WO2018220736A1 - Treatment tool - Google Patents

Treatment tool Download PDF

Info

Publication number
WO2018220736A1
WO2018220736A1 PCT/JP2017/020210 JP2017020210W WO2018220736A1 WO 2018220736 A1 WO2018220736 A1 WO 2018220736A1 JP 2017020210 W JP2017020210 W JP 2017020210W WO 2018220736 A1 WO2018220736 A1 WO 2018220736A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
gripping
gripping surface
width direction
jaw
Prior art date
Application number
PCT/JP2017/020210
Other languages
French (fr)
Japanese (ja)
Inventor
尚英 鶴田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/020210 priority Critical patent/WO2018220736A1/en
Publication of WO2018220736A1 publication Critical patent/WO2018220736A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/295Forceps for use in minimally invasive surgery combined with cutting implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser

Definitions

  • the present invention relates to a treatment instrument.
  • Patent Document 1 a treatment instrument for grasping a living tissue with a pair of jaws and incising the living tissue by applying energy to the living tissue.
  • a pair of jaws is provided with a gripping surface for gripping a living tissue.
  • These gripping surfaces are each formed of a flat surface, and have the same width dimension when a cross section perpendicular to the longitudinal direction of the pair of jaws is viewed with the pair of jaws closed.
  • the pair of jaws is displaced in the width direction (the pair of gripping surfaces are in the width direction). May shift).
  • the pair of gripping surfaces have the same width dimension.
  • the width dimension of the region where the pair of gripping surfaces overlap is also changed.
  • the living tissue is incised in a region where the pair of gripping surfaces overlap. That is, the treatment instrument described in Patent Document 1 has different width dimensions (hereinafter referred to as incision widths) of regions to be incised when biological tissues having different thicknesses and hardnesses are treated. There's a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a treatment instrument that can stably maintain the incision width.
  • a treatment tool includes a first jaw having a first gripping surface and a second gripping gripping a living tissue between the first gripping surface.
  • a grasping portion including a second jaw having a surface; and the living body from at least one of the first grasping surface and the second grasping surface provided on at least one of the first jaw and the second jaw.
  • An energy generating section that generates energy to be applied to the tissue, and the first gripping surface is in a cross section perpendicular to the longitudinal direction of the gripping section with the first jaw and the second jaw closed.
  • the first separation distance along the width direction between the first inflection points is different from the second separation distance along the width direction between the two second inflection points.
  • the treatment tool according to the present invention has an effect that the incision width can be stably maintained.
  • FIG. 1 is a diagram showing a treatment system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the gripping portion.
  • FIG. 3 is an enlarged view of the central portion in the width direction of the grip portion shown in FIG.
  • FIG. 4 is a diagram for explaining the effect of the first embodiment.
  • FIG. 5A is a diagram showing a grip portion according to Modification 1-1 of Embodiment 1.
  • FIG. 5B is a diagram showing a grip portion according to Modification Example 1-2 of Embodiment 1.
  • FIG. 5C is a diagram showing a grip portion according to Modification 1-3 of Embodiment 1.
  • FIG. 5D is a diagram showing a grip portion according to Modification Example 1-4 of Embodiment 1.
  • FIG. 1 is a diagram showing a treatment system according to the first embodiment.
  • FIG. 2 is a diagram illustrating the gripping portion.
  • FIG. 3 is an enlarged view of the central portion in the width direction of the grip portion shown in FIG.
  • FIG. 5E is a diagram showing a gripping part according to Modification 1-5 of Embodiment 1.
  • FIG. 6 is a diagram illustrating a gripping unit according to the second embodiment.
  • FIG. 7 is a diagram illustrating a grip portion according to Modification Example 2-1 of the second embodiment.
  • FIG. 8 is a diagram showing a gripping part according to the modified example 2-2 of the second embodiment.
  • FIG. 9 is a diagram illustrating a gripping unit according to the third embodiment.
  • FIG. 10 is a diagram showing a gripping part according to the modified example 3-1 of the first to third embodiments.
  • FIG. 11 is a diagram showing a grip portion according to Modification 3-2 of Embodiments 1 to 3.
  • FIG. 1 is a diagram showing a treatment system 1 according to the first embodiment.
  • the treatment system 1 treats (joins (or anastomoses), incises, etc.) the living tissue by applying energy (electric energy (high-frequency energy) in the first embodiment) to the living tissue.
  • the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
  • the treatment tool 2 is, for example, a linear type surgical treatment tool for treating living tissue through the abdominal wall.
  • the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
  • the handle 5 is a part where the surgeon holds the treatment instrument 2 by hand.
  • the handle 5 is provided with an operation knob 51 as shown in FIG.
  • the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5.
  • a gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1).
  • An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 9 (FIG.
  • the “longitudinal direction” described below is a closed state in which a living tissue is gripped (the first and second jaws 8 and 9 are closed (the first and second gripping surfaces 81 and 91 are opposed to each other)).
  • the “width direction” described below means a short direction perpendicular to the longitudinal direction along the first and second grip surfaces 81 and 91 in the grip portion 7.
  • FIG. 2 is a diagram illustrating the gripping unit 7. Specifically, FIG.
  • FIG. 2 is a cross-sectional view of the gripping portion 7 set in a closed state in which a living tissue LT such as a lumen or a blood vessel is gripped, cut along a cross section orthogonal to the longitudinal direction.
  • FIG. 3 is an enlarged view of the central portion in the width direction of the gripping portion 7 shown in FIG.
  • the grip portion 7 is a portion that grips the living tissue LT and treats the living tissue LT.
  • the grip portion 7 includes first and second jaws 8 and 9.
  • the first and second jaws 8 and 9 are pivotally supported on the other end of the shaft 6 so as to be openable and closable in the direction of the arrow Y1 (FIG. 1), and can grasp the living tissue LT according to the operation of the operation knob 51 by the operator.
  • Y1 FIG. 1
  • the first jaw 8 is disposed on the upper side in FIGS. 1 to 3 with respect to the second jaw 9 and has a substantially rectangular parallelepiped shape extending along the longitudinal direction.
  • a material having high heat resistance, low thermal conductivity, and excellent electrical insulation such as PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene).
  • resins such as ethylene / perfluoroalkyl vinyl ether copolymer), PEEK (polyether ether ketone), and PBI (polybenzimidazole).
  • the 1st jaw 8 As a material of the 1st jaw 8, you may employ
  • the first gripping surface 81 is parallel to the width direction as shown in FIG. 2 or FIG. 3 when viewed in a cross section perpendicular to the longitudinal direction of the gripping portion 7 set in the closed state.
  • These two first inflection points IP1 are respectively located on both sides of a center line Ax1 passing through the center position in the width direction on the first gripping surface 81 and orthogonal to the width direction.
  • the first gripping surface 81 is formed in a convex shape in which the first region Ar1 between the two first inflection points IP1 protrudes toward the second jaw 9 side.
  • the first region Ar1 is configured by a plane orthogonal to the center line Ax1 (a plane parallel to the width direction).
  • the regions on both sides sandwiching the first region Ar1 are, as shown in FIG. 2 or FIG. 3, the second inflection points from the two first inflection points IP1 toward the outside in the width direction. Each of them is composed of a curved surface separated from the jaw 9.
  • the first gripping surface 81 has a shape that is symmetric with respect to the center line Ax1.
  • the first gripping surface 81 has the same cross-sectional shape shown in FIG. 2 or FIG. 3 over the entire length (the entire length in the longitudinal direction, the same applies hereinafter).
  • the first electrode 11 is embedded over the entire length of the first gripping surface 81 in the region excluding both end portions in the width direction as shown in FIG. 2 or FIG. It is.
  • the first electrode 11 is made of a conductive material such as copper, aluminum, stainless steel SUS, or carbon, for example.
  • the first electrode 11 is formed of a plate body extending in the longitudinal direction and having substantially the same thickness dimension, and one plate surface (the lower surface in FIGS. 2 and 3) is the first gripping surface.
  • 81 is embedded in the first gripping surface 81 so as to constitute a part of 81 (with the one plate surface exposed).
  • the second jaw 9 has a substantially rectangular parallelepiped shape extending along the longitudinal direction.
  • the material of the second jaw 9 include resins such as PTFE, PFA, PEEK, and PBI, and ceramics such as alumina and zirconia, as in the first jaw 8.
  • PTFE, DLC, ceramic-based, silica-based, and silicon-based insulating coating materials having non-adhesiveness to a living body may be attached thereto.
  • 2 and 3 of the second jaw 9 functions as a second gripping surface 91 that grips the living tissue LT with the first gripping surface 81.
  • the second gripping surface 91 has two parallel lines in the width direction as shown in FIG. 3 when viewed in a cross section orthogonal to the longitudinal direction of the gripping portion 7 set in the closed state. It has a second inflection point IP2. These two second inflection points IP2 are located on both sides of a center line Ax2 that passes through the center position in the width direction on the second gripping surface 91 and is orthogonal to the width direction.
  • the second gripping surface 91 is formed in a convex shape such that the second region Ar2 between the two second inflection points IP2 faces the first region Ar1 and protrudes toward the first gripping surface 81.
  • the second region Ar2 is configured by a plane (a plane parallel to the width direction) orthogonal to the center line Ax2.
  • the second separation distance D2 along the width direction between the two second inflection points IP2 is set to be smaller than the first separation distance D1 along the width direction between the two first inflection points IP1.
  • the regions on both sides sandwiching the second region Ar2 are, as shown in FIG. 2 or FIG. Each of them is composed of a plane (inclined surface) that is separated from the gripping surface 81.
  • the second gripping surface 91 has a shape that is symmetric with respect to the center line Ax2. In the first embodiment, the second gripping surface 91 has the same cross-sectional shape shown in FIG.
  • the region facing the first electrode 11 extends over the entire length of the second gripping surface 91 as shown in FIG. 2 or FIG.
  • the second electrode 12 is embedded. Similar to the first electrode 11, the second electrode 12 is made of a conductive material such as copper, aluminum, stainless steel SUS, or carbon, for example.
  • the second electrode 12 is formed of a plate body extending in the longitudinal direction and having substantially the same thickness dimension, and one plate surface (the upper surface in FIGS. 2 and 3) is the second gripping surface. It is embedded in the second gripping surface 91 so as to constitute a part of 91 (with the one plate surface exposed).
  • a pair of high-frequency lead wires constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to the first and second electrodes 11 and 12, respectively.
  • the first and second electrodes 11 and 12 can generate electric energy (high-frequency energy) by being supplied with high-frequency power by the control device 3 via a pair of high-frequency lead wires.
  • high-frequency power is supplied in a state where the living tissue LT is gripped by the first and second jaws 8 and 9 (first and second gripping surfaces 81 and 91), the first and second electrodes 11 and 12 are connected.
  • the first and second electrodes 11 and 12 are a pair of electrodes, one of which is a positive electrode and the other is a negative electrode, and corresponds to an energy generating unit according to the present invention.
  • the first and second electrodes 11 and 12 are not limited to plates having substantially the same thickness as long as the surfaces have the same shape as the first and second gripping surfaces 81 and 91. You may comprise with a block-shaped member, respectively.
  • the first and second electrodes 11 and 12 do not need to be bulk materials, and may be composed of conductive thin films such as copper, gold, and platinum formed by vapor deposition, sputtering, plating, or the like. Absent. Further, the surfaces of the first and second electrodes 11 and 12 are not limited to the physical exposure as described above, but may be electrically exposed.
  • the surface of the electrode does not deviate from the intention of the invention even if it provides a potential as an electrode. It is not a thing.
  • the foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, ON / OFF of the electricity supply from the control apparatus 3 to the treatment tool 2 (1st, 2nd electrode 11, 12) is switched. Note that the means for switching on and off is not limited to a foot switch, and other switches that are operated by hand may be employed.
  • the control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. More specifically, the control device 3 is arranged between the first and second electrodes 11 and 12 via a pair of high-frequency lead wires in response to an operation to the foot switch 4 by the operator (operation to turn on the power). A high-frequency power having a preset output is supplied to appropriately control energy.
  • the surgeon holds the treatment instrument 2 by hand, and inserts the distal end portion of the treatment instrument 2 (a part of the gripping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar.
  • the surgeon operates the operation knob 51 to hold the living tissue LT with the first and second jaws 8 and 9.
  • the first and second gripping surfaces 81 and 91 have convex shapes in which the first and second regions Ar1 and Ar2 protrude to the other side, respectively. That is, in the second gripping surface 91, the second region Ar2 has the smallest separation distance from the first gripping surface 81.
  • the tissue LT1 (FIGS. 2 and 3) pressed in the second region Ar2 at the portion gripped by the first and second gripping surfaces 81 and 91 of the living tissue LT is the other tissue LT2. It is pressed with a higher pressure than (FIGS. 2 and 3).
  • the surgeon operates the foot switch 4 to turn on the power supply from the control device 3 to the treatment instrument 2.
  • the control device 3 supplies high-frequency power between the first and second electrodes 11 and 12 via a pair of high-frequency lead wires.
  • high-frequency power is supplied between the first and second electrodes 11 and 12
  • a high-frequency current flows between the first and second electrodes 11 and 12 via the living tissue LT. That is, Joule heat is generated in the living tissue LT.
  • the first and second electrodes 11 and 12 are considered to be equipotential, the first and second electrodes are grasped by the first and second grasping surfaces 81 and 91 of the living tissue LT.
  • the heat generation density of the tissue LT1 having the shortest distance between the two electrodes 11 and 12 is the highest as compared with the other tissue LT2. That is, the tissue LT1 is rapidly heated. On the other hand, the other tissue LT2 gradually rises in temperature due to the high-frequency current and also rises due to heat conduction from the tissue LT1. Then, due to the pressure difference and the temperature difference described above, the tissue LT2 becomes a tissue to be sealed (hereinafter referred to as a sealed tissue LT2), and the tissue LT1 is a tissue to be cut (hereinafter referred to as a tissue to be cut LT1). It becomes.
  • FIG. 4 is a diagram for explaining the effect of the first embodiment. Specifically, FIG. 4 is a cross-sectional view corresponding to FIG.
  • the first gripping surface 81 has two first inflection points IP1 arranged in parallel in the width direction, and a first region between the two first inflection points IP1.
  • Ar1 is formed in a convex shape protruding to the second gripping surface 91 side.
  • the second gripping surface 91 has two second inflection points IP2 arranged in parallel in the width direction, and the second region Ar2 between the two second inflection points IP2 faces the first region Ar1.
  • the second separation distance D2 along the width direction between the two second inflection points IP2 is set to be smaller than the first separation distance D1 along the width direction between the two first inflection points IP1. For this reason, as shown in FIG. 3, the center lines Ax1 and Ax2 are aligned with each other, and the first and second jaws 8 and 9 are shifted in the width direction, so that the center lines Ax1 and Ax2 are aligned with each other as shown in FIG.
  • the width dimension (incision width) of the incised tissue LT1 can be made the same in a state in which a deviation ⁇ is generated in the width direction.
  • the incision width can be made the same. Therefore, according to the treatment tool 2 according to the first embodiment, there is an effect that the incision width can be stably maintained.
  • the width of the incised tissue LT1 can be narrowed by the shapes of the first and second gripping surfaces 81 and 91.
  • the width of the sealed tissue LT2 can be increased. For this reason, the living tissue LT can be stably sealed.
  • FIG. 5A is a diagram showing a gripping portion 7A according to Modification 1-1 of Embodiment 1.
  • FIG. 5A is a cross-sectional view corresponding to FIG.
  • the first electrode 11 is provided on the first gripping surface 81 and the second electrode 12 is provided on the second gripping surface 91, but this is not restrictive.
  • the first and second electrodes 11 and 12 may be provided only on the first gripping surface 81 as in the gripping portion 7A according to Modification 1-1 shown in FIG. 5A.
  • FIG. 1 is a diagram showing a gripping portion 7A according to Modification 1-1 of Embodiment 1.
  • FIG. 5A is a cross-sectional view corresponding to FIG.
  • the first electrode 11 is provided on the first gripping surface 81 and the second electrode 12 is provided on the second gripping surface 91, but this is not restrictive.
  • the first and second electrodes 11 and 12 may be provided only on the first gripping surface 81 as in the gripping portion 7A according to Modification 1-1 shown in
  • the first and second electrodes 11 and 12 constitute a part of the first gripping surface 81 over the entire length of the first gripping surface 81 on both sides of the center line Ax1. Each embedded. More specifically, the first and second electrodes 11 and 12 are arranged at positions symmetrical with respect to the center line Ax1 outside the two first inflection points IP1 in the width direction.
  • the heat capacity of the said 1st, 2nd electrodes 11 and 12 can be made low. That is, the amount of heat generated in the living tissue LT due to Joule heating significantly reduces that the first and second electrodes 11 and 12 serve as heat sinks and contribute unintentionally to the cooling of the living tissue LT. Therefore, even with a small amount of power, the tissue heating rate can be increased, the treatment time can be shortened, the thermal invasion to the side tissue can be further reduced, and the residual heat of the first and second jaws 8 and 9 can be reduced.
  • the residual heat means heat that is originally necessary for the treatment after the treatment and is unnecessary for the jaw. Furthermore, even when the gripping portion 7A is set to the closed state, the first and second electrodes 11 and 12 do not come into contact with each other and are short-circuited.
  • FIG. 5B is a diagram showing a gripping portion 7B according to Modification 1-2 of Embodiment 1. Specifically, FIG. 5B is a cross-sectional view corresponding to FIG. Like the gripping part 7B according to Modification 1-2 shown in FIG. 5B, the first and second electrodes 11 and 12 are further added to the gripping part 7A according to Modification 1-1 described above. It doesn't matter. That is, two sets of the first and second electrodes 11 and 12 may be provided. Specifically, of the two sets of first and second electrodes 11 and 12, the arrangement position of one set of the first and second electrodes 11 and 12 is arranged at the same position as in the first modification described above. ing. Further, as shown in FIG.
  • the other set of the first and second electrodes 11 and 12 is located on the second gripping surface 91 at a position facing the first and second electrodes 11 and 12 of the one set.
  • the second gripping surface 91 is embedded so as to constitute a part of the second gripping surface 91 over the entire length of the second gripping surface 91.
  • the number of electrodes can be freely selected from 2 to 4, between the first and second electrodes 11 and 12 arranged in the width direction, or in different jaws.
  • a high-frequency current can flow between the first and second electrodes 11 and 12 located at the provided diagonal positions. That is, diversification of the possibility of treatment by increasing variations in the application sequence of high-frequency power, suppression of electrode heat generation by reducing the amount of current per electrode, and low thermal invasion by not using heated electrodes for treatment It becomes.
  • FIG. 5C is a diagram showing a gripping portion 7C according to Modification 1-3 of Embodiment 1.
  • FIG. 5C is a cross-sectional view corresponding to FIG.
  • a floating electrode 13 may be added to the gripping portion 7A according to Modification 1-1 described above, like the gripping portion 7C according to Modification 1-3 shown in FIG. 5C.
  • the floating electrode 13 constitutes a part of the second gripping surface 91 over the entire length of the second gripping surface 91 at a position facing the first region Ar1 on the second gripping surface 91.
  • the floating electrode 13 is a good conductor such as copper, aluminum, gold, or carbon.
  • the floating electrode 13 is not connected to the control device 3 via a lead wire, and is not grounded, and is electrically floating. is there.
  • the floating electrode 13 when high-frequency power is supplied between the first and second electrodes 11 and 12, the floating electrode 13 is relayed between the first and second electrodes 11 and 12. A high-frequency current can be passed through.
  • the holding part 7C when the holding part 7C is set in the closed state, not only can the contact between the first and second electrodes 11 and 12 be avoided, but also the aim of setting the heat generating region as central as possible in the width direction can be achieved.
  • the resistance can be reduced as compared with the configuration of Modification 1-1 described above.
  • the size of the floating electrode 13 in the width direction is not limited to the position facing the first region Ar1. For example, it is conceivable to reduce the size to the same size as the second region Ar2. By changing the width between the first region Ar1 and the second region Ar2, it is possible to more precisely control the heat generation region and the ultimate temperature at the center.
  • FIG. 5D is a diagram showing a gripping part 7D according to Modification 1-4 of Embodiment 1. Specifically, FIG. 5D is a cross-sectional view corresponding to FIG. Like the gripping part 7D according to Modification 1-4 shown in FIG. 5D, the thermal energy application part 14 may be added to the gripping part 7A according to Modification 1-1 described above. As shown in FIG. 5D, the thermal energy application unit 14 includes a heating element 141 and a heat transfer member 142. The heating element 141 extends, for example, from the proximal end side (right side in FIG. 1) of the first jaw 8 to the distal end side (left side in FIG.
  • a pair of heating lead wires constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to both ends of the heating element 141.
  • the heating element 141 generates heat when a voltage is applied (energized) by the control device 3 through the heating lead wire.
  • the heating element 141 described above is obtained by processing stainless steel (SUS304), which is a conductive material, and is bonded to the center portion in the width direction on the upper surface in FIG. 5D of the heat transfer member 142 by thermocompression bonding. ing.
  • the material of the heating element 141 is not limited to stainless steel (SUS304), but may be other stainless steel materials (for example, No. 400 series), or may be a conductive material such as platinum or tungsten.
  • the heating element 141 is not limited to the configuration in which the heat transfer member 142 is bonded to the upper surface by thermocompression bonding in FIG. 5D, but the configuration formed on the upper surface by vapor deposition or sputtering is adopted. It doesn't matter.
  • the heat transfer member 142 has high heat resistance, high thermal conductivity, and excellent electrical insulation, for example, ceramic such as PTFE, PFA, PEEK, PBI, etc. It is composed of a composite material contained as a filler, a material such as a ceramic such as aluminum nitride, or a material obtained by coating a conductive substance such as copper, aluminum, or carbon with an insulating coating such as PTFE. Further, the heat transfer member 142 has a width dimension identical to that of the first region Ar ⁇ b> 1 in the first gripping surface 81, and is configured by a substantially rectangular parallelepiped plate extending over the entire length of the first gripping surface 81. .
  • the heat transfer member 142 is embedded in the first gripping surface 81 so that the lower surface constitutes the first region Ar1 (with the lower surface exposed).
  • the heat transfer member 142 described above transfers the heat from the heating element 141 to the living tissue LT (gives heat energy to the living tissue LT). That is, in the gripping part 7D, the first and second electrodes 11, 12 and the thermal energy applying part 14 correspond to the energy generating part according to the present invention.
  • the center of the width direction can be selectively heated by the combination of the first and second electrodes 11 and 12 and the thermal energy application unit 14. Further, the treatment can be advanced at a higher speed than in the case where the living tissue LT is treated only with the high-frequency current. Further, since nothing is arranged on the second jaw 9, it is possible to reduce the size.
  • FIG. 5E is a diagram showing a gripping portion 7E according to Modification 1-5 of Embodiment 1. Specifically, FIG. 5E is a cross-sectional view corresponding to FIG. Like the gripping part 7E according to Modification Example 1-5 shown in FIG. 5E, the first and second electrodes 11 and 12 are omitted from the gripping part 7D according to Modification Example 1-4 described above. An ultrasonic energy application unit 15 may be employed instead of the thermal energy application unit 14. As shown in FIG.
  • the ultrasonic energy application unit 15 has the same width dimension as the first region Ar ⁇ b> 1 in the first gripping surface 81, and has an overall substantially rectangular parallelepiped shape that extends over the entire length of the first gripping surface 81. Is formed. And the ultrasonic energy provision part 15 is embedded in the said 1st holding surface 81 so that the surface of the lower side may comprise 1st area
  • the ultrasonic energy applying unit 15 has a configuration in which insulating plates 152A and 152B are bonded to the front and back surfaces of a flat piezoelectric member 151, respectively.
  • a pair of ultrasonic lead wires constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to the piezoelectric body 151.
  • the piezoelectric body 151 generates ultrasonic vibration whose vibration direction is the thickness direction (vertical direction in FIG. 5E) when a voltage is applied by the control device 3 via the heating lead wire (biological tissue). Apply ultrasonic energy to LT). That is, in the grip part 5E, the ultrasonic energy application part 15 corresponds to an energy generation part according to the present invention.
  • FIG. 6 is a diagram showing a gripping portion 7F according to the second embodiment. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG. In the gripping portion 7F (first jaw 8F) according to the second embodiment, as shown in FIG. 6, the first gripping is performed with respect to the gripping portion 7 (first jaw 8) described in the first embodiment.
  • a first gripping surface 81F is used in which the first region Ar1 is formed of a curved surface that protrudes toward the second gripping surface 91 and has a predetermined radius of curvature.
  • the curved surface of the first region Ar1 for example, a curved surface having a radius of curvature that is half of the first separation distance D1 is preferable.
  • the first region Ar1 of the first grip surface 81F is configured by a curved surface having a predetermined radius of curvature. For this reason, compared with the case where 1st area
  • FIG. 7 is a diagram showing a gripping portion 7G according to Modification 2-1 of the second embodiment.
  • FIG. 7 is a cross-sectional view corresponding to FIG.
  • the second region Ar2 is not the first region Ar1 but the first gripping surface 81 side instead of the second embodiment described above.
  • the curved surface of the second region Ar2 is preferably a curved surface having a radius of curvature that is half the second separation distance D2.
  • FIG. 8 is a diagram showing a gripping portion 7H according to Modification 2-2 of Embodiment 2. Specifically, FIG. 8 is a cross-sectional view corresponding to FIG.
  • the first gripping surface 81H first region Ar1 is formed of a curved surface having a predetermined radius of curvature that is convex toward the second gripping surface 91H side.
  • the first jaw 8H and the second gripping surface 91H second jaw 9H configured with a curved surface having a predetermined curvature radius and projecting the second region Ar2 toward the first gripping surface 81H may be employed. I do not care.
  • a distance along the center line Ax1 between the first inflection point IP1 and the apex of the first region Ar1 is defined as a distance g1 (FIG. 8).
  • a distance along the center line Ax2 between a position separated from the apex of the second region Ar2 by a half of the first separation distance D1 in the width direction and the apex is defined as a distance g2 (FIG. 8).
  • the difference between the distance g1 and the distance g2 is preferably suppressed to about twice, and the first and second separation distances D1, D2 and the first region Ar1 where the distance g1 and the distance g2 are the same. It is most preferable to select the curvature radius R1 (FIG. 8) and the curvature radius R2 (FIG. 8) of the second region Ar2.
  • ⁇ 1 means an angle formed by a line segment connecting the center of curvature of the first region Ar1 and the first inflection point IP1 and a line segment connecting the center of curvature and the vertex of the first region Ar1.
  • ⁇ 3 means an angle formed by a line segment connecting the center of curvature of the second region Ar2 and the second inflection point IP2 and a line segment connecting the center of curvature and the vertex of the second region Ar2.
  • ⁇ 2 means an angle formed by line segments obtained by extending regions outside the width direction of the two second inflection points IP2.
  • FIG. 9 is a diagram showing a gripping portion 7I according to the third embodiment. Specifically, FIG. 9 is a cross-sectional view corresponding to FIG. In the gripping portion 7I (first jaw 8I) according to the third embodiment, as shown in FIG. 9, the gripping portion 7 described in the first embodiment described above is the first gripping surface 81 instead of the first gripping surface 81. One gripping surface 81I is employed. As shown in FIG.
  • the first gripping surface 81I is located on both sides of the first region Ar1, and is closer to the second gripping surface 91 side toward the outer side in the width direction. Sealing regions Ar ⁇ b> 3 that maintain a third separation distance D ⁇ b> 3 from 91 are provided.
  • the region other than the pair of sealing regions Ar3 has the same shape as the first gripping surface 81 described in the first embodiment.
  • the first gripping surface 81I has a shape that is symmetric with respect to the center line Ax1.
  • the first gripping surface 81I is located on both sides of the first region Ar1, and is separated from the second gripping surface 91 toward the outer side in the width direction. Sealing regions Ar3 that maintain the distance D3 are provided. For this reason, a sufficient pressure can be applied to the sealed tissue LT2, and the living tissue LT can be sealed more stably.
  • FIG. 10 is a diagram showing a gripping portion 7J according to Modification 3-1 of Embodiments 1 to 3. Specifically, FIG. 10 is a cross-sectional view corresponding to FIG. Instead of the grip portion 7 (7A to 7I) described in the first to third embodiments, the grip portion 7J according to the modification 3-1 shown in FIG. 10 may be employed. In FIG.
  • a bulging portion 82 that bulges downward in the center portion in the width direction is formed on the entire length of the first jaw 8J. It is provided over. That is, the first gripping surface 81J according to Modification 3-1 has a stepped shape. And the both ends edge of the width direction in the bulging part 82 becomes 1st inflection point IP1, respectively. Further, in the first gripping surface 81J, the first region Ar1 between the two first inflection points IP1 (the tip surface of the bulging portion 82 (the lower surface in FIG. 10)) constitutes the gripping portion 7J.
  • the first gripping surface 81J It is formed of a curved surface that is convex toward the second jaw 9J and has a predetermined radius of curvature. Furthermore, in the first gripping surface 81J, the regions on both sides sandwiching the first region Ar1 are respectively configured by planes orthogonal to the center line Ax1.
  • the first region Ar1 is embedded with the first and second electrodes 11 and 12 so as to constitute a part of the first gripping surface 81J.
  • the first and second electrodes 11 and 12 are arranged at symmetrical positions on both sides of the center line Ax1 with respect to the center line Ax1.
  • the second gripping surface 91J has the same shape as the second gripping surface 91 described in the first embodiment described above in the portion facing the first region Ar1. Moreover, the area
  • the thermal energy application unit 14 described in Modification 1-4 described above constitutes a part of the second gripping surface 91J. Embedded in.
  • FIG. 11 is a diagram showing a gripping portion 7K according to the modified example 3-2 of the first to third embodiments. Specifically, FIG. 11 is a cross-sectional view corresponding to FIG. Instead of the gripping portion 7 (7A to 7I) described in the first to third embodiments, the gripping portion 7K according to the modification 3-2 shown in FIG. 11 may be employed.
  • a bulging portion 82 that bulges downward in the central portion in the width direction is formed on the entire length of the first jaw 8K. It is provided over. That is, the first gripping surface 81K according to the modification 3-2 has a stepped shape.
  • the distal end surface (the lower surface in FIG. 11) of the bulging portion 82 has substantially the same shape as the first gripping surface 81I described in the third embodiment. Furthermore, in the first gripping surface 81K, the regions on both sides sandwiching the bulging portion 82 are respectively configured by planes orthogonal to the center line Ax1.
  • the first and second electrodes 11 and 12 are embedded in the distal end surface of the bulging portion 82 so as to constitute a part of the first gripping surface 81K.
  • the first and second electrodes 11 and 12 are symmetric with respect to the center line Ax1 on both sides of the center line Ax1 (outside in the width direction of the two first inflection points IP1). Has been placed.
  • the region on the outer side in the width direction of the two first inflection points IP1 where the first and second electrodes 11 and 12 are disposed is the second grip toward the outer side in the width direction as in the third embodiment. This is a region for maintaining a separation distance from the surface 91. Further, at the position facing the bulging portion 82 on the second gripping surface 91, the thermal energy application unit 14 described in Modification 1-4 described above constitutes a part of the second gripping surface 91. Embedded.
  • the first jaw 8 (8F, 8H, 8I) is disposed above the second jaw 9 (9G, 9H).
  • the present invention is not limited to this.
  • the first jaw 8 (8F, 8H, 8I) may be arranged on the lower side with respect to the second jaw 9 (9G, 9H).
  • the shaft 6 (the gripping portions 7 (7A to 7I)) may be configured to be rotatable with respect to the handle 5 around the central axis of the shaft 6.
  • the gripping portion 7 (7A to 7I) is configured to apply at least one of high-frequency energy, thermal energy, and ultrasonic energy to the living tissue LT. Not exclusively.
  • first and second electrodes 11 and 12 are not limited to the first to third embodiments described above, and can be changed as appropriate.
  • the first electrode 11 is disposed on both sides of the first jaw 8 across the first region Ar1
  • the second electrode 12 is disposed on the second jaw 9 at a position facing the first region Ar1.
  • the number of the second electrodes 12 may be different.

Abstract

This treatment tool is provided with: a grip part 7; and energy generation parts 11, 12 provided on first and second jaws 8, 9 and generating energy to be imparted to living tissue LT. A gripping surface 81 of a first jaw 8 has two first inflection points IP1 arranged in parallel in the width direction of the grip part 7, and a first region Ar1 between the two first inflection points IP1 is formed in a protruding shape protruding toward the second jaw 9. A second gripping surface 91 of the second jaw 9 has two second inflection points IP2 arranged in parallel in the width direction, and a second region Ar2 between the two second inflection points IP2 faces the first region Ar1 and is formed in a protruding shape protruding toward the first gripping surface 81. A first separation distance D1 between the two first inflection points IP1 along the width direction is different from a second separation distance between the two second inflection points IP2 along the width direction.

Description

処置具Treatment tool
 本発明は、処置具に関する。 The present invention relates to a treatment instrument.
 従来、一対のジョーにて生体組織を把持し、当該生体組織にエネルギを付与することにより当該生体組織を切開する処置具が知られている(例えば、特許文献1参照)。
 特許文献1に記載の処置具では、一対のジョーには、生体組織を把持する把持面がそれぞれ設けられている。そして、これら把持面は、平面でそれぞれ構成されているとともに、一対のジョーを閉じた状態で当該一対のジョーの長手方向に直交する断面を見た場合に、同一の幅寸法を有する。
2. Description of the Related Art Conventionally, there has been known a treatment instrument for grasping a living tissue with a pair of jaws and incising the living tissue by applying energy to the living tissue (see, for example, Patent Document 1).
In the treatment tool described in Patent Literature 1, a pair of jaws is provided with a gripping surface for gripping a living tissue. These gripping surfaces are each formed of a flat surface, and have the same width dimension when a cross section perpendicular to the longitudinal direction of the pair of jaws is viewed with the pair of jaws closed.
特開2001-170069号公報Japanese Patent Laid-Open No. 2001-170069
 ところで、処置対象となる生体組織の厚みや硬さによっては、当該生体組織を一対のジョーにて把持した場合に、当該一対のジョーが幅方向にずれてしまう(一対の把持面が幅方向にずれてしまう)場合がある。
 特許文献1に記載の処置具では、一対の把持面は、同一の幅寸法を有する。このため、上述したように一対の把持面が幅方向にずれた場合には、当該一対の把持面同士が重なり合う領域の幅寸法も変化することとなる。ここで、生体組織は、当該一対の把持面同士の重なり合う領域で切開される。すなわち、特許文献1に記載の処置具では、厚みや硬さが異なる生体組織をそれぞれ処置した場合に、切開される領域の幅寸法(以下、切開幅と記載)がそれぞれ異なるものとなる、という問題がある。
By the way, depending on the thickness and hardness of the biological tissue to be treated, when the biological tissue is gripped by a pair of jaws, the pair of jaws is displaced in the width direction (the pair of gripping surfaces are in the width direction). May shift).
In the treatment tool described in Patent Document 1, the pair of gripping surfaces have the same width dimension. For this reason, as described above, when the pair of gripping surfaces are displaced in the width direction, the width dimension of the region where the pair of gripping surfaces overlap is also changed. Here, the living tissue is incised in a region where the pair of gripping surfaces overlap. That is, the treatment instrument described in Patent Document 1 has different width dimensions (hereinafter referred to as incision widths) of regions to be incised when biological tissues having different thicknesses and hardnesses are treated. There's a problem.
 本発明は、上記に鑑みてなされたものであって、切開幅を安定に維持することができる処置具を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a treatment instrument that can stably maintain the incision width.
 上述した課題を解決し、目的を達成するために、本発明に係る処置具は、第1把持面を有する第1ジョーと、当該第1把持面との間で生体組織を把持する第2把持面を有する第2ジョーとを含んで構成される把持部と、前記第1ジョー及び前記第2ジョーの少なくとも一方に設けられ、前記第1把持面及び前記第2把持面の少なくとも一方から前記生体組織に付与するエネルギを発生するエネルギ発生部とを備え、前記第1把持面は、前記第1ジョー及び前記第2ジョーを閉じた状態で前記把持部の長手方向に直交する断面において、当該把持部の幅方向に並列する2つの第1変曲点を有し、当該2つの第1変曲点間の第1領域が前記第2把持面側に突出した凸状に形成され、前記第2把持面は、前記断面において、前記幅方向に並列する2つの第2変曲点を有し、当該2つの第2変曲点間の第2領域が前記第1領域に対向するとともに前記第1把持面側に突出した凸状に形成され、前記2つの第1変曲点間の前記幅方向に沿う第1離間距離は、前記2つの第2変曲点間の前記幅方向に沿う第2離間距離と異なる。 In order to solve the above-described problems and achieve the object, a treatment tool according to the present invention includes a first jaw having a first gripping surface and a second gripping gripping a living tissue between the first gripping surface. A grasping portion including a second jaw having a surface; and the living body from at least one of the first grasping surface and the second grasping surface provided on at least one of the first jaw and the second jaw. An energy generating section that generates energy to be applied to the tissue, and the first gripping surface is in a cross section perpendicular to the longitudinal direction of the gripping section with the first jaw and the second jaw closed. Two first inflection points juxtaposed in the width direction of the portion, and a first region between the two first inflection points is formed in a convex shape protruding toward the second gripping surface, and the second The gripping surface is parallel to the width direction in the cross section. Two second inflection points, and a second region between the two second inflection points is formed in a convex shape facing the first region and projecting toward the first gripping surface. The first separation distance along the width direction between the first inflection points is different from the second separation distance along the width direction between the two second inflection points.
 本発明に係る処置具によれば、切開幅を安定に維持することができる、という効果を奏する。 The treatment tool according to the present invention has an effect that the incision width can be stably maintained.
図1は、本実施の形態1に係る処置システムを示す図である。FIG. 1 is a diagram showing a treatment system according to the first embodiment. 図2は、把持部を示す図である。FIG. 2 is a diagram illustrating the gripping portion. 図3は、図2に示した把持部の幅方向の中央部分を拡大した図である。FIG. 3 is an enlarged view of the central portion in the width direction of the grip portion shown in FIG. 図4は、本実施の形態1の効果を説明する図である。FIG. 4 is a diagram for explaining the effect of the first embodiment. 図5Aは、本実施の形態1の変形例1-1に係る把持部を示す図である。FIG. 5A is a diagram showing a grip portion according to Modification 1-1 of Embodiment 1. 図5Bは、本実施の形態1の変形例1-2に係る把持部を示す図である。FIG. 5B is a diagram showing a grip portion according to Modification Example 1-2 of Embodiment 1. 図5Cは、本実施の形態1の変形例1-3に係る把持部を示す図である。FIG. 5C is a diagram showing a grip portion according to Modification 1-3 of Embodiment 1. 図5Dは、本実施の形態1の変形例1-4に係る把持部を示す図である。FIG. 5D is a diagram showing a grip portion according to Modification Example 1-4 of Embodiment 1. 図5Eは、本実施の形態1の変形例1-5に係る把持部を示す図である。FIG. 5E is a diagram showing a gripping part according to Modification 1-5 of Embodiment 1. 図6は、本実施の形態2に係る把持部を示す図である。FIG. 6 is a diagram illustrating a gripping unit according to the second embodiment. 図7は、本実施の形態2の変形例2-1に係る把持部を示す図である。FIG. 7 is a diagram illustrating a grip portion according to Modification Example 2-1 of the second embodiment. 図8は、本実施の形態2の変形例2-2に係る把持部を示す図である。FIG. 8 is a diagram showing a gripping part according to the modified example 2-2 of the second embodiment. 図9は、本実施の形態3に係る把持部を示す図である。FIG. 9 is a diagram illustrating a gripping unit according to the third embodiment. 図10は、本実施の形態1~3の変形例3-1に係る把持部を示す図である。FIG. 10 is a diagram showing a gripping part according to the modified example 3-1 of the first to third embodiments. 図11は、本実施の形態1~3の変形例3-2に係る把持部を示す図である。FIG. 11 is a diagram showing a grip portion according to Modification 3-2 of Embodiments 1 to 3. In FIG.
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付している。 DETAILED DESCRIPTION Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the same code | symbol is attached | subjected to the same part in description of drawing.
(実施の形態1)
 〔処置システムの概略構成〕
 図1は、本実施の形態1に係る処置システム1を示す図である。
 処置システム1は、生体組織に対してエネルギ(本実施の形態1では、電気エネルギ(高周波エネルギ))を付与することにより、当該生体組織を処置(接合(若しくは吻合)及び切開等)する。この処置システム1は、図1に示すように、処置具2と、制御装置3と、フットスイッチ4とを備える。
(Embodiment 1)
[Schematic configuration of treatment system]
FIG. 1 is a diagram showing a treatment system 1 according to the first embodiment.
The treatment system 1 treats (joins (or anastomoses), incises, etc.) the living tissue by applying energy (electric energy (high-frequency energy) in the first embodiment) to the living tissue. As illustrated in FIG. 1, the treatment system 1 includes a treatment tool 2, a control device 3, and a foot switch 4.
 〔処置具の構成〕
 処置具2は、例えば、腹壁を通して生体組織を処置するためのリニアタイプの外科医療用処置具である。この処置具2は、図1に示すように、ハンドル5と、シャフト6と、把持部7とを備える。
 ハンドル5は、術者が処置具2を手で持つ部分である。そして、このハンドル5には、図1に示すように、操作ノブ51が設けられている。
 シャフト6は、図1に示すように、略円筒形状を有し、一端(図1中、右端部)がハンドル5に接続されている。また、シャフト6の他端(図1中、左端部)には、把持部7が取り付けられている。そして、このシャフト6の内部には、術者による操作ノブ51の操作に応じて、把持部7を構成する第1,第2ジョー8,9(図1)を開閉させる開閉機構(図示略)が設けられている。また、このシャフト6の内部には、制御装置3に接続された電気ケーブルC(図1)がハンドル5を介して一端側(図1中、右端部側)から他端側(図1中、左端部側)まで配設されている。
[Configuration of treatment tool]
The treatment tool 2 is, for example, a linear type surgical treatment tool for treating living tissue through the abdominal wall. As shown in FIG. 1, the treatment tool 2 includes a handle 5, a shaft 6, and a grip portion 7.
The handle 5 is a part where the surgeon holds the treatment instrument 2 by hand. The handle 5 is provided with an operation knob 51 as shown in FIG.
As shown in FIG. 1, the shaft 6 has a substantially cylindrical shape, and one end (right end portion in FIG. 1) is connected to the handle 5. A gripping portion 7 is attached to the other end of the shaft 6 (left end portion in FIG. 1). An opening / closing mechanism (not shown) that opens and closes the first and second jaws 8 and 9 (FIG. 1) constituting the gripping portion 7 in response to the operation of the operation knob 51 by the operator is provided inside the shaft 6. Is provided. Further, in the shaft 6, an electric cable C (FIG. 1) connected to the control device 3 is connected to the other end side (in FIG. 1) from one end side (right end side in FIG. 1) via the handle 5. (Up to the left end side).
 〔把持部の構成〕
 なお、以下で記載する「長手方向」は、生体組織を把持した閉状態(第1,第2ジョー8,9を閉じた(第1,第2把持面81,91を互いに対向させた)状態)に設定された把持部7の先端と基端とを結ぶ方向を意味する。また、以下で記載する「幅方向」は、当該把持部7において、第1,第2把持面81,91に沿い、当該長手方向に直交する短手方向を意味する。
 図2は、把持部7を示す図である。具体的に、図2は、管腔や血管等の生体組織LTを把持した閉状態に設定された把持部7を長手方向に直交する切断面にて切断した断面図である。図3は、図2に示した把持部7の幅方向の中央部分を拡大した図である。
 把持部7は、生体組織LTを把持して、当該生体組織LTを処置する部分である。この把持部7は、図1ないし図3に示すように、第1,第2ジョー8,9を備える。
 第1,第2ジョー8,9は、矢印Y1(図1)方向に開閉可能にシャフト6の他端に軸支され、術者による操作ノブ51の操作に応じて、生体組織LTを把持可能とする。
(Configuration of gripping part)
The “longitudinal direction” described below is a closed state in which a living tissue is gripped (the first and second jaws 8 and 9 are closed (the first and second gripping surfaces 81 and 91 are opposed to each other)). ) Means the direction connecting the distal end and the proximal end of the gripping part 7 set. The “width direction” described below means a short direction perpendicular to the longitudinal direction along the first and second grip surfaces 81 and 91 in the grip portion 7.
FIG. 2 is a diagram illustrating the gripping unit 7. Specifically, FIG. 2 is a cross-sectional view of the gripping portion 7 set in a closed state in which a living tissue LT such as a lumen or a blood vessel is gripped, cut along a cross section orthogonal to the longitudinal direction. FIG. 3 is an enlarged view of the central portion in the width direction of the gripping portion 7 shown in FIG.
The grip portion 7 is a portion that grips the living tissue LT and treats the living tissue LT. As shown in FIGS. 1 to 3, the grip portion 7 includes first and second jaws 8 and 9.
The first and second jaws 8 and 9 are pivotally supported on the other end of the shaft 6 so as to be openable and closable in the direction of the arrow Y1 (FIG. 1), and can grasp the living tissue LT according to the operation of the operation knob 51 by the operator. And
 〔第1ジョーの構成〕
 第1ジョー8は、第2ジョー9に対して、図1ないし図3中、上方側に配設され、長手方向に沿って延びる略直方体形状を有する。この第1ジョー8の材料としては、高い耐熱性を有し、かつ、熱伝導率が低く、さらに、優れた電気絶縁性を有する材料、例えば、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PEEK(ポリエーテルエーテルケトン)、PBI(ポリベンゾイミダゾール)等の樹脂を例示することができる。なお、第1ジョー8の材料としては、当該樹脂に限らず、アルミナ、ジルコニア等のセラミック等を採用しても構わない。また、それらに生体への非粘着性を有するPTFE、DLC(Diamond-Like Carbon)、セラミック系、シリカ系、シリコン系の絶縁性のコーティング材を付しても構わない。
 そして、第1ジョー8における図2及び図3中、下方側の面は、第2ジョー9との間で生体組織LTを把持する第1把持面81として機能する。
[Configuration of first jaw]
The first jaw 8 is disposed on the upper side in FIGS. 1 to 3 with respect to the second jaw 9 and has a substantially rectangular parallelepiped shape extending along the longitudinal direction. As the material of the first jaw 8, a material having high heat resistance, low thermal conductivity, and excellent electrical insulation, such as PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene). Examples thereof include resins such as ethylene / perfluoroalkyl vinyl ether copolymer), PEEK (polyether ether ketone), and PBI (polybenzimidazole). In addition, as a material of the 1st jaw 8, you may employ | adopt not only the said resin but ceramics, such as an alumina and a zirconia. Further, PTFE, DLC (Diamond-Like Carbon), ceramic-based, silica-based, and silicon-based insulating coating materials having non-adhesiveness to a living body may be attached thereto.
2 and 3 of the first jaw 8 function as a first gripping surface 81 that grips the living tissue LT with the second jaw 9.
 本実施の形態1では、第1把持面81は、閉状態に設定された把持部7の長手方向に直交する断面で見た場合に、図2または図3に示すように、幅方向に並列する2つの第1変曲点IP1を有する。これら2つの第1変曲点IP1は、第1把持面81における幅方向の中心位置を通り幅方向に直交する中心線Ax1を挟む両側にそれぞれ位置する。ここで、「変曲点」とは、曲線をy=f(x)上の点(x,y)として表した場合に、2次導関数f´´(x)の符号が変化する点(ゼロへの変化も含む)を意味する。そして、第1把持面81は、2つの第1変曲点IP1間の第1領域Ar1が第2ジョー9側に突出した凸状に形成されている。また、第1把持面81において、第1領域Ar1は、中心線Ax1に直交する平面(幅方向に平行な平面)で構成されている。さらに、第1把持面81において、第1領域Ar1を挟む両側の領域は、図2または図3に示すように、2つの第1変曲点IP1から幅方向の外側に向かうにしたがって、第2ジョー9から離間する曲面でそれぞれ構成されている。そして、第1把持面81は、中心線Ax1を基準として対称となる形状を有する。
 なお、本実施の形態1では、第1把持面81において、図2または図3に示した断面形状は、全長(長手方向の全長、以下同様)に亘って同一である。
In the first embodiment, the first gripping surface 81 is parallel to the width direction as shown in FIG. 2 or FIG. 3 when viewed in a cross section perpendicular to the longitudinal direction of the gripping portion 7 set in the closed state. Have two first inflection points IP1. These two first inflection points IP1 are respectively located on both sides of a center line Ax1 passing through the center position in the width direction on the first gripping surface 81 and orthogonal to the width direction. Here, the “inflection point” is a point where the sign of the second derivative f ″ (x) changes when the curve is expressed as a point (x, y) on y = f (x) ( Including change to zero). The first gripping surface 81 is formed in a convex shape in which the first region Ar1 between the two first inflection points IP1 protrudes toward the second jaw 9 side. In the first gripping surface 81, the first region Ar1 is configured by a plane orthogonal to the center line Ax1 (a plane parallel to the width direction). Further, in the first gripping surface 81, the regions on both sides sandwiching the first region Ar1 are, as shown in FIG. 2 or FIG. 3, the second inflection points from the two first inflection points IP1 toward the outside in the width direction. Each of them is composed of a curved surface separated from the jaw 9. The first gripping surface 81 has a shape that is symmetric with respect to the center line Ax1.
In the first embodiment, the first gripping surface 81 has the same cross-sectional shape shown in FIG. 2 or FIG. 3 over the entire length (the entire length in the longitudinal direction, the same applies hereinafter).
 以上説明した第1把持面81において、幅方向の両端部側を除く領域には、図2または図3に示すように、当該第1把持面81の全長に亘って、第1電極11が埋め込まれている。
 第1電極11は、例えば、銅、アルミニウム、ステンレススチールSUS、カーボン等の導電性材料でそれぞれ構成されている。また、第1電極11は、長手方向に沿って延び、略同一の厚み寸法を有する板体で構成され、一方の板面(図2,図3中、下方側の面)が第1把持面81の一部を構成するように(当該一方の板面が露出した状態で)、当該第1把持面81に埋め込まれている。
In the first gripping surface 81 described above, the first electrode 11 is embedded over the entire length of the first gripping surface 81 in the region excluding both end portions in the width direction as shown in FIG. 2 or FIG. It is.
The first electrode 11 is made of a conductive material such as copper, aluminum, stainless steel SUS, or carbon, for example. The first electrode 11 is formed of a plate body extending in the longitudinal direction and having substantially the same thickness dimension, and one plate surface (the lower surface in FIGS. 2 and 3) is the first gripping surface. 81 is embedded in the first gripping surface 81 so as to constitute a part of 81 (with the one plate surface exposed).
 〔第2ジョーの構成〕
 第2ジョー9は、長手方向に沿って延びる略直方体形状を有する。この第2ジョー9の材料としては、第1ジョー8と同様に、PTFE、PFA、PEEK、PBI等の樹脂、アルミナ、ジルコニア等のセラミック等を例示することができる。また、それらに生体への非粘着性を有するPTFE、DLC、セラミック系、シリカ系、シリコン系の絶縁性のコーティング材を付しても構わない。
 そして、第2ジョー9における図2及び図3中、上方側の面は、第1把持面81との間で生体組織LTを把持する第2把持面91として機能する。
[Configuration of second jaw]
The second jaw 9 has a substantially rectangular parallelepiped shape extending along the longitudinal direction. Examples of the material of the second jaw 9 include resins such as PTFE, PFA, PEEK, and PBI, and ceramics such as alumina and zirconia, as in the first jaw 8. In addition, PTFE, DLC, ceramic-based, silica-based, and silicon-based insulating coating materials having non-adhesiveness to a living body may be attached thereto.
2 and 3 of the second jaw 9 functions as a second gripping surface 91 that grips the living tissue LT with the first gripping surface 81.
 本実施の形態1では、第2把持面91は、閉状態に設定された把持部7の長手方向に直交する断面で見た場合に、図3に示すように、幅方向に並列する2つの第2変曲点IP2を有する。これら2つの第2変曲点IP2は、第2把持面91における幅方向の中心位置を通り幅方向に直交する中心線Ax2を挟む両側にそれぞれ位置する。そして、第2把持面91は、2つの第2変曲点IP2間の第2領域Ar2が第1領域Ar1に対向するとともに第1把持面81側に突出した凸状に形成されている。また、第2把持面91において、第2領域Ar2は、中心線Ax2に直交する平面(幅方向に平行な平面)で構成されている。そして、2つの第2変曲点IP2間の幅方向に沿う第2離間距離D2は、2つの第1変曲点IP1間の幅方向に沿う第1離間距離D1よりも小さく設定されている。さらに、第2把持面91において、第2領域Ar2を挟む両側の領域は、図2または図3に示すように、2つの第2変曲点IP2から幅方向の外側に向かうにしたがって、第1把持面81から離間する平面(傾斜面)でそれぞれ構成されている。そして、第2把持面91は、中心線Ax2を基準として対称となる形状を有する。
 なお、本実施の形態1では、第2把持面91において、図2または図3に示した断面形状は、全長に亘って同一である。
In the first embodiment, the second gripping surface 91 has two parallel lines in the width direction as shown in FIG. 3 when viewed in a cross section orthogonal to the longitudinal direction of the gripping portion 7 set in the closed state. It has a second inflection point IP2. These two second inflection points IP2 are located on both sides of a center line Ax2 that passes through the center position in the width direction on the second gripping surface 91 and is orthogonal to the width direction. The second gripping surface 91 is formed in a convex shape such that the second region Ar2 between the two second inflection points IP2 faces the first region Ar1 and protrudes toward the first gripping surface 81. In the second gripping surface 91, the second region Ar2 is configured by a plane (a plane parallel to the width direction) orthogonal to the center line Ax2. The second separation distance D2 along the width direction between the two second inflection points IP2 is set to be smaller than the first separation distance D1 along the width direction between the two first inflection points IP1. Further, on the second gripping surface 91, the regions on both sides sandwiching the second region Ar2 are, as shown in FIG. 2 or FIG. Each of them is composed of a plane (inclined surface) that is separated from the gripping surface 81. The second gripping surface 91 has a shape that is symmetric with respect to the center line Ax2.
In the first embodiment, the second gripping surface 91 has the same cross-sectional shape shown in FIG.
 以上説明した第2把持面91において、幅方向の両端部側を除き、第1電極11に対向する領域には、図2または図3に示すように、当該第2把持面91の全長に亘って、第2電極12が埋め込まれている。
 第2電極12は、第1電極11と同様に、例えば、銅、アルミニウム、ステンレススチールSUS、カーボン等の導電性材料でそれぞれ構成されている。また、第2電極12は、長手方向に沿って延び、略同一の厚み寸法を有する板体で構成され、一方の板面(図2,図3中、上方側の面)が第2把持面91の一部を構成するように(当該一方の板面が露出した状態で)当該第2把持面91に埋め込まれている。さらに、第1,第2電極11,12には、シャフト6の一端側から他端側まで配設された電気ケーブルCを構成する一対の高周波用リード線(図示略)がそれぞれ接合されている。そして、第1,第2電極11,12は、一対の高周波用リード線を介して制御装置3により高周波電力が供給されることで、電気エネルギ(高周波エネルギ)を発生し得る。第1,第2ジョー8,9(第1,第2把持面81,91)にて生体組織LTを把持した状態で高周波電力が供給されると、第1,第2電極11,12の間に高周波電位が発生するため、当該生体組織LTに高周波電流が流れる(当該生体組織LTに電気エネルギ(高周波エネルギ)が付与される)。つまり、第1,第2電極11,12は、いずれか一方が正極で他方が負極をなす一対の電極であり、本発明に係るエネルギ発生部に相当する。
In the second gripping surface 91 described above, except for both end portions in the width direction, the region facing the first electrode 11 extends over the entire length of the second gripping surface 91 as shown in FIG. 2 or FIG. Thus, the second electrode 12 is embedded.
Similar to the first electrode 11, the second electrode 12 is made of a conductive material such as copper, aluminum, stainless steel SUS, or carbon, for example. The second electrode 12 is formed of a plate body extending in the longitudinal direction and having substantially the same thickness dimension, and one plate surface (the upper surface in FIGS. 2 and 3) is the second gripping surface. It is embedded in the second gripping surface 91 so as to constitute a part of 91 (with the one plate surface exposed). Further, a pair of high-frequency lead wires (not shown) constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to the first and second electrodes 11 and 12, respectively. . The first and second electrodes 11 and 12 can generate electric energy (high-frequency energy) by being supplied with high-frequency power by the control device 3 via a pair of high-frequency lead wires. When high-frequency power is supplied in a state where the living tissue LT is gripped by the first and second jaws 8 and 9 (first and second gripping surfaces 81 and 91), the first and second electrodes 11 and 12 are connected. Since a high-frequency potential is generated, a high-frequency current flows through the living tissue LT (electric energy (high-frequency energy) is applied to the living tissue LT). That is, the first and second electrodes 11 and 12 are a pair of electrodes, one of which is a positive electrode and the other is a negative electrode, and corresponds to an energy generating unit according to the present invention.
 なお、第1,第2電極11,12としては、表面が第1,第2把持面81,91と同一の形状を有していれば、略同一の厚み寸法を有する板体に限らず、ブロック状の部材でそれぞれ構成しても構わない。また、第1,第2電極11,12としては、バルクの材料である必要はなく、蒸着やスパッタリング、メッキ等で形成された銅、金、プラチナ等の導電性薄膜でそれぞれ構成しても構わない。さらに、第1,第2電極11,12の表面は、上述したような物理的な露出のみに限らず、電気的に露出していればよい。すなわち、生体への非粘着性を有するNi-PTFE膜や導電性DLC等の導電性のコーティング材を付した状態で、その面が電極としての電位を提供しても何ら発明の意図を逸脱するものではない。 The first and second electrodes 11 and 12 are not limited to plates having substantially the same thickness as long as the surfaces have the same shape as the first and second gripping surfaces 81 and 91. You may comprise with a block-shaped member, respectively. The first and second electrodes 11 and 12 do not need to be bulk materials, and may be composed of conductive thin films such as copper, gold, and platinum formed by vapor deposition, sputtering, plating, or the like. Absent. Further, the surfaces of the first and second electrodes 11 and 12 are not limited to the physical exposure as described above, but may be electrically exposed. That is, even when a conductive coating material such as a Ni-PTFE film having non-adhesiveness to a living body or a conductive DLC is attached, the surface of the electrode does not deviate from the intention of the invention even if it provides a potential as an electrode. It is not a thing.
 〔制御装置及びフットスイッチの構成〕
 フットスイッチ4は、術者が足で操作する部分である。そして、フットスイッチ4への当該操作に応じて、制御装置3から処置具2(第1,第2電極11,12)への通電のオン及びオフが切り替えられる。
 なお、当該オン及びオフを切り替える手段としては、フットスイッチに限らず、その他、手で操作するスイッチ等を採用しても構わない。
 制御装置3は、CPU(Central Processing Unit)等を含んで構成され、所定の制御プログラムにしたがって、処置具2の動作を統括的に制御する。より具体的に、制御装置3は、術者によるフットスイッチ4への操作(通電オンの操作)に応じて、一対の高周波用リード線を介して第1,第2電極11,12の間に予め設定した出力の高周波電力を供給し、エネルギを適切に制御する。
[Configuration of control device and foot switch]
The foot switch 4 is a part operated by the operator with his / her foot. And according to the said operation to the foot switch 4, ON / OFF of the electricity supply from the control apparatus 3 to the treatment tool 2 (1st, 2nd electrode 11, 12) is switched.
Note that the means for switching on and off is not limited to a foot switch, and other switches that are operated by hand may be employed.
The control device 3 includes a CPU (Central Processing Unit) and the like, and comprehensively controls the operation of the treatment instrument 2 according to a predetermined control program. More specifically, the control device 3 is arranged between the first and second electrodes 11 and 12 via a pair of high-frequency lead wires in response to an operation to the foot switch 4 by the operator (operation to turn on the power). A high-frequency power having a preset output is supplied to appropriately control energy.
 〔処置システムの動作〕
 次に、上述した処置システム1の動作について説明する。
 術者は、処置具2を手で持ち、当該処置具2の先端部分(把持部7及びシャフト6の一部)を、例えば、トロッカ等を用いて腹壁を通して腹腔内に挿入する。また、術者は、操作ノブ51を操作し、第1,第2ジョー8,9にて生体組織LTを把持する。
 ここで、第1,第2把持面81,91は、第1,第2領域Ar1,Ar2が他方に突出した凸形状をそれぞれ有する。すなわち、第2把持面91では、第1把持面81との離間寸法は、第2領域Ar2が最も小さくなる。このため、生体組織LTの第1,第2把持面81,91にて把持されている部位において、第2領域Ar2にて押圧される組織LT1(図2,図3)は、他の組織LT2(図2,図3)よりも高い圧力で押圧される。
[Action system action]
Next, operation | movement of the treatment system 1 mentioned above is demonstrated.
The surgeon holds the treatment instrument 2 by hand, and inserts the distal end portion of the treatment instrument 2 (a part of the gripping portion 7 and the shaft 6) into the abdominal cavity through the abdominal wall using, for example, a trocar. The surgeon operates the operation knob 51 to hold the living tissue LT with the first and second jaws 8 and 9.
Here, the first and second gripping surfaces 81 and 91 have convex shapes in which the first and second regions Ar1 and Ar2 protrude to the other side, respectively. That is, in the second gripping surface 91, the second region Ar2 has the smallest separation distance from the first gripping surface 81. For this reason, the tissue LT1 (FIGS. 2 and 3) pressed in the second region Ar2 at the portion gripped by the first and second gripping surfaces 81 and 91 of the living tissue LT is the other tissue LT2. It is pressed with a higher pressure than (FIGS. 2 and 3).
 次に、術者は、フットスイッチ4を操作し、制御装置3から処置具2への通電をオンに切り替える。当該オンに切り替えられると、制御装置3は、一対の高周波用リード線を介して、第1,第2電極11,12の間に高周波電力を供給する。
 そして、第1,第2電極11,12の間に高周波電力が供給されると、当該第1,第2電極11,12間には、生体組織LTを介して、高周波電流が流れる。すなわち、当該生体組織LTにジュール熱が発生する。
 ここで、第1,第2電極11,12内をそれぞれ等電位であると考えると、生体組織LTの第1,第2把持面81,91にて把持されている部位において、第1,第2電極11,12間の電極間距離が最も短い組織LT1の発熱密度が他の組織LT2よりも最も高くなる。すなわち、当該組織LT1は、急速に昇温する。一方、他の組織LT2は、高周波電流により緩やかに昇温するとともに、組織LT1からの熱伝導の作用によっても昇温する。
 そして、上述した圧力差、及び温度差により、組織LT2は封止される組織(以下、被封止組織LT2と記載)となり、組織LT1は切開される組織(以下、被切開組織LT1と記載)となる。
Next, the surgeon operates the foot switch 4 to turn on the power supply from the control device 3 to the treatment instrument 2. When switched on, the control device 3 supplies high-frequency power between the first and second electrodes 11 and 12 via a pair of high-frequency lead wires.
When high-frequency power is supplied between the first and second electrodes 11 and 12, a high-frequency current flows between the first and second electrodes 11 and 12 via the living tissue LT. That is, Joule heat is generated in the living tissue LT.
Here, when the first and second electrodes 11 and 12 are considered to be equipotential, the first and second electrodes are grasped by the first and second grasping surfaces 81 and 91 of the living tissue LT. The heat generation density of the tissue LT1 having the shortest distance between the two electrodes 11 and 12 is the highest as compared with the other tissue LT2. That is, the tissue LT1 is rapidly heated. On the other hand, the other tissue LT2 gradually rises in temperature due to the high-frequency current and also rises due to heat conduction from the tissue LT1.
Then, due to the pressure difference and the temperature difference described above, the tissue LT2 becomes a tissue to be sealed (hereinafter referred to as a sealed tissue LT2), and the tissue LT1 is a tissue to be cut (hereinafter referred to as a tissue to be cut LT1). It becomes.
 以上説明した本実施の形態1によれば、以下の効果を奏する。
 図4は、本実施の形態1の効果を説明する図である。具体的に、図4は、図3に対応した断面図である。
 本実施の形態1に係る処置具2では、第1把持面81は、幅方向に並列する2つの第1変曲点IP1を有し、当該2つの第1変曲点IP1間の第1領域Ar1が第2把持面91側に突出した凸状に形成されている。また、第2把持面91は、幅方向に並列する2つの第2変曲点IP2を有し、当該2つの第2変曲点IP2間の第2領域Ar2が第1領域Ar1に対向するとともに第1把持面91側に突出した凸状に形成されている。そして、2つの第2変曲点IP2間の幅方向に沿う第2離間距離D2は、2つの第1変曲点IP1間の幅方向に沿う第1離間距離D1よりも小さく設定されている。
 このため、図3に示したように中心線Ax1,Ax2同士が合致した状態と、第1,第2ジョー8,9が幅方向にずれ、図4に示したように中心線Ax1,Ax2同士に幅方向にずれδが生じた状態とで、被切開組織LT1の幅寸法(切開幅)を同一とすることができる。すなわち、例えば、厚みや硬さが異なる生体組織LTをそれぞれ処置した場合であっても、切開幅を同一とすることができる。
 したがって、本実施の形態1に係る処置具2によれば、切開幅を安定に維持することができる、という効果を奏する。
 特に、第1,第2把持面81,91の形状により、被切開組織LT1の幅を狭くすることができる。言い換えれば、被封止組織LT2の幅を広くすることができる。このため、生体組織LTを安定に封止することができる。
According to the first embodiment described above, the following effects are obtained.
FIG. 4 is a diagram for explaining the effect of the first embodiment. Specifically, FIG. 4 is a cross-sectional view corresponding to FIG.
In the treatment instrument 2 according to the first embodiment, the first gripping surface 81 has two first inflection points IP1 arranged in parallel in the width direction, and a first region between the two first inflection points IP1. Ar1 is formed in a convex shape protruding to the second gripping surface 91 side. The second gripping surface 91 has two second inflection points IP2 arranged in parallel in the width direction, and the second region Ar2 between the two second inflection points IP2 faces the first region Ar1. It is formed in a convex shape protruding toward the first gripping surface 91 side. The second separation distance D2 along the width direction between the two second inflection points IP2 is set to be smaller than the first separation distance D1 along the width direction between the two first inflection points IP1.
For this reason, as shown in FIG. 3, the center lines Ax1 and Ax2 are aligned with each other, and the first and second jaws 8 and 9 are shifted in the width direction, so that the center lines Ax1 and Ax2 are aligned with each other as shown in FIG. The width dimension (incision width) of the incised tissue LT1 can be made the same in a state in which a deviation δ is generated in the width direction. That is, for example, even when the living tissues LT having different thicknesses and hardnesses are treated, the incision width can be made the same.
Therefore, according to the treatment tool 2 according to the first embodiment, there is an effect that the incision width can be stably maintained.
In particular, the width of the incised tissue LT1 can be narrowed by the shapes of the first and second gripping surfaces 81 and 91. In other words, the width of the sealed tissue LT2 can be increased. For this reason, the living tissue LT can be stably sealed.
(実施の形態1の変形例1-1)
 図5Aは、本実施の形態1の変形例1-1に係る把持部7Aを示す図である。具体的に、図5Aは、図2に対応した断面図である。
 上述した実施の形態1に係る把持部7では、第1電極11が第1把持面81に設けられ、第2電極12が第2把持面91に設けられていたが、これに限らない。例えば、図5Aに示した本変形例1-1に係る把持部7Aのように、第1,第2電極11,12を第1把持面81のみに設けても構わない。
 ここで、第1,第2電極11,12は、図5Aに示すように、中心線Ax1を挟む両側において、第1把持面81の全長に亘って当該第1把持面81の一部を構成するようにそれぞれ埋め込まれている。より具体的に、第1,第2電極11,12は、2つの第1変曲点IP1よりも幅方向の外側において、中心線Ax1を基準として対称となる位置に配置されている。
(Modification 1-1 of Embodiment 1)
FIG. 5A is a diagram showing a gripping portion 7A according to Modification 1-1 of Embodiment 1. Specifically, FIG. 5A is a cross-sectional view corresponding to FIG.
In the gripping part 7 according to Embodiment 1 described above, the first electrode 11 is provided on the first gripping surface 81 and the second electrode 12 is provided on the second gripping surface 91, but this is not restrictive. For example, the first and second electrodes 11 and 12 may be provided only on the first gripping surface 81 as in the gripping portion 7A according to Modification 1-1 shown in FIG. 5A.
Here, as shown in FIG. 5A, the first and second electrodes 11 and 12 constitute a part of the first gripping surface 81 over the entire length of the first gripping surface 81 on both sides of the center line Ax1. Each embedded. More specifically, the first and second electrodes 11 and 12 are arranged at positions symmetrical with respect to the center line Ax1 outside the two first inflection points IP1 in the width direction.
 以上説明した本変形例1-1によれば、第1,第2電極11,12間に高周波電力が供給されると、生体組織LTの発熱は、最も抵抗の高くなる幅方向の中央に集中する。
 例えば、上述した実施の形態1のように、第1,第2ジョー8,9にそれぞれ第1,第2電極11,12を設けた場合には、フリンジ効果により、被封止組織LT2の幅方向の外側の側方組織にも高周波電流が流れる虞がある。これに対して、本変形例1-1によれば、フリンジ効果による当該側方組織への高周波電流の回り込みを抑制することができ、当該側方組織への熱侵襲を低減することが可能となる。
 なお、第1,第2電極11,12を薄膜で構成した場合には、当該第1,第2電極11,12の熱容量を低くすることができる。すなわち、ジュール加熱により生体組織LTに発生した熱量が、第1,第2電極11,12がヒートシンクとなって生体組織LTの冷却にも意図せず寄与してしまうことを大幅に低減することができるため、少ない電力でも組織の昇温速度を速め、処置時間の短縮、側方組織へのさらなる低熱侵襲、第1,第2ジョー8,9の残熱低減にも寄与する。ここで、残熱とは、処置後もジョーに帯びる本来処置には不要な熱を意味する。さらに、把持部7Aを閉状態に設定した場合でも、第1,第2電極11,12同士が接触して短絡することがない。
According to Modification 1-1 described above, when high-frequency power is supplied between the first and second electrodes 11 and 12, the heat generation of the living tissue LT is concentrated at the center in the width direction where the resistance is highest. To do.
For example, when the first and second electrodes 11 and 12 are provided on the first and second jaws 8 and 9, respectively, as in the first embodiment, the width of the tissue to be sealed LT2 due to the fringe effect. There is a possibility that a high-frequency current flows also in the lateral tissue outside the direction. On the other hand, according to the present modified example 1-1, the wraparound of the high-frequency current to the side tissue due to the fringe effect can be suppressed, and the thermal invasion to the side tissue can be reduced. Become.
In addition, when the 1st, 2nd electrodes 11 and 12 are comprised with a thin film, the heat capacity of the said 1st, 2nd electrodes 11 and 12 can be made low. That is, the amount of heat generated in the living tissue LT due to Joule heating significantly reduces that the first and second electrodes 11 and 12 serve as heat sinks and contribute unintentionally to the cooling of the living tissue LT. Therefore, even with a small amount of power, the tissue heating rate can be increased, the treatment time can be shortened, the thermal invasion to the side tissue can be further reduced, and the residual heat of the first and second jaws 8 and 9 can be reduced. Here, the residual heat means heat that is originally necessary for the treatment after the treatment and is unnecessary for the jaw. Furthermore, even when the gripping portion 7A is set to the closed state, the first and second electrodes 11 and 12 do not come into contact with each other and are short-circuited.
(実施の形態1の変形例1-2)
 図5Bは、本実施の形態1の変形例1-2に係る把持部7Bを示す図である。具体的に、図5Bは、図2に対応した断面図である。
 図5Bに示した本変形例1-2に係る把持部7Bのように、上述した変形例1-1に係る把持部7Aに対して、さらに第1,第2電極11,12を追加しても構わない。すなわち、第1,第2電極11,12を2組、設けても構わない。
 具体的に、2組の第1,第2電極11,12のうち、一方の組の第1,第2電極11,12の配設位置は、上述した変形例1と同様の位置に配置されている。また、他方の組の第1,第2電極11,12は、図5Bに示すように、第2把持面91において、一方の組の第1,第2電極11,12に対向する位置に、当該第2把持面91の全長に亘って当該第2把持面91の一部を構成するようにそれぞれ埋め込まれている。
(Modification 1-2 of Embodiment 1)
FIG. 5B is a diagram showing a gripping portion 7B according to Modification 1-2 of Embodiment 1. Specifically, FIG. 5B is a cross-sectional view corresponding to FIG.
Like the gripping part 7B according to Modification 1-2 shown in FIG. 5B, the first and second electrodes 11 and 12 are further added to the gripping part 7A according to Modification 1-1 described above. It doesn't matter. That is, two sets of the first and second electrodes 11 and 12 may be provided.
Specifically, of the two sets of first and second electrodes 11 and 12, the arrangement position of one set of the first and second electrodes 11 and 12 is arranged at the same position as in the first modification described above. ing. Further, as shown in FIG. 5B, the other set of the first and second electrodes 11 and 12 is located on the second gripping surface 91 at a position facing the first and second electrodes 11 and 12 of the one set. The second gripping surface 91 is embedded so as to constitute a part of the second gripping surface 91 over the entire length of the second gripping surface 91.
 以上説明した本変形例1-2によれば、電極数が2つ~4つまで自由に選択することができ、幅方向に並ぶ第1,第2電極11,12間、あるいは、異なるジョーに設けられた対角位置に位置する第1,第2電極11,12間で高周波電流を流すことができる。すなわち、高周波電力の印加シーケンスのバリエーション増加による処置の可能性の多様化、1つの電極当たりの電流量の低下による電極発熱の抑制、熱くなった電極を処置に使用しないことによる低熱侵襲化が可能となる。 According to the modified example 1-2 described above, the number of electrodes can be freely selected from 2 to 4, between the first and second electrodes 11 and 12 arranged in the width direction, or in different jaws. A high-frequency current can flow between the first and second electrodes 11 and 12 located at the provided diagonal positions. That is, diversification of the possibility of treatment by increasing variations in the application sequence of high-frequency power, suppression of electrode heat generation by reducing the amount of current per electrode, and low thermal invasion by not using heated electrodes for treatment It becomes.
(実施の形態1の変形例1-3)
 図5Cは、本実施の形態1の変形例1-3に係る把持部7Cを示す図である。具体的に、図5Cは、図2に対応した断面図である。
 図5Cに示した本変形例1-3に係る把持部7Cのように、上述した変形例1-1に係る把持部7Aに対して、フローティング電極13を追加しても構わない。
 フローティング電極13は、図5Cに示すように、第2把持面91において、第1領域Ar1に対向する位置に当該第2把持面91の全長に亘って当該第2把持面91の一部を構成するように埋め込まれている。このフローティング電極13は、例えば、銅、アルミニウム、金、カーボン等の良導体である。また、フローティング電極13は、第1,第2電極11,12とは異なり、リード線を介して制御装置3とは接続されておらず、かつ、接地もされておらず、電気的にフローティングである。
(Modification 1-3 of Embodiment 1)
FIG. 5C is a diagram showing a gripping portion 7C according to Modification 1-3 of Embodiment 1. Specifically, FIG. 5C is a cross-sectional view corresponding to FIG.
A floating electrode 13 may be added to the gripping portion 7A according to Modification 1-1 described above, like the gripping portion 7C according to Modification 1-3 shown in FIG. 5C.
As shown in FIG. 5C, the floating electrode 13 constitutes a part of the second gripping surface 91 over the entire length of the second gripping surface 91 at a position facing the first region Ar1 on the second gripping surface 91. Embedded to be. The floating electrode 13 is a good conductor such as copper, aluminum, gold, or carbon. In addition, unlike the first and second electrodes 11 and 12, the floating electrode 13 is not connected to the control device 3 via a lead wire, and is not grounded, and is electrically floating. is there.
 以上説明した本変形例1-3によれば、第1,第2電極11,12間に高周波電力を供給した場合には、フローティング電極13を中継して第1,第2電極11,12間に高周波電流を流すことができる。これにより、把持部7Cを閉状態に設定した場合に第1,第2電極11,12同士の接触を回避することができるだけでなく、幅方向のなるべく中央を発熱域とする狙いも達成することができるとともに、上述した変形例1-1の構成に比べて低抵抗化することができる。
 なお、フローティング電極13の幅方向の大きさは、第1領域Ar1に対向する位置に限定されない。例えば、最小で第2領域Ar2と同サイズまで狭くすることが考えられる。第1領域Ar1から第2領域Ar2の間で幅を変更することで、中央における発熱領域や到達温度をより精密に制御可能となり得る。
According to Modification 1-3 described above, when high-frequency power is supplied between the first and second electrodes 11 and 12, the floating electrode 13 is relayed between the first and second electrodes 11 and 12. A high-frequency current can be passed through. Thereby, when the holding part 7C is set in the closed state, not only can the contact between the first and second electrodes 11 and 12 be avoided, but also the aim of setting the heat generating region as central as possible in the width direction can be achieved. In addition, the resistance can be reduced as compared with the configuration of Modification 1-1 described above.
Note that the size of the floating electrode 13 in the width direction is not limited to the position facing the first region Ar1. For example, it is conceivable to reduce the size to the same size as the second region Ar2. By changing the width between the first region Ar1 and the second region Ar2, it is possible to more precisely control the heat generation region and the ultimate temperature at the center.
(実施の形態1の変形例1-4)
 図5Dは、本実施の形態1の変形例1-4に係る把持部7Dを示す図である。具体的に、図5Dは、図2に対応した断面図である。
 図5Dに示した本変形例1-4に係る把持部7Dのように、上述した変形例1-1に係る把持部7Aに対して、熱エネルギ付与部14を追加しても構わない。
 熱エネルギ付与部14は、図5Dに示すように、発熱体141と、伝熱部材142とを備える。
 発熱体141は、例えば、第1ジョー8の基端側(図1中、右側)から長手方向に沿って先端側(図2中、左側)に延在し、さらに屈曲して基端側に延在する略U字形状を有する電気抵抗パターンで構成されている。また、発熱体141の両端部には、シャフト6の一端側から他端側まで配設された電気ケーブルCを構成する一対の発熱用リード線(図示略)がそれぞれ接合されている。そして、発熱体141は、発熱用リード線を介して制御装置3により電圧が印加(通電)されることにより、発熱する。
(Modification 1-4 of Embodiment 1)
FIG. 5D is a diagram showing a gripping part 7D according to Modification 1-4 of Embodiment 1. Specifically, FIG. 5D is a cross-sectional view corresponding to FIG.
Like the gripping part 7D according to Modification 1-4 shown in FIG. 5D, the thermal energy application part 14 may be added to the gripping part 7A according to Modification 1-1 described above.
As shown in FIG. 5D, the thermal energy application unit 14 includes a heating element 141 and a heat transfer member 142.
The heating element 141 extends, for example, from the proximal end side (right side in FIG. 1) of the first jaw 8 to the distal end side (left side in FIG. 2) along the longitudinal direction, and further bends to the proximal end side. It is comprised by the electrical resistance pattern which has the substantially U shape extended. Further, a pair of heating lead wires (not shown) constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to both ends of the heating element 141. The heating element 141 generates heat when a voltage is applied (energized) by the control device 3 through the heating lead wire.
 以上説明した発熱体141は、導電性材料であるステンレス(SUS304)を加工したものであり、伝熱部材142の図5D中、上方側の面における幅方向の中央部分に熱圧着により貼り合わせられている。
 なお、発熱体141の材料としては、ステンレス(SUS304)に限らず、他のステンレス材料(例えば400番系)でもよいし、プラチナや、タングステン等の導電性材料を採用しても構わない。また、発熱体141としては、伝熱部材142における図5D中、上方側の面に熱圧着により貼り合わせた構成に限らず、当該上方側の面に蒸着やスパッタリング等により形成した構成を採用しても構わない。
The heating element 141 described above is obtained by processing stainless steel (SUS304), which is a conductive material, and is bonded to the center portion in the width direction on the upper surface in FIG. 5D of the heat transfer member 142 by thermocompression bonding. ing.
The material of the heating element 141 is not limited to stainless steel (SUS304), but may be other stainless steel materials (for example, No. 400 series), or may be a conductive material such as platinum or tungsten. In addition, the heating element 141 is not limited to the configuration in which the heat transfer member 142 is bonded to the upper surface by thermocompression bonding in FIG. 5D, but the configuration formed on the upper surface by vapor deposition or sputtering is adopted. It doesn't matter.
 伝熱部材142は、高い耐熱性を有し、かつ熱伝導率が高く、さらに、優れた電気絶縁性を有する材料、例えば、PTFE、PFA、PEEK、PBI等の樹脂にセラミック等が熱伝導性フィラーとして含まれた複合材料や、窒化アルミニウム等のセラミック、銅・アルミニウム・カーボン等の導電性物質にPTFE等の絶縁性のコーティングがなされた材料等で構成されている。また、伝熱部材142は、第1把持面81における第1領域Ar1と同一の幅寸法を有し、当該第1把持面81の全長に亘って延びる略直方体状の板体で構成されている。そして、伝熱部材142は、図5D中、下方側の面が第1領域Ar1を構成するように(当該下方側の面が露出した状態で)当該第1把持面81に埋め込まれている。
 以上説明した伝熱部材142は、発熱体141からの熱を生体組織LTに伝達する(生体組織LTに熱エネルギを付与する)。すなわち、把持部7Dにおいて、第1,第2電極11,12及び熱エネルギ付与部14は、本発明に係るエネルギ発生部に相当する。
The heat transfer member 142 has high heat resistance, high thermal conductivity, and excellent electrical insulation, for example, ceramic such as PTFE, PFA, PEEK, PBI, etc. It is composed of a composite material contained as a filler, a material such as a ceramic such as aluminum nitride, or a material obtained by coating a conductive substance such as copper, aluminum, or carbon with an insulating coating such as PTFE. Further, the heat transfer member 142 has a width dimension identical to that of the first region Ar <b> 1 in the first gripping surface 81, and is configured by a substantially rectangular parallelepiped plate extending over the entire length of the first gripping surface 81. . 5D, the heat transfer member 142 is embedded in the first gripping surface 81 so that the lower surface constitutes the first region Ar1 (with the lower surface exposed).
The heat transfer member 142 described above transfers the heat from the heating element 141 to the living tissue LT (gives heat energy to the living tissue LT). That is, in the gripping part 7D, the first and second electrodes 11, 12 and the thermal energy applying part 14 correspond to the energy generating part according to the present invention.
 以上説明した本変形例1-4によれば、第1,第2電極11,12と熱エネルギ付与部14との組み合わせにより、幅方向のより中央を選択的に発熱させることができる。また、高周波電流のみで生体組織LTを処置する場合と比べて、より高速に処置を進行させることができる。さらに、第2ジョー9には何も配置しないため、小型化することも可能となる。 According to Modification 1-4 described above, the center of the width direction can be selectively heated by the combination of the first and second electrodes 11 and 12 and the thermal energy application unit 14. Further, the treatment can be advanced at a higher speed than in the case where the living tissue LT is treated only with the high-frequency current. Further, since nothing is arranged on the second jaw 9, it is possible to reduce the size.
(実施の形態1の変形例1-5)
 図5Eは、本実施の形態1の変形例1-5に係る把持部7Eを示す図である。具体的に、図5Eは、図2に対応した断面図である。
 図5Eに示した本変形例1-5に係る把持部7Eのように、上述した変形例1-4に係る把持部7Dに対して、第1,第2電極11,12を省略するとともに、熱エネルギ付与部14の代わりに超音波エネルギ付与部15を採用しても構わない。
 超音波エネルギ付与部15は、図5Eに示すように、第1把持面81における第1領域Ar1と同一の幅寸法を有し、第1把持面81の全長に亘って延びる全体略直方体状に形成されている。そして、超音波エネルギ付与部15は、図5E中、下方側の面が第1領域Ar1を構成するように(当該下方側の面が露出した状態で)当該第1把持面81に埋め込まれている。この超音波エネルギ付与部15は、平板状の圧電体151の表裏面にそれぞれ絶縁板152A,152Bが接合された構成を有する。ここで、圧電体151には、シャフト6の一端側から他端側まで配設された電気ケーブルCを構成する一対の超音波用リード線(図示略)がそれぞれ接合されている。そして、圧電体151は、発熱用リード線を介して制御装置3により電圧が印加されることにより、厚み方向(図5E中、上下方向)を振動方向とする超音波振動を発生する(生体組織LTに超音波エネルギを付与する)。すなわち、把持部5Eにおいて、超音波エネルギ付与部15は、本発明に係るエネルギ発生部に相当する。
(Modification 1-5 of Embodiment 1)
FIG. 5E is a diagram showing a gripping portion 7E according to Modification 1-5 of Embodiment 1. Specifically, FIG. 5E is a cross-sectional view corresponding to FIG.
Like the gripping part 7E according to Modification Example 1-5 shown in FIG. 5E, the first and second electrodes 11 and 12 are omitted from the gripping part 7D according to Modification Example 1-4 described above. An ultrasonic energy application unit 15 may be employed instead of the thermal energy application unit 14.
As shown in FIG. 5E, the ultrasonic energy application unit 15 has the same width dimension as the first region Ar <b> 1 in the first gripping surface 81, and has an overall substantially rectangular parallelepiped shape that extends over the entire length of the first gripping surface 81. Is formed. And the ultrasonic energy provision part 15 is embedded in the said 1st holding surface 81 so that the surface of the lower side may comprise 1st area | region Ar1 in FIG. 5E (the state where the said lower surface is exposed). Yes. The ultrasonic energy applying unit 15 has a configuration in which insulating plates 152A and 152B are bonded to the front and back surfaces of a flat piezoelectric member 151, respectively. Here, a pair of ultrasonic lead wires (not shown) constituting the electric cable C disposed from one end side to the other end side of the shaft 6 are joined to the piezoelectric body 151. The piezoelectric body 151 generates ultrasonic vibration whose vibration direction is the thickness direction (vertical direction in FIG. 5E) when a voltage is applied by the control device 3 via the heating lead wire (biological tissue). Apply ultrasonic energy to LT). That is, in the grip part 5E, the ultrasonic energy application part 15 corresponds to an energy generation part according to the present invention.
 以上説明した本変形例1-5によれば、直進性の高い超音波振動が生体組織LTに加わることにより、幅方向の中央を選択的に加熱することが可能となる。 According to the modified example 1-5 described above, it is possible to selectively heat the center in the width direction by applying ultrasonic vibration with high straightness to the living tissue LT.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 本実施の形態2の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図6は、本実施の形態2に係る把持部7Fを示す図である。具体的に、図6は、図2に対応した断面図である。
 本実施の形態2に係る把持部7F(第1ジョー8F)では、図6に示すように、上述した実施の形態1で説明した把持部7(第1ジョー8)に対して、第1把持面81の代わりに、第1領域Ar1を第2把持面91側に凸で所定の曲率半径を有する曲面で構成した第1把持面81Fを採用している。
 ここで、第1領域Ar1の曲面としては、例えば、第1離間距離D1の半分の曲率半径を有する曲面とすることが好ましい。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
In the description of the second embodiment, the same reference numerals are given to the same components as those in the first embodiment, and the detailed description thereof is omitted or simplified.
FIG. 6 is a diagram showing a gripping portion 7F according to the second embodiment. Specifically, FIG. 6 is a cross-sectional view corresponding to FIG.
In the gripping portion 7F (first jaw 8F) according to the second embodiment, as shown in FIG. 6, the first gripping is performed with respect to the gripping portion 7 (first jaw 8) described in the first embodiment. Instead of the surface 81, a first gripping surface 81F is used in which the first region Ar1 is formed of a curved surface that protrudes toward the second gripping surface 91 and has a predetermined radius of curvature.
Here, as the curved surface of the first region Ar1, for example, a curved surface having a radius of curvature that is half of the first separation distance D1 is preferable.
 以上説明した本実施の形態2によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態2に係る把持部7Fでは、第1把持面81Fの第1領域Ar1は、所定の曲率半径を有する曲面で構成されている。
 このため、第1領域Ar1を平面で構成した場合と比べて、切開幅をさらに狭くすることができる。また、第1領域Ar1の曲面を第1離間距離D1の半分の曲率半径を有する曲面とすれば、他の曲率半径を有する曲面とした場合と比べて、切開幅を最も狭くすることができる。
According to the second embodiment described above, the following effects are obtained in addition to the same effects as those of the first embodiment.
In the grip portion 7F according to the second embodiment, the first region Ar1 of the first grip surface 81F is configured by a curved surface having a predetermined radius of curvature.
For this reason, compared with the case where 1st area | region Ar1 is comprised with a plane, incision width | variety can be made still narrower. Further, if the curved surface of the first region Ar1 is a curved surface having a radius of curvature that is half of the first separation distance D1, the incision width can be made the smallest compared to a curved surface having another radius of curvature.
(実施の形態2の変形例2-1)
 図7は、本実施の形態2の変形例2-1に係る把持部7Gを示す図である。具体的に、図7は、図3に対応した断面図である。
 図7に示した本変形例2-1に係る把持部7Gのように、上述した実施の形態2とは逆に、第1領域Ar1ではなく、第2領域Ar2を第1把持面81側に凸で所定の曲率半径を有する曲面で構成した第2把持面91G(第2ジョー9G)を採用しても構わない。
 ここで、第2領域Ar2の曲面としては、例えば、第2離間距離D2の半分の曲率半径を有する曲面とすることが好ましい。第1離間距離D1よりも小さい第2離間距離D2となる第2領域Ar2の曲面を当該曲率半径とすることで、切開幅をさらに狭くすることができる。
(Modification 2-1 of Embodiment 2)
FIG. 7 is a diagram showing a gripping portion 7G according to Modification 2-1 of the second embodiment. Specifically, FIG. 7 is a cross-sectional view corresponding to FIG.
As in the gripping part 7G according to the modification 2-1 shown in FIG. 7, the second region Ar2 is not the first region Ar1 but the first gripping surface 81 side instead of the second embodiment described above. You may employ | adopt the 2nd holding surface 91G (2nd jaw 9G) comprised with the curved surface which has a convex and a predetermined curvature radius.
Here, for example, the curved surface of the second region Ar2 is preferably a curved surface having a radius of curvature that is half the second separation distance D2. By setting the curved surface of the second region Ar2 having the second separation distance D2 smaller than the first separation distance D1 as the radius of curvature, the incision width can be further reduced.
(実施の形態2の変形例2-2)
 図8は、本実施の形態2の変形例2-2に係る把持部7Hを示す図である。具体的に、図8は、図3に対応した断面図である。
 図8に示した本変形例2-2に係る把持部7Hのように、第1領域Ar1を第2把持面91H側に凸で所定の曲率半径を有する曲面で構成した第1把持面81H(第1ジョー8H)を採用するとともに、第2領域Ar2を第1把持面81H側に凸で所定の曲率半径を有する曲面で構成した第2把持面91H(第2ジョー9H)を採用しても構わない。
 ここで、第1変曲点IP1と第1領域Ar1の頂点との中心線Ax1に沿う距離を距離g1(図8)とする。また、第2領域Ar2の頂点から幅方向に第1離間距離D1の半分だけ離れた位置と当該頂点との中心線Ax2に沿う距離を距離g2(図8)とする。この場合に、距離g1と距離g2との差は、2倍程度に抑えておくことが好ましく、距離g1と距離g2とが同一となる第1,第2離間距離D1,D2、第1領域Ar1の曲率半径R1(図8)、及び第2領域Ar2の曲率半径R2(図8)を選ぶことが最も好ましい。
(Modification 2-2 of Embodiment 2)
FIG. 8 is a diagram showing a gripping portion 7H according to Modification 2-2 of Embodiment 2. Specifically, FIG. 8 is a cross-sectional view corresponding to FIG.
As in the gripping portion 7H according to the modification 2-2 shown in FIG. 8, the first gripping surface 81H (first region Ar1 is formed of a curved surface having a predetermined radius of curvature that is convex toward the second gripping surface 91H side. The first jaw 8H) and the second gripping surface 91H (second jaw 9H) configured with a curved surface having a predetermined curvature radius and projecting the second region Ar2 toward the first gripping surface 81H may be employed. I do not care.
Here, a distance along the center line Ax1 between the first inflection point IP1 and the apex of the first region Ar1 is defined as a distance g1 (FIG. 8). Further, a distance along the center line Ax2 between a position separated from the apex of the second region Ar2 by a half of the first separation distance D1 in the width direction and the apex is defined as a distance g2 (FIG. 8). In this case, the difference between the distance g1 and the distance g2 is preferably suppressed to about twice, and the first and second separation distances D1, D2 and the first region Ar1 where the distance g1 and the distance g2 are the same. It is most preferable to select the curvature radius R1 (FIG. 8) and the curvature radius R2 (FIG. 8) of the second region Ar2.
 なお、距離g1,g2は、以下の式1,2で与えられる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、式(1)において、θ1は、第1領域Ar1の曲率中心及び第1変曲点IP1を結ぶ線分と当該曲率中心及び第1領域Ar1の頂点を結ぶ線分とのなす角度を意味する。また、式(2)において、θ3は、第2領域Ar2の曲率中心及び第2変曲点IP2を結ぶ線分と当該曲率中心及び第2領域Ar2の頂点を結ぶ線分とのなす角度を意味する。θ2は、2つの第2変曲点IP2の幅方向外側の領域を延長した線分同士のなす角度を意味する。
The distances g1 and g2 are given by the following formulas 1 and 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In Equation (1), θ1 means an angle formed by a line segment connecting the center of curvature of the first region Ar1 and the first inflection point IP1 and a line segment connecting the center of curvature and the vertex of the first region Ar1. To do. In Expression (2), θ3 means an angle formed by a line segment connecting the center of curvature of the second region Ar2 and the second inflection point IP2 and a line segment connecting the center of curvature and the vertex of the second region Ar2. To do. θ2 means an angle formed by line segments obtained by extending regions outside the width direction of the two second inflection points IP2.
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 本実施の形態3の説明では、上述した実施の形態1と同様の構成には同一符号を付し、その詳細な説明は省略または簡略化する。
 図9は、本実施の形態3に係る把持部7Iを示す図である。具体的に、図9は、図2に対応した断面図である。
 本実施の形態3に係る把持部7I(第1ジョー8I)では、図9に示すように、上述した実施の形態1で説明した把持部7に対して、第1把持面81の代わりに第1把持面81Iを採用している。
 第1把持面81Iには、図9に示すように、第1領域Ar1を挟む両側にそれぞれ位置し、幅方向の外側に向かうにしたがって第2把持面91側に近接し、当該第2把持面91との第3離間距離D3を維持する封止領域Ar3がそれぞれ設けられている。なお、第1把持面81Iにおいて、一対の封止領域Ar3以外の領域は、上述した実施の形態1で説明した第1把持面81と同一の形状を有する。そして、第1把持面81Iは、中心線Ax1を基準として対称となる形状を有する。
(Embodiment 3)
Next, a third embodiment of the present invention will be described.
In the description of the third embodiment, the same reference numerals are given to the same components as those in the first embodiment described above, and the detailed description thereof will be omitted or simplified.
FIG. 9 is a diagram showing a gripping portion 7I according to the third embodiment. Specifically, FIG. 9 is a cross-sectional view corresponding to FIG.
In the gripping portion 7I (first jaw 8I) according to the third embodiment, as shown in FIG. 9, the gripping portion 7 described in the first embodiment described above is the first gripping surface 81 instead of the first gripping surface 81. One gripping surface 81I is employed.
As shown in FIG. 9, the first gripping surface 81I is located on both sides of the first region Ar1, and is closer to the second gripping surface 91 side toward the outer side in the width direction. Sealing regions Ar <b> 3 that maintain a third separation distance D <b> 3 from 91 are provided. In the first gripping surface 81I, the region other than the pair of sealing regions Ar3 has the same shape as the first gripping surface 81 described in the first embodiment. The first gripping surface 81I has a shape that is symmetric with respect to the center line Ax1.
 以上説明した本実施の形態3によれば、上述した実施の形態1と同様の効果の他、以下の効果を奏する。
 本実施の形態3に係る把持部7Iでは、第1把持面81Iには、第1領域Ar1を挟む両側にそれぞれ位置し、幅方向の外側に向かうにしたがって第2把持面91との第3離間距離D3を維持する封止領域Ar3がそれぞれ設けられている。
 このため、被封止組織LT2に対して十分に圧力を加えることができ、生体組織LTをさらに安定に封止することができる。
According to the third embodiment described above, the following effects are obtained in addition to the same effects as those of the first embodiment.
In the gripping portion 7I according to the third embodiment, the first gripping surface 81I is located on both sides of the first region Ar1, and is separated from the second gripping surface 91 toward the outer side in the width direction. Sealing regions Ar3 that maintain the distance D3 are provided.
For this reason, a sufficient pressure can be applied to the sealed tissue LT2, and the living tissue LT can be sealed more stably.
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態1~3(変形例1-1~1-3,2-1,2-2も含む)によってのみ限定されるべきものではない。
 図10は、本実施の形態1~3の変形例3-1に係る把持部7Jを示す図である。具体的に、図10は、図2に対応した断面図である。
 上述した実施の形態1~3で説明した把持部7(7A~7I)の代わりに、図10に示した本変形例3-1に係る把持部7Jを採用しても構わない。
 把持部7Jを構成する第1ジョー8Jの図10中、下方側の面において、幅方向の中央部分には、当該下方に向けて膨出する膨出部82が当該第1ジョー8Jの全長に亘って設けられている。すなわち、本変形例3-1に係る第1把持面81Jは、段付き形状を有する。そして、膨出部82における幅方向の両端縁は、それぞれ第1変曲点IP1となる。また、第1把持面81Jにおいて、2つの第1変曲点IP1間の第1領域Ar1(膨出部82の先端面(図10中、下方側の面))は、把持部7Jを構成する第2ジョー9Jに向けて凸で所定の曲率半径を有する曲面で構成されている。さらに、第1把持面81Jにおいて、第1領域Ar1を挟む両側の領域は、中心線Ax1に直交する平面でそれぞれ構成されている。
 ここで、第1領域Ar1には、第1,第2電極11,12が第1把持面81Jの一部を構成するようにそれぞれ埋め込まれている。具体的に、第1,第2電極11,12は、中心線Ax1を挟む両側において、当該中心線Ax1を基準として対称となる位置に配置されている。
(Other embodiments)
The embodiments for carrying out the present invention have been described so far. However, the present invention is not limited to the above-described first to third embodiments (including modified examples 1-1 to 1-3, 2-1, and 2-2). It should not be limited only.
FIG. 10 is a diagram showing a gripping portion 7J according to Modification 3-1 of Embodiments 1 to 3. Specifically, FIG. 10 is a cross-sectional view corresponding to FIG.
Instead of the grip portion 7 (7A to 7I) described in the first to third embodiments, the grip portion 7J according to the modification 3-1 shown in FIG. 10 may be employed.
In FIG. 10 of the first jaw 8J that constitutes the gripping portion 7J, a bulging portion 82 that bulges downward in the center portion in the width direction is formed on the entire length of the first jaw 8J. It is provided over. That is, the first gripping surface 81J according to Modification 3-1 has a stepped shape. And the both ends edge of the width direction in the bulging part 82 becomes 1st inflection point IP1, respectively. Further, in the first gripping surface 81J, the first region Ar1 between the two first inflection points IP1 (the tip surface of the bulging portion 82 (the lower surface in FIG. 10)) constitutes the gripping portion 7J. It is formed of a curved surface that is convex toward the second jaw 9J and has a predetermined radius of curvature. Furthermore, in the first gripping surface 81J, the regions on both sides sandwiching the first region Ar1 are respectively configured by planes orthogonal to the center line Ax1.
Here, the first region Ar1 is embedded with the first and second electrodes 11 and 12 so as to constitute a part of the first gripping surface 81J. Specifically, the first and second electrodes 11 and 12 are arranged at symmetrical positions on both sides of the center line Ax1 with respect to the center line Ax1.
 把持部7Jを構成する第2ジョー9Jにおいて、第2把持面91Jは、第1領域Ar1に対向する部分が上述した実施の形態1で説明した第2把持面91と同一の形状を有する。また、第2把持面91Jの幅方向の両側の領域は、中心線Ax2に直交する平面でそれぞれ構成されている。
 ここで、第2把持面91Jにおいて、第1領域Ar1に対向する位置には、上述した変形例1-4で説明した熱エネルギ付与部14が当該第2把持面91Jの一部を構成するように埋め込まれている。
In the second jaw 9J constituting the gripping part 7J, the second gripping surface 91J has the same shape as the second gripping surface 91 described in the first embodiment described above in the portion facing the first region Ar1. Moreover, the area | region of the both sides of the width direction of the 2nd holding surface 91J is each comprised by the plane orthogonal to centerline Ax2.
Here, at the position facing the first region Ar1 on the second gripping surface 91J, the thermal energy application unit 14 described in Modification 1-4 described above constitutes a part of the second gripping surface 91J. Embedded in.
 図11は、本実施の形態1~3の変形例3-2に係る把持部7Kを示す図である。具体的に、図11は、図2に対応した断面図である。
 上述した実施の形態1~3で説明した把持部7(7A~7I)の代わりに、図11に示した本変形例3-2に係る把持部7Kを採用しても構わない。
 把持部7Kを構成する第1ジョー8Kの図11中、下方側の面において、幅方向の中央部分には、当該下方に向けて膨出する膨出部82が当該第1ジョー8Kの全長に亘って設けられている。すなわち、本変形例3-2に係る第1把持面81Kは、段付き形状を有する。また、第1把持面81Kにおいて、膨出部82の先端面(図11中、下方側の面)は、上述した実施の形態3で説明した第1把持面81Iと略同一の形状を有する。さらに、第1把持面81Kにおいて、膨出部82を挟む両側の領域は、中心線Ax1に直交する平面でそれぞれ構成されている。
 ここで、膨出部82の先端面には、第1,第2電極11,12が第1把持面81Kの一部を構成するようにそれぞれ埋め込まれている。具体的に、第1,第2電極11,12は、中心線Ax1を挟む両側(2つの第1変曲点IP1の幅方向の外側)において、当該中心線Ax1を基準として対称となる位置に配置されている。第1,第2電極11,12が配置される2つの第1変曲点IP1の幅方向外側の領域は、上述した実施の形態3と同様に、幅方向の外側に向かうにしたがって第2把持面91との離間距離を維持する領域となっている。
 また、第2把持面91において、膨出部82に対向する位置には、上述した変形例1-4で説明した熱エネルギ付与部14が当該第2把持面91の一部を構成するように埋め込まれている。
FIG. 11 is a diagram showing a gripping portion 7K according to the modified example 3-2 of the first to third embodiments. Specifically, FIG. 11 is a cross-sectional view corresponding to FIG.
Instead of the gripping portion 7 (7A to 7I) described in the first to third embodiments, the gripping portion 7K according to the modification 3-2 shown in FIG. 11 may be employed.
In FIG. 11 of the first jaw 8K that constitutes the gripping portion 7K, a bulging portion 82 that bulges downward in the central portion in the width direction is formed on the entire length of the first jaw 8K. It is provided over. That is, the first gripping surface 81K according to the modification 3-2 has a stepped shape. Further, in the first gripping surface 81K, the distal end surface (the lower surface in FIG. 11) of the bulging portion 82 has substantially the same shape as the first gripping surface 81I described in the third embodiment. Furthermore, in the first gripping surface 81K, the regions on both sides sandwiching the bulging portion 82 are respectively configured by planes orthogonal to the center line Ax1.
Here, the first and second electrodes 11 and 12 are embedded in the distal end surface of the bulging portion 82 so as to constitute a part of the first gripping surface 81K. Specifically, the first and second electrodes 11 and 12 are symmetric with respect to the center line Ax1 on both sides of the center line Ax1 (outside in the width direction of the two first inflection points IP1). Has been placed. The region on the outer side in the width direction of the two first inflection points IP1 where the first and second electrodes 11 and 12 are disposed is the second grip toward the outer side in the width direction as in the third embodiment. This is a region for maintaining a separation distance from the surface 91.
Further, at the position facing the bulging portion 82 on the second gripping surface 91, the thermal energy application unit 14 described in Modification 1-4 described above constitutes a part of the second gripping surface 91. Embedded.
 上述した実施の形態1~3では、第1ジョー8(8F,8H,8I)を第2ジョー9(9G,9H)に対して上方側に配設した構成としていたが、これに限らない。例えば、第1ジョー8(8F,8H,8I)を第2ジョー9(9G,9H)に対して下方側に配設した構成としても構わない。また、シャフト6の中心軸を中心としてハンドル5に対して当該シャフト6(把持部7(7A~7I))を回転可能に構成しても構わない。
 上述した実施の形態1~3では、把持部7(7A~7I)は、生体組織LTに対して高周波エネルギ、熱エネルギ、及び超音波エネルギの少なくともいずれかを付与する構成としていたが、これに限らない。例えば、電磁誘導による発熱を利用した構成、超音波振動による摩擦熱を利用した構成、レーザ等による発熱を利用した構成、及びこれらの構成を組み合わせた構成を採用しても構わない。
 また、上述した実施の形態1~3に限らず、第1,第2電極11,12の配置は、適宜変更可能である。例えば、第1ジョー8において第1領域Ar1を挟む両側に第1電極11を配置し、第2ジョー9において第1領域Ar1に対向する位置に第2電極12を配置する等、第1電極11と第2電極12とが異なる数でも構わない。
In the first to third embodiments described above, the first jaw 8 (8F, 8H, 8I) is disposed above the second jaw 9 (9G, 9H). However, the present invention is not limited to this. For example, the first jaw 8 (8F, 8H, 8I) may be arranged on the lower side with respect to the second jaw 9 (9G, 9H). Further, the shaft 6 (the gripping portions 7 (7A to 7I)) may be configured to be rotatable with respect to the handle 5 around the central axis of the shaft 6.
In the first to third embodiments described above, the gripping portion 7 (7A to 7I) is configured to apply at least one of high-frequency energy, thermal energy, and ultrasonic energy to the living tissue LT. Not exclusively. For example, a configuration using heat generated by electromagnetic induction, a configuration using frictional heat due to ultrasonic vibration, a configuration using heat generated by a laser or the like, and a configuration combining these configurations may be adopted.
Further, the arrangement of the first and second electrodes 11 and 12 is not limited to the first to third embodiments described above, and can be changed as appropriate. For example, the first electrode 11 is disposed on both sides of the first jaw 8 across the first region Ar1, and the second electrode 12 is disposed on the second jaw 9 at a position facing the first region Ar1. The number of the second electrodes 12 may be different.
 1 処置システム
 2 処置具
 3 制御装置
 4 フットスイッチ
 5 ハンドル
 6 シャフト
 7,7A~7K 把持部
 8,8F,8H~8K 第1ジョー
 9,9G,9H,9J 第2ジョー
 11,12 第1,第2電極
 13 フローティング電極
 14 熱エネルギ付与部
 15 超音波エネルギ付与部
 51 操作ノブ
 81,81F,81H~81K 第1把持面
 82 膨出部
 91,91G,91H,91J 第2把持面
 141 発熱体
 142 伝熱部材
 151 圧電体
 152A,152B 絶縁板
 Ar1,Ar2 第1,第2領域
 Ar3 封止領域
 Ax1,Ax2 中心線
 C 電気ケーブル
 D1~D3 第1~第3離間距離
 g1,g2 距離
 IP1,IP2 第1,第2変曲点
 LT 生体組織
 LT1 被切開組織
 LT2 被封止組織
 R1,R2 曲率半径
 Y1 矢印
 δ ずれ
 θ1~θ3 角度
DESCRIPTION OF SYMBOLS 1 Treatment system 2 Treatment tool 3 Control apparatus 4 Foot switch 5 Handle 6 Shaft 7,7A- 7K Grip part 8,8F, 8H- 8K 1st jaw 9,9G, 9H, 9J 2nd jaw 11,12 1st, 1st 2 electrodes 13 floating electrode 14 thermal energy application unit 15 ultrasonic energy application unit 51 operation knob 81, 81F, 81H to 81K first gripping surface 82 bulging portion 91, 91G, 91H, 91J second gripping surface 141 heating element 142 transmission Thermal member 151 Piezoelectric body 152A, 152B Insulating plate Ar1, Ar2 First, second region Ar3 Sealing region Ax1, Ax2 Center line C Electric cable D1-D3 First to third separation distance g1, g2 Distance IP1, IP2 First , Second inflection point LT biological tissue LT1 tissue to be cut LT2 sealed tissue R1, R2 radius of curvature Y1 arrow δ deviation θ1-θ3 angle

Claims (7)

  1.  第1把持面を有する第1ジョーと、当該第1把持面との間で生体組織を把持する第2把持面を有する第2ジョーとを含んで構成される把持部と、
     前記第1ジョー及び前記第2ジョーの少なくとも一方に設けられ、前記第1把持面及び前記第2把持面の少なくとも一方から前記生体組織に付与するエネルギを発生するエネルギ発生部とを備え、
     前記第1把持面は、
     前記第1ジョー及び前記第2ジョーを閉じた状態で前記把持部の長手方向に直交する断面において、当該把持部の幅方向に並列する2つの第1変曲点を有し、当該2つの第1変曲点間の第1領域が前記第2把持面側に突出した凸状に形成され、
     前記第2把持面は、
     前記断面において、前記幅方向に並列する2つの第2変曲点を有し、当該2つの第2変曲点間の第2領域が前記第1領域に対向するとともに前記第1把持面側に突出した凸状に形成され、
     前記2つの第1変曲点間の前記幅方向に沿う第1離間距離は、
     前記2つの第2変曲点間の前記幅方向に沿う第2離間距離と異なる処置具。
    A grasping portion configured to include a first jaw having a first grasping surface and a second jaw having a second grasping surface for grasping a living tissue between the first grasping surface;
    An energy generating unit that is provided on at least one of the first jaw and the second jaw and generates energy to be applied to the living tissue from at least one of the first gripping surface and the second gripping surface;
    The first gripping surface is
    In a cross section perpendicular to the longitudinal direction of the gripping portion with the first jaw and the second jaw closed, the first jaw and the second jaw have two first inflection points juxtaposed in the width direction of the gripping portion. A first region between one inflection point is formed in a convex shape protruding toward the second gripping surface;
    The second gripping surface is
    The cross section has two second inflection points arranged in parallel in the width direction, and a second region between the two second inflection points faces the first region and is on the first gripping surface side. Formed in a protruding convex shape,
    The first separation distance along the width direction between the two first inflection points is:
    A treatment tool different from a second separation distance along the width direction between the two second inflection points.
  2.  前記第1把持面及び前記第2把持面には、
     前記断面において、前記第1領域及び前記第2領域を挟む両側にそれぞれ位置し、前記幅方向の外側に向かうにしたがって当該第1把持面及び当該第2把持面間の離間距離を同一に維持する封止領域がそれぞれ設けられている
     請求項1に記載の処置具。
    In the first gripping surface and the second gripping surface,
    In the cross section, they are located on both sides of the first region and the second region, respectively, and the distance between the first gripping surface and the second gripping surface is kept the same as going outward in the width direction. The treatment tool according to claim 1, wherein each of the sealing regions is provided.
  3.  前記第1領域及び前記第2領域の少なくとも一方は、
     前記断面において、所定の曲率半径を有する曲面で構成されている
     請求項1または2に記載の処置具。
    At least one of the first region and the second region is
    The treatment tool according to claim 1, wherein the treatment section is configured by a curved surface having a predetermined radius of curvature.
  4.  前記第1離間距離は、
     前記第2離間距離よりも大きく、
     前記第1領域は、
     前記第1離間距離の半分の曲率半径を有する曲面で構成されている
     請求項3に記載の処置具。
    The first separation distance is
    Greater than the second separation distance;
    The first region is
    The treatment tool according to claim 3, comprising a curved surface having a radius of curvature that is half of the first separation distance.
  5.  前記第1領域及び前記第2領域の少なくとも一方は、
     前記断面において、前記幅方向に平行な平面で構成されている
     請求項1または2に記載の処置具。
    At least one of the first region and the second region is
    The treatment tool according to claim 1, wherein the cross section is configured by a plane parallel to the width direction.
  6.  前記エネルギ発生部は、
     第1電極と、当該第1電極との間に高周波電力が供給される第2電極とを備え、
     前記第1電極及び前記第2電極は、
     前記第1把持面及び前記第2把持面の少なくとも一方に配設されているとともに、前記断面において、前記第1領域及び前記第2領域における幅方向の中心位置を通り当該幅方向に直交する中心線を挟む両側に位置する
     請求項1~5のいずれか一つに記載の処置具。
    The energy generator is
    A first electrode and a second electrode to which high-frequency power is supplied between the first electrode and the first electrode;
    The first electrode and the second electrode are:
    A center that is disposed on at least one of the first gripping surface and the second gripping surface and passes through a center position in the width direction in the first region and the second region in the cross section and is perpendicular to the width direction. The treatment instrument according to any one of claims 1 to 5, which is located on both sides of the line.
  7.  前記第1離間距離は、
     前記第2離間距離よりも大きく、
     前記第1電極及び前記第2電極は、
     前記断面において、前記2つの第1変曲点よりも前記幅方向の外側にそれぞれ位置する
     請求項6に記載の処置具。
    The first separation distance is
    Greater than the second separation distance;
    The first electrode and the second electrode are:
    The treatment tool according to claim 6, wherein the cross-section is located outside the two first inflection points in the width direction.
PCT/JP2017/020210 2017-05-31 2017-05-31 Treatment tool WO2018220736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020210 WO2018220736A1 (en) 2017-05-31 2017-05-31 Treatment tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/020210 WO2018220736A1 (en) 2017-05-31 2017-05-31 Treatment tool

Publications (1)

Publication Number Publication Date
WO2018220736A1 true WO2018220736A1 (en) 2018-12-06

Family

ID=64456434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020210 WO2018220736A1 (en) 2017-05-31 2017-05-31 Treatment tool

Country Status (1)

Country Link
WO (1) WO2018220736A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512619A (en) * 2001-11-08 2005-05-12 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic clamp coagulator with improved clamping end effector
WO2007097330A1 (en) * 2006-02-22 2007-08-30 Olympus Medical Systems Corp. Coagulation incision apparatus
JP2008534069A (en) * 2005-03-25 2008-08-28 オリジン・メッドシステムズ・インコーポレイテッド Device for adjusting the jaws of tissue welders
JP2008212663A (en) * 2007-02-14 2008-09-18 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
WO2015022919A1 (en) * 2013-08-16 2015-02-19 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
WO2016080147A1 (en) * 2014-11-18 2016-05-26 オリンパス株式会社 Treatment tool and treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512619A (en) * 2001-11-08 2005-05-12 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic clamp coagulator with improved clamping end effector
JP2008534069A (en) * 2005-03-25 2008-08-28 オリジン・メッドシステムズ・インコーポレイテッド Device for adjusting the jaws of tissue welders
WO2007097330A1 (en) * 2006-02-22 2007-08-30 Olympus Medical Systems Corp. Coagulation incision apparatus
JP2008212663A (en) * 2007-02-14 2008-09-18 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
WO2015022919A1 (en) * 2013-08-16 2015-02-19 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
WO2016080147A1 (en) * 2014-11-18 2016-05-26 オリンパス株式会社 Treatment tool and treatment system

Similar Documents

Publication Publication Date Title
CN109788978B (en) Treatment tool
US10123835B2 (en) Electrosurgical devices including transverse electrode configurations and methods relating to the same
US9833280B2 (en) Grasping treatment device
US20160324566A1 (en) Treatment apparatus
RU2701768C2 (en) Tissue scissors for biological tissue
US20150282867A1 (en) Electrosurgical devices including transverse electrode configurations
US11311331B2 (en) Thermal treatment system
US20210128226A1 (en) Treatment instrument and treatment system
WO2018220736A1 (en) Treatment tool
WO2018055778A1 (en) Treatment instrument and treatment system
JP6833849B2 (en) Treatment tool
US11504180B2 (en) Medical device
WO2017195334A1 (en) Energy treatment tool
WO2018092278A1 (en) Energy treatment tool
WO2019215908A1 (en) Method for manufacturing medical heater, medical heater, treatment tool, and treatment system
JP6062130B1 (en) Treatment tool
WO2018198339A1 (en) Energy treatment tool and treatment system
WO2019215852A1 (en) Treatment tool
US20180055555A1 (en) Therapeutic energy applying structure and medical treatment device
WO2018198209A1 (en) Treatment tool
WO2019092822A1 (en) Treatment tool
JP7044895B2 (en) Medical heaters, treatment tools, and methods for manufacturing treatment tools
WO2020183681A1 (en) Medical heater, and treatment instrument
WO2020183679A1 (en) Treatment instrument
WO2017163410A1 (en) Energy treatment tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP