WO2018221389A1 - Optical device, light projecting apparatus, and optical sensor - Google Patents

Optical device, light projecting apparatus, and optical sensor Download PDF

Info

Publication number
WO2018221389A1
WO2018221389A1 PCT/JP2018/020070 JP2018020070W WO2018221389A1 WO 2018221389 A1 WO2018221389 A1 WO 2018221389A1 JP 2018020070 W JP2018020070 W JP 2018020070W WO 2018221389 A1 WO2018221389 A1 WO 2018221389A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical element
optical device
axis
Prior art date
Application number
PCT/JP2018/020070
Other languages
French (fr)
Japanese (ja)
Inventor
真幸 丸山
和田 智之
徳人 斎藤
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Publication of WO2018221389A1 publication Critical patent/WO2018221389A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an optical device, a light projector, and an optical sensor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-170437
  • the line width may be non-uniform on the irradiated surface.
  • the optical device includes a first optical element that spreads incident light in a first direction.
  • the optical device includes a second optical element that converges light from the first optical element in a second direction orthogonal to the first direction.
  • the second optical element may have a refractive index distribution in the second direction, and may be formed such that the distance from the light incident surface to the light emitting surface changes in the first direction.
  • At least one of the entrance surface and the exit surface of the second optical element may have a curved surface shape along the first direction.
  • the refractive index of the second optical element may decrease in the second direction as the distance from the optical axis of the second optical element increases.
  • the second optical element may have a one-dimensional refractive index distribution in the second direction.
  • the light exit surface of the second optical element may have a convex shape.
  • the light incident surface of the second optical element may have a planar shape.
  • the distance from the light incident surface to the light exit surface in the traveling direction of the light beam incident on the second optical element may decrease in the first direction as the light beam moves away from the optical axis of the second optical element.
  • the shape of at least one of the light incident surface and the light emitting surface is substantially linear in which light from the second optical element extends in the first direction on a predetermined reference plane that intersects the optical axis of the optical device. It may be formed so as to converge on the light.
  • the light projecting device includes the optical device described above.
  • the light projecting device may include a light emitting unit that emits light incident on the first optical element.
  • an optical sensor includes the optical device described above.
  • the optical sensor may include a measurement unit that measures the shape of the object using linear light extending in the first direction emitted from the optical device.
  • the optical sensor may further include a light emitting unit that emits light incident on the first optical element.
  • FIG. 2 is a perspective view schematically showing configurations of a first optical element 10 and a second optical element 20 included in the optical device 30.
  • FIG. 3 schematically shows a refractive index distribution in the y-axis direction of the second optical element 20.
  • the action of the second optical element 20 on the light flux fl1 is schematically shown.
  • the action of the second optical element 20 on the light flux fl2 is schematically shown.
  • a light projecting device 1090 as a modification of the light projecting device 90 is schematically shown.
  • the action of the second optical element 1020 on the light flux fl1001 is schematically shown.
  • a light projecting device 1090 as a modification of the light projecting device 90 is schematically shown.
  • FIG. 1 schematically illustrates an example of a functional configuration of an optical sensor 100 according to an embodiment.
  • the optical sensor 100 includes a light projecting device 90 and a measuring device 190.
  • the light projecting device 90 includes a light emitting unit 80 and an optical device 30.
  • the measuring device 190 includes a light receiving system 140 and a measuring unit 150.
  • the light receiving system 140 includes a lens 120 and a light receiving unit 130.
  • the optical sensor 100 measures the shape of an object with light. Specifically, the optical sensor 100 measures the shape of the object by measuring the height of the object. In the present embodiment, the optical sensor 100 measures the height H of the surface of the object from a predetermined reference plane. In the present embodiment, “height” indicates a distance from the reference plane in the direction along the optical axis AX of the light projecting device 90. In the present embodiment, the height of the surface of the object from a predetermined reference plane may be referred to as “the height of the object”.
  • the reference plane is a plane orthogonal to the optical axis AX of the light projecting device 90.
  • the reference plane is an example of a plane that intersects the optical axis AX of the light projecting device 90.
  • a configuration in which the reference surface is not orthogonal to the optical axis AX can also be adopted.
  • the light projecting device 90 projects linear light onto the object. Specifically, the light projecting device 90 projects a light beam that becomes linear light on the reference surface onto the object. In the present embodiment, linear light is referred to as line light.
  • a direction or the like may be expressed using an xyz coordinate system.
  • the z-axis of the orthogonal coordinate system is determined in a direction parallel to the optical axis AX of the light projecting device 90.
  • the direction in which the light from the light projecting device 90 travels is the z-axis minus direction.
  • the direction in which the line light extends on the reference plane is taken as the x axis.
  • the x-axis, y-axis, and z-axis are a right-handed orthogonal coordinate system.
  • an XYZ coordinate system may be used to indicate the direction of the light receiving unit 130 or the like.
  • the Z axis is determined in a direction parallel to the optical axis of the light receiving unit 130.
  • the Y axis is determined in the same direction as the y axis.
  • the X axis, Y axis, and Z axis are a right-handed orthogonal coordinate system.
  • the light emitting unit 80 emits light for measuring the shape of the object.
  • the light emitting unit 80 is, for example, a laser diode (LD), and emits laser light.
  • the light emitted from the light emitting unit 80 enters the optical device 30.
  • Light emitted from the optical device 30 enters the object.
  • the light incident on the object is reflected by the surface of the object. At least a part of the light reflected by the surface of the object enters the measuring device 190.
  • LD laser diode
  • the light incident on the measuring device 190 passes through the lens 120 and enters the light receiving unit 130.
  • the light receiving unit 130 is a member for detecting light from the object.
  • the light receiving unit 130 is an area sensor.
  • the height H of the object is determined based on the principle of triangulation, the position of the optical device 30 of the light projecting device 90, the position of the light receiving unit 130, the angle of the optical axis AX of the light projecting device 90, and the lens 120 of the light receiving system 140. It is determined from the angle of the optical axis.
  • triangulation an angle from each of two reference points to a measurement target point is measured, and a base line connecting the two reference points is measured based on the measured angle and the positions of the two reference points. The position of the measurement target point is calculated.
  • the optical device 30 and the light receiving unit 130 correspond to two reference points in the triangulation, and the angle of the optical axis AX and the angle of the optical axis AX of the light receiving system 140 are the reference points in the triangulation. Corresponds to the angle from the point to the point to be measured. Thereby, based on the principle of triangulation, the position of the object with respect to the base line can be measured, and thereby the height H of the object from a specific reference plane can be measured.
  • the optical sensor 100 measures the shape of the object by a light cutting method. Specifically, line light extending in the x-axis direction is irradiated from the optical device 30 to the object.
  • the incident position where the light from the object enters the light receiving unit 130 is determined by the height H of the object and the position of the object in the x-axis direction.
  • the incident position of the light receiving unit 130 in the X-axis direction is determined according to the position of the object in the x-axis direction.
  • the incident position of the light receiving unit 130 in the Y-axis direction is determined according to the height H of the object.
  • the optical sensor 100 can measure the height H of the object in the x-axis direction at a time.
  • FIG. 2 is a perspective view schematically showing the configuration of the first optical element 10 and the second optical element 20 included in the optical device 30.
  • the luminous flux fl1 passing near the optical axis AX and the position farthest from the optical axis AX 1 schematically shows the light flux fl1 incident on the incident surface 21 and the line light 200 on the reference surface.
  • the first optical element 10 spreads incident light in the first direction.
  • the first optical element 10 is, for example, a Powell lens.
  • the second optical element 20 converges the light from the first optical element 10 in a second direction orthogonal to the first direction.
  • the first direction is the x-axis direction
  • the second direction is the y-axis direction.
  • the second optical element 20 has a refractive index distribution in the y-axis direction.
  • the refractive index of the second optical element 20 decreases with increasing distance from the optical axis AX of the second optical element 20 in the y-axis direction.
  • the second optical element 20 has a one-dimensional refractive index distribution in the y-axis direction.
  • the second optical element 20 is a plate-shaped GRIN lens having a thickness d in the y-axis direction and a refractive index distribution in the thickness direction.
  • FIG. 3 schematically shows the distribution of the refractive index n in the y-axis direction of the second optical element 20.
  • the second optical element 20 is formed such that the distance from the light incident surface 21 to the light emitting surface 22 changes in the x-axis direction.
  • the distance from the light incident surface 21 to the light emitting surface 22 is a distance in a direction along the optical axis AX.
  • the distance from the light incident surface 21 to the light emitting surface 22 is a distance in the direction along the central ray of the light beam incident on the incident surface 21.
  • At least one of the entrance surface 21 and the exit surface 22 of the second optical element 20 has a curved shape along the x-axis direction.
  • the shape of at least one of the light incident surface 21 and the light emitting surface 22 of the second optical element 20 is the light from the second optical element 20 on the reference plane that intersects the optical axis AX of the optical device, as will be described later. Is converged to substantially linear light extending in the x-axis direction.
  • the incident surface 21 of the second optical element 20 has a planar shape.
  • the exit surface 22 of the second optical element 20 has a curved surface shape.
  • the exit surface 22 of the second optical element 20 changes in the normal direction along the x-axis direction.
  • the emission surface of the second optical element 20 has a convex shape. Therefore, the distance L1 from the light incident surface 21 to the light emitting surface 22 in the traveling direction of the light incident on the second optical element 20 parallel to the optical axis AX is in a plane that includes the optical axis AX and is parallel to the x-axis direction.
  • the distance from the light incident surface 21 to the light emitting surface 22 in the traveling direction of the light incident on the second optical element 20 can be made longer than the distance from the light incident surface 21 to the light emitting surface 22 in the traveling direction of the light incident on the second optical element 20 at an angle with respect to the optical axis AX (in the xz plane).
  • the light incident in the direction orthogonal to the light incident surface 21 passes through the second optical element 20, and the light incident obliquely to the light incident surface 21 passes through the second optical element 20. It can be longer than the distance.
  • the distance from the light incident surface 21 to the light exit surface 22 in the traveling direction of the light beam incident on the second optical element 20 is such that the light beam is separated from the optical axis of the second optical element 20 in the x-axis direction. It decreases according to.
  • the distance from the light incident surface 21 to the light exit surface 22 in the traveling direction of the light beam incident on the second optical element 20 is such that the incident position of the light beam on the light incident surface 21 in the x-axis direction is that of the second optical element 20. It can be said that it decreases as the distance from the optical axis increases.
  • the light beam fl1 that passes through the vicinity of the optical axis AX is the distance L1 that passes through the optical device 30, and the light beam fl2 that passes through the position farthest from the optical axis AX is the optical device. It can be made longer than the distance L2 passing through 30. Thereby, the uniformity of the width in the y-axis direction of the light fluxes fl1 and fl2 on the reference plane can be improved.
  • the action of the second optical element 20 on the light fluxes fl1 and fl2 will be described with reference to FIGS.
  • FIG. 4 schematically shows the action of the second optical element 20 on the light flux fl1.
  • the off-axis ray of the light flux fl1 incident on the second optical element 20 travels in a substantially parabolic shape along the optical axis AX by the second optical element 20.
  • the off-axis light beam of the light flux fl1 is deflected in the direction approaching the y-axis while traveling the second optical element 20 along the optical axis AX by the distance L1.
  • the light flux fl1 is emitted from the emission surface 22 before focusing on the emission surface 22 of the second optical element 20, and is substantially focused at the position of the reference plane advanced by the distance L1 ′.
  • FIG. 5 schematically shows the action of the second optical element 20 on the light flux fl2.
  • FIG. 5 is not a projection view of the yz plane but a view when viewed along the direction in which the light flux fl2 travels.
  • the off-axis light flux of the light flux fl2 incident on the second optical element 20 is refracted by the second optical element 20 substantially along a parabola along the center line having the maximum refractive index.
  • the off-axis ray of the light flux fl2 is deflected in the direction approaching the y-axis while traveling the distance within the second optical element 20 along the optical axis AX by the distance L2.
  • the light flux fl2 is emitted from the emission surface 22 before focusing on the emission surface 22 of the second optical element 20, and is substantially focused at the position of the reference plane advanced by a distance L2 ′.
  • the emission surface 22 is formed in a convex shape with the optical axis AX as a vertex so that L2 is shorter than L1. Therefore, when viewed along the traveling direction of the light beam, the optical path length from the incidence on the incident surface 21 to the exit from the exit surface 22 is greater than the optical path length when viewed along the traveling direction of the light beam fl1.
  • the optical path length when viewed along the traveling direction of fl2 can be shortened. Thereby, since the difference of optical path length can be made small, the difference of the line width in the edge part of the line light 200 and the line width in a center part can be made small.
  • the light flux fl1 and the light flux fl2 can be substantially focused on the reference plane. Furthermore, by designing the shape of the light emitting surface 22 so that the optical path lengths of the entire light fluxes coincide with each other on the reference surface, it is possible to provide line light that is substantially focused on the reference surface.
  • the light incident surface 21 may be convex and the light emitting surface 22 may be planar. Both the light incident surface 21 and the light emitting surface 22 may be curved. If the optical path length difference between the light beams can be designed to be small, any of the light incident surface 21 and the light emitting surface 22 can be curved.
  • the optical device 30 line light with a uniform line width can be provided. Therefore, even if the fan angle is increased, the optical resolution can be prevented from greatly differing depending on the position of the object. Further, according to the optical device 30, the line width can be reduced on the reference plane. Therefore, the optical sensor 100 having an optically high resolution can be provided.
  • the second optical element 20 is manufactured by cutting one end surface of a plate-like GRIN lens having a one-dimensional refractive index distribution in the thickness direction into a convex shape and polishing the cut surface.
  • a GRIN lens having a one-dimensional refractive index distribution in the thickness direction may be manufactured by immersing a plate-like glass material in a molten salt and performing ion exchange.
  • the material of the second optical element 20 is not limited to glass.
  • the material of the second optical element 20 may be a resin.
  • the light projected by the light projecting device 90 may be visible light.
  • the light projected by the light projecting device 90 may be infrared light.
  • examples of the material of the second optical element 20 include germanium, silicon, and synthetic quartz.
  • the reference surface is a flat surface, but the reference surface may be a curved surface.
  • the measurement target of the optical sensor 100 described above is, for example, an electrode formed on a substrate.
  • the measurement target of the optical sensor 100 may be a bump or the like formed on the substrate.
  • the measurement target of the optical sensor 100 may be the inner wall of the tunnel.
  • the measurement target of the optical sensor 100 is not limited to these.
  • FIG. 6 schematically shows a light projecting device 1090 as a modification of the light projecting device 90.
  • the light projecting device 1090 includes an optical device 1030 and a light emitting unit 1080.
  • the optical device 1030 is a modification of the optical device 30.
  • the light emitting unit 1080 is a modification of the light emitting unit 80.
  • the optical device 1030 includes a first optical element 10 and a second optical element 1020.
  • the second optical element 1020 is a modification of the second optical element 20.
  • a light projecting device 1090 can be applied instead of the light projecting device 90.
  • differences from the light projecting device 90 will be mainly described, and redundant description may be omitted.
  • the light emitting unit 1080 emits light that converges in the y-axis direction.
  • the light emitting unit 1080 may include a laser diode and a lens for converging light from the laser diode in the y-axis direction.
  • light that spreads in the x-axis direction and converges in the y-axis direction enters the second optical element 1020.
  • a lens that converges in the y-axis direction may be provided in the subsequent stage of the first optical element 10.
  • the refractive index of the second optical element 1020 increases as the distance from the optical axis AX of the second optical element 1020 increases in the y-axis direction.
  • the light incident surface 1021 has a concave shape.
  • the light emission surface 1022 has a planar shape.
  • FIG. 7 schematically shows the action of the second optical element 1020 on the light flux fl1001.
  • FIG. 7 corresponds to FIG.
  • a light flux fl1001 corresponds to the light flux fl1.
  • a light flux fl1001 is a light flux near the optical axis AX.
  • the light flux fl1001 incident on the second optical element 1020 is convergent light that converges in the y-axis direction.
  • the refractive index of the second optical element 1020 increases as the central portion is lower in the y-axis direction and away from the center. Therefore, the convergence angle of the light flux fl1001 incident on the second optical element 1020 decreases while the light flux fl1001 travels along the optical axis AX in the second optical element 1020 by the distance L11.
  • the light flux fl1001 is emitted from the emission surface 22 before becoming parallel light on the emission surface 22 of the second optical element 1020, and is substantially focused at the position of the reference surface advanced by a distance L11 ′.
  • FIG. 8 schematically shows the action of the second optical element 1020 on the light flux fl1002.
  • FIG. 8 corresponds to FIG.
  • a light flux fl1002 corresponds to the light flux fl2.
  • a light flux fl1002 is a light flux incident on the second optical element 1020 at a position farthest from the optical axis AX.
  • FIG. 8 is not a projection view of the yz plane but a view when viewed along the direction in which the light flux fl1002 travels.
  • the convergence angle of the light beam fl1002 incident on the second optical element 1020 decreases while the light beam fl1002 travels along the optical axis AX through the second optical element 1020 by the distance L21.
  • the light flux fl1002 is emitted from the emission surface 22 before becoming parallel light on the emission surface 22 of the second optical element 1020, and is substantially focused at the position of the reference surface advanced by a distance L21 ′.
  • the light exit surface 1022 is formed in a concave shape with the optical axis AX as a vertex so that L21 is longer than L11. Therefore, when viewed along the traveling direction of the light beam, the optical path length from entering the light incident surface 1021 to exiting from the light emitting surface 1022 is greater than the optical path length when viewed along the traveling direction of the light beam fl1001.
  • the optical path length when viewed along the traveling direction of the light flux fl1002 can be increased. Thereby, the convergence angle of the light flux fl1002 can be further reduced. Thereby, since the difference of optical path length can be made small by this, the difference of the line width in the edge part of the line light 200 and the line width in a center part can be reduced.
  • the shape of the emission surface 22 so that the optical path length of the light flux fl1001 and the optical path length of the light flux fl2 coincide, the light flux fl1001 and the light flux fl2 can be substantially focused on the reference plane. Furthermore, by designing the shape of the light emitting surface 22 so that the optical path lengths of the entire light fluxes coincide with each other on the reference surface, it is possible to provide line light that is substantially focused on the reference surface.
  • the light incident surface 1021 may have a planar shape and the light emitting surface 1022 may have a concave shape. Both the light incident surface 1021 and the light emitting surface 1022 may be curved. Any of the light incident surface 1021 and the light emitting surface 1022 can be curved as long as the optical path length difference between the light beams can be designed to be small.
  • the optical device 1030 including the second optical element 1020 also has the same effect as the optical device 1030.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This optical device is provided with a first optical element that spreads incident light in a first direction, and a second optical element that converges the light from the first optical element in a second direction that is perpendicular to the first direction. The second optical element has a refractive index distribution in the second direction and is formed so that the distance from a light incident surface to a light emission surface changes in the first direction.

Description

光デバイス、投光装置及び光学式センサOptical device, light projecting device, and optical sensor
 本発明は、光デバイス、投光装置及び光学式センサに関する。 The present invention relates to an optical device, a light projector, and an optical sensor.
 測定対象物に照射した投光ビームの反射光を2次元イメージセンサによって受光して、受光レベルのピーク位置から物体の表面までの変位又は距離を算出する光式変位センサが知られている(例えば、特許文献1参照)。
 特許文献1 特開2004-170437号公報
There is known an optical displacement sensor that receives a reflected light of a projection beam irradiated on a measurement object by a two-dimensional image sensor and calculates a displacement or a distance from a peak position of the light receiving level to the surface of the object (for example, , See Patent Document 1).
Patent Document 1 Japanese Patent Application Laid-Open No. 2004-170437
解決しようとする課題Challenges to be solved
 従来、第1の方向に広がる光束を第2の方向に収束させようとすると、第1の方向において、焦点を結ぶ位置と焦点を結ばない位置が生じる場合がある。例えば、ライン光を提供する場合に、第1の方向に広がる光束のファンアングルを大きくするほど、ライン光の中央と端部との間における光路長の差が大きくなる。そのため、照射面において線幅が不均一になってしまう場合がある。 Conventionally, when a light beam spreading in the first direction is converged in the second direction, there may be a position in the first direction that is focused and a position that is not focused. For example, when providing line light, the difference in the optical path length between the center and the end of the line light increases as the fan angle of the light beam spreading in the first direction increases. For this reason, the line width may be non-uniform on the irradiated surface.
一般的開示General disclosure
 第1の態様においては、光デバイスは、入射光を第1の方向に広げる第1の光素子を備える。光デバイスは、第1の光素子からの光を、第1の方向に直交する第2の方向に収束させる第2の光素子を備える。第2の光素子は、第2の方向に屈折率分布を有し、光入射面から光出射面までの距離が、第1の方向において変化するように形成されてよい。 In the first aspect, the optical device includes a first optical element that spreads incident light in a first direction. The optical device includes a second optical element that converges light from the first optical element in a second direction orthogonal to the first direction. The second optical element may have a refractive index distribution in the second direction, and may be formed such that the distance from the light incident surface to the light emitting surface changes in the first direction.
 第2の光素子の入射面及び出射面の少なくとも一方は、第1の方向に沿って曲面形状を有してよい。 At least one of the entrance surface and the exit surface of the second optical element may have a curved surface shape along the first direction.
 第2の光素子の屈折率は、第2の方向において、第2の光素子の光軸から離れるに従って減少してよい。 The refractive index of the second optical element may decrease in the second direction as the distance from the optical axis of the second optical element increases.
 第2の光素子は、第2の方向に一次元の屈折率分布を有してよい。 The second optical element may have a one-dimensional refractive index distribution in the second direction.
 第2の光素子の光出射面は、凸形状を有してよい。 The light exit surface of the second optical element may have a convex shape.
 第2の光素子の光入射面は、平面形状を有してよい。 The light incident surface of the second optical element may have a planar shape.
 第2の光素子に入射する光線の進行方向における光入射面から光出射面までの距離は、第1の方向において、光線が前記第2の光素子の光軸から離れるに従って、減少してよい。 The distance from the light incident surface to the light exit surface in the traveling direction of the light beam incident on the second optical element may decrease in the first direction as the light beam moves away from the optical axis of the second optical element. .
 光入射面及び光出射面の少なくとも一方の形状は、光デバイスの光軸と交差する予め定められた基準面上において第2の光素子からの光が第1の方向に延びる実質的に線状の光に収束するように、形成されてよい。 The shape of at least one of the light incident surface and the light emitting surface is substantially linear in which light from the second optical element extends in the first direction on a predetermined reference plane that intersects the optical axis of the optical device. It may be formed so as to converge on the light.
 第2の態様においては、投光装置は、上記の光デバイスを備える。投光装置は、第1の光素子への入射光を発する発光部を備えてよい。 In the second aspect, the light projecting device includes the optical device described above. The light projecting device may include a light emitting unit that emits light incident on the first optical element.
 第2の態様においては、光学式センサは、上記の光デバイスを備える。光学式センサは、光デバイスから出射される第1の方向に延びる線状の光により、対象物の形状を測定する測定部を備えてよい。
 光学式センサは、第1の光素子への入射光を発する発光部をさらに備えてよい。
In the second aspect, an optical sensor includes the optical device described above. The optical sensor may include a measurement unit that measures the shape of the object using linear light extending in the first direction emitted from the optical device.
The optical sensor may further include a light emitting unit that emits light incident on the first optical element.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションも発明となりうる。 The above summary of the invention does not enumerate all the features of the present invention. A sub-combination of these feature groups can also be an invention.
一実施形態における光学式センサ100の機能構成の一例を概略的に示す。An example of functional composition of optical sensor 100 in one embodiment is shown roughly. 光デバイス30が備える第1の光素子10及び第2の光素子20の構成を概略的に示す斜視図である。2 is a perspective view schematically showing configurations of a first optical element 10 and a second optical element 20 included in the optical device 30. FIG. 第2の光素子20のy軸方向の屈折率分布を概略的に示す。3 schematically shows a refractive index distribution in the y-axis direction of the second optical element 20. 第2の光素子20が光束fl1に与える作用を概略的に示す。The action of the second optical element 20 on the light flux fl1 is schematically shown. 第2の光素子20が光束fl2に与える作用を概略的に示す。The action of the second optical element 20 on the light flux fl2 is schematically shown. 投光装置90の変形例としての投光装置1090を概略的に示す。A light projecting device 1090 as a modification of the light projecting device 90 is schematically shown. 第2の光素子1020が光束fl1001に与える作用を概略的に示す。The action of the second optical element 1020 on the light flux fl1001 is schematically shown. 投光装置90の変形例としての投光装置1090を概略的に示す。A light projecting device 1090 as a modification of the light projecting device 90 is schematically shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、一実施形態における光学式センサ100の機能構成の一例を概略的に示す。光学式センサ100は、投光装置90と、測定装置190とを備える。投光装置90は、発光部80と、光デバイス30とを備える。測定装置190は、受光系140と、測定部150とを備える。受光系140は、レンズ120と、受光部130とを備える。 FIG. 1 schematically illustrates an example of a functional configuration of an optical sensor 100 according to an embodiment. The optical sensor 100 includes a light projecting device 90 and a measuring device 190. The light projecting device 90 includes a light emitting unit 80 and an optical device 30. The measuring device 190 includes a light receiving system 140 and a measuring unit 150. The light receiving system 140 includes a lens 120 and a light receiving unit 130.
 光学式センサ100は、対象物の形状を光により測定する。具体的には、光学式センサ100は、対象物の高さを測定することにより、対象物の形状を測定する。本実施形態において、光学式センサ100は、対象物の表面の、予め定められた基準面からの高さHを測定する。本実施形態において、「高さ」は、投光装置90の光軸AXに沿う方向における、基準面からの距離を示す。本実施形態において、対象物の表面の、予め定められた基準面からの高さのことを「対象物の高さ」と呼ぶ場合がある。 The optical sensor 100 measures the shape of an object with light. Specifically, the optical sensor 100 measures the shape of the object by measuring the height of the object. In the present embodiment, the optical sensor 100 measures the height H of the surface of the object from a predetermined reference plane. In the present embodiment, “height” indicates a distance from the reference plane in the direction along the optical axis AX of the light projecting device 90. In the present embodiment, the height of the surface of the object from a predetermined reference plane may be referred to as “the height of the object”.
 本実施形態において、基準面は、投光装置90の光軸AXに直交する面であるとする。基準面は、投光装置90の光軸AXに交差する面の一例である。基準面が光軸AXに直交しない形態も採用できる。 In the present embodiment, it is assumed that the reference plane is a plane orthogonal to the optical axis AX of the light projecting device 90. The reference plane is an example of a plane that intersects the optical axis AX of the light projecting device 90. A configuration in which the reference surface is not orthogonal to the optical axis AX can also be adopted.
 投光装置90は、線状の光を対象物に投射する。具体的には、投光装置90は、基準面において線状の光となる光束を対象物に投射する。本実施形態において、線状の光をライン光と呼ぶ。 The light projecting device 90 projects linear light onto the object. Specifically, the light projecting device 90 projects a light beam that becomes linear light on the reference surface onto the object. In the present embodiment, linear light is referred to as line light.
 本実施形態の説明において、xyz座標系を用いて方向等を表す場合がある。直交座標系のz軸を、投光装置90の光軸AXに平行な向きに定める。投光装置90からの光が進む方向を、z軸マイナス方向とする。基準面上においてライン光が延びる方向を、x軸とする。x軸、y軸、z軸は右手系の直交座標系とする。また、実施形態の説明において、受光部130の方向等を表す場合に、XYZ座標系を用いる場合がある。Z軸は、受光部130の光軸に平行な方向に定める。Y軸は、y軸と同じ方向に定める。X軸、Y軸、Z軸は右手系の直交座標系とする。 In the description of the present embodiment, a direction or the like may be expressed using an xyz coordinate system. The z-axis of the orthogonal coordinate system is determined in a direction parallel to the optical axis AX of the light projecting device 90. The direction in which the light from the light projecting device 90 travels is the z-axis minus direction. The direction in which the line light extends on the reference plane is taken as the x axis. The x-axis, y-axis, and z-axis are a right-handed orthogonal coordinate system. In the description of the embodiment, an XYZ coordinate system may be used to indicate the direction of the light receiving unit 130 or the like. The Z axis is determined in a direction parallel to the optical axis of the light receiving unit 130. The Y axis is determined in the same direction as the y axis. The X axis, Y axis, and Z axis are a right-handed orthogonal coordinate system.
 投光装置90において、発光部80は、対象物の形状を測定するための光を出射する。発光部80は、例えばレーザダイオード(LD)であり、レーザ光を出射する。発光部80が出射した光は、光デバイス30に入射する。光デバイス30から出射した光が対象物に入射する。対象物に入射した光は、対象物の表面で反射する。測定装置190には、対象物の表面で反射した光のうちの少なくとも一部の光が入射する。 In the light projecting device 90, the light emitting unit 80 emits light for measuring the shape of the object. The light emitting unit 80 is, for example, a laser diode (LD), and emits laser light. The light emitted from the light emitting unit 80 enters the optical device 30. Light emitted from the optical device 30 enters the object. The light incident on the object is reflected by the surface of the object. At least a part of the light reflected by the surface of the object enters the measuring device 190.
 測定装置190に入射した光は、レンズ120を通過して、受光部130に入射する。受光部130は、対象物からの光を検出するための部材である。本実施形態において、受光部130は、エリアセンサである。 The light incident on the measuring device 190 passes through the lens 120 and enters the light receiving unit 130. The light receiving unit 130 is a member for detecting light from the object. In the present embodiment, the light receiving unit 130 is an area sensor.
 対象物の高さHは、三角測量の原理に基づいて、投光装置90の光デバイス30の位置、受光部130の位置、投光装置90の光軸AXの角度、受光系140のレンズ120の光軸の角度から定まる。一般に、三角測量においては、2つの基準点のそれぞれから測定対象点への角度を測定して、測定された角度と、2つの基準点の位置とに基づいて、2つの基準点を結ぶ基線に対する測定対象点の位置を算出する。光学式センサ100において、光デバイス30及び受光部130が、三角測量における2つの基準点に対応し、光軸AXの角度、及び、受光系140の光軸AXの角度が、三角測量における各基準点から測定対象点への角度に対応する。これにより、三角測量の原理に基づいて、基線に対する対象物の位置を測定することができ、それにより、特定の基準面からの対象物の高さHを測定できる。 The height H of the object is determined based on the principle of triangulation, the position of the optical device 30 of the light projecting device 90, the position of the light receiving unit 130, the angle of the optical axis AX of the light projecting device 90, and the lens 120 of the light receiving system 140. It is determined from the angle of the optical axis. In general, in triangulation, an angle from each of two reference points to a measurement target point is measured, and a base line connecting the two reference points is measured based on the measured angle and the positions of the two reference points. The position of the measurement target point is calculated. In the optical sensor 100, the optical device 30 and the light receiving unit 130 correspond to two reference points in the triangulation, and the angle of the optical axis AX and the angle of the optical axis AX of the light receiving system 140 are the reference points in the triangulation. Corresponds to the angle from the point to the point to be measured. Thereby, based on the principle of triangulation, the position of the object with respect to the base line can be measured, and thereby the height H of the object from a specific reference plane can be measured.
 本実施形態において、光学式センサ100は、光切断方式により対象物の形状を測定する。具体的には、光デバイス30から、x軸方向に延びるライン光が対象物に照射される。対象物からの光が受光部130に入射する入射位置は、対象物の高さHと、対象物のx軸方向の位置によって定まる。受光部130におけるX軸方向の入射位置は、対象物のx軸方向の位置に応じて定まる。受光部130におけるY軸方向の入射位置は、対象物の高さHに応じて定まる。光学式センサ100は、対象物のx軸方向の高さHを一度に測定することができる。 In this embodiment, the optical sensor 100 measures the shape of the object by a light cutting method. Specifically, line light extending in the x-axis direction is irradiated from the optical device 30 to the object. The incident position where the light from the object enters the light receiving unit 130 is determined by the height H of the object and the position of the object in the x-axis direction. The incident position of the light receiving unit 130 in the X-axis direction is determined according to the position of the object in the x-axis direction. The incident position of the light receiving unit 130 in the Y-axis direction is determined according to the height H of the object. The optical sensor 100 can measure the height H of the object in the x-axis direction at a time.
 光デバイス30は、線幅が比較的に均一なライン光を提供する。また、光デバイス30は、線幅が比較的に細いライン光を提供する。光デバイス30の具体的な構成について説明する。図2は、光デバイス30が備える第1の光素子10及び第2の光素子20の構成を概略的に示す斜視図である。図2には、第1の光素子10及び第2の光素子20の他に、光デバイス30からの光束のうち、光軸AX近傍を通過する光束fl1と、光軸AXから最も離れた位置で入射面21に入射する光束fl1と、基準面上のライン光200とが概略的に示されている。 The optical device 30 provides line light having a relatively uniform line width. The optical device 30 provides line light having a relatively narrow line width. A specific configuration of the optical device 30 will be described. FIG. 2 is a perspective view schematically showing the configuration of the first optical element 10 and the second optical element 20 included in the optical device 30. In FIG. 2, in addition to the first optical element 10 and the second optical element 20, among the luminous fluxes from the optical device 30, the luminous flux fl1 passing near the optical axis AX and the position farthest from the optical axis AX 1 schematically shows the light flux fl1 incident on the incident surface 21 and the line light 200 on the reference surface.
 第1の光素子10は、入射光を第1の方向に広げる。第1の光素子10は、例えば、パウエルレンズである。第2の光素子20は、第1の光素子10からの光を、第1の方向に直交する第2の方向に収束させる。本実施形態において、第1の方向は、x軸方向であり、第2の方向は、y軸方向である。 The first optical element 10 spreads incident light in the first direction. The first optical element 10 is, for example, a Powell lens. The second optical element 20 converges the light from the first optical element 10 in a second direction orthogonal to the first direction. In the present embodiment, the first direction is the x-axis direction, and the second direction is the y-axis direction.
 第2の光素子20は、y軸方向に屈折率分布を有する。本実施形態において、第2の光素子20の屈折率は、y軸方向において、第2の光素子20の光軸AXから離れるに従って減少する。第2の光素子20は、y軸方向に一次元の屈折率分布を有する。例えば、第2の光素子20は、y軸方向に厚みdを持ち、厚み方向に屈折率分布を有する板状のGRINレンズである。図3は、第2の光素子20のy軸方向の屈折率nの分布を概略的に示す。 The second optical element 20 has a refractive index distribution in the y-axis direction. In the present embodiment, the refractive index of the second optical element 20 decreases with increasing distance from the optical axis AX of the second optical element 20 in the y-axis direction. The second optical element 20 has a one-dimensional refractive index distribution in the y-axis direction. For example, the second optical element 20 is a plate-shaped GRIN lens having a thickness d in the y-axis direction and a refractive index distribution in the thickness direction. FIG. 3 schematically shows the distribution of the refractive index n in the y-axis direction of the second optical element 20.
 第2の光素子20は、光入射面21から光出射面22までの距離が、x軸方向において変化するように形成されている。ここで、光入射面21から光出射面22までの距離とは、光軸AXに沿う方向の距離である。本実施形態において、光入射面21から光出射面22までの距離とは、入射面21に入射光する光束の中心光線に沿う方向の距離である。 The second optical element 20 is formed such that the distance from the light incident surface 21 to the light emitting surface 22 changes in the x-axis direction. Here, the distance from the light incident surface 21 to the light emitting surface 22 is a distance in a direction along the optical axis AX. In the present embodiment, the distance from the light incident surface 21 to the light emitting surface 22 is a distance in the direction along the central ray of the light beam incident on the incident surface 21.
 例えば、第2の光素子20の入射面21及び出射面22の少なくとも一方は、x軸方向に沿って曲面形状を有する。第2の光素子20の光入射面21及び光出射面22の少なくとも一方の形状は、後述するように、光デバイスの光軸AXと交差する基準面上において第2の光素子20からの光がx軸方向に延びる実質的に線状の光に収束するように、形成されている。 For example, at least one of the entrance surface 21 and the exit surface 22 of the second optical element 20 has a curved shape along the x-axis direction. The shape of at least one of the light incident surface 21 and the light emitting surface 22 of the second optical element 20 is the light from the second optical element 20 on the reference plane that intersects the optical axis AX of the optical device, as will be described later. Is converged to substantially linear light extending in the x-axis direction.
 本実施形態において、第2の光素子20の入射面21は平面形状を有する。第2の光素子20の出射面22は曲面形状を有する。第2の光素子20の出射面22は、x軸方向に沿って法線方向が変化する。より具体的には、第2の光素子20の出射面は凸形状を有する。したがって、第2の光素子20に光軸AXに平行に入射した光の進行方向における光入射面21から光出射面22までの距離L1は、光軸AXを含みx軸方向に平行な面内(xz面内)で光軸AXに対して角度をなして第2の光素子20に入射した光の進行方向における光入射面21から光出射面22までの距離より、長くすることができる。例えば、光入射面21に直交する方向に入射した光が第2の光素子20内を通過する距離L1を、光入射面21に斜めに入射した光が第2の光素子20内を通過する距離より、長くすることができる。このように、第2の光素子20に入射する光線の進行方向における光入射面21から光出射面22までの距離は、x軸方向において、光線が第2の光素子20の光軸から離れるに従って、減少する。第2の光素子20に入射する光線の進行方向における光入射面21から光出射面22までの距離は、x軸方向において、光入射面21における光線の入射位置が第2の光素子20の光軸から離れるに従って減少するともいえる。 In the present embodiment, the incident surface 21 of the second optical element 20 has a planar shape. The exit surface 22 of the second optical element 20 has a curved surface shape. The exit surface 22 of the second optical element 20 changes in the normal direction along the x-axis direction. More specifically, the emission surface of the second optical element 20 has a convex shape. Therefore, the distance L1 from the light incident surface 21 to the light emitting surface 22 in the traveling direction of the light incident on the second optical element 20 parallel to the optical axis AX is in a plane that includes the optical axis AX and is parallel to the x-axis direction. It can be made longer than the distance from the light incident surface 21 to the light emitting surface 22 in the traveling direction of the light incident on the second optical element 20 at an angle with respect to the optical axis AX (in the xz plane). For example, the light incident in the direction orthogonal to the light incident surface 21 passes through the second optical element 20, and the light incident obliquely to the light incident surface 21 passes through the second optical element 20. It can be longer than the distance. Thus, the distance from the light incident surface 21 to the light exit surface 22 in the traveling direction of the light beam incident on the second optical element 20 is such that the light beam is separated from the optical axis of the second optical element 20 in the x-axis direction. It decreases according to. The distance from the light incident surface 21 to the light exit surface 22 in the traveling direction of the light beam incident on the second optical element 20 is such that the incident position of the light beam on the light incident surface 21 in the x-axis direction is that of the second optical element 20. It can be said that it decreases as the distance from the optical axis increases.
 例えば、第1の光素子10からの光束のうち、光軸AX近傍を通過する光束fl1が光デバイス30を通過する距離L1を、光軸AXから最も離れた位置を通過する光束fl2が光デバイス30を通過する距離L2より長くすることができる。これにより、基準面において光束fl1及び光束fl2のy軸方向の幅の均一性を高めることができる。第2の光素子20が光束fl1及び光束fl2に与える作用については、図4及び図5に関連して説明する。 For example, among the light beams from the first optical element 10, the light beam fl1 that passes through the vicinity of the optical axis AX is the distance L1 that passes through the optical device 30, and the light beam fl2 that passes through the position farthest from the optical axis AX is the optical device. It can be made longer than the distance L2 passing through 30. Thereby, the uniformity of the width in the y-axis direction of the light fluxes fl1 and fl2 on the reference plane can be improved. The action of the second optical element 20 on the light fluxes fl1 and fl2 will be described with reference to FIGS.
 図4は、第2の光素子20が光束fl1に与える作用を概略的に示す。第2の光素子20に入射した光束fl1の軸外光線は、第2の光素子20により光軸AXに沿って略放物線状に進む。光束fl1の軸外光線は、光軸AXに沿って第2の光素子20内を距離L1だけ進む間に、y軸に近づく方向に偏向される。光束fl1は、第2の光素子20の出射面22において焦点を結ぶ前に出射面22から出射して、距離L1'だけ進んだ基準面の位置で実質的に焦点を結ぶ。 FIG. 4 schematically shows the action of the second optical element 20 on the light flux fl1. The off-axis ray of the light flux fl1 incident on the second optical element 20 travels in a substantially parabolic shape along the optical axis AX by the second optical element 20. The off-axis light beam of the light flux fl1 is deflected in the direction approaching the y-axis while traveling the second optical element 20 along the optical axis AX by the distance L1. The light flux fl1 is emitted from the emission surface 22 before focusing on the emission surface 22 of the second optical element 20, and is substantially focused at the position of the reference plane advanced by the distance L1 ′.
 図5は、第2の光素子20が光束fl2に与える作用を概略的に示す。図5は、yz平面の投影図ではなく、光束fl2が進む方向に沿って見た場合の図である。 FIG. 5 schematically shows the action of the second optical element 20 on the light flux fl2. FIG. 5 is not a projection view of the yz plane but a view when viewed along the direction in which the light flux fl2 travels.
 第2の光素子20に入射した光束fl2の軸外光束は、第2の光素子20により、屈折率が最大となる中心線に沿って略放物線上に屈折される。光束fl2の軸外光線は、光軸AXに沿って第2の光素子20内を距離L2だけ進む間に、y軸に近づく方向に偏向される。光束fl2は、第2の光素子20の出射面22において焦点を結ぶ前に出射面22から出射して、距離L2'だけ進んだ基準面の位置で実質的に焦点を結ぶ。 The off-axis light flux of the light flux fl2 incident on the second optical element 20 is refracted by the second optical element 20 substantially along a parabola along the center line having the maximum refractive index. The off-axis ray of the light flux fl2 is deflected in the direction approaching the y-axis while traveling the distance within the second optical element 20 along the optical axis AX by the distance L2. The light flux fl2 is emitted from the emission surface 22 before focusing on the emission surface 22 of the second optical element 20, and is substantially focused at the position of the reference plane advanced by a distance L2 ′.
 出射面22は、L2がL1より短くなるように、光軸AXを頂点として凸形状に形成されている。そのため、光束の進行方向に沿って見た場合、入射面21に入射してから出射面22から出射するまでの光路長について、光束fl1の進行方向に沿って見た場合の光路長より、光束fl2の進行方向に沿って見た場合の光路長を短くすることができる。これにより、光路長の差を小さくすることができるため、ライン光200の端部における線幅と中心部における線幅との差を小さくすることができる。 The emission surface 22 is formed in a convex shape with the optical axis AX as a vertex so that L2 is shorter than L1. Therefore, when viewed along the traveling direction of the light beam, the optical path length from the incidence on the incident surface 21 to the exit from the exit surface 22 is greater than the optical path length when viewed along the traveling direction of the light beam fl1. The optical path length when viewed along the traveling direction of fl2 can be shortened. Thereby, since the difference of optical path length can be made small, the difference of the line width in the edge part of the line light 200 and the line width in a center part can be made small.
 また、光束fl1の光路長と光束fl2の光路長が一致するようにL1及びL2を設計することで、光束fl1及び光束fl2が基準面において実質的に焦点を結ぶようにすることができる。更に、基準面において光束全体の光路長が一致するように光出射面22の形状を設計することで、基準面において実質的に焦点を結ぶライン光を提供することができる。 Also, by designing L1 and L2 so that the optical path length of the light flux fl1 and the optical path length of the light flux fl2 coincide, the light flux fl1 and the light flux fl2 can be substantially focused on the reference plane. Furthermore, by designing the shape of the light emitting surface 22 so that the optical path lengths of the entire light fluxes coincide with each other on the reference surface, it is possible to provide line light that is substantially focused on the reference surface.
 なお、第2の光素子20において、光入射面21を凸形状とし、光出射面22を平面形状にしてもよい。光入射面21及び光出射面22の両方を曲面形状としてもよい。各光線の間の光路長の差が小さくなるように設計できれば、光入射面21及び光出射面22のいずれを曲面形状とすることも可能である。 In the second optical element 20, the light incident surface 21 may be convex and the light emitting surface 22 may be planar. Both the light incident surface 21 and the light emitting surface 22 may be curved. If the optical path length difference between the light beams can be designed to be small, any of the light incident surface 21 and the light emitting surface 22 can be curved.
 以上に説明したように、光デバイス30によれば、線幅が均一なライン光を提供することができる。そのため、ファンアングルを大きくしても、対象物の位置によって光学的な解像度が大きく異ならないようにすることができる。また、光デバイス30によれば、基準面において線幅を小さくすることができる。そのため、光学的に解像度が高い光学式センサ100を提供することができる。 As described above, according to the optical device 30, line light with a uniform line width can be provided. Therefore, even if the fan angle is increased, the optical resolution can be prevented from greatly differing depending on the position of the object. Further, according to the optical device 30, the line width can be reduced on the reference plane. Therefore, the optical sensor 100 having an optically high resolution can be provided.
 第2の光素子20は、厚み方向に一次元の屈折率分布を持つ板状のGRINレンズの一端面を凸形状に切断し、切断面を研磨することにより製造される。厚み方向に一次元の屈折率分布を持つGRINレンズは、板状のガラス材を溶融塩に浸してイオン交換させることによって製造されてよい。第2の光素子20の材料は、ガラスに限られない。第2の光素子20の材料は樹脂であってよい。 The second optical element 20 is manufactured by cutting one end surface of a plate-like GRIN lens having a one-dimensional refractive index distribution in the thickness direction into a convex shape and polishing the cut surface. A GRIN lens having a one-dimensional refractive index distribution in the thickness direction may be manufactured by immersing a plate-like glass material in a molten salt and performing ion exchange. The material of the second optical element 20 is not limited to glass. The material of the second optical element 20 may be a resin.
 投光装置90が投光する光は、可視光であってよい。投光装置90が投光する光は、赤外光であってよい。赤外光を投光する場合、第2の光素子20の材料として、ゲルマニウム、シリコン、合成石英等を例示することができる。 The light projected by the light projecting device 90 may be visible light. The light projected by the light projecting device 90 may be infrared light. In the case of projecting infrared light, examples of the material of the second optical element 20 include germanium, silicon, and synthetic quartz.
 本実施形態において、基準面を平面としたが、基準面は曲面であってよい。 In the present embodiment, the reference surface is a flat surface, but the reference surface may be a curved surface.
 以上に説明した光学式センサ100の測定対象は、一例として、基板に形成された電極である。光学式センサ100の測定対象は、基板に形成されたバンプ等であってよい。光学式センサ100の測定対象は、トンネルの内壁であってよい。光学式センサ100の測定対象は、これらに限られない。 The measurement target of the optical sensor 100 described above is, for example, an electrode formed on a substrate. The measurement target of the optical sensor 100 may be a bump or the like formed on the substrate. The measurement target of the optical sensor 100 may be the inner wall of the tunnel. The measurement target of the optical sensor 100 is not limited to these.
 図6は、投光装置90の変形例としての投光装置1090を概略的に示す。投光装置1090は、光デバイス1030と、発光部1080とを備える。光デバイス1030は、光デバイス30の変形例である。発光部1080は、発光部80の変形例である。 FIG. 6 schematically shows a light projecting device 1090 as a modification of the light projecting device 90. The light projecting device 1090 includes an optical device 1030 and a light emitting unit 1080. The optical device 1030 is a modification of the optical device 30. The light emitting unit 1080 is a modification of the light emitting unit 80.
 光デバイス1030は、第1の光素子10と、第2の光素子1020とを備える。第2の光素子1020は、第2の光素子20の変形例である。光学式センサ100において、投光装置90に代えて投光装置1090を適用できる。投光装置1090については、主として投光装置90との相違点を説明し、重複する説明を省略する場合がある。 The optical device 1030 includes a first optical element 10 and a second optical element 1020. The second optical element 1020 is a modification of the second optical element 20. In the optical sensor 100, a light projecting device 1090 can be applied instead of the light projecting device 90. Regarding the light projecting device 1090, differences from the light projecting device 90 will be mainly described, and redundant description may be omitted.
 発光部1080は、y軸方向に収束する光を出射する。発光部1080はレーザダイオードと、レーザダイオードからの光をy軸方向に収束するためのレンズとを備えてよい。これにより、第2の光素子1020には、x軸方向に広がり、y軸方向に収束する光が入射する。なお、発光部1080がy軸方向に収束する光を出射する構成に代えて、y軸方向に収束するためのレンズを第1の光素子10の後段に設けてもよい。 The light emitting unit 1080 emits light that converges in the y-axis direction. The light emitting unit 1080 may include a laser diode and a lens for converging light from the laser diode in the y-axis direction. As a result, light that spreads in the x-axis direction and converges in the y-axis direction enters the second optical element 1020. Instead of the configuration in which the light emitting unit 1080 emits light that converges in the y-axis direction, a lens that converges in the y-axis direction may be provided in the subsequent stage of the first optical element 10.
 第2の光素子1020の屈折率は、第2の光素子20とは異なり、y軸方向において、第2の光素子1020の光軸AXから離れるに従って増加する。第2の光素子1020は、光入射面1021が凹面形状を有する。第2の光素子1020は、光出射面1022が平面形状を有する。 Unlike the second optical element 20, the refractive index of the second optical element 1020 increases as the distance from the optical axis AX of the second optical element 1020 increases in the y-axis direction. In the second optical element 1020, the light incident surface 1021 has a concave shape. In the second optical element 1020, the light emission surface 1022 has a planar shape.
 図7は、第2の光素子1020が光束fl1001に与える作用を概略的に示す。図7は、図4に対応する図である。光束fl1001は、光束fl1に対応する。光束fl1001は、光軸AX近傍の光束である。 FIG. 7 schematically shows the action of the second optical element 1020 on the light flux fl1001. FIG. 7 corresponds to FIG. A light flux fl1001 corresponds to the light flux fl1. A light flux fl1001 is a light flux near the optical axis AX.
 第2の光素子1020に入射する光束fl1001は、y軸方向に収束する収束光である。第2の光素子1020の屈折率は、y軸方向において中心部が低く中心から離れるほど増加する。そのため、第2の光素子1020に入射した光束fl1001の収束角度は、光束fl1001が光軸AXに沿って第2の光素子1020内を距離L11だけ進む間に小さくなる。光束fl1001は、第2の光素子1020の出射面22において平行光となる前に出射面22から出射して、距離L11'だけ進んだ基準面の位置で実質的に焦点を結ぶ。 The light flux fl1001 incident on the second optical element 1020 is convergent light that converges in the y-axis direction. The refractive index of the second optical element 1020 increases as the central portion is lower in the y-axis direction and away from the center. Therefore, the convergence angle of the light flux fl1001 incident on the second optical element 1020 decreases while the light flux fl1001 travels along the optical axis AX in the second optical element 1020 by the distance L11. The light flux fl1001 is emitted from the emission surface 22 before becoming parallel light on the emission surface 22 of the second optical element 1020, and is substantially focused at the position of the reference surface advanced by a distance L11 ′.
 図8は、第2の光素子1020が光束fl1002に与える作用を概略的に示す。図8は、図5に対応する図である。光束fl1002は、光束fl2に対応する。光束fl1002は、光軸AXから最も離れた位置で第2の光素子1020に入射する光束である。図8は、yz平面の投影図ではなく、光束fl1002が進む方向に沿って見た場合の図である。 FIG. 8 schematically shows the action of the second optical element 1020 on the light flux fl1002. FIG. 8 corresponds to FIG. A light flux fl1002 corresponds to the light flux fl2. A light flux fl1002 is a light flux incident on the second optical element 1020 at a position farthest from the optical axis AX. FIG. 8 is not a projection view of the yz plane but a view when viewed along the direction in which the light flux fl1002 travels.
 第2の光素子1020に入射した光束fl1002の収束角度は、光束fl1002が光軸AXに沿って第2の光素子1020内を距離L21だけ進む間に小さくなる。光束fl1002は、第2の光素子1020の出射面22において平行光となる前に出射面22から出射して、距離L21'だけ進んだ基準面の位置で実質的に焦点を結ぶ。 The convergence angle of the light beam fl1002 incident on the second optical element 1020 decreases while the light beam fl1002 travels along the optical axis AX through the second optical element 1020 by the distance L21. The light flux fl1002 is emitted from the emission surface 22 before becoming parallel light on the emission surface 22 of the second optical element 1020, and is substantially focused at the position of the reference surface advanced by a distance L21 ′.
 光出射面1022は、L21がL11より長くなるように、光軸AXを頂点として凹形状に形成されている。そのため、光束の進行方向に沿って見た場合、光入射面1021に入射してから光出射面1022から出射するまでの光路長について、光束fl1001の進行方向に沿って見た場合の光路長より、光束fl1002の進行方向に沿って見た場合の光路長を長くすることができる。これにより、光束fl1002の収束角度をより小さくすることができる。これにより、これにより、光路長の差を小さくすることができるため、ライン光200の端部における線幅と中心部における線幅との差を低減することができる。 The light exit surface 1022 is formed in a concave shape with the optical axis AX as a vertex so that L21 is longer than L11. Therefore, when viewed along the traveling direction of the light beam, the optical path length from entering the light incident surface 1021 to exiting from the light emitting surface 1022 is greater than the optical path length when viewed along the traveling direction of the light beam fl1001. The optical path length when viewed along the traveling direction of the light flux fl1002 can be increased. Thereby, the convergence angle of the light flux fl1002 can be further reduced. Thereby, since the difference of optical path length can be made small by this, the difference of the line width in the edge part of the line light 200 and the line width in a center part can be reduced.
 また、光束fl1001の光路長と光束fl2の光路長が一致するように出射面22の形状を設計することで、光束fl1001及び光束fl2が基準面において実質的に焦点を結ぶようにすることができる。更に、基準面において光束全体の光路長が一致するように光出射面22の形状を設計することで、基準面において実質的に焦点を結ぶライン光を提供することができる。 Further, by designing the shape of the emission surface 22 so that the optical path length of the light flux fl1001 and the optical path length of the light flux fl2 coincide, the light flux fl1001 and the light flux fl2 can be substantially focused on the reference plane. . Furthermore, by designing the shape of the light emitting surface 22 so that the optical path lengths of the entire light fluxes coincide with each other on the reference surface, it is possible to provide line light that is substantially focused on the reference surface.
 なお、第2の光素子1020において、光入射面1021を平面形状とし、光出射面1022を凹形状にしてもよい。光入射面1021及び光出射面1022の両方を曲面形状としてもよい。各光線の間の光路長の差が小さくなるように設計できれば、光入射面1021及び光出射面1022のいずれを曲面形状とすることも可能である。 In the second optical element 1020, the light incident surface 1021 may have a planar shape and the light emitting surface 1022 may have a concave shape. Both the light incident surface 1021 and the light emitting surface 1022 may be curved. Any of the light incident surface 1021 and the light emitting surface 1022 can be curved as long as the optical path length difference between the light beams can be designed to be small.
 第2の光素子1020を備える光デバイス1030によっても、光デバイス1030と同様の効果を奏する。 The optical device 1030 including the second optical element 1020 also has the same effect as the optical device 1030.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 第1の光素子
20 第2の光素子
30 光デバイス
80 発光部
90 投光装置
21 入射面
22 出射面
100 光学式センサ
120 レンズ
130 受光部
140 受光系
150 測定部
190 測定装置
200 ライン光
fl1、fl2 光束
1020 第2の光素子
1021 光入射面
1022 光出射面
1030 光デバイス
1080 発光部
1090 投光装置
fl1001、fl1002 光束
DESCRIPTION OF SYMBOLS 10 1st optical element 20 2nd optical element 30 Optical device 80 Light emission part 90 Light projection apparatus 21 Incident surface 22 Output surface 100 Optical sensor 120 Lens 130 Light reception part 140 Light reception system 150 Measurement part 190 Measurement apparatus 200 Line light fl1 , Fl2 luminous flux 1020 second optical element 1021 light incident surface 1022 light emitting surface 1030 optical device 1080 light emitting unit 1090 projectors fl1001, fl1002

Claims (11)

  1.  入射光を第1の方向に広げる第1の光素子と、
     前記第1の光素子からの光を、前記第1の方向に直交する第2の方向に収束させる第2の光素子と
    を備え、
     前記第2の光素子は、前記第2の方向に屈折率分布を有し、光入射面から光出射面までの距離が、前記第1の方向において変化するように形成されている
    光デバイス。
    A first optical element that spreads incident light in a first direction;
    A second optical element for converging light from the first optical element in a second direction orthogonal to the first direction;
    The optical device, wherein the second optical element has a refractive index distribution in the second direction, and is formed such that a distance from a light incident surface to a light emitting surface changes in the first direction.
  2.  前記第2の光素子の入射面及び出射面の少なくとも一方は、前記第1の方向に沿って曲面形状を有する
    請求項1に記載の光デバイス。
    2. The optical device according to claim 1, wherein at least one of an incident surface and an emission surface of the second optical element has a curved surface shape along the first direction.
  3.  前記第2の光素子の屈折率は、前記第2の方向において、前記第2の光素子の光軸から離れるに従って減少する
    請求項1又は2に記載の光デバイス。
    3. The optical device according to claim 1, wherein a refractive index of the second optical element decreases with increasing distance from an optical axis of the second optical element in the second direction.
  4.  前記第2の光素子は、前記第2の方向に一次元の屈折率分布を有する
    請求項3に記載の光デバイス。
    The optical device according to claim 3, wherein the second optical element has a one-dimensional refractive index distribution in the second direction.
  5.  前記第2の光素子の前記光出射面は、凸形状を有する
    請求項3又は4に記載の光デバイス。
    The optical device according to claim 3, wherein the light emitting surface of the second optical element has a convex shape.
  6.  前記第2の光素子の前記光入射面は、平面形状を有する
    請求項5に記載の光デバイス。
    The optical device according to claim 5, wherein the light incident surface of the second optical element has a planar shape.
  7.  前記第2の光素子に入射する光線の進行方向における前記光入射面から前記光出射面までの距離は、前記第1の方向において、当該光線が前記第2の光素子の光軸から離れるに従って、減少する
    請求項1から6のいずれか一項に記載の光デバイス。
    The distance from the light incident surface to the light exit surface in the traveling direction of the light beam incident on the second optical element is such that the light beam moves away from the optical axis of the second optical element in the first direction. The optical device according to claim 1, wherein the optical device decreases.
  8.  前記光入射面及び前記光出射面の少なくとも一方の形状は、前記光デバイスの光軸と交差する予め定められた基準面上において前記第2の光素子からの光が前記第1の方向に延びる実質的に線状の光に収束するように、形成されている
    請求項1から7のいずれか一項に記載の光デバイス。
    The shape of at least one of the light incident surface and the light emitting surface is such that light from the second optical element extends in the first direction on a predetermined reference plane that intersects the optical axis of the optical device. The optical device according to any one of claims 1 to 7, wherein the optical device is formed so as to converge into substantially linear light.
  9.  請求項1から7のいずれか一項に記載の光デバイスと、
     前記第1の光素子への入射光を発する発光部と
    を備える投光装置。
    An optical device according to any one of claims 1 to 7,
    And a light emitting unit that emits light incident on the first optical element.
  10.  請求項1から7のいずれか一項に記載の光デバイスと、
     前記光デバイスから出射される前記第1の方向に延びる線状の光により、対象物の形状を測定する測定部と
    を備える光学式センサ。
    An optical device according to any one of claims 1 to 7,
    An optical sensor comprising: a measurement unit that measures a shape of an object by linear light emitted from the optical device and extending in the first direction.
  11.  前記第1の光素子への入射光を発する発光部
    をさらに備える請求項10に記載の光学式センサ。
    The optical sensor according to claim 10, further comprising a light emitting unit that emits light incident on the first optical element.
PCT/JP2018/020070 2017-05-29 2018-05-24 Optical device, light projecting apparatus, and optical sensor WO2018221389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-106044 2017-05-29
JP2017106044A JP6747693B2 (en) 2017-05-29 2017-05-29 Optical device, light projecting device, and optical sensor

Publications (1)

Publication Number Publication Date
WO2018221389A1 true WO2018221389A1 (en) 2018-12-06

Family

ID=64454675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020070 WO2018221389A1 (en) 2017-05-29 2018-05-24 Optical device, light projecting apparatus, and optical sensor

Country Status (2)

Country Link
JP (1) JP6747693B2 (en)
WO (1) WO2018221389A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743643A (en) * 1993-07-28 1995-02-14 Nippon Steel Corp Semiconductor laser condenser
JP2001202496A (en) * 2000-01-18 2001-07-27 Dainippon Printing Co Ltd Picture input device
JP2002286414A (en) * 2001-03-22 2002-10-03 Konica Corp Optical displacement meter
JP2010091909A (en) * 2008-10-10 2010-04-22 Konica Minolta Business Technologies Inc Led optical element, image forming apparatus, and image forming method
US20170123053A1 (en) * 2015-11-04 2017-05-04 Hexagon Technology Center Gmbh Method and device for triangulation-based distance measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743643A (en) * 1993-07-28 1995-02-14 Nippon Steel Corp Semiconductor laser condenser
JP2001202496A (en) * 2000-01-18 2001-07-27 Dainippon Printing Co Ltd Picture input device
JP2002286414A (en) * 2001-03-22 2002-10-03 Konica Corp Optical displacement meter
JP2010091909A (en) * 2008-10-10 2010-04-22 Konica Minolta Business Technologies Inc Led optical element, image forming apparatus, and image forming method
US20170123053A1 (en) * 2015-11-04 2017-05-04 Hexagon Technology Center Gmbh Method and device for triangulation-based distance measurement

Also Published As

Publication number Publication date
JP2018200282A (en) 2018-12-20
JP6747693B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US9685355B2 (en) Laser dicing device and dicing method
US20180129061A1 (en) Optical device
EP2701209B1 (en) Reflective photoelectric sensor
TWI697661B (en) System for flat-top intensity laser sheet beam generation
CN106873168B (en) A kind of lens applied to semiconductor laser device beam shaping
US7954248B2 (en) Arrangement for depicting a linear marking
WO2018221389A1 (en) Optical device, light projecting apparatus, and optical sensor
JP2015190885A (en) edge detection device
US8766215B2 (en) Charged particle beam drawing apparatus and method of manufacturing article
US6856470B2 (en) Rod lens and laser marking apparatus
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP2020501135A (en) Focusing and leveling equipment
CN111066213B (en) Method for manufacturing optical module
JP5374800B2 (en) Laser distance meter
JP2862715B2 (en) Flat beam projector for light cutting measurement
US9857673B2 (en) Projector
KR20200033180A (en) Method for connecting a collimation optical system with a multi-mode laser light source in a position optimized manner
EP3098017B1 (en) Light irradiation apparatus and drawing apparatus
CN111751086A (en) Objective lens parameter measuring device
JP2019079854A (en) Laser device and method of manufacturing the same
JP2018092853A (en) Light projection device
US9513484B2 (en) Method and device for focusing laser light
JPWO2022018891A5 (en)
KR102551760B1 (en) Device and method for evaluating characteristics of optical lens
JP2007245194A (en) Optical unit for optical fusion, optical fusing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809280

Country of ref document: EP

Kind code of ref document: A1