WO2018218870A1 - 一种伏特加酒智能全自动勾兑系统 - Google Patents
一种伏特加酒智能全自动勾兑系统 Download PDFInfo
- Publication number
- WO2018218870A1 WO2018218870A1 PCT/CN2017/109227 CN2017109227W WO2018218870A1 WO 2018218870 A1 WO2018218870 A1 WO 2018218870A1 CN 2017109227 W CN2017109227 W CN 2017109227W WO 2018218870 A1 WO2018218870 A1 WO 2018218870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blending
- wine
- base
- base wine
- automatic
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12G—WINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
- C12G3/00—Preparation of other alcoholic beverages
- C12G3/04—Preparation of other alcoholic beverages by mixing, e.g. for preparation of liqueurs
Definitions
- the invention relates to an intelligent automatic blending system for vodka, in particular to an intelligent automatic vodka blending system.
- Vodka producers divide each vodka into multiple specifications with different styles, qualities and characteristics depending on the process and storage time.
- various specifications of vodka have their own advantages in taste and flavor, they all have more or less disadvantages such as lack of fullness, mild flavor, soft mouth, sour taste and so on. Therefore, the vodka wines of various specifications are usually not directly filled and sold, but are used as a base wine to be blended in a reasonable proportion. By making up for short, the wine is perfect, the style is outstanding, the sensory quality is balanced, and finally the purpose of improving the quality of vodka is achieved. .
- the equipment of the vodka intelligent automatic blending system mainly includes: base wine tank, pump, frequency converter, blending tank, electronic nose, acquisition card, industrial computer, liquid level transmitter, etc.;
- the industrial computer carries out data communication with the frequency converter, electronic nose and liquid level transmitter through the acquisition card to realize the control of the frequency converter and the collection of the electronic nose signal and the liquid level signal;
- the equipment of the vodka intelligent automatic blending system comprises a plurality of base wine tanks, the base wine tanks are provided with different base wines, and the base wine tanks are connected with the blending tanks through pipes and pumps, and the base wine is passed through the base wine tanks.
- the pump is injected into the blending tank, and the bottom of the blending tank is equipped with a stirring device to ensure thorough mixing;
- the liquid level sensor is installed at the bottom of the blending tank to measure the liquid level of the blending liquor in the blending tank; the liquid level sensor data signal is sent to the industrial computer through the collecting card, and the industrial computer can calculate the blending tank according to the signal and the inner diameter of the blending tank.
- the inverter controls the power of the pump through the data line, and can adjust the flow of the pump within the range of 0 to 100%;
- the automatic control expert system is pre-installed in the industrial computer.
- the automatic blending expert system consists of a database, a base wine automatic selection algorithm, and an automatic blending algorithm.
- the database has pre-existing: the characteristic odor peak of the optional blending wine, the plurality of base wines corresponding to each blending wine, and the initial flow rate thereof, and each base The characteristic odor of the wine is peak.
- the industrial computer can blend the wine according to the target, obtain the base wine and its characteristic peaks corresponding to the blending from the pre-stored database, obtain the characteristic odor peak of each base beer collected by the electronic nose through the acquisition card, and calculate all the bases through the automatic wine selection algorithm.
- the characteristic odor peak error of the base wine in the wine can and the pre-stored base wine, and the base wine in the base wine with the smallest error with the pre-stored base wine is selected as the base wine of this blend;
- the industrial computer starts the first round of blending according to the initial flow rate in the database in the automatic blending expert system through the frequency converter to control the pump power; through the automatic blending algorithm, the characteristic odor peak of the target blending wine is the target peak, and the next step is solved based on the linear equations.
- the amount of change in the blending liquor flow is adjusted by the blending round, and the next blending round is completed by changing the blending ratio of the base wine by the power of the inverter to control the pump.
- the automatic blending process ends when the blending tank in the blending tank collected by the liquid level transmitter reaches the required blending amount.
- the automatic wine selection algorithm pre-stored in the industrial computer of the invention is to achieve the following purposes: after selecting the target to blend the wine, the industrial computer can obtain the pre-stored base wine and the initial flow corresponding to the blended wine from the database (taking 3 kinds of base wine as an example) ), the electronic nose detects the characteristic odor peak of the base wine in all the base wine bottles, and the base wine automatic selection algorithm calculates the error of the characteristic odor peak of the base wine and the pre-stored base wine corresponding to the target blending wine, and selects the minimum error base wine. In this blend.
- the number of base wines corresponding to this blending specification is 3.
- the number of peaks and peaks of the characteristic blending scent of this blending wine is 3, and the error of the characteristic odor peak of the base wine and pre-stored base wine in all base wine tanks is :
- the initial flow of the base wine is set as the first pre-stored base wine The initial flow rate; and so on, the determination of the base wine and the initial flow rate of all pre-stored base wines.
- the automatic blending algorithm pre-stored by the industrial computer in the invention is used for calculating the amount of change of the base wine flow in the blending process, and is used to adjust the blending ratio so that the blending peak of the blending liquor in the blending tank and the target blending wine are as close as possible.
- p i is the partial pressure of the i-type solute vapor above the liquid level of the solution, It is the saturated vapor pressure of the i-type solute pure substance at the current temperature, and c i is the molar concentration of the i-th solute in the solution.
- the vapor partial pressure of a substance in a mixed gas above the liquid level of the solution is proportional to the amount of its substance, namely:
- V is the volume of the space above the liquid level of the solution
- n i is the amount of the substance of the i-type solute vapor in the space
- R is the ideal gas constant
- T is the ambient temperature
- the peak of the odor extracted from the odor profile of the mixed gas above the liquid surface detected by the electronic nose is proportional to the molar concentration of the corresponding solute vapor, namely:
- a i the odor peak of the i-type solute vapor measured by the electronic nose (ie, the i-th characteristic odor peak);
- k 2 Electronic nose characteristic constant, which characterizes the ratio of the characteristic odor peak to the molar concentration of the corresponding solute vapor. The value is independent of the type of solute and is determined by the characteristics of the electron nose.
- K i coefficient associated with the solute.
- the flow rates of L a and L b are respectively
- the molar concentration of the i-type flavor in the blend is:
- c ai and c bi are the molar concentrations of the i-type flavor substances in the base wines a and b, respectively
- a ni is the odor peak of the i-th flavor substance in the blended wine
- ⁇ t is the pumping basis of each blending wheel pump. a fixed time interval experienced by the wine
- L a , L b , L c are the current alcohol flow rates a, b, and c;
- ⁇ L a , ⁇ L b , ⁇ L c is the flow change amount of the a, b, c base wine of the next blending round
- V is the total amount of vodka in the tank after the current blending round is over
- a n1 , A n2 , and A n3 are the three characteristic odor peaks of the blended wine in the blending tank measured by the electronic nose after the current blending round is over;
- a t1 , A t2 , and A t3 are the target peaks of the three characteristic odor peaks of the target blending wine pre-stored in the database;
- Step 1 Select the blend of vodka to be blended in the IPC as the target blending wine, and enter the target volume;
- Step 2 The industrial computer controls the channel switching device, and the electronic nose sequentially collects the characteristic odor peak data of the base wine in each base wine bottle, and sends it to the industrial computer;
- Step 3 The industrial computer determines the base wine with the smallest characteristic odor peak error according to the automatic wine selection algorithm in the automatic blending expert system as the base wine of the blending;
- Step 4 The industrial computer adjusts the pump power according to the selected frequency converter and the initial flow control corresponding to the frequency converter to complete the first round of blending;
- Step 5 After a fixed time interval, the electronic nose sequentially collects the characteristic odor peak data of the blending liquor in the blending base wine tank and the blending tank, and the liquid level transmitter collects the blending liquor liquid level data in the blending tank.
- the industrial control machine calculates the change amount of the blending base wine flow according to the automatic blending algorithm of the expert system, and controls the frequency converter to adjust the pump power corresponding to the blending base wine tank, and completes the next round of blending;
- the automatic blending process ends when the blending tank in the blending tank collected by the liquid level transmitter reaches the target volume.
- the invention establishes an intelligent automatic vodka blending system to replace the traditional blending method by human participation.
- Vodka producers often use vodka vodka as a base wine to blend proportions, complement each other to make the wine perfect, style, and sensory quality balance to enhance the quality of vodka.
- the quality of the base wine will also change after the base wine, the raw materials, the year, the climate, the Dianchi Lake and other factors change.
- An intelligent automatic vodka blending system was established. In the automatic blending process, the base wine automatic selection algorithm was used to select the base wine with the smallest error of the characteristic odor peak of the pre-stored base wine from the base wine as the base wine of this blending.
- the quality of the selected base wine is most suitable for this blending; the intelligent automatic vodka blending system established in the automatic blending project automatically adjusts the base wine blending flow by the automatic blending algorithm, so that the blended wine approaches the target blending wine quality. .
- An intelligent automatic vodka blending system can be established to replace the traditional sommelier with an expert system for testing and decision making during the large-scale blending process. Under the objective facts of constantly changing quality, the continuity and automation of the blending process are realized, and the influence of the quality factors of the sommelier and the base wine on the blending quality is reduced, and the consistency of the production quality of the vodka is guaranteed.
- Figure 1 is a schematic diagram of an apparatus for an intelligent automatic blending system for vodka.
- Figure 1 1 inverter; 2 base wine tank; 3. pump; 4 blending tank; 5 industrial computer; 6 acquisition card; 7 electronic nose; 8 channel switching device; 9 liquid level transmitter; double solid line representation The pipeline through which the wine flows; the dotted line indicates the data line for collecting the odor signal and transmitting the control signal; the slash filling line is the gas path for the electronic nose detection.
- Figure 2 is a flow chart of the redundant intelligent automatic blending system blending process.
- the equipment of a vodka intelligent automatic blending system of the present example includes: 1 frequency converter; 2 base wine tank; 3. pump; 4 blending tank; 5 industrial computer; 6 acquisition card; 8 channel switching device; 9 level transmitter.
- the industrial control machine 5 is pre-installed with an automatic blending expert system; the industrial computer 5 is connected to the electronic nose 7, the plurality of frequency converters 1, and the liquid level transmitter 9 through the collecting card 6 for data communication; each base wine tank 2 passes the pump 3 and the pipeline is connected with the blending tank 4, and the base wine can be injected into the blending tank 2; the frequency converter 1 adjusts the power of the pump 3 to adjust the base wine flow.
- a vodka intelligent automatic blending system the blending process is:
- Step 1 Select the blend of vodka to be blended in the IPC as the target blending wine, and enter the target volume;
- Step 2 The industrial computer 5 controls the channel switching device 8 through the acquisition card 6, and the electronic nose 7 sequentially collects the characteristic odor peak data of the base wine in each base wine tank 2, and sends it to the industrial computer 5;
- Step 3 The industrial computer 5 determines the base wine with the smallest characteristic odor peak error as the base wine of the present blend according to the automatic wine selection algorithm in the automatic blending expert system;
- Step 4 The industrial computer 5 adjusts the pump power according to the selected frequency converter 1 corresponding to each base wine and the initial flow control, and completes the first round of blending;
- Step 5 After a fixed time interval, the electronic nose 7 sequentially collects the characteristic odor peak data of the blending liquor of the base wine and the blending tank 4 in the base wine tank 2, and the liquid level transmitter 9 collects the blending tank 4
- the data of the blending liquor level is sent to the industrial computer 5, and the industrial computer 5 calculates the hook according to the automatic blending algorithm of the expert system.
- the amount of change in the flow rate of the base wine is controlled, and the inverter 1 corresponding to each base can be adjusted to adjust the pump power, and the next round of blending is started; after every fixed time interval, the above work is repeated to complete the rounds of blending;
- the blending tank collected by the liquid level transmitter 9 is used to blend the liquor level, and the automatic blending process ends when the target volume is reached.
- the flow chart of the automatic blending method of the vodka in this embodiment is shown in FIG. 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Alcoholic Beverages (AREA)
- Devices For Dispensing Beverages (AREA)
Abstract
一种伏特加酒智能全自动勾兑系统,可以进行伏特加酒特征气味峰值测量、根据欲勾兑的伏特加酒规格自动选取适合的基酒、进行基于特征气味的自动勾兑、以及完成相关执行机构的控制。实现该方法的设备系统包括:变频器、基酒罐、泵、勾兑罐、工控机、采集卡、电子鼻、通道切换装置、液位变送器。工控机中预装的自动勾兑专家系统由预存勾兑酒及各基酒信息的数据库、基酒自动选取算法、自动勾兑算法构成。
Description
本发明涉及伏特加酒智能全自动勾兑系统,特别涉及一种智能全自动伏特加酒勾兑系统。
伏特加酒生产企业根据工艺及窖藏时间的差异,将各伏特加酒分成风格、质量和特色不同的多个规格。各规格的伏特加酒虽然在口感、风味方面各有各的优势,但是均或多或少地存在口感不丰满、风味寡淡、入口不柔和、酸涩杂味等缺点。因此,各规格的窖藏伏特加酒通常不会直接灌装销售,而是用作基酒按合理比例进行勾兑,通过取长补短使酒体完美、风格突出、感官品质平衡,最终达到提高伏特加酒品质的目的。
然而,目前所用的传统勾兑技术中,需要根据品酒师的感官评价,来主观地选取适合的基酒,并设定各基酒的勾兑比例。当批次、原料、年份、气候、窖池等因素发生变化后,同一规格基酒的品质也会相应发生变化,因此为了保持勾兑酒品质的一致性,需要品酒师在常年生产中不断地评价、选择基酒,并随着基酒的品质波动来调整基酒的比例。但是,由于各品酒师主观地感官评价标准存在差异,以及品酒师的心情、感观评价能力等主观因素会随外界条件变化而发生波动,均会引起不同批次勾兑酒的品质发生细微变化。为了解决这一问题,需开发一种智能全自动伏特加酒勾兑系统,来代替基于人工的传统勾兑系统。
发明内容
本申请人针对传统勾兑方法的上述局限性,进行研究和探索,提供一种伏特加酒智能全自动勾兑系统,采用如下方案:
一种伏特加酒智能全自动勾兑系统的设备主要包括:基酒罐、泵、变频器、勾兑罐、电子鼻、采集卡、工控机、液位变送器等;
工控机通过采集卡与变频器、电子鼻、液位变送器进行数据通信,实现变频器的控制与电子鼻信号、液位信号的采集;
一种伏特加酒智能全自动勾兑系统的设备包括多个基酒罐,基酒罐中装有不同的基酒,基酒罐通过管路及泵与勾兑罐连接,将基酒由基酒罐通过泵注入勾兑罐,勾兑罐底部装有搅拌装置保障充分混合;
勾兑罐底部装有液位传感器,用于测量勾兑罐中勾兑酒的液位高度;液位传感器数据信号通过采集卡送入工控机,工控机可根据此信号结合勾兑罐内径来计算勾兑罐内勾兑酒的体积;
变频器通过数据线控制泵的功率,可在0~100%范围内调节泵的流量;
工控机中预装有自动勾兑专家系统。自动勾兑专家系统由数据库、基酒自动选取算法、自动勾兑算法构成;其中数据库中预存有:可选勾兑酒的特征气味峰值、各勾兑酒对应的多个基酒及其的初始流量、各基酒的特征气味峰值。
工控机可根据目标勾兑酒,从预存数据库中获得本次勾兑对应的基酒及其特征峰值,通过采集卡获得电子鼻采集的各基酒罐特征气味峰值,通过基酒自动选取算法计算所有基酒罐中基酒与预存基酒的特征气味峰值误差,并选取与预存基酒误差最小的基酒罐中基酒作为本次勾兑的基酒;
工控机根据自动勾兑专家系统中数据库中的初始流量通过变频器控制泵的功率开始第一轮勾兑;通过自动勾兑算法,以目标勾兑酒的特征气味峰值为目标峰值,基于线性方程组求解下一勾兑轮次勾兑基酒流量的改变量,通过变频器控制泵的功率改变基酒的勾兑比例完成下一勾兑轮次。每隔固定的时间间隔后,重复上述工作,完成各轮勾兑;液位变送器采集的勾兑罐中勾兑酒液位到达所需勾兑酒量时自动勾兑过程结束。
本发明中工控机预存的基酒自动选取算法是为达到以下目的:选择目标勾兑酒后,工控机可从数据库中得到该勾兑酒对应的预存基酒及初始流量(以3种基酒为例),电子鼻检测所有基酒罐中基酒的特征气味峰值,基酒自动选取算法计算所有基酒罐中基酒与预存基酒对应目标勾兑酒特征气味峰值的误差,选取误差最小基酒用于本次勾兑。
以勾兑专家系统预存本次勾兑规格对应基酒数量为3、本次勾兑对应勾兑酒特征气味峰峰值数量为3为例,所有基酒罐中基酒与预存基酒的特征气味峰值的误差为:
其中:Askj(k=1、2、3,j=1、2、3)为专家系统数据库中第k种预存基酒第j个特征气味峰值;
Abij(i=1、2、3…,j=1、2、3)为第i个基酒罐中第j个特征气味峰值;
Eik(i=1、2、3…,k=1、2、3)为第i个基酒罐基酒与数据库中预存第j种基酒特征气味峰值之间的误差;
计算误差Eik,选取Ei1(i=1、2、3…)中最小值对应的第i个基酒罐中基酒用于勾兑,该基酒的初始流量设为第1种预存基酒的初始流量;以此类推,完成所有预存基酒对应基酒及初始流量的确定。
本发明中工控机预存的自动勾兑算法,用于计算勾兑过程中各轮次基酒流量改变量,用以调整勾兑比例,使勾兑罐中勾兑酒与目标勾兑酒的气味峰值尽可能接近。
以目标勾兑酒对应3种基酒(a、b、c)、目标勾兑酒特征气味峰Ai(i=1,2,3)为例:
根据拉乌尔定律,勾兑酒罐中勾兑酒中含有一定浓度的某类溶质时,液面上方该溶质的蒸汽分压力,等于当前温度下的该溶质纯物质的饱和蒸气压乘以溶液中溶质的摩尔浓度,即:
根据道尔顿分压定律,溶液液面上方的混合气体中某一类物质的蒸汽分压力与其物质的量成正比,即:
其中,V为溶液液面上方空间的容积,ni为空间中第i类溶质蒸汽的物质的量,R为理想气体常数,T为环境温度。
因此:
其中,k1=RT,Ci=ni/V为第i类溶质蒸汽的摩尔浓度。
电子鼻检测到的溶液液面上方混合气体的气味图谱中提取的气味峰值与对应溶质蒸汽的摩尔浓度成正比,即:
Ai=k2Ci (4)
其中,Ai:电子鼻测得的第i类溶质蒸汽的气味峰值(即第i个特征气味峰值);
k2:电子鼻特性常数,表征特征气味峰值与对应溶质蒸汽的摩尔浓度之比,
其数值与溶质种类无关,由电子鼻特性决定。
故:
其中,Ki:与溶质相关的系数。
根据(5)所述线性关系,若基酒a与基酒b中的第i类风味物质(即第i类溶质)的气味峰值分别为Aai、Abi,按La、Lb两流量进行勾兑,则勾兑酒中第i类风味物质的摩尔浓度为:
以气味峰值的形式可以表达为:
LaAai+LbAbi=(La+Lb)Ani (9)
LaΔt·Aai+Δt·LbAbi=Δt·(La+Lb)Ani (10)
其中,cai、cbi分别为基酒a、b中的第i类风味物质的摩尔浓度,Ani为勾兑酒中第i类风味物质的气味峰值,Δt为每个勾兑轮次泵抽取基酒所经历的固定时间间隔;。
根据(10),若某一勾兑轮次结束后勾兑罐中已有勾兑酒体积乘以其某个特征气味峰值,加上下一勾兑轮次新注入勾兑罐的各基酒的体积乘以各自的上述特征气味峰值,即等于下一勾兑轮次结束后勾兑罐中勾兑酒体积乘以它的上述特征气味峰值;因此:
其中,Aai、Abi、Aci(i=1、2、3)为a、b、c基酒3个特征气味峰值;
La、Lb、Lc为当前时刻a、b、c基酒流量;
ΔLa、ΔLb、ΔLc为下一勾兑轮次的a、b、c基酒的流量改变量;
V为当前勾兑轮次结束后,勾兑罐中伏特加酒的总量;
An1、An2、An3为当前勾兑轮次结束后,电子鼻测量的勾兑罐中勾兑酒的3个特
征气味峰值;
At1、At2、At3为数据库中预存的目标勾兑酒3个特征气味峰的目标峰值;
求解上述线性方程组可得到ΔLa、ΔLb、ΔLc,即下一勾兑轮次基酒的流量改变量。
一种伏特加酒智能全自动勾兑系统,工作过程如下:
第1步:在工控机中选择欲勾兑的伏特加酒规格作为目标勾兑酒,输入目标体积量;
第2步:工控机控制通道切换装置,电子鼻依次采集各基酒罐中基酒的特征气味峰值数据,送入工控机;
第3步:工控机根据自动勾兑专家系统中的基酒自动选取算法确定特征气味峰值误差最小的基酒作为本次勾兑的基酒;
第4步:工控机依据选定的本次勾兑基酒及初始流量控制对应的变频器调节泵功率,完成第一轮勾兑;
第5步:在固定时间间隔后,电子鼻依次采集本次勾兑基酒罐中基酒及勾兑罐中勾兑酒的特征气味峰值数据、液位变送器采集勾兑罐中勾兑酒液位数据送入工控机,工控机根据专家系统自动勾兑算法计算本次勾兑基酒流量改变量,控制本次勾兑基酒罐对应的变频器调节泵功率,完成下一轮勾兑;
每隔固定的时间间隔后,重复上述工作,完成各轮勾兑;
液位变送器采集的勾兑罐中勾兑酒液位到达目标体积量时自动勾兑过程结束。
本发明的技术效果在于:
本发明建立一种智能全自动伏特加酒勾兑系统,来代替由人工参与的传统勾兑方法。
伏特加酒生产企业常常以窖藏伏特加酒作为基酒按比例勾兑,取长补短使酒体完美、风格突出、感官品质平衡,以提升伏特加酒品质。基酒罐中的基酒在批次、原料、年份、气候、窖池等因素发生变化后,基酒品质也会发生变化。建立的一种智能全自动伏特加酒勾兑系统在自动勾兑过程中,以基酒自动选取算法从所有基酒中选择与预存基酒的特征气味峰值的误差最小的基酒作为本次勾兑的基酒,保障选择的基酒品质最适合本次勾兑;建立的一种智能全自动伏特加酒勾兑系统在自动勾兑工程中,以自动勾兑算法自动调节基酒勾兑流量,使勾兑酒趋近目标勾兑酒品质。建立的一种智能全自动伏特加酒勾兑系统可在大规模勾兑过程中以专家系统取代传统的品酒师进行检测、决策,从而在基酒
品质不断变化的客观事实下实现勾兑生产过程的连续性、自动化,同时减小品酒师、基酒品质因素对勾兑品质的影响,保证了伏特加酒生产品质的一致性。
图1是一种伏特加酒智能全自动勾兑系统的设备示意图。
图1中:1变频器;2基酒罐;3.泵;4勾兑罐;5工控机;6采集卡;7电子鼻;8通道切换装置;9液位变送器;双实线表示基酒流经的管路;虚线表示采集气味信号及发送控制信号的数据线;斜杠填充线为用于电子鼻检测的气路。
图2是一种伏特加酒智能全自动勾兑系统勾兑过程的流程图。
下面结合附图对本发明的具体实施方式作进一步说明。
如图1所示,本实例的一种伏特加酒智能全自动勾兑系统的设备包括:1变频器;2基酒罐;3.泵;4勾兑罐;5工控机;6采集卡;7电子鼻;8通道切换装置;9液位变送器。
工控机5中预装有自动勾兑专家系统;工控机5通过采集卡6与电子鼻7、多个变频器1、液位变送器9连接,进行数据通信;每个基酒罐2通过泵3及管路与勾兑罐4连接,可将基酒注入勾兑罐2;变频器1调节泵3功率以调节基酒流量。
本实施例的一种伏特加酒智能全自动勾兑系统,其勾兑过程为:
第1步:在工控机中选择欲勾兑的伏特加酒规格作为目标勾兑酒,输入目标体积量;
第2步:工控机5通过采集卡6控制通道切换装置8,电子鼻7依次采集各基酒罐2中基酒的特征气味峰值数据,送入工控机5;
第3步:工控机5根据自动勾兑专家系统中的基酒自动选取算法确定特征气味峰值误差最小的基酒作为本次勾兑的基酒;
第4步:工控机5依据选定的本次勾兑各基酒及初始流量控制对应的变频器1调节泵功率,完成第一轮勾兑;
第5步:在固定时间间隔后,电子鼻7依次采集本次勾兑各基酒罐2中基酒及勾兑罐4中勾兑酒的特征气味峰值数据、液位变送器9采集勾兑罐4中勾兑酒液位数据送入工控机5,工控机5根据专家系统自动勾兑算法计算本次勾
兑基酒流量改变量,控制本次勾兑各基酒罐2对应的变频器1调节泵功率,开始下一轮勾兑;每隔固定的时间间隔后,重复上述工作,完成各轮勾兑;
液位变送器9采集的勾兑罐中勾兑酒液位,到达目标体积量时自动勾兑过程结束。
本实施例伏特加酒自动勾兑方法的流程图如图2。
本发明中涉及的线性方程组求解、特征峰值误差比较、电子鼻气味图谱中特征气味峰值的采集、控制信号的发送均为现有技术,其具体过程未作详述。
以上所举实例均为本发明的较佳实施方式,仅用来方便说明本发明,并非对本发明作任何形式上的限制,任何所属技术领域中具有通常知识者,若在不脱离本发明所提技术特征的范围内,利用本发明所揭示技术内容所做出局部改动或修饰的等效实例,并且未脱离本发明的技术特征内容,均仍属于本发明技术特征的范围内。
Claims (3)
- 一种伏特加酒智能全自动勾兑系统,其特征在于:一种伏特加酒智能全自动勾兑系统的设备主要包括:变频器、基酒罐、泵、勾兑罐、工控机、采集卡、电子鼻、通道切换装置、液位变送器;工控机通过采集卡与变频器、电子鼻、液位变送器进行数据通信,实现电子鼻信号、液位信号的采集与变频器的控制;一种伏特加酒智能全自动勾兑系统的设备包括多个基酒罐,基酒罐中装有不同的基酒,基酒罐通过管路及泵与勾兑罐连接,将基酒由基酒罐通过泵注入勾兑罐,勾兑罐底部装有搅拌装置保障充分混合;勾兑罐底部装有液位传感器,用于测量勾兑罐中勾兑酒的液位高度;液位传感器数据信号通过采集卡送入工控机,工控机可根据此信号结合勾兑罐内径来计算勾兑罐内勾兑酒的体积;变频器可控制泵的功率实现在0~100%范围内流量;工控机中预装有自动勾兑专家系统;自动勾兑专家系统由数据库、基酒自动选取算法、自动勾兑算法构成;其中数据库中预存有:可选勾兑酒的特征气味峰值、各勾兑酒对应的多个基酒及其的初始流量、各基酒的特征气味峰值;一种伏特加酒智能全自动勾兑的基本流程为:首先在工控机中选择欲勾兑的伏特加酒规格作为目标勾兑酒,输入目标体积量;工控机控制通道切换装置,电子鼻依次采集各基酒罐中基酒的特征气味峰值数据,送入工控机;工控机根据自动勾兑专家系统中的基酒自动选取算法确定特征气味峰值误差最小的基酒作为本次勾兑的基酒及初始流量;然后,工控机依据选定的本次勾兑各基酒及初始流量控制对应的变频器调节泵功率,完成第一轮勾兑;在固定时间间隔后,电子鼻依次采集本次勾兑各基酒罐中基酒及勾兑罐中勾兑酒的特征气味峰值数据、液位变送器采集勾兑罐中勾兑酒液位数据送入工控机,工控机根据专家系统自动勾兑算法计算本次勾兑各基酒流量改变量,控 制本次勾兑各基酒罐对应的变频器调节泵功率,完成下一轮勾兑;每隔固定的时间间隔后,重复上述工作,完成各轮勾兑;液位变送器采集的勾兑罐中勾兑酒液位到达目标体积量时自动勾兑过程结束。
- 根据权利要求1所述的一种伏特加酒智能全自动勾兑系统,其特征在于:基酒自动选取算法如下:以勾兑专家系统预存本次勾兑规格对应基酒数量为3、本次勾兑对应勾兑酒特征气味峰峰值数量为3为例,所有基酒罐中基酒与预存基酒的特征气味峰值的误差为:其中:Askj(k=1、2、3,j=1、2、3)为专家系统数据库中第k种预存基酒第j个特征气味峰值;Abij(i=1、2、3…,j=1、2、3)为第i个基酒罐中第j个特征气味峰值;Eik(i=1、2、3…,k=1、2、3)为第i个基酒罐基酒与数据库中预存第j种基酒特征气味峰值之间的误差;计算误差Eik,选取Ei1(i=1、2、3…)中最小值对应的第i个基酒罐中基酒用于勾兑,该基酒的初始流量设为第1种预存基酒的初始流量;以此类推,完成所有预存基酒对应基酒及初始流量的确定。
- 根据权利要求1所述的一种伏特加酒智能全自动勾兑系统,其特征在于:计算下一勾兑轮次基酒流量改变量的算法如下:Aai、Abi、Aci(i=1、2、3)为所需的a、b、c三种基酒的3个特征气味峰值;La、Lb、Lc为当前时刻a、b、c基酒流量;ΔLa、ΔLb、ΔLc为下一勾兑轮次的a、b、c基酒的流量改变量;V为当前勾兑轮次结束后,勾兑罐中伏特加酒的总量;An1、An2、An3为当前勾兑轮次,电子鼻测量的勾兑罐中勾兑酒的3个特征气味峰值;At1、At2、At3为数据库中预存的目标勾兑酒3个特征气味峰的目标峰值;求解上述线性方程组可得到ΔLa、ΔLb、ΔLc。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710390428.5 | 2017-05-27 | ||
CN201710390428.5A CN107090392A (zh) | 2017-05-27 | 2017-05-27 | 一种伏特加酒智能全自动勾兑系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018218870A1 true WO2018218870A1 (zh) | 2018-12-06 |
Family
ID=59639814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/109227 WO2018218870A1 (zh) | 2017-05-27 | 2017-11-03 | 一种伏特加酒智能全自动勾兑系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107090392A (zh) |
WO (1) | WO2018218870A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107090392A (zh) * | 2017-05-27 | 2017-08-25 | 江南大学 | 一种伏特加酒智能全自动勾兑系统 |
CN107841430A (zh) * | 2017-12-06 | 2018-03-27 | 李胜利 | 一种白酒智能勾兑系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417323A (zh) * | 2001-11-07 | 2003-05-14 | 山东泰山生力源集团股份有限公司 | 白酒生产cad网络系统 |
CN101979492A (zh) * | 2010-09-07 | 2011-02-23 | 北京三博中自科技有限公司 | 实验室白酒勾调装置及电磁阀选择方法 |
CN104450463A (zh) * | 2014-12-12 | 2015-03-25 | 江南大学 | 基于气味控制的白酒自动勾兑系统 |
CN104498291A (zh) * | 2014-12-12 | 2015-04-08 | 江南大学 | 一种利用实时气味检测技术控制白酒自动勾兑的方法 |
CN105482961A (zh) * | 2015-12-18 | 2016-04-13 | 合肥市恒昌自动化控制有限责任公司 | 一种白酒自动勾兑控制方法 |
CN107090392A (zh) * | 2017-05-27 | 2017-08-25 | 江南大学 | 一种伏特加酒智能全自动勾兑系统 |
-
2017
- 2017-05-27 CN CN201710390428.5A patent/CN107090392A/zh not_active Withdrawn
- 2017-11-03 WO PCT/CN2017/109227 patent/WO2018218870A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1417323A (zh) * | 2001-11-07 | 2003-05-14 | 山东泰山生力源集团股份有限公司 | 白酒生产cad网络系统 |
CN101979492A (zh) * | 2010-09-07 | 2011-02-23 | 北京三博中自科技有限公司 | 实验室白酒勾调装置及电磁阀选择方法 |
CN104450463A (zh) * | 2014-12-12 | 2015-03-25 | 江南大学 | 基于气味控制的白酒自动勾兑系统 |
CN104498291A (zh) * | 2014-12-12 | 2015-04-08 | 江南大学 | 一种利用实时气味检测技术控制白酒自动勾兑的方法 |
CN105482961A (zh) * | 2015-12-18 | 2016-04-13 | 合肥市恒昌自动化控制有限责任公司 | 一种白酒自动勾兑控制方法 |
CN107090392A (zh) * | 2017-05-27 | 2017-08-25 | 江南大学 | 一种伏特加酒智能全自动勾兑系统 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
Also Published As
Publication number | Publication date |
---|---|
CN107090392A (zh) | 2017-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018218870A1 (zh) | 一种伏特加酒智能全自动勾兑系统 | |
WO2018218868A1 (zh) | 一种智能全自动兰姆酒勾兑方法 | |
WO2018218869A1 (zh) | 一种智能全自动药酒生产方法 | |
Shylaja et al. | Real-time monitoring of soil nutrient analysis using WSN | |
CN110540918B (zh) | 基于人工智能的白酒勾调控制方法及勾调控制系统 | |
CN104450463A (zh) | 基于气味控制的白酒自动勾兑系统 | |
AU2017201612A1 (en) | Method for automatically assessing the quality of a dispensed beverage | |
CN104267164B (zh) | 一种简便快速测定黄酒酒精度的方法 | |
WO2016090996A1 (zh) | 一种实时气味检测控制白酒自动勾兑的方法 | |
CN102759607B (zh) | 一种快速测定黄酒中非糖固形物的方法 | |
CN109521066A (zh) | 一种黄酒电化学指纹图谱的构建方法和应用 | |
CN107189915A (zh) | 基于专家系统的白酒自动勾兑方法 | |
CN104804959A (zh) | 基于电子舌与近红外光谱融合检测的白酒自动勾兑系统 | |
CN106092911A (zh) | 一种枣树冠层磷含量的检测方法 | |
EP3501289A1 (en) | Method and system for producing milk products having different fat contents | |
CN104804958A (zh) | 基于电子舌在线检测的白酒自动勾兑系统 | |
US2171823A (en) | Apparatus to test juices | |
CN105067409B (zh) | 一种面团流变学特性测定中控制拉伸加水量的方法 | |
CN104656613B (zh) | 智能化降雨pH‑Q实时监控装置及其工作方法 | |
CN104007113B (zh) | 糟醅酸度的检测方法 | |
CN107189916A (zh) | 一种基于在线连续测控技术的全自动黄酒勾兑方法 | |
CN107216978A (zh) | 基于智能控制策略的白兰地勾兑方法 | |
DE102011114580A1 (de) | Verfahren und Vorrichtung zur automatischenGärkontrolle und/oder Gärführung | |
CN107216967A (zh) | 一种智能控制全自动红酒勾兑方法 | |
CN107523465A (zh) | 威士忌酒智能全自动生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17911498 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17911498 Country of ref document: EP Kind code of ref document: A1 |