WO2018218703A1 - 一种质量式流量物联网传感器 - Google Patents

一种质量式流量物联网传感器 Download PDF

Info

Publication number
WO2018218703A1
WO2018218703A1 PCT/CN2017/088562 CN2017088562W WO2018218703A1 WO 2018218703 A1 WO2018218703 A1 WO 2018218703A1 CN 2017088562 W CN2017088562 W CN 2017088562W WO 2018218703 A1 WO2018218703 A1 WO 2018218703A1
Authority
WO
WIPO (PCT)
Prior art keywords
float
strain gauge
floats
resistance strain
flow
Prior art date
Application number
PCT/CN2017/088562
Other languages
English (en)
French (fr)
Inventor
邢伟华
Original Assignee
浙江圣地物联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江圣地物联科技有限公司 filed Critical 浙江圣地物联科技有限公司
Publication of WO2018218703A1 publication Critical patent/WO2018218703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure

Definitions

  • the present invention relates to a flow meter, and more particularly to a mass flow IoT sensor.
  • the gas flow meter (gas meter) is a measuring instrument for measuring the volume of gas. It has the function of automatically accumulating the volume, so that users who use natural gas or pipeline gas can easily know how much gas is used so that they can follow the monthly The amount of cubic meters of gas consumed is paid.
  • Traditional gas meters are mostly in the form of membranes, large in size and narrow in measurement range.
  • the electronic measurement of gas is the trend of the times, especially the ultrasonic gas meter. It has been highly praised, but so far, in addition to the commercialization of large-caliber ultrasonic gas meters, 200K is required for small-flow (G4.0 or less) civil gas metering.
  • the ultrasonic transducer requires boost processing, high power consumption, high cost, and high-voltage pulse still has safety hazards. Under the small flow rate (100L/h), the measurement effect is very bad, so the product application has not been realized.
  • the object of the present invention is to provide a mass flow rate IoT sensor for the problem of the existence of the gas flow meter described above, which can realize gas metering with wide range, high precision, small volume, low cost and high reliability.
  • a mass flow IoT sensor including a fluid passage, an air inlet and an air outlet, wherein: the upper part of the fluid passage is a float, the float is provided with a float set, and the float
  • the group consists of a plurality of floats, the floats are nested in order from large to small, and the largest float is located at the bottom of the float; the strain channel is provided in the fluid passage, and the float group floats under the action of the airflow, which will trigger the deformation of the strain gauge. Through the deformation of the strain gauge, a small amount of mass change is obtained.
  • the flow velocity signal of the fluid is obtained, and the resistance strain gauge is connected to the input end of the Wheatstone bridge.
  • the output end of the Wheatstone bridge is connected to the input end of the single-chip microcomputer, and is passed through the single-chip microcomputer. The mass and flow rate and time parameters are calculated to obtain the flow value, and the measurement of the gas quantity measurement is realized.
  • the Wheatstone bridge is a bridge circuit composed of four resistors, which are respectively called bridge arms.
  • One of the resistors of the present invention is a resistance strain gauge, and the Wheatstone bridge uses the change of the resistance to measure the physical quantity. Change, the MCU collects the voltage across the variable resistor and then processes it, and then calculates the corresponding physical quantity change, which is a highly accurate measurement method.
  • the resistance strain gauge is located in the fluid passage under the float group, the resistance strain gauge is opened, the lower end of the smallest float is connected with the pull wire, the pull wire passes through the opening of the resistance strain gauge, and the limit line on the lower side of the opening has a limit.
  • the card and the float group are floated by the action of the airflow, and the limit card is placed on the bottom surface of the resistance strain gauge to trigger the deformation of the resistance strain gauge.
  • the resistance strain gauge is located in the fluid passage above the float group, and the top strain bar is connected under the resistance strain gauge, and the end of the top rod is opposite to the smallest float, the float group is floating under the action of the air flow, and the smallest float top is At the end of the ejector pin, the ejector pin triggers deformation of the strain gauge.
  • a control circuit for waking up sleep is provided, and the Wheatstone resistance bridge starts the test by the A/D output wake-up sleep control circuit.
  • the force of the floating float triggers the resistance strain gauge, and the power is turned on. .
  • a power-starting test mechanism is provided, and the starting test mechanism includes a mechanical switch.
  • the mechanical switch When the airflow starts to enter the fluid passage, the force of the float floating upward is activated by the mechanical switch to start the test, and then applied to the resistance strain gauge. The force of the float is turned on by the mechanical switch to start the test and then applied to the strain gauge to maximize battery consumption.
  • the Wheatstone resistance bridge starts the test by the A/D output wake-up sleep control circuit, or the mechanical switch is turned on to start the test and then applied to the resistance strain gauge to maximize battery consumption.
  • the invention has the fluid passing, and then starts to measure, otherwise it does not work, and the battery energy can be greatly saved.
  • the ultrasonic measuring method the measurement work at the moment, consumes a large amount of electricity.
  • the inner wall of the fluid passage is respectively provided with a control chamber and a power supply bin, and the control compartment and the power supply compartment are respectively provided with a control circuit and a battery.
  • the smallest float in the float group is a spherical float
  • the upper part of the other float is cylindrical
  • the lower part is conical
  • the conical cone end is open
  • the float is nested from large to small
  • the adjacent float is conical.
  • the surface is attached, the spherical float is located at the conical taper end opening of the second light float, and the largest float cylindrical outer wall and the inner wall of the float are provided with a gap, and a gap is formed between the cylindrical bodies of the adjacent floats, and the gap is formed. Airflow path.
  • the output end of the single chip microcomputer is connected with the display, the communication interface, the temperature sensor, the pressure sensor, and the valve actuator.
  • the invention has the beneficial effects that the invention adopts the quality detection mode, can realize wide-range, high-precision, small-volume, low-cost, high-reliability gas quantity measurement, and has strong promotion and application value.
  • FIG. 1 is a schematic structural view of a wire-type mass flow IoT sensor according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the working operation of the micro-float floating device of the wire-type mass flow type IoT sensor according to the first embodiment of the present invention
  • FIG. 3 is a schematic view showing the floating operation of the small floating float of the wire-type mass flow type IoT sensor according to the first embodiment of the present invention
  • FIG. 4 is a schematic view showing the floating operation of the float in the wire-type mass flow IoT sensor according to the first embodiment of the present invention
  • FIG. 5 is a schematic view showing the working operation of the large floating float of the wire-type mass flow type IoT sensor according to the first embodiment of the present invention
  • FIG. 6 is a schematic diagram showing the principle of a pull-wire mass flow type IoT sensor circuit according to a first embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a ejector mass flow type IoT sensor according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the circuit principle of the ejector mass flow type IoT sensor according to the second embodiment of the present invention.
  • a mass flow IoT sensor including an inlet thread interface 2 and an outlet thread interface 10 at both ends, an intake port 1 and an air outlet. 9 is located in the inlet thread interface 2 and the outlet thread interface 10 respectively.
  • the air inlet 1 and the air outlet 9 are fluid passages, the upper part of the fluid passage is a buoy 11, the step 11 is provided under the buoy 11, and the float 11 is provided with a float group.
  • the float group is composed of a plurality of floats, the floats are nested in order from large to small, and the largest float is located on the step surface of the float 11, and the inner wall of the fluid passage is respectively provided with a control chamber 3 and a power supply chamber 14, a control chamber 3 and a power storage chamber 14.
  • control circuit and battery respectively, the control circuit is provided with a single-chip MCU, and the battery provides power for the control circuit.
  • the float group adopts four float combinations, which are micro floats 12 and small floats 8 from the inside to the outside.
  • the float 7 and the large float 6, the smallest float in the float group is the micro float 12, the structure is spherical, the upper part of the small float 8, the middle float 7 and the large float 6 are cylindrical, the lower part is conical, the conical cone
  • the end opening, each float is nested from the small to the large set of floats in the center of the float, the conical surfaces of the adjacent floats are attached, and the spherical float is located at the conical end opening of the small float 8 (the second light float)
  • the large outer shape of the large float 6 (the largest float) and the inner wall of the pontoon are provided with a gap, and a gap is formed between the cylindrical bodies of the adjacent floats, and the gap forms an air flow path 17.
  • a strain gauge 4 is arranged in the fluid passage, and one end of the strain gauge 4 is fixed at a fixed point 5 of the strain gauge at the inner wall of the fluid passage. Under the action of the airflow, the float floats up, which triggers the deformation of the strain gauge 4 and passes through The deformation amount of the strain gauge 4 is obtained, and a slight mass change is obtained.
  • the flow velocity signal of the fluid is obtained, the lower end of the micro float 12 is connected with the pull wire 13, and the pull wire 13 passes through the opening 15 of the resistance strain gauge 4, and the lower side of the opening 15
  • the pull wire 13 is provided with a limit card 16 , the resistance strain gauge 4 is connected to the input end of the Wheatstone bridge, the output end of the Wheatstone bridge is connected to the input end of the MCU of the single chip, and the output end of the Wheatstone bridge is connected to the input end of the MCU of the single chip.
  • the MCU of the MCU is connected to the display, the communication interface, the temperature sensor, the pressure sensor, and the valve actuator. Forming a complete measurement system, the measurement principle is shown in the following example.
  • the range of the large float 6 is 400-4000 L/h; the range of the middle float 7 is 100-1000 L/h; the range of the small float 8 is 16-160 L/h; and the range of the micro float 12 is 50- 500mL.
  • a small flow (50 mL - 500 mL) embodiment is shown.
  • the weak gas enters from the air inlet 1
  • the small float 8 the middle float 7 and the large float 6 are heavier and weaker.
  • the airflow is not enough to float it. Only the float 12 can float, the airflow flows out from the airflow path 17, and the float 12 drives the pull wire 13 to move up.
  • the limit card 16 of the pull wire 13 acts on the resistance strain gauge 4, deformation occurs.
  • the resistance bridge has a voltage output to the MCUA/D port of the single chip microcomputer, and the measured value is obtained by the following formula.
  • the Wheatstone bridge is a bridge circuit composed of four resistors, which are respectively called bridge arms of the bridge.
  • One of the resistors of the present invention is a resistance strain gauge 4, and the Wheatstone bridge uses the change of the resistance to measure the physical quantity. The change, the MCU captures the voltage across the variable resistor and then processes it, and can calculate the corresponding physical quantity change, which is a highly accurate measurement method.
  • the resistance strain gauge 4 with 0.01g precision is used, the measuring range is 0.01-500g, the MCU is calculated by the MCU, the calibration range is realized, the flow rate of 3L-4000L is obtained, and the time is calculated to obtain the flow rate of the gas. With the correction of the pressure sensor, high-precision measurement results can be obtained.
  • the strain gauge 4 is located on the fluid passage above the float group, and the top strain bar 13A is connected under the strain gauge 4 .
  • the end is connected to the tray 16A, the tray 16A is facing the top of the micro-float 12, the float group is floated by the airflow, the smallest float is at the end of the jack, and the jack 13A triggers the deformation of the strain gauge 4.
  • the ejector pin 13A is rigidly connected with the resistor piece 4, and is subjected to zero adjustment processing.
  • the resistance strain gauge is deformed by the ejector pin 13A, and the signal is changed. It is sent to the MCU of the MCU for processing, and the quality data is obtained. Through the operation, the flow is obtained, and the record is accumulated to obtain the data.
  • a control circuit for wake-up sleep can be provided.
  • the Wheatstone resistance bridge initiates the test through the A/D output wake-up sleep control circuit.
  • the force of the float floats to trigger the resistance strain. Slice 4, power on.
  • a power start test mechanism is provided, and the start test mechanism includes a mechanical switch 17.
  • the start test mechanism includes a mechanical switch 17.
  • the force of the float floating is turned on by the mechanical switch 17 to start the test, and then applied to the resistance strain gauge 4.
  • the force of the float is turned on by the mechanical switch 17 to start the test and then applied to the strain gauge 4 to maximize battery consumption.
  • the invention is applicable to the metering of any fluid and is not limited to gas.
  • the terms “include”, “include” or Any other variation is intended to cover a non-exclusive inclusion, such that a process, method, article, or device that comprises a plurality of elements includes not only those elements but also other elements not specifically listed or included The elements inherent in methods, articles, or equipment. In the absence of more restrictions. The statement “comprises a singular element and does not exclude the existence of the same element in the process, method, article or device that includes the element.”

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种质量式流量物联网传感器,包括流体通道、进气口(1)和出气口(9),流体通道上部为浮筒(11),浮筒(11)内设有浮子组,浮子组由多个浮子(6,7,8,12)组成,浮子(6,7,8,12)由大至小依次嵌套,最大的浮子(6)位于浮筒(11)底部;流体通道内设有电阻应变片(4),浮子组在气流的作用下,浮子(6,7,8,12)上浮,会触发电阻应变片(4)变形,通过电阻应变片(4)变形量,获得微量质量变化,经过单片机运行,获取流体的流速信号,电阻应变片(4)接惠斯通电桥的输入端,惠斯通电桥的输出端接单片机的输入端,通过单片机对质量与流速及时间参数运算得到流量值,实现燃气量计量的测量。该传感器采用质量检测方式,可实现宽量程、高精度、小体积、低成本、高可靠的燃气量计量,具有很强的推广和应用价值。

Description

一种质量式流量物联网传感器 技术领域
本发明涉及一种流量计,尤其涉及质量式流量物联网传感器。
背景技术
燃气流量计量表(燃气表)作为计量燃气体积数量的计量器具,它具有自动累计体积数的功能,使得那些使用天然气或管道煤气的用户,可以方便地知道用了多少气,以便能按照每月消耗燃气的立方米数缴费。传统的燃气表,基本以膜式表居多,体积大,测量范围窄。燃气计量电子化,是大势所趋,尤其是超声波燃气表,倍受推崇,但到目前为止,除大口径超声波燃气表产品化外,在小流量(G4.0以下)民用燃气计量方面,需要采用200K的超声波换能器,需要升压处理,功耗大,成本高,高压脉冲还存在安全隐患,在小流量(100L/h)以下,测量效果非常不好,因此一直没有实现产品化应用。
发明内容
本发明的目的是针对上述燃气流量计的存在的问题,提供一种质量式流量物联网传感器,可实现宽量程、高精度、小体积、低成本、高可靠的燃气量计量。
为实现上述目的,本发明提供如下技术方案:一种质量式流量物联网传感器,包括流体通道、进气口和出气口,其特征是:流体通道上部为浮筒,浮筒内设有浮子组,浮子组由多个浮子组成,浮子由大至小依次嵌套,最大的浮子位于浮筒底部;流体通道内设有电阻应变片,浮子组在气流的作用下,浮子上浮,会触发电阻应变片变形,通过电阻应变片变形量,获得微量质量变化,经过单片机运行,获取流体的流速信号,电阻应变片接惠斯通电桥的输入端,惠斯通电桥的输出端接单片机的输入端,通过单片机对质量与流速及时间参数运算得到流量值,实现燃气量计量的测量。
惠斯通电桥是由四个电阻组成的电桥电路,这四个电阻分别叫做电桥的桥臂,本发明的其中一个电阻为电阻应变片,惠斯通电桥利用电阻的变化来测量物理量的变化,单片机采集可变电阻两端的电压然后处理,就可以计算出相应的物理量的变化,是一种精度很高的测量方式。
具体实施时,电阻应变片位于浮子组下面的流体通道,电阻应变片开孔,最小的浮子下端与拉线连接,拉线穿过电阻应变片的开孔,在开孔下侧的拉线上设有限位卡,浮子组在气流的作用下,浮子上浮,限位卡顶在电阻应变片的底面,触发电阻应变片变形。
具体实施时,电阻应变片位于浮子组上面的流体通道,电阻应变片下连接有顶杆,顶杆末端正对最小的浮子上面,浮子组在气流的作用下,浮子上浮,最小的浮子顶在顶杆末端,顶杆触发电阻应变片变形。
具体实施时,设有唤醒睡眠的控制电路,惠斯通电阻桥通过A/D输出唤醒睡眠的控制电路启动测试,当气流开始进入流体通道,浮子上浮的作用力触发电阻应变片,接通电源。
具体实施时,设有电源启动测试机构,启动测试机构包括机械开关,当气流开始进入流体通道,浮子上浮的作用力通过机械开关接通电源启动测试后再作用到电阻应变片上。浮子的作用力通过机械开关接通电源启动测试后再作用到电阻应变片上,最大限度节省电池消耗。
惠斯通电阻桥通过A/D输出唤醒睡眠的控制电路启动测试,或者通过机械开关接通电源启动测试后再作用到电阻应变片上,最大限度节省电池消耗。本发明有流体通过,才开始测量,否则不工作,可以极大节省电池能量,而目前超声波计量方式,其时时刻刻进行测量的工作,耗电量大。
具体实施时,流体通道内壁分别设有控制仓和电源仓,控制仓和电源仓内分别设有控制电路和电池。
具体实施时,浮子组中的最小浮子为球形浮子,其它浮子的上部为筒形,下部为圆锥形,圆锥形的锥端开孔,浮子由大至小依次嵌套,相邻的浮子的圆锥面相贴,球形浮子位于第二轻的浮子的圆锥形的锥端开孔处,最大的浮子筒形外壁和浮筒内壁设有间隙,各相邻浮子的筒形体之间设有间隙,上述间隙形成气流道。
具体实施时,单片机的输出端与显示器、通信接口、温度传感器、压力传感器、阀门执行机构相连接。
本发明的有益效果是:本发明采用质量检测方式,可实现宽量程、高精度、小体积、低成本、高可靠的燃气量计量,具有很强的推广和应用价值。
附图说明
图1是本发明第一实施例拉线式质量式流量物联网传感器结构示意图。
图2是本发明第一实施例拉线式质量式流量物联网传感器微浮子上浮工作示意图;
图3是本发明第一实施例拉线式质量式流量物联网传感器小浮子上浮工作示意图;
图4是本发明第一实施例拉线式质量式流量物联网传感器中浮子上浮工作示意图;
图5是本发明第一实施例拉线式质量式流量物联网传感器大浮子上浮工作示意图;
图6是本发明施例第一实施例拉线式质量式流量物联网传感器电路原理示意图。
图7是本发明第二实施例顶杆式质量式流量物联网传感器结构示意图。
图8是本发明施例第二实施例顶杆式质量式流量物联网传感器电路原理示意图。
图中:1、进气口;2、进气螺纹接口;3、控制仓;4、电阻应变片;5、电阻应变片固定点;6、大浮子;7、中浮子;8、小浮子;9、出气口;10、出气螺纹接口;11、浮筒;12、微浮子;13、拉线;14、电源仓;15、开孔;16、拉线卡;17、气流道;16A、托盘;13A顶杆;MCU、单片机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
请参阅图1、图2、图3、图4、图5和图6,一种质量式流量物联网传感器,包括两端的进气螺纹接口2和出气螺纹接口10,进气口1和出气口9分别位于进气螺纹接口2和出气螺纹接口10内,进气口1和出气口9间为流体通道,流体通道上部为浮筒11,浮筒11下设有台阶面,浮筒11内设有浮子组,浮子组由多个浮子组成,浮子由大至小依次嵌套,最大的浮子位于浮筒11的台阶面上,流体通道内壁分别设有控制仓3和电源仓14,控制仓3和电源仓14内分别设有控制电路和电池,控制电路设有单片机MCU,电池为控制电路提供电源。本发明实施例浮子组采用四个浮子组合,从内到外分别为微浮子12、小浮子8、中 浮子7和大浮子6,浮子组中最小浮子的为微浮子12,其结构为球形,小浮子8、中浮子7和大浮子6的上部均为筒形,下部为圆锥形,圆锥形的锥端开孔,各浮子由从小到大一组浮子以浮筒中心嵌套,相邻的浮子的圆锥面相贴,球形浮子位于小浮子8(第二轻的浮子)的圆锥形的锥端开孔处,大浮子6(最大的浮子)筒形外壁和浮筒内壁设有间隙,各相邻浮子的筒形体之间设有间隙,上述间隙形成气流道17。流体通道内设有电阻应变片4,电阻应变片4的一端固定在流体通道内壁处的电阻应变片固定点5,浮子组在气流的作用下,浮子上浮,会触发电阻应变片4变形,通过电阻应变片4变形量,获得微量质量变化,经过单片机运行,获取流体的流速信号,微浮子12下端与拉线13连接,拉线13穿过电阻应变片4的开孔15,在开孔15下侧的拉线13上设有限位卡16,电阻应变片4接惠斯通电桥的输入端,惠斯通电桥的输出端接单片机MCU的输入端,惠斯通电桥的输出端接单片机MCU的输入端,通过单片机MCU对质量与流速及时间参数运算得到流量值,实现燃气量计量的测量。
单片机MCU接显示器、通信接口、温度传感器、压力传感器、阀门执行机构。构成完整的计量体系,其计量原理如下例所示。
本实施例中,大浮子6的量程为400-4000L/h;中浮子7的量程为100-1000L/h;小浮子8的量程为16-160L/h;;微浮子12的量程为50-500mL。
如图1和图2,所示为一个小流量(50mL-500mL)实施例,当微弱的气体从进气口1进入后,由于其小浮子8、中浮子7和大浮子6较重,微弱的气流不足以将其浮起来,只有浮子12可以浮起,气流从气流道17流出,浮子12带动拉线13上移,当拉线13的限位卡16作用到电阻应变片4时,产生形变,电阻桥有电压输出给单片机MCUA/D口,并通过以下公式计算获得测量值。
惠斯通电桥是由四个电阻组成的电桥电路,这四个电阻分别叫做电桥的桥臂,本发明的其中一个电阻为电阻应变片4,惠斯通电桥利用电阻的变化来测量物理量的变化,单片机MCU采集可变电阻两端的电压然后处理,就可以计算出相应的物理量的变化,是一种精度很高的测量方式。R1为电阻应变片4的电阻阻值,如果R1=R2=R3=R4或R1×R2=R3×R4,则无论输入多大电压,输出电压总为0,这种状态为平衡状态。电阻应变片4形变破坏平衡后,产生与电阻变化相对应的输出电压,应变片电阻的变化量为ΔR,则输出电压的计算公式为e=(1/4)*(ΔR/R)*E,即e=(1/4)*K*ε*E,公式中除了ε外,均为已知量,所以如果测出电桥的输出电压就可以计算出应变的大小,通过单片机MCU内的“质量-流量常数表”及修正系数,可以根据质量的变化,产生流量的变化,即单位时 间的流速与时间的运算,获得流量值,单片机MCU存贮器累计流量,并进行后续可能的操作:显示、通信、控制。
此例中采用0.01g精度的电阻应变片4,量程范围为0.01-500g,通过单片机MCU运算,标定范围,实现3L-4000L的流速获取,再与时间运算,得到气体的流量,如果结合温度传感器和压力传感器的修正,可得到到高精度的计量结果。
图3、图4和图5中,以此类推,当气流不断增大时,会分别将小浮子8、中浮子7和大浮子6相继推起,但都作用在微浮子12上,通过拉线作用在电阻应变片4上,从而产生相应的输出,经过标定,实现3-4000L/h的宽量程高精度计量。
实施例2:
请参阅图7和图8,其结构和原理基本同实施例1,在此不作重复描述,电阻应变片4位于浮子组上面的流体通道,电阻应变片4下连接有顶杆13A,顶杆13A末端连接托盘16A,托盘16A正对微浮子12上面,浮子组在气流的作用下,浮子上浮,最小的浮子顶在顶杆末端,顶杆13A触发电阻应变片4变形。电阻应变片4在浮子组上端设置的状态,顶杆13A与电阻片4硬性连接,并做调零处理,当浮子上浮,顶到托盘16A底部后,通过顶杆13A使电阻应变片形变,信号送到单片机MCU处理,得到质量数据,通过运算,得到流量,并累积记录,获得数据。
为保证最大限度节省电池消耗,可以设有唤醒睡眠的控制电路,惠斯通电阻桥通过A/D输出唤醒睡眠的控制电路启动测试,当气流开始进入流体通道,浮子上浮的作用力触发电阻应变片4,接通电源。本实施例中,设有电源启动测试机构,启动测试机构包括机械开关17,当气流开始进入流体通道,浮子上浮的作用力通过机械开关17接通电源启动测试后再作用到电阻应变片4上。浮子的作用力通过机械开关17接通电源启动测试后再作用到电阻应变片4上,最大限度节省电池消耗。
本发明可用于任何流体的计量,并不限于燃气。
需要说明的是,在本发明的描述中,需要理解的是,术语“左”、“右”、“上”、“下”、“前”、“后”、“顶”、“内侧”、“外侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。在本文中,术语“包括”、“包含”或者其 任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下。由语句“包括一个......限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素”。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种质量式流量物联网传感器,包括流体通道、进气口和出气口,其特征是:流体通道上部为浮筒,浮筒内设有浮子组,浮子组由多个浮子组成,浮子由大至小依次嵌套,最大的浮子位于浮筒底部;流体通道内设有电阻应变片,浮子组在气流的作用下,浮子上浮,会触发电阻应变片变形,通过电阻应变片变形量,获得微量质量变化,经过单片机运行,获取流体的流速信号,电阻应变片接惠斯通电桥的输入端,惠斯通电桥的输出端接单片机的输入端,通过单片机对质量与流速及时间参数运算得到流量值,实现燃气量计量的测量。
  2. 根据权利要求1所述的一种质量式流量物联网传感器,其特征在于:电阻应变片位于浮子组下面的流体通道,电阻应变片开孔,最小的浮子下端与拉线连接,拉线穿过电阻应变片的开孔,在开孔下侧的拉线上设有限位卡,浮子组在气流的作用下,浮子上浮,限位卡顶在电阻应变片4的底面,触发电阻应变片变形。
  3. 根据权利要求1所述的一种质量式流量物联网传感器,其特征在于:电阻应变片位于浮子组上面的流体通道,电阻应变片下连接有顶杆,顶杆末端正对最小的浮子上面,浮子组在气流的作用下,浮子上浮,最小的浮子顶在顶杆末端,顶杆触发电阻应变片变形。
  4. 根据权利要求1、2或3所述的一种质量式流量物联网传感器,其特征在于:设有唤醒睡眠的控制电路,惠斯通电阻桥通过A/D输出唤醒睡眠的控制电路启动测试,当气流开始进入流体通道,浮子上浮的作用力触发电阻应变片,接通电源。
  5. 根据权利要求1、2或3所述的一种质量式流量物联网传感器,其特征在于:设有电源启动测试机构,启动测试机构包括机械开关,当气流开始进入流体通道,浮子上浮的作用力通过机械开关接通电源启动测试后再作用到电阻应变片上。
  6. 根据权利要求1、2或3所述的一种质量式流量物联网传感器,其特征在于:流体通道内壁分别设有控制仓和电源仓,控制仓和电源仓内分别设有控制电路和电池。
  7. 根据权利要求1、2或3所述的一种质量式流量物联网传感器,其特征在于:浮子组中的最小浮子为球形浮子,其它浮子的上部为筒形,下部为圆锥形,圆锥形的锥端开孔,浮子由大至小依次嵌套,相邻的浮子的圆锥面相贴,球形浮子位于第二轻的浮子的圆锥形的锥端开孔处,最大的浮子筒形外壁和浮筒内壁设有间隙,各相邻浮子的筒形体之间设有间隙,上述间隙形成气流道。
  8. 根据权利要求1、2或3所述的一种质量式流量物联网传感器,其特征在于:单片机的输出端与显示器、通信接口、温度传感器、压力传感器、阀门执行机构相连接。
PCT/CN2017/088562 2017-06-02 2017-06-16 一种质量式流量物联网传感器 WO2018218703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710409732.X 2017-06-02
CN201710409732.XA CN107014455B (zh) 2017-06-02 2017-06-02 一种质量式流量物联网传感器

Publications (1)

Publication Number Publication Date
WO2018218703A1 true WO2018218703A1 (zh) 2018-12-06

Family

ID=59452630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088562 WO2018218703A1 (zh) 2017-06-02 2017-06-16 一种质量式流量物联网传感器

Country Status (2)

Country Link
CN (1) CN107014455B (zh)
WO (1) WO2018218703A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301833A (zh) * 2020-03-26 2020-06-19 河南金拇指防水科技股份有限公司 一种原料桶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536068A (en) * 1976-07-07 1978-01-20 Hitachi Ltd Rotameter
CN2105671U (zh) * 1991-09-26 1992-05-27 邵文远 小流量质量流量计
CN2247808Y (zh) * 1994-09-20 1997-02-19 居福林 液体流向、密度在线显示器
CN2337532Y (zh) * 1998-07-11 1999-09-08 开封红旗仪表有限责任公司 玻璃管宽量程转子流量计
CN205138942U (zh) * 2015-11-19 2016-04-06 中国石油集团西部钻探工程有限公司 液体密度在线测量装置
CN206832304U (zh) * 2017-06-02 2018-01-02 浙江圣地物联科技有限公司 一种质量式流量物联网传感器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720109A (en) * 1971-05-03 1973-03-13 Pro Tech Inc Fluid-operated sampler and flowmeter
BE1007562A6 (fr) * 1993-10-05 1995-08-08 Lenfant Theo Perfectionnement d'un debitmetre a flotteur.
CN2185891Y (zh) * 1994-01-11 1994-12-21 大连经济技术开发区广裕自动化研究中心 电磁式在线密度传感器
CN2548124Y (zh) * 2002-06-11 2003-04-30 王永忠 悬浮式气体流量传感器
CN100485326C (zh) * 2005-11-18 2009-05-06 王永忠 宽量程浮子式流量传感器
JP2011075309A (ja) * 2009-09-29 2011-04-14 Tech In Tech Co Ltd 流量計およびマスフローコントローラ
CN201680865U (zh) * 2010-05-07 2010-12-22 上海肯特仪表股份有限公司 高精度锥管型浮子流量计
CN102183275A (zh) * 2011-01-21 2011-09-14 苏州聚元微电子有限公司 低功耗浮子流量传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536068A (en) * 1976-07-07 1978-01-20 Hitachi Ltd Rotameter
CN2105671U (zh) * 1991-09-26 1992-05-27 邵文远 小流量质量流量计
CN2247808Y (zh) * 1994-09-20 1997-02-19 居福林 液体流向、密度在线显示器
CN2337532Y (zh) * 1998-07-11 1999-09-08 开封红旗仪表有限责任公司 玻璃管宽量程转子流量计
CN205138942U (zh) * 2015-11-19 2016-04-06 中国石油集团西部钻探工程有限公司 液体密度在线测量装置
CN206832304U (zh) * 2017-06-02 2018-01-02 浙江圣地物联科技有限公司 一种质量式流量物联网传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING, JIANMEI ET AL.: "Research and design of transmitters based on throttle flow meter", FOREST ENGINEERING, vol. 31, no. 5, 30 September 2015 (2015-09-30), pages 72 - 77, ISSN: 1001-005X *

Also Published As

Publication number Publication date
CN107014455A (zh) 2017-08-04
CN107014455B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
JP2008089575A5 (zh)
CN101936791A (zh) 数字压力计
CN102353612B (zh) 一种压电激励压电检测的谐振式音叉液体密度传感器
CN207907955U (zh) 一种基于线阵ccd的微流量计
CN106840292A (zh) Mems热式质量燃气表装置及气体流量测定方法
CN111272331A (zh) 基于表面等离激元共振的光纤气压传感器及系统
CN104748809B (zh) 基于调压器的智能计量仪及计量方法
JP2008128750A (ja) アルコール濃度計
WO2018218703A1 (zh) 一种质量式流量物联网传感器
CN104197998B (zh) 低压损检漏型差压式流量检测装置及标定方法和测量方法
CN206114150U (zh) 一种测量热电偶时间常数的装置
US3750472A (en) Apparatus for measuring the mass flow of gases
CN103453967A (zh) 天然气能量计量仪表
CN209014432U (zh) 一种补偿式通风率标准棒校准装置
CN206832304U (zh) 一种质量式流量物联网传感器
CN100389315C (zh) 数字式溶液浓度测量系统
CN2256527Y (zh) 一种新型微流量传感器
CN201373834Y (zh) 在线电子溶液浓度计
CN204514409U (zh) 基于调压器的智能计量仪
CN204791693U (zh) 具备教学效果流量数显的自循环伯努利实验装置
CN105588815B (zh) 一种基于微气流的红外气体探测器
CN205120198U (zh) 一种液位传感器
CN209014434U (zh) 一种一步式通风率标准棒期间核查装置
CN208672051U (zh) 电子烟气体流量检测系统
CN213120680U (zh) 一种微量液体流量计量设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911614

Country of ref document: EP

Kind code of ref document: A1