server device 2 determines whether or not the measurement data is to be used for updating the voxel data based on the comprehensive evaluation function E.
 さらに、サーバ装置2は、生成したNDTのデータの信頼性(正当性)に関する検証を行う。例えば、サーバ装置2は、生成したNDTのデータと、当該NDTのデータの生成に用いていない計測データD3とのマッチングを行い、マッチングにより得られた評価値に基づき、上述の検証を行う。この場合、サーバ装置2は、複数の計測データD3に対して上述のマッチングを行うことで複数の評価値を取得し、取得した複数の評価値に基づき上述の検証を行うとよい。そして、例えば、サーバ装置2は、上述の複数の評価値のうち所定割合(例えば9割)以上が所定値以上となる場合に、生成したNDTのデータは信頼性が高い更新可能なデータであると判断する。 Furthermore, the server device 2 performs verification on the reliability (validity) of the generated NDT data. For example, the server device 2 performs matching between the generated NDT data and measurement data D3 not used for generating the NDT data, and performs the above-described verification based on the evaluation value obtained by the matching. In this case, the server device 2 may acquire the plurality of evaluation values by performing the above-described matching on the plurality of measurement data D3, and perform the above-described verification based on the plurality of acquired evaluation values. For example, in the server device 2, when a predetermined ratio (for example, 90%) or more of the plurality of evaluation values is equal to or greater than the predetermined value, the generated NDT data is highly reliable and updatable data. Judge.
 そして、サーバ装置2は、上述の検証の結果、生成したNDTのデータが信頼できると判断した場合、配信地図DB20の対象ボクセルBtagのボクセルデータを、生成したNDTのデータにより更新する。また、サーバ装置2は、対象ボクセルBtagのボクセルデータの重み付け値を、初期値(例えば1)に設定する。そして、サーバ装置2は、所定のタイミングにおいて、更新したボクセルデータを含む更新用の地図データを、各車両の車載機1へ配信することで、地図DB10内のボクセルデータを配信地図DB20のボクセルデータと同期させる。このようにすることで、サーバ装置2は、車載機1が行う対象ボクセルBtag周辺での位置推定精度を好適に向上させることができる。 When the server device 2 determines that the generated NDT data is reliable as a result of the above verification, the server device 2 updates the voxel data of the target voxel Btag of the distribution map DB 20 with the generated NDT data. Further, the server device 2 sets the weighting value of the voxel data of the target voxel Btag to an initial value (for example, 1). Then, the server device 2 distributes the updated map data including the updated voxel data to the vehicle-mounted device 1 of each vehicle at a predetermined timing, thereby converting the voxel data in the map DB 10 into the voxel data in the distribution map DB 20. Synchronize with. By doing in this way, the server apparatus 2 can improve the position estimation precision around the object voxel Btag which the vehicle equipment 1 performs suitably.
 [処理フロー]
 (1)車載機の処理
 図7は、本実施例において車載機1が実行する処理手順を示すフローチャートの一例である。車載機1は、図7のフローチャートの処理を繰り返し実行する。
[Processing flow]
(1) In- vehicle device processing FIG. 7 is an example of a flowchart showing a processing procedure executed by the in-vehicle device 1 in this embodiment. The in-vehicle device 1 repeatedly executes the process of the flowchart of FIG.
 まず、車載機1は、GPS受信機32等の出力に基づき、自車位置の初期値を設定する(ステップS101)。次に、車載機1は、速度センサ34から車体速度を取得すると共に、ジャイロセンサ33からヨー方向の角速度を取得する(ステップS102)。そして、車載機1は、ステップS102の取得結果に基づき、車両の移動距離と車両の方位変化を計算する(ステップS103)。 First, the in-vehicle device 1 sets an initial value of the vehicle position based on the output of the GPS receiver 32 or the like (step S101). Next, the vehicle-mounted device 1 acquires the vehicle body speed from the speed sensor 34 and also acquires the angular velocity in the yaw direction from the gyro sensor 33 (step S102). And the vehicle equipment 1 calculates the moving distance of a vehicle and the azimuth | direction change of a vehicle based on the acquisition result of step S102 (step S103).
 その後、車載機1は、1時刻前の推定自車位置に、ステップS103で計算した移動距離と方位変化を加算し、予測位置を算出する(ステップS104)。そして、車載機1は、ステップS104で算出した予測位置に基づき、地図DB10を参照して、自車位置周辺に存在するボクセルのボクセルデータを取得する(ステップS105)。さらに、車載機1は、ステップS104で算出した予測位置に基づき、ライダ30から得られたスキャンデータをボクセルごとに分割する(ステップS106)。そして、車載機1は、評価関数を用いてNDTスキャンマッチングの計算を行う(ステップS107)。この場合、車載機1は、式(4)及び式(5)に基づき、評価関数E及び総合評価関数Eを算出し、総合評価関数Eが最大となる推定パラメータPを算出する。 Thereafter, the vehicle-mounted device 1 adds the movement distance and the azimuth change calculated in step S103 to the estimated host vehicle position one time before, and calculates a predicted position (step S104). And the vehicle equipment 1 acquires the voxel data of the voxel which exists around the own vehicle position with reference to map DB10 based on the estimated position calculated by step S104 (step S105). Further, the in-vehicle device 1 divides the scan data obtained from the lidar 30 for each voxel based on the predicted position calculated in step S104 (step S106). And the vehicle equipment 1 calculates NDT scan matching using an evaluation function (step S107). In this case, the in-vehicle device 1 calculates the evaluation function E k and the comprehensive evaluation function E based on the equations (4) and (5), and calculates the estimation parameter P that maximizes the comprehensive evaluation function E.
 そして、車載機1は、総合評価関数Eが最大となる推定パラメータPを特定した場合(ステップS108;Yes)、各ボクセルの重み付け値wと総合評価関数Eとを用いて、式(9)に基づき、基準値Fを計算する(ステップS109)。そして、車載機1は、各ボクセルについて、基準値Fと評価関数Eとを比較し(ステップS110)、比較結果が所定値Aよりも小さいボクセルが存在するか否か判定する(ステップS111)。即ち、車載機1は、式(7)を満たす評価関数Eが存在するか否か判定する。 The vehicle unit 1, when the synthetic evaluation function E has identified the estimated parameter P becomes maximum (step S108; Yes), by using the synthetic evaluation function E and the weighting values w k of each voxel, formula (9) The reference value Fk is calculated based on (Step S109). Then, the in-vehicle device 1 compares the reference value F k with the evaluation function E k for each voxel (step S110), and determines whether there is a voxel whose comparison result is smaller than the predetermined value A (step S111). ). That is, the in-vehicle device 1 determines whether or not there is an evaluation function E k that satisfies the equation (7).
 そして、車載機1は、比較結果が所定値Aよりも小さいボクセルが存在する場合(ステップS111;Yes)、計測した点群データ、時刻、推定位置、総合評価関数E、対象のボクセルのボクセルID、評価関数E、及び点群数Nを含むマッチング低下情報D1を、サーバ装置2へ送信する(ステップS112)。なお、車載機1は、ステップS111での判定に代えて、又はこれに加えて、「(1)マッチング低下情報の送信処理」のセクションでも説明したように、点群数Nの大小に基づきマッチング低下情報D1の送信の要否を判定してもよい。 And when the voxel whose comparison result is smaller than the predetermined value A exists (step S111; Yes), the vehicle-mounted device 1 measures the point cloud data, the time, the estimated position, the comprehensive evaluation function E, and the voxel ID of the target voxel. Then, the matching reduction information D1 including the evaluation function E k and the point cloud number N k is transmitted to the server device 2 (step S112). Note that the in-vehicle device 1 is based on the magnitude of the point cloud number N k as described in the section “(1) Matching degradation information transmission process ” instead of or in addition to the determination in step S111. It may be determined whether or not the matching degradation information D1 needs to be transmitted.
 一方、車載機1は、比較結果が所定値Aよりも小さいボクセルが存在しない場合(ステップS111;No)、ステップS102へ処理を戻す。なお、車載機1は、ステップS111の判定後、総合評価関数Eが最大となる推定パラメータPを、ステップS104の予測位置に適用することで、現時刻における推定自車位置を算出する。 On the other hand, when there is no voxel whose comparison result is smaller than the predetermined value A (step S111; No), the in-vehicle device 1 returns the process to step S102. The in-vehicle device 1 calculates the estimated own vehicle position at the current time by applying the estimated parameter P that maximizes the comprehensive evaluation function E to the predicted position in step S104 after the determination in step S111.
 次に、車載機1は、ステップS113において、サーバ装置2から自車位置周辺のボクセルを指定した要求信号D2を受信したか否か判定する(ステップS113)。そして、車載機1は、サーバ装置2から自車位置周辺のボクセルを指定した要求信号D2を受信した場合(ステップS113;Yes)、要求信号D2が指定するボクセルに該当するライダ30のスキャンデータ(点群データ)を、計測データD3としてサーバ装置2へ送信する(ステップS114)。このとき、車載機1は、スキャンデータに加えて、当該スキャンデータを取得した時刻の総合評価関数Eなどを計測データD3に含めるとよい。計測データD3に含められた総合評価関数Eは、後述するサーバ装置2の処理において用いられる。そして、車載機1は、ステップS114の実行後、又は自車位置周辺のボクセルを指定した要求信号D2を受信していないとステップS113で判断した場合、ステップS102へ処理を戻す。 Next, the in-vehicle device 1 determines whether or not the request signal D2 designating the voxel around the vehicle position is received from the server device 2 in step S113 (step S113). And the vehicle equipment 1 will receive the request signal D2 which designated the voxel around the own vehicle position from the server apparatus 2 (step S113; Yes), and the scan data of the lidar 30 corresponding to the voxel designated by the request signal D2 ( Point cloud data) is transmitted to the server apparatus 2 as measurement data D3 (step S114). At this time, the in-vehicle device 1 may include the comprehensive evaluation function E at the time when the scan data is acquired in the measurement data D3 in addition to the scan data. The comprehensive evaluation function E included in the measurement data D3 is used in the processing of the server device 2 described later. And the vehicle equipment 1 returns a process to step S102, after performing step S114, or when it is judged by step S113 that the request signal D2 which designated the voxel around the own vehicle position is not received.
 (2)サーバ装置の処理
 図8は、本実施例においてサーバ装置2が実行する処理手順を示すフローチャートの一例である。サーバ装置2は、図8のフローチャートの処理を繰り返し実行する。
(2) Processing of Server Device FIG. 8 is an example of a flowchart showing a processing procedure executed by the server device 2 in the present embodiment. The server device 2 repeatedly executes the process of the flowchart of FIG.
 まず、サーバ装置2は、車両に搭載された車載機1から、マッチング低下情報D1を受信する(ステップS201)。そして、サーバ装置2は、ボクセルIDごとにマッチング低下情報D1を記憶部22に記憶する。 First, the server device 2 receives the matching decrease information D1 from the in-vehicle device 1 mounted on the vehicle (step S201). And the server apparatus 2 memorize | stores the matching fall information D1 in the memory | storage part 22 for every voxel ID.
 次に、サーバ装置2は、記憶部22を参照し、マッチング低下情報D1の数が所定値よりも多いボクセルが存在するか否か判定する(ステップS202)。そして、サーバ装置2は、マッチング低下情報D1の数が所定値よりも多いボクセルが存在する場合(ステップS202;Yes)、マッチング低下情報D1の数が多いほど、対応するボクセルの配信地図DB20に記憶された重み付け値wを小さく設定する(ステップS203)。これにより、サーバ装置2は、静的構造物に変化があったボクセルについて、ボクセルデータの更新前でのマッチング度合いを相対的に低下させ、ボクセルデータの更新前での位置推定精度の低下を好適に抑制することができる。なお、配信地図DB20に記憶される重み付け値wの初期値は、例えば、各ボクセルにおいて共通の初期値(例えば1)に設定される。 Next, the server device 2 refers to the storage unit 22 and determines whether there is a voxel in which the number of matching degradation information D1 is greater than a predetermined value (step S202). Then, when there is a voxel in which the number of matching decrease information D1 is larger than a predetermined value (step S202; Yes), the server device 2 stores the corresponding voxel distribution map DB 20 as the number of matching decrease information D1 increases. The weighted value w k thus set is set small (step S203). Thereby, the server device 2 relatively reduces the matching degree before updating the voxel data for the voxel whose static structure has changed, and preferably reduces the position estimation accuracy before the voxel data is updated. Can be suppressed. Note that the initial value of the weighting value w k stored in the distribution map DB 20 is set to an initial value (for example, 1) common to the voxels, for example.
 次にサーバ装置2は、重み付け値wを小さくしたボクセルのボクセルデータを修正すべきか否か判定する(ステップS204)。この場合、例えば、サーバ装置2は、対象となるボクセルの複数のマッチング低下情報D1に含まれる評価関数Eの類似の有無に基づき上述の判定を行う。 Next, the server device 2 determines whether or not to correct the voxel data of the voxel whose weight value w k is reduced (step S204). In this case, for example, the server device 2 performs the above-described determination based on whether or not the evaluation function E k included in the plurality of matching deterioration information D1 of the target voxel is similar.
 そして、サーバ装置2は、ボクセルデータを修正すべきと判断した場合(ステップS204;Yes)、各車両の車載機1に対し、対象ボクセルBtagのスキャンデータを要求する要求信号D2を送信する(ステップS205)。そして、サーバ装置2は、要求信号D2の応答として、各車両の車載機1から対象ボクセルBtagのスキャンデータを含む計測データD3を受信し、記憶部22に記憶する(ステップS206)。計測データD3には、スキャンデータに加えて、当該スキャンデータを取得した時刻の総合評価関数Eなどが含まれている。一方、サーバ装置2は、ボクセルデータを修正する必要がないと判断した場合(ステップS204;No)、ステップS201へ処理を戻す。 When the server device 2 determines that the voxel data should be corrected (step S204; Yes), the server device 2 transmits a request signal D2 for requesting scan data of the target voxel Btag to the vehicle-mounted device 1 of each vehicle (step S204). S205). And the server apparatus 2 receives the measurement data D3 containing the scan data of the object voxel Btag from the vehicle equipment 1 of each vehicle as a response of the request signal D2, and memorize | stores it in the memory | storage part 22 (step S206). The measurement data D3 includes, in addition to the scan data, a comprehensive evaluation function E at the time when the scan data is acquired. On the other hand, when the server apparatus 2 determines that the voxel data need not be corrected (step S204; No), the process returns to step S201.
 次に、サーバ装置2は、ステップS204においてボクセルデータを修正すべきと判断した対象ボクセルBtagについて、総合評価関数Eが高い計測データ(マッチング低下情報D1に含まれる計測データと計測データD3の両方を含む)が蓄積されたか否か判定する(ステップS207)。具体的には、サーバ装置2は、総合評価関数Eが所定の閾値よりも高い計測データが所定個数以上蓄積されたか否か判定する。これにより、サーバ装置2は、ボクセルデータの更新に必要な計測データが収集されたか否か判定する。 Next, for the target voxel Btag for which the voxel data is determined to be corrected in step S204, the server device 2 has measured data with a high overall evaluation function E (both measurement data and measurement data D3 included in the matching reduction information D1). It is determined whether or not (including) has been accumulated (step S207). Specifically, the server device 2 determines whether or not a predetermined number or more of measurement data whose comprehensive evaluation function E is higher than a predetermined threshold is accumulated. Thereby, the server device 2 determines whether or not measurement data necessary for updating the voxel data has been collected.
 そして、サーバ装置2は、総合評価関数Eが高い計測データが蓄積された場合(ステップS207;Yes)、総合評価関数Eの値に基づき、重み付き平均化によって対象のボクセルの点群データを構築する(ステップS208)。これにより、サーバ装置2は、対象のボクセルの点群データを構築する場合に、信頼度が高いスキャンデータほど重み付けを大きくし、高精度な点群データの構築を行う。一方、サーバ装置2は、総合評価関数Eが高い計測データD3が蓄積されていない場合(ステップS207;No)、ステップS201へ処理を戻す。なお、この場合、サーバ装置2は、管理者に対して所定の警告を出力し、ボクセルデータを修正すべきボクセルが存在する旨及び当該ボクセルが計測範囲内となる道路に計測整備車両を走行させて点群データの計測を行う必要がある旨を管理者に通知してもよい。 Then, when measurement data having a high comprehensive evaluation function E is accumulated (step S207; Yes), the server device 2 constructs point cloud data of the target voxel by weighted averaging based on the value of the comprehensive evaluation function E. (Step S208). Thereby, when constructing the point cloud data of the target voxel, the server device 2 constructs highly accurate point cloud data by increasing the weighting of scan data with higher reliability. On the other hand, when the measurement data D3 having a high comprehensive evaluation function E is not accumulated (step S207; No), the server apparatus 2 returns the process to step S201. In this case, the server device 2 outputs a predetermined warning to the administrator, and informs that there is a voxel whose voxel data should be corrected and that the measurement maintenance vehicle travels on a road where the voxel falls within the measurement range. The administrator may be notified that the point cloud data needs to be measured.
 次に、サーバ装置2は、ステップS208で構築した点群データから、NDTのデータ(即ち平均ベクトル、共分散行列、点群数情報等)を生成する(ステップS209)。そして、サーバ装置2は、生成したNDTのデータを、車両から取得した他の計測データD3(即ちNDTのデータの生成に用いていない計測データD3)を用いて検証する(ステップS210)。この場合、サーバ装置2は、例えば、生成したNDTのデータと検証用の計測データD3とのマッチングを行い、マッチングにより得られた評価値に基づき、上述の検証を行う。 Next, the server device 2 generates NDT data (that is, average vector, covariance matrix, point group number information, etc.) from the point cloud data constructed in step S208 (step S209). Then, the server device 2 verifies the generated NDT data using other measurement data D3 acquired from the vehicle (that is, measurement data D3 not used for generating NDT data) (step S210). In this case, for example, the server device 2 performs matching between the generated NDT data and verification measurement data D3, and performs the above-described verification based on the evaluation value obtained by the matching.
 そして、サーバ装置2は、ステップS210での検証の結果、生成したNDTのデータが信頼できると判断した場合(ステップS211;Yes)、ステップS209の処理結果に基づき、配信地図DB20の対象のボクセルデータを更新する(ステップS212)。そして、サーバ装置2は、ボクセルデータを更新したボクセルの重み付け値を初期値に設定する(ステップS212)。一方、サーバ装置2は、ステップS210での検証の結果、生成したNDTのデータの信頼性が低いと判断した場合(ステップS211;No)、配信地図DB20のボクセルデータの更新を行わず、ステップS201へ処理を戻す。なお、この場合、サーバ装置2は、管理者に対して所定の警告を出力し、ボクセルデータを修正すべきボクセルが存在する旨及び当該ボクセルが計測範囲内となる道路に計測整備車両を走行させて点群データの計測を行う必要がある旨を管理者に通知してもよい。 When the server device 2 determines that the generated NDT data is reliable as a result of the verification in step S210 (step S211; Yes), the target voxel data in the distribution map DB 20 is based on the processing result in step S209. Is updated (step S212). And the server apparatus 2 sets the weighting value of the voxel which updated the voxel data to an initial value (step S212). On the other hand, when the server device 2 determines that the reliability of the generated NDT data is low as a result of the verification in step S210 (step S211; No), the server device 2 does not update the voxel data in the distribution map DB 20, and performs step S201. Return processing to. In this case, the server device 2 outputs a predetermined warning to the administrator, and informs that there is a voxel whose voxel data should be corrected and that the measurement maintenance vehicle travels on a road where the voxel falls within the measurement range. The administrator may be notified that the point cloud data needs to be measured.
 以上説明したように、本実施例に係るサーバ装置2は、複数の車両の車載機1から、ライダ30が計測した点群データと地図DB10に含まれるボクセルデータが示す点群データとのマッチングの度合いが低いボクセルに関するマッチング低下情報D1を受信する。そして、サーバ装置2は、マッチング低下情報D1に基づき更新対象となる対象ボクセルBtagを決定し、総合評価関数Eが高い計測データに基づき、対象ボクセルBtagのボクセルデータを更新する。これにより、サーバ装置2は、ボクセルデータの更新処理を的確に実行することができる。 As described above, the server device 2 according to the present embodiment matches the point cloud data measured by the rider 30 with the point cloud data indicated by the voxel data included in the map DB 10 from the in-vehicle devices 1 of a plurality of vehicles. The matching reduction information D1 regarding the voxel with a low degree is received. And the server apparatus 2 determines the object voxel Btag used as update object based on the matching fall information D1, and updates the voxel data of the object voxel Btag based on measurement data with high comprehensive evaluation function E. FIG. Thereby, the server apparatus 2 can perform the update process of voxel data exactly.
 [変形例]
 以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。
[Modification]
Hereinafter, modified examples suitable for the embodiments will be described. The following modifications may be applied to the embodiments in combination.
 (変形例1)
 ボクセルデータは、図3に示すように、平均ベクトルと共分散行列とを含むデータ構造に限定されない。例えば、ボクセルデータは、平均ベクトルと共分散行列を算出する際に用いられる計測整備車両が計測した点群データをそのまま含んでいてもよい。この場合、ボクセルデータに含まれる点群データは、本発明における「地図点群情報」の一例である。
(Modification 1)
The voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG. For example, the voxel data may include point cloud data measured by a measurement and maintenance vehicle used when calculating an average vector and a covariance matrix. In this case, the point cloud data included in the voxel data is an example of “map point cloud information” in the present invention.
 また、本実施例は、NDTによるスキャンマッチングに限定されず、ICP(Iterative Closest Point)などの他のスキャンマッチングを適用してもよい。この場合であっても、実施例と同様、車載機1は、マッチングの度合いを評価するボクセルごとの評価値に基づき、マッチング度合いが相対的に低いボクセルを特定し、当該ボクセルに対するマッチング低下情報D1をサーバ装置2へ送信する。そして、サーバ装置2は、図8のフローチャートと同様、重み付け値の更新、要求信号D2の送信、計測データD3の受信などを行う。そして、サーバ装置2は、評価値が高い計測データに基づき、重み付け平均などにより対象ボクセルBtagのボクセルデータ(この場合は点群データ)を生成し、配信地図DB20のボクセルデータを更新する。このように、本発明に適用可能なスキャンマッチングの方法は、NDTスキャンマッチングに限定されない。 Further, the present embodiment is not limited to scan matching by NDT, and other scan matching such as ICP (Iterative Closest Point) may be applied. Even in this case, as in the embodiment, the in-vehicle device 1 identifies a voxel having a relatively low matching degree based on the evaluation value for each voxel for which the degree of matching is evaluated, and the matching reduction information D1 for the voxel. Is transmitted to the server device 2. And the server apparatus 2 performs update of a weighting value, transmission of the request signal D2, reception of the measurement data D3, etc. similarly to the flowchart of FIG. Then, the server device 2 generates voxel data (in this case, point cloud data) of the target voxel Btag based on measurement data having a high evaluation value, and updates the voxel data in the distribution map DB 20. Thus, the scan matching method applicable to the present invention is not limited to NDT scan matching.
 (変形例2)
 図8のステップS210での検証処理に関し、サーバ装置2は、生成したNDTのデータと計測データD3とのマッチングを行う代わりに、ステップS208で生成した対象ボクセルBtagの点群データと、計測データD3の点群データとのマッチングを行ってもよい。この場合、例えば、サーバ装置2は、上述したICPなどの点群同士のマッチングを行うアルゴリズムに基づき、マッチング度合いを示す評価値を算出し、算出した評価値に基づき、ステップS211でのNDTデータの信頼性の判定を行う。
(Modification 2)
With respect to the verification processing in step S210 of FIG. 8, the server device 2 performs the matching between the generated NDT data and the measurement data D3, instead of performing the matching between the generated point data of the target voxel Btag and the measurement data D3. Matching with the point cloud data may be performed. In this case, for example, the server device 2 calculates an evaluation value indicating the degree of matching based on the above-described algorithm for matching point groups such as ICP, and based on the calculated evaluation value, the NDT data in step S211 is calculated. Judgment of reliability is performed.
 (変形例3)
 車載機1に相当する機能が車両に内蔵されていてもよい。この場合、車両の電子制御装置(ECU:Electronic Control Unit)は、車両のメモリに記憶されたプログラムを実行することで、車載機1の制御部15に相当する処理を実行する。
(Modification 3)
A function corresponding to the in-vehicle device 1 may be built in the vehicle. In this case, an electronic control unit (ECU) of the vehicle executes a process corresponding to the control unit 15 of the in-vehicle device 1 by executing a program stored in the memory of the vehicle.
 1 車載機
 2 サーバ装置
 10 地図DB
 20 配信地図DB
 11、21 通信部
 12、22 記憶部
 15、25 制御部
 13 センサ部
 14 入力部
 16 出力部
1 In-vehicle device 2 Server device 10 Map DB
20 Distribution map DB
11, 21 Communication unit 12, 22 Storage unit 15, 25 Control unit 13 Sensor unit 14 Input unit 16 Output unit

Claims (11)

  1.  地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、
     前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部と、
    を有する更新装置。
    Measurement point cloud information on each measurement distance from the reference position to a plurality of positions, which has a difference greater than a predetermined value from the map point cloud information assigned to each of the plurality of map information areas, and is measured by the measurement unit An acquisition unit for acquiring from a plurality of moving objects;
    An update unit that updates information of a region that satisfies a predetermined condition among the plurality of regions, based on a result of collation of the measurement point group information and map point group information for each of the plurality of moving objects;
    An updating device.
  2.  前記更新部は、前記計測点群情報及び地図点群情報の照合結果に基づき、前記所定条件を満たす領域を決定し、当該領域に対応する前記計測点群情報に基づき、当該領域の情報を更新する請求項1に記載の更新装置。 The update unit determines an area that satisfies the predetermined condition based on a result of collating the measurement point group information and the map point group information, and updates information on the area based on the measurement point group information corresponding to the area. The updating apparatus according to claim 1.
  3.  前記更新部は、前記計測点群情報及び地図点群情報の照合結果から算出される前記複数の領域毎の評価値が類似する領域を、前記所定条件を満たす領域として決定する請求項1または2に記載の更新装置。 The update unit determines a region where the evaluation values for each of the plurality of regions calculated from the comparison result of the measurement point cloud information and the map point cloud information are similar as a region satisfying the predetermined condition. The update device described in 1.
  4.  前記更新部は、前記照合結果から算出される評価値が所定値より高い計測点群情報に基づき、前記所定条件を満たす領域の情報を更新する請求項1~3のいずれか一項に記載の更新装置。 The update unit according to any one of claims 1 to 3, wherein the update unit updates information on a region that satisfies the predetermined condition based on measurement point cloud information whose evaluation value calculated from the collation result is higher than a predetermined value. Update device.
  5.  前記更新部は、前記取得部が取得した前記複数の領域毎の前記計測点群情報の数が所定個数以上となる領域を、前記所定条件を満たす領域として決定する請求項1~4のいずれか一項に記載の更新装置。 5. The update unit according to claim 1, wherein the update unit determines a region where the number of the measurement point group information for each of the plurality of regions acquired by the acquisition unit is a predetermined number or more as a region satisfying the predetermined condition. The update device according to one item.
  6.  前記複数の領域毎の地図点群情報が含まれる配信用地図情報を記憶する記憶部をさらに備え、
     前記更新部は、前記所定条件を満たす領域に対応する前記配信用地図情報の地図点群情報を更新する請求項1~5のいずれか一項に記載の更新装置。
    A storage unit for storing distribution map information including map point cloud information for each of the plurality of areas;
    The update device according to any one of claims 1 to 5, wherein the update unit updates map point group information of the distribution map information corresponding to an area that satisfies the predetermined condition.
  7.  前記配信用地図情報には、前記複数の領域毎に信頼度に関する信頼度情報が含まれており、
     前記更新部は、前記取得部が取得する前記計測点群情報の数が多い領域ほど、当該領域に対する信頼度情報が示す信頼度を下げ、前記所定条件を満たす領域に対応する前記配信用地図情報の地図点群情報を更新した場合に、当該領域に対する信頼度情報を初期化する請求項6に記載の更新装置。
    The distribution map information includes reliability information related to reliability for each of the plurality of areas,
    The update unit reduces the reliability indicated by the reliability information for the region, and the map information for distribution corresponding to the region satisfying the predetermined condition as the number of the measurement point cloud information acquired by the acquisition unit increases. The update apparatus according to claim 6, wherein when the map point cloud information is updated, reliability information for the region is initialized.
  8.  前記所定条件を満たす領域の情報の生成後、当該情報の生成に用いた第1点群情報とは異なる当該領域の計測点群情報との照合結果に基づき、生成した情報の信頼性を検証する検証部をさらに備える請求項1~7のいずれか一項に記載の更新装置。 After generating the information of the area that satisfies the predetermined condition, the reliability of the generated information is verified based on the collation result with the measurement point group information of the area that is different from the first point cloud information used for generating the information. The update device according to any one of claims 1 to 7, further comprising a verification unit.
  9.  更新装置が実行する制御方法であって、
     地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得工程と、
     前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新工程と、
    を有する制御方法。
    A control method executed by the update device,
    Measurement point cloud information on each measurement distance from the reference position to a plurality of positions, which has a difference greater than a predetermined value from the map point cloud information assigned to each of the plurality of map information areas, and is measured by the measurement unit An acquisition step of acquiring from a plurality of moving objects;
    An update step for updating information on a region that satisfies a predetermined condition among the plurality of regions, based on a result of collation of the measurement point cloud information and map point cloud information for each of the plurality of moving bodies;
    A control method.
  10.  コンピュータが実行するプログラムであって、
     地図情報の複数の領域毎に付与された地図点群情報と所定値以上の差分を有し、計測部により計測された、基準位置から複数の位置までの夫々の計測距離に関する計測点群情報を、複数の移動体から取得する取得部と、
     前記複数の移動体毎の、前記計測点群情報及び地図点群情報の照合結果に基づき、前記複数の領域のうち所定条件を満たす領域の情報を更新する更新部
    として前記コンピュータを機能させるプログラム。
    A program executed by a computer,
    Measurement point cloud information on each measurement distance from the reference position to a plurality of positions, which has a difference greater than a predetermined value from the map point cloud information assigned to each of the plurality of map information areas, and is measured by the measurement unit An acquisition unit for acquiring from a plurality of moving objects;
    A program that causes the computer to function as an update unit that updates information on a region that satisfies a predetermined condition among the plurality of regions, based on a collation result of the measurement point group information and map point group information for each of the plurality of moving objects.
  11.  請求項10に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 10.
PCT/JP2018/020370 2017-05-31 2018-05-28 Updating device, control method, program, and storage medium WO2018221458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108676 2017-05-31
JP2017-108676 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221458A1 true WO2018221458A1 (en) 2018-12-06

Family

ID=64455397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020370 WO2018221458A1 (en) 2017-05-31 2018-05-28 Updating device, control method, program, and storage medium

Country Status (1)

Country Link
WO (1) WO2018221458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188671A1 (en) * 2019-03-18 2020-09-24 三菱電機株式会社 Map information correction device, moving body, map information creation device, map information correction system, map information correction method and map information correction program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069726A1 (en) * 2005-12-16 2007-06-21 Ihi Corporation Self-position identifying method and device, and three-dimensional shape measurement method and device
JP2011027594A (en) * 2009-07-27 2011-02-10 Toyota Infotechnology Center Co Ltd Map data verification system
JP2016180980A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 Information processing device, program, and map data updating system
JP2017049172A (en) * 2015-09-03 2017-03-09 日立建機株式会社 Device and method of creating map for work machine
JP2017090239A (en) * 2015-11-10 2017-05-25 パイオニア株式会社 Information processing device, control method, program, and storage media

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069726A1 (en) * 2005-12-16 2007-06-21 Ihi Corporation Self-position identifying method and device, and three-dimensional shape measurement method and device
JP2011027594A (en) * 2009-07-27 2011-02-10 Toyota Infotechnology Center Co Ltd Map data verification system
JP2016180980A (en) * 2015-03-23 2016-10-13 株式会社豊田中央研究所 Information processing device, program, and map data updating system
JP2017049172A (en) * 2015-09-03 2017-03-09 日立建機株式会社 Device and method of creating map for work machine
JP2017090239A (en) * 2015-11-10 2017-05-25 パイオニア株式会社 Information processing device, control method, program, and storage media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188671A1 (en) * 2019-03-18 2020-09-24 三菱電機株式会社 Map information correction device, moving body, map information creation device, map information correction system, map information correction method and map information correction program
JPWO2020188671A1 (en) * 2019-03-18 2021-04-30 三菱電機株式会社 Map information correction device, mobile body, map information correction system, map information correction method, map information correction program, control circuit and storage medium
US11927458B2 (en) 2019-03-18 2024-03-12 Mitsubishi Electric Corporation Map information correction apparatus, mobile object, map information correction system, map information correction method, control circuit, and non-transitory storage medium

Similar Documents

Publication Publication Date Title
JP6721784B2 (en) Information processing device, server device, control method, program, and storage medium
WO2018221453A1 (en) Output device, control method, program, and storage medium
WO2018181974A1 (en) Determination device, determination method, and program
EP2400269B1 (en) Track information generating device, track information generating method, and computer-readable storage medium
CN107449443A (en) The integrity monitoring of radar altimeter
WO2021112074A1 (en) Information processing device, control method, program, and storage medium
US10379542B2 (en) Location and mapping device and method
WO2018221455A1 (en) Update device, control method, program, and storage medium
JP7155284B2 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
JP2018116014A (en) Own vehicle position estimation device, control method, program and storage medium
JPWO2017199333A1 (en) Information output device, terminal device, control method, program, and storage medium
JP2022176322A (en) Self-position estimation device, control method, program, and storage medium
WO2020209144A1 (en) Position estimating device, estimating device, control method, program, and storage medium
JP2024022650A (en) Information processing device, control method, program, and storage medium
JPWO2018180245A1 (en) Output device, control method, program and storage medium
US20230003521A1 (en) Information processing device, control method, program and storage medium
JP2020046411A (en) Data structure, storage device, terminal device, server device, control method, program, and storage medium
WO2018221458A1 (en) Updating device, control method, program, and storage medium
JP2023164502A (en) Stationary object data generator, method for control, program, and storage medium
WO2019188886A1 (en) Terminal device, information processing method, and storage medium
JP2020034451A (en) Data structure, storage medium, and storage device
JP2020046413A (en) Data structure, storage device, terminal device, server device, control method, program, and storage medium
US20220404506A1 (en) Online validation of lidar-to-lidar alignment and lidar-to-vehicle alignment
WO2018221456A1 (en) Route searching device, control method, program, and storage medium
JP2022090373A (en) Information processor, control method, program and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP