WO2018221455A1 - Update device, control method, program, and storage medium - Google Patents
Update device, control method, program, and storage medium Download PDFInfo
- Publication number
- WO2018221455A1 WO2018221455A1 PCT/JP2018/020364 JP2018020364W WO2018221455A1 WO 2018221455 A1 WO2018221455 A1 WO 2018221455A1 JP 2018020364 W JP2018020364 W JP 2018020364W WO 2018221455 A1 WO2018221455 A1 WO 2018221455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- point cloud
- voxel
- point
- cloud information
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B29/00—Maps; Plans; Charts; Diagrams, e.g. route diagram
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B29/00—Maps; Plans; Charts; Diagrams, e.g. route diagram
- G09B29/10—Map spot or coordinate position indicators; Map reading aids
Definitions
- the present invention relates to a technology for generating a map.
- Patent Document 1 discloses that difference information representing a difference between a position of a moving object and a traveling position of the moving object on map data is associated with the position information and stored in the difference database.
- a map data update system configured to set information indicating whether or not to update the map data corresponding to the position information based on the difference information corresponding to the position information stored in is disclosed.
- Patent Document 1 does not disclose how to update the information of the point cloud stored in the map data.
- the present invention has been made to solve the above-described problems, and has as its main object to provide an update device that can suitably update a map including point cloud information.
- the invention according to claim 1 is an update device, wherein a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions, which is measured by a measurement unit, and a plurality of regions A second acquisition of map information in which the second point group information based on one or a plurality of position information and the weighting value based on the reliability of the second point group information are recorded for each of the plurality of regions And an updating unit that updates the weighting value so as to increase the weighting for a region in which the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. .
- the invention according to claim 7 is a control method executed by the updating device, wherein a first acquisition step of acquiring first point cloud information relating to respective distances from the reference position to a plurality of positions measured by the measurement unit. And map information in which the second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of areas. A second acquisition step to be acquired, and an update for updating the weighting value so as to increase weighting for a region in which a difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. And a process.
- the invention according to claim 8 is a program executed by a computer, wherein the first acquisition unit acquires first point group information about each distance from a reference position to a plurality of positions measured by the measurement unit; Obtained is map information that is divided into a plurality of regions, and second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of regions.
- FIG. 1 is a schematic configuration of a map generation system.
- the block configuration of a vehicle equipment and a server apparatus is shown.
- An example of the schematic data structure of voxel data is shown.
- It is a flowchart which shows the procedure of the update process of the said voxel data when the voxel data of map DB already exist.
- the update device includes a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions, measured by the measurement unit, and a plurality of regions.
- an updating unit that updates the weighting value so as to increase the weighting for a region in which the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions.
- the updating device regards a region in which the first point group information and the second point group information are approximated as having high reliability, and updates the weight value so as to increase the weight of the region.
- the update apparatus can update the weighting value contained in map information appropriately.
- the updating unit is configured to perform the first operation on a region where a difference between the first point group information and the second point group information is a predetermined value or less based on accuracy information indicating the accuracy of the measuring unit. Update the two-point cloud information. According to this aspect, the update device can preferably improve the accuracy of the second point cloud information included in the map information.
- the map information further includes accuracy information related to measurement accuracy of the second point cloud information
- the updating unit includes the first point cloud information and the second point cloud.
- the second point cloud information is updated based on the first point cloud information when the accuracy of the first point cloud information is higher than that of the second point cloud information for an area where the difference in information is a predetermined value or less.
- the second point group information is updated by weighted averaging the first point group information and the second point group information based on accuracy.
- the update device can suitably update the map information based on the accuracy information so that the accuracy of the second point cloud information is increased.
- the updating unit corresponds to a position indicated by the first point group information in a region where a difference between the first point group information and the second point group information is greater than a predetermined value.
- the map information is updated with the first point group information.
- the update device regards the first point cloud information as information that has not been measured by occlusion when measuring the second point cloud information, and updates the map information with the first point cloud information.
- the updating unit corresponds to a position indicated by the first point group information in a region where a difference between the first point group information and the second point group information is greater than a predetermined value.
- the weight value is updated so as to reduce the weight for the region of the position indicated by the second point group information.
- the updating device can preferably update the weighting value so as to reduce the weighting for the region where the occlusion may occur.
- the updating unit determines whether or not a difference between the first point group information and the second point group information is equal to or less than a predetermined value, the first point group information and the second point point. A determination is made based on the average or / and variance of each group information. According to this aspect, the update device can suitably perform an analogy determination between the first point group information and the second point group information.
- the control method is executed by the updating device, and first point cloud information relating to each distance from the reference position to a plurality of positions, which is measured by the measurement unit, is acquired.
- the first acquisition step is divided into a plurality of areas, and the second point group information based on one or a plurality of position information and the weighting value based on the reliability of the second point group information are recorded for each of the plurality of areas.
- an update process for updating The update device can appropriately update the weighting value included in the map information by executing this control method.
- One acquisition unit and a plurality of areas, and the second point group information based on one or a plurality of position information and a weighting value based on the reliability of the second point group information are recorded for each of the plurality of areas.
- a second acquisition unit for acquiring map information; and the weighting value is set so as to increase weighting for an area in which a difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of areas.
- the computer is caused to function as an updating unit for updating.
- the computer can appropriately update the weighting value included in the map information by executing this program.
- the program is stored in a storage medium.
- FIG. 1 is a schematic configuration diagram of a map generation system according to the present embodiment.
- the map generation system shown in FIG. 1 is a system for generating position information of features around a road necessary for automatic driving or the like, and mainly includes a measurement unit 100 mounted on a measurement vehicle, a server device 200, Have
- the measurement unit 100 is a system that generates highly accurate 3D point cloud data.
- the measurement unit 100 mainly includes an in-vehicle device 1, a lidar (Lida: Light Detection and Ranging, or Laser Illuminated Detection And Ranging) 2, an RTK-GPS3, and the like. , IMU (Internal Measurement Unit) 4.
- the lidar 2 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world and indicating a three-dimensional point indicating the position of the object Generate group information.
- the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit.
- the scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal.
- the accuracy of the distance measurement value of the lidar is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer.
- RTK-GPS3 generates highly accurate position information indicating the absolute position (for example, the three-dimensional position of latitude, longitude, and altitude) of the measurement vehicle based on the RTK positioning method (that is, the interference positioning method).
- the RTK-GPS 3 outputs the generated position information and information on the accuracy (accuracy) of the position information (also referred to as “position accuracy information”) to the in-vehicle device 1.
- the IMU (inertial measurement device) 4 outputs the acceleration and angular velocity (or angle) of the measurement vehicle in the three-axis directions to the in-vehicle device 1.
- the in-vehicle device 1 specifies the absolute position and orientation of the measurement vehicle based on the output supplied from the RTK-GPS 3 and depends on the position and orientation of the measurement vehicle for each point in the point cloud detected by the lidar 2.
- Absolute 3D position information is calculated from relative 3D position information. Note that the absolute position and direction of the measurement vehicle may be specified based on the output of the IMU 4 in addition to the output from the RTK-GPS 3.
- the in-vehicle device 1 supplies the calculated three-dimensional point cloud data to the server device 200 as upload information “Iu” together with the position information and position accuracy information of the measurement vehicle at the time of measurement output from the RTK-GPS 3.
- the in-vehicle device 1 may immediately transmit the upload information Iu to the server device 200 by wireless communication, or may store it in a storage medium or the like that can be read later by the server device 200.
- the point cloud data included in the upload information Iu is an example of “first point cloud information” in the present invention.
- the server device 200 stores the upload information Iu acquired from the in-vehicle device 1 and updates a map DB (DB: DataBase) 20 based on the stored upload information Iu.
- the map DB 20 includes voxel data which is data in which position information of a stationary structure is recorded for each region (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of regions. ing.
- the voxel data includes data representing point cloud data measured for stationary structures in each voxel by a normal distribution, and is used for scan matching using NDT (Normal Distributions Transform) as will be described later.
- the server device 200 updates (including generation) voxel data corresponding to voxels within the measurement range of the measurement vehicle based on the upload information Iu.
- the server device 200 is an example of the “update device” in the present invention, and the voxel data is an example of “map information” in the present invention.
- FIG. 2A is a block diagram showing a functional configuration of the in-vehicle device 1.
- the in-vehicle device 1 mainly includes an interface 11, a storage unit 12, an input unit 14, a control unit 15, and an information output unit 16. Each of these elements is connected to each other via a bus line.
- the interface 11 acquires output data from sensors such as the lidar 2, the RTK-GPS 3, and the IMU 4, and supplies the output data to the control unit 15.
- the storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process.
- the input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate.
- the information output unit 16 is, for example, a display or a speaker that outputs based on the control of the control unit 15.
- the control unit 15 includes a CPU that executes a program, and controls the entire vehicle-mounted device 1.
- FIG. 2B is a block diagram illustrating a functional configuration of the server apparatus 200.
- the server device 200 includes an interface 21, a storage unit 22, and a control unit 25.
- the interface 21 acquires the upload information Iu generated by the in-vehicle device 1 based on the control of the control unit 25.
- the interface 21 may be a wireless interface for performing wireless communication with the in-vehicle device 1 or a hardware interface for reading the upload information Iu from a storage medium or the like that stores the upload information Iu.
- the storage unit 22 stores a program for the control unit 25 to execute a predetermined process and information necessary for the process of the control unit 25.
- the storage unit 22 stores the upload information Iu acquired by the interface 21 based on the control of the control unit 25.
- the storage unit 22 stores a map DB 20 including voxel data updated by the upload information Iu.
- the control unit 25 executes a program or the like stored in the storage unit 22 or the like, and controls the entire server device 200.
- the control unit 25 acquires the upload information Iu via the interface 21 and stores it in the storage unit 22. Thereafter, the control unit 25 updates the voxel data in the map DB 20 based on the upload information Iu stored in the storage unit 22.
- the control unit 25 is an example of a “first acquisition unit”, a “second acquisition unit”, an “update unit”, and a “computer” that executes a program in the present invention.
- FIG. 3 shows an example of a schematic data structure of voxel data.
- the voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution.
- the voxel ID, voxel coordinates, average vector, and covariance matrix are used.
- voxel coordinates indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel.
- Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates.
- the voxel coordinates may be used as a voxel ID.
- Average vector and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
- the average vector and the covariance matrix included in the voxel data are an example of “second point group information” in the present invention.
- Point cloud number information is information indicating the number of point clouds used to calculate the corresponding mean vector and covariance matrix.
- the point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
- the “reliability information” is a weighting value based on the first weighting value that is a weighting value based on the possibility of occlusion (occlusion by an obstacle) and the accuracy of the voxel data (particularly the mean vector and covariance matrix) of the target voxel. And a second weighting value.
- the second weighting value is set based on the position accuracy at the time of measurement of the measurement vehicle and the measurement accuracy of the lidar 2.
- the first weighting value is set to a larger value as the voxel is less likely to cause occlusion, and the second weighting value is set to a larger value as the data accuracy is higher.
- the first weighting value is an example of the “weighting value” in the present invention.
- the second weighting value is an example of “accuracy information” in the present invention.
- the control unit 25 of the server device 200 divides point cloud data (hereinafter also referred to as “latest measurement data”) included in the upload information Iu supplied from the in-vehicle device 1 for each voxel, and includes each of the latest measurement data. It is determined whether voxel data already exists for the voxel.
- the control unit 25 When there is no voxel data When the voxel data for the target voxel does not exist, the control unit 25 generates voxel data for the target voxel based on the upload information Iu including the latest measurement data. In this case, the control unit 25 generates NDT data (that is, an average vector, a covariance matrix, and the like) for the target voxel based on the latest measurement data, and the first weighting value and the second weighting value as described later. To decide.
- NDT data that is, an average vector, a covariance matrix, and the like
- the control unit 25 sets the first weighting value based on the height (that is, altitude) at which each voxel is located. Specifically, the control unit 25 determines that the higher the altitude of each voxel is, the lower the possibility of occurrence of occlusion, and increases the first weighting value. Thereby, the control unit 25 can set the first weighting value that accurately reflects the possibility of occlusion for each voxel.
- the control unit 25 sets the second weighting value based on the position accuracy at the time of measurement of the measurement vehicle and the measurement accuracy of the lidar 2.
- the upload information Iu includes position information and position accuracy information based on RTK-GPS3 together with point cloud data used to generate voxel data.
- the control unit 25 calculates the position accuracy used for calculating the second weighting value of each voxel based on the position accuracy information included in the upload information Iu.
- the accuracy of the distance measurement value of the lidar 2 is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer.
- the control unit 25 calculates the measurement accuracy of the lidar 2 based on the distance between the position indicated by the position information of the measurement vehicle included in the upload information Iu and the position indicated by the voxel coordinates of each voxel. And the control part 25 calculates
- the control unit 25 determines whether the voxel data needs to be updated based on the difference between the voxel data in the map DB 20 and the latest measurement data. judge.
- FIG. 4 is a flowchart showing the procedure for updating the voxel data when the voxel data in the map DB 20 already exists.
- the server device 200 executes the process of the flowchart shown in FIG. 4 for each voxel including the latest measurement data.
- the control unit 25 calculates the difference between the voxel data in the map DB 20 and the latest measurement data for the target voxel (step S101). For example, the control unit 25 calculates an average vector and a covariance matrix (that is, NDT data) when each point of the latest measurement data is regarded as a normal distribution in the voxel, and calculates the average vector of the voxel data in the map DB 20 and The difference from the covariance matrix is calculated.
- a covariance matrix that is, NDT data
- the control unit 25 calculates the distance difference between the average vector of the latest measurement data and the average vector of the voxel data in the map DB 20 as the first difference, and the covariance matrix of the latest measurement data and the voxel in the map DB 20 A difference (for example, a difference between eigenvalues) from the data covariance matrix is calculated as a second difference.
- the control unit 25 may perform NDT matching based on the voxel data of the map DB 20 and the latest measurement data, and calculate the reciprocal of the evaluation function as a difference.
- control part 25 determines whether the difference calculated by step S101 is below a predetermined threshold value (step S102).
- This threshold is a threshold for determining whether or not the difference is small enough to determine that the voxel data in the map DB 20 and the latest measurement data are substantially the same, and are set in advance based on, for example, experiments.
- the control part 25 sets the threshold value with respect to each difference, when the difference (namely, the above-mentioned 1st difference and 2nd difference) was each calculated by the average vector and the covariance matrix, When the difference of 1 and the second difference are each equal to or less than the threshold value, it may be determined that the difference calculated in step S101 is equal to or less than the predetermined threshold value.
- step S102 When the difference calculated in step S101 is equal to or smaller than a predetermined threshold (step S102; Yes), the control unit 25 increases the first weighting value of the voxel data in the map DB 20 for the target voxel by a predetermined value or a predetermined rate ( Step S103).
- the control unit 25 obtains similar data between the previous measurement and the current measurement for the target voxel, so that the occlusion is unlikely to occur and the voxel data in the map DB 20 And the first weighting value is increased.
- the weight of the target voxel becomes relatively high.
- the first weight value of the voxel data further increases as the difference from the latest measurement data continues to be below a predetermined threshold.
- the control unit 25 may update voxel data other than the first weight value in addition to the change of the first weight value.
- the control unit 25 has a second weight value calculated based on the update information Iu including the latest measurement data larger than the second weight value registered in the map DB 20 (that is, indicates high accuracy).
- the voxel data in the map DB 20 is updated with the average vector and the covariance matrix generated based on the latest measurement data, and the updated first weighting value is increased.
- the control part 25 can improve the precision of the voxel data registered into map DB20 suitably.
- the control unit 25 calculates the weighted average based on the second weighted value registered in the map DB 20 and the second weighted value for the latest measured data, from the voxel data and the latest measured data in the map DB 20.
- Voxel data such as an average vector and a covariance matrix is calculated, and the voxel data in the map DB 20 is updated with the calculated voxel data.
- the control unit 25 performs, for example, weighted averaging based on the second weight value, so that the voxel data for updating is weighted so that the voxel data with higher accuracy indicated by the second weight value becomes larger. calculate.
- step S101 when the difference calculated in step S101 is larger than the predetermined threshold (step S102; No), the control unit 25 determines that the point group indicated by the latest measurement data is the measurement position than the point group indicated by the voxel data in the map DB 20. It is determined whether or not it exists far from (that is, the position on the road) (step S104). For example, in this case, the control unit 25 specifies the measurement position based on the position information included in the upload information Iu, and the point group (for example, the average vector) indicated by the latest measurement data for the measurement position is the voxel data in the map DB 20. It is determined whether or not it exists farther than the point cloud indicated by (for example, average vector).
- the control unit 25 specifies the measurement position based on the position information included in the upload information Iu, and the point group (for example, the average vector) indicated by the latest measurement data for the measurement position is the voxel data in the map DB 20. It is determined whether or not it exists farther than the point cloud
- Step S104 when the point cloud indicated by the latest measurement data exists farther than the point cloud indicated by the voxel data of the map DB 20 (Step S104; Yes), the control unit 25 updates the map DB 20 based on the latest measurement data (Step S104). S105). In this case, the control unit 25 determines that there is a high possibility that the occlusion generated in the point cloud data used for generating the voxel data registered in the map DB 20 did not occur during the current measurement, and the target voxel The voxel data in the map DB 20 is updated with the voxel data calculated based on the latest measurement data.
- step S104 when the point cloud indicated by the latest measurement data does not exist farther than the point cloud indicated by the voxel data in the map DB 20 (step S104; No), the control unit 25 determines that the point cloud indicated by the latest measurement data is the voxel in the map DB 20. It is determined whether or not the data is present closer to the point cloud (step S106). For example, in this case, as in step S104, the control unit 25 determines whether or not the point group indicated by the latest measurement data is closer to the point group indicated by the voxel data in the map DB 20 within the target voxel or between voxels. Judge with.
- step S104 when the control unit 25 determines in step S104 that the point cloud indicated by the latest measurement data does not exist farther than the point cloud indicated by the voxel data in the map DB 20, the point cloud indicated by the latest measurement data becomes the map DB 20 It may be automatically determined that it exists closer to the point cloud indicated by the voxel data.
- the control unit 25 When the point cloud indicated by the latest measurement data is present closer to the point cloud indicated by the voxel data in the map DB 20 (step S106; Yes), the control unit 25 first weights the voxel data in the target map DB 20. The value is lowered (step S107). In this case, the control unit 25 may have generated an occlusion that did not occur during the previous measurement during the current measurement, and verifies whether it is a new stationary object or a moving object based on a plurality of measurement data separated by date and time. It judges that it is necessary, and lowers the first weighting value of the voxel data in the map DB 20 of the target voxel. When the control unit 25 determines that a new stationary object has occurred in the target voxel based on further measurement or the like, the control unit 25 updates the map DB 20 based on the latest measurement data as in step S105.
- FIG. 5 (A) is a diagram schematically showing the surroundings of the road 31 and the measured point cloud when the measurement vehicle first travels on the road 31.
- stationary structures 32 to 34 exist, and a parked vehicle 37 exists in the vicinity of the stationary structure 32.
- Dashed lines 42A, 43A, 44A, and 47A indicate the positions of the point groups measured by the lidar 2 at a predetermined height.
- occlusion by the parked vehicle 37 occurs, and one side surface of the stationary structure 32 is not measured by the lidar 2.
- the control unit 25 generates voxel data of voxels around the road 31 based on the upload information Iu generated when the measurement vehicle first travels on the road 31 and registers it in the map DB 20.
- FIG. 5 (B) is a diagram schematically showing the surroundings of the road 31 and the measured point cloud when the measurement vehicle travels on the road 31 for the second time.
- dotted lines 42B, 43B, 44B, and 48B indicate the positions of the point groups measured by the lidar 2 at a predetermined height.
- another parked vehicle 38 is present in the vicinity of the stationary structures 33 and 34 instead of the parked vehicle 37 present at the time of the first measurement.
- the occlusion by the parked vehicle 38 occurs, and some of the stationary structures 33 and 34 measured at the time of the first measurement are not measured by the lidar 2.
- FIG. 6 is a diagram in which the point cloud measured for the first time and the point cloud measured for the second time are superimposed.
- the frame 50 encloses a point group obtained by the second measurement of the stationary structure 32 that was not measured by the first measurement.
- the frame 51 surrounds a point group obtained by the first measurement of the stationary structure 33 that was not measured in the second measurement, and the frame 52 is a stationary structure that was not measured in the second measurement.
- the point cloud by 34 1st measurement is enclosed.
- the control unit 25 performs step S102 in FIG.
- the difference between the voxel data in the map DB 20 and the latest measurement data is determined to be equal to or less than the threshold. Therefore, in this case, the control unit 25 increases the first weighting value of these voxels (see step S103).
- the control unit 25 determines the point group indicated by the latest measurement data. It is determined whether or not the object exists farther from the measurement position than the point cloud indicated by the voxel data in the map DB 20 (see step S104). In this case, for example, the control unit 25 determines that the point group in the dotted line 42B in the frame 50 exists farther than the point group indicated by the broken line 47A. Therefore, in this case, the control unit 25 updates the map DB 20 based on the latest measurement data indicating the point group in the dotted line 42B in the frame 50 (see step S105).
- step S106 the control unit 25 determines that the point cloud indicated by the latest measurement data is closer to the measurement position for the voxel including the point cloud indicated by the dotted line 48B. Therefore, in this case, the control unit 25 lowers the first weighting value for the voxel including the point group indicated by the broken lines 43A and 44A in the frames 51 and 52 based on step S107.
- T x indicates the amount of movement in the x direction
- t y indicates the amount of movement in the y direction
- ⁇ indicates the rotation angle (ie, yaw angle) in the xy plane.
- the vertical movement amount, pitch angle, and roll angle are small enough to be ignored, although they are caused by road gradients and vibrations.
- the general vehicle uses the coordinate-converted point group, the average vector ⁇ k and the covariance matrix V k included in the voxel data, and evaluates the voxel k expressed by the following equation (4).
- a comprehensive evaluation function “E” (also referred to as “total evaluation function”) for all voxels to be matched indicated by the function “E k ” and Expression (5) is calculated.
- “M” indicates the number of voxels to be matched
- “w k ” indicates a first weighting value for voxel k
- “ k 2 ” indicates a second weighting value for voxel k.
- the evaluation function E k becomes a larger value as the first weighting value w k is larger and the second weighting value 1 / ⁇ k 2 is larger.
- the coordinates of the point cloud data obtained by the lidar are relative coordinates with respect to the vehicle position, and the average vector of the voxel data is an absolute coordinate. Therefore, when calculating the equation (4), for example, by the lidar The coordinates of the obtained point cloud data are converted based on the vehicle position predicted from the output of the GPS receiver or the like.
- the general vehicle uses the first weighting value w k and the second weighting value 1 / ⁇ k 2 , so that each voxel
- weighting is performed according to the reliability of each voxel data (average vector, covariance matrix).
- the general vehicle relatively reduces the weighting of the evaluation function E k of the voxel with low reliability, and suitably improves the position estimation accuracy by NDT matching.
- the general vehicle calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method. Then, the general vehicle estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver or the like.
- FIG. 7A shows the point groups measured by the measuring vehicle in four adjacent voxels “B1” to “B4” with circles, and based on these point groups, Expressions (1) and (2) It is the figure which showed the two-dimensional normal distribution created from the above by gradation.
- the average and variance of the normal distribution shown in FIG. 7A correspond to the average vector and covariance matrix in the voxel data, respectively.
- FIG. 7B is a diagram showing the point cloud acquired by the lidar 2 while the general vehicle is traveling in FIG.
- the position of the lidar point cloud indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 5 or the like.
- FIG. 7C is a diagram illustrating a state after the point cloud (star) acquired by the general vehicle is moved based on the matching result of the NDT scan matching.
- a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 7 (A) and (B).
- the calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement vehicle and the point cloud (star) acquired by the general vehicle is suitably reduced.
- a first weighting value and a second weighting value are set for each voxel. Therefore, it is possible to increase the degree of matching of voxels by increasing the weighting of voxels with high reliability.
- the first weighting value is set for each voxel.
- FIG. 8A is a diagram showing a matching result when the first weight values for voxels B1 to B4 are all equal (that is, the same diagram as FIG. 7C).
- FIG. 8B is a diagram showing a matching result when the first weighting value of the voxel B1 is 10 times the weighting value of the other voxels.
- FIG. 8C is a diagram showing a matching result when the first weighting value of the voxel B3 is set to 10 times the weighting values of the other voxels. In any example, it is assumed that the second weighting values are all set to the same value.
- the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
- E1 0.3720
- E2 0.0350
- E3 0.0379
- E4 0.0373
- E 0.4823
- the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
- E1 0.0368
- E2 0.0341
- E3 0.3822
- E4 0.0365
- E 0.4896
- the degree of matching for voxels with low possibility of occurrence of occlusion is preferably increased, in other words, the degree of matching for voxels with high possibility of occurrence of occlusion is preferable. Can be lowered.
- the server device 200 calculates the average vector, covariance matrix, first weight value, second weight value, and the like for each voxel that is preferably used for the above-described NDT matching based on the update information Iu. It can be suitably updated.
- the server apparatus 200 uses the map DB 20 in which voxel data including at least the first weight value in addition to the average vector and covariance matrix of the point cloud for each voxel is recorded for each voxel.
- the server apparatus 200 acquires the upload information Iu containing the point cloud data which the measurement vehicle measured.
- the server apparatus 200 raises the 1st weighting value with respect to the voxel from which the difference of the latest measurement data divided
- the server apparatus 200 increases the first weighting value for the voxel in which the measurement result similar to the latest measurement data is recorded in the map DB 20, and can relatively increase the matching degree for the voxel. it can.
- the first weighting value and the second weighting value are recorded in the voxel data included in the map DB 20 as reliability information. Instead, only the first weight value may be recorded in the voxel data. In this case, the server device 200 determines or updates the first weighting value for each voxel based on the upload information Iu.
- the voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG.
- the voxel data may include point cloud data measured by a measurement vehicle used when calculating an average vector and a covariance matrix.
- the voxel data generated or updated by the server apparatus 200 is not limited to a case where only scan matching by NDT is targeted, and is voxel data for use in other scan matching such as ICP (Iterative Closest Point). Also good.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Educational Technology (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Computer Graphics (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
A server device 200 is a map generation device which assigns, to voxel data in a map DB 20 which is divided into a plurality of voxels, a first weighting value for each voxel, said first weighting value being associated with the presence of moving objects and stationary objects. The server device 200 acquires upload information Iu including position information related to a travel route of a measurement vehicle during measurement of point group data required for generating or updating the voxel data. The server device 200 determines the first weighting value for each voxel, on the basis of the travel route of the measurement vehicle, said travel route having been identified on the basis of the upload information Iu.
Description
本発明は、地図を生成する技術に関する。
The present invention relates to a technology for generating a map.
従来から、車両に設置されたセンサの出力に基づき地図データを更新する技術が知られている。例えば、特許文献1には、移動体の位置と地図データ上の移動体の走行位置との差分を表す差分情報と位置情報とを対応付けて差分データベースに格納し、位置情報毎に、差分データベースに格納された位置情報に対応する差分情報に基づいて、位置情報に対応する地図データを更新するか否かを表す情報を設定するように構成した地図データ更新システムが開示されている。
Conventionally, a technique for updating map data based on the output of a sensor installed in a vehicle is known. For example, Patent Document 1 discloses that difference information representing a difference between a position of a moving object and a traveling position of the moving object on map data is associated with the position information and stored in the difference database. A map data update system configured to set information indicating whether or not to update the map data corresponding to the position information based on the difference information corresponding to the position information stored in is disclosed.
自動運転等を目的とした地図データには、道路周辺の静止構造物の詳細な位置を把握するために測距センサなどにより計測した点群の情報が記憶される場合がある。特許文献1には、地図データに記憶された点群の情報をどのように更新するかについて、何ら開示されていない。
In the map data for the purpose of automatic driving or the like, there is a case where information of a point cloud measured by a distance measuring sensor or the like is stored in order to grasp a detailed position of a stationary structure around the road. Patent Document 1 does not disclose how to update the information of the point cloud stored in the map data.
本発明は、上記のような課題を解決するためになされたものであり、点群情報を含む地図を好適に更新することが可能な更新装置を提供することを主な目的とする。
The present invention has been made to solve the above-described problems, and has as its main object to provide an update device that can suitably update a map including point cloud information.
請求項1に記載の発明は、更新装置であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部と、を備える。
The invention according to claim 1 is an update device, wherein a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions, which is measured by a measurement unit, and a plurality of regions A second acquisition of map information in which the second point group information based on one or a plurality of position information and the weighting value based on the reliability of the second point group information are recorded for each of the plurality of regions And an updating unit that updates the weighting value so as to increase the weighting for a region in which the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. .
請求項7に記載の発明は、更新装置が実行する制御方法であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得工程と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得工程と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新工程と、を有する。
The invention according to claim 7 is a control method executed by the updating device, wherein a first acquisition step of acquiring first point cloud information relating to respective distances from the reference position to a plurality of positions measured by the measurement unit. And map information in which the second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of areas. A second acquisition step to be acquired, and an update for updating the weighting value so as to increase weighting for a region in which a difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. And a process.
請求項8に記載の発明は、コンピュータが実行するプログラムであって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部として前記コンピュータを機能させる。
The invention according to claim 8 is a program executed by a computer, wherein the first acquisition unit acquires first point group information about each distance from a reference position to a plurality of positions measured by the measurement unit; Obtained is map information that is divided into a plurality of regions, and second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of regions. As an update unit that updates the weighting value so as to increase the weighting of the second acquisition unit and a region in which the difference between the first point group information and the second point group information is a predetermined value or less among the plurality of regions. Make the computer function.
本発明の好適な実施形態によれば、更新装置は、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部と、を備える。この態様によれば、更新装置は、第1点群情報と第2点群情報とが近似する領域については信頼度が高いとみなして当該領域の重み付けを上げるように重み付け値を更新する。これにより、更新装置は、地図情報に含まれる重み付け値を適切に更新することができる。
According to a preferred embodiment of the present invention, the update device includes a first acquisition unit that acquires first point cloud information about each distance from a reference position to a plurality of positions, measured by the measurement unit, and a plurality of regions. A second acquisition of map information in which the second point group information based on one or a plurality of position information and the weighting value based on the reliability of the second point group information are recorded for each of the plurality of regions And an updating unit that updates the weighting value so as to increase the weighting for a region in which the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. . According to this aspect, the updating device regards a region in which the first point group information and the second point group information are approximated as having high reliability, and updates the weight value so as to increase the weight of the region. Thereby, the update apparatus can update the weighting value contained in map information appropriately.
上記更新装置の一態様では、前記更新部は、前記計測部の精度を示す精度情報に基づき、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する前記第2点群情報を更新する。この態様により、更新装置は、好適に地図情報に含まれる第2点群情報の精度を高めることができる。
In one aspect of the updating device, the updating unit is configured to perform the first operation on a region where a difference between the first point group information and the second point group information is a predetermined value or less based on accuracy information indicating the accuracy of the measuring unit. Update the two-point cloud information. According to this aspect, the update device can preferably improve the accuracy of the second point cloud information included in the map information.
上記更新装置の他の一態様では、前記地図情報には、前記第2点群情報の計測精度に関する精度情報がさらに含まれ、前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対し、前記第1点群情報が前記第2点群情報より精度が高い場合に、前記第1点群情報に基づき前記第2点群情報を更新する、又は、前記第1点群情報と前記第2点群情報とを精度に基づき重み付け平均することで、前記第2点群情報を更新する。この態様により、更新装置は、精度情報に基づき、第2点群情報の精度が高まるように好適に地図情報を更新することができる。
In another aspect of the updating device, the map information further includes accuracy information related to measurement accuracy of the second point cloud information, and the updating unit includes the first point cloud information and the second point cloud. The second point cloud information is updated based on the first point cloud information when the accuracy of the first point cloud information is higher than that of the second point cloud information for an area where the difference in information is a predetermined value or less. Alternatively, the second point group information is updated by weighted averaging the first point group information and the second point group information based on accuracy. According to this aspect, the update device can suitably update the map information based on the accuracy information so that the accuracy of the second point cloud information is increased.
上記更新装置の他の一態様では、前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値より大きい領域の前記第1点群情報が示す位置が、対応する前記第2点群情報が示す位置よりも計測位置に対して遠い場合、当該第1点群情報により前記地図情報を更新する。この場合、更新装置は、第1点群情報を、第2点群情報の計測時にはオクルージョンにより計測されなかった情報とみなし、第1点群情報により地図情報を更新する。これにより、第2点群情報の計測時に計測されなかった静止構造物の点群情報を、地図情報に好適に付加することができる。
In another aspect of the updating apparatus, the updating unit corresponds to a position indicated by the first point group information in a region where a difference between the first point group information and the second point group information is greater than a predetermined value. When it is farther from the measurement position than the position indicated by the second point group information, the map information is updated with the first point group information. In this case, the update device regards the first point cloud information as information that has not been measured by occlusion when measuring the second point cloud information, and updates the map information with the first point cloud information. Thereby, the point group information of the stationary structure that was not measured at the time of measuring the second point group information can be suitably added to the map information.
上記更新装置の他の一態様では、前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値より大きい領域の前記第1点群情報が示す位置が、対応する前記第2点群情報が示す位置よりも計測位置に対して近い場合、当該第2点群情報が示す位置の領域に対する重み付けを下げるように前記重み付け値を更新する。この態様では、更新装置は、オクルージョンが発生した可能性がある領域に対する重み付けを小さくするように好適に重み付け値を更新することができる。
In another aspect of the updating apparatus, the updating unit corresponds to a position indicated by the first point group information in a region where a difference between the first point group information and the second point group information is greater than a predetermined value. When the position is closer to the measurement position than the position indicated by the second point group information, the weight value is updated so as to reduce the weight for the region of the position indicated by the second point group information. In this aspect, the updating device can preferably update the weighting value so as to reduce the weighting for the region where the occlusion may occur.
上記更新装置の他の一態様では、前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値以下か否かを、前記第1点群情報及び前記第2点群情報の各々の平均又は/及び分散に基づき判定する。この態様により、更新装置は、第1点群情報と第2点群情報との類比判定を好適に行うことができる。
In another aspect of the updating device, the updating unit determines whether or not a difference between the first point group information and the second point group information is equal to or less than a predetermined value, the first point group information and the second point point. A determination is made based on the average or / and variance of each group information. According to this aspect, the update device can suitably perform an analogy determination between the first point group information and the second point group information.
本発明の他の好適な実施形態によれば、更新装置が実行する制御方法であって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得工程と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得工程と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新工程と、を有する。更新装置は、この制御方法を実行することで、地図情報に含まれる重み付け値を適切に更新することができる。
According to another preferred embodiment of the present invention, the control method is executed by the updating device, and first point cloud information relating to each distance from the reference position to a plurality of positions, which is measured by the measurement unit, is acquired. The first acquisition step is divided into a plurality of areas, and the second point group information based on one or a plurality of position information and the weighting value based on the reliability of the second point group information are recorded for each of the plurality of areas. The second acquisition step of acquiring the map information, and the weighting value so as to increase the weighting of the plurality of regions where the difference between the first point cloud information and the second point cloud information is a predetermined value or less. And an update process for updating. The update device can appropriately update the weighting value included in the map information by executing this control method.
本発明のさらに別の好適な実施形態によれば、コンピュータが実行するプログラムであって、計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部として前記コンピュータを機能させる。コンピュータは、このプログラムを実行することで、地図情報に含まれる重み付け値を適切に更新することができる。好適には、上記プログラムは、記憶媒体に記憶される。
According to still another preferred embodiment of the present invention, there is provided a program executed by a computer for acquiring first point cloud information about each distance from a reference position to a plurality of positions, which is measured by a measurement unit. One acquisition unit and a plurality of areas, and the second point group information based on one or a plurality of position information and a weighting value based on the reliability of the second point group information are recorded for each of the plurality of areas. A second acquisition unit for acquiring map information; and the weighting value is set so as to increase weighting for an area in which a difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of areas. The computer is caused to function as an updating unit for updating. The computer can appropriately update the weighting value included in the map information by executing this program. Preferably, the program is stored in a storage medium.
以下、図面を参照して本発明の好適な実施例について説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[システム概要]
図1は、本実施例に係る地図生成システムの概略構成図である。図1に示す地図生成システムは、自動運転等に必要な道路周辺の地物の位置情報を生成するためのシステムであり、主に、計測車両に搭載される計測ユニット100と、サーバ装置200とを有する。 [System Overview]
FIG. 1 is a schematic configuration diagram of a map generation system according to the present embodiment. The map generation system shown in FIG. 1 is a system for generating position information of features around a road necessary for automatic driving or the like, and mainly includes ameasurement unit 100 mounted on a measurement vehicle, a server device 200, Have
図1は、本実施例に係る地図生成システムの概略構成図である。図1に示す地図生成システムは、自動運転等に必要な道路周辺の地物の位置情報を生成するためのシステムであり、主に、計測車両に搭載される計測ユニット100と、サーバ装置200とを有する。 [System Overview]
FIG. 1 is a schematic configuration diagram of a map generation system according to the present embodiment. The map generation system shown in FIG. 1 is a system for generating position information of features around a road necessary for automatic driving or the like, and mainly includes a
計測ユニット100は、高精度な3D点群データを生成するシステムであり、主に車載機1と、ライダ(Lidar:Light Detection and Ranging、または、Laser Illuminated Detection And Ranging)2と、RTK-GPS3と、IMU(Inertial Measurement Unit)4とを有する。
The measurement unit 100 is a system that generates highly accurate 3D point cloud data. The measurement unit 100 mainly includes an in-vehicle device 1, a lidar (Lida: Light Detection and Ranging, or Laser Illuminated Detection And Ranging) 2, an RTK-GPS3, and the like. , IMU (Internal Measurement Unit) 4.
ライダ2は、水平方向および垂直方向の所定の角度範囲に対してパルスレーザを出射することで、外界に存在する物体までの距離を離散的に計測し、当該物体の位置を示す3次元の点群情報を生成する。この場合、ライダ2は、照射方向を変えながらレーザ光を照射する照射部と、照射したレーザ光の反射光(散乱光)を受光する受光部と、受光部が出力する受光信号に基づくスキャンデータを出力する出力部とを有する。スキャンデータは、受光部が受光したレーザ光に対応する照射方向と、上述の受光信号に基づき特定される当該レーザ光の応答遅延時間とに基づき生成される。一般的に、対象物までの距離が近いほどライダの距離計測値の精度は高く、距離が遠いほど精度は低い。
The lidar 2 emits a pulse laser in a predetermined angular range in the horizontal direction and the vertical direction, thereby discretely measuring the distance to an object existing in the outside world and indicating a three-dimensional point indicating the position of the object Generate group information. In this case, the lidar 2 includes an irradiation unit that emits laser light while changing the irradiation direction, a light receiving unit that receives reflected light (scattered light) of the irradiated laser light, and scan data based on a light reception signal output by the light receiving unit. Output unit. The scan data is generated based on the irradiation direction corresponding to the laser beam received by the light receiving unit and the response delay time of the laser beam specified based on the above-described received light signal. Generally, the accuracy of the distance measurement value of the lidar is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer.
RTK-GPS3は、RTK測位方式(即ち干渉測位方式)に基づき計測車両の絶対的な位置(例えば緯度、経度、及び高度の3次元位置)を示す高精度な位置情報を生成する。RTK-GPS3は、生成した位置情報と、当該位置情報の精度(正確性)に関する情報(「位置精度情報」とも呼ぶ。)を、車載機1へ出力する。IMU(慣性計測装置)4は、3軸方向における計測車両の加速度及び角速度(又は角度)を、車載機1へ出力する。
RTK-GPS3 generates highly accurate position information indicating the absolute position (for example, the three-dimensional position of latitude, longitude, and altitude) of the measurement vehicle based on the RTK positioning method (that is, the interference positioning method). The RTK-GPS 3 outputs the generated position information and information on the accuracy (accuracy) of the position information (also referred to as “position accuracy information”) to the in-vehicle device 1. The IMU (inertial measurement device) 4 outputs the acceleration and angular velocity (or angle) of the measurement vehicle in the three-axis directions to the in-vehicle device 1.
車載機1は、RTK-GPS3から供給される出力に基づき、計測車両の絶対的な位置及び方位を特定し、ライダ2が検知した点群の各点について、計測車両の位置及び向きに依存した相対的な3次元位置情報から絶対的な3次元位置情報を算出する。なお、計測車両の絶対的な位置及び方位は、RTK-GPS3からの出力に加え、IMU4の出力に基づいて特定するようにしてもよい。そして、車載機1は、算出した3次元点群データを、RTK-GPS3が出力した計測時の計測車両の位置情報及び位置精度情報と共に、アップロード情報「Iu」として、サーバ装置200へ供給する。この場合、車載機1は、アップロード情報Iuを無線通信により即時にサーバ装置200へ送信してもよく、サーバ装置200が後で読取り可能な記憶媒体等に蓄積してもよい。アップロード情報Iuに含まれる点群データは、本発明における「第1点群情報」の一例である。
The in-vehicle device 1 specifies the absolute position and orientation of the measurement vehicle based on the output supplied from the RTK-GPS 3 and depends on the position and orientation of the measurement vehicle for each point in the point cloud detected by the lidar 2. Absolute 3D position information is calculated from relative 3D position information. Note that the absolute position and direction of the measurement vehicle may be specified based on the output of the IMU 4 in addition to the output from the RTK-GPS 3. The in-vehicle device 1 supplies the calculated three-dimensional point cloud data to the server device 200 as upload information “Iu” together with the position information and position accuracy information of the measurement vehicle at the time of measurement output from the RTK-GPS 3. In this case, the in-vehicle device 1 may immediately transmit the upload information Iu to the server device 200 by wireless communication, or may store it in a storage medium or the like that can be read later by the server device 200. The point cloud data included in the upload information Iu is an example of “first point cloud information” in the present invention.
サーバ装置200は、車載機1から取得したアップロード情報Iuを記憶し、記憶したアップロード情報Iuに基づき地図DB(DB:DataBase)20を更新する。ここで、地図DB20には、3次元空間を複数の領域に分割した場合の各領域(「ボクセル」とも呼ぶ。)ごとに静止構造物の位置情報等を記録したデータであるボクセルデータが含まれている。ボクセルデータは、各ボクセル内の静止構造物の計測された点群データを正規分布により表したデータを含み、後述するように、NDT(Normal Distributions Transform)を用いたスキャンマッチングに用いられる。サーバ装置200は、後述するように、アップロード情報Iuに基づき、計測車両の計測範囲内となるボクセルに対応するボクセルデータの更新(生成も含む)を行う。サーバ装置200は、本発明における「更新装置」の一例であり、ボクセルデータは、本発明における「地図情報」の一例である。
The server device 200 stores the upload information Iu acquired from the in-vehicle device 1 and updates a map DB (DB: DataBase) 20 based on the stored upload information Iu. Here, the map DB 20 includes voxel data which is data in which position information of a stationary structure is recorded for each region (also referred to as “voxel”) when the three-dimensional space is divided into a plurality of regions. ing. The voxel data includes data representing point cloud data measured for stationary structures in each voxel by a normal distribution, and is used for scan matching using NDT (Normal Distributions Transform) as will be described later. As will be described later, the server device 200 updates (including generation) voxel data corresponding to voxels within the measurement range of the measurement vehicle based on the upload information Iu. The server device 200 is an example of the “update device” in the present invention, and the voxel data is an example of “map information” in the present invention.
図2(A)は、車載機1の機能的構成を示すブロック図である。車載機1は、主に、インターフェース11と、記憶部12と、入力部14と、制御部15と、情報出力部16と、を有する。これらの各要素は、バスラインを介して相互に接続されている。
FIG. 2A is a block diagram showing a functional configuration of the in-vehicle device 1. The in-vehicle device 1 mainly includes an interface 11, a storage unit 12, an input unit 14, a control unit 15, and an information output unit 16. Each of these elements is connected to each other via a bus line.
インターフェース11は、ライダ2、RTK-GPS3、及びIMU4などのセンサから出力データを取得し、制御部15へ供給する。記憶部12は、制御部15が実行するプログラムや、制御部15が所定の処理を実行するのに必要な情報を記憶する。入力部14は、ユーザが操作するためのボタン、タッチパネル、リモートコントローラ、音声入力装置等である。情報出力部16は、例えば、制御部15の制御に基づき出力を行うディスプレイやスピーカ等である。制御部15は、プログラムを実行するCPUなどを含み、車載機1の全体を制御する。
The interface 11 acquires output data from sensors such as the lidar 2, the RTK-GPS 3, and the IMU 4, and supplies the output data to the control unit 15. The storage unit 12 stores a program executed by the control unit 15 and information necessary for the control unit 15 to execute a predetermined process. The input unit 14 is a button, a touch panel, a remote controller, a voice input device, or the like for a user to operate. The information output unit 16 is, for example, a display or a speaker that outputs based on the control of the control unit 15. The control unit 15 includes a CPU that executes a program, and controls the entire vehicle-mounted device 1.
図2(B)は、サーバ装置200の機能的構成を示すブロック図である。サーバ装置200は、インターフェース21と、記憶部22と、制御部25と、を有する。
FIG. 2B is a block diagram illustrating a functional configuration of the server apparatus 200. The server device 200 includes an interface 21, a storage unit 22, and a control unit 25.
インターフェース21は、制御部25の制御に基づき、車載機1が生成したアップロード情報Iuを取得する。インターフェース21は、車載機1と無線通信を行うためのワイヤレスインターフェースであってもよく、アップロード情報Iuを記憶した記憶媒体等からアップロード情報Iuを読み出すためのハードウェアインターフェースであってもよい。
The interface 21 acquires the upload information Iu generated by the in-vehicle device 1 based on the control of the control unit 25. The interface 21 may be a wireless interface for performing wireless communication with the in-vehicle device 1 or a hardware interface for reading the upload information Iu from a storage medium or the like that stores the upload information Iu.
記憶部22は、制御部25が所定の処理を実行するためのプログラム及び制御部25の処理に必要な情報を記憶する。本実施例では、記憶部22は、制御部25の制御に基づき、インターフェース21が取得したアップロード情報Iuを記憶する。また、記憶部22は、アップロード情報Iuによって更新されるボクセルデータを含む地図DB20を記憶する。
The storage unit 22 stores a program for the control unit 25 to execute a predetermined process and information necessary for the process of the control unit 25. In the present embodiment, the storage unit 22 stores the upload information Iu acquired by the interface 21 based on the control of the control unit 25. In addition, the storage unit 22 stores a map DB 20 including voxel data updated by the upload information Iu.
制御部25は、記憶部22等に記憶されたプログラムなどを実行し、サーバ装置200の全体を制御する。本実施例では、制御部25は、インターフェース21を介してアップロード情報Iuを取得し、記憶部22に記憶させる。その後、制御部25は、記憶部22が記憶するアップロード情報Iuに基づき、地図DB20のボクセルデータを更新する。制御部25は、本発明における「第1取得部」、「第2取得部」、「更新部」、及びプログラムを実行する「コンピュータ」の一例である。
The control unit 25 executes a program or the like stored in the storage unit 22 or the like, and controls the entire server device 200. In the present embodiment, the control unit 25 acquires the upload information Iu via the interface 21 and stores it in the storage unit 22. Thereafter, the control unit 25 updates the voxel data in the map DB 20 based on the upload information Iu stored in the storage unit 22. The control unit 25 is an example of a “first acquisition unit”, a “second acquisition unit”, an “update unit”, and a “computer” that executes a program in the present invention.
[ボクセルデータのデータ構造]
次に、NDTに基づくスキャンマッチングに用いられるボクセルデータについて説明する。図3は、ボクセルデータの概略的なデータ構造の一例を示す。 [Data structure of voxel data]
Next, voxel data used for scan matching based on NDT will be described. FIG. 3 shows an example of a schematic data structure of voxel data.
次に、NDTに基づくスキャンマッチングに用いられるボクセルデータについて説明する。図3は、ボクセルデータの概略的なデータ構造の一例を示す。 [Data structure of voxel data]
Next, voxel data used for scan matching based on NDT will be described. FIG. 3 shows an example of a schematic data structure of voxel data.
ボクセルデータは、ボクセル内の点群を正規分布で表現する場合のパラメータの情報を含み、本実施例では、図3に示すように、ボクセルIDと、ボクセル座標と、平均ベクトルと、共分散行列と、点群数情報と、信頼度情報とを含む。ここで、「ボクセル座標」は、各ボクセルの中心位置などの基準となる位置の絶対的な3次元座標を示す。なお、各ボクセルは、空間を格子状に分割した立方体であり、予め形状及び大きさが定められているため、ボクセル座標により各ボクセルの空間を特定することが可能である。ボクセル座標は、ボクセルIDとして用いられてもよい。
The voxel data includes parameter information when the point group in the voxel is expressed by a normal distribution. In this embodiment, as shown in FIG. 3, the voxel ID, voxel coordinates, average vector, and covariance matrix are used. , Point cloud number information, and reliability information. Here, “voxel coordinates” indicate absolute three-dimensional coordinates of a reference position such as the center position of each voxel. Each voxel is a cube obtained by dividing the space into a lattice shape, and since the shape and size are determined in advance, the space of each voxel can be specified by the voxel coordinates. The voxel coordinates may be used as a voxel ID.
「平均ベクトル」及び「共分散行列」は、対象のボクセル内での点群を正規分布で表現する場合のパラメータに相当する平均ベクトル及び共分散行列を示し、任意のボクセル「k」内の任意の点「i」の座標を
“Average vector” and “covariance matrix” indicate an average vector and a covariance matrix corresponding to parameters when a point group in the target voxel is expressed by a normal distribution, and an arbitrary vector in any voxel “k” The coordinates of the point "i"
「点群数情報」は、対応する平均ベクトル及び共分散行列の算出に用いた点群の数を示す情報である。点群数情報は、具体的な点群の数を示す情報であってもよく、点群数のレベル(例えば、大、中、小など)を示す情報であってもよい。
“Point cloud number information” is information indicating the number of point clouds used to calculate the corresponding mean vector and covariance matrix. The point group number information may be information indicating the number of specific point groups, or information indicating the level of the number of point groups (for example, large, medium, small, etc.).
「信頼度情報」は、オクルージョン(障害物による遮蔽)の可能性に基づく重み付け値である第1重み付け値と、対象のボクセルのボクセルデータ(特に平均ベクトル及び共分散行列)の精度に基づく重み付け値である第2重み付け値とを含んでいる。第2重み付け値は、後述するように、計測車両の計測時での位置精度と、ライダ2の計測精度とに基づき設定される。本実施例では、第1重み付け値は、オクルージョンが生じにくいボクセルほど大きい値に設定され、第2重み付け値は、データの精度が高いボクセルほど大きい値に設定されるものとする。第1重み付け値及び第2重み付け値の具体的な設定方法については、後述する。第1重み付け値は、本発明における「重み付け値」の一例である。第2重み付け値は、本発明における「精度情報」の一例である。
The “reliability information” is a weighting value based on the first weighting value that is a weighting value based on the possibility of occlusion (occlusion by an obstacle) and the accuracy of the voxel data (particularly the mean vector and covariance matrix) of the target voxel. And a second weighting value. As will be described later, the second weighting value is set based on the position accuracy at the time of measurement of the measurement vehicle and the measurement accuracy of the lidar 2. In the present embodiment, it is assumed that the first weighting value is set to a larger value as the voxel is less likely to cause occlusion, and the second weighting value is set to a larger value as the data accuracy is higher. A specific method for setting the first weight value and the second weight value will be described later. The first weighting value is an example of the “weighting value” in the present invention. The second weighting value is an example of “accuracy information” in the present invention.
[ボクセルデータの更新]
次に、アップロード情報Iuに基づく地図DB20のボクセルデータの更新処理について説明する。サーバ装置200の制御部25は、車載機1から供給されたアップロード情報Iuに含まれる点群データ(以下では「最新計測データ」とも呼ぶ。)をボクセルごとに分割し、最新計測データを含む各ボクセルに対し、ボクセルデータが既に存在するか否か判定する。 [Update voxel data]
Next, a process for updating voxel data in themap DB 20 based on the upload information Iu will be described. The control unit 25 of the server device 200 divides point cloud data (hereinafter also referred to as “latest measurement data”) included in the upload information Iu supplied from the in-vehicle device 1 for each voxel, and includes each of the latest measurement data. It is determined whether voxel data already exists for the voxel.
次に、アップロード情報Iuに基づく地図DB20のボクセルデータの更新処理について説明する。サーバ装置200の制御部25は、車載機1から供給されたアップロード情報Iuに含まれる点群データ(以下では「最新計測データ」とも呼ぶ。)をボクセルごとに分割し、最新計測データを含む各ボクセルに対し、ボクセルデータが既に存在するか否か判定する。 [Update voxel data]
Next, a process for updating voxel data in the
(1)ボクセルデータが存在しない場合
制御部25は、対象のボクセルに対するボクセルデータが存在しない場合には、最新計測データを含むアップロード情報Iuに基づき対象のボクセルに対するボクセルデータを生成する。この場合、制御部25は、対象のボクセルに対し、最新計測データに基づきNDTのデータ(即ち平均ベクトル、共分散行列等)を生成すると共に、後述するように第1重み付け値及び第2重み付け値を決定する。 (1) When there is no voxel data When the voxel data for the target voxel does not exist, thecontrol unit 25 generates voxel data for the target voxel based on the upload information Iu including the latest measurement data. In this case, the control unit 25 generates NDT data (that is, an average vector, a covariance matrix, and the like) for the target voxel based on the latest measurement data, and the first weighting value and the second weighting value as described later. To decide.
制御部25は、対象のボクセルに対するボクセルデータが存在しない場合には、最新計測データを含むアップロード情報Iuに基づき対象のボクセルに対するボクセルデータを生成する。この場合、制御部25は、対象のボクセルに対し、最新計測データに基づきNDTのデータ(即ち平均ベクトル、共分散行列等)を生成すると共に、後述するように第1重み付け値及び第2重み付け値を決定する。 (1) When there is no voxel data When the voxel data for the target voxel does not exist, the
この場合、例えば、制御部25は、各ボクセルが位置する高さ(即ち高度)に基づき第1重み付け値を設定する。具体的には、制御部25は、各ボクセルの高度が高いほど、オクルージョンが発生する可能性が低いと判断し、第1重み付け値を大きくする。これにより、制御部25は、オクルージョンの可能性を的確に反映した第1重み付け値を、各ボクセルに対して設定することが可能となる。
In this case, for example, the control unit 25 sets the first weighting value based on the height (that is, altitude) at which each voxel is located. Specifically, the control unit 25 determines that the higher the altitude of each voxel is, the lower the possibility of occurrence of occlusion, and increases the first weighting value. Thereby, the control unit 25 can set the first weighting value that accurately reflects the possibility of occlusion for each voxel.
また、制御部25は、第2重み付け値を、計測車両の計測時での位置精度と、ライダ2の計測精度とに基づき設定する。ここで、アップロード情報Iuには、ボクセルデータの生成に用いる点群データと共に、RTK-GPS3に基づく位置情報及び位置精度情報が含まれている。制御部25は、アップロード情報Iuに含まれる位置精度情報に基づき、各ボクセルの第2重み付け値の算出に用いる位置精度を算出する。一般に、対象物までの距離が近いほどライダ2の距離計測値の精度は高く、距離が遠いほど精度は低い。よって、制御部25は、例えば、アップロード情報Iuに含まれる計測車両の位置情報が示す位置と各ボクセルのボクセル座標が示す位置との距離に基づき、ライダ2の計測精度を算出する。そして、制御部25は、例えば、計測車両の計測時での位置精度とライダ2の計測精度との2乗和の平方根から各ボクセルの精度を求め,その精度の2乗の逆数を第2重み付け値として設定する。
Further, the control unit 25 sets the second weighting value based on the position accuracy at the time of measurement of the measurement vehicle and the measurement accuracy of the lidar 2. Here, the upload information Iu includes position information and position accuracy information based on RTK-GPS3 together with point cloud data used to generate voxel data. The control unit 25 calculates the position accuracy used for calculating the second weighting value of each voxel based on the position accuracy information included in the upload information Iu. Generally, the accuracy of the distance measurement value of the lidar 2 is higher as the distance to the object is shorter, and the accuracy is lower as the distance is longer. Therefore, for example, the control unit 25 calculates the measurement accuracy of the lidar 2 based on the distance between the position indicated by the position information of the measurement vehicle included in the upload information Iu and the position indicated by the voxel coordinates of each voxel. And the control part 25 calculates | requires the precision of each voxel from the square root of the square sum of the position precision at the time of measurement of a measurement vehicle, and the measurement accuracy of the lidar 2, for example, and carries out the 2nd weighting of the reciprocal of the square of the precision. Set as a value.
(2)ボクセルデータが存在する場合
制御部25は、対象のボクセルに対するボクセルデータが存在する場合には、地図DB20のボクセルデータと最新計測データとの差分に基づき、ボクセルデータの更新の要否を判定する。 (2) When Voxel Data Exists When the voxel data for the target voxel exists, thecontrol unit 25 determines whether the voxel data needs to be updated based on the difference between the voxel data in the map DB 20 and the latest measurement data. judge.
制御部25は、対象のボクセルに対するボクセルデータが存在する場合には、地図DB20のボクセルデータと最新計測データとの差分に基づき、ボクセルデータの更新の要否を判定する。 (2) When Voxel Data Exists When the voxel data for the target voxel exists, the
図4は、地図DB20のボクセルデータが既に存在する場合の当該ボクセルデータの更新処理の手順を示すフローチャートである。サーバ装置200は、図4に示すフローチャートの処理を、最新計測データが含まれる各ボクセルを対象として実行する。
FIG. 4 is a flowchart showing the procedure for updating the voxel data when the voxel data in the map DB 20 already exists. The server device 200 executes the process of the flowchart shown in FIG. 4 for each voxel including the latest measurement data.
まず、制御部25は、対象のボクセルについて、地図DB20のボクセルデータと最新計測データとの差分を算出する(ステップS101)。例えば、制御部25は、最新計測データの各点をボクセル内での正規分布とみなした場合の平均ベクトル及び共分散行列(即ちNDTのデータ)を算出し、地図DB20のボクセルデータの平均ベクトル及び共分散行列との差分を算出する。この場合、例えば、制御部25は、最新計測データの平均ベクトルと地図DB20のボクセルデータの平均ベクトルとの距離差を第1の差分として算出し、最新計測データの共分散行列と地図DB20のボクセルデータの共分散行列との差分(例えば固有値の差)を第2の差分として算出する。他の例では、制御部25は、地図DB20のボクセルデータと最新計測データに基づきNDTマッチングを行い、評価関数の逆数等を差分として算出してもよい。
First, the control unit 25 calculates the difference between the voxel data in the map DB 20 and the latest measurement data for the target voxel (step S101). For example, the control unit 25 calculates an average vector and a covariance matrix (that is, NDT data) when each point of the latest measurement data is regarded as a normal distribution in the voxel, and calculates the average vector of the voxel data in the map DB 20 and The difference from the covariance matrix is calculated. In this case, for example, the control unit 25 calculates the distance difference between the average vector of the latest measurement data and the average vector of the voxel data in the map DB 20 as the first difference, and the covariance matrix of the latest measurement data and the voxel in the map DB 20 A difference (for example, a difference between eigenvalues) from the data covariance matrix is calculated as a second difference. In another example, the control unit 25 may perform NDT matching based on the voxel data of the map DB 20 and the latest measurement data, and calculate the reciprocal of the evaluation function as a difference.
そして、制御部25は、ステップS101で算出した差分が所定の閾値以下か否か判定する(ステップS102)。この閾値は、地図DB20のボクセルデータと最新計測データとが実質的に同一と判断される程度に差分が小さいか否かを判定するための閾値であり、例えば実験等に基づき予め設定される。なお、制御部25は、平均ベクトルと共分散行列とでそれぞれ差分(即ち上述の第1の差分、第2の差分)を算出していた場合には、それぞれの差分に対する閾値を設定し、第1の差分と第2の差分とがそれぞれ閾値以下となる場合に、ステップS101で算出した差分が所定の閾値以下になると判定するとよい。
And the control part 25 determines whether the difference calculated by step S101 is below a predetermined threshold value (step S102). This threshold is a threshold for determining whether or not the difference is small enough to determine that the voxel data in the map DB 20 and the latest measurement data are substantially the same, and are set in advance based on, for example, experiments. In addition, the control part 25 sets the threshold value with respect to each difference, when the difference (namely, the above-mentioned 1st difference and 2nd difference) was each calculated by the average vector and the covariance matrix, When the difference of 1 and the second difference are each equal to or less than the threshold value, it may be determined that the difference calculated in step S101 is equal to or less than the predetermined threshold value.
そして、制御部25は、ステップS101で算出した差分が所定の閾値以下の場合(ステップS102;Yes)、対象のボクセルに対する地図DB20のボクセルデータの第1重み付け値を所定値又は所定率だけ上げる(ステップS103)。この場合、制御部25は、対象のボクセルについて、前回の計測時と今回の計測時とで類似したデータが得られたことから、オクルージョンが発生しにくい場所であり、かつ、地図DB20のボクセルデータの信頼性が高いと判断し、第1重み付け値を上げる。これにより、サーバ装置200から地図データが配信された一般車両が行うNDTマッチングにおいて、対象のボクセルの重み付けが相対的に高くなる。なお、最新計測データとの差分が所定の閾値以下となることが続くほど、そのボクセルデータの第1重み付け値は更に大きくなっていく。
When the difference calculated in step S101 is equal to or smaller than a predetermined threshold (step S102; Yes), the control unit 25 increases the first weighting value of the voxel data in the map DB 20 for the target voxel by a predetermined value or a predetermined rate ( Step S103). In this case, the control unit 25 obtains similar data between the previous measurement and the current measurement for the target voxel, so that the occlusion is unlikely to occur and the voxel data in the map DB 20 And the first weighting value is increased. Thereby, in the NDT matching performed by the general vehicle to which the map data is distributed from the server device 200, the weight of the target voxel becomes relatively high. Note that the first weight value of the voxel data further increases as the difference from the latest measurement data continues to be below a predetermined threshold.
なお、ステップS103において、制御部25は、第1重み付け値の変更に加えて、第1重み付け値以外のボクセルデータを更新してもよい。第1の例では、制御部25は、最新計測データを含むアップデート情報Iuに基づき算出した第2重み付け値が、地図DB20に登録された第2重み付け値より大きい(即ち精度が高いことを示す)場合に、最新計測データに基づき生成した平均ベクトル及び共分散行列等により地図DB20のボクセルデータを更新すると共に、更新後の第1重み付け値を上げる。これにより、制御部25は、地図DB20に登録されるボクセルデータの精度を好適に高めることができる。第2の例では、制御部25は、地図DB20に登録されている第2重み付け値と、最新計測データに対する第2重み付け値とに基づく重み付け平均により、地図DB20のボクセルデータ及び最新計測データから、平均ベクトル、共分散行列等のボクセルデータを算出し、算出したボクセルデータにより地図DB20のボクセルデータを更新する。この場合、制御部25は、例えば、第2重み付け値に基づいた重み付き平均を行うことで、第2重み付け値が示す精度が高いボクセルデータほど重み付けが大きくなるように、更新用のボクセルデータを算出する。
In step S103, the control unit 25 may update voxel data other than the first weight value in addition to the change of the first weight value. In the first example, the control unit 25 has a second weight value calculated based on the update information Iu including the latest measurement data larger than the second weight value registered in the map DB 20 (that is, indicates high accuracy). In this case, the voxel data in the map DB 20 is updated with the average vector and the covariance matrix generated based on the latest measurement data, and the updated first weighting value is increased. Thereby, the control part 25 can improve the precision of the voxel data registered into map DB20 suitably. In the second example, the control unit 25 calculates the weighted average based on the second weighted value registered in the map DB 20 and the second weighted value for the latest measured data, from the voxel data and the latest measured data in the map DB 20. Voxel data such as an average vector and a covariance matrix is calculated, and the voxel data in the map DB 20 is updated with the calculated voxel data. In this case, the control unit 25 performs, for example, weighted averaging based on the second weight value, so that the voxel data for updating is weighted so that the voxel data with higher accuracy indicated by the second weight value becomes larger. calculate.
一方、制御部25は、ステップS101で算出した差分が所定の閾値より大きい場合(ステップS102;No)、最新計測データが示す点群の方が地図DB20のボクセルデータが示す点群よりも計測位置(即ち道路上の位置)から遠くに存在するか否か判定する(ステップS104)。例えば、この場合、制御部25は、アップロード情報Iuに含まれる位置情報に基づき計測位置を特定し、当該計測位置に対して最新計測データが示す点群(例えば平均ベクトル)が地図DB20のボクセルデータ(例えば平均ベクトル)が示す点群よりも遠くに存在するか否か判定する。
On the other hand, when the difference calculated in step S101 is larger than the predetermined threshold (step S102; No), the control unit 25 determines that the point group indicated by the latest measurement data is the measurement position than the point group indicated by the voxel data in the map DB 20. It is determined whether or not it exists far from (that is, the position on the road) (step S104). For example, in this case, the control unit 25 specifies the measurement position based on the position information included in the upload information Iu, and the point group (for example, the average vector) indicated by the latest measurement data for the measurement position is the voxel data in the map DB 20. It is determined whether or not it exists farther than the point cloud indicated by (for example, average vector).
そして、制御部25は、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも遠くに存在する場合(ステップS104;Yes)、最新計測データに基づき地図DB20を更新する(ステップS105)。この場合、制御部25は、地図DB20に登録されているボクセルデータの生成に用いた点群データに発生したオクルージョンが今回の計測時には発生しなかった可能性が高いと判断し、対象のボクセルの地図DB20のボクセルデータを、最新計測データに基づき算出したボクセルデータにより更新する。
Then, when the point cloud indicated by the latest measurement data exists farther than the point cloud indicated by the voxel data of the map DB 20 (Step S104; Yes), the control unit 25 updates the map DB 20 based on the latest measurement data (Step S104). S105). In this case, the control unit 25 determines that there is a high possibility that the occlusion generated in the point cloud data used for generating the voxel data registered in the map DB 20 did not occur during the current measurement, and the target voxel The voxel data in the map DB 20 is updated with the voxel data calculated based on the latest measurement data.
一方、制御部25は、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも遠くに存在しない場合(ステップS104;No)、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも近くに存在するか否か判定する(ステップS106)。例えば、この場合、制御部25は、ステップS104と同様、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも近くに存在するか否かを、対象のボクセル内又はボクセル間で判定する。この場合、制御部25は、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも遠くに存在しないとステップS104で判定した時点で、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも近くに存在すると自動的に判定してもよい。
On the other hand, when the point cloud indicated by the latest measurement data does not exist farther than the point cloud indicated by the voxel data in the map DB 20 (step S104; No), the control unit 25 determines that the point cloud indicated by the latest measurement data is the voxel in the map DB 20. It is determined whether or not the data is present closer to the point cloud (step S106). For example, in this case, as in step S104, the control unit 25 determines whether or not the point group indicated by the latest measurement data is closer to the point group indicated by the voxel data in the map DB 20 within the target voxel or between voxels. Judge with. In this case, when the control unit 25 determines in step S104 that the point cloud indicated by the latest measurement data does not exist farther than the point cloud indicated by the voxel data in the map DB 20, the point cloud indicated by the latest measurement data becomes the map DB 20 It may be automatically determined that it exists closer to the point cloud indicated by the voxel data.
そして、制御部25は、最新計測データが示す点群が地図DB20のボクセルデータが示す点群よりも近くに存在する場合(ステップS106;Yes)、対象となる地図DB20のボクセルデータの第1重み付け値を下げる(ステップS107)。この場合、制御部25は、前回計測時には発生しなかったオクルージョンが今回の計測時には発生した可能性があり、新規静止物か移動物かを日時を隔てた複数回の計測データを基に検証する必要があると判断し、対象のボクセルの地図DB20のボクセルデータの第1重み付け値を下げる。そして、制御部25は、さらなる計測等に基づき対象のボクセルに新規静止物が発生したと判断した場合には、ステップS105と同様に最新計測データに基づき地図DB20を更新する。
When the point cloud indicated by the latest measurement data is present closer to the point cloud indicated by the voxel data in the map DB 20 (step S106; Yes), the control unit 25 first weights the voxel data in the target map DB 20. The value is lowered (step S107). In this case, the control unit 25 may have generated an occlusion that did not occur during the previous measurement during the current measurement, and verifies whether it is a new stationary object or a moving object based on a plurality of measurement data separated by date and time. It judges that it is necessary, and lowers the first weighting value of the voxel data in the map DB 20 of the target voxel. When the control unit 25 determines that a new stationary object has occurred in the target voxel based on further measurement or the like, the control unit 25 updates the map DB 20 based on the latest measurement data as in step S105.
次に、図4のフローチャートに基づく具体例について、図5及び図6を参照して説明する。
Next, a specific example based on the flowchart of FIG. 4 will be described with reference to FIGS.
図5(A)は、道路31を計測車両が最初に走行した際の道路31の周辺物及び計測された点群を概略的に示した図である。道路31沿いには、静止構造物32~34が存在し、静止構造物32の近傍には駐車車両37が存在している。また、破線42A、43A、44A、47Aは、所定の高さにおいてライダ2により計測された点群の位置を示す。図5(A)の例では、駐車車両37によるオクルージョンが発生し、静止構造物32の一側面がライダ2により計測されていない。制御部25は、道路31を計測車両が最初に走行したときに生成されたアップロード情報Iuに基づき、道路31の周辺のボクセルのボクセルデータを生成し、地図DB20に登録する。
FIG. 5 (A) is a diagram schematically showing the surroundings of the road 31 and the measured point cloud when the measurement vehicle first travels on the road 31. Along the road 31, stationary structures 32 to 34 exist, and a parked vehicle 37 exists in the vicinity of the stationary structure 32. Dashed lines 42A, 43A, 44A, and 47A indicate the positions of the point groups measured by the lidar 2 at a predetermined height. In the example of FIG. 5A, occlusion by the parked vehicle 37 occurs, and one side surface of the stationary structure 32 is not measured by the lidar 2. The control unit 25 generates voxel data of voxels around the road 31 based on the upload information Iu generated when the measurement vehicle first travels on the road 31 and registers it in the map DB 20.
図5(B)は、道路31を計測車両が2回目に走行した際の道路31の周辺物及び計測された点群を概略的に示した図である。図5(B)では、点線42B、43B、44B、48Bは、所定の高さにおいてライダ2により計測された点群の位置を示す。2回目の計測時では、最初の計測時に存在した駐車車両37が存在しない代わりに、静止構造物33、34の近傍に別の駐車車両38が存在している。そして、駐車車両38によるオクルージョンが発生し、1回目の計測時には計測されていた静止構造物33、34の一部がライダ2により計測されていない。
FIG. 5 (B) is a diagram schematically showing the surroundings of the road 31 and the measured point cloud when the measurement vehicle travels on the road 31 for the second time. In FIG. 5B, dotted lines 42B, 43B, 44B, and 48B indicate the positions of the point groups measured by the lidar 2 at a predetermined height. At the time of the second measurement, another parked vehicle 38 is present in the vicinity of the stationary structures 33 and 34 instead of the parked vehicle 37 present at the time of the first measurement. And the occlusion by the parked vehicle 38 occurs, and some of the stationary structures 33 and 34 measured at the time of the first measurement are not measured by the lidar 2.
図6は、1回目に計測された点群と2回目に計測された点群とを重ね合わせた図である。ここで、枠50は、1回目の計測には計測されなかった静止構造物32の2回目の計測による点群を囲っている。また、枠51は、2回目の計測には計測されなかった静止構造物33の1回目の計測による点群を囲っており、枠52は、2回目の計測には計測されなかった静止構造物34の1回目の計測による点群を囲っている。
FIG. 6 is a diagram in which the point cloud measured for the first time and the point cloud measured for the second time are superimposed. Here, the frame 50 encloses a point group obtained by the second measurement of the stationary structure 32 that was not measured by the first measurement. The frame 51 surrounds a point group obtained by the first measurement of the stationary structure 33 that was not measured in the second measurement, and the frame 52 is a stationary structure that was not measured in the second measurement. The point cloud by 34 1st measurement is enclosed.
まず、制御部25は、破線42A、43A、44Aと点線42B、43B、44Bとが重なる位置(即ち枠50~52により囲まれていない位置)に存在するボクセルについては、図4のステップS102において、対象のボクセルについて地図DB20のボクセルデータと最新計測データとの差分が閾値以下と判定する。よって、この場合、制御部25は、これらのボクセルの第1重み付け値を上げる(ステップS103参照)。
First, for the voxel existing at the position where the broken lines 42A, 43A, 44A and the dotted lines 42B, 43B, 44B overlap (that is, the position not surrounded by the frames 50 to 52), the control unit 25 performs step S102 in FIG. For the target voxel, the difference between the voxel data in the map DB 20 and the latest measurement data is determined to be equal to or less than the threshold. Therefore, in this case, the control unit 25 increases the first weighting value of these voxels (see step S103).
また、制御部25は、枠50内の点線42Bを含むボクセルについて、地図DB20のボクセルデータと最新計測データとの差分が閾値より大きいことから(ステップS102参照)、最新計測データが示す点群の方が地図DB20のボクセルデータが示す点群よりも計測位置から遠くに存在するか否か判定する(ステップS104参照)。この場合、例えば、制御部25は、枠50内の点線42B内の点群の方が、破線47Aに示す点群よりも遠くに存在すると判定する。よって、この場合、制御部25は、枠50内の点線42B内の点群を示す最新計測データに基づき地図DB20を更新する(ステップS105参照)。
Moreover, since the difference between the voxel data in the map DB 20 and the latest measurement data is greater than the threshold for the voxel including the dotted line 42B in the frame 50 (see step S102), the control unit 25 determines the point group indicated by the latest measurement data. It is determined whether or not the object exists farther from the measurement position than the point cloud indicated by the voxel data in the map DB 20 (see step S104). In this case, for example, the control unit 25 determines that the point group in the dotted line 42B in the frame 50 exists farther than the point group indicated by the broken line 47A. Therefore, in this case, the control unit 25 updates the map DB 20 based on the latest measurement data indicating the point group in the dotted line 42B in the frame 50 (see step S105).
一方、制御部25は、ステップS106において、点線48Bが示す点群を含むボクセルについて、最新計測データが示す点群の方が計測位置から近くに存在すると判断する。よって、この場合、制御部25は、ステップS107に基づき、枠51、52内の破線43A、44Aが示す点群を含むボクセルに対する第1重み付け値を下げる。
On the other hand, in step S106, the control unit 25 determines that the point cloud indicated by the latest measurement data is closer to the measurement position for the voxel including the point cloud indicated by the dotted line 48B. Therefore, in this case, the control unit 25 lowers the first weighting value for the voxel including the point group indicated by the broken lines 43A and 44A in the frames 51 and 52 based on step S107.
[ボクセルデータを用いたスキャンマッチングの例]
次に、信頼度情報を含むボクセルデータを用いたNDTによるスキャンマッチングについて説明する。ここでは、ジャイロセンサやGPS受信機などの測位装置及びライダを備える車両(単に「一般車両」とも呼ぶ。)がサーバ装置200から配信された地図データを参照し、自車位置推定を行う例について説明する。 [Example of scan matching using voxel data]
Next, scan matching by NDT using voxel data including reliability information will be described. Here, an example in which a vehicle equipped with a positioning device such as a gyro sensor and a GPS receiver and a lidar (also referred to simply as “general vehicle”) refers to map data distributed from theserver device 200 and estimates its own vehicle position. explain.
次に、信頼度情報を含むボクセルデータを用いたNDTによるスキャンマッチングについて説明する。ここでは、ジャイロセンサやGPS受信機などの測位装置及びライダを備える車両(単に「一般車両」とも呼ぶ。)がサーバ装置200から配信された地図データを参照し、自車位置推定を行う例について説明する。 [Example of scan matching using voxel data]
Next, scan matching by NDT using voxel data including reliability information will be described. Here, an example in which a vehicle equipped with a positioning device such as a gyro sensor and a GPS receiver and a lidar (also referred to simply as “general vehicle”) refers to map data distributed from the
車両を想定したNDTによるスキャンマッチングは、道路平面(ここではxy座標とする)内の移動量及び車両の向きを要素とした以下の推定パラメータ「P」を推定することとなる。
Scan matching by NDT assuming a vehicle is to estimate the following estimated parameter “P” with the amount of movement in the road plane (here, xy coordinates) and the direction of the vehicle as elements.
上述の推定パラメータPを用い、ライダ2により得られた点群データの任意の点の座標[xk(i)、yk(i)、zk(i)]Tを座標変換すると、変換後の座標「X′k(i)」は、以下の式(3)により表される。
When the coordinates [x k (i), y k (i), z k (i)] T of the arbitrary point of the point cloud data obtained by the lidar 2 are coordinate-transformed using the estimation parameter P described above, The coordinates “X ′ k (i)” are expressed by the following equation (3).
そして、本実施例では、一般車両は、座標変換した点群と、ボクセルデータに含まれる平均ベクトルμkと共分散行列Vkとを用い、以下の式(4)により示されるボクセルkの評価関数「Ek」及び式(5)により示されるマッチングの対象となる全てのボクセルを対象とした総合的な評価関数「E」(「総合評価関数」とも呼ぶ。)を算出する。
In this embodiment, the general vehicle uses the coordinate-converted point group, the average vector μ k and the covariance matrix V k included in the voxel data, and evaluates the voxel k expressed by the following equation (4). A comprehensive evaluation function “E” (also referred to as “total evaluation function”) for all voxels to be matched indicated by the function “E k ” and Expression (5) is calculated.
一方、従来のNDTマッチングで用いられるボクセルkの評価関数Ekは、以下の式(6)により示される。
On the other hand, the evaluation function E k of the voxel k used in the conventional NDT matching is expressed by the following equation (6).
式(4)及び式(6)を比較して明らかなように、本実施例では、一般車両は、第1重み付け値wk及び第2重み付け値1/σk
2を用いることで、各ボクセルに対し、それぞれのボクセルデータ(平均ベクトル、共分散行列)に対する信頼度に応じた重み付けを行っている。これにより、一般車両は、信頼度が低いボクセルの評価関数Ekの重み付けを相対的に小さくし、NDTマッチングによる位置推定精度を好適に向上させる。
As is apparent from the comparison between the equations (4) and (6), in this embodiment, the general vehicle uses the first weighting value w k and the second weighting value 1 / σ k 2 , so that each voxel On the other hand, weighting is performed according to the reliability of each voxel data (average vector, covariance matrix). As a result, the general vehicle relatively reduces the weighting of the evaluation function E k of the voxel with low reliability, and suitably improves the position estimation accuracy by NDT matching.
その後、一般車両は、ニュートン法などの任意の求根アルゴリズムにより総合評価関数Eが最大となるとなる推定パラメータPを算出する。そして、一般車両は、GPS受信機の出力等から予測した自車位置に対し、推定パラメータPを適用することで、高精度な自車位置を推定する。
After that, the general vehicle calculates an estimation parameter P that maximizes the comprehensive evaluation function E by an arbitrary root finding algorithm such as Newton's method. Then, the general vehicle estimates the own vehicle position with high accuracy by applying the estimation parameter P to the own vehicle position predicted from the output of the GPS receiver or the like.
次に、NDTスキャンマッチングの具体例について説明する。以下では、説明便宜上、2次元平面の場合を例に説明する。
Next, a specific example of NDT scan matching will be described. Hereinafter, for convenience of explanation, the case of a two-dimensional plane will be described as an example.
図7(A)は、4つの隣接するボクセル「B1」~「B4」において、計測車両により計測された点群を丸印により示し、これらの点群に基づき式(1)と式(2)から作成した2次元正規分布をグラデーションにより示した図である。図7(A)に示す正規分布の平均、分散は、ボクセルデータにおける平均ベクトル、共分散行列にそれぞれ相当する。
FIG. 7A shows the point groups measured by the measuring vehicle in four adjacent voxels “B1” to “B4” with circles, and based on these point groups, Expressions (1) and (2) It is the figure which showed the two-dimensional normal distribution created from the above by gradation. The average and variance of the normal distribution shown in FIG. 7A correspond to the average vector and covariance matrix in the voxel data, respectively.
図7(B)は、図7(A)において、一般車両が走行中にライダ2により取得した点群を星印により示した図である。星印により示されるライダの点群の位置は、GPS受信機5等の出力による推定位置に基づき各ボクセルB1~B4との位置合わせが行われている。図7(B)の例では、計測車両が計測した点群(丸印)と、一般車両が取得した点群(星印)との間にずれが生じている。
FIG. 7B is a diagram showing the point cloud acquired by the lidar 2 while the general vehicle is traveling in FIG. The position of the lidar point cloud indicated by the asterisk is aligned with the voxels B1 to B4 based on the estimated position based on the output of the GPS receiver 5 or the like. In the example of FIG. 7B, there is a deviation between the point cloud (circle) measured by the measurement vehicle and the point cloud (star) acquired by the general vehicle.
図7(C)は、NDTスキャンマッチングのマッチング結果に基づき一般車両が取得した点群(星印)を移動させた後の状態を示す図である。図7(C)では、図7(A)、(B)に示す正規分布の平均及び分散に基づき、式(4)及び式(5)に示す評価関数Eが最大となるパラメータPを算出し、算出したパラメータPを図7(B)に示す星印の点群に適用している。この場合、計測車両が計測した点群(丸印)と、一般車両が取得した点群(星印)との間のずれが好適に低減されている。
FIG. 7C is a diagram illustrating a state after the point cloud (star) acquired by the general vehicle is moved based on the matching result of the NDT scan matching. In FIG. 7C, a parameter P that maximizes the evaluation function E shown in the equations (4) and (5) is calculated based on the mean and variance of the normal distribution shown in FIGS. 7 (A) and (B). The calculated parameter P is applied to the star point cloud shown in FIG. In this case, the deviation between the point cloud (circle) measured by the measurement vehicle and the point cloud (star) acquired by the general vehicle is suitably reduced.
ここで、ボクセルB1~B4に対応する評価関数「E1」~「E4」及び総合評価関数Eを、従来から用いられている一般式(6)により算出した場合、これらの値は以下のようになる。
E1=1.3290
E2=1.1365
E3=1.1100
E4=0.9686
E =4.5441
この例では、各ボクセルの評価関数E1~E4に大きな違いは無いが、ボクセルに含まれる点群の数による差が多少ある。 Here, when the evaluation functions “E1” to “E4” and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the general formula (6) conventionally used, these values are as follows: Become.
E1 = 1.3290
E2 = 1.1365
E3 = 1.1100
E4 = 0.9686
E = 4.5441
In this example, there is no significant difference in the evaluation functions E1 to E4 of each voxel, but there are some differences depending on the number of point groups included in the voxel.
E1=1.3290
E2=1.1365
E3=1.1100
E4=0.9686
E =4.5441
この例では、各ボクセルの評価関数E1~E4に大きな違いは無いが、ボクセルに含まれる点群の数による差が多少ある。 Here, when the evaluation functions “E1” to “E4” and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are calculated by the general formula (6) conventionally used, these values are as follows: Become.
E1 = 1.3290
E2 = 1.1365
E3 = 1.1100
E4 = 0.9686
E = 4.5441
In this example, there is no significant difference in the evaluation functions E1 to E4 of each voxel, but there are some differences depending on the number of point groups included in the voxel.
本実施例では、各ボクセルに第1重み付け値及び第2重み付け値が設定されている。従って、信頼度の高いボクセルは重み付けを上げることで、そのボクセルのマッチング度合いを高めることが可能となっている。以下では、一例として、第1重み付け値をボクセルごとに設定する具体例について図6を参照して説明する。
In this embodiment, a first weighting value and a second weighting value are set for each voxel. Therefore, it is possible to increase the degree of matching of voxels by increasing the weighting of voxels with high reliability. Hereinafter, as an example, a specific example in which the first weighting value is set for each voxel will be described with reference to FIG.
図8(A)は、ボクセルB1~B4に対する第1重み付け値を全て等しくした場合のマッチング結果を示す図(即ち図7(C)と同一の図)である。図8(B)は、ボクセルB1の第1重み付け値を他のボクセルの重み付け値の10倍とした場合のマッチング結果を示す図である。図8(C)は、ボクセルB3の第1重み付け値を他のボクセルの重み付け値の10倍とした場合のマッチング結果を示す図である。なお、いずれの例においても、第2重み付け値は、全て等しい値に設定されているものとする。
FIG. 8A is a diagram showing a matching result when the first weight values for voxels B1 to B4 are all equal (that is, the same diagram as FIG. 7C). FIG. 8B is a diagram showing a matching result when the first weighting value of the voxel B1 is 10 times the weighting value of the other voxels. FIG. 8C is a diagram showing a matching result when the first weighting value of the voxel B3 is set to 10 times the weighting values of the other voxels. In any example, it is assumed that the second weighting values are all set to the same value.
図8(B)の例では、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。
E1=0.3720
E2=0.0350
E3=0.0379
E4=0.0373
E =0.4823 In the example of FIG. 8B, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
E1 = 0.3720
E2 = 0.0350
E3 = 0.0379
E4 = 0.0373
E = 0.4823
E1=0.3720
E2=0.0350
E3=0.0379
E4=0.0373
E =0.4823 In the example of FIG. 8B, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
E1 = 0.3720
E2 = 0.0350
E3 = 0.0379
E4 = 0.0373
E = 0.4823
このように、図8(B)の例では、ボクセルB1に対応する評価関数E1の値が高くなるようにマッチングが行われ、ボクセルB1におけるマッチングの度合いが高められている。よって、ボクセルB1の丸印と星印のずれが少なくなっている。また、点群の数で正規化しているため、評価関数の値は小さくなったが、それぞれの評価関数値は重み付け値と同程度の割合になっている。
As described above, in the example of FIG. 8B, matching is performed so that the value of the evaluation function E1 corresponding to the voxel B1 is high, and the degree of matching in the voxel B1 is increased. Therefore, the deviation between the circle mark and the star mark of the voxel B1 is reduced. Moreover, since the value of the evaluation function is small because it is normalized by the number of point groups, each evaluation function value has a ratio similar to the weighting value.
また、図8(C)の例では、ボクセルB1~B4に対応する評価関数E1~E4及び総合評価関数Eの各値は、以下のようになる。
E1=0.0368
E2=0.0341
E3=0.3822
E4=0.0365
E =0.4896 In the example of FIG. 8C, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
E1 = 0.0368
E2 = 0.0341
E3 = 0.3822
E4 = 0.0365
E = 0.4896
E1=0.0368
E2=0.0341
E3=0.3822
E4=0.0365
E =0.4896 In the example of FIG. 8C, the values of the evaluation functions E1 to E4 and the comprehensive evaluation function E corresponding to the voxels B1 to B4 are as follows.
E1 = 0.0368
E2 = 0.0341
E3 = 0.3822
E4 = 0.0365
E = 0.4896
図8(C)の例では、ボクセルB3に対応する評価関数E3の値が高くなるようにマッチングが行われ、ボクセルB3におけるマッチングの度合いが高められている。よって、ボクセルB3の丸印と星印のずれが少なくなっている。このように、第1重み付け値を適切に設定することで、オクルージョン発生の可能性が低いボクセルに対するマッチングの度合いを好適に高める、言い換えると、オクルージョン発生の可能性が高いボクセルに対するマッチングの度合いを好適に低くすることができる。第2重み付け値についても同様に、第2重み付け値を適切に設定することで、計測精度が比較的高いボクセルに対するマッチングの度合いを高め、計測精度が比較的低いボクセルに対するマッチングの度合いを低くすることができる。そして、本実施例によれば、サーバ装置200は、上述したNDTマッチングに好適に用いられるボクセルごとの平均ベクトル、共分散行列、第1重み付け値及び第2重み付け値等を、アップデート情報Iuに基づき好適に更新することができる。
In the example of FIG. 8C, matching is performed such that the value of the evaluation function E3 corresponding to the voxel B3 is high, and the degree of matching in the voxel B3 is increased. Therefore, the deviation between the circle mark and the star mark of the voxel B3 is reduced. As described above, by appropriately setting the first weighting value, the degree of matching for voxels with low possibility of occurrence of occlusion is preferably increased, in other words, the degree of matching for voxels with high possibility of occurrence of occlusion is preferable. Can be lowered. Similarly, for the second weighting value, by appropriately setting the second weighting value, the degree of matching for voxels with relatively high measurement accuracy is increased, and the degree of matching for voxels with relatively low measurement accuracy is reduced. Can do. Then, according to the present embodiment, the server device 200 calculates the average vector, covariance matrix, first weight value, second weight value, and the like for each voxel that is preferably used for the above-described NDT matching based on the update information Iu. It can be suitably updated.
以上説明したように、本実施例に係るサーバ装置200は、ボクセルごとの点群の平均ベクトル及び共分散行列に加えて第1重み付け値を少なくとも含むボクセルデータがボクセルごとに記録された地図DB20を備える。そして、サーバ装置200は、計測車両が計測した点群データを含むアップロード情報Iuを取得する。そして、サーバ装置200は、アップロード情報Iuに基づきボクセルごとに分けた最新計測データと地図DB20のボクセルデータとの差分が所定の閾値以下となるボクセルに対する第1重み付け値を上げる。このようにすることで、サーバ装置200は、最新計測データと同様の計測結果が地図DB20に記録されているボクセルに対する第1重み付け値を大きくし、当該ボクセルに対するマッチング度合いを相対的に高めることができる。
As described above, the server apparatus 200 according to the present embodiment uses the map DB 20 in which voxel data including at least the first weight value in addition to the average vector and covariance matrix of the point cloud for each voxel is recorded for each voxel. Prepare. And the server apparatus 200 acquires the upload information Iu containing the point cloud data which the measurement vehicle measured. And the server apparatus 200 raises the 1st weighting value with respect to the voxel from which the difference of the latest measurement data divided | segmented for every voxel based on the upload information Iu, and the voxel data of map DB20 becomes below a predetermined threshold value. By doing in this way, the server apparatus 200 increases the first weighting value for the voxel in which the measurement result similar to the latest measurement data is recorded in the map DB 20, and can relatively increase the matching degree for the voxel. it can.
[変形例]
以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。 [Modification]
Hereinafter, modified examples suitable for the embodiments will be described. The following modifications may be applied to the embodiments in combination.
以下、実施例に好適な変形例について説明する。以下の変形例は、組み合わせて実施例に適用してもよい。 [Modification]
Hereinafter, modified examples suitable for the embodiments will be described. The following modifications may be applied to the embodiments in combination.
(変形例1)
地図DB20に含まれるボクセルデータには、図3に示すように、信頼度情報として第1重み付け値と第2重み付け値とが記録されていた。これに代えて、ボクセルデータには、第1重み付け値のみが記録されていてもよい。この場合、サーバ装置200は、アップロード情報Iuに基づき、ボクセルごとに、第1重み付け値を決定又は更新する。 (Modification 1)
As shown in FIG. 3, the first weighting value and the second weighting value are recorded in the voxel data included in themap DB 20 as reliability information. Instead, only the first weight value may be recorded in the voxel data. In this case, the server device 200 determines or updates the first weighting value for each voxel based on the upload information Iu.
地図DB20に含まれるボクセルデータには、図3に示すように、信頼度情報として第1重み付け値と第2重み付け値とが記録されていた。これに代えて、ボクセルデータには、第1重み付け値のみが記録されていてもよい。この場合、サーバ装置200は、アップロード情報Iuに基づき、ボクセルごとに、第1重み付け値を決定又は更新する。 (Modification 1)
As shown in FIG. 3, the first weighting value and the second weighting value are recorded in the voxel data included in the
(変形例2)
ボクセルデータは、図3に示すように、平均ベクトルと共分散行列とを含むデータ構造に限定されない。例えば、ボクセルデータは、平均ベクトルと共分散行列を算出する際に用いられる計測車両が計測した点群データをそのまま含んでいてもよい。また、サーバ装置200が生成又は更新するボクセルデータは、NDTによるスキャンマッチングのみを対象とする場合に限定されず、ICP(Iterative Closest Point)などの他のスキャンマッチングに用いるためのボクセルデータであってもよい。 (Modification 2)
The voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG. For example, the voxel data may include point cloud data measured by a measurement vehicle used when calculating an average vector and a covariance matrix. Further, the voxel data generated or updated by theserver apparatus 200 is not limited to a case where only scan matching by NDT is targeted, and is voxel data for use in other scan matching such as ICP (Iterative Closest Point). Also good.
ボクセルデータは、図3に示すように、平均ベクトルと共分散行列とを含むデータ構造に限定されない。例えば、ボクセルデータは、平均ベクトルと共分散行列を算出する際に用いられる計測車両が計測した点群データをそのまま含んでいてもよい。また、サーバ装置200が生成又は更新するボクセルデータは、NDTによるスキャンマッチングのみを対象とする場合に限定されず、ICP(Iterative Closest Point)などの他のスキャンマッチングに用いるためのボクセルデータであってもよい。 (Modification 2)
The voxel data is not limited to a data structure including an average vector and a covariance matrix as shown in FIG. For example, the voxel data may include point cloud data measured by a measurement vehicle used when calculating an average vector and a covariance matrix. Further, the voxel data generated or updated by the
1 車載機
20 地図DB
11、21 インターフェース
12、22 記憶部
14 入力部
15、25 制御部
16 情報出力部
200 サーバ装置 1 In-vehicle device 20 Map DB
DESCRIPTION OF SYMBOLS 11, 21 Interface 12, 22 Storage part 14 Input part 15, 25 Control part 16 Information output part 200 Server apparatus
20 地図DB
11、21 インターフェース
12、22 記憶部
14 入力部
15、25 制御部
16 情報出力部
200 サーバ装置 1 In-
DESCRIPTION OF
Claims (9)
- 計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、
複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、
前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部と、
を備える更新装置。 A first acquisition unit that acquires first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit;
Obtained is map information that is divided into a plurality of regions, and second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of regions. A second acquisition unit;
An updating unit that updates the weighting value so as to increase the weighting for a region in which a difference between the first point group information and the second point group information is a predetermined value or less among the plurality of regions;
An update device comprising: - 前記更新部は、前記計測部の精度を示す精度情報に基づき、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する前記第2点群情報を更新する請求項1に記載の更新装置。 The update unit updates the second point group information for a region where a difference between the first point group information and the second point group information is a predetermined value or less based on accuracy information indicating the accuracy of the measurement unit. Item 2. The updating device according to Item 1.
- 前記地図情報には、前記第2点群情報の計測精度に関する精度情報がさらに含まれ、
前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対し、
前記第1点群情報が前記第2点群情報より精度が高い場合に、前記第1点群情報に基づき前記第2点群情報を更新する、又は、
前記第1点群情報と前記第2点群情報とを精度に基づき重み付け平均することで、前記第2点群情報を更新する請求項2に記載の更新装置。 The map information further includes accuracy information related to the measurement accuracy of the second point cloud information,
The update unit, for a region where the difference between the first point cloud information and the second point cloud information is a predetermined value or less,
When the first point cloud information is more accurate than the second point cloud information, update the second point cloud information based on the first point cloud information, or
The updating apparatus according to claim 2, wherein the second point group information is updated by weighted averaging the first point group information and the second point group information based on accuracy. - 前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値より大きい領域の前記第1点群情報が示す位置が、対応する前記第2点群情報が示す位置よりも計測位置に対して遠い場合、当該第1点群情報により前記地図情報を更新する請求項1~3のいずれか一項に記載の更新装置。 The update unit is configured such that the position indicated by the first point cloud information in a region where the difference between the first point cloud information and the second point cloud information is greater than a predetermined value is greater than the position indicated by the corresponding second point cloud information. The updating apparatus according to any one of claims 1 to 3, wherein the map information is updated with the first point group information when the position is far from the measurement position.
- 前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値より大きい領域の前記第1点群情報が示す位置が、対応する前記第2点群情報が示す位置よりも計測位置に対して近い場合、当該第2点群情報が示す位置の領域に対する重み付けを下げるように前記重み付け値を更新する請求項1~4のいずれか一項に記載の更新装置。 The update unit is configured such that the position indicated by the first point cloud information in a region where the difference between the first point cloud information and the second point cloud information is greater than a predetermined value is greater than the position indicated by the corresponding second point cloud information. The updating device according to any one of claims 1 to 4, wherein when the position is close to the measurement position, the weighting value is updated so as to reduce the weighting for the region of the position indicated by the second point group information.
- 前記更新部は、前記第1点群情報及び前記第2点群情報の差分が所定値以下か否かを、前記第1点群情報及び前記第2点群情報の各々の平均又は/及び分散に基づき判定する請求項1~5のいずれか一項に記載の更新装置。 The updating unit determines whether a difference between the first point group information and the second point group information is equal to or less than a predetermined value, and an average or / and variance of each of the first point group information and the second point group information. The update device according to any one of claims 1 to 5, wherein the update device is determined based on:
- 更新装置が実行する制御方法であって、
計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得工程と、
複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得工程と、
前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新工程と、
を有する制御方法。 A control method executed by the update device,
A first acquisition step of acquiring first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit;
Obtained is map information that is divided into a plurality of regions, and second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of regions. A second acquisition step;
An update step of updating the weighting value so as to increase the weighting for the region where the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions,
A control method. - コンピュータが実行するプログラムであって、
計測部が計測した、基準位置から複数の位置までの夫々の距離に関する第1点群情報を取得する第1取得部と、
複数の領域に分割され、一又は複数の位置情報に基づく第2点群情報及び当該第2点群情報の信頼度に基づく重み付け値が前記複数の領域毎に記録されている地図情報を取得する第2取得部と、
前記複数の領域のうち、前記第1点群情報及び前記第2点群情報の差分が所定値以下となる領域に対する重み付けを上げるように前記重み付け値を更新する更新部
として前記コンピュータを機能させるプログラム。 A program executed by a computer,
A first acquisition unit that acquires first point cloud information about each distance from the reference position to a plurality of positions measured by the measurement unit;
Obtained is map information that is divided into a plurality of regions, and second point cloud information based on one or a plurality of position information and weighting values based on the reliability of the second point cloud information are recorded for each of the plurality of regions. A second acquisition unit;
A program that causes the computer to function as an update unit that updates the weighting value so as to increase the weighting for a region in which the difference between the first point cloud information and the second point cloud information is a predetermined value or less among the plurality of regions. . - 請求項8に記載のプログラムを記憶した記憶媒体。 A storage medium storing the program according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-108660 | 2017-05-31 | ||
JP2017108660 | 2017-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221455A1 true WO2018221455A1 (en) | 2018-12-06 |
Family
ID=64456022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020364 WO2018221455A1 (en) | 2017-05-31 | 2018-05-28 | Update device, control method, program, and storage medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018221455A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020166153A (en) * | 2019-03-29 | 2020-10-08 | 国立大学法人東海国立大学機構 | Map evaluation device, map evaluation method, and map evaluation program |
JP2021056765A (en) * | 2019-09-30 | 2021-04-08 | 日本電気通信システム株式会社 | Load capacity rate measurement device, system, method, and program |
US20210223048A1 (en) * | 2020-04-29 | 2021-07-22 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for updating point cloud |
JP2021144087A (en) * | 2020-03-10 | 2021-09-24 | 国立大学法人東海国立大学機構 | Map evaluation device, map evaluation method, and map evaluation program |
US20220075382A1 (en) * | 2020-09-04 | 2022-03-10 | Waymo Llc | Updating road graphs for autonomous driving |
JPWO2022075356A1 (en) * | 2020-10-07 | 2022-04-14 | ||
JP2022150594A (en) * | 2021-03-26 | 2022-10-07 | Kddi株式会社 | Point cloud management device and program |
CN115453545A (en) * | 2022-09-28 | 2022-12-09 | 北京京东乾石科技有限公司 | Target object detection method, apparatus, mobile device and storage medium |
CN117739954A (en) * | 2024-02-07 | 2024-03-22 | 未来机器人(深圳)有限公司 | Map local updating method and device and electronic equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008065087A (en) * | 2006-09-07 | 2008-03-21 | Toyota Central R&D Labs Inc | Apparatus for creating stationary object map |
JP2008065088A (en) * | 2006-09-07 | 2008-03-21 | Toyota Central R&D Labs Inc | Stationary object map creating device |
JP2010160777A (en) * | 2008-12-12 | 2010-07-22 | Toyota Central R&D Labs Inc | Map generation device, track estimation device, movable area estimation device and program |
JP2011027594A (en) * | 2009-07-27 | 2011-02-10 | Toyota Infotechnology Center Co Ltd | Map data verification system |
US20150029186A1 (en) * | 2013-07-29 | 2015-01-29 | Google Inc. | Systems and Methods for Reducing a Data Set |
JP2016156973A (en) * | 2015-02-25 | 2016-09-01 | パイオニア株式会社 | Map data storage device, control method, program and recording medium |
-
2018
- 2018-05-28 WO PCT/JP2018/020364 patent/WO2018221455A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008065087A (en) * | 2006-09-07 | 2008-03-21 | Toyota Central R&D Labs Inc | Apparatus for creating stationary object map |
JP2008065088A (en) * | 2006-09-07 | 2008-03-21 | Toyota Central R&D Labs Inc | Stationary object map creating device |
JP2010160777A (en) * | 2008-12-12 | 2010-07-22 | Toyota Central R&D Labs Inc | Map generation device, track estimation device, movable area estimation device and program |
JP2011027594A (en) * | 2009-07-27 | 2011-02-10 | Toyota Infotechnology Center Co Ltd | Map data verification system |
US20150029186A1 (en) * | 2013-07-29 | 2015-01-29 | Google Inc. | Systems and Methods for Reducing a Data Set |
JP2016156973A (en) * | 2015-02-25 | 2016-09-01 | パイオニア株式会社 | Map data storage device, control method, program and recording medium |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6991489B2 (en) | 2019-03-29 | 2022-01-12 | 国立大学法人東海国立大学機構 | Map evaluation device, map evaluation method and map evaluation program |
JP2020166153A (en) * | 2019-03-29 | 2020-10-08 | 国立大学法人東海国立大学機構 | Map evaluation device, map evaluation method, and map evaluation program |
JP7323170B2 (en) | 2019-09-30 | 2023-08-08 | 日本電気通信システム株式会社 | Loading volume ratio measuring device, system, method and program |
JP2021056765A (en) * | 2019-09-30 | 2021-04-08 | 日本電気通信システム株式会社 | Load capacity rate measurement device, system, method, and program |
JP2021144087A (en) * | 2020-03-10 | 2021-09-24 | 国立大学法人東海国立大学機構 | Map evaluation device, map evaluation method, and map evaluation program |
US20210223048A1 (en) * | 2020-04-29 | 2021-07-22 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for updating point cloud |
US11828606B2 (en) * | 2020-04-29 | 2023-11-28 | Beijing Baidu Netcom Science And Technology Co., Ltd. | Method and apparatus for updating point cloud |
US11853070B2 (en) * | 2020-09-04 | 2023-12-26 | Waymo Llc | Updating road graphs for autonomous driving |
US20220075382A1 (en) * | 2020-09-04 | 2022-03-10 | Waymo Llc | Updating road graphs for autonomous driving |
WO2022075356A1 (en) * | 2020-10-07 | 2022-04-14 | パイオニア株式会社 | Information processing apparatus, control method, program, and storage medium |
JPWO2022075356A1 (en) * | 2020-10-07 | 2022-04-14 | ||
JP2022150594A (en) * | 2021-03-26 | 2022-10-07 | Kddi株式会社 | Point cloud management device and program |
JP7479322B2 (en) | 2021-03-26 | 2024-05-08 | Kddi株式会社 | Point cloud management device and program |
CN115453545A (en) * | 2022-09-28 | 2022-12-09 | 北京京东乾石科技有限公司 | Target object detection method, apparatus, mobile device and storage medium |
CN117739954A (en) * | 2024-02-07 | 2024-03-22 | 未来机器人(深圳)有限公司 | Map local updating method and device and electronic equipment |
CN117739954B (en) * | 2024-02-07 | 2024-06-04 | 未来机器人(深圳)有限公司 | Map local updating method and device and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018221455A1 (en) | Update device, control method, program, and storage medium | |
WO2018221453A1 (en) | Output device, control method, program, and storage medium | |
WO2018221454A1 (en) | Map generation device, control method, program, and storage medium | |
JP6721784B2 (en) | Information processing device, server device, control method, program, and storage medium | |
WO2021112074A1 (en) | Information processing device, control method, program, and storage medium | |
JP7155284B2 (en) | Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium | |
JP6806891B2 (en) | Information processing equipment, control methods, programs and storage media | |
JP6980010B2 (en) | Self-position estimator, control method, program and storage medium | |
JP2023164553A (en) | Position estimation device, estimation device, control method, program and storage medium | |
JP2024056032A (en) | Data structure, storage medium, and storage device | |
CN110989619B (en) | Method, apparatus, device and storage medium for locating objects | |
JP2023095904A (en) | Self-position estimation device | |
JP2024056033A (en) | Information processing device, control method, program and storage medium | |
WO2021112177A1 (en) | Information processing apparatus, control method, program, and storage medium | |
WO2021112078A1 (en) | Information processing device, control method, program, and storage medium | |
JP2023164502A (en) | Stationary object data generator, method for control, program, and storage medium | |
JP2022090373A (en) | Information processor, control method, program and storage medium | |
WO2018221456A1 (en) | Route searching device, control method, program, and storage medium | |
WO2018212290A1 (en) | Information processing device, control method, program and storage medium | |
JP2020034452A (en) | Position estimating device, control method, program, and storage medium | |
WO2022124115A1 (en) | Information processing device, control method, program, and recording medium | |
JP2019196941A (en) | Own vehicle position estimating device | |
JP2020034771A (en) | Map generator, control method, program, and storage medium | |
JP2020035226A (en) | Determination device, control method, program, and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18810632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18810632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |