WO2018219030A1 - 一种基于智能设备的便携非侵入式生命体征监测方法 - Google Patents

一种基于智能设备的便携非侵入式生命体征监测方法 Download PDF

Info

Publication number
WO2018219030A1
WO2018219030A1 PCT/CN2018/080631 CN2018080631W WO2018219030A1 WO 2018219030 A1 WO2018219030 A1 WO 2018219030A1 CN 2018080631 W CN2018080631 W CN 2018080631W WO 2018219030 A1 WO2018219030 A1 WO 2018219030A1
Authority
WO
WIPO (PCT)
Prior art keywords
smart device
vital sign
sign monitoring
data
axis
Prior art date
Application number
PCT/CN2018/080631
Other languages
English (en)
French (fr)
Inventor
余长泉
徐伟
吴舒
张娜
Original Assignee
苏州安莱光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州安莱光电科技有限公司 filed Critical 苏州安莱光电科技有限公司
Publication of WO2018219030A1 publication Critical patent/WO2018219030A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the invention relates to the field of vital sign monitoring, in particular to a portable non-invasive vital sign monitoring method based on smart devices.
  • Vital sign monitoring is of great significance to human work and study and physical health, especially for people with potential safety hazards. Real-time monitoring and prevention are even more significant.
  • invasive devices that is, devices or device components need to be in direct contact with the skin.
  • the invasive devices are also subject to monitoring duties while causing distress to the subject, such as cross-infection, Uncomfortable to wear, etc., need to be improved.
  • the technical problem to be solved by the present invention is to provide a portable non-invasive vital sign monitoring method based on smart devices, which improves the convenience of carrying and using, avoids intrusive detection, and reduces costs.
  • a technical solution adopted by the present invention is to provide a portable non-invasive vital sign monitoring method based on a smart device, comprising the following steps:
  • the smart device incorporating a 3-axis acceleration sensor or a 3-axis gyro sensor, the smart device having a built-in camera or an image sensor;
  • the vital sign monitoring program uses smart devices for real-time data processing, and evaluates the signal quality of a 3-axis accelerometer or a 3-axis gyroscope, preferably the signal data that best reflects the respiratory and heart rate, and the video signal acquired by the camera or image sensor. Processing, RGB, HSV statistics are performed for each frame, and the finger pulse signal is calculated.
  • the vital signs monitoring program uses the screen of the smart device to display vital sign monitoring results.
  • the user when the data collection function is turned on, the user holds the smart device and closes the chest or the heart position to obtain the heartbeat and breathing information closest to the heart, but does not need to directly contact the skin, allowing Perform while standing, sitting or lying down.
  • the user when the data collection function is turned on, the user needs to cover the end of a certain finger to the camera to obtain the original fingertip video data.
  • the vital sign monitoring result displayed on the screen of the smart device includes, but is not limited to, a real-time curve of breathing, heart rate, blood pressure, and instantaneous data.
  • the smart device includes, but is not limited to, a smartphone and a tablet.
  • the vital sign monitoring program utilizes chest fluctuations and vibrations caused by the user's breathing and heartbeat, and affects one or a few axes of the 3-axis acceleration sensor or the 3-axis gyroscope.
  • the data of the axis is obtained by extracting and demodulating the data in these directions to obtain the respiratory and heart rate signals.
  • the pulse wave of the finger end is recorded by the camera, and the heart rate signal at the heart recorded by the acceleration sensor or the gyro sensor is obtained to obtain the pulse.
  • Conduction time PTT Conduction time
  • PWV pulse propagation velocity
  • E the elastic modulus
  • h the blood vessel thickness
  • D the internal diameter of the blood vessel
  • the blood density
  • E 0 is the elastic modulus at zero pressure
  • P is blood pressure
  • r is a correlation coefficient characterizing blood vessels
  • the pulse propagation speed has an approximate relationship with the pulse transit time:
  • L is the distance between the two arterial monitoring points
  • Equation 2 Equation 2 and Equation 3:
  • the blood pressure value can be obtained by measuring PTT.
  • the invention has the beneficial effects that the intelligent non-invasive vital sign monitoring method based on the smart device is mainly used for the 3-axis (x-axis, y-axis, z-axis) acceleration sensor of the smart phone, and the 3-axis (x) Axis, y-axis, and z-axis gyroscopes and cameras perform raw data acquisition, data analysis, and display on the screen of a smartphone through the Vital Signs Monitoring Program (APP) to achieve breathing, Monitoring of blood and blood vessel parameters such as heart rate, blood pressure, blood oxygen saturation, blood viscosity, etc., using mobile phone as a carrier, has the advantages of strong portability, ease of use, non-wearing, low cost, no cross infection, etc. It covers almost all the scenes of daily life and work, and solves the problems that traditional monitoring equipment is designed for patients and ignores the health monitoring of normal people.
  • APP Vital Signs Monitoring Program
  • FIG. 1 is a schematic structural view of a portable non-invasive vital sign monitoring method based on a smart device according to a preferred embodiment of the present invention
  • FIG. 2 is a diagram of a respiratory and heart rate signal obtained by a smart device-based portable non-invasive vital sign monitoring method according to the present invention
  • 3 is a pulse wave waveform obtained by a smart device-based portable non-invasive vital sign monitoring method using a camera to collect video data and undergo signal processing.
  • an embodiment of the present invention includes:
  • a portable non-invasive vital sign monitoring method based on smart device comprising the following steps:
  • the built-in 3-axis accelerometer or 3-axis gyroscope sensor, 3-axis accelerometer and 3-axis gyroscope sensor can capture the acceleration of objects and the rotation of objects.
  • the user Open the data collection function of the vital signs monitoring program.
  • the user holds the smart phone and closes the chest or heart position to get the heartbeat and breathing information closest to the heart, but does not need to directly touch the skin, allowing standing, sitting or lying down.
  • the user needs to cover the end of a certain finger to the camera of the smart phone, in order to obtain the original fingertip video data, using the chest undulation and vibration caused by breathing, heartbeat, through the 3-axis acceleration sensor Or the 3-axis gyro sensor collects the raw data of the user's chest or the heart position, and uses the camera to collect the image data of the fingertip;
  • the vital sign monitoring program uses smart devices for real-time data processing, and evaluates the signal quality of a 3-axis accelerometer or a 3-axis gyroscope, preferably the signal data that best reflects the respiratory and heart rate, and the video signal acquired by the camera or image sensor. Processing, RGB, HSV statistics are performed for each frame, and the finger pulse signal is calculated.
  • the vital sign monitoring program utilizes chest undulations and vibrations caused by the user's breathing and heartbeat, and affects data of one or a few axes of the 3-axis acceleration sensor or the 3-axis gyroscope, through the direction of these
  • the data is collected and demodulated, and the respiratory and heart rate signals are extracted; at the same time, the pulse wave of the finger end is recorded by the camera, and the heart rate signal at the heart recorded by the acceleration sensor or the gyro sensor is obtained to obtain the pulse transit time PTT;
  • PWV pulse propagation velocity
  • E the elastic modulus
  • h the blood vessel thickness
  • D the internal diameter of the blood vessel
  • the blood density
  • E 0 is the elastic modulus at zero pressure
  • P is blood pressure
  • r is a correlation coefficient characterizing blood vessels
  • the pulse propagation speed has an approximate relationship with the pulse transit time:
  • L is the distance between the two arterial monitoring points
  • Equation 2 Equation 2 and Equation 3:
  • Equation 4 It can be known from Equation 4 that the blood pressure value can be obtained by measuring PTT
  • the vital sign monitoring program displays the vital sign monitoring results using the screen of the smart device, and the vital sign monitoring results displayed on the screen of the smart device include, but are not limited to, real-time curves and instantaneous data of breathing, heart rate, blood pressure.
  • Figure 2 exemplarily shows the monitored respiratory and heart rate signal.
  • the data in this example is the Z-axis of the accelerometer in the smartphone. It can be clearly seen from the figure that the heart rate is a rapidly changing part with spikes. And breathing is a slowly changing envelope signal.
  • the present invention discloses a portable non-invasive vital sign monitoring method based on smart device, which has the advantages of strong portability, non-invasive, no cross infection, convenient use and low cost, and can not only satisfy the existence.
  • the inevitable routine examination of people with safety hazards can also facilitate the assessment of their health by the normal population.

Abstract

一种基于智能设备的便携非侵入式生命体征监测方法,包括以下步骤:在智能设备上安装并打开生命体征监测程序;打开生命体征监测程序的数据采集功能,利用3轴加速度传感器或者3轴陀螺仪传感器采集使用者胸口或者心脏位置跳动的原始数据,利用摄像头或者图像传感器采集指端的图像数据;生命体征监测程序利用智能设备进行实时的数据处理;生命体征监测程序利用智能设备的屏幕显示生命体征监测结果。

Description

一种基于智能设备的便携非侵入式生命体征监测方法 技术领域
本发明涉及生命体征监测领域,特别是涉及一种基于智能设备的便携非侵入式生命体征监测方法。
背景技术
生命体征监测对于人类的工作学习及身体健康有重要意义,特别是对于存在安全隐患的人群,实时监测、防患于未然就更显得意义重大。
通常情况下,生命体征的检测有赖于医院的权威设备或价格昂贵、体积较大的监测设备,且大多数生命体征的监测设备均为病患准备,一般来说体积较大、不方便携带或者价格昂贵不方便经常使用等。
目前的生命体征监测设备中,大多数为侵入式设备,即设备或设备部件需与皮肤直接接触,然而侵入式设备在履行监测职责的同时却也为被检测者带来苦恼,如交叉感染、佩戴不舒服等,需要改进。
发明内容
本发明主要解决的技术问题是提供一种基于智能设备的便携非侵入式生命体征监测方法,提升携带和使用的便利性,避免侵入式检测,降低成本。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于智能设备的便携非侵入式生命体征监测方法,包括以下步骤:
在智能设备上安装并打开生命体征监测程序,所述智能设备内置3轴加速度传感器或3轴陀螺仪传感器,所述智能设备内置摄像头或者图像传感器;
打开生命体征监测程序的数据采集功能,利用3轴加速度传感器或者3轴 陀螺仪传感器采集使用者胸口或者心脏位置跳动的原始数据,利用摄像头或者图像传感器采集指端的图像数据;
生命体征监测程序利用智能设备进行实时的数据处理,对3轴加速度传感器或者3轴陀螺仪的信号质量评估,优选出最能反映呼吸和心率的信号数据,对摄像头或者图像传感器采集到的视频信号进行处理,对每一帧进行RGB、HSV统计,计算得到指端脉搏波信号;
生命体征监测程序利用智能设备的屏幕显示生命体征监测结果。
在本发明一个较佳实施例中,所述数据采集功能开启时,使用者手持智能设备并贴紧胸口或者心脏位置,以便得到最接近心脏的心跳和呼吸信息,但无需直接接触皮肤,允许在站着、坐着或者躺着的状态下进行。
在本发明一个较佳实施例中,所述数据采集功能开启时,使用者需将某一根手指的端部盖住摄像头,以便获取原始指端视频数据。
在本发明一个较佳实施例中,所述智能设备的屏幕显示的生命体征监测结果包含但不限于呼吸、心率、血压的实时曲线和瞬时数据。
在本发明一个较佳实施例中,所述智能设备包括但不限于智能手机和平板电脑。
在本发明一个较佳实施例中,所述生命体征监测程序利用使用者呼吸、心跳带来的胸腔起伏及振动,影响3轴加速度转感器或3轴陀螺仪中的某一轴或某几轴的数据,通过对这些方向上的数据的采集及解调,提取得到呼吸及心率信号;同时利用摄像头记录指端的脉搏波,结合加速度传感器或者陀螺仪传感器记录的心脏处的心率信号,得到脉搏传导时间PTT;
由PTT推导得出血压的理论依据如下:
动脉血管的弹性与脉搏传播速度建立起来的Moens-Korteweg方程如下:
Figure PCTCN2018080631-appb-000001
其中PWV为脉搏传播速度,E为弹性模量,非常数,h为血管厚度,D为血管内部直径,ρ为血液密度;
弹性模量E与血管跨壁压之间的关系如下:
E=E 0e rp               式2
E 0为压力为零时的弹性模量,P是血压,r是表征血管的一个相关系数;
脉搏传播速度与脉搏传导时间有近似的关系:
Figure PCTCN2018080631-appb-000002
其中L为两动脉监测点之间的距离;
综合式1、式2及式3,Moens-Korteweg方程变化为:
Figure PCTCN2018080631-appb-000003
由式4可知,通过测量PTT即可得到血压值。
本发明的有益效果是:本发明指出的一种基于智能设备的便携非侵入式生命体征监测方法,主要利用智能手机的3轴(x轴、y轴、z轴)加速度传感器、3轴(x轴、y轴、z轴)陀螺仪和摄像头,通过生命体征监测程序(APP)对加速度传感器、陀螺仪和摄像头数据进行原始数据采集、数据分析,并显示在智能手机的屏幕上,实现呼吸、心率、血压、血氧饱和度、血液粘度等血液、血管参数的监测,利用手机为载体,具有便携性强、使用简便、非穿戴式、成本低、无交叉感染等优点,其适用场合非常广泛,几乎涵盖日常生活及工作的所 有场景,解决了传统监测设备专为病患设计而忽略对正常人群的健康监测等问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本发明一种基于智能设备的便携非侵入式生命体征监测方法一较佳实施例的结构示意图;
图2是本发明一种基于智能设备的便携非侵入式生命体征监测方法得到的呼吸及心率信号图;
图3是本发明一种基于智能设备的便携非侵入式生命体征监测方法利用摄像头采集视频数据并经过信号处理得到的脉搏波波形。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1~图3,本发明实施例包括:
一种基于智能设备的便携非侵入式生命体征监测方法,包括以下步骤:
在智能手机上安装并打开生命体征监测程序,智能手机内置3轴加速度传感器或3轴陀螺仪传感器,3轴加速度转感器和3轴陀螺仪传感器可以非常灵敏的捕捉物体的加速度和物体的旋转信息,智能手机内置摄像头或者图像传感器, 随着人体心脏不停的收缩和舒张,血管中的血液呈现周期性变化,摄像头可以有效记录血液的变化,而手指端的组织比较薄,因此较容易获得脉搏波信号;
打开生命体征监测程序的数据采集功能,使用者手持智能手机并贴紧胸口或者心脏位置,以便得到最接近心脏的心跳和呼吸信息,但无需直接接触皮肤,允许在站着、坐着或者躺着的状态下进行,同时,使用者需将某一根手指的端部盖住智能手机的摄像头,以便获取原始指端视频数据,利用呼吸、心跳带来的胸腔起伏及振动,通过3轴加速度传感器或者3轴陀螺仪传感器采集使用者胸口或者心脏位置跳动的原始数据,利用摄像头采集指端的图像数据;
生命体征监测程序利用智能设备进行实时的数据处理,对3轴加速度传感器或者3轴陀螺仪的信号质量评估,优选出最能反映呼吸和心率的信号数据,对摄像头或者图像传感器采集到的视频信号进行处理,对每一帧进行RGB、HSV统计,计算得到指端脉搏波信号;
所述生命体征监测程序利用使用者呼吸、心跳带来的胸腔起伏及振动,影响3轴加速度转感器或3轴陀螺仪中的某一轴或某几轴的数据,通过对这些方向上的数据的采集及解调,提取得到呼吸及心率信号;同时利用摄像头记录指端的脉搏波,结合加速度传感器或者陀螺仪传感器记录的心脏处的心率信号,得到脉搏传导时间PTT;
由PTT推导得出血压的理论依据如下:
动脉血管的弹性与脉搏传播速度建立起来的Moens-Korteweg方程如下:
Figure PCTCN2018080631-appb-000004
其中PWV为脉搏传播速度,E为弹性模量,非常数,h为血管厚度,D为血管内部直径,ρ为血液密度;
弹性模量E与血管跨壁压之间的关系如下:
E=E 0e rp                式2
E 0为压力为零时的弹性模量,P是血压,r是表征血管的一个相关系数;
脉搏传播速度与脉搏传导时间有近似的关系:
Figure PCTCN2018080631-appb-000005
其中L为两动脉监测点之间的距离;
综合式1、式2及式3,Moens-Korteweg方程变化为:
Figure PCTCN2018080631-appb-000006
由式4可知,通过测量PTT即可得到血压值;
生命体征监测程序利用智能设备的屏幕显示生命体征监测结果,所述智能设备的屏幕显示的生命体征监测结果包含但不限于呼吸、心率、血压的实时曲线和瞬时数据。图2示范性的展示了监测到的呼吸及心率信号图,本示例中的数据为智能手机中加速度传感器Z轴的数据,从图中可以清晰的看到,心率是带尖峰的快速变化的部分,而呼吸是慢变的包络信号。
综上所述,本发明指出的一种基于智能设备的便携非侵入式生命体征监测方法,具有便携性强、非侵入式、无交叉感染、使用方便和成本低等优点,其不仅可以满足存在安全隐患的人群不可避免的例行检查,还可以方便正常人群对自身健康的评估。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

  1. 一种基于智能设备的便携非侵入式生命体征监测方法,其特征在于,包括以下步骤:
    在智能设备上安装并打开生命体征监测程序,所述智能设备内置3轴加速度传感器或3轴陀螺仪传感器,所述智能设备内置摄像头或者图像传感器;
    打开生命体征监测程序的数据采集功能,利用3轴加速度传感器或者3轴陀螺仪传感器采集使用者胸口或者心脏位置跳动的原始数据,利用摄像头或者图像传感器采集指端的图像数据;
    生命体征监测程序利用智能设备进行实时的数据处理,对3轴加速度传感器或者3轴陀螺仪的信号质量评估,优选出最能反映呼吸和心率的信号数据,对摄像头或者图像传感器采集到的视频信号进行处理,对每一帧进行RGB、HSV统计,计算得到指端脉搏波信号;
    生命体征监测程序利用智能设备的屏幕显示生命体征监测结果。
  2. 根据权利要求1所述的基于智能设备的便携非侵入式生命体征监测方法,其特征在于,所述数据采集功能开启时,使用者手持智能设备并贴紧胸口或者心脏位置,以便得到最接近心脏的心跳和呼吸信息,但无需直接接触皮肤,允许在站着、坐着或者躺着的状态下进行。
  3. 根据权利要求1所述的基于智能设备的便携非侵入式生命体征监测方法,其特征在于,所述数据采集功能开启时,使用者需将某一根手指的端部盖住摄像头,以便获取原始指端视频数据。
  4. 根据权利要求1所述的基于智能设备的便携非侵入式生命体征监测方法,其特征在于,所述智能设备的屏幕显示的生命体征监测结果包含但不限于呼吸、心率、血压的实时曲线和瞬时数据。
  5. 根据权利要求1所述的基于智能设备的便携非侵入式生命体征监测方法,其特征在于,所述智能设备包括但不限于智能手机和平板电脑。
  6. 根据权利要求1所述的基于智能设备的便携非侵入式生命体征监测方法,其特征在于,所述生命体征监测程序利用使用者呼吸、心跳带来的胸腔起伏及振动,影响3轴加速度转感器或3轴陀螺仪中的某一轴或某几轴的数据,通过对这些方向上的数据的采集及解调,提取得到呼吸及心率信号;同时利用摄像头记录指端的脉搏波,结合加速度传感器或者陀螺仪传感器记录的心脏处的心率信号,得到脉搏传导时间PTT;
    由PTT推导得出血压的理论依据如下:
    动脉血管的弹性与脉搏传播速度建立起来的Moens-Korteweg方程如下:
    Figure PCTCN2018080631-appb-100001
    其中PWV为脉搏传播速度,E为弹性模量,非常数,h为血管厚度,D为血管内部直径,ρ为血液密度;
    弹性模量E与血管跨壁压之间的关系如下:
    E=E 0e rp    式2
    E 0为压力为零时的弹性模量,P是血压,r是表征血管的一个相关系数;
    脉搏传播速度与脉搏传导时间有近似的关系:
    Figure PCTCN2018080631-appb-100002
    其中L为两动脉监测点之间的距离;
    综合式1、式2及式3,Moens-Korteweg方程变化为:
    Figure PCTCN2018080631-appb-100003
    由式4可知,通过测量PTT即可得到血压值。
PCT/CN2018/080631 2017-06-02 2018-03-27 一种基于智能设备的便携非侵入式生命体征监测方法 WO2018219030A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710408843.9 2017-06-02
CN201710408843.9A CN107095659A (zh) 2017-06-02 2017-06-02 一种基于智能设备的便携非侵入式生命体征监测方法

Publications (1)

Publication Number Publication Date
WO2018219030A1 true WO2018219030A1 (zh) 2018-12-06

Family

ID=59659523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080631 WO2018219030A1 (zh) 2017-06-02 2018-03-27 一种基于智能设备的便携非侵入式生命体征监测方法

Country Status (2)

Country Link
CN (1) CN107095659A (zh)
WO (1) WO2018219030A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717181B2 (en) 2020-06-11 2023-08-08 Samsung Electronics Co., Ltd. Adaptive respiratory condition assessment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107095659A (zh) * 2017-06-02 2017-08-29 苏州安莱光电科技有限公司 一种基于智能设备的便携非侵入式生命体征监测方法
CN107898449A (zh) * 2017-12-18 2018-04-13 苏州安莱光电科技有限公司 一种基于智能设备的血压监测装置
US11013416B2 (en) * 2018-01-26 2021-05-25 Bose Corporation Measuring respiration with an in-ear accelerometer
CN108606793B (zh) * 2018-02-07 2021-02-26 广东中科慈航信息科技有限公司 一种基于陀螺仪测量呼吸的方法及设备
CN108742530A (zh) * 2018-06-06 2018-11-06 丁桂伟 一种呼吸内科呼吸衰竭患者用多功能护理设备
WO2020009631A1 (en) * 2018-07-06 2020-01-09 Maquet Critical Care Ab Non-invasive estimation of pulmonary blood pressure
CN109171649B (zh) * 2018-08-30 2021-08-17 合肥工业大学 智能影像式生命体征探测仪
CN109497966B (zh) * 2018-12-29 2021-07-02 中国科学院合肥物质科学研究院 一种心血管功能检测手环的使用方法
CN110301907A (zh) * 2019-06-25 2019-10-08 浙江工业大学 一种可穿戴脉搏波检测装置及血压检测方法
CN113827197B (zh) * 2020-06-08 2023-05-05 华为技术有限公司 脉搏检测方法、终端设备和智能鞋
CN111759292B (zh) * 2020-06-24 2021-06-22 中国科学院西安光学精密机械研究所 一种人体心率、呼吸及血氧综合测量装置与方法
CN114176543A (zh) * 2021-12-29 2022-03-15 广东工业大学 一种睡眠体征及状态检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104434064A (zh) * 2014-11-26 2015-03-25 中国科学院计算技术研究所 一种心率和呼吸率信号处理与跟踪方法及其系统
CN105167759A (zh) * 2015-10-09 2015-12-23 谢洪武 一种基于智能手机的人体脉搏波速度测量方法及其系统
US20160140834A1 (en) * 2006-06-30 2016-05-19 Empire Ip Llc Personal Emergency Response (PER) System
CN107095659A (zh) * 2017-06-02 2017-08-29 苏州安莱光电科技有限公司 一种基于智能设备的便携非侵入式生命体征监测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150182132A1 (en) * 2012-08-10 2015-07-02 Cnv Systems Ltd. Mobile device system for measurement of cardiovascular health

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160140834A1 (en) * 2006-06-30 2016-05-19 Empire Ip Llc Personal Emergency Response (PER) System
CN104434064A (zh) * 2014-11-26 2015-03-25 中国科学院计算技术研究所 一种心率和呼吸率信号处理与跟踪方法及其系统
CN105167759A (zh) * 2015-10-09 2015-12-23 谢洪武 一种基于智能手机的人体脉搏波速度测量方法及其系统
CN107095659A (zh) * 2017-06-02 2017-08-29 苏州安莱光电科技有限公司 一种基于智能设备的便携非侵入式生命体征监测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717181B2 (en) 2020-06-11 2023-08-08 Samsung Electronics Co., Ltd. Adaptive respiratory condition assessment

Also Published As

Publication number Publication date
CN107095659A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2018219030A1 (zh) 一种基于智能设备的便携非侵入式生命体征监测方法
Hernandez et al. Biophone: Physiology monitoring from peripheral smartphone motions
Gregoski et al. Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications
Aly et al. Zephyr: Ubiquitous accurate multi-sensor fusion-based respiratory rate estimation using smartphones
KR20150077684A (ko) 생체 신호 기반 기능 운용 방법 및 이를 지원하는 전자 장치
CN104640498A (zh) 移动心脏健康监视
KR20100024118A (ko) 혈압 측정 장치 및 방법
US10631739B2 (en) Monitoring vital signs
US11793453B2 (en) Detecting and measuring snoring
Gjoreski et al. Telehealth using ECG sensor and accelerometer
Zheng et al. Design and evaluation of a ubiquitous chest-worn cardiopulmonary monitoring system for healthcare application: a pilot study
Manivannan et al. Evaluation of a behind-the-ear ECG device for smartphone based integrated multiple smart sensor system in health applications
US20220248967A1 (en) Detecting and Measuring Snoring
Ni et al. Combining non-invasive wearable device and intelligent terminal in HealthCare IoT
Takalokastari et al. Quality of the wireless electrocardiogram signal during physical exercise in different age groups
Wang et al. A new physiological signal acquisition patch designed with advanced respiration monitoring algorithm based on 3-axis accelerator and gyroscope
WO2019000909A1 (zh) 远程医疗设备、信息获取设备以及远程医疗系统及方法
Skoric et al. Relationship of the respiration waveform to a chest worn inertial sensor
TWM582374U (zh) Vibration sensing device, portable continuous blood pressure measuring device and portable heart Lung efficiency monitoring device
CN204636367U (zh) 一种非接触呼吸检测装置
CN208769772U (zh) 一种心电、呼吸、体位监测的梦游报告系统
Rubi et al. Wearable health monitoring systems using IoMT
WO2018090254A1 (zh) 一种生物测定数据存储方法、电子设备及系统
Kher et al. A comprehensive review on wearable health monitoring systems
CN105877741B (zh) 一种便携式手握心电监护仪及qrs波检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808733

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.06.2020)