WO2018221227A1 - Copper colloidal catalyst liquid for electroless copper plating, electroless copper plating method, and production method for copper-plated substrate - Google Patents

Copper colloidal catalyst liquid for electroless copper plating, electroless copper plating method, and production method for copper-plated substrate Download PDF

Info

Publication number
WO2018221227A1
WO2018221227A1 PCT/JP2018/018972 JP2018018972W WO2018221227A1 WO 2018221227 A1 WO2018221227 A1 WO 2018221227A1 JP 2018018972 W JP2018018972 W JP 2018018972W WO 2018221227 A1 WO2018221227 A1 WO 2018221227A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
copper
solution
catalyst solution
catalyst
Prior art date
Application number
PCT/JP2018/018972
Other languages
French (fr)
Japanese (ja)
Inventor
木村 祐介
章央 吉澤
内田 衛
田中 薫
Original Assignee
石原ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原ケミカル株式会社 filed Critical 石原ケミカル株式会社
Priority to KR1020197033102A priority Critical patent/KR102322950B1/en
Priority to CN201880025506.4A priority patent/CN110536977B/en
Publication of WO2018221227A1 publication Critical patent/WO2018221227A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Definitions

  • the present invention provides a copper colloid catalyst solution for applying a catalyst as a pretreatment when electroless copper plating is applied to a non-conductive substrate, an electroless copper plating method using the catalyst solution, and a copper film formed by the method.
  • the present invention relates to a method for manufacturing a formed copper plated substrate.
  • the present invention relates to a copper colloid catalyst solution that has remarkably improved stability over time and sustainability of catalytic activity and can impart an excellent appearance to a copper film.
  • Electroless copper plating is applied on non-conductive substrates such as glass substrates and ceramic substrates, including glass / epoxy resins, glass / polyimide resins, epoxy resins, polyimide resins, polycarbonate resins, ABS resins, and PET resins.
  • a noble metal such as palladium, silver, or platinum is adsorbed on the substrate to make it a catalyst nucleus, and then a copper film is deposited on the substrate by an electroless copper plating solution through the catalyst nucleus. Is common.
  • Patent Document 1 Add soluble copper salt, dispersant (gelatin, nonionic surfactant) and complexing agent (dicarboxylic acid, oxycarboxylic acid, etc.) and reduce with reducing agent (sodium borohydride, dimethylamine borane, etc.) It is disclosed that a stabilizer (sodium hypophosphite, dimethylamine borane, etc.) is added after the treatment to produce a fine copper catalyst solution for electroless copper plating.
  • reducing agent sodium borohydride, dimethylamine borane, etc.
  • Patent Document 2 An electroless plating catalyst comprising a copper salt (in Production Example 2, a copper ammine complex), an anionic surfactant, and a reducing agent is applied to the object to be plated, and after electroless copper plating is performed, electrolytic copper plating is performed. (Claims 1 and 2, paragraph 42).
  • Patent Document 3 It is disclosed that after a catalyst is applied to a substrate with a copper (I) oxide colloidal catalyst solution, copper is directly plated on the substrate by immersion in a solution containing a copper salt, a reducing agent, and a complexing agent. .
  • Patent Document 4 The object to be plated is pretreated with a conditioning agent containing a surfactant (cationic, amphoteric, nonionic, etc .; paragraph 56), and cuprous salt, hypophosphite and chloride ions, or further a reducing agent.
  • a conditioning agent containing a surfactant (cationic, amphoteric, nonionic, etc .; paragraph 56), and cuprous salt, hypophosphite and chloride ions, or further a reducing agent.
  • a method (Claim 8 to 9, Paragraph 70) in which electroless copper plating is performed by catalytic treatment with a catalyst solution containing (amine boranes, borohydrides, etc.).
  • a cationic surfactant is used in particular, the hydrophilic group of the surfactant adsorbed on the object to be plated is negatively charged and the cuprous ions are easily adsorbed.
  • Patent Document 5 Treating a non-conductive substrate with a dispersion of an activator comprising a noble metal / metal-colloid (eg, a colloidal solution of palladium / tin) and then into a conductor solution comprising a copper salt solution, a complexing agent and a reducing agent.
  • an activator comprising a noble metal / metal-colloid (eg, a colloidal solution of palladium / tin) and then into a conductor solution comprising a copper salt solution, a complexing agent and a reducing agent.
  • the catalyst solution is based on the basic principle of producing a fine metal particle by treating a soluble metal salt with a reducing agent.
  • the catalyst solution based on this principle includes those described in Patent Documents 1 to 5,
  • there is a particular problem in terms of stability over time and there is a situation that it is not easy to ensure the continuity of the catalyst application work and the electroless plating work smoothly over a long period of time. If the stability over time decreases, the catalyst is applied, and even when electroless copper plating is applied, the film does not deposit well, partial plating that does not deposit the film occurs, unevenness occurs in the plating film, and uniformity There are problems such as inferiority.
  • the present inventors include a colloidal stabilizer such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt in the copper catalyst solution as shown in JP-A-2015-147987 (hereinafter referred to as Prior Invention 1).
  • a colloidal stabilizer such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt in the copper catalyst solution as shown in JP-A-2015-147987 (hereinafter referred to as Prior Invention 1).
  • Prior Invention 1 a colloidal stabilizer such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt in the copper catalyst solution as shown in JP-A-2015-147987
  • Patent Document 6 In this method, a metal salt is reduced on a non-conductive substrate and subjected to a catalyst application treatment, and then an electroless copper plating treatment is performed (Claim 1, paragraph 1). , Reducing sugars such as galactose, maltose (maltose), fructose (fructose) and wood sugar (xylose) are included (claims 1, 10, paragraphs 1 and 24). Moreover, the said composition can contain buffer agents, such as a citric acid, tartaric acid, and malic acid (paragraph 19). Japanese Laid-Open Patent Publication No. 2012-127002 (Rohm & Haas) is a similar prior document.
  • Patent Document 7 In this method, a metal salt (such as a copper salt) is reduced on a non-conductive substrate, a catalyst is applied, and an electroless copper plating process is performed (Claims 1 and 3, paragraph 29, Table 1). Glucose is mentioned (paragraph 25). Further, by dissolving carboxylic acids such as tartaric acid, citric acid and succinic acid, and saccharides such as sucrose and fructose in the catalyst solution, the amount of catalyst metal attached to the substrate surface can be increased (paragraph 31).
  • carboxylic acids such as tartaric acid, citric acid and succinic acid
  • saccharides such as sucrose and fructose
  • Patent Document 8 In this method, electroless copper plating is performed after a catalyst application treatment is performed using a silver colloid catalyst solution (pretreatment solution) instead of a copper catalyst solution (Claims 1 and 35).
  • pretreatment solution a silver colloid catalyst solution
  • the catalyst solution includes known colloidal dispersions such as cellulose and its derivatives, monosaccharides, polysaccharides and its derivatives.
  • An agent can be added (paragraph 46). Monosaccharides, polysaccharides and derivatives thereof are sucrose, mannitol, sorbitol, glycerol, dextrin, etc. (paragraph 50).
  • Patent Document 9 Etching is performed on a non-conductive substrate made of a resin molded product, and then contacted with a colloidal solution containing a precious metal compound (gold, silver, etc.) and stannous salt, and then contacted with an aqueous solution of a palladium compound to give a catalyst.
  • This is a method of performing an electroless copper plating process (claims 1 and 2). Reducing sugars such as glucose, sorbit, cellulose, sucrose, mannitol, gluconolactone can be contained in the electroless copper plating solution instead of the catalyst solution (paragraph 73).
  • Patent Document 10 Etching is performed on non-conductive substrates such as resin, ceramics, glass, etc., tin salt (such as stannous chloride) is attached, and then sensitized, soaked in a silver nitrate solution to replace silver on the tin.
  • tin salt such as stannous chloride
  • This is a method of growing a tin-silver composite, immersing it in a reducing solution and activating it, followed by electroless copper plating (claims 1 to 6, paragraphs 10 and 22).
  • Glucose can be used.
  • Japanese Patent Laid-Open No. 02-093076 JP-A-10-229280 Japanese Patent Application Laid-Open No. 07-197266 JP 2011-225929 A Special table 2013-522476 gazette JP 2012-130910 A JP 2003-313670 A JP 2004-190042 A JP 2006-299366 A JP 2005-146330 A
  • Patent Documents 6 to 10 sugars such as glucose, fructose, maltose and cellulose, or sugar alcohols such as mannitol and sorbitol are used in the catalyst solution as a pretreatment agent.
  • sugars such as glucose, fructose, maltose and cellulose, or sugar alcohols such as mannitol and sorbitol are used in the catalyst solution as a pretreatment agent.
  • sugar alcohols such as mannitol and sorbitol
  • saccharides and sugar alcohols are used for the electroless copper plating solution, not for the catalyst solution. It is a technical object of the present invention to further improve the temporal stability of a copper colloid catalyst solution by developing its characteristic component structure based on the above-mentioned Prior Invention 1.
  • the present inventors have earnestly studied the relationship between the copper colloid catalyst solution to which a saccharide or a sugar alcohol is added and its stability over time, starting from Patent Documents 6 to 10 described above.
  • a specific saccharide such as glucose, maltose, sorbitol, xylitol
  • the stability of the catalyst solution over time is further increased than when no saccharide is contained.
  • a copper film having a good appearance can be formed by electroless plating, and a proposal as shown in Japanese Patent Application Laid-Open No. 2016-151056 (hereinafter referred to as Prior Invention 2) has been made.
  • the present inventors have found that a saccharide that is included in a saccharide in a broad sense but deviates from the range defined in the preceding invention 2 and the temporal stability of the copper colloid catalyst solution. Researched the relationship eagerly. As a result, when the non-reducing oligosaccharide is used as a saccharide deviating from this rule, the inventors of the prior invention 2 described above can improve the temporal stability of the copper colloid catalyst solution and the durability of the catalytic activity. As a result, it has been found that a further excellent effect can be expected as compared with the case of using the specified carbohydrate.
  • the present invention 1 is a copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate to be electrolessly plated with copper, (A) a soluble copper salt; (B) a reducing agent; (C) at least one colloid stabilizer selected from the group consisting of oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids; (D) A copper colloid catalyst solution for electroless copper plating, comprising a non-reducing oligosaccharide.
  • the present invention 2 is the copper colloid catalyst solution for electroless copper plating according to the present invention 1, which further contains a reducing saccharide.
  • Invention 3 is the electroless copper plating according to Invention 1 or 2, wherein the non-reducing oligosaccharide (D) is at least one selected from sucrose, trehalose, raffinose, and cyclodextrin. This is a copper colloid catalyst solution.
  • Invention 4 relates to any one of Inventions 1 to 3, wherein the reducing agent (B) is a borohydride compound, amine boranes, hypophosphorous acid, aldehydes, ascorbic acids, hydrazines, polyhydric phenols.
  • a copper colloid catalyst solution for electroless copper plating which is at least one selected from the group consisting of polyvalent naphthols, phenolsulfonic acids, naphtholsulfonic acids, and sulfinic acids.
  • the present invention 5 provides the colloid stabilizer (C) according to any one of the present inventions 1 to 4, wherein
  • the oxycarboxylic acids are citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and Is at least one selected from the group consisting of these salts,
  • the above aminocarboxylic acids are ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1
  • the present invention 6 A non-conductive substrate is brought into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant Adsorption promoting step (pretreatment step)
  • a non-conductive substrate that has been subjected to adsorption promotion treatment is brought into contact with the copper colloid catalyst solution for electroless copper plating according to any of the first to fifth aspects of the present invention, and copper is deposited on the surface of the non-conductive substrate A catalyst application step for adsorbing colloidal particles;
  • An electroless copper plating method comprising: an electroless plating step of forming a copper film using an electroless copper plating solution on a non-conductive substrate subjected to a catalyst application treatment.
  • the present invention 7 is the electroless copper plating method according to the present invention 6, wherein the adsorption accelerator used in the adsorption promoting step (a) includes at least a cationic surfactant.
  • the present invention 8 is a method for producing a copper-plated substrate, wherein a copper film is formed on a non-conductive substrate by the electroless copper plating method of the present invention 6 or 7.
  • non-reducing oligosaccharides such as sucrose and trehalose are selectively used in place of the specific carbohydrate defined in the above-mentioned prior invention 2, so that the temporal stability of the catalyst solution is higher than that of the above-mentioned prior invention 2.
  • the color tone and denseness of the copper film obtained by electroless plating are also improved.
  • the stability over time of the colloidal catalyst solution after the building bath can be improved. As will be described later, even if the catalyst is applied using the catalyst solution at the time when 3 months have passed after the building bath, the catalyst immediately after the building bath A copper film having the same properties as when a liquid is used can be formed, and the catalyst activity is excellent.
  • the maintenance of the catalyst solution can be further reduced as compared with the prior inventions 1 and 2, and the productivity of the electroless copper plating can be further improved.
  • the adsorption promotion treatment is performed with a surfactant before applying the catalyst to the non-conductive substrate, the effect of the copper colloid catalyst solution can be improved.
  • treatment with a cationic surfactant significantly improves the effect of the copper colloid catalyst solution.
  • Patent Document 8 discloses that sucrose (sucrose) is contained in the catalyst solution in order to stabilize the colloid of the catalyst solution ([0046] [0050]).
  • Example 19 which is a specific silver catalyst solution containing no sugar, and sucrose is contained, oxycarboxylic acids and aminocarboxylic acids are not contained. This is different from the present invention.
  • prior literatures that are not included in the above-mentioned patent documents but have descriptions relating to carbohydrates classified as non-reducing oligosaccharides used in the present invention, JP-A-2014-180666 and JP-T-2016-539244 There is. Among them, Japanese Patent Application Laid-Open No.
  • 2014-180666 discloses a metal catalyst solution for electroless copper plating (Claims 1 and 7), and the catalyst solution is a noble metal such as gold, silver or palladium ([0024 ], A reducing agent ([0023]), and a flavonoid glycoside to which a saccharide (trehalose, glucose, mannose, etc.) is bound ([0021]).
  • the metal contained in the catalyst solution is a noble metal and not copper, and saccharides such as trehalose are blended as specific organic compounds incorporated in the flavonoid skeleton, and are not blended directly as independent saccharide components This is different from the present invention.
  • JP-T-2016-539244 discloses an electroless copper plating solution containing a copper salt, a reducing agent, and a complexing agent for forming a copper seed layer on the barrier layer.
  • sucrose is exemplified as the reducing agent (Claim 5, [0040]).
  • the liquid containing the reducing agent is a plating liquid and not a catalyst liquid, and that there is a misconception that non-reducing sucrose is classified as a reducing agent. .
  • the present invention is primarily a copper colloid catalyst liquid for bringing a catalyst into contact with a non-conductive substrate, comprising (A) a soluble copper salt, (B) a reducing agent, and (C) a colloid stabilizer. And (D) a copper colloid catalyst solution for electroless copper plating, which further contains a non-reducing oligosaccharide (the present invention 1).
  • the non-conductive substrate is preliminarily promoted (pretreated) with a surfactant (adsorption accelerator) -containing liquid, and then the catalyst is applied using the first copper colloid catalyst liquid.
  • This is an electroless copper plating method in which a copper film is formed by performing electroless copper plating later (present invention 6).
  • the present invention is a method for producing a copper-plated substrate, wherein a copper film is formed on a non-conductive substrate by the second electroless copper plating method (the present invention 8).
  • the non-conductive substrate refers to a glass substrate, a ceramic substrate, and the like including a resin substrate such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
  • the essential components of the copper colloid catalyst solution of the present invention 1 are (A) a soluble copper salt, (B) a reducing agent, (C) a colloid stabilizer, and (D) a non-reducing oligosaccharide.
  • Any soluble copper salt (A) can be used as long as it is a soluble salt that generates cuprous ions or cupric ions in an aqueous solution.
  • soluble salts are not excluded.
  • examples thereof include organic sulfonic acid copper salts such as acid copper, and copper sulfate, copper citrate and copper methanesulfonate are preferable.
  • Examples of the reducing agent (B) include borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfines. Examples include acids. Aldehydes are formaldehyde, glyoxylic acid, or a salt thereof. Polyhydric phenols are catechol, hydroquinone, resorcin, pyrogallol, phloroglucin, gallic acid and the like. The phenol sulfonic acids include phenol sulfonic acid, cresol sulfonic acid, or a salt thereof.
  • the colloid stabilizer (C) is a compound that forms a copper complex in the plating bath, and fulfills a function of ensuring the stability of the catalyst solution over time.
  • the colloid stabilizer (C) is selected from the group consisting of oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids.
  • oxycarboxylic acids examples include citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, And salts thereof.
  • aminocarboxylic acids examples include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA).
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • TTHA triethylenetetraminehexaacetic acid
  • NTA nitrilotriacetic acid
  • Iminodiacetic acid IDA
  • hydroxyethyliminodiacetic acid iminodipropionic acid
  • IDP 1,3-propanediaminetetraacetic acid
  • 1,3-diamino-2-hydroxypropanetetraacetic acid glycol etherdiaminetetraacetic acid, meta Phenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethylglutamic acid, ornithine, cysteine, N, N-bis (2 Hydroxyethyl) glycine, (S, S) - ethylenediamine succinic acid, and their salts.
  • IDA Iminodiacetic acid
  • IDP iminodipropionic acid
  • 1,3-propanediaminetetraacetic acid 1,3-diamino-2-hydroxypropa
  • polycarboxylic acids examples include succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof.
  • the feature of the copper colloid catalyst solution of the present invention 1 is that the non-reducing oligosaccharide (D) is selected and added.
  • oligosaccharide means a saccharide condensed with about 2 to 10 monosaccharides.
  • the non-reducing oligosaccharide (D) is selected from sucrose, trehalose, raffinose, cyclodextrin and the like, and these can be used alone or in combination, but sucrose and trehalose are preferred.
  • cyclodextrin is a non-reducing oligosaccharide having a reducing end in a cyclic shape.
  • the solubility decreases when the number of bonds of monosaccharide units is large, so that the number of bonds is preferably small.
  • the pH of the copper colloid catalyst solution of the present invention is preferably a value in the alkaline region or acidic region excluding neutrality, but the copper colloid catalyst solution of the present invention containing the non-reducing oligosaccharide (D) is The alkaline region tends to promote the catalytic function more easily than the acidic region.
  • a reducing saccharide in the said prior invention 2, when specific saccharides, such as glucose and maltose, are mix
  • a reducing saccharide also in the copper colloid catalyst liquid of this invention characterized by containing the said non-reducing oligosaccharide (D), a reducing saccharide can be further contained.
  • the reducing sugar include monosaccharides such as glucose (glucose), galactose, mannose, fructose (fructose), and wood sugar (xylose), maltose (maltose), isomaltose, lactose (lactose), isomaltulose and the like.
  • the specific carbohydrate defined in the preceding invention 2 includes a specific sugar alcohol
  • the copper colloid catalyst solution of the present invention may contain the specific sugar alcohol defined in the prior invention 2. it can.
  • the sugar alcohol include sorbitol, xylitol, mannitol, maltitol, erythritol, lactitol and the like.
  • the copper colloid catalyst solution of the present invention 1 is aqueous, its solvent is water and / or hydrophilic alcohol, and organic solvents (including lipophilic alcohols) are usually not used.
  • the pH is preferably in the acidic region or alkaline region excluding the neutral region.
  • pH 1 to 6 and 8 to 12 are suitable, preferably pH 2 to 5 and 8 to 11. If adjusted to this appropriate range, the copper colloid particles are easily stabilized.
  • the copper colloid catalyst solution of the present invention containing the non-reducing oligosaccharide (D) tends to promote the catalytic function more easily in the alkaline region than in the acidic region.
  • an aminocarboxylic acid such as EDTA or NTA as the colloid stabilizer (C) is slightly different from using an oxycarboxylic acid such as tartaric acid or citric acid in order to bring out the catalytic function.
  • an aminocarboxylic acid such as EDTA or NTA
  • an oxycarboxylic acid such as tartaric acid or citric acid
  • the soluble copper salt (A) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 3 mol / L, more preferably 0.05 mol / L to 2. Mol / L, more preferably 0.04 mol / L to 1.2 mol / L.
  • the reducing agent (B) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 4 mol / L, more preferably 0.01 mol / L to 3 mol. / L, more preferably 0.02 mol / L to 2.2 mol / L.
  • the colloid stabilizer (C) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 4 mol / L, more preferably 0.01 mol / L to 2 Mol / L, more preferably 0.05 mol / L to 1.6 mol / L.
  • the non-reducing oligosaccharide (D) can be used alone or in combination, and the content thereof is preferably 0.001 mol / L to 4 mol / L, more preferably 0.01 mol / L. -3 mol / L, more preferably 0.05 mol / L to 2.2 mol / L.
  • the above-mentioned specific example is mentioned as a reducing saccharide
  • the total content of the catalyst solution is preferably 0.001 mol / L to 2.0 mol / L, more preferably 0.01 mol / L to 1.5 mol / L, and still more preferably 0.05. Mol / L to 1.0 mol / L.
  • the relative content of the non-reducing oligosaccharide (D) is too low, the stability of the copper colloid catalyst solution over time and the sustainability of the catalyst activity may be reduced.
  • the relative content of the non-reducing oligosaccharide (D) is too high, there is a possibility that the formation of a film having a good appearance may be hindered by imparting catalyst nuclei to the non-conductive substrate.
  • the catalyst solution is prepared by containing a solution of the reducing agent (B) with a soluble copper salt (A) (and a colloid stabilizer (C)). Basically, it is performed by slowly dropping the solution over time.
  • a reducing agent (B) solution preferably 5 ° C. to 50 ° C., more preferably 10 ° C. to 40 ° C., is dropped into the soluble copper salt (A) solution, preferably 20 minutes to 1200 minutes, more preferably Is stirred for 30 to 300 minutes to prepare a catalyst solution.
  • the copper colloid particles generated from the soluble copper salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, more preferably 1 nm to 100 nm. Of fine particles.
  • the average particle size of the copper colloid particles is 250 nm or less, when the non-conductive substrate is brought into contact with the catalyst solution, the copper colloid particles enter the dents on the fine uneven surface of the substrate, and are adsorbed densely or caught.
  • the anchor effect of this promotes the application of copper colloid nuclei to the substrate surface.
  • the average particle diameter is larger than 250 nm, it is difficult to obtain a stable copper colloid due to aggregation, precipitation, or separation, and it is difficult to expect an anchor effect. There is a risk that it may be applied only to the surface, or a poor application.
  • the copper colloid catalyst solution of the present invention 1 can contain a surfactant, since the catalyst activity may be lowered, the content is preferably suppressed to a small amount of 950 mg / L or less.
  • the above-mentioned surfactant means various nonionic, cationic, anionic or amphoteric surfactants. In particular, amphoteric, cationic, anionic or low molecular nonionic surfactants are preferred. Absent.
  • nonionic surfactant examples include C1 to C20 alkanol, phenol, naphthol, bisphenol, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, C1 to C25 alkoxylated phosphoric acid (salt) ), Sorbitan ester, polyalkylene glycol, polyoxyalkylene alkyl ether, C1-C22 aliphatic amine, C1-C22 aliphatic amide, etc. are subjected to addition condensation of 2-300 moles of ethylene oxide (EO) and / or propylene oxide (PO). Etc.
  • EO ethylene oxide
  • PO propylene oxide
  • Examples of the cationic surfactant include quaternary ammonium salts and pyridinium salts. Specifically, diallylamine polymer ammonium salt, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, octadecyl dimethyl ethyl ammonium salt, lauryl dimethyl benzyl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt , Trimethylbenzylammonium salt, triethylbenzylammonium salt, dimethyldiphenylammonium salt, benzyldimethylphenylammonium salt, hexadecylpyridinium salt, laurylpyridinium salt, dodecylpyridinium salt, stearylamine acetate, laurylamine acetate, octade
  • anionic surfactant examples include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl benzene sulfonates, ⁇ (mono, di, tri) alkyl ⁇ naphthalene sulfonates, and the like. Is mentioned.
  • amphoteric surfactant examples include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid betaine.
  • sulfated adducts or sulfonated adducts of condensation products of ethylene oxide (EO) and / or propylene oxide (PO) with alkylamines or diamines can also be used.
  • the present invention 6 is an electroless copper plating method using the above-described copper colloid catalyst solution, which is formed by sequentially combining the following three steps.
  • Adsorption promotion step (b) Catalyst application step (c) Electroless plating step
  • the adsorption promotion step (a) is a pretreatment step of the catalyst application step (b), which is a nonionic surfactant, a cationic system.
  • a adsorption accelerator selected from the group consisting of a surfactant, an anionic surfactant, and an amphoteric surfactant;
  • the wettability of the substrate surface is enhanced to enhance the catalytic activity, and the adsorption of the copper colloid particles in the next step is promoted.
  • the adsorption promoting step (a) since it is necessary to bring the non-conductive substrate into contact with the surfactant-containing liquid, it is fundamental to immerse the substrate in the containing liquid.
  • the contained liquid may be applied to the substrate with a brush.
  • the colloidal copper particles produced by allowing the reducing agent (B) to act on the soluble copper salt (A) have a negative zeta potential.
  • a non-conductive substrate is treated with a cationic surfactant.
  • the substrate When the treatment is performed in contact with the containing liquid, the substrate tends to be positively charged, and the adsorption efficiency of the copper colloid particles on the substrate in the next step increases.
  • Specific examples of the surfactant are the same as those described as the suppression target in the catalyst solution of the first invention.
  • the surfactant content is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L.
  • the temperature of the surfactant-containing liquid is preferably about 15 to 70 ° C., and the contact time of the substrate with the surfactant-containing liquid is preferably about 0.5 to 20 minutes.
  • the process proceeds to the next catalyst application step (b) without drying or drying.
  • the non-conductive substrate is brought into contact with the copper colloid catalyst solution, and the copper colloid particles are adsorbed on the surface of the non-conductive substrate.
  • the catalyst solution may be applied to the substrate with a brush.
  • the temperature of the catalyst solution is preferably 5 ° C to 70 ° C, more preferably 15 ° C to 60 ° C.
  • the contact time of the substrate with the catalyst solution is preferably 0.1 minutes to 20 minutes, more preferably 0.2 minutes to 10 minutes.
  • an acid washing step may be added after the catalyst application step (b) and before the next electroless plating step (c).
  • the acid cleaning process is added, the activity of the catalytic activity can be further increased compared to the case without the acid cleaning treatment, and even if the substrate has a complicated shape with vias and through holes, plating unevenness and disconnection are prevented. It is possible to prevent harmful effects and improve the adhesion of the copper film.
  • the acid concentration is preferably 10 g / L to 200 g / L, more preferably 20 g / L to 100 g / L.
  • the acid include inorganic acids such as sulfuric acid and hydrochloric acid, and organic sulfonic acids.
  • Organic acids such as carboxylic acids such as acetic acid, tartaric acid and citric acid can be used.
  • the treatment temperature for acid washing is preferably 5 ° C. to 70 ° C., more preferably 15 ° C. to 60 ° C., and the treatment time is preferably 0.1 minutes to 20 minutes, more preferably 0.2 minutes to 10 minutes. It is.
  • the electroless plating step (c) is performed without drying or drying.
  • the electroless copper plating in the electroless plating step (c) may be performed in the same manner as in the past, and there are no particular restrictions.
  • the liquid temperature of the electroless copper plating solution is generally 15 ° C. to 70 ° C., preferably 20 ° C. to 60 ° C.
  • air stirring, rapid liquid flow stirring, mechanical stirring using stirring blades, or the like can be employed.
  • This invention 8 is a manufacturing method of a copper plating board
  • the non-conductive substrate refers to a resin substrate such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin, or a glass substrate or a ceramic substrate.
  • the electroless copper plating solution basically contains a soluble copper salt, a reducing agent, and a complexing agent, and can further contain various additives such as a surfactant and a pH adjusting agent, and an acid.
  • the soluble copper salt is as described in the copper colloid catalyst solution.
  • the reducing agent contained in the electroless copper plating solution is also as described in the copper colloid catalyst solution, including formaldehyde (formalin water), hypophosphorous acid, phosphorous acid, amine borane, borohydride. And glyoxylic acid, and formalin water is preferred.
  • the complexing agent contained in the electroless copper plating solution may be the same as that of the colloid stabilizer described in the above copper colloid catalyst solution. Specifically, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), hydroxyethylethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), etc.
  • EDTA ethylenediaminetetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • TTHA triethylenetetraminehexaacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • NTA nitrilotriacetic acid
  • IDA iminodiacetic acid
  • Aminocarboxylic acids ethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine and other polyamines, monoethanolamine, diethanolamine, triethanolamine and other amino alcohols, citric acid, tartaric acid, Examples thereof include oxycarboxylic acids such as lactic acid and malic acid, thioglycolic acid, and glycine.
  • the electroless copper plating solution may contain an organic acid and an inorganic acid or a salt thereof as a base component of the solution.
  • the inorganic acid include sulfuric acid, pyrophosphoric acid, and tetrafluoroboric acid.
  • organic acids include oxycarboxylic acids such as glycolic acid and tartaric acid, and organic sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.
  • the adsorption accelerator containing liquid and the copper colloid catalyst liquid of Example 1 each contain the following components.
  • Cationic surfactant quaternary ammonium salt nonionic surfactant of diallylamine polymer: polyoxyalkylene branched decyl ether (copper colloid catalyst solution)
  • Soluble copper salt A: Copper sulfate reducing agent
  • B Sodium borohydride colloid stabilizer
  • C Tetrasodium ethylenediaminetetraacetate (EDTA ⁇ 4Na)
  • Non-reducing oligosaccharide D): sucrose
  • Examples 2 to 5, 7, 9, 11, and 13 are examples based on Example 1.
  • Example 2 Non-reducing oligosaccharide (D) is changed to trehalose
  • Example 3 Non-reducing oligosaccharide (D) is used in combination with sucrose and trehalose
  • Example 4 Non-reducing oligosaccharide (D) is changed to raffinose Modified
  • Example 5 Non-reducing oligosaccharide (D) (sucrose) and reducing sugar (fructose) are used in combination.
  • Example 7 Colloidal stabilizer (C) is changed to iminodiacetic acid.
  • Example 9 Colloidal stabilizer (C ) was changed to citrate
  • Example 11 the reducing agent (B) was changed to dimethylamine borane
  • Example 13 the adsorption accelerator was changed to lauryldimethylbenzylammonium chloride and polyoxyalkylene branched decyl ether
  • Examples 6, 8, 10, 12, and 14 are examples based on the second embodiment.
  • Example 6 Combination of non-reducing oligosaccharide (D) (trehalose) and reducing sugar (maltose)
  • Example 8 Changing colloidal stabilizer (C) to nitrilotriacetate
  • Example 10 Colloidal stabilizer ( C) was changed to citrate
  • Example 12 Reductant (B) was changed to dimethylamine borane
  • Example 14 Adsorption accelerator was changed to lauryldimethylbenzylammonium chloride and polyoxyalkylene branched decyl ether
  • Reference Examples 1 to 3 are examples in which the copper colloid catalyst solution contains a specific carbohydrate defined in the Prior Invention 2 in accordance with the Prior Invention 2 described above.
  • the specific carbohydrate is as follows.
  • Reference Example 1 Reducing disaccharide (maltose)
  • Reference Example 2 Reducing monosaccharide (glucose)
  • Reference example 3 sugar alcohol (xylitol)
  • the following Comparative Examples 1 to 3 are blank examples as follows.
  • Comparative Example 1 Example in which the copper colloid catalyst liquid does not contain the non-reducing oligosaccharide (D) Comparative example 2: The copper colloid catalyst liquid is specified in the above-mentioned prior invention 2 instead of the non-reducing oligosaccharide (D) Example 3 containing saccharides other than saccharides (starch) Comparative Example 3: Example of Immediately Performing Electroless Plating Process (c) From Catalyst Application Process (b) Without Adsorption Promotion Process (a)
  • Example 1 Providedure for adsorption promotion, catalyst application, and electroless plating ⁇
  • a glass / epoxy resin substrate (FR-4 manufactured by Panasonic Electric Works Co., Ltd., plate thickness: 1.0 mm) without a copper foil was used as a non-conductive sample substrate.
  • the sample substrate is subjected to an adsorption promotion treatment using the following (a) adsorption accelerator-containing liquid, and then immersed in a copper colloid catalyst solution (b) below, followed by a catalyst application treatment, and then the following (c) ) Was subjected to electroless plating treatment.
  • the sample substrate was immersed in a solution containing the following adsorption accelerator under conditions of 50 ° C.
  • (B) Preparation of copper colloid catalyst solution [copper solution] Copper sulfate (as Cu 2+ ) 0.1 mol / L EDTA ⁇ 4Na 0.4mol / L Sucrose 0.5 mol / L
  • a reducing agent solution was added dropwise to the above copper solution at 25 ° C. adjusted to pH 9.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
  • the molar ratio of each component of the catalyst solution is as follows.
  • Example 2 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 3 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 4 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 5 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
  • Example 6 Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 2.
  • Example 7 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 8 Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 2.
  • Example 9 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 10 Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 2.
  • Example 11 Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 1.
  • Example 12 Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating
  • the processing conditions for each step were the same as in Example 2.
  • Example 13 Based on Example 1 above, the composition of the electroless copper plating solution, and the promotion of adsorption, catalyst application, and electroless plating, except that the adsorption promoter containing liquid and the copper colloid catalyst liquid were prepared with the following compositions, respectively. The processing conditions for each step were the same as in Example 1.
  • Copper solution Copper sulfate (as Cu 2+ ) 0.1 mol / L EDTA ⁇ 4Na 0.4mol / L Sucrose 0.5 mol / L
  • Reducing agent solution Sodium borohydride 0.02 mol / L
  • a reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
  • the molar ratio of each component of the catalyst solution is as follows.
  • Example 14 Based on Example 2 above, the composition of the electroless copper plating solution, and the promotion of adsorption, catalyst application, and electroless plating, except that the adsorption promoter containing liquid and the copper colloid catalyst liquid were prepared with the following compositions, respectively. The processing conditions for each step were the same as in Example 2.
  • Copper solution Copper sulfate (as Cu 2+ ) 0.1 mol / L EDTA ⁇ 4Na 0.4mol / L
  • Reducing agent solution Sodium borohydride 0.02 mol / L
  • a reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
  • the molar ratio of each component of the catalyst solution is as follows.
  • Reference example 1 It is an example based on the preceding invention 2 described above, and the copper colloid catalyst solution contains a reducing disaccharide (maltose) which is a specific carbohydrate defined in the preceding invention 2, and is a non-reducing oligosaccharide used in the present invention. (D) is not included. That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing conditions for each step of electrolytic plating were the same as those in Example 1.
  • a reducing disaccharide maltose
  • D is not included. That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing
  • the copper colloid catalyst solution is an example based on the preceding invention 2 described above, and contains a sugar alcohol (xylitol) which is a specific carbohydrate defined in the preceding invention 2, and is a non-reducing oligosaccharide (D ) Is not included. That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing conditions for each step of electrolytic plating were the same as those in Example 1.
  • Example 3 This is an example in which the adsorption promotion step is omitted based on the first embodiment. That is, the sample substrate was immediately immersed in the copper colloid catalyst solution (b) of Example 1 without being subjected to adsorption promotion treatment, and the catalyst was applied, and further, the sample substrate was coated with the electroless copper plating solution (c) of Example 1. Electrolytic plating was performed. The treatment conditions for the steps of catalyst application and electroless plating, and the preparation conditions for the copper colloid catalyst solution and the electroless copper plating solution are the same as in Example 1.
  • Example of stability test of copper colloid catalyst solution over time With respect to each of the copper colloid catalyst solutions constructed in Examples 1 to 14, Reference Examples 1 to 3, and Comparative Examples 1 to 3, the temporal stability of the colloid was evaluated based on the following evaluation criteria.
  • evaluation criteria for the stability over time, in the preceding invention 2, the point of time “2 months after the bathing” was set as the branching point of the evaluation. The point of “3 months after bathing” was taken as the branch point for evaluation.
  • evaluation criteria Double-circle: Even if three months or more passed after the bathing, it did not precipitate or decompose.
  • No precipitation or decomposition for 1 to 2 months after bathing.
  • Precipitation or decomposition within 1 month after bathing.
  • X Colloidal particles were not formed, or precipitated or decomposed immediately after the bath.
  • Example of sustainability test of catalytic activity of copper colloid catalyst solution For each of the copper colloid catalyst liquids bathed in Examples 1 to 14, Reference Examples 1 to 3, and Comparative Examples 1 to 3, the sustainability of the catalyst activity was evaluated based on the following evaluation criteria.
  • the “stable stability of the catalyst solution” in the test example is mainly intended for observing the properties of the catalyst solution itself, and the “sustainability of catalyst activity” in the test example is that the function of imparting the catalyst is maintained. The main objective is to observe the effectiveness of the function.
  • evaluation criteria A: A uniform and uniform copper film was obtained when the catalyst was applied with a catalyst solution that had passed 3 months after the bathing.
  • the non-reducing oligosaccharide (D) defined in the present invention is necessary (shift from ⁇ evaluation to ⁇ evaluation).
  • the non-reducing oligosaccharide (D) defined in the present invention is contained in the catalyst solution instead of the specific carbohydrate defined in the prior invention 2, the sustainability of the catalytic activity is remarkably improved. (Transition from ⁇ evaluation to ⁇ evaluation). From the above, the superiority of the catalyst solutions of Examples 1 to 14 over the catalyst solutions of Reference Examples 1 to 3 in terms of stability over time and sustainability of catalyst activity is clear, and the present invention is used as a saccharide.
  • the non-reducing oligosaccharide (D) defined in (1) is selected, the maintenance of the copper colloid catalyst solution can be greatly simplified as compared with the reference example, and there is an advantage that the plating processing cost can be reduced.
  • Example 1 a non-conductive substrate is subjected to adsorption promotion treatment (pretreatment) with an adsorption accelerator containing a quaternary ammonium salt of diallylamine polymer which is a cationic surfactant, and copper sulfate is dissolved into a soluble copper salt (A). And a catalyst with a copper colloid catalyst solution containing sodium borohydride as a reducing agent (B), ethylenediaminetetraacetate as a colloid stabilizer (C), and sucrose as a non-reducing oligosaccharide (D), This is an example of electroless copper plating.
  • Example 1 both the stability of the catalyst solution over time and the sustainability of the catalyst activity are both good, and both obtained by electroless plating when using the catalyst solution immediately after the building bath or at the time when 3 months have passed since the building bath.
  • the obtained copper film showed no appearance irregularities and lack of plating and showed an excellent appearance.
  • Example 2 is an example in which the non-reducing oligosaccharide (D) in Example 1 was changed to trehalose.
  • Example 2 as with Example 1, the stability of the catalyst solution with time and the sustainability of the catalyst activity were good, and the obtained copper film exhibited an excellent appearance.
  • Example 3 is an example in which sucrose and trehalose are used in combination as the non-reducing oligosaccharide (D)
  • Example 4 is an example in which raffinose is used as the non-reducing oligosaccharide (D).
  • Examples 3 to 4 similar to Example 1, high stability over time, long-lasting catalytic activity, and excellent film appearance were exhibited.
  • Examples 5 to 6 are examples in which the non-reducing oligosaccharide (D) defined in the present invention and the reducing sugar (fructose, maltose), which are specific carbohydrates defined in the prior invention 2, are used in combination. Again, in Examples 5 to 6, as in Example 1 or 2, high aging stability and sustained catalytic activity and excellent film appearance were exhibited.
  • Examples 7 to 10 are examples in which the colloidal stabilizer (C) was changed in the catalyst solution of Example 1 or 2, and Examples 11 to 12 were the reducing agent (B) in the catalyst solution of Example 1 or 2. This is an example in which is changed.
  • Examples 7 to 12 similar to these basic examples 1 and 2, high stability with time, long-lasting catalytic activity, and excellent film appearance were exhibited.
  • Examples 13 to 14 are examples in which the adsorption accelerator used in the adsorption promotion step (a) in Example 1 or 2 was changed. Again, in Examples 13 to 14, as with the basic Example 1 or 2, high stability over time, sustained catalytic activity, and excellent film appearance were exhibited.
  • Examples 9 to 10 are examples in which citrate was used as the colloid stabilizer (C) and the pH of the catalyst solution was set in the acidic region. As in Examples 1 to 8 and 11 to 14, in which EDTA ⁇ 4Na or iminodiacetic acid was used as the colloid stabilizer (C) and the pH of the catalyst solution was set in the alkaline region, There was no change in the evaluation of the stability over time, the sustainability of the catalytic activity, and the appearance of the film.
  • the copper colloid catalyst solution of the present invention has significantly improved temporal stability and sustainability of catalytic activity.
  • electroless copper plating is performed using the copper colloid catalyst solution, the resulting copper film is excellent. Appearance is given.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

According to the present invention, the temporal stability and the sustainability of catalyst activity of a catalyst liquid are both significantly improved since electroless copper plating is performed by subjecting a non-conductive substrate to an adsorption acceleration treatment (pretreatment) by bringing the non-conductive substrate into contact with a surfactant-containing liquid, and by applying a catalyst to the non-conductive substrate using a copper colloidal catalyst liquid that is for electroless copper plating and that contains (A) a soluble copper salt, (B) a reducing agent, (C) a colloidal stabilizer, and (D) a non-reducing oligosaccharide such as sucrose and trehalose. In addition, a deposited copper coating membrane will have excellent appearance since electroless copper plating is performed by applying a catalyst after the catalyst activity thereof is enhanced by the adsorption acceleration treatment (pretreatment).

Description

無電解銅メッキ用の銅コロイド触媒液、無電解銅メッキ方法、及び銅メッキ基板の製造方法Copper colloid catalyst solution for electroless copper plating, electroless copper plating method, and method for producing copper plated substrate
 本発明は、非導電性基板に無電解銅メッキを施すに際し、予備処理として触媒付与を行うための銅コロイド触媒液、当該触媒液を用いた無電解銅メッキ方法、及び当該方法で銅皮膜を形成した銅メッキ基板の製造方法に関する。本発明は、経時安定性及び触媒活性の持続性が顕著に向上しており、銅皮膜に優れた外観を付与できる銅コロイド触媒液に関する。 The present invention provides a copper colloid catalyst solution for applying a catalyst as a pretreatment when electroless copper plating is applied to a non-conductive substrate, an electroless copper plating method using the catalyst solution, and a copper film formed by the method. The present invention relates to a method for manufacturing a formed copper plated substrate. The present invention relates to a copper colloid catalyst solution that has remarkably improved stability over time and sustainability of catalytic activity and can impart an excellent appearance to a copper film.
 ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板をはじめとして、ガラス基板、セラミックス基板などの非導電性基板上に無電解銅メッキを施すには、先ず、基板上にパラジウム、銀、白金などの貴金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解銅メッキ液により銅皮膜を基板上に析出させる方法が一般的である。 Electroless copper plating is applied on non-conductive substrates such as glass substrates and ceramic substrates, including glass / epoxy resins, glass / polyimide resins, epoxy resins, polyimide resins, polycarbonate resins, ABS resins, and PET resins. To apply, first, a noble metal such as palladium, silver, or platinum is adsorbed on the substrate to make it a catalyst nucleus, and then a copper film is deposited on the substrate by an electroless copper plating solution through the catalyst nucleus. Is common.
 一方、貴金属の触媒を使用せず、安価な銅、ニッケル、コバルトなどの特定の金属を使用した触媒付与方法もあり、当該特定の金属の触媒液では、可溶性金属塩を還元剤で処理して金属のコロイド粒子を生成させて、これを触媒核とすることが基本原理となっている。
 このうち、銅コロイド触媒液の従来技術を挙げると、次の通りである。
On the other hand, there is also a catalyst application method using a specific metal such as copper, nickel, cobalt, etc., which is inexpensive, without using a noble metal catalyst. In the catalyst solution of the specific metal, a soluble metal salt is treated with a reducing agent. The basic principle is to generate metal colloidal particles and use them as catalyst nuclei.
Among these, the prior art of the copper colloid catalyst solution is as follows.
(1)特許文献1
 可溶性銅塩と、分散剤(ゼラチン、ノニオン性界面活性剤)と、錯化剤(ジカルボン酸、オキシカルボン酸など)とを添加し、還元剤(水素化ホウ素ナトリウム、ジメチルアミンボランなど)により還元処理した後に安定剤(次亜リン酸ナトリウム、ジメチルアミンボランなど)を添加して、無電解銅メッキ用の微細な銅触媒液を製造することが開示されている。
(1) Patent Document 1
Add soluble copper salt, dispersant (gelatin, nonionic surfactant) and complexing agent (dicarboxylic acid, oxycarboxylic acid, etc.) and reduce with reducing agent (sodium borohydride, dimethylamine borane, etc.) It is disclosed that a stabilizer (sodium hypophosphite, dimethylamine borane, etc.) is added after the treatment to produce a fine copper catalyst solution for electroless copper plating.
(2)特許文献2
 銅塩(製造例2では、銅アンミン錯体)とアニオン性界面活性剤と還元剤とからなる無電解メッキ用触媒を被メッキ物に付与し、無電解銅メッキを施した後、電気銅メッキを施すことが開示されている(請求項1~2、段落42)。
(2) Patent Document 2
An electroless plating catalyst comprising a copper salt (in Production Example 2, a copper ammine complex), an anionic surfactant, and a reducing agent is applied to the object to be plated, and after electroless copper plating is performed, electrolytic copper plating is performed. (Claims 1 and 2, paragraph 42).
(3)特許文献3
 基板に酸化銅(I)コロイド触媒溶液による触媒付与を行った後、銅塩と還元剤と錯化剤とを含む溶液への浸漬で、銅を基板にダイレクトプレーティングすることが開示されている。
(3) Patent Document 3
It is disclosed that after a catalyst is applied to a substrate with a copper (I) oxide colloidal catalyst solution, copper is directly plated on the substrate by immersion in a solution containing a copper salt, a reducing agent, and a complexing agent. .
(4)特許文献4
 被メッキ物を、界面活性剤(カチオン性、両性、ノニオン性など;段落56)を含むコンディショニング剤で前処理し、第一銅塩と次亜リン酸塩と塩素イオンとを、或いはさらに還元剤(アミンボラン類、水素化ホウ素類など)とを含む触媒溶液で触媒処理して、無電解銅メッキを行う方法(請求項8~9、段落70)が開示されている。
 上記コンディショニング剤のうち、特にカチオン性界面活性剤を用いると、被メッキ物に吸着した界面活性剤の親水基がマイナスに帯電し、上記第一銅イオンが吸着し易くなることが記載されている(段落58)。
(4) Patent Document 4
The object to be plated is pretreated with a conditioning agent containing a surfactant (cationic, amphoteric, nonionic, etc .; paragraph 56), and cuprous salt, hypophosphite and chloride ions, or further a reducing agent. There is disclosed a method (Claim 8 to 9, Paragraph 70) in which electroless copper plating is performed by catalytic treatment with a catalyst solution containing (amine boranes, borohydrides, etc.).
Among the above conditioning agents, it is described that when a cationic surfactant is used in particular, the hydrophilic group of the surfactant adsorbed on the object to be plated is negatively charged and the cuprous ions are easily adsorbed. (Paragraph 58).
(5)特許文献5
 貴金属/金属-コロイド(例えば、パラジウム/スズのコロイド溶液)を含む活性化剤の分散液で非導電性基板を処理し、次いで銅塩溶液と錯化剤と還元剤とを含む導電体溶液に接触させた後、無電解メッキ及び電気メッキを行う方法が開示されている(段落1、13、24、29、65、表1)。
(5) Patent Document 5
Treating a non-conductive substrate with a dispersion of an activator comprising a noble metal / metal-colloid (eg, a colloidal solution of palladium / tin) and then into a conductor solution comprising a copper salt solution, a complexing agent and a reducing agent. A method of performing electroless plating and electroplating after contact is disclosed (paragraphs 1, 13, 24, 29, 65, Table 1).
 上記触媒液では、可溶性金属塩を還元剤で処理して金属の微細粒子を生成することを基本原理にしているが、この原理の触媒液は、上記特許文献1~5のものを含めて、一般に経時安定性の点で特に問題があり、触媒付与作業及び無電解メッキ作業の連続性を長時間に亘って円滑に確保することが容易でないという実情がある。
 経時安定性が低下すると、触媒付与を行い、無電解銅メッキを施しても、皮膜が良好に析出しない、部分的に皮膜が析出しないメッキ欠けが起こる、メッキ皮膜にムラが生じて均一性に劣る、などの問題がある。
 例えば、建浴初期の触媒液で処理した後に無電解メッキを行った銅皮膜の場合、建浴時の経時安定性が低いほど皮膜外観は劣るが、建浴後数ヶ月単位の経時安定性も考慮する必要がある。即ち、建浴初期の触媒液で処理した皮膜外観はよい場合でも、建浴から数ヶ月間経過後の触媒液で処理すると、皮膜外観に上記メッキ欠けやムラが生じる場合が少なくないため、触媒液の経時安定性は重要である。
The catalyst solution is based on the basic principle of producing a fine metal particle by treating a soluble metal salt with a reducing agent. The catalyst solution based on this principle includes those described in Patent Documents 1 to 5, In general, there is a particular problem in terms of stability over time, and there is a situation that it is not easy to ensure the continuity of the catalyst application work and the electroless plating work smoothly over a long period of time.
If the stability over time decreases, the catalyst is applied, and even when electroless copper plating is applied, the film does not deposit well, partial plating that does not deposit the film occurs, unevenness occurs in the plating film, and uniformity There are problems such as inferiority.
For example, in the case of a copper film that has been electrolessly plated after being treated with a catalyst solution at the early stage of the bathing bath, the lower the stability over time during bathing, the poorer the appearance of the coating, but also considering the stability over time of several months after bathing There is a need to. In other words, even if the appearance of the film treated with the catalyst solution at the early stage of the building bath is good, the above-mentioned lack of plating or unevenness often occurs in the appearance of the film when treated with the catalyst solution after several months from the building bath. The stability of the liquid over time is important.
 そこで、本発明者らは、特開2015-147987号(以下、先行発明1という)に示す通り、銅触媒液に、銅塩を安定させるオキシカルボン酸類、アミノカルボン酸類などのコロイド安定剤を含有させるとともに、銅塩と当該安定剤との混合比率を調整し、且つ、界面活性剤の含有量をごく少量乃至ゼロに抑制することで、触媒液の経時安定性を改善した銅コロイド触媒液を提案した。 Therefore, the present inventors include a colloidal stabilizer such as oxycarboxylic acids and aminocarboxylic acids that stabilize the copper salt in the copper catalyst solution as shown in JP-A-2015-147987 (hereinafter referred to as Prior Invention 1). A copper colloidal catalyst solution with improved stability over time of the catalyst solution by adjusting the mixing ratio of the copper salt and the stabilizer and suppressing the surfactant content to a very small amount to zero. Proposed.
 しかしながら、無電解メッキで得られる銅皮膜の外観の向上や処理コストの軽減を考えると、触媒液の経時安定性をさらに改善することが望まれる。
 このため、触媒液への糖類の添加が、触媒液の経時安定性に及ぼす影響の有無に着目するとともに、触媒付与に際して糖類を使用する技術的事項を含む従来技術を挙げると、次の通りである。
However, considering the improvement of the appearance of the copper film obtained by electroless plating and the reduction of the processing cost, it is desired to further improve the temporal stability of the catalyst solution.
For this reason, while paying attention to the presence or absence of the influence of the addition of saccharides to the catalyst solution on the stability of the catalyst solution over time, conventional techniques including the technical matter of using saccharides when applying the catalyst are as follows: is there.
(6)特許文献6
 非導電性基板に金属塩を還元して触媒付与処理を施し、無電解銅メッキ処理をする方法であり(請求項1、段落1)、上記触媒付与を行う組成物には、ブドウ糖(グルコース)、ガラクトース、麦芽糖(マルトース)、果糖(フルクトース)、木糖(キシロース)などの還元糖が含まれる(請求項1、10、段落1、24)。また、上記組成物は、クエン酸、酒石酸、リンゴ酸などの緩衝剤を含有することができる(段落19)。
 類似の先行文献に特開2012-127002号公報(ローム&ハース)がある。
(6) Patent Document 6
In this method, a metal salt is reduced on a non-conductive substrate and subjected to a catalyst application treatment, and then an electroless copper plating treatment is performed (Claim 1, paragraph 1). , Reducing sugars such as galactose, maltose (maltose), fructose (fructose) and wood sugar (xylose) are included (claims 1, 10, paragraphs 1 and 24). Moreover, the said composition can contain buffer agents, such as a citric acid, tartaric acid, and malic acid (paragraph 19).
Japanese Laid-Open Patent Publication No. 2012-127002 (Rohm & Haas) is a similar prior document.
(7)特許文献7
 非導電性基板に金属塩(銅塩など)を還元して触媒付与処理を施し、無電解銅メッキ処理をする方法であり(請求項1、3、段落29、表1)、上記還元剤としてブドウ糖が挙げられる(段落25)。また、触媒溶液に、酒石酸、クエン酸、コハク酸などのカルボン酸、ショ糖、果糖などの糖類を溶解させることで、基材表面への触媒金属の付着量が高められる(段落31)。
(7) Patent Document 7
In this method, a metal salt (such as a copper salt) is reduced on a non-conductive substrate, a catalyst is applied, and an electroless copper plating process is performed (Claims 1 and 3, paragraph 29, Table 1). Glucose is mentioned (paragraph 25). Further, by dissolving carboxylic acids such as tartaric acid, citric acid and succinic acid, and saccharides such as sucrose and fructose in the catalyst solution, the amount of catalyst metal attached to the substrate surface can be increased (paragraph 31).
(8)特許文献8
 銅触媒液ではなく、銀コロイド触媒液(前処理液)で触媒付与処理を施した後、無電解銅メッキを行う方法である(請求項1、35)。
 上記触媒液には、クエン酸、酒石酸、乳酸、リンゴ酸などのオキシカルボン酸の他に(請求項1、3)、セルロース及びその誘導体、単糖類、多糖類及びその誘導体などの公知のコロイド分散剤を添加することができる(段落46)。
 単糖類、多糖類及びその誘導体は、ショ糖、マンニトール、ソルビトール、グリセロール、デキストリンなどである(段落50)。
(8) Patent Document 8
In this method, electroless copper plating is performed after a catalyst application treatment is performed using a silver colloid catalyst solution (pretreatment solution) instead of a copper catalyst solution (Claims 1 and 35).
In addition to oxycarboxylic acids such as citric acid, tartaric acid, lactic acid and malic acid (Claims 1 and 3), the catalyst solution includes known colloidal dispersions such as cellulose and its derivatives, monosaccharides, polysaccharides and its derivatives. An agent can be added (paragraph 46).
Monosaccharides, polysaccharides and derivatives thereof are sucrose, mannitol, sorbitol, glycerol, dextrin, etc. (paragraph 50).
(9)特許文献9
 樹脂成形体よりなる非導電性基板にエッチング処理を施し、貴金属化合物(金、銀など)と第一スズ塩とを含有するコロイド溶液に接触させた後、パラジウム化合物の水溶液に接触させて触媒付与処理を施し、無電解銅メッキ処理をする方法である(請求項1~2)。
 上記触媒液ではなく、無電解銅メッキ液に対して、ブドウ糖、ソルビット、セルロース、ショ糖、マンニット、グルコノラクトンなどの還元性を有する糖類を含有させることができる(段落73)。
(9) Patent Document 9
Etching is performed on a non-conductive substrate made of a resin molded product, and then contacted with a colloidal solution containing a precious metal compound (gold, silver, etc.) and stannous salt, and then contacted with an aqueous solution of a palladium compound to give a catalyst. This is a method of performing an electroless copper plating process (claims 1 and 2).
Reducing sugars such as glucose, sorbit, cellulose, sucrose, mannitol, gluconolactone can be contained in the electroless copper plating solution instead of the catalyst solution (paragraph 73).
(10)特許文献10
 樹脂、セラミックス、ガラスなどの非導電性基板にエッチング処理を施し、スズ塩(塩化第一スズなど)を付着させて感応化処理を施し、硝酸銀溶液に浸潰してスズ上に銀を置換させてスズ-銀複合物を成長させ、還元性溶液に浸潰して活性化させた後、無電解銅メッキを行う方法であり(請求項1~6、段落10、22)、上記還元性溶液にはブドウ糖を使用することができる。
(10) Patent Document 10
Etching is performed on non-conductive substrates such as resin, ceramics, glass, etc., tin salt (such as stannous chloride) is attached, and then sensitized, soaked in a silver nitrate solution to replace silver on the tin. This is a method of growing a tin-silver composite, immersing it in a reducing solution and activating it, followed by electroless copper plating (claims 1 to 6, paragraphs 10 and 22). Glucose can be used.
特開平02-093076号公報Japanese Patent Laid-Open No. 02-093076 特開平10-229280号公報JP-A-10-229280 特開平07-197266号公報Japanese Patent Application Laid-Open No. 07-197266 特開2011-225929号公報JP 2011-225929 A 特表2013-522476号公報Special table 2013-522476 gazette 特開2012-130910号公報JP 2012-130910 A 特開2003-313670号公報JP 2003-313670 A 特開2004-190042号公報JP 2004-190042 A 特開2006-299366号公報JP 2006-299366 A 特開2005-146330号公報JP 2005-146330 A
 上記特許文献6~10には、前処理剤としての触媒液に、ブドウ糖、果糖、麦芽糖、セルロースなどの糖類、或いは、マンニトール、ソルビトールなどの糖アルコールが使用されている。
 但し、特許文献9では、触媒液に対してではなく、無電解銅メッキ液に糖類や糖アルコールが使用されている。
 本発明は、上記先行発明1を基礎としてその特徴的な成分構成を発展させて、銅コロイド触媒液の経時安定性をさらに向上させることを技術的課題とする。
In Patent Documents 6 to 10, sugars such as glucose, fructose, maltose and cellulose, or sugar alcohols such as mannitol and sorbitol are used in the catalyst solution as a pretreatment agent.
However, in Patent Document 9, saccharides and sugar alcohols are used for the electroless copper plating solution, not for the catalyst solution.
It is a technical object of the present invention to further improve the temporal stability of a copper colloid catalyst solution by developing its characteristic component structure based on the above-mentioned Prior Invention 1.
 本発明者らは、上記特許文献6~10を出発点として、糖類や糖アルコールからなる糖質を添加した銅コロイド触媒液とその経時安定性との関係を鋭意研究した。その結果、本発明者らは、グルコース、マルトース、ソルビトール、キシリトールなどの特定の糖質を選択して銅コロイド触媒液に添加すると、糖質を含まない場合よりも触媒液の経時安定性がさらに向上し、無電解メッキによって良好な外観の銅皮膜を形成できることを見出し、特開2016-151056号(以下、先行発明2という)に示す通りの提案を行った。 The present inventors have earnestly studied the relationship between the copper colloid catalyst solution to which a saccharide or a sugar alcohol is added and its stability over time, starting from Patent Documents 6 to 10 described above. As a result, when the present inventors select a specific saccharide such as glucose, maltose, sorbitol, xylitol and add it to the copper colloid catalyst solution, the stability of the catalyst solution over time is further increased than when no saccharide is contained. It has been found that a copper film having a good appearance can be formed by electroless plating, and a proposal as shown in Japanese Patent Application Laid-Open No. 2016-151056 (hereinafter referred to as Prior Invention 2) has been made.
 そこで、本発明者らは、さらに上記発想を推進すべく、広義の糖質には含まれるが上記先行発明2で規定した範囲からは外れる糖質と、銅コロイド触媒液の経時安定性との関係を鋭意研究した。その結果、本発明者らは、この規定から外れる糖質として非還元性オリゴ糖を用いると、銅コロイド触媒液の経時安定性及び触媒活性の持続性を向上させる点において、上記先行発明2で規定した糖質を用いた場合と比べてさらに優れた効能が期待できることを見出し、本発明を完成した。 Therefore, in order to further promote the above-mentioned idea, the present inventors have found that a saccharide that is included in a saccharide in a broad sense but deviates from the range defined in the preceding invention 2 and the temporal stability of the copper colloid catalyst solution. Researched the relationship eagerly. As a result, when the non-reducing oligosaccharide is used as a saccharide deviating from this rule, the inventors of the prior invention 2 described above can improve the temporal stability of the copper colloid catalyst solution and the durability of the catalytic activity. As a result, it has been found that a further excellent effect can be expected as compared with the case of using the specified carbohydrate.
 即ち、本発明1は、無電解銅メッキを施す対象である非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液であって、
 (A)可溶性銅塩と、
 (B)還元剤と、
 (C)オキシカルボン酸類、アミノカルボン酸類、及びポリカルボン酸類よりなる群から選ばれた少なくとも一種のコロイド安定剤と、
 (D)非還元性オリゴ糖と
からなることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。
That is, the present invention 1 is a copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate to be electrolessly plated with copper,
(A) a soluble copper salt;
(B) a reducing agent;
(C) at least one colloid stabilizer selected from the group consisting of oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids;
(D) A copper colloid catalyst solution for electroless copper plating, comprising a non-reducing oligosaccharide.
 本発明2は、上記本発明1において、さらに、還元性糖類を含有することを特徴とする無電解銅メッキ用の銅コロイド触媒液である。 The present invention 2 is the copper colloid catalyst solution for electroless copper plating according to the present invention 1, which further contains a reducing saccharide.
 本発明3は、上記本発明1又は2において、上記非還元性オリゴ糖(D)が、スクロース、トレハロース、ラフィノース、及びシクロデキストリンから選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。 Invention 3 is the electroless copper plating according to Invention 1 or 2, wherein the non-reducing oligosaccharide (D) is at least one selected from sucrose, trehalose, raffinose, and cyclodextrin. This is a copper colloid catalyst solution.
 本発明4は、上記本発明1~3のいずれかにおいて、上記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、及びスルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする無電解銅メッキ用の銅コロイド触媒液である。 Invention 4 relates to any one of Inventions 1 to 3, wherein the reducing agent (B) is a borohydride compound, amine boranes, hypophosphorous acid, aldehydes, ascorbic acids, hydrazines, polyhydric phenols. A copper colloid catalyst solution for electroless copper plating, which is at least one selected from the group consisting of polyvalent naphthols, phenolsulfonic acids, naphtholsulfonic acids, and sulfinic acids.
 本発明5は、上記本発明1~4のいずれかにおいて、上記コロイド安定剤(C)のうち、
 上記オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グルコン酸、グルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
 上記アミノカルボン酸類が、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3-プロパンジアミン四酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
 上記ポリカルボン酸類が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種である
ことを特徴とする無電解銅メッキ用の銅コロイド触媒液である。
The present invention 5 provides the colloid stabilizer (C) according to any one of the present inventions 1 to 4, wherein
The oxycarboxylic acids are citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and Is at least one selected from the group consisting of these salts,
The above aminocarboxylic acids are ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1 , 3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol ether diaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′- Tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid, and salts thereof It is at least one selected from the group consisting of,
The polycarboxylic acid is at least one selected from the group consisting of succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof. This is a copper colloid catalyst solution for electroless copper plating.
 本発明6は、
 (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程(前処理工程)と、
 (b)上記本発明1~5のいずれかの無電解銅メッキ用の銅コロイド触媒液に、吸着促進処理が施された非導電性基板を接触させて、該非導電性基板の表面上に銅コロイド粒子を吸着させる触媒付与工程と、
 (c)触媒付与処理が施された非導電性基板上に、無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程と
からなることを特徴とする無電解銅メッキ方法である。
The present invention 6
(A) A non-conductive substrate is brought into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant Adsorption promoting step (pretreatment step)
(B) A non-conductive substrate that has been subjected to adsorption promotion treatment is brought into contact with the copper colloid catalyst solution for electroless copper plating according to any of the first to fifth aspects of the present invention, and copper is deposited on the surface of the non-conductive substrate A catalyst application step for adsorbing colloidal particles;
(C) An electroless copper plating method comprising: an electroless plating step of forming a copper film using an electroless copper plating solution on a non-conductive substrate subjected to a catalyst application treatment.
 本発明7は、上記本発明6において、上記吸着促進工程(a)で用いる吸着促進剤が、少なくともカチオン系界面活性剤を含むことを特徴とする無電解銅メッキ方法である。 The present invention 7 is the electroless copper plating method according to the present invention 6, wherein the adsorption accelerator used in the adsorption promoting step (a) includes at least a cationic surfactant.
 本発明8は、上記本発明6又は7の無電解銅メッキ方法で非導電性基板上に銅皮膜を形成することを特徴とする銅メッキ基板の製造方法である。 The present invention 8 is a method for producing a copper-plated substrate, wherein a copper film is formed on a non-conductive substrate by the electroless copper plating method of the present invention 6 or 7.
 本発明では、上記先行発明2で規定された特定の糖質に代えて、スクロース、トレハロースなどの非還元性オリゴ糖を選択的に用いるので、触媒液の経時安定性が上記先行発明2に比べて顕著に向上し、無電解メッキで得られる銅皮膜の色調や緻密性も向上する。
 特に本発明では、建浴後のコロイド触媒液の経時安定性を向上でき、後述するように、建浴後3ヶ月が経過した時点の触媒液を用いて触媒付与を行っても、建浴直後の触媒液を用いた場合と同じ性状の銅皮膜を形成でき、触媒活性の持続性が優れている。よって、本発明によると、先行発明1~2に比べて触媒液のメンテナンスをさらに軽減して、無電解銅メッキの生産性を一層向上できる。
 また、非導電性基板に触媒付与を行う前に界面活性剤によって吸着促進処理を施すと、銅コロイド触媒液の効果を改善できる。特に、カチオン系界面活性剤で処理すると、銅コロイド触媒液の効果が著しく向上する。
In the present invention, non-reducing oligosaccharides such as sucrose and trehalose are selectively used in place of the specific carbohydrate defined in the above-mentioned prior invention 2, so that the temporal stability of the catalyst solution is higher than that of the above-mentioned prior invention 2. And the color tone and denseness of the copper film obtained by electroless plating are also improved.
In particular, in the present invention, the stability over time of the colloidal catalyst solution after the building bath can be improved. As will be described later, even if the catalyst is applied using the catalyst solution at the time when 3 months have passed after the building bath, the catalyst immediately after the building bath A copper film having the same properties as when a liquid is used can be formed, and the catalyst activity is excellent. Therefore, according to the present invention, the maintenance of the catalyst solution can be further reduced as compared with the prior inventions 1 and 2, and the productivity of the electroless copper plating can be further improved.
Further, if the adsorption promotion treatment is performed with a surfactant before applying the catalyst to the non-conductive substrate, the effect of the copper colloid catalyst solution can be improved. In particular, treatment with a cationic surfactant significantly improves the effect of the copper colloid catalyst solution.
 上記特許文献8には、触媒液のコロイドを安定化するために、スクロース(ショ糖)を触媒液に含有させることが開示されているが([0046][0050])、銅の触媒液ではなく銀の触媒液である点、また、糖類を含む唯一の銀触媒液の具体例である実施例19では、スクロースは含まれているが、オキシカルボン酸類やアミノカルボン酸類などは含まれていない点で、本発明とは異なる。
 また、前記特許文献には含まれないが、本発明に用いる非還元性オリゴ糖に分類される糖質に関する記載を有する先行文献として、特開2014-180666号公報及び特表2016-539244号公報がある。
 このうち、特開2014-180666号公報には、無電解銅メッキ用の金属触媒液が開示されており(請求項1、7)、触媒液が、金、銀、パラジウムなどの貴金属([0024])と、還元剤([0023])と、糖類(トレハロース、グルコース、マンノースなど)が結合したフラボノイドグリコシドとを含む([0021])。しかし、触媒液に含まれる金属が貴金属であって銅ではない点、また、トレハロースなどの糖類がフラボノイド骨格に組み込まれた特定の有機化合物として配合され、独立の糖類成分のまま直接配合されていない点で、本発明とは異なる。
 同じく、特表2016-539244号公報には、バリア層の上に銅シード層を形成するための、銅塩と、還元剤と、錯化剤とを含む無電解銅メッキ液が開示されるとともに(請求項1)、上記還元剤としてスクロースが例示されている(請求項5、[0040])。しかし、上記還元剤を含む液がメッキ液であって触媒液ではない点、また、非還元性のスクロースを還元剤に分類するという誤認をしている点で、本発明とは根本的に異なる。
Patent Document 8 discloses that sucrose (sucrose) is contained in the catalyst solution in order to stabilize the colloid of the catalyst solution ([0046] [0050]). In Example 19, which is a specific silver catalyst solution containing no sugar, and sucrose is contained, oxycarboxylic acids and aminocarboxylic acids are not contained. This is different from the present invention.
In addition, as prior literatures that are not included in the above-mentioned patent documents but have descriptions relating to carbohydrates classified as non-reducing oligosaccharides used in the present invention, JP-A-2014-180666 and JP-T-2016-539244 There is.
Among them, Japanese Patent Application Laid-Open No. 2014-180666 discloses a metal catalyst solution for electroless copper plating (Claims 1 and 7), and the catalyst solution is a noble metal such as gold, silver or palladium ([0024 ], A reducing agent ([0023]), and a flavonoid glycoside to which a saccharide (trehalose, glucose, mannose, etc.) is bound ([0021]). However, the metal contained in the catalyst solution is a noble metal and not copper, and saccharides such as trehalose are blended as specific organic compounds incorporated in the flavonoid skeleton, and are not blended directly as independent saccharide components This is different from the present invention.
Similarly, JP-T-2016-539244 discloses an electroless copper plating solution containing a copper salt, a reducing agent, and a complexing agent for forming a copper seed layer on the barrier layer. (Claim 1), sucrose is exemplified as the reducing agent (Claim 5, [0040]). However, it is fundamentally different from the present invention in that the liquid containing the reducing agent is a plating liquid and not a catalyst liquid, and that there is a misconception that non-reducing sucrose is classified as a reducing agent. .
 本発明は、第一に、非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液で、(A)可溶性銅塩と、(B)還元剤と、(C)コロイド安定剤と、さらに(D)非還元性オリゴ糖とを含有している、無電解銅メッキ用の銅コロイド触媒液である(上記本発明1)。
 本発明は、第二に、予め非導電性基板を界面活性剤(吸着促進剤)の含有液で吸着促進(前処理)し、次いで、上記第一の銅コロイド触媒液を用いて触媒付与した後に、無電解銅メッキを行って銅皮膜を形成する、無電解銅メッキ方法である(上記本発明6)。
 本発明は、第三に、上記第二の無電解銅メッキ方法で非導電性基板上に銅皮膜を形成する、銅メッキ基板の製造方法である(上記本発明8)。
 上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板をはじめとして、ガラス基板、セラミックス基板などをいう。
The present invention is primarily a copper colloid catalyst liquid for bringing a catalyst into contact with a non-conductive substrate, comprising (A) a soluble copper salt, (B) a reducing agent, and (C) a colloid stabilizer. And (D) a copper colloid catalyst solution for electroless copper plating, which further contains a non-reducing oligosaccharide (the present invention 1).
In the present invention, secondly, the non-conductive substrate is preliminarily promoted (pretreated) with a surfactant (adsorption accelerator) -containing liquid, and then the catalyst is applied using the first copper colloid catalyst liquid. This is an electroless copper plating method in which a copper film is formed by performing electroless copper plating later (present invention 6).
Thirdly, the present invention is a method for producing a copper-plated substrate, wherein a copper film is formed on a non-conductive substrate by the second electroless copper plating method (the present invention 8).
The non-conductive substrate refers to a glass substrate, a ceramic substrate, and the like including a resin substrate such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
 上記本発明1の銅コロイド触媒液の必須成分は、(A)可溶性銅塩と、(B)還元剤と、(C)コロイド安定剤と、(D)非還元性オリゴ糖とである。 The essential components of the copper colloid catalyst solution of the present invention 1 are (A) a soluble copper salt, (B) a reducing agent, (C) a colloid stabilizer, and (D) a non-reducing oligosaccharide.
 上記可溶性銅塩(A)は、水溶液中で第一銅イオン又は第二銅イオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。具体的には、硫酸銅、酸化銅、塩化銅、ピロリン酸銅、炭酸銅のほか、酢酸銅、シュウ酸銅及びクエン酸銅などのカルボン酸銅塩、又は、メタンスルホン酸銅及びヒドロキシエタンスルホン酸銅などの有機スルホン酸銅塩などが挙げられ、硫酸銅、クエン酸銅、メタンスルホン酸銅が好ましい。 Any soluble copper salt (A) can be used as long as it is a soluble salt that generates cuprous ions or cupric ions in an aqueous solution. There is no particular limitation, and hardly soluble salts are not excluded. . Specifically, copper sulfate, copper oxide, copper chloride, copper pyrophosphate, copper carbonate, carboxylic acid copper salts such as copper acetate, copper oxalate and copper citrate, or copper methanesulfonate and hydroxyethanesulfone Examples thereof include organic sulfonic acid copper salts such as acid copper, and copper sulfate, copper citrate and copper methanesulfonate are preferable.
 上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類などが挙げられる。アルデヒド類は、ホルムアルデヒド、グリオキシル酸、又はその塩などである。多価フェノール類は、カテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などである。フェノールスルホン酸類は、フェノールスルホン酸、クレゾールスルホン酸、又はその塩などである。 Examples of the reducing agent (B) include borohydride compounds, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfines. Examples include acids. Aldehydes are formaldehyde, glyoxylic acid, or a salt thereof. Polyhydric phenols are catechol, hydroquinone, resorcin, pyrogallol, phloroglucin, gallic acid and the like. The phenol sulfonic acids include phenol sulfonic acid, cresol sulfonic acid, or a salt thereof.
 上記コロイド安定剤(C)は、メッキ浴中で銅錯体を形成する化合物であり、触媒液の経時安定性を担保する機能を果たすものである。
 当該コロイド安定剤(C)は、オキシカルボン酸類、アミノカルボン酸類、及びポリカルボン酸類よりなる群から選ばれる。
The colloid stabilizer (C) is a compound that forms a copper complex in the plating bath, and fulfills a function of ensuring the stability of the catalyst solution over time.
The colloid stabilizer (C) is selected from the group consisting of oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids.
 上記オキシカルボン酸類としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、グルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩などが挙げられる。 Examples of the oxycarboxylic acids include citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, And salts thereof.
 上記アミノカルボン酸類としては、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸(IDP)、1,3-プロパンジアミン四酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸、及びこれらの塩などが挙げられる。 Examples of the aminocarboxylic acids include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), ethylenediaminetetrapropionic acid, nitrilotriacetic acid (NTA). , Iminodiacetic acid (IDA), hydroxyethyliminodiacetic acid, iminodipropionic acid (IDP), 1,3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol etherdiaminetetraacetic acid, meta Phenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′-tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethylglutamic acid, ornithine, cysteine, N, N-bis (2 Hydroxyethyl) glycine, (S, S) - ethylenediamine succinic acid, and their salts.
 上記ポリカルボン酸類としては、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸、及びこれらの塩などが挙げられる。 Examples of the polycarboxylic acids include succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof.
 本発明1の銅コロイド触媒液の特徴は、非還元性オリゴ糖(D)が選択され、添加されていることである。本発明において、オリゴ糖は、2~10個程度の単糖が縮合した糖類を意味する。
 上記非還元性オリゴ糖(D)は、スクロース、トレハロース、ラフィノース、シクロデキストリンなどから選ばれ、これらは単用又は併用できるが、スクロース及びトレハロースが好ましい。
 但し、シクロデキストリンは還元末端が環状になった非還元性のオリゴ糖であるが、単糖単位の結合数が多いと溶解度が低下するため、結合数が少ない方が良い。
 後述する通り、本発明の銅コロイド触媒液のpHは、中性を除くアルカリ性領域又は酸性領域の値が好ましいが、当該非還元性オリゴ糖(D)を含む本発明の銅コロイド触媒液は、酸性領域に比べてアルカリ性領域の方が、触媒機能を増進させ易い傾向にある。
The feature of the copper colloid catalyst solution of the present invention 1 is that the non-reducing oligosaccharide (D) is selected and added. In the present invention, oligosaccharide means a saccharide condensed with about 2 to 10 monosaccharides.
The non-reducing oligosaccharide (D) is selected from sucrose, trehalose, raffinose, cyclodextrin and the like, and these can be used alone or in combination, but sucrose and trehalose are preferred.
However, cyclodextrin is a non-reducing oligosaccharide having a reducing end in a cyclic shape. However, the solubility decreases when the number of bonds of monosaccharide units is large, so that the number of bonds is preferably small.
As described later, the pH of the copper colloid catalyst solution of the present invention is preferably a value in the alkaline region or acidic region excluding neutrality, but the copper colloid catalyst solution of the present invention containing the non-reducing oligosaccharide (D) is The alkaline region tends to promote the catalytic function more easily than the acidic region.
 上記先行発明2では、グルコース、マルトースなどの特定の糖質を触媒液に配合すると、触媒液の経時安定性及び皮膜外観が有効に向上する。
 このため、上記非還元性オリゴ糖(D)を含有していることを特徴とする本発明の銅コロイド触媒液においても、さらに還元性糖類を含有させることができる。
 上記還元性糖類としては、ブドウ糖(グルコース)、ガラクトース、マンノース、果糖(フルクトース)、木糖(キシロース)などの単糖類、麦芽糖(マルトース)、イソマルトース、乳糖(ラクトース)、イソマルツロースなどの二糖類、マルトトリオースなどの三糖類などが挙げられる。一般に、単糖類は総じてアルデヒド基を有するので、還元性糖類に属する。
 さらに、上記先行発明2で規定した特定の糖質には、特定の糖アルコールも含まれるため、本発明の銅コロイド触媒液においても、先行発明2で規定した特定の糖アルコールを含有させることができる。当該糖アルコールとしては、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、ラクチトールなどが挙げられる。
In the said prior invention 2, when specific saccharides, such as glucose and maltose, are mix | blended with a catalyst liquid, the temporal stability of a catalyst liquid and a film | membrane external appearance will improve effectively.
For this reason, also in the copper colloid catalyst liquid of this invention characterized by containing the said non-reducing oligosaccharide (D), a reducing saccharide can be further contained.
Examples of the reducing sugar include monosaccharides such as glucose (glucose), galactose, mannose, fructose (fructose), and wood sugar (xylose), maltose (maltose), isomaltose, lactose (lactose), isomaltulose and the like. Examples include saccharides and trisaccharides such as maltotriose. In general, monosaccharides generally have aldehyde groups and therefore belong to reducing saccharides.
Furthermore, since the specific carbohydrate defined in the preceding invention 2 includes a specific sugar alcohol, the copper colloid catalyst solution of the present invention may contain the specific sugar alcohol defined in the prior invention 2. it can. Examples of the sugar alcohol include sorbitol, xylitol, mannitol, maltitol, erythritol, lactitol and the like.
 本発明1の銅コロイド触媒液は水系なので、その溶媒は水及び/又は親水性アルコールであり、有機溶媒(親油性アルコールを含む)は、通常単用されない。
 また、当該触媒液は、pH6~8の中性付近では触媒活性が低下し易いため、そのpHは、上記中性領域を除く酸性領域又はアルカリ性領域の値であることが好ましい。具体的には、pH1~6及び8~12が適しており、好ましくはpH2~5及び8~11であり、この適正領域に調整すると、銅コロイド粒子が安定化し易い。
 前述したように、非還元性オリゴ糖(D)を含む本発明の銅コロイド触媒液は、酸性領域に比べてアルカリ性領域の方が、触媒機能を増進させ易い傾向にある。このため、触媒機能を引き出す点で、例えば、コロイド安定剤(C)として、EDTA、NTAなどのアミノカルボン酸類を用いることは、酒石酸、クエン酸などのオキシカルボン酸類を用いることに対して、少し優位性がある。
Since the copper colloid catalyst solution of the present invention 1 is aqueous, its solvent is water and / or hydrophilic alcohol, and organic solvents (including lipophilic alcohols) are usually not used.
In addition, since the catalytic activity of the catalyst solution tends to decrease near neutral pH 6-8, the pH is preferably in the acidic region or alkaline region excluding the neutral region. Specifically, pH 1 to 6 and 8 to 12 are suitable, preferably pH 2 to 5 and 8 to 11. If adjusted to this appropriate range, the copper colloid particles are easily stabilized.
As described above, the copper colloid catalyst solution of the present invention containing the non-reducing oligosaccharide (D) tends to promote the catalytic function more easily in the alkaline region than in the acidic region. For this reason, for example, using an aminocarboxylic acid such as EDTA or NTA as the colloid stabilizer (C) is slightly different from using an oxycarboxylic acid such as tartaric acid or citric acid in order to bring out the catalytic function. There is an advantage.
 銅コロイド触媒液において、上記可溶性銅塩(A)は単用又は併用でき、その含有量は、好ましくは0.005モル/L~3モル/L、より好ましくは0.05モル/L~2モル/L、さらに好ましくは0.04モル/L~1.2モル/Lである。
 銅コロイド触媒液において、上記還元剤(B)は単用又は併用でき、その含有量は、好ましくは0.005モル/L~4モル/L、より好ましくは0.01モル/L~3モル/L、さらに好ましくは0.02モル/L~2.2モル/Lである。還元剤(B)の含有量が適正量よりも少ないと、可溶性銅塩(A)の還元作用が低下する恐れがあり、逆に多過ぎると、無電解メッキで析出する銅皮膜の均質性が低下する恐れがある。
 銅コロイド触媒液において、上記コロイド安定剤(C)は単用又は併用でき、その含有量は、好ましくは0.005モル/L~4モル/L、より好ましくは0.01モル/L~2モル/L、さらに好ましくは0.05モル/L~1.6モル/Lである。
 銅コロイド触媒液において、上記非還元性オリゴ糖(D)は単用又は併用でき、その含有量は、好ましくは0.001モル/L~4モル/L、より好ましくは0.01モル/L~3モル/L、さらに好ましくは0.05モル/L~2.2モル/Lである。
 尚、本発明の銅コロイド触媒液が副次的に含有できる還元性糖類や糖アルコールとしては、前述の具体例が挙げられ、これらは単用又は併用できる。触媒液におけるその含有量は、合計で、好ましくは0.001モル/L~2.0モル/L、より好ましくは0.01モル/L~1.5モル/L、さらに好ましくは0.05モル/L~1.0モル/Lである。
In the copper colloid catalyst solution, the soluble copper salt (A) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 3 mol / L, more preferably 0.05 mol / L to 2. Mol / L, more preferably 0.04 mol / L to 1.2 mol / L.
In the copper colloid catalyst solution, the reducing agent (B) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 4 mol / L, more preferably 0.01 mol / L to 3 mol. / L, more preferably 0.02 mol / L to 2.2 mol / L. If the content of the reducing agent (B) is less than the appropriate amount, the reducing action of the soluble copper salt (A) may be reduced. Conversely, if it is too much, the homogeneity of the copper film deposited by electroless plating may be reduced. May fall.
In the copper colloid catalyst solution, the colloid stabilizer (C) can be used alone or in combination, and the content thereof is preferably 0.005 mol / L to 4 mol / L, more preferably 0.01 mol / L to 2 Mol / L, more preferably 0.05 mol / L to 1.6 mol / L.
In the copper colloid catalyst solution, the non-reducing oligosaccharide (D) can be used alone or in combination, and the content thereof is preferably 0.001 mol / L to 4 mol / L, more preferably 0.01 mol / L. -3 mol / L, more preferably 0.05 mol / L to 2.2 mol / L.
In addition, the above-mentioned specific example is mentioned as a reducing saccharide | sugar and sugar alcohol which the copper colloid catalyst liquid of this invention can contain secondaryly, These can be used individually or together. The total content of the catalyst solution is preferably 0.001 mol / L to 2.0 mol / L, more preferably 0.01 mol / L to 1.5 mol / L, and still more preferably 0.05. Mol / L to 1.0 mol / L.
 銅コロイド触媒液において、上記可溶性銅塩(A)と上記コロイド安定剤(C)との含有モル比率は、好ましくは(A):(C)=1:0.03~1:35、より好ましくは(A):(C)=1:0.5~1:24である。コロイド安定剤(C)の相対含有率が低過ぎると、触媒液の経時安定性が低下し、ひいては無電解メッキにより得られる銅皮膜に析出不良が生じる要因にもなる恐れがある。逆に、コロイド安定剤(C)の相対含有率が高過ぎても、触媒液の経時安定性を損ない、得られる銅皮膜の質を低下させる恐れがある。
 銅コロイド触媒液において、上記可溶性銅塩(A)と上記還元剤(B)との含有モル比率は、好ましくは(A):(B)=1:0.01~1:6、より好ましくは(A):(B)=1:0.05~1:4、さらに好ましくは(A):(B)=1:0.1~1:2である。
 銅コロイド触媒液において、上記可溶性銅塩(A)と上記非還元性オリゴ糖(D)との含有モル比率は、好ましくは(A):(D)=1:0.01~1:40、より好ましくは(A):(D)=1:0.1~1:25、さらに好ましくは(A):(D)=1:0.1~1:15である。非還元性オリゴ糖(D)の相対含有率が低過ぎると、銅コロイド触媒液の経時安定性及び触媒活性の持続性が低下する恐れがある。逆に、非還元性オリゴ糖(D)の相対含有率が高過ぎると、非導電性基板への触媒核の付与、ひいては良好な外観の皮膜形成に支障が生じる恐れがある。
In the copper colloid catalyst solution, the molar ratio of the soluble copper salt (A) and the colloid stabilizer (C) is preferably (A) :( C) = 1: 0.03 to 1:35, more preferably (A) :( C) = 1: 0.5 to 1:24. If the relative content of the colloidal stabilizer (C) is too low, the stability of the catalyst solution over time may be lowered, and as a result, the copper film obtained by electroless plating may cause a deposition failure. On the other hand, even if the relative content of the colloid stabilizer (C) is too high, the stability of the catalyst solution over time may be impaired and the quality of the resulting copper film may be reduced.
In the copper colloid catalyst solution, the molar ratio of the soluble copper salt (A) and the reducing agent (B) is preferably (A) :( B) = 1: 0.01 to 1: 6, more preferably (A) :( B) = 1: 0.05 to 1: 4, more preferably (A) :( B) = 1: 0.1 to 1: 2.
In the copper colloid catalyst solution, the molar ratio of the soluble copper salt (A) to the non-reducing oligosaccharide (D) is preferably (A) :( D) = 1: 0.01 to 1:40, More preferably, (A) :( D) = 1: 0.1 to 1:25, and still more preferably (A) :( D) = 1: 0.1 to 1:15. If the relative content of the non-reducing oligosaccharide (D) is too low, the stability of the copper colloid catalyst solution over time and the sustainability of the catalyst activity may be reduced. On the other hand, if the relative content of the non-reducing oligosaccharide (D) is too high, there is a possibility that the formation of a film having a good appearance may be hindered by imparting catalyst nuclei to the non-conductive substrate.
 当該触媒液の調製は、還元剤(B)から銅イオンへ電子を円滑に供与するために、還元剤(B)の溶液を可溶性銅塩(A)(及びコロイド安定剤(C))の含有溶液に、時間をかけて緩やかに滴下して行うことを基本とする。例えば、好ましくは5℃~50℃、より好ましくは10℃~40℃の還元剤(B)の溶液を可溶性銅塩(A)の溶液に滴下して、好ましくは20分間~1200分間、より好ましくは30分間~300分間撹拌し、触媒液を調製する。ただし、触媒液の調製に際して、可溶性銅塩(A)の溶液を還元剤(B)の溶液に滴下することは排除されない。
 本発明の触媒液において、還元剤(B)の作用により可溶性銅塩(A)から生じる銅コロイド粒子は、適した平均粒径が1nm~250nm、好ましくは1nm~120nm、より好ましくは1nm~100nmの微細粒子である。銅コロイド粒子の平均粒径が250nm以下になると、触媒液に非導電性基板を接触させた際に、銅コロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着する、或いは引っ掛かるなどのアンカー効果により、基板表面への銅コロイド核の付与が促進されるものと推測できる。逆に、平均粒径が250nmよりも大きくなると、凝集、沈殿、或いは分離などにより、安定な銅コロイドが得られ難いうえに、アンカー効果も期待し難いため、銅コロイド粒子が基板表面に部分的にしか付与されない恐れや、付与不良になる恐れがある。
In order to smoothly donate electrons from the reducing agent (B) to the copper ions, the catalyst solution is prepared by containing a solution of the reducing agent (B) with a soluble copper salt (A) (and a colloid stabilizer (C)). Basically, it is performed by slowly dropping the solution over time. For example, a reducing agent (B) solution, preferably 5 ° C. to 50 ° C., more preferably 10 ° C. to 40 ° C., is dropped into the soluble copper salt (A) solution, preferably 20 minutes to 1200 minutes, more preferably Is stirred for 30 to 300 minutes to prepare a catalyst solution. However, in preparing the catalyst solution, dropping the solution of the soluble copper salt (A) into the solution of the reducing agent (B) is not excluded.
In the catalyst solution of the present invention, the copper colloid particles generated from the soluble copper salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, more preferably 1 nm to 100 nm. Of fine particles. When the average particle size of the copper colloid particles is 250 nm or less, when the non-conductive substrate is brought into contact with the catalyst solution, the copper colloid particles enter the dents on the fine uneven surface of the substrate, and are adsorbed densely or caught. It can be presumed that the anchor effect of this promotes the application of copper colloid nuclei to the substrate surface. On the other hand, when the average particle diameter is larger than 250 nm, it is difficult to obtain a stable copper colloid due to aggregation, precipitation, or separation, and it is difficult to expect an anchor effect. There is a risk that it may be applied only to the surface, or a poor application.
 本発明1の銅コロイド触媒液は、界面活性剤を含有することができるが、触媒活性が低下する恐れがあるため、その含有量を950mg/L以下の少量に抑えることが好ましい。
 上記界面活性剤とは、ノニオン系、カチオン系、アニオン系、或いは両性の各種界面活性剤を意味するが、特に、両性、カチオン系、アニオン系、或いは低分子のノニオン系の界面活性剤は好ましくない。
 上記ノニオン系界面活性剤としては、C1~C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1~C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1~C25アルキルナフトール、C1~C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、ポリオキシアルキレンアルキルエーテル、C1~C22脂肪族アミン、C1~C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2~300モル付加縮合させたものなどが挙げられる。
 上記カチオン系界面活性剤としては、第4級アンモニウム塩或いはピリジニウム塩などが挙げられる。具体的には、ジアリルアミンポリマーのアンモニウム塩、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ラウリルジメチルベンジルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
 上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。
 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸ベタインなどが挙げられる。また、エチレンオキシド(EO)及び/又はプロピレンオキシド(PO)とアルキルアミン又はジアミンとの縮合生成物の、硫酸化付加物或はスルホン酸化付加物も使用できる。
Although the copper colloid catalyst solution of the present invention 1 can contain a surfactant, since the catalyst activity may be lowered, the content is preferably suppressed to a small amount of 950 mg / L or less.
The above-mentioned surfactant means various nonionic, cationic, anionic or amphoteric surfactants. In particular, amphoteric, cationic, anionic or low molecular nonionic surfactants are preferred. Absent.
Examples of the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenol, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, C1 to C25 alkoxylated phosphoric acid (salt) ), Sorbitan ester, polyalkylene glycol, polyoxyalkylene alkyl ether, C1-C22 aliphatic amine, C1-C22 aliphatic amide, etc. are subjected to addition condensation of 2-300 moles of ethylene oxide (EO) and / or propylene oxide (PO). Etc.
Examples of the cationic surfactant include quaternary ammonium salts and pyridinium salts. Specifically, diallylamine polymer ammonium salt, lauryl trimethyl ammonium salt, stearyl trimethyl ammonium salt, lauryl dimethyl ethyl ammonium salt, octadecyl dimethyl ethyl ammonium salt, lauryl dimethyl benzyl ammonium salt, cetyl dimethyl benzyl ammonium salt, octadecyl dimethyl benzyl ammonium salt , Trimethylbenzylammonium salt, triethylbenzylammonium salt, dimethyldiphenylammonium salt, benzyldimethylphenylammonium salt, hexadecylpyridinium salt, laurylpyridinium salt, dodecylpyridinium salt, stearylamine acetate, laurylamine acetate, octadecylamine acetate, etc. .
Examples of the anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl benzene sulfonates, {(mono, di, tri) alkyl} naphthalene sulfonates, and the like. Is mentioned.
Examples of the amphoteric surfactant include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid betaine. In addition, sulfated adducts or sulfonated adducts of condensation products of ethylene oxide (EO) and / or propylene oxide (PO) with alkylamines or diamines can also be used.
 本発明6は、上記銅コロイド触媒液を用いた無電解銅メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解メッキ工程
 上記吸着促進工程(a)は、いわば触媒付与工程(b)の前処理工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる工程であり、基板を界面活性剤の含有液に接触させることで基板表面の濡れ性を高めて触媒活性を増強し、次工程での銅コロイド粒子の吸着を促進するものである。
 吸着促進工程(a)では、非導電性基板を界面活性剤の含有液に接触させることが必要であるため、含有液に基板を浸潰させることが基本であるが、含有液を基板に噴霧したり、刷毛で含有液を基板に塗布するなどしてもよい。
 本発明7のように、吸着を促進する見地から、正電荷を帯びたカチオン系界面活性剤や両性界面活性剤が好適であり、特に少なくともカチオン系界面活性剤を含むことがより好ましい。また、カチオン系界面活性剤と少量のノニオン系界面活性剤とを併用すると、吸着促進効果がさらに増大する。
 本発明の触媒液において、可溶性銅塩(A)に還元剤(B)を作用させて生じる銅コロイド粒子は、ゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン系界面活性剤の含有液に接触させて処理すると、基板がプラス電荷を帯び易く、次工程における銅コロイド粒子の基板への吸着効率が上昇する。
 界面活性剤の具体例は、上記本発明1の触媒液において抑制対象として述べた界面活性剤の通りである。
 界面活性剤の含有量は、好ましくは0.05g/L~100g/L、より好ましくは0.5g/L~50g/Lである。界面活性剤の含有液の温度は、15℃~70℃程度が好ましく、界面活性剤の含有液への基板の接触時間は、0.5分間~20分間程度が好ましい。
The present invention 6 is an electroless copper plating method using the above-described copper colloid catalyst solution, which is formed by sequentially combining the following three steps.
(A) Adsorption promotion step (b) Catalyst application step (c) Electroless plating step The adsorption promotion step (a) is a pretreatment step of the catalyst application step (b), which is a nonionic surfactant, a cationic system. A step of bringing a non-conductive substrate into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of a surfactant, an anionic surfactant, and an amphoteric surfactant; By contacting with the containing liquid, the wettability of the substrate surface is enhanced to enhance the catalytic activity, and the adsorption of the copper colloid particles in the next step is promoted.
In the adsorption promoting step (a), since it is necessary to bring the non-conductive substrate into contact with the surfactant-containing liquid, it is fundamental to immerse the substrate in the containing liquid. Alternatively, the contained liquid may be applied to the substrate with a brush.
Like the present invention 7, from the standpoint of promoting adsorption, positively charged cationic surfactants and amphoteric surfactants are preferable, and it is more preferable that at least a cationic surfactant is included. Further, when a cationic surfactant and a small amount of nonionic surfactant are used in combination, the adsorption promoting effect is further increased.
In the catalyst solution of the present invention, the colloidal copper particles produced by allowing the reducing agent (B) to act on the soluble copper salt (A) have a negative zeta potential. For example, a non-conductive substrate is treated with a cationic surfactant. When the treatment is performed in contact with the containing liquid, the substrate tends to be positively charged, and the adsorption efficiency of the copper colloid particles on the substrate in the next step increases.
Specific examples of the surfactant are the same as those described as the suppression target in the catalyst solution of the first invention.
The surfactant content is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L. The temperature of the surfactant-containing liquid is preferably about 15 to 70 ° C., and the contact time of the substrate with the surfactant-containing liquid is preferably about 0.5 to 20 minutes.
 吸着促進工程(a)を終えた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
 触媒付与工程(b)では、上記銅コロイド触媒液に非導電性基板を接触させて、該非導電性基板の表面上に銅コロイド粒子を吸着させる。
 触媒付与工程(b)では、非導電性基板を銅コロイド触媒液に接触させることが必要であるため、触媒液に基板を浸潰させることが基本であるが、触媒液を基板に噴霧したり、刷毛で触媒液を基板に塗布するなどしてもよい。
 当該触媒液の温度は、好ましくは5℃~70℃、より好ましくは15℃~60℃である。触媒液への基板の接触時間は、好ましくは0.1分間~20分間、より好ましくは0.2分間~10分間である。浸漬処理によって接触させる際には、基板を触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行ってもよい。
 また、当該触媒付与工程(b)の後で、且つ、次の無電解メッキ工程(c)の前に、酸洗浄工程を加入してもよい。当該酸洗浄工程を加入すると、酸洗浄処理なしの場合に比べて当該触媒活性の活性度をさらに増進させることができ、ビアやスルホールのある複雑な形状の基板に対しても、メッキムラや断線の弊害を確実に防止し、銅皮膜の密着性をより向上できる。
 酸洗浄処理の際に、酸の濃度は、好ましくは10g/L~200g/L、より好ましくは20g/L~100g/Lであり、酸としては、硫酸、塩酸などの無機酸、有機スルホン酸、酢酸、酒石酸、クエン酸などのカルボン酸などの有機酸を使用できる。
 酸洗浄の処理温度は、好ましくは5℃~70℃、より好ましくは15℃~60℃であり、処理時間は、好ましくは0.1分間~20分間、より好ましくは0.2分間~10分間である。
After the non-conductive substrate after the adsorption promotion step (a) is washed with pure water, the process proceeds to the next catalyst application step (b) without drying or drying.
In the catalyst application step (b), the non-conductive substrate is brought into contact with the copper colloid catalyst solution, and the copper colloid particles are adsorbed on the surface of the non-conductive substrate.
In the catalyst application step (b), since it is necessary to bring the non-conductive substrate into contact with the copper colloid catalyst solution, it is fundamental to immerse the substrate in the catalyst solution. Alternatively, the catalyst solution may be applied to the substrate with a brush.
The temperature of the catalyst solution is preferably 5 ° C to 70 ° C, more preferably 15 ° C to 60 ° C. The contact time of the substrate with the catalyst solution is preferably 0.1 minutes to 20 minutes, more preferably 0.2 minutes to 10 minutes. When contacting by immersion treatment, it is sufficient that the substrate is immersed in the catalyst solution in a stationary state, but stirring or rocking may be performed.
Further, an acid washing step may be added after the catalyst application step (b) and before the next electroless plating step (c). When the acid cleaning process is added, the activity of the catalytic activity can be further increased compared to the case without the acid cleaning treatment, and even if the substrate has a complicated shape with vias and through holes, plating unevenness and disconnection are prevented. It is possible to prevent harmful effects and improve the adhesion of the copper film.
In the acid cleaning treatment, the acid concentration is preferably 10 g / L to 200 g / L, more preferably 20 g / L to 100 g / L. Examples of the acid include inorganic acids such as sulfuric acid and hydrochloric acid, and organic sulfonic acids. Organic acids such as carboxylic acids such as acetic acid, tartaric acid and citric acid can be used.
The treatment temperature for acid washing is preferably 5 ° C. to 70 ° C., more preferably 15 ° C. to 60 ° C., and the treatment time is preferably 0.1 minutes to 20 minutes, more preferably 0.2 minutes to 10 minutes. It is.
 触媒液に接触させた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、無電解メッキ工程(c)に移行する。
 無電解メッキ工程(c)における無電解銅メッキは、従来と同様に行えばよく、特段の制約はない。無電解銅メッキ液の液温は、一般に15℃~70℃、好ましくは20℃~60℃である。
 銅メッキ液の撹拌には、空気撹拌、急速液流撹拌、撹拌羽根などによる機械撹拌などを採用することができる。
 本発明8は、上記無電解銅メッキ方法で非導電性基板上に銅皮膜を形成する、銅メッキ基板の製造方法であり、本発明6の吸着促進工程(a)、触媒付与工程(b)、及び無電解メッキ工程(c)を経て、上記非導電性基板上に銅皮膜が形成される。
 非導電性基板は、前述した通り、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板、或いはガラス基板、セラミックス基板などをいう。
After the non-conductive substrate brought into contact with the catalyst solution is washed with pure water, the electroless plating step (c) is performed without drying or drying.
The electroless copper plating in the electroless plating step (c) may be performed in the same manner as in the past, and there are no particular restrictions. The liquid temperature of the electroless copper plating solution is generally 15 ° C. to 70 ° C., preferably 20 ° C. to 60 ° C.
For stirring the copper plating solution, air stirring, rapid liquid flow stirring, mechanical stirring using stirring blades, or the like can be employed.
This invention 8 is a manufacturing method of a copper plating board | substrate which forms a copper film on a nonelectroconductive board | substrate by the said electroless copper plating method, The adsorption | suction acceleration | stimulation process (a) of this invention 6, and a catalyst provision process (b) Then, a copper film is formed on the non-conductive substrate through the electroless plating step (c).
As described above, the non-conductive substrate refers to a resin substrate such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin, or a glass substrate or a ceramic substrate.
 無電解銅メッキ液の組成に特段の制限はなく、公知の銅メッキ液を使用できる。
 無電解銅メッキ液は、基本的に可溶性銅塩と、還元剤と、錯化剤とを含有し、さらに界面活性剤やpH調整剤などの各種添加剤、酸などを含有できる。
 可溶性銅塩については、上記銅コロイド触媒液で述べた通りである。
There is no particular limitation on the composition of the electroless copper plating solution, and a known copper plating solution can be used.
The electroless copper plating solution basically contains a soluble copper salt, a reducing agent, and a complexing agent, and can further contain various additives such as a surfactant and a pH adjusting agent, and an acid.
The soluble copper salt is as described in the copper colloid catalyst solution.
 無電解銅メッキ液に含有される還元剤についても、上記銅コロイド触媒液で述べた通りであり、ホルムアルデヒド(ホルマリン水)をはじめとして、次亜リン酸類、亜リン酸類、アミンボラン類、水素化ホウ素類、グリオキシル酸などが挙げられ、ホルマリン水が好ましい。 The reducing agent contained in the electroless copper plating solution is also as described in the copper colloid catalyst solution, including formaldehyde (formalin water), hypophosphorous acid, phosphorous acid, amine borane, borohydride. And glyoxylic acid, and formalin water is preferred.
 無電解銅メッキ液に含有される錯化剤については、上記銅コロイド触媒液で述べたコロイド安定剤の例と共通するものもある。具体的には、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ニトリロ三酢酸(NTA)、イミノジ酢酸(IDA)などのアミノカルボン酸類、エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどのポリアミン類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、クエン酸、酒石酸、乳酸、リンゴ酸などのオキシカルボン酸類、チオグリコール酸、グリシンなどである。 The complexing agent contained in the electroless copper plating solution may be the same as that of the colloid stabilizer described in the above copper colloid catalyst solution. Specifically, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), hydroxyethylethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), etc. Aminocarboxylic acids, ethylenediamine, tetramethylenediamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, pentaethylenehexamine and other polyamines, monoethanolamine, diethanolamine, triethanolamine and other amino alcohols, citric acid, tartaric acid, Examples thereof include oxycarboxylic acids such as lactic acid and malic acid, thioglycolic acid, and glycine.
 無電解銅メッキ液には、液のベース成分として有機酸及び無機酸、或いはその塩が含有されていてもよい。
 上記無機酸としては、硫酸、ピロリン酸、テトラフルオロホウ酸などが挙げられる。また、有機酸としては、グリコール酸、酒石酸などのオキシカルボン酸、メタンスルホン酸、2-ヒドロキシエタンスルホン酸などの有機スルホン酸などが挙げられる。
The electroless copper plating solution may contain an organic acid and an inorganic acid or a salt thereof as a base component of the solution.
Examples of the inorganic acid include sulfuric acid, pyrophosphoric acid, and tetrafluoroboric acid. Examples of organic acids include oxycarboxylic acids such as glycolic acid and tartaric acid, and organic sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.
 以下、本発明に係る吸着促進剤の含有液、銅コロイド触媒液、及び無電解銅メッキ液の調製を含む無電解銅メッキ方法の実施例を述べるとともに、銅コロイド触媒液の経時安定性、触媒活性の持続性、及び下記実施例で得られた銅皮膜の外観についての評価試験例を順次説明する。
 尚、本発明は下記実施例及び試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, examples of the electroless copper plating method including the preparation of the adsorption accelerator-containing liquid, the copper colloid catalyst liquid, and the electroless copper plating liquid according to the present invention will be described, and the time stability of the copper colloid catalyst liquid, catalyst Examples of evaluation tests on the sustainability of the activity and the appearance of the copper film obtained in the following examples will be sequentially described.
The present invention is not limited to the following examples and test examples, and it is needless to say that arbitrary modifications can be made within the scope of the technical idea of the present invention.
≪無電解銅メッキ方法の実施例≫
 下記実施例1~14のうち、実施例1の吸着促進剤の含有液及び銅コロイド触媒液は、各々以下の成分を含有する。
(吸着促進剤の含有液)
カチオン系界面活性剤:ジアリルアミンポリマーの第4級アンモニウム塩
ノニオン系界面活性剤:ポリオキシアルキレン分岐デシルエーテル
(銅コロイド触媒液)
可溶性銅塩(A):硫酸銅
還元剤(B):水素化ホウ素ナトリウム
コロイド安定剤(C):エチレンジアミン四酢酸四ナトリウム(EDTA・4Na)
非還元性オリゴ糖(D):スクロース
≪Example of electroless copper plating method≫
Of the following Examples 1 to 14, the adsorption accelerator containing liquid and the copper colloid catalyst liquid of Example 1 each contain the following components.
(Adsorption accelerator containing liquid)
Cationic surfactant: quaternary ammonium salt nonionic surfactant of diallylamine polymer: polyoxyalkylene branched decyl ether (copper colloid catalyst solution)
Soluble copper salt (A): Copper sulfate reducing agent (B): Sodium borohydride colloid stabilizer (C): Tetrasodium ethylenediaminetetraacetate (EDTA · 4Na)
Non-reducing oligosaccharide (D): sucrose
 実施例2~5、7、9、11、及び13は、実施例1を基本とした例である。
実施例2:非還元性オリゴ糖(D)をトレハロースに変更
実施例3:非還元性オリゴ糖(D)としてスクロースとトレハロースとを併用
実施例4:非還元性オリゴ糖(D)をラフィノースに変更
実施例5:非還元性オリゴ糖(D)(スクロース)と還元性糖類(フルクトース)とを併用
実施例7:コロイド安定剤(C)をイミノジ酢酸に変更
実施例9:コロイド安定剤(C)をクエン酸塩に変更
実施例11:還元剤(B)をジメチルアミンボランに変更
実施例13:吸着促進剤をラウリルジメチルベンジルアンモニウムクロライド及びポリオキシアルキレン分岐デシルエーテルに変更
 実施例6、8、10、12、及び14は、実施例2を基本とした例である。
実施例6:非還元性オリゴ糖(D)(トレハロース)と還元性糖類(マルトース)とを併用
実施例8:コロイド安定剤(C)をニトリロ三酢酸塩に変更
実施例10:コロイド安定剤(C)をクエン酸塩に変更
実施例12:還元剤(B)をジメチルアミンボランに変更
実施例14:吸着促進剤をラウリルジメチルベンジルアンモニウムクロライド及びポリオキシアルキレン分岐デシルエーテルに変更
Examples 2 to 5, 7, 9, 11, and 13 are examples based on Example 1.
Example 2: Non-reducing oligosaccharide (D) is changed to trehalose Example 3: Non-reducing oligosaccharide (D) is used in combination with sucrose and trehalose Example 4: Non-reducing oligosaccharide (D) is changed to raffinose Modified Example 5: Non-reducing oligosaccharide (D) (sucrose) and reducing sugar (fructose) are used in combination. Example 7: Colloidal stabilizer (C) is changed to iminodiacetic acid. Example 9: Colloidal stabilizer (C ) Was changed to citrate Example 11: the reducing agent (B) was changed to dimethylamine borane Example 13: the adsorption accelerator was changed to lauryldimethylbenzylammonium chloride and polyoxyalkylene branched decyl ether Examples 6, 8, 10, 12, and 14 are examples based on the second embodiment.
Example 6: Combination of non-reducing oligosaccharide (D) (trehalose) and reducing sugar (maltose) Example 8: Changing colloidal stabilizer (C) to nitrilotriacetate Example 10: Colloidal stabilizer ( C) was changed to citrate Example 12: Reductant (B) was changed to dimethylamine borane Example 14: Adsorption accelerator was changed to lauryldimethylbenzylammonium chloride and polyoxyalkylene branched decyl ether
 一方、下記基準例1~3は、冒述の先行発明2に準拠して、銅コロイド触媒液が先行発明2で規定する特定の糖質を含有する例である。当該特定の糖質は以下の通りである。
基準例1:還元性二糖類(マルトース)
基準例2:還元性単糖類(グルコース)
基準例3:糖アルコール(キシリトール)
 また、下記比較例1~3は、以下の通りのブランク例である。
比較例1:銅コロイド触媒液が非還元性オリゴ糖(D)を含有しない例
比較例2:銅コロイド触媒液が、非還元性オリゴ糖(D)に代えて上記先行発明2で規定する特定の糖質以外の糖類(デンプン)を含有する例
比較例3:吸着促進工程(a)なしで、直ちに触媒付与工程(b)から無電解メッキ工程(c)を行った例
On the other hand, the following Reference Examples 1 to 3 are examples in which the copper colloid catalyst solution contains a specific carbohydrate defined in the Prior Invention 2 in accordance with the Prior Invention 2 described above. The specific carbohydrate is as follows.
Reference Example 1: Reducing disaccharide (maltose)
Reference Example 2: Reducing monosaccharide (glucose)
Reference example 3: sugar alcohol (xylitol)
The following Comparative Examples 1 to 3 are blank examples as follows.
Comparative Example 1: Example in which the copper colloid catalyst liquid does not contain the non-reducing oligosaccharide (D) Comparative example 2: The copper colloid catalyst liquid is specified in the above-mentioned prior invention 2 instead of the non-reducing oligosaccharide (D) Example 3 containing saccharides other than saccharides (starch) Comparative Example 3: Example of Immediately Performing Electroless Plating Process (c) From Catalyst Application Process (b) Without Adsorption Promotion Process (a)
(1)実施例1
≪吸着促進、触媒付与、及び無電解メッキの処理手順≫
 先ず、銅箔の付いていないガラス・エポキシ樹脂基板(パナソニック電工(株)製のFR-4、板厚:1.0mm)を非導電性の試料基板とした。
 そして、下記(a)の吸着促進剤の含有液を用いて試料基板に吸着促進処理を施した後、下記(b)の銅コロイド触媒液に浸潰して触媒付与処理を施し、次いで下記(c)の無電解銅メッキ液で無電解メッキ処理を施した。
 具体的には、上記試料基板を、50℃、2分間の条件で下記吸着促進剤の含有液に浸潰し、純水で洗浄した。次いで、吸着促進処理(前処理)を施した試料基板を、25℃、10分間の条件で下記銅コロイド触媒液に浸漬し、純水で洗浄した。その後、触媒付与処理を施した試料基板を、下記無電解銅メッキ液中に浸潰し、50℃、10分間の条件で無電解メッキを施して試料基板上に銅皮膜を形成した後、純水で洗浄し、乾燥した。
(a)吸着促進剤の含有液の調製
 次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ジアリルアミンポリマーの第4級アンモニウム塩 6g/L
ポリオキシアルキレン分岐デシルエーテル    3g/L
pH                     11.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)         0.1モル/L
EDTA・4Na            0.4モル/L
スクロース               0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム        0.02モル/L
 pH9.0に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約15nmであった。
(c)無電解銅メッキ液の調製
 次の組成で無電解銅メッキ液を建浴した。当該メッキ液のpHは、下記水酸化ナトリウムで調整した。
[無電解銅メッキ液]
硫酸銅五水和物(Cu2+として)     2.0g/L
ホルムアルデヒド            5.0g/L
EDTA               30.0g/L
水酸化ナトリウム            9.6g/L
純水                      残余
pH(20℃)               12.8
(1) Example 1
≪Procedure for adsorption promotion, catalyst application, and electroless plating≫
First, a glass / epoxy resin substrate (FR-4 manufactured by Panasonic Electric Works Co., Ltd., plate thickness: 1.0 mm) without a copper foil was used as a non-conductive sample substrate.
Then, the sample substrate is subjected to an adsorption promotion treatment using the following (a) adsorption accelerator-containing liquid, and then immersed in a copper colloid catalyst solution (b) below, followed by a catalyst application treatment, and then the following (c) ) Was subjected to electroless plating treatment.
Specifically, the sample substrate was immersed in a solution containing the following adsorption accelerator under conditions of 50 ° C. and 2 minutes, and washed with pure water. Next, the sample substrate subjected to the adsorption promotion treatment (pretreatment) was immersed in the following copper colloid catalyst solution at 25 ° C. for 10 minutes and washed with pure water. Thereafter, the sample substrate subjected to the catalyst application treatment is immersed in the following electroless copper plating solution, and subjected to electroless plating at 50 ° C. for 10 minutes to form a copper film on the sample substrate. Washed with and dried.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Quaternary ammonium salt of diallylamine polymer 6g / L
Polyoxyalkylene branched decyl ether 3g / L
pH 11.0
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Sucrose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was added dropwise to the above copper solution at 25 ° C. adjusted to pH 9.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 15 nm.
(C) Preparation of electroless copper plating solution An electroless copper plating solution was constructed with the following composition. The pH of the plating solution was adjusted with the following sodium hydroxide.
[Electroless copper plating solution]
Copper sulfate pentahydrate (as Cu 2+ ) 2.0 g / L
Formaldehyde 5.0g / L
EDTA 30.0g / L
Sodium hydroxide 9.6g / L
Pure water Residual pH (20 ° C) 12.8
(2)実施例2
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
トレハロース       0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(2) Example 2
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Trehalose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(3)実施例3
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
スクロース        0.2モル/L
トレハロース       0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.0に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(3) Example 3
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Sucrose 0.2 mol / L
Trehalose 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was added dropwise to the above copper solution at 25 ° C. adjusted to pH 9.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(4)実施例4
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
ラフィノース       0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH10.0に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約30nmであった。
(4) Example 4
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Raffinose 0.5mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 10.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 30 nm.
(5)実施例5
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
スクロース        0.4モル/L
フルクトース       0.1モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.0に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):(非還元性オリゴ糖(D)+還元性糖類)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約40nmであった。
(5) Example 5
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Sucrose 0.4 mol / L
Fructose 0.1 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was added dropwise to the above copper solution at 25 ° C. adjusted to pH 9.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): (non-reducing oligosaccharide (D) + reducing saccharide) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 40 nm.
(6)実施例6
 上記実施例2を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例2と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
トレハロース       0.3モル/L
マルトース        0.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):(非還元性オリゴ糖(D)+還元性糖類)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約30nmであった。
(6) Example 6
Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 2.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Trehalose 0.3 mol / L
Maltose 0.2mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): (non-reducing oligosaccharide (D) + reducing saccharide) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 30 nm.
(7)実施例7
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
イミノジ酢酸       0.4モル/L
スクロース        0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(7) Example 7
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
Iminodiacetic acid 0.4 mol / L
Sucrose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(8)実施例8
 上記実施例2を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例2と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)   0.1モル/L
ニトリロ三酢酸三ナトリウム 0.4モル/L
トレハロース        0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム  0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約15nmであった。
(8) Example 8
Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 2.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
Nitrilotriacetic acid trisodium 0.4 mol / L
Trehalose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 15 nm.
(9)実施例9
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
クエン酸三ナトリウム   0.3モル/L
スクロース        0.4モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH5.0に調整した35℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:3
可溶性銅塩(A):非還元性オリゴ糖(D)=1:4
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約35nmであった。
(9) Example 9
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
Trisodium citrate 0.3 mol / L
Sucrose 0.4 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 5.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 3
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 4
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 35 nm.
(10)実施例10
 上記実施例2を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例2と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
クエン酸三ナトリウム   0.3モル/L
トレハロース       0.4モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH5.0に調整した35℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:3
可溶性銅塩(A):非還元性オリゴ糖(D)=1:4
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約45nmであった。
(10) Example 10
Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 2.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
Trisodium citrate 0.3 mol / L
Trehalose 0.4 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was added dropwise to the above copper solution at 35 ° C. adjusted to pH 5.0 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 3
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 4
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 45 nm.
(11)実施例11
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
EDTA・4Na    0.4モル/L
スクロース       0.5モル/L
[還元剤溶液]
ジメチルアミンボラン 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(11) Example 11
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Sucrose 0.5 mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(12)実施例12
 上記実施例2を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例2と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として) 0.1モル/L
EDTA・4Na    0.4モル/L
トレハロース      0.5モル/L
[還元剤溶液]
ジメチルアミンボラン 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(12) Example 12
Based on Example 2 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 2.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Trehalose 0.5 mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(13)実施例13
 上記実施例1を基本として、吸着促進剤の含有液及び銅コロイド触媒液を各々次の組成で調製した以外は、無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(a)吸着促進剤の含有液の調製
 次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシアルキレン分岐デシルエーテル     1g/L
pH                      10.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)          0.1モル/L
EDTA・4Na             0.4モル/L
スクロース                0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム         0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(13) Example 13
Based on Example 1 above, the composition of the electroless copper plating solution, and the promotion of adsorption, catalyst application, and electroless plating, except that the adsorption promoter containing liquid and the copper colloid catalyst liquid were prepared with the following compositions, respectively. The processing conditions for each step were the same as in Example 1.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 10.0
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Sucrose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(14)実施例14
 上記実施例2を基本として、吸着促進剤の含有液及び銅コロイド触媒液を各々次の組成で調製した以外は、無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例2と同じにした。
(a)吸着促進剤の含有液の調製
 次の組成で吸着促進剤の含有液を調製した。
[吸着促進剤の含有液]
ラウリルジメチルベンジルアンモニウムクロライド 5g/L
ポリオキシアルキレン分岐デシルエーテル     1g/L
pH                      10.0
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
トレハロース       0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):非還元性オリゴ糖(D)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約25nmであった。
(14) Example 14
Based on Example 2 above, the composition of the electroless copper plating solution, and the promotion of adsorption, catalyst application, and electroless plating, except that the adsorption promoter containing liquid and the copper colloid catalyst liquid were prepared with the following compositions, respectively. The processing conditions for each step were the same as in Example 2.
(A) Preparation of Adsorption Accelerator-Containing Liquid An adsorption accelerator-containing liquid was prepared with the following composition.
[Adsorption accelerator-containing liquid]
Lauryldimethylbenzylammonium chloride 5g / L
Polyoxyalkylene branched decyl ether 1g / L
pH 10.0
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Trehalose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): non-reducing oligosaccharide (D) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 25 nm.
(15)基準例1
 冒述の先行発明2に準拠した例であり、銅コロイド触媒液は、先行発明2で規定する特定の糖質である還元性二糖類(マルトース)を含み、本発明に用いる非還元性オリゴ糖(D)は含まない。
 即ち、上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
マルトース        0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):糖質(マルトース)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約35nmであった。
(15) Reference example 1
It is an example based on the preceding invention 2 described above, and the copper colloid catalyst solution contains a reducing disaccharide (maltose) which is a specific carbohydrate defined in the preceding invention 2, and is a non-reducing oligosaccharide used in the present invention. (D) is not included.
That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing conditions for each step of electrolytic plating were the same as those in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Maltose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): Carbohydrate (maltose) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 35 nm.
(16)基準例2
 冒述の先行発明2に準拠した例であり、銅コロイド触媒液は、先行発明2で規定する特定の糖質である還元性単糖類(グルコース)を含み、本発明に用いる非還元性オリゴ糖(D)は含まない。
 即ち、上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
グルコース        0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):糖質(グルコース)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約35nmであった。
(16) Standard example 2
It is an example based on the preceding invention 2 described above, and the copper colloid catalyst solution contains a reducing monosaccharide (glucose) which is a specific carbohydrate defined in the preceding invention 2, and is a non-reducing oligosaccharide used in the present invention. (D) is not included.
That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing conditions for each step of electrolytic plating were the same as those in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Glucose 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): Carbohydrate (glucose) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 35 nm.
(17)基準例3
 冒述の先行発明2に準拠した例であり、銅コロイド触媒液は、先行発明2で規定する特定の糖質である糖アルコール(キシリトール)を含み、本発明に用いる非還元性オリゴ糖(D)は含まない。
 即ち、上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.2モル/L
キシリトール       0.3モル/L
[還元剤溶液]
ジメチルアミンボラン  0.02モル/L
アスコルビン酸     0.18モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:2
可溶性銅塩(A):糖質(キシリトール)=1:3
可溶性銅塩(A):還元剤(B)=1:2
 生成した銅コロイド粒子の平均粒径は、約45nmであった。
(17) Standard example 3
The copper colloid catalyst solution is an example based on the preceding invention 2 described above, and contains a sugar alcohol (xylitol) which is a specific carbohydrate defined in the preceding invention 2, and is a non-reducing oligosaccharide (D ) Is not included.
That is, on the basis of Example 1 above, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and no The processing conditions for each step of electrolytic plating were the same as those in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.2mol / L
Xylitol 0.3 mol / L
[Reducing agent solution]
Dimethylamine borane 0.02 mol / L
Ascorbic acid 0.18 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 2
Soluble copper salt (A): Carbohydrate (xylitol) = 1: 3
Soluble copper salt (A): Reducing agent (B) = 1: 2
The average particle diameter of the produced copper colloid particles was about 45 nm.
(18)比較例1
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約35nmであった。
(18) Comparative Example 1
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle size of the produced copper colloid particles was about 35 nm.
(19)比較例2
 上記実施例1を基本として、銅コロイド触媒液を次の組成で調製した以外は、吸着促進剤の含有液の組成及び無電解銅メッキ液の組成、並びに吸着促進、触媒付与、及び無電解メッキの各工程の処理条件は、実施例1と同じにした。
(b)銅コロイド触媒液の調製
[銅溶液]
硫酸銅(Cu2+として)  0.1モル/L
EDTA・4Na     0.4モル/L
デンプン         0.5モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.02モル/L
 pH9.5に調整した25℃の上記銅溶液に、還元剤溶液を滴下して45分間撹拌し、銅コロイド触媒液を調製した。
 上記触媒液の各成分のモル比率は、次の通りである。
可溶性銅塩(A):コロイド安定剤(C)=1:4
可溶性銅塩(A):糖質(デンプン)=1:5
可溶性銅塩(A):還元剤(B)=1:0.2
 生成した銅コロイド粒子の平均粒径は、約500nmであった。
(19) Comparative Example 2
Based on the above Example 1, except that the copper colloid catalyst solution was prepared with the following composition, the composition of the adsorption promoter-containing liquid and the composition of the electroless copper plating solution, as well as adsorption promotion, catalyst application, and electroless plating The processing conditions for each step were the same as in Example 1.
(B) Preparation of copper colloid catalyst solution [copper solution]
Copper sulfate (as Cu 2+ ) 0.1 mol / L
EDTA · 4Na 0.4mol / L
Starch 0.5 mol / L
[Reducing agent solution]
Sodium borohydride 0.02 mol / L
A reducing agent solution was dropped into the copper solution at 25 ° C. adjusted to pH 9.5 and stirred for 45 minutes to prepare a copper colloid catalyst solution.
The molar ratio of each component of the catalyst solution is as follows.
Soluble copper salt (A): Colloidal stabilizer (C) = 1: 4
Soluble copper salt (A): Carbohydrate (starch) = 1: 5
Soluble copper salt (A): Reducing agent (B) = 1: 0.2
The average particle diameter of the produced copper colloid particles was about 500 nm.
(20)比較例3
 上記実施例1を基本として、吸着促進工程を省略した例である。
 即ち、試料基板を、吸着促進処理を施すことなく、直ちに実施例1の銅コロイド触媒液(b)に浸潰して触媒付与を行い、さらに実施例1の無電解銅メッキ液(c)で無電解メッキを行った。触媒付与及び無電解メッキの各工程の処理条件、並びに銅コロイド触媒液及び無電解銅メッキ液の各調製条件は、実施例1と同じである。
(20) Comparative Example 3
This is an example in which the adsorption promotion step is omitted based on the first embodiment.
That is, the sample substrate was immediately immersed in the copper colloid catalyst solution (b) of Example 1 without being subjected to adsorption promotion treatment, and the catalyst was applied, and further, the sample substrate was coated with the electroless copper plating solution (c) of Example 1. Electrolytic plating was performed. The treatment conditions for the steps of catalyst application and electroless plating, and the preparation conditions for the copper colloid catalyst solution and the electroless copper plating solution are the same as in Example 1.
 上記実施例1~14、基準例1~3、及び比較例1~3について、吸着促進剤(界面活性剤)の種類、銅コロイド触媒液の組成、及び銅コロイド粒子の平均粒径を、下記表1及び表2に纏める。 For Examples 1 to 14, Reference Examples 1 to 3, and Comparative Examples 1 to 3, the type of adsorption accelerator (surfactant), the composition of the copper colloid catalyst solution, and the average particle diameter of the copper colloid particles are as follows. Tables 1 and 2 are summarized.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪無電解銅メッキにより析出した銅皮膜の外観評価試験例≫
 上記実施例1~14、基準例1~3、及び比較例1~3で建浴した各銅コロイド触媒液について、建浴初期の触媒液を使用した場合の、得られた銅皮膜の外観を目視にて観察し、下記評価基準に基づいて評価した。
(評価基準)
〇:銅皮膜が均一でムラがなかった。
△:銅皮膜にムラや一部未析出(メッキ欠け)が認められた。
×:銅皮膜が析出しなかった。
 尚、皮膜に「ムラ」があるとは、皮膜の緻密性や平滑性などに周囲と異なる部分があると認められることをいう。皮膜の「ムラ」は、皮膜の「均一性」とは別の観点である。
≪Example of appearance evaluation test of copper film deposited by electroless copper plating≫
For each of the copper colloidal catalyst solutions constructed in Examples 1 to 14, Reference Examples 1 to 3 and Comparative Examples 1 to 3, the appearance of the obtained copper coating when the catalyst solution at the early stage of the construction bath was used. It observed visually and evaluated based on the following evaluation criteria.
(Evaluation criteria)
A: The copper film was uniform and not uneven.
Δ: Unevenness or partial precipitation (plating failure) was observed in the copper film.
X: The copper film did not precipitate.
Incidentally, “unevenness” in the coating means that it is recognized that there are portions different from the surroundings in the denseness and smoothness of the coating. The “unevenness” of the film is a different viewpoint from the “uniformity” of the film.
≪銅コロイド触媒液の経時安定性試験例≫
 上記実施例1~14、基準例1~3、及び比較例1~3で建浴した各銅コロイド触媒液について、コロイドの経時安定性を下記評価基準に基づいて評価した。
 尚、当該経時安定性の評価基準において、◎評価は、冒述の先行発明2では「建浴後2ヶ月」の時点を評価の分岐点としたが、本発明では先行発明2よりも長い「建浴後3ヶ月」の時点を評価の分岐点とした。
(評価基準)
◎:建浴後3ヶ月以上が経過しても、沈殿或いは分解しなかった。
〇:建浴後1ヶ月~2ヶ月間に亘り、沈殿或いは分解しなかった。
△:建浴後1ヶ月以内に、沈殿或いは分解した。
×:コロイド粒子が生成しないか、建浴後すぐに沈殿或いは分解した。
≪Example of stability test of copper colloid catalyst solution over time≫
With respect to each of the copper colloid catalyst solutions constructed in Examples 1 to 14, Reference Examples 1 to 3, and Comparative Examples 1 to 3, the temporal stability of the colloid was evaluated based on the following evaluation criteria.
In the evaluation criteria for the stability over time, in the preceding invention 2, the point of time “2 months after the bathing” was set as the branching point of the evaluation. The point of “3 months after bathing” was taken as the branch point for evaluation.
(Evaluation criteria)
(Double-circle): Even if three months or more passed after the bathing, it did not precipitate or decompose.
○: No precipitation or decomposition for 1 to 2 months after bathing.
Δ: Precipitation or decomposition within 1 month after bathing.
X: Colloidal particles were not formed, or precipitated or decomposed immediately after the bath.
≪銅コロイド触媒液の触媒活性の持続性試験例≫
 上記実施例1~14、基準例1~3、及び比較例1~3で建浴した各銅コロイド触媒液について、触媒活性の持続性を下記評価基準に基づいて評価した。
 尚、前記試験例の「触媒液の経時安定性」は、触媒液自体の性状観察を主眼としたものであり、当該試験例の「触媒活性の持続性」は、触媒付与機能が保持されているか否かについて、機能の有効性観察を主眼としたものである。
(評価基準)
〇:建浴後3ヶ月が経過した触媒液で触媒付与を行った場合、均一でムラのない銅皮膜が得られた。
△:建浴後3ヶ月が経過した触媒液で触媒付与を行った場合、銅皮膜の一部にムラ或は未析出(メッキ欠け)が認められた。
×:建浴後3ヶ月が経過した触媒液で触媒付与を行ったが、銅皮膜は得られなかった。
≪Example of sustainability test of catalytic activity of copper colloid catalyst solution≫
For each of the copper colloid catalyst liquids bathed in Examples 1 to 14, Reference Examples 1 to 3, and Comparative Examples 1 to 3, the sustainability of the catalyst activity was evaluated based on the following evaluation criteria.
The “stable stability of the catalyst solution” in the test example is mainly intended for observing the properties of the catalyst solution itself, and the “sustainability of catalyst activity” in the test example is that the function of imparting the catalyst is maintained. The main objective is to observe the effectiveness of the function.
(Evaluation criteria)
A: A uniform and uniform copper film was obtained when the catalyst was applied with a catalyst solution that had passed 3 months after the bathing.
(Triangle | delta): When a catalyst provision was performed with the catalyst liquid which passed three months after the erection bath, the nonuniformity or non-deposition (plating lack) was recognized by a part of copper film.
X: The catalyst was applied with a catalyst solution that had passed 3 months after the bathing, but no copper film was obtained.
≪銅皮膜の外観、並びに銅コロイド触媒液の経時安定性及び触媒活性の持続性の試験結果≫
 下記表3は、これらの試験結果である。表3中、「外観」は銅皮膜の外観、「安定性」は銅コロイド触媒液の経時安定性、「活性持続」は銅コロイド触媒液の触媒活性の持続性を意味する。
 但し、触媒活性の持続性試験は、触媒液の活性自体に焦点を当てたもので、吸着促進工程との組み合わせで論じることに意味はない。よって、実施例1を基本として吸着促進工程を省略した比較例3では、触媒活性の持続性試験自体を省略した。表3中の「--」はこの省略を意味する。
≪Test results of copper film appearance and stability of copper colloid catalyst solution over time and catalyst activity≫
Table 3 below shows the results of these tests. In Table 3, “Appearance” means the appearance of the copper film, “Stability” means the stability of the copper colloid catalyst solution over time, and “Durability” means the durability of the catalyst activity of the copper colloid catalyst solution.
However, the sustainability test of the catalyst activity focuses on the activity of the catalyst solution itself, and there is no point in discussing it in combination with the adsorption promotion step. Therefore, in Comparative Example 3 in which the adsorption promotion step was omitted based on Example 1, the sustainability test for the catalyst activity itself was omitted. “-” In Table 3 means this omission.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
≪銅コロイド触媒液の経時安定性及び触媒活性の持続性、並びに銅皮膜の外観の総合評価≫
 銅コロイド触媒液が本発明に用いる非還元性オリゴ糖(D)を含まない比較例1では、触媒液の経時安定性は、建浴後3ヶ月を評価基準にしたので△評価であり、触媒活性の持続性は×評価であった。尚、銅皮膜の外観については、触媒液が還元剤(B)とコロイド安定剤(C)とを含むので〇評価であった。
 コロイド安定剤(B)と糖質とが共存する触媒液ではあるが、当該糖質として本発明に用いる非還元性オリゴ糖(D)とは異なるデンプンを使用した比較例2では、経時安定性が低下し(×評価)、生成した銅粒子の平均粒径は約500nmで、もはやコロイド粒子ではない。よって、得られた銅皮膜にはメッキ欠けが認められ、皮膜外観に問題が生じた(△評価)。また、触媒液の経時安定性が×評価であることから、当然、触媒活性の持続性も×評価であった。
 非導電性基板に、吸着促進処理なしで直ちに触媒付与し、無電解銅メッキを施した比較例3では、触媒液の経時安定性は実施例と同様であったが、析出した銅皮膜にはメッキ欠けが認められた。このことから、触媒付与の前に吸着促進処理(前処理)がないことに起因して、触媒活性が不足し、実施例に比べて、基板への銅コロイド粒子の吸着に劣ると判断できる(銅皮膜の外観は×評価)。
 触媒液に、本発明に用いる非還元性オリゴ糖(D)に代えて、冒述の先行発明2で規定した特定の糖質を用いた基準例1~3では、触媒液の建浴後1ヶ月~2ヶ月が経過しても沈殿を生じない経時安定性を示し(○評価)、銅皮膜の外観も良好であった(○評価)。しかしながら、建浴後3ヶ月が経過した触媒液について、触媒活性の持続性は△評価であった。
≪Comprehensive evaluation of stability of copper colloid catalyst solution over time and sustainability of catalyst activity, and appearance of copper film≫
In Comparative Example 1 in which the copper colloidal catalyst solution does not contain the non-reducing oligosaccharide (D) used in the present invention, the temporal stability of the catalyst solution was evaluated on the basis of 3 months after the bathing, and was evaluated as Δ. The sustainability was rated as x. In addition, about the external appearance of the copper membrane | film | coat, since the catalyst liquid contains the reducing agent (B) and the colloid stabilizer (C), it was O evaluation.
In Comparative Example 2 where the colloidal stabilizer (B) and the saccharide coexist, but the starch is different from the non-reducing oligosaccharide (D) used in the present invention as the saccharide, the stability over time (× evaluation), and the average particle size of the produced copper particles is about 500 nm, which is no longer colloidal particles. Therefore, lack of plating was recognized in the obtained copper film, and a problem occurred in the film appearance (Δ evaluation). Moreover, since the temporal stability of the catalyst solution was evaluated as x, the sustainability of the catalyst activity was also evaluated as x.
In Comparative Example 3 in which the catalyst was immediately applied to the non-conductive substrate without the adsorption promotion treatment and electroless copper plating was performed, the stability with time of the catalyst solution was the same as that of the example. Plating defects were observed. From this, it can be judged that the catalyst activity is insufficient due to the absence of the adsorption promotion treatment (pretreatment) before the catalyst application, and that the copper colloid particles adsorb to the substrate is inferior to the examples ( Appearance of copper film is x evaluation).
In Reference Examples 1 to 3 in which the specific saccharide defined in the preceding invention 2 is used instead of the non-reducing oligosaccharide (D) used in the present invention for the catalyst solution, one month after the catalyst solution is bathed Even after 2 months, it showed stability over time without causing precipitation (◯ evaluation), and the appearance of the copper film was also good (◯ evaluation). However, the sustainability of the catalytic activity was evaluated as Δ for the catalyst solution that had passed 3 months after the bath.
 吸着促進処理(前処理)を施した後、触媒付与処理を施し、次いで無電解銅メッキを施した実施例1~14では、建浴後3ヶ月が経過した時点での触媒液は、いずれも経時安定性に優れ(◎評価)、無電解メッキで析出する銅皮膜は、概ねムラやメッキ欠けがなく優れた外観を呈した(○評価)。また、建浴後3ヶ月が経過した触媒液を用いて触媒付与を行っても、建浴直後の触媒液を用いた場合と同様に、良好な外観の銅皮膜が得られ、触媒活性の持続性に優れていた(○評価)。
 上記基準例1~3を比較例1と対比すると、建浴後1ヶ月~2ヶ月が経過した時点での触媒液の経時安定性を良好に保持するには、先行発明2で規定した特定の糖質が必要であることが分かる(△評価から○評価へと移行)。また、この特定の糖質が含まれることで、触媒活性の持続性がある程度改善されることが分かる(×評価から△評価へと移行)。
 そこで、上記実施例1~14をこれら基準例1~3と対比すると、建浴後3ヶ月が経過した時点での触媒液の経時安定性を良好に保持するには、先行発明2で規定した特定の糖質では不充分であり、本発明で規定する非還元性オリゴ糖(D)が必要であることが分かる(〇評価から◎評価へと移行)。
 また、先行発明2で規定した特定の糖質に代えて、本発明で規定する非還元性オリゴ糖(D)が触媒液に含有されると、触媒活性の持続性が顕著に改善されることが分かる(△評価から〇評価へと移行)。
 以上のことから、経時安定性及び触媒活性の持続性の点で、基準例1~3の各触媒液に対する実施例1~14の各触媒液の優位性は明らかであり、糖質として本発明で規定する非還元性オリゴ糖(D)を選択すると、銅コロイド触媒液のメンテナンスを、基準例よりも大幅に簡略化でき、メッキの処理コストを軽減できる利点がある。
In Examples 1 to 14, in which the adsorption promotion treatment (pretreatment) was performed, followed by the catalyst application treatment, and then the electroless copper plating, all of the catalyst solutions after 3 months had elapsed The copper film which was excellent in stability ((evaluation) and deposited by electroless plating exhibited an excellent appearance with almost no unevenness and lack of plating (○ evaluation). In addition, even when the catalyst is applied using a catalyst solution that has passed 3 months after the building bath, a copper film having a good appearance can be obtained as in the case of using the catalyst solution immediately after the building bath, and the sustainability of the catalyst activity (○ evaluation).
When the above Reference Examples 1 to 3 are compared with Comparative Example 1, the specific sugars defined in the Prior Invention 2 can be used to maintain good stability over time of the catalyst solution after 1 to 2 months have passed since the bathing. It turns out that quality is necessary (shift from △ evaluation to ○ evaluation). Moreover, it turns out that the sustainability of a catalyst activity is improved to some extent by containing this specific carbohydrate (it shifts from x evaluation to △ evaluation).
Therefore, when Examples 1 to 14 are compared with these Reference Examples 1 to 3, in order to maintain good aging stability of the catalyst solution at the time when 3 months have passed since the bathing, the specific method defined in Prior Invention 2 is used. It is found that the non-reducing oligosaccharide (D) defined in the present invention is necessary (shift from ○ evaluation to ◎ evaluation).
In addition, when the non-reducing oligosaccharide (D) defined in the present invention is contained in the catalyst solution instead of the specific carbohydrate defined in the prior invention 2, the sustainability of the catalytic activity is remarkably improved. (Transition from △ evaluation to 〇 evaluation).
From the above, the superiority of the catalyst solutions of Examples 1 to 14 over the catalyst solutions of Reference Examples 1 to 3 in terms of stability over time and sustainability of catalyst activity is clear, and the present invention is used as a saccharide. When the non-reducing oligosaccharide (D) defined in (1) is selected, the maintenance of the copper colloid catalyst solution can be greatly simplified as compared with the reference example, and there is an advantage that the plating processing cost can be reduced.
 次いで、実施例1~14について詳細に検討する。
 実施例1を基準として他の実施例との相対的な評価を説明する。当該実施例1は、カチオン系界面活性剤であるジアリルアミンポリマーの第4級アンモニウム塩を含む吸着促進剤で非導電性基板を吸着促進処理(前処理)し、硫酸銅を可溶性銅塩(A)とし、水素化ホウ素ナトリウムを還元剤(B)とし、エチレンジアミン四酢酸塩をコロイド安定剤(C)とし、スクロースを非還元性オリゴ糖(D)として含有する銅コロイド触媒液で触媒付与した後、無電解銅メッキした例である。実施例1では、触媒液の経時安定性及び触媒活性の持続性が共に良好であり、建浴直後又は建浴後3ヶ月が経過した時点での触媒液を用いた場合、共に無電解メッキで得られた銅皮膜は、析出ムラやメッキ欠けも認められず、優れた外観を示した。
 実施例2は、実施例1において非還元性オリゴ糖(D)をトレハロースに変更した例である。実施例2では、実施例1と同様に、触媒液の経時安定性及び触媒活性の持続性が良好で、得られた銅皮膜は優れた外観を示した。
Next, Examples 1 to 14 will be examined in detail.
The relative evaluation with the other examples will be described with reference to the example 1. In Example 1, a non-conductive substrate is subjected to adsorption promotion treatment (pretreatment) with an adsorption accelerator containing a quaternary ammonium salt of diallylamine polymer which is a cationic surfactant, and copper sulfate is dissolved into a soluble copper salt (A). And a catalyst with a copper colloid catalyst solution containing sodium borohydride as a reducing agent (B), ethylenediaminetetraacetate as a colloid stabilizer (C), and sucrose as a non-reducing oligosaccharide (D), This is an example of electroless copper plating. In Example 1, both the stability of the catalyst solution over time and the sustainability of the catalyst activity are both good, and both obtained by electroless plating when using the catalyst solution immediately after the building bath or at the time when 3 months have passed since the building bath. The obtained copper film showed no appearance irregularities and lack of plating and showed an excellent appearance.
Example 2 is an example in which the non-reducing oligosaccharide (D) in Example 1 was changed to trehalose. In Example 2, as with Example 1, the stability of the catalyst solution with time and the sustainability of the catalyst activity were good, and the obtained copper film exhibited an excellent appearance.
 実施例3は、非還元性オリゴ糖(D)としてスクロースとトレハロースとを併用した例であり、実施例4は、非還元性オリゴ糖(D)としてラフィノースを用いた例である。実施例3~4では、実施例1と同様に、高い経時安定性及び触媒活性の持続性、並びに優れた皮膜外観を示した。
 実施例5~6は、本発明で規定する非還元性オリゴ糖(D)と、先行発明2で規定した特定の糖質である還元性糖類(フルクトース、マルトース)とを併用した例である。やはり実施例5~6では、実施例1又は2と同様に、高い経時安定性及び触媒活性の持続性、並びに優れた皮膜外観を示した。このことから、非還元性オリゴ糖(D)と還元性糖類とを併用しても、特段、両者の相乗効果が現れることはない反面、還元性糖類が非還元性オリゴ糖(D)の効果を阻害することもないと判断できる。
 実施例7~10は、実施例1又は2の触媒液においてコロイド安定剤(C)を変更した例であり、実施例11~12は、実施例1又は2の触媒液において還元剤(B)を変更した例である。実施例7~12では、これらの基本となる実施例1又は2と同様に、高い経時安定性及び触媒活性の持続性、並びに優れた皮膜外観を示した。
 実施例13~14は、実施例1又は2において吸着促進工程(a)で用いる吸着促進剤を変更した例である。やはり実施例13~14では、基本となる実施例1又は2と同様に、高い経時安定性及び触媒活性の持続性、並びに優れた皮膜外観を示した。
 実施例9~10は、コロイド安定剤(C)としてクエン酸塩を用い、触媒液のpHを酸性領域に設定した例である。コロイド安定剤(C)としてEDTA・4Naやイミノジ酢酸などを用い、触媒液のpHをアルカリ領域に設定した実施例1~8、11~14と同様に、実施例9~10では、触媒液の経時安定性及び触媒活性の持続性、並びに皮膜外観の評価に変わりはなかった。
Example 3 is an example in which sucrose and trehalose are used in combination as the non-reducing oligosaccharide (D), and Example 4 is an example in which raffinose is used as the non-reducing oligosaccharide (D). In Examples 3 to 4, similar to Example 1, high stability over time, long-lasting catalytic activity, and excellent film appearance were exhibited.
Examples 5 to 6 are examples in which the non-reducing oligosaccharide (D) defined in the present invention and the reducing sugar (fructose, maltose), which are specific carbohydrates defined in the prior invention 2, are used in combination. Again, in Examples 5 to 6, as in Example 1 or 2, high aging stability and sustained catalytic activity and excellent film appearance were exhibited. Therefore, even if the non-reducing oligosaccharide (D) and the reducing saccharide are used in combination, the synergistic effect of both does not appear, but the reducing saccharide is an effect of the non-reducing oligosaccharide (D). It can be judged that it does not inhibit.
Examples 7 to 10 are examples in which the colloidal stabilizer (C) was changed in the catalyst solution of Example 1 or 2, and Examples 11 to 12 were the reducing agent (B) in the catalyst solution of Example 1 or 2. This is an example in which is changed. In Examples 7 to 12, similar to these basic examples 1 and 2, high stability with time, long-lasting catalytic activity, and excellent film appearance were exhibited.
Examples 13 to 14 are examples in which the adsorption accelerator used in the adsorption promotion step (a) in Example 1 or 2 was changed. Again, in Examples 13 to 14, as with the basic Example 1 or 2, high stability over time, sustained catalytic activity, and excellent film appearance were exhibited.
Examples 9 to 10 are examples in which citrate was used as the colloid stabilizer (C) and the pH of the catalyst solution was set in the acidic region. As in Examples 1 to 8 and 11 to 14, in which EDTA · 4Na or iminodiacetic acid was used as the colloid stabilizer (C) and the pH of the catalyst solution was set in the alkaline region, There was no change in the evaluation of the stability over time, the sustainability of the catalytic activity, and the appearance of the film.
 本発明の銅コロイド触媒液は、経時安定性及び触媒活性の持続性が顕著に向上したものであり、該銅コロイド触媒液を用いて無電解銅メッキを行うと、得られる銅皮膜に優れた外観が付与される。 The copper colloid catalyst solution of the present invention has significantly improved temporal stability and sustainability of catalytic activity. When electroless copper plating is performed using the copper colloid catalyst solution, the resulting copper film is excellent. Appearance is given.

Claims (8)

  1.  無電解銅メッキを施す対象である非導電性基板に接触させて触媒付与を行うための銅コロイド触媒液であって、
     (A)可溶性銅塩と、
     (B)還元剤と、
     (C)オキシカルボン酸類、アミノカルボン酸類、及びポリカルボン酸類よりなる群から選ばれた少なくとも一種のコロイド安定剤と、
     (D)非還元性オリゴ糖と
    からなることを特徴とする、無電解銅メッキ用の銅コロイド触媒液。
    A copper colloid catalyst solution for applying a catalyst by bringing it into contact with a non-conductive substrate to which electroless copper plating is applied,
    (A) a soluble copper salt;
    (B) a reducing agent;
    (C) at least one colloid stabilizer selected from the group consisting of oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids;
    (D) A copper colloid catalyst solution for electroless copper plating, comprising a non-reducing oligosaccharide.
  2.  さらに、還元性糖類を含有することを特徴とする、請求項1に記載の無電解銅メッキ用の銅コロイド触媒液。 The copper colloid catalyst solution for electroless copper plating according to claim 1, further comprising a reducing saccharide.
  3.  前記非還元性オリゴ糖(D)が、スクロース、トレハロース、ラフィノース、及びシクロデキストリンから選ばれた少なくとも一種であることを特徴とする、請求項1又は2に記載の無電解銅メッキ用の銅コロイド触媒液。 3. The copper colloid for electroless copper plating according to claim 1 or 2, wherein the non-reducing oligosaccharide (D) is at least one selected from sucrose, trehalose, raffinose, and cyclodextrin. Catalyst solution.
  4.  前記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、及びスルフィン酸類よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1~3のいずれか1項に記載の無電解銅メッキ用の銅コロイド触媒液。 The reducing agent (B) is a borohydride compound, amine boranes, hypophosphorous acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenolsulfonic acids, naphtholsulfonic acids, and sulfine. The copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 3, characterized in that it is at least one member selected from the group consisting of acids.
  5.  前記コロイド安定剤(C)のうち、
     前記オキシカルボン酸類が、クエン酸、酒石酸、リンゴ酸、グルコン酸、グルコヘプトン酸、グリコール酸、乳酸、トリオキシ酪酸、アスコルビン酸、イソクエン酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、ロイシン酸、シトラマル酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
     前記アミノカルボン酸類が、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、エチレンジアミンテトラプロピオン酸、ニトリロ三酢酸、イミノジ酢酸、ヒドロキシエチルイミノジ酢酸、イミノジプロピオン酸、1,3-プロパンジアミン四酢酸、1,3-ジアミノ-2-ヒドロキシプロパン四酢酸、グリコールエーテルジアミン四酢酸、メタフェニレンジアミン四酢酸、1,2-ジアミノシクロヘキサン-N,N,N’,N’-四酢酸、ジアミノプロピオン酸、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸、及びこれらの塩よりなる群から選ばれた少なくとも一種であり、
     前記ポリカルボン酸類が、コハク酸、グルタル酸、マロン酸、アジピン酸、シュウ酸、マレイン酸、シトラコン酸、イタコン酸、メサコン酸、及びこれらの塩よりなる群から選ばれた少なくとも一種である
    ことを特徴とする、請求項1~4のいずれか1項に記載の無電解銅メッキ用の銅コロイド触媒液。
    Among the colloidal stabilizers (C),
    The oxycarboxylic acids are citric acid, tartaric acid, malic acid, gluconic acid, glucoheptonic acid, glycolic acid, lactic acid, trioxybutyric acid, ascorbic acid, isocitric acid, tartronic acid, glyceric acid, hydroxybutyric acid, leucine acid, citramalic acid, and Is at least one selected from the group consisting of these salts,
    The aminocarboxylic acids are ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, ethylenediaminetetrapropionic acid, nitrilotriacetic acid, iminodiacetic acid, hydroxyethyliminodiacetic acid, iminodipropionic acid, 1 , 3-propanediaminetetraacetic acid, 1,3-diamino-2-hydroxypropanetetraacetic acid, glycol ether diaminetetraacetic acid, metaphenylenediaminetetraacetic acid, 1,2-diaminocyclohexane-N, N, N ′, N′- Tetraacetic acid, diaminopropionic acid, glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid, and salts thereof It is at least one selected from the group consisting of,
    The polycarboxylic acid is at least one selected from the group consisting of succinic acid, glutaric acid, malonic acid, adipic acid, oxalic acid, maleic acid, citraconic acid, itaconic acid, mesaconic acid, and salts thereof. The copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 4, which is characterized by the following.
  6.  (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程(前処理工程)と、
     (b)請求項1~5のいずれか1項に記載の無電解銅メッキ用の銅コロイド触媒液に、吸着促進処理が施された非導電性基板を接触させて、該非導電性基板の表面上に銅コロイド粒子を吸着させる触媒付与工程と、
     (c)触媒付与処理が施された非導電性基板上に、無電解銅メッキ液を用いて銅皮膜を形成する無電解メッキ工程と
    からなることを特徴とする、無電解銅メッキ方法。
    (A) A non-conductive substrate is brought into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of a nonionic surfactant, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant Adsorption promoting step (pretreatment step)
    (B) contacting the non-conductive substrate that has been subjected to the adsorption promoting treatment with the copper colloid catalyst solution for electroless copper plating according to any one of claims 1 to 5, to thereby surface the non-conductive substrate A catalyst application step for adsorbing copper colloid particles on the surface;
    (C) An electroless copper plating method comprising: an electroless plating step of forming a copper film using an electroless copper plating solution on a non-conductive substrate subjected to a catalyst application treatment.
  7.  前記吸着促進工程(a)で用いる吸着促進剤が、少なくともカチオン系界面活性剤を含むことを特徴とする、請求項6に記載の無電解銅メッキ方法。 The electroless copper plating method according to claim 6, wherein the adsorption promoter used in the adsorption promotion step (a) includes at least a cationic surfactant.
  8.  請求項6又は7に記載の無電解銅メッキ方法で非導電性基板上に銅皮膜を形成することを特徴とする、銅メッキ基板の製造方法。

     
    A method for producing a copper-plated substrate, comprising forming a copper film on a non-conductive substrate by the electroless copper plating method according to claim 6 or 7.

PCT/JP2018/018972 2017-06-01 2018-05-16 Copper colloidal catalyst liquid for electroless copper plating, electroless copper plating method, and production method for copper-plated substrate WO2018221227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197033102A KR102322950B1 (en) 2017-06-01 2018-05-16 Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and manufacturing method of copper plating substrate
CN201880025506.4A CN110536977B (en) 2017-06-01 2018-05-16 Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and method for producing copper-plated substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109174 2017-06-01
JP2017109174A JP6343787B1 (en) 2017-06-01 2017-06-01 Copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Publications (1)

Publication Number Publication Date
WO2018221227A1 true WO2018221227A1 (en) 2018-12-06

Family

ID=62635652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018972 WO2018221227A1 (en) 2017-06-01 2018-05-16 Copper colloidal catalyst liquid for electroless copper plating, electroless copper plating method, and production method for copper-plated substrate

Country Status (5)

Country Link
JP (1) JP6343787B1 (en)
KR (1) KR102322950B1 (en)
CN (1) CN110536977B (en)
TW (1) TWI749234B (en)
WO (1) WO2018221227A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075662A (en) * 2021-06-11 2022-02-22 华南师范大学 Colloidal palladium plating solution, preparation method thereof and degumming solution
CN114507850A (en) * 2021-12-06 2022-05-17 华东理工大学 Chemical formula of environment-friendly plating solution for non-formaldehyde electroless copper plating on ceramic substrate by ink-jet printing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102570845B1 (en) * 2021-04-28 2023-08-29 주식회사 티엘비 Ink composition for plating and manufacturing method of printed circuit board using same
CN113684473B (en) * 2021-07-26 2023-04-25 广州三孚新材料科技股份有限公司 Electroless copper plating solution for plastics and preparation method thereof
KR102596621B1 (en) * 2021-10-21 2023-11-02 주식회사 티엘비 Method for forming fine pattern based on electroless plating using non-contact printing pen
CN113976881B (en) * 2021-11-01 2024-03-08 南通天盛新能源股份有限公司 Preparation method of high-tap-density silver-coated copper powder for synthesizing conductive paste in one pot
CN115679305B (en) * 2023-01-03 2023-03-10 湖南源康利科技有限公司 Chemical copper plating treatment process for surface of aluminum foil for printed board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163464A (en) * 1974-10-04 1976-06-01 Surface Technology Corp Judenseikizainokairyoseizohoho koreoseizosurutamenokairyosaretabutsushitsukei narabini koreomochiirukairyoerekutororesupureeteinguho
US4261747A (en) * 1978-12-06 1981-04-14 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
US4339476A (en) * 1978-08-17 1982-07-13 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
JP2003155574A (en) * 2001-11-16 2003-05-30 Toyoda Gosei Co Ltd Plated product and method of producing the same
WO2006103720A1 (en) * 2005-03-25 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Electroless plating preprocessing solution and metal conductor layer forming method using such solution
JP2015147987A (en) * 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
JP2016132795A (en) * 2015-01-19 2016-07-25 国立研究開発法人産業技術総合研究所 Palladium hydrosol catalyst solution for electroless plating and method for preparing the same
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136216A (en) * 1975-08-26 1979-01-23 Surface Technology, Inc. Non-precious metal colloidal dispersions for electroless metal deposition
JPH0613753B2 (en) 1988-09-29 1994-02-23 三晃特殊金属工業株式会社 Method for producing solution containing fine metal body used for electroless plating
JP3337802B2 (en) 1993-12-28 2002-10-28 日本リーロナール株式会社 Direct plating method by metallization of copper (I) oxide colloid
JP3890542B2 (en) 1997-02-17 2007-03-07 奥野製薬工業株式会社 Method for manufacturing printed wiring board
JP4143385B2 (en) 2002-03-05 2008-09-03 株式会社大和化成研究所 Pretreatment liquid for imparting catalyst for electroless plating, pretreatment method using the liquid, electroless plating film and / or plating coating produced using the method
JP2003313670A (en) 2002-04-22 2003-11-06 C Uyemura & Co Ltd Method for forming electroless plating film
JP3925724B2 (en) 2003-11-13 2007-06-06 株式会社黒坂鍍金工業所 Surface treatment method for non-conductive materials
JP4617445B2 (en) 2005-04-22 2011-01-26 奥野製薬工業株式会社 Plating method for resin molding
US8512760B2 (en) * 2007-11-23 2013-08-20 The University Court Of The University Of Dundee Nano-particle dispersions
DE102010012204B4 (en) 2010-03-19 2019-01-24 MacDermid Enthone Inc. (n.d.Ges.d. Staates Delaware) Improved process for direct metallization of non-conductive substrates
JP5570285B2 (en) 2010-04-19 2014-08-13 株式会社日本表面処理研究所 Catalyst aqueous solution used in electroless plating method, method for preparing the catalyst aqueous solution, electroless plating method using the catalyst aqueous solution, and metal object to be plated provided with a metal film formed using the electroless plating method
US8591637B2 (en) 2010-12-14 2013-11-26 Rohm And Haas Electronic Materials Llc Plating catalyst and method
CN102560577A (en) * 2012-03-08 2012-07-11 杜强 Nickel-free black tin cobalt alloy plating solution and electroplating technology by using same
US9441300B2 (en) * 2013-03-15 2016-09-13 Rohm And Haas Electronic Materials Llc Stable catalysts for electroless metallization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163464A (en) * 1974-10-04 1976-06-01 Surface Technology Corp Judenseikizainokairyoseizohoho koreoseizosurutamenokairyosaretabutsushitsukei narabini koreomochiirukairyoerekutororesupureeteinguho
US4339476A (en) * 1978-08-17 1982-07-13 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
US4261747A (en) * 1978-12-06 1981-04-14 Nathan Feldstein Dispersions for activating non-conductors for electroless plating
JP2003155574A (en) * 2001-11-16 2003-05-30 Toyoda Gosei Co Ltd Plated product and method of producing the same
WO2006103720A1 (en) * 2005-03-25 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Electroless plating preprocessing solution and metal conductor layer forming method using such solution
JP2015147987A (en) * 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
JP2016132795A (en) * 2015-01-19 2016-07-25 国立研究開発法人産業技術総合研究所 Palladium hydrosol catalyst solution for electroless plating and method for preparing the same
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075662A (en) * 2021-06-11 2022-02-22 华南师范大学 Colloidal palladium plating solution, preparation method thereof and degumming solution
CN114075662B (en) * 2021-06-11 2024-01-09 华南师范大学 Colloidal palladium plating solution, preparation method thereof and photoresist solution
CN114507850A (en) * 2021-12-06 2022-05-17 华东理工大学 Chemical formula of environment-friendly plating solution for non-formaldehyde electroless copper plating on ceramic substrate by ink-jet printing

Also Published As

Publication number Publication date
CN110536977B (en) 2021-08-17
CN110536977A (en) 2019-12-03
KR102322950B1 (en) 2021-11-05
TW201903204A (en) 2019-01-16
JP2018204064A (en) 2018-12-27
TWI749234B (en) 2021-12-11
JP6343787B1 (en) 2018-06-20
KR20190133780A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
KR102322950B1 (en) Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and manufacturing method of copper plating substrate
JP6209770B2 (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
TWI621736B (en) Nickle colloidal catalyst solution for electroless nickle or nickle alloy plating and electroless nickle or nickle alloy plating method
KR101807696B1 (en) Aqueous copper colloid catalyst solution and electroless copper plating method for the electroless copper plating
KR102341914B1 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and method for electroless nickel or nickel alloy plating
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
WO2021261098A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033102

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809012

Country of ref document: EP

Kind code of ref document: A1