WO2018218491A1 - 传输数据的方法及装置 - Google Patents

传输数据的方法及装置 Download PDF

Info

Publication number
WO2018218491A1
WO2018218491A1 PCT/CN2017/086574 CN2017086574W WO2018218491A1 WO 2018218491 A1 WO2018218491 A1 WO 2018218491A1 CN 2017086574 W CN2017086574 W CN 2017086574W WO 2018218491 A1 WO2018218491 A1 WO 2018218491A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
information
downlink
transmission unit
data transmission
Prior art date
Application number
PCT/CN2017/086574
Other languages
English (en)
French (fr)
Inventor
周珏嘉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201780000441.3A priority Critical patent/CN108391466B/zh
Priority to EP17911806.2A priority patent/EP3633912B1/en
Priority to PCT/CN2017/086574 priority patent/WO2018218491A1/zh
Publication of WO2018218491A1 publication Critical patent/WO2018218491A1/zh
Priority to US16/699,492 priority patent/US11503625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a method and an apparatus for transmitting data.
  • the 5G network has great improvement in data transmission rate, coverage, delay, capacity, etc., and can be applied to many fields such as broadband connection, Internet of Things, Internet of Vehicles, and wide area coverage.
  • the NR system in order to shorten the transmission delay of a complete data transmission, the NR system introduces a self-contained mechanism, that is, a complete data transmission process can be realized within one frame structure.
  • HARQ Hybrid Automatic
  • Repeat reQuest, hybrid automatic repeat request) feedback information during which an uplink and downlink conversion delay needs to be set, so that the system has time to complete the scheduled conversion from downlink to uplink.
  • a downlink control information transmission unit needs to be scheduled to send uplink allocation information to the user equipment, and an uplink and downlink conversion delay needs to be set in the frame structure. So that the system has time to complete the scheduling conversion from downlink to uplink, and then the user equipment performs uplink data transmission by using a group of uplink data transmission units indicated by the uplink allocation information.
  • the conversion delay is costed twice, resulting in a long transmission delay of the entire service data, which affects the data transmission efficiency, and the user experience needs to be processed. improve.
  • embodiments of the present disclosure provide a method and apparatus for transmitting data, which shortens a transmission delay of service data.
  • a method of transmitting data, applied to a base station comprising:
  • Obtaining downlink control information of the to-be-scheduled frame where the downlink control information includes: at least: embedded resource configuration information of the to-be-scheduled frame;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • the method before the acquiring the downlink control information of the to-be-scheduled frame, the method further includes:
  • Determining a target frame structure according to the to-be-transmitted service where the target frame includes at least: a downlink data transmission unit, a conversion delay, and an uplink data transmission unit.
  • the scheduling the downlink information transmission unit to transmit the downlink data and the uplink allocation information of the current frame according to the downlink control information including:
  • the uplink allocation information of the current frame is loaded into a preset uplink allocated resource of the target downlink information transmission unit for transmission;
  • the downlink data to be transmitted is loaded into the remaining downlink data transmission resources for transmission.
  • the scheduling the downlink information transmission unit to transmit the downlink data and the uplink allocation information of the current frame according to the downlink control information including:
  • the downlink data to be transmitted is loaded into a preset downlink data transmission unit for transmission.
  • acquiring the HARQ feedback information and the uplink data of the downlink data transmission from the uplink information transmission unit according to the uplink allocation information including:
  • the uplink data is obtained from the remaining uplink data transmission resources.
  • acquiring the HARQ feedback information and the uplink data of the downlink data transmission from the uplink information transmission unit according to the uplink allocation information including:
  • the uplink data is obtained from the preset uplink data transmission unit.
  • a method for transmitting data is provided, which is applied to a user equipment, the method comprising:
  • the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • the downlink control information is obtained by using at least one of the following methods:
  • the acquiring the downlink data and the uplink allocation information according to the downlink control information includes:
  • the downlink data is obtained from the remaining downlink data transmission resources.
  • the acquiring the downlink data and the uplink allocation information according to the downlink control information includes:
  • the downlink data is obtained from the preset downlink data transmission unit.
  • the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station, including:
  • the HARQ feedback information of the downlink data transmission is loaded into the downlink feedback resource in the target uplink data transmission unit for transmission;
  • the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station, including:
  • the HARQ feedback information of the downlink data transmission is loaded into the preset uplink control information transmission unit for transmission;
  • the uplink data is sent to the base station by using a preset uplink data transmission unit.
  • an apparatus for transmitting data disposed in a base station, the apparatus comprising:
  • the control information acquiring module is configured to obtain downlink control information of the to-be-scheduled frame, where the downlink control information includes at least: embedded resource configuration information of the to-be-scheduled frame;
  • the downlink information transmission module is configured to, according to the downlink control information, schedule downlink information transmission unit to transmit downlink data and uplink allocation information of the current frame;
  • the uplink information acquiring module is configured to obtain, after a transition delay, the HARQ feedback information and the uplink data of the downlink data transmission from the uplink information transmission unit according to the uplink allocation information;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • the device further includes:
  • the frame structure determining module is configured to determine a target frame structure according to the to-be-transmitted service, where the target frame includes at least: a downlink data transmission unit, a conversion delay, and an uplink data transmission unit.
  • the downlink information transmission module includes:
  • the first downlink transmission sub-module is configured to load the uplink allocation information of the current frame into the preset uplink allocation resource of the target downlink information transmission unit for transmission;
  • the second downlink transmission submodule is configured to load the downlink data to be transmitted into the remaining downlink data transmission resources for transmission.
  • the downlink information transmission module includes:
  • the third downlink transmission submodule is configured to load the uplink allocation information of the current frame into the target downlink control information transmission unit for transmission;
  • the fourth downlink transmission submodule is configured to load the downlink data to be transmitted into the preset downlink data transmission unit for transmission.
  • the uplink information acquiring module includes:
  • the first uplink information acquisition sub-module is configured to obtain HARQ feedback information of the downlink data transmission in the specified uplink data transmission unit after a conversion delay;
  • the second uplink information acquiring submodule is configured to obtain uplink data from the remaining uplink data transmission resources.
  • the uplink information acquiring module includes:
  • the third uplink information acquisition submodule is configured to be specified after a conversion delay Obtaining HARQ feedback information of downlink data transmission in the uplink control information transmission unit;
  • the fourth uplink information acquiring submodule is configured to acquire uplink data from the preset uplink data transmission unit.
  • an apparatus for transmitting data which is provided in a user equipment, the apparatus comprising:
  • the control information obtaining module is configured to acquire downlink control information, where the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the downlink information obtaining module is configured to acquire downlink data and uplink allocation information according to the downlink control information
  • the uplink information sending module is configured to send the HARQ feedback information and the uplink data of the downlink data transmission to the base station by using the uplink resource indicated by the uplink allocation information after a transition delay;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • control information acquiring module acquires the downlink control information by using at least one of the following methods:
  • the downlink information acquiring module includes:
  • the first downlink information acquiring submodule is configured to obtain uplink allocation information from the preset uplink allocated resources of the target downlink information transmission unit;
  • the second downlink information obtaining submodule is configured to acquire downlink data from the remaining downlink data transmission resources.
  • the downlink information acquiring module includes:
  • the third downlink information obtaining submodule is configured to obtain uplink allocation information from the target downlink control information transmission unit;
  • the fourth downlink information obtaining submodule is configured to acquire downlink data from the preset downlink data transmission unit.
  • the uplink information sending module includes:
  • the first uplink sending sub-module is configured to: after a conversion delay, load the HARQ feedback information of the downlink data transmission into the downlink feedback resource in the target uplink data transmission unit for transmission;
  • the second uplink sending submodule is configured to send uplink data to the base station by using the remaining uplink data transmission resources.
  • the uplink information sending module includes:
  • the third uplink sending sub-module is configured to: after a conversion delay, load the HARQ feedback information of the downlink data transmission into the preset uplink control information transmission unit for transmission;
  • the fourth uplink sending submodule is configured to send uplink data to the base station by using a preset uplink data transmission unit.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of any of the methods of the first aspect described above.
  • a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the steps of any of the methods of any of the above second aspects.
  • an apparatus for transmitting data comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • Obtaining downlink control information of the to-be-scheduled frame where the downlink control information includes: at least: embedded resource configuration information of the to-be-scheduled frame;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • an apparatus for transmitting data comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • the method for transmitting data provided by the present disclosure, because the frame structure used includes at least one type of embedded resource configuration, that is, the uplink allocated resource is embedded in the downlink information transmission unit, and the uplink allocated resource is used to carry the downlink uplink allocation of the current frame.
  • the downlink feedback resource is sneaked into the uplink information transmission unit, and the downlink feedback resource is used to carry the HARQ feedback information of the downlink data transmission in the intra frame. Therefore, only one time from the downlink to the uplink scheduling conversion, one complete data transmission process on the data link can be completed through one data frame.
  • the uplink data can be obtained by the conversion delay, which can improve the transmission efficiency of the service data as a whole, and can effectively improve the transmission efficiency of the delay-sensitive service data and improve the user experience of the device.
  • FIG. 1 is a flow chart of a method of transmitting data, according to an exemplary embodiment.
  • 2-1 is a schematic diagram of a frame structure according to an exemplary embodiment of the present disclosure.
  • FIG. 2-2 is a schematic diagram of another frame structure according to an exemplary embodiment of the present disclosure.
  • 2-3 is a schematic diagram of another frame structure according to an exemplary embodiment of the present disclosure.
  • FIGS. 2-4 are schematic diagrams showing another frame structure according to an exemplary embodiment of the present disclosure.
  • FIGS. 2-5 are schematic diagrams showing another frame structure according to an exemplary embodiment of the present disclosure.
  • FIGS. 2-6 are schematic diagrams of a frame structure according to an exemplary embodiment of the related art.
  • FIG. 3 is a flow chart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • 3-1 is a flow chart of another method of transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 3-2 is a flowchart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • 4-1 is a flow chart of another method of transmitting data according to an exemplary embodiment of the present disclosure.
  • 4-2 is a flow chart of another method of transmitting data according to an exemplary embodiment of the present disclosure.
  • 5-1 is a flow chart of another method of transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 5-2 is a flowchart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a method for transmitting data according to an exemplary embodiment of the present disclosure.
  • 7-1 is a flow chart of another method of transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 7-2 is a flowchart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 8-1 is a flowchart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 8-2 is a flowchart of another method for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 9 is a block diagram of an apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 10 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 13 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 14 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 15 is a block diagram of an apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 16 is another apparatus for transmitting data according to an exemplary embodiment of the present disclosure. block diagram.
  • FIG. 17 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 18 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 19 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of an apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another apparatus for transmitting data according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word “if” as used herein may be interpreted to mean “when” or “when” or “in response to determining.”
  • the technical solution provided by the present disclosure is applicable to a 5G network.
  • the executor of the present disclosure includes: a base station and a user equipment (User Equipment, UE), where the base station is used for a base station, a sub base station, or a micro base station, which may be a large-scale antenna array, such as at a certain time.
  • a user terminal or the like as a temporary base station.
  • the user equipment UE may be a user terminal, a user node, a mobile terminal, or a tablet.
  • the base station and the user equipment are independent of each other, and are in contact with each other to jointly implement the technical solution provided by the present disclosure.
  • the present disclosure is applicable to an application scenario in which downlink service data and uplink service data are alternately transmitted on a data transmission link of a 5G network.
  • a frame in a data transmission link is composed of sequentially arranged basic information transmission units, including: an uplink information transmission unit and a downlink information transmission unit.
  • the basic information transmission unit may be: a symbol, a slot, a mini-slot, or the like. Wherein, one symbol occupies the shortest duration; the minislot may contain several symbols, such as 5 symbols; the time slot contains a number of symbols slightly larger than the number of symbols in the minislot, for example, a slot consists of 7 symbols, therefore, The duration of a slot is slightly longer than a microslot.
  • the uplink information transmission is performed by the user equipment to the base station, where the uplink information includes: uplink control information (UCI) and uplink service data.
  • the uplink control information includes at least: HARQ (Hybrid Automatic Repeat reQuest) feedback information.
  • the downlink information transmission refers to the transmission of information from the base station to the user equipment, where the downlink information includes: Downlink Control Information (DCI) and downlink service data.
  • the downlink control information includes: uplink and downlink resource scheduling information.
  • the uplink resource scheduling information includes: uplink allocation information for allocating uplink resources to the target UE.
  • the present disclosure provides a method of transmitting low-latency service data, which is applied to a base station.
  • a method for transmitting data according to an exemplary embodiment may be used. Includes the following steps:
  • the downlink control information of the to-be-scheduled frame is obtained, where the downlink control information includes at least: the embedded resource configuration information of the to-be-scheduled frame, where the embedded resource includes: embedded in the downlink information transmission unit, used And an uplink allocation resource that carries the uplink allocation information; and/or a downlink feedback resource that is embedded in the uplink data transmission unit and carries the HARQ feedback information of the downlink data transmission;
  • the downlink control information of a frame is used to inform the base station and the user equipment of the allocation of the downlink resources and the uplink resources in the frame, and to inform the base station and the user equipment of the specified location of the resource carrying the control information in the frame.
  • the downlink control information may include: a quantity of downlink information transmission units, conversion delay configuration information, an amount of uplink information transmission units, and embedded resource configuration information.
  • the conversion delay configuration information includes information such as a position and a duration of the conversion delay in the frame.
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit, and/or a downlink feedback resource embedded in an uplink information transmission unit.
  • the uplink allocated resource is used to carry the allocation information of the uplink resource in the current frame
  • the downlink feedback resource is used to carry the HARQ feedback information of the downlink data transmission in the frame.
  • the downlink control information is agreed in the 5G network protocol, for example, the following information in the downlink control information:
  • the frame structure length is constant, information such as the duration and number of downlink information transmission units, the location of the conversion delay, the duration and number of uplink information transmission units, and the like;
  • the configuration information of the embedded resource in the information transmission unit is the configuration information of the embedded resource in the information transmission unit.
  • the base station may obtain the downlink control information by using at least one of the following methods:
  • the first way obtaining from system broadcast signaling
  • the second mode is: obtaining from an upper layer control signaling of an RRC (Radio Resource Control);
  • the third mode is obtained from the downlink control transmission unit of each frame structure header; the third mode is particularly applicable to the case where the downlink control information needs to be configured in time.
  • the most-obtained downlink control information includes: configuration information of the embedded resource.
  • a novel frame structure is used for information transmission.
  • the frame structure includes: a plurality of downlink information transmission units, and one conversion.
  • Delay Gp several uplink information transmission units, wherein the downlink information transmission unit is divided into: downlink control information transmission unit Dc, downlink data transmission unit Dd; uplink information transmission unit is divided into: uplink data transmission unit Ud, uplink control information transmission Unit Uc.
  • one frame of the data link in the present disclosure can simultaneously implement downlink information transmission and uplink information transmission, including: downlink control information, downlink service data, uplink control information, and uplink service data transmission.
  • FIG. 3 is a flowchart of another method for transmitting data according to an exemplary embodiment.
  • the method may further include:
  • the target frame structure is determined according to the to-be-transmitted service, where the target frame includes at least: a downlink data transmission unit, a conversion delay, and an uplink data transmission unit.
  • the frame structure shown in FIG. 2-1 is not the default frame structure of the system, and needs to be selected according to the access network type of the user equipment and/or the type of service to be transmitted.
  • the selection of the above target frame structure may include the following two cases:
  • the target frame structure is determined according to the access network type of the user equipment.
  • step 10 may include:
  • a frame to be scheduled is determined according to a network type to which the service to be transmitted belongs;
  • the base station may determine the network type to which the service to be transmitted belongs according to the access network type of the user equipment, and then schedule the corresponding frame structure.
  • step 102 if the to-be-transmitted service belongs to a 5G network service, the target frame structure is determined.
  • the base station determines that the service data transmitted to a certain user equipment, such as UE1, belongs to the 5G service type, that is, the UE1 is currently accessing the 5G network, the base station prepares the scheduled target frame, and can simultaneously perform uplink and downlink service data transmission, and only needs After a transition from downlink to uplink, the target frame structure determined in step 102 is as shown in FIG. 2-1.
  • the target frame structure may also be determined according to the data type of the service data to be transmitted.
  • step 11 may include:
  • step 10-1 determining a data type of the service data to be transmitted
  • the base station may listen to service requests initiated by various user equipments, and determine a service type to be transmitted according to the service request of the user equipment.
  • the data type of the service data to be transmitted may be determined according to the device type of the user equipment that sends the request.
  • User equipment in a 5G network can be classified into the following types: eMBB (enhanced Mobile Broad Band), mMTC (massive machine type communication), and URLLC (Ultra Reliable Low Latency Communication). Delay communication) and other types.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive machine type communication
  • URLLC Ultra Reliable Low Latency Communication
  • the NR base station After receiving the service request sent by the URLLC device, the NR base station may determine that the service data to be transmitted belongs to the delay sensitive service data.
  • step 10-2 if the to-be-transmitted service data belongs to delay-sensitive service data, the target frame structure is determined.
  • the system can preset the frame structure corresponding to different service types, for example, the URLLC with the lowest latency requirement.
  • the device corresponds to the frame structure shown in Figure 2-1 with the symbol as the basic information transmission unit.
  • step 10 is not limited to the above two situations.
  • it may also be a combination of the foregoing two situations: first, determining the type of access network of the user equipment, and after determining that it belongs to the 5G network, further After determining that the to-be-transmitted service belongs to the delay-sensitive service, it is determined to use the frame structure shown in Figure 2-1.
  • step 11 above may be performed, that is, acquiring downlink control information of the target frame.
  • step 12 according to the downlink control information, scheduling downlink information transmission unit transmission downlink data and uplink allocation information of the current frame;
  • the uplink allocation information is used to indicate the uplink resource scheduling situation in the same frame, and the uplink allocation information may include: information about the number of uplink information transmission units allocated in the frame, and the embedded location of the downlink feedback resource.
  • the uplink allocation information needs to be loaded in the preset downlink information transmission unit, and is sent to the user equipment through the downlink data link, so that the user equipment uses the uplink resource in the current frame to transmit the uplink information according to the uplink allocation information.
  • the foregoing step 12 may include the following two implementation manners:
  • the uplink allocation information is embedded in a downlink information transmission unit.
  • the foregoing step 12 may include:
  • step 1211 the uplink allocation information of the current frame is loaded into the preset uplink allocation resource of the target downlink information transmission unit for transmission;
  • the base station may load the uplink allocation information of the current frame into any target downlink information transmission unit and send the information to the user equipment.
  • the target downlink information transmission unit may be any downlink data transmission unit Dd. Medium, as shown in Figure 2-1, 2-2, and 2-5.
  • the uplink allocation information may be loaded into the preset uplink allocation resource Dc 0 in the Dd corresponding to the symbol 3.
  • the target downlink information transmission unit may also be the downlink control information transmission unit Dc located at the frame header.
  • the uplink allocation information may be loaded into the preset uplink allocation resource Dc 0 in the Dc corresponding to the symbol 0. This disclosure does not limit this.
  • step 1212 the downlink data to be transmitted is loaded into the remaining downlink data transmission resources for transmission.
  • the downlink data is transmitted by using the remaining downlink data transmission resources.
  • the downlink data transmission resource corresponding to symbol 3 and the downlink data transmission resource corresponding to symbols 1, 2, and 4 are used for downlink data transmission.
  • the downlink data is transmitted by using the preset downlink data transmission unit.
  • the base station can perform downlink data transmission by using downlink data transmission units corresponding to symbols 1, 2, 3, and 4.
  • the downlink data here refers to the normal service data that is sent to the user equipment, and does not include the control information.
  • the uplink allocation information occupies one downlink control information transmission unit for transmission.
  • uplink allocation information may separately occupy one downlink control information transmission unit Dc, such as symbol 4, for transmission.
  • FIG. 4 is a flowchart of another method for transmitting data according to an exemplary embodiment.
  • the foregoing step 12 may include:
  • step 1221 the uplink allocation information of the current frame is loaded into the target downlink control information transmission unit for transmission;
  • the base station may be configured to load the uplink allocation information of the current frame into a preset downlink control information transmission unit, that is, the target downlink control information transmission unit, and send the information to the user equipment.
  • a preset downlink control information transmission unit that is, the target downlink control information transmission unit
  • the disclosure does not limit the location of the target downlink control information transmission unit, for example, may be the last downlink information transmission unit before the conversion delay Gp. As shown in Figure 2-4, symbol 4 corresponds to the target downlink control information transmission unit.
  • step 1222 the downlink data to be transmitted is loaded into a preset downlink data transmission unit for transmission.
  • the base station transmits the downlink data into the downlink data transmission unit Dd corresponding to the symbols 1, 2, and 3.
  • the base station may transmit downlink information to the user equipment by using the foregoing two implementation manners, where the downlink information may include: downlink data and uplink allocation information of the current frame.
  • the user equipment may feed back the HARQ information of the downlink data transmission according to the uplink allocation information, and transmit the uplink data.
  • step 13 after a transition delay, the HARQ feedback information and the uplink data of the downlink data transmission are obtained from the uplink information transmission unit according to the uplink allocation information.
  • the downlink data transmission refers to downlink data transmission by using a downlink data transmission unit in the current frame.
  • both the downlink information transmission unit and the uplink information transmission unit are included, and one uplink and downlink conversion delay is interposed in the middle.
  • a complete data transmission process refers to: after performing downlink data transmission, receiving HARQ feedback information of the downlink data transmission to determine whether the user equipment successfully acquires data.
  • a complete data transmission process refers to: first acquiring uplink allocation information, and then transmitting uplink data to the base station by using the uplink resource indicated by the uplink allocation information.
  • the implementation manner of the foregoing step 13 may also include two types:
  • step 13 may include the following steps:
  • step 1311 after a transition delay, the HARQ feedback information of the downlink data transmission is obtained in the specified uplink data transmission unit;
  • the downlink feedback resource Uc 0 for carrying the HARQ feedback information of the downlink data transmission may be embedded in the conversion delay Gp.
  • the downlink feedback resource Uc 0 is embedded in the uplink data transmission unit Ud corresponding to the symbol 5.
  • step 1312 uplink data is obtained from the remaining uplink data transmission resources.
  • the base station After acquiring the HARQ feedback information of the downlink data transmission according to the embedded configuration information of the downlink feedback resource, the base station may obtain the uplink data from the remaining resources of the first uplink data transmission unit and the subsequent uplink data transmission unit.
  • the base station may obtain uplink data from the remaining uplink data transmission resources corresponding to the symbol 5 and the uplink data transmission units corresponding to the symbols 6, 7, and 8.
  • step 13 may include the following steps:
  • step 1321 after a transition delay, the HARQ feedback information of the downlink data transmission is obtained in the designated uplink control information transmission unit;
  • the first uplink information transmission unit after the conversion delay may be used as the uplink control information transmission unit for transmitting the HARQ feedback information, and the subsequent uplink information transmission unit may be used. Used as an uplink data transmission unit.
  • FIG. 2 is a schematic diagram of another frame structure according to an exemplary embodiment.
  • the base station may obtain HARQ feedback of downlink data transmission from an uplink control information transmission unit corresponding to symbol 5 after the conversion delay Gp. information.
  • step 1322 uplink data is acquired from a preset uplink data transmission unit.
  • the base station can obtain uplink data from the uplink data transmission units corresponding to the symbols 6, 7, and 8.
  • the base station can complete a complete downlink data transmission process and a complete uplink data transmission process through one data frame.
  • a complete downlink data transmission process and a complete uplink data acquisition process can be completed by using one data frame, and only one uplink and downlink conversion delay is required, without affecting the acquisition downlink.
  • the delay caused by the uplink and downlink switching is effectively shortened, and the information transmission efficiency is improved.
  • a method for transmitting data for use in a user equipment.
  • the method may include the following steps:
  • step 21 the downlink control information is obtained, where the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • the user equipment may obtain downlink control information by using at least one of the following methods:
  • the downlink control information is obtained from the broadcast signaling sent by the base station, for example, the system configuration information of the system broadcast. Applicable to 5G networks in the application scenario where the same frame structure is used in the data transmission channel.
  • the third method is obtained from a downlink control transmission unit located at a frame header, that is, the downlink control information is stored in a first downlink control information transmission unit of each frame structure. Applicable to the case where each frame structure needs to be configured according to the size of the data to be transmitted.
  • Manner 4 Obtained from physical layer control signaling of other physical downlink control channel PDCCH.
  • step 22 the downlink data and the uplink allocation information are acquired according to the downlink control information
  • the user equipment After acquiring the downlink control information, the user equipment performs downlink data reception according to the downlink resource scheduling information.
  • the first embodiment corresponds to the first implementation manner of the foregoing step 12, that is, the downlink control information includes embedded configuration information of the uplink allocation information.
  • the foregoing step 22 may include:
  • step 2211 the uplink allocation information is obtained from the preset uplink allocation resource of the target downlink information transmission unit;
  • the uplink allocation information is obtained therefrom. , as shown in Figure 2-3.
  • the uplink allocation information is obtained, as shown in the figure. 2-1, 2-2, 2-5.
  • step 2212 downlink data is obtained from the remaining downlink data transmission resources.
  • the downlink data is obtained from the downlink data transmission unit, and as shown in FIG. 2-3, the downlink data is obtained from the downlink data transmission units corresponding to the symbols 1, 2, 3, and 4 that arrive in sequence.
  • the downlink data is obtained from the remaining downlink data transmission resources. That is, the downlink data is obtained from the remaining resources of the target downlink data transmission unit and other downlink data transmission units, as shown in FIGS. 2-1, 2-2, and 2-5. As shown in FIG. 2-5, the downlink data is obtained from the downlink data transmission units corresponding to the symbols 1, 2, and 3, and the downlink data is obtained from the partial downlink data transmission resources corresponding to the symbol 4.
  • the second implementation manner corresponding to the second implementation manner of the foregoing step 12, that is, the downlink control information includes: the uplink allocation information separately occupies one downlink control information transmission unit, as shown in FIG. 2-4, the symbol 4 is used as A downlink control information transmission unit that separately carries uplink allocation information Dc 0 .
  • FIG. 7-2 is a flowchart of another method for transmitting data according to an exemplary embodiment.
  • the foregoing step 22 may include:
  • step 2221 uplink allocation information is obtained from a target downlink control information transmission unit
  • step 2222 downlink data is acquired from a preset downlink data transmission unit.
  • the UE may obtain downlink data from the downlink data transmission unit Dd corresponding to the symbols 1, 2, and 3, and acquire uplink allocation information from the downlink control information transmission unit Dc corresponding to the symbol 4.
  • step 23 after a transition delay, the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station.
  • step 23 may also include the following two implementation manners according to different configurations of downlink feedback resources:
  • the first embodiment corresponds to the first implementation manner of the foregoing step 13, that is, the downlink feedback resource is embedded in an uplink data transmission unit, as shown in FIG. 2-1 to FIG.
  • FIG. 8-1 is a flowchart of another method for transmitting data according to an exemplary embodiment.
  • the foregoing step 23 may include:
  • step 2311 after a transition delay, the HARQ feedback information of the downlink data transmission is loaded into the downlink feedback resource in the target uplink data transmission unit for transmission;
  • the user equipment After receiving the downlink data on the downlink data transmission link, the user equipment generates HARQ feedback information, including: ACK information and NACK information, according to whether the downlink data is successfully received. Then, the foregoing HARQ feedback information, such as ACK information, is loaded into the downlink feedback resource in the target uplink data transmission unit, for example, in the preset downlink feedback resource of the first uplink data transmission unit, and sent to the base station. Exemplarily, as shown in FIG.
  • the downlink data corresponding to the symbols 1, 2, and 3 is loaded, if If the receiving is successful, the information ACK is determined to be loaded into the downlink feedback resource Uc 0 in the symbol 5, and fed back to the base station.
  • step 2312 uplink data is transmitted to the base station using the remaining uplink data transmission resources.
  • the remaining uplink data transmission resource includes: a remaining resource in the first uplink data transmission unit and other uplink data transmission units.
  • the uplink data is loaded into the uplink resource corresponding to the symbol 5 and the uplink data transmission unit corresponding to the symbols 6, 7, and 8 is transmitted to the base station.
  • the second embodiment corresponds to the second implementation manner of the foregoing step 13, that is, the downlink feedback resource is embedded in an uplink data transmission unit.
  • FIG. 8-2 is a flowchart of another method for transmitting data according to an exemplary embodiment.
  • the foregoing step 23 may include:
  • step 2321 after a transition delay, the HARQ feedback information of the downlink data transmission is loaded into the preset uplink control information transmission unit for transmission;
  • the HARQ feedback information can occupy one uplink information transmission unit separately, which is called the uplink control information transmission unit.
  • the uplink control information transmission unit may be used as the first uplink information transmission unit after the conversion delay, as shown in FIG. 2-5, and the symbol 5 after the Gp is corresponding.
  • the uplink information transmission unit is used as an uplink control information transmission unit that carries HARQ feedback information for downlink data transmission.
  • step 2322 uplink data is transmitted to the base station by using a preset uplink data transmission unit.
  • the uplink data is transmitted to the base station by using the uplink data transmission unit corresponding to the symbols 6, 7, and 8.
  • the user equipment can complete the complete receiving process of the downlink data in one data frame, and can complete the transition after the transition from the downlink to the uplink.
  • the complete transmission process of one uplink data can be seen that, by using the method for transmitting data provided by the disclosure.
  • only one complete data transmission can be realized in one data frame, and the user equipment needs to complete at least two data frames to complete the transmission process of the above two complete data, and wait for at least two uplink and downlink conversion delays, such as 2-6 are schematic diagrams showing continuous uplink and downlink data transmission according to an exemplary embodiment, where the first frame is used to complete a complete downlink data transmission, and needs to wait until A conversion delay Gp; followed by a second frame to complete an uplink data transmission, also needs to wait for a conversion delay.
  • the method for transmitting data can effectively shorten the uplink and downlink conversion delay without affecting the timeliness of HARQ information feedback of downlink data transmission, and can also complete two complete data by using one data frame.
  • the transmission process effectively improves the data transmission efficiency, and in particular, can effectively improve the transmission efficiency of the delay-sensitive service data and improve the user experience of the device.
  • the present disclosure also provides an application function implementation apparatus and an embodiment of a corresponding terminal.
  • FIG. 9 is a block diagram of a device for transmitting data according to an exemplary embodiment, which is disposed in a base station, where the device includes:
  • the control information obtaining module 31 is configured to obtain downlink control information of the to-be-scheduled frame, where the downlink control information includes at least: embedded resource configuration information of the to-be-scheduled frame;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • the downlink information transmission module 32 is configured to schedule downlink information transmission unit to transmit downlink data and uplink allocation information of the current frame according to the downlink control information;
  • the uplink information obtaining module 33 is configured to obtain the HARQ feedback information and the uplink data of the downlink data transmission from the uplink information transmission unit according to the uplink allocation information after a transition delay.
  • FIG. 10 Another device block diagram for transmitting data according to an exemplary embodiment is shown in FIG. 10, Based on the device embodiment shown in FIG. 9, the device may further include:
  • the frame structure determining module 30 is configured to determine a target frame structure according to the to-be-transmitted service, where the target frame includes at least: a downlink data transmission unit, a conversion delay, and an uplink data transmission unit.
  • FIG. 11 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present invention.
  • the downlink information transmission module 32 may include:
  • the first downlink transmission sub-module 3211 is configured to load the uplink allocation information of the current frame into the preset uplink allocation resource of the target downlink information transmission unit for transmission;
  • the second downlink transmission sub-module 3212 is configured to load the downlink data to be transmitted into the remaining downlink data transmission resources for transmission.
  • FIG. 12 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present invention.
  • the downlink information transmission module 32 may include:
  • the third downlink transmission sub-module 3201 is configured to load the uplink allocation information of the current frame into the target downlink control information transmission unit for transmission;
  • the fourth downlink transmission sub-module 3202 is configured to load the downlink data to be transmitted into a preset downlink data transmission unit for transmission.
  • the uplink information acquiring module 33 may include:
  • the first uplink information acquisition sub-module 3311 is configured to obtain HARQ feedback information of the downlink data transmission in the specified uplink data transmission unit after a conversion delay;
  • the second uplink information acquisition sub-module 3312 is configured to acquire uplink data from the remaining uplink data transmission resources.
  • FIG. 14 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present invention.
  • the uplink information acquiring module 33 may include:
  • the third uplink information acquisition sub-module 3301 is configured to obtain HARQ feedback information of the downlink data transmission in the designated uplink control information transmission unit after a conversion delay;
  • the fourth uplink information obtaining submodule 3302 is configured to be configured from a preset uplink data transmission unit. Get the upstream data.
  • FIG. 15 is a block diagram of a device for transmitting data according to an exemplary embodiment, and the device may include:
  • the control information obtaining module 41 is configured to acquire downlink control information, where the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • control information acquiring module 41 may obtain the downlink control information by using at least one of the following methods:
  • the downlink information obtaining module 42 is configured to acquire downlink data and uplink allocation information according to the downlink control information;
  • the uplink information sending module 43 is configured to send the HARQ feedback information and the uplink data of the downlink data transmission to the base station by using the uplink resource indicated by the uplink allocation information after a transition delay.
  • the downlink information acquiring module 42 may include:
  • the first downlink information acquisition sub-module 4211 is configured to obtain uplink allocation information from the preset uplink allocation resources of the target downlink information transmission unit;
  • the second downlink information acquisition sub-module 4212 is configured to acquire downlink data from the remaining downlink data transmission resources.
  • the downlink information obtaining module 42 may include:
  • the third downlink information obtaining submodule 4201 is configured to obtain uplink allocation information from the target downlink control information transmission unit;
  • the fourth downlink information obtaining submodule 4202 is configured to acquire downlink data from the preset downlink data transmission unit.
  • FIG. 18 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present invention.
  • the uplink information sending module 43 may include:
  • the first uplink sending sub-module 4311 is configured to: after a conversion delay, load the HARQ feedback information of the downlink data transmission into the downlink feedback resource in the target uplink data transmission unit for transmission;
  • the second uplink sending submodule 4312 is configured to send uplink data to the base station by using the remaining uplink data transmission resources.
  • FIG. 19 is a block diagram of another apparatus for transmitting data according to an exemplary embodiment of the present invention.
  • the uplink information sending module 43 may include:
  • the third uplink sending submodule 4301 is configured to: after a conversion delay, load the HARQ feedback information of the downlink data transmission into the preset uplink control information transmission unit for transmission;
  • the fourth uplink sending submodule 4302 is configured to send uplink data to the base station by using a preset uplink data transmission unit.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • an apparatus for transmitting data comprising:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • Obtaining downlink control information of the to-be-scheduled frame where the downlink control information includes: at least: embedded resource configuration information of the to-be-scheduled frame;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • an apparatus for transmitting data including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the downlink control information includes at least: embedded resource configuration information of a frame structure;
  • the uplink resource indicated by the uplink allocation information sends the HARQ feedback information and the uplink data of the downlink data transmission to the base station;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit and used for carrying uplink allocation information; and/or embedded in an uplink data transmission unit for carrying HARQ feedback information of downlink data transmission. Downstream feedback resources.
  • FIG. 20 is a schematic structural diagram of an apparatus 2000 for transmitting data according to an exemplary embodiment.
  • Apparatus 2000 can be provided as a base station.
  • the apparatus 2000 includes a processing component 2022, a wireless transmit/receive component 2024, an antenna component 2026, and a signal processing portion specific to the wireless interface.
  • the processing component 2022 can One step includes one or more processors.
  • One of the processing components 2022 can be configured to:
  • Obtaining downlink control information of the to-be-scheduled frame where the downlink control information includes: at least: embedded resource configuration information of the to-be-scheduled frame;
  • the embedded resource includes: an uplink allocated resource embedded in a downlink information transmission unit for carrying uplink allocation information; and/or a hybrid automatic retransmission embedded in an uplink data transmission unit for carrying downlink data transmission.
  • a downlink feedback resource requesting HARQ feedback information.
  • non-transitory computer readable storage medium comprising instructions stored thereon with computer instructions executable by processing component 2022 of apparatus 2000 to complete FIGS. 1-5-2 Any of the methods of transmitting data.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 21 is a schematic structural diagram of an apparatus 2100 for transmitting data according to an exemplary embodiment.
  • the device 2100 may be a terminal, and may specifically be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a wearable device such as a smart watch, smart glasses. , smart bracelets, smart running shoes, etc.
  • device 2100 can include one or more of the following components: processing component 2102, memory 2104, power component 2106, multimedia component 2108, audio component 2110, input/output (I/O) interface 2112, sensor component 2114, And a communication component 2116.
  • Processing component 2102 typically controls the overall operation of device 2100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 2102 can include one or more processors 2120 to execute instructions to perform all or part of the steps described above.
  • processing component 2102 can include one or more modules to facilitate interaction between component 2102 and other components.
  • the processing component 2102 can include a multimedia module to facilitate interaction between the multimedia component 2108 and the processing component 2102.
  • the memory 2104 is configured to store various types of data to support operation at the device 2100. Examples of such data include instructions for any application or method operating on device 2100, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 2104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 2106 provides power to various components of device 2100.
  • Power component 2106 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 2100.
  • the multimedia component 2108 includes a screen between the above-described device 2100 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor described above may sense not only the boundary of the touch or slide action but also the duration and pressure associated with the touch or slide operation described above.
  • the multimedia component 2108 includes a front camera and/or a rear camera. When the device 2100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 2110 is configured to output and/or input an audio signal.
  • the audio component 2110 includes a microphone (MIC) that is configured to receive an external audio signal when the device 2100 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 2104 or transmitted via communication component 2116.
  • the audio component 2110 also includes a speaker for outputting an audio signal.
  • the I/O interface 2112 provides an interface between the processing component 2102 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 2114 includes one or more sensors for providing a status assessment of various aspects to device 2100.
  • the sensor assembly 2114 can detect an open/closed state of the device 2100, the relative positioning of the components, such as the display and the keypad of the device 2100, and the sensor assembly 2114 can also detect a change in position of a component of the device 2100 or device 2100, The presence or absence of user contact with device 2100, device 2100 orientation or acceleration/deceleration and temperature change of device 2100.
  • Sensor assembly 2114 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 2114 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2116 is configured to facilitate wired or wireless communication between device 2100 and other devices.
  • the device 2100 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 2116 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 2116 described above also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 2100 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 2104 comprising instructions that are executable by the device 2100
  • the processor 2120 executes to perform the above method of transmitting data.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输数据的方法及装置,其中,所述方法包括:获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。采用本公开提供的传输数据的方法,可以有效缩短业务数据的传输时延。

Description

传输数据的方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种传输数据的方法及装置。
背景技术
随着无线通信技术的发展,移动通信网络逐渐向5G即NR(New Radio)网络演进。5G网络在数据传输速率、覆盖、时延、容量等方面的能力有很大提升,可以应用于宽带连接、物联网、车联网、广域覆盖等诸多领域。
关于5G网络数据的传输,为了缩短一次完整数据传输的传输时延,NR系统引入了自包含机制,即在一个帧结构内,可以实现一次完整的数据传输过程。相关技术中,在使用一个帧完成一次完整的下行数据传输过程时,每一组下行数据传输结束后,需要调度一个上行控制信息传输单位,用于传输刚完成的下行数据传输的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈信息,期间需要设置一个上下行转换时延,以使系统有时间完成从下行到上行的调度转换。类似的,在使用一个帧完成一次完整的上行数据传输过程时,首先需要调度一个下行控制信息传输单位,用于向用户设备发送上行分配信息,该帧结构中也需要设置一个上下行转换时延,以使系统有时间完成从下行到上行的调度转换,然后用户设备利用上述上行分配信息指示的一组上行数据传输单位进行上行数据传输。
根据相关技术,系统若要实现连续的上下行数据传输,需要使用两个数据帧,花销两次转换时延,导致整体业务数据的传输时延较长,影响了数据传输效率,用户体验有待提高。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种传输数据的方法和装置,缩短业务数据的传输时延。
根据本公开实施例的第一方面,提供一种传输数据的方法,应用于基站,所述方法包括:
获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
可选地,在所述获取待调度帧的下行控制信息之前,所述方法还包括:
根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
可选地,所述根据下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息,包括:
将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
将待传输下行数据载入剩余下行数据传输资源中进行传输。
可选地,所述根据下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息,包括:
将本帧的上行分配信息载入目标下行控制信息传输单位中进行传 输;
将待传输下行数据载入预设下行数据传输单位中进行传输。
可选地,所述经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取所述下行数据传输的HARQ反馈信息和上行数据,包括:
经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
从剩余上行数据传输资源中获取上行数据。
可选地,所述经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取所述下行数据传输的HARQ反馈信息和上行数据,包括:
经过一个转换时延后,在指定的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
从预设上行数据传输单位中获取上行数据。
根据本公开实施例的第二方面,提供了一种传输数据的方法,应用于用户设备中,所述方法包括:
获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
根据所述下行控制信息获取下行数据和上行分配信息;
经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
可选地,采用以下至少一种方式获取所述下行控制信息:
从系统广播信令中获取;
从无线资源控制RRC上层控制信令中获取;
从本帧头部的下行控制信息传输单位中获取;
从物理下行控制信道的物理层控制信令中获取。
可选地,所述根据所述下行控制信息获取下行数据和上行分配信息,包括:
从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
从剩余下行数据传输资源中获取下行数据。
可选地,所述根据所述下行控制信息获取下行数据和上行分配信息,包括:
从目标下行控制信息传输单位中获取上行分配信息;
从预设下行数据传输单位中获取下行数据。
可选地,经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据,包括:
经过一个转换时延之后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
利用剩余上行数据传输资源向基站发送上行数据。
可选地,经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据,包括:
经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
通过预设上行数据传输单位向基站发送上行数据。
根据本公开实施例的第三方面,提供了一种传输数据的装置,设置于基站中,所述装置包括:
控制信息获取模块,被配置为获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
下行信息传输模块,被配置为根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
上行信息获取模块,被配置为经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
可选的,所述装置还包括:
帧结构确定模块,被配置为根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
可选的,所述下行信息传输模块包括:
第一下行传输子模块,被配置为将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
第二下行传输子模块,被配置为将待传输下行数据载入剩余下行数据传输资源中进行传输。
可选的,所述下行信息传输模块包括:
第三下行传输子模块,被配置为将本帧的上行分配信息载入目标下行控制信息传输单位中进行传输;
第四下行传输子模块,被配置为将待传输下行数据载入预设下行数据传输单位中进行传输。
可选的,所述上行信息获取模块包括:
第一上行信息获取子模块,被配置为经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
第二上行信息获取子模块,被配置为从剩余上行数据传输资源中获取上行数据。
可选的,所述上行信息获取模块包括:
第三上行信息获取子模块,被配置为经过一个转换时延后,在指定 的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
第四上行信息获取子模块,被配置为从预设上行数据传输单位中获取上行数据。
根据本公开实施例的第四方面,提供了一种传输数据的装置,设置于用户设备中,所述装置包括:
控制信息获取模块,被配置为获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
下行信息获取模块,被配置为根据所述下行控制信息获取下行数据和上行分配信息;
上行信息发送模块,被配置为经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
可选的,所述控制信息获取模块采用以下至少一种方式获取所述下行控制信息:
从系统广播信令中获取;
从无线资源控制RRC上层控制信令中获取;
从本帧头部的下行控制信息传输单位中获取;
从物理下行控制信道的物理层控制信令中获取。
可选的,所述下行信息获取模块包括:
第一下行信息获取子模块,被配置为从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
第二下行信息获取子模块,被配置为从剩余下行数据传输资源中获取下行数据。
可选的,所述下行信息获取模块包括:
第三下行信息获取子模块,被配置为从目标下行控制信息传输单位中获取上行分配信息;
第四下行信息获取子模块,被配置为从预设下行数据传输单位中获取下行数据。
可选的,所述上行信息发送模块包括:
第一上行发送子模块,被配置为经过一个转换时延之后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
第二上行发送子模块,被配置为利用剩余上行数据传输资源向基站发送上行数据。
可选的,所述上行信息发送模块包括:
第三上行发送子模块,被配置为经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
第四上行发送子模块,被配置为通过预设上行数据传输单位向基站发送上行数据。
根据本公开实施例的第五方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第一方面任一所述方法的步骤。
根据本公开实施例的第六方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现上述第二方面任一所述方法的步骤。
根据本公开实施例的第七方面,提供了一种传输数据的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
根据本公开实施例的第八方面,提供了一种传输数据的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
根据所述下行控制信息获取下行数据和上行分配信息;
经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
本公开的实施例提供的技术方案可以包括以下有益效果:
采用本公开提供的传输数据的方法,由于使用的帧结构中至少包括一种嵌入资源配置方式,即在下行信息传输单位中嵌入上行分配资源,该上行分配资源用于承载下行的本帧上行分配信息;和/或,在上行信息传输单位中潜入下行反馈资源,该下行反馈资源用于承载本帧内下行数据传输的HARQ反馈信息。因此,仅需要一次从下行到上行的调度转换,就可以通过一个数据帧可以完成数据链路上两个完整数据传输过程。对于基站而言,在不影响获取下行数据传输的HARQ反馈信息的基础上,只需经过一 个转换时延即可获取上行数据,可以整体提高业务数据的传输效率,尤其是可以有效提高时延敏感业务数据的传输效率,提升设备的用户体验。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种传输数据的方法流程图。
图2-1是本公开根据一示例性实施例示出的一种帧结构示意图。
图2-2是本公开根据一示例性实施例示出的另一种帧结构示意图。
图2-3是本公开根据一示例性实施例示出的另一种帧结构示意图。
图2-4是本公开根据一示例性实施例示出的另一种帧结构示意图。
图2-5是本公开根据一示例性实施例示出的另一种帧结构示意图。
图2-6是相关技术中根据一示例性实施例示出的一种帧结构示意图。
图3是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图3-1是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图3-2是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图4-1是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图4-2是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图5-1是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图5-2是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图6是本公开根据一示例性实施例示出的一种传输数据的方法流程图。
图7-1是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图7-2是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图8-1是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图8-2是本公开根据一示例性实施例示出的另一种传输数据的方法流程图。
图9是本公开根据一示例性实施例示出的一种传输数据的装置框图。
图10是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图11是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图12是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图13是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图14是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图15是本公开根据一示例性实施例示出的一种传输数据的装置框图。
图16是本公开根据一示例性实施例示出的另一种传输数据的装置 框图。
图17是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图18是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图19是本公开根据一示例性实施例示出的另一种传输数据的装置框图。
图20是本公开根据一示例性实施例示出的一种用于传输数据的装置的一结构示意图。
图21是本公开根据一示例性实施例示出的另一种用于传输数据的装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境, 如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开提供的技术方案适用于5G网络。本公开中涉及的执行主体包括:基站和用户设备(User Equipment,UE),其中,基站用于可以是设置有大规模天线阵列的基站、子基站,还可以是微基站,比如在某一时段作为临时基站的用户终端等。用户设备UE可以是用户终端、用户节点、移动终端或平板电脑等。在具体实现过程中,基站和用户设备各自独立,同时又相互联系,共同实现本公开提供的技术方案。
本公开适用于在5G网络的数据传输链路上,交替传输下行业务数据和上行业务数据的应用场景。
在5G网络的TDD(Time Division Duplexing,时分双工)系统中,数据传输链路中的一帧由顺序排列的基本信息传输单位组成,包括:上行信息传输单位和下行信息传输单位。其中,上述基本信息传输单位可以是:符号、时隙slot、微时隙mini-slot等。其中,一个符号占用的时长最短;微时隙可以包含若干符号,比如5个符号;时隙包含的符号数量稍大于微时隙中的符号数量,比如,一个slot由7个符号组成,因此,一个slot的时长比一个微时隙稍长。
本公开实施例中,上行信息传输是指从用户设备向基站发送信息,其中,上行信息包括:上行控制信息(Uplink Control Information,UCI)、上行业务数据。所述上行控制信息至少包括:HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈信息。
下行信息传输是指从基站向用户设备传输信息,其中下行信息包括:下行控制信息(Downlink Control Information,DCI)、下行业务数据。所述下行控制信息包括:上下行资源调度信息。其中,上行资源调度信息包括:为目标UE分配上行资源的上行分配信息。
基于此,本公开提供了一种传输的低时延业务数据的方法,应用于基站中。参照图1根据一示例性实施例示出的一种传输数据的方法,可以 包括以下步骤:
在步骤11中,获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息,其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源;
一个帧的下行控制信息用于告知基站和用户设备该帧内的下行资源和上行资源的分配情况,以及告知基站和用户设备承载控制信息的资源在该帧中的指定位置等信息。
该下行控制信息可以包括:下行信息传输单位的数量、转换时延配置信息、上行信息传输单位的数量、嵌入资源配置信息。
其中,上述转换时延配置信息包括:转换时延在该帧中的位置、时长等信息。
嵌入资源包括:嵌入在下行信息传输单位中的上行分配资源,和/或,嵌入在上行信息传输单位中的下行反馈资源。上述上行分配资源用于承载本帧中上行资源的分配信息;下行反馈资源用于承载本帧内下行数据传输的HARQ反馈信息。
其中,若下行控制信息中的某些信息是5G网络协议中约定好的,例如,下行控制信息中的以下信息:
帧结构的长度;
转换时延的时长;
在帧结构长度不变的情况下,下行信息传输单位的时长和数量、转换时延的位置、上行信息传输单位的时长和数量等信息;
在帧结构长度不变的情况下,上下行信息传输单位的配比关系;
嵌入资源在信息传输单位中的配置信息。
根据上述信息是否需要实时配置,基站可以采用以下至少一种方式获取上述下行控制信息:
第一种方式:从系统广播信令中获取;
第二种方式:从RRC(Radio Resource Control,无线资源控制协议)上层控制信令中获取;
第三种方式:从每个帧结构头部的下行控制传输单位中获取;第三种方式尤其适用于上述下行控制信息需要适时配置的情况。
本公开实施例中,基站在使用上述帧结构之前,最主要获取的下行控制信息包括:嵌入资源的配置信息。
本公开实施例中,采用一种新型帧结构进行信息传输,参照图2-1根据一示例性实施例示出的一种帧结构示意图,该帧结构中包括:若干个下行信息传输单位、一个转换时延Gp、若干个上行信息传输单位,其中,下行信息传输单位分为:下行控制信息传输单位Dc、下行数据传输单位Dd;上行信息传输单位分为:上行数据传输单位Ud、上行控制信息传输单位Uc。
也就是说,本公开中数据链路的一帧可以同时实现下行信息传输和上行信息传输,包括:下行控制信息、下行业务数据、上行控制信息、上行业务数据的传输。
参照图3根据一示例性实施例示出的另一种传输数据的方法流程图,在本公开另一实施例中,在步骤11之前,所述方法还可以包括:
在步骤10中,根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
即,上述图2-1所示的帧结构并不是系统默认的帧结构,需要根据用户设备的接入网络类型和/或待传输业务类型进行选择。
本公开中,上述目标帧结构的选择可以包括以下两种情况:
第一种情况,根据用户设备的接入网络类型确定目标帧结构。
参照图3-1根据一示例性实施例示出的另一种传输数据的方法,上述步骤10可以包括:
在步骤101中,根据待传输业务所属的网络类型确定待调度帧;
本公开一实施例中,若基站同时支持3G、4G、5G网络业务,基站可以用户设备的接入网络类型,确定待传输业务所属的网络类型,进而调度对应的帧结构。
在步骤102中,若所述待传输业务属于5G网络业务,确定所述目标帧结构。
当基站确定向某一用户设备比如UE1传输的业务数据属于5G业务类型,也就是说UE1当前接入5G网络中,则基站准备调度的目标帧,可以同时进行上下行业务数据传输,并且只需经过一次从下行到上行的转换,即步骤102确定的目标帧结构如图2-1所示。
第二种情况,假设所有的用户设备均属于5G网络设备,还可以根据待传输业务数据的数据类型,确定目标帧结构。
参照图3-2根据一示例性实施例示出的另一种传输数据的方法,上述步骤11可以包括:
在步骤10-1中,确定待传输业务数据的数据类型;
本公开实施例中,基站可以监听各种用户设备发起的业务请求,根据用户设备的业务请求确定待传输业务类型。比如,可以根据发送请求的用户设备的设备类型,确定待传输业务数据的数据类型。
5G网络中的用户设备可以分为以下类型:eMBB(enhanced Mobile Broad Band,增强移动宽带)、mMTC(massive Machine Type Communication,海量机器类通信)、URLLC(Ultra Reliable Low Latency Communication,超高可靠低时延通信)等类型。
当基站接收到URLLC设备发送的业务请求后,NR基站可以确定待传输业务数据属于时延敏感业务数据。
在步骤10-2中,若所述待传输业务数据属于时延敏感业务数据,确定目标帧结构。
本公开中,不同业务类型的数据对传输时延的要求也不同。系统可以预先设置不同业务类型对应的帧结构,比如,低时延要求最高的URLLC 设备对应使用图2-1所示的、以符号为基本信息传输单位的帧结构。
此处需要说明的是,步骤10的实施并不限于以上两种情况,比如,还可以是上述两种情况的综合:首先判断用户设备的接入网络类型,在确定属于5G网络之后,再进一步确定待传输业务属于时延敏感业务之后,确定使用图2-1所示的帧结构。
在根据步骤10确定目标帧结构之后,可以执行上述步骤11,即获取目标帧的下行控制信息。
在步骤12中,根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
本公开实施例中,上行分配信息用于指示同一帧内的上行资源调度情况,上行分配信息可以包括:本帧内分配的上行信息传输单位的数量、下行反馈资源的嵌入位置等信息。
该上行分配信息需要加载在预设下行信息传输单位中,通过下行数据链路发送给用户设备,以使用户设备根据所述上行分配信息利用本帧内的上行资源传输上行信息。
根据上行分配信息的加载位置不同,上述步骤12可以包括以下两种实施方式:
第一种实施方式,上行分配信息嵌入在一个下行信息传输单位中。
参照图4-1根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤12可以包括:
在步骤1211中,将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
其中,本公开实施例中,基站可以将本帧的上行分配信息加载到任意一个目标下行信息传输单位中下发给用户设备,上述目标下行信息传输单位可以是后序任意一个下行数据传输单位Dd中,如图2-1、2-2、2-5所示。以图2-2为例,上行分配信息可以载入符号3对应的Dd中的预置上行分配资源Dc0中。上述目标下行信息传输单位也可以是位于帧头部的下 行控制信息传输单位Dc,如图2-3所示,上行分配信息可以载入在符号0对应的Dc中的预置上行分配资源Dc0,本公开对此不做限制。
在步骤1212中,将待传输下行数据载入剩余下行数据传输资源中进行传输。
若所述上行分配信息被加载到一个下行数据传输单位中,利用剩余下行数据传输资源传输下行数据。
示例性的,如图2-2所示,则利用符号3剩余的下行数据传输资源和符号1、2、4对应的下行数据传输资源,进行下行数据传输。
若所述上行分配信息被加载到下行控制信息传输单位中的预置上行分配资源Dc0中,利用预设下行数据传输单位传输下行数据。
相应的,如图2-3所示,基站可以利用符号1、2、3、4对应的下行数据传输单位,进行下行数据传输。
此处的下行数据是指下发给用户设备的普通业务数据,不包括控制信息。
第二种实施方式,上行分配信息占用一个下行控制信息传输单位进行传输。
参照图2-4根据一示例性实施例示出的另一种帧结构示意图,该帧结构中,上行分配信息可以单独占用一个下行控制信息传输单位Dc,如符号4,进行传输。
参照图4-2根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤12可以包括:
在步骤1221中,将本帧的上行分配信息载入目标下行控制信息传输单位中进行传输;
其中,本公开实施例中,基站可以将本帧的上行分配信息加载到本帧中一个预设的下行控制信息传输单位即目标下行控制信息传输单位中,下发给用户设备。其中,本公开对目标下行控制信息传输单位的位置不作限定,例如,可以是位于转换时延Gp之前的最后一个下行信息传输单位, 如图2-4所示,符号4对应目标下行控制信息传输单位。
在步骤1222中,将待传输下行数据载入预设下行数据传输单位中进行传输。
在图2-4所示的帧结构中,基站将下行数据载入符号1、2、3对应的下行数据传输单位Dd中传输。
基站可以通过以上两种实施方式向用户设备传输下行信息,其中,所述下行信息可以包括:下行数据和本帧的上行分配信息。
相应的,用户设备从上述下行信息中获取到上行分配信息之后,可以根据所述上行分配信息反馈所述下行数据传输的HARQ信息,并传输上行数据。
在步骤13中,经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据。
其中,下行数据传输是指利用本帧内的下行数据传输单位进行的下行数据传输。
本公开实施例中,在图2-1所述的帧结构中,既包括下行信息传输单位又包括上行信息传输单位,中间间隔一个上下行转换时延。
基于上述帧结构,系统可以通过一个帧结构完成两个完整的数据传输过程。其中,对于下行传输,即基站向用户设备的传输,一个完整的数据传输过程是指:在进行下行数据传输之后,接收到该下行数据传输的HARQ反馈信息,以确定用户设备是否成功获取数据。
对于上行传输,即用户设备向基站的传输,一个完整的数据传输过程是指:首先获取上行分配信息,然后利用所述上行分配信息指示的上行资源向基站发送上行数据。
本公开实施例中,根据下行反馈资源是否被嵌入在指定的上行数据传输单位中,上述步骤13的实施方式也可以包括两种:
第一种实施方式,若下行反馈资源被嵌入在指定的上行数据传输单位中。则,参照图5-1根据一示例性实施例示出的另一种传输数据的方法 流程图,步骤13可以包括以下步骤:
在步骤1311中,经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
如图2-1至图2-4所示的帧结构中,为了缩短HARQ信息的反馈时延,可以将用于承载下行数据传输的HARQ反馈信息的下行反馈资源Uc0,嵌入转换时延Gp之后的第一个上行数据传输单位中,比如在图2-4中,下行反馈资源Uc0被嵌入符号5对应的上行数据传输单位Ud中。
在步骤1312中,从剩余上行数据传输资源中获取上行数据。
基站按照上述下行反馈资源的嵌入配置信息获取下行数据传输的HARQ反馈信息之后,可以从第一个上行数据传输单位的剩余资源以及后序上行数据传输单位中获取上行数据。
仍以图2-4为例,基站可以从符号5对应的剩余上行数据传输资源和符号6、7、8对应的上行数据传输单位中获取上行数据。
第二种实施方式,若下行反馈信息单独占用一个上行控制信息传输单位。则,参照图5-2根据一示例性实施例示出的另一种传输数据的方法流程图,步骤13可以包括以下步骤:
在步骤1321中,经过一个转换时延后,在指定的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
本公开实施例中,为了缩短HARQ信息的反馈时延,可以将转换时延后的第一个上行信息传输单位作为用于发送HARQ反馈信息的上行控制信息传输单位,将后序上行信息传输单位用作上行数据传输单位。
参照图2-5根据一示例性实施例示出的另一种帧结构的示意图,基站可以从位于转换时延Gp后的、符号5对应的上行控制信息传输单位中,获取下行数据传输的HARQ反馈信息。
在步骤1322中,从预设上行数据传输单位中获取上行数据。
相应的,如图2-5所示,基站可以从符号6、7、8对应的上行数据传输单位中获取上行数据。
至此,基站通过一个数据帧即可完成一个完整的下行数据传输过程和一个完整的上行数据传输过程。
可见,采用本公开提供的传输数据的方法,使用一个数据帧可以完成一个完整的下行数据传输过程和一个完整的上行数据获取过程,且只需经过一个上下行转换时延,在不影响获取下行数据传输的HARQ反馈信息灵敏度的情况下,有效缩短了因上下行切换产生的时延,提高了信息传输效率。
相应的,本公开提供了一种传输数据的方法,应用于用户设备中。参照图6根据一示例性实施例示出的一种传输数据的方法,所述方法可以包括以下步骤:
在步骤21中,获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
其中,用户设备可以采用以下至少一种方式,获取下行控制信息:
方式一,从基站下发的广播信令比如系统广播的系统配置信息中获取上述下行控制信息。适用于5G网络在数据传输信道中使用相同帧结构的应用场景中。
方式二,从RRC上层控制信令中获取;
方式三,从位于帧头部的下行控制传输单位中获取,也就是说,上述下行控制信息存储于每个帧结构的第一个下行控制信息传输单位中。适用于每个帧结构需要根据待传输数据大小进行配置的情况。
方式四,从其他物理下行控制信道PDCCH的物理层控制信令中获取。
在步骤22中,根据所述下行控制信息获取下行数据和上行分配信息;
用户设备获取上述下行控制信息之后,根据下行资源调度信息进行下行链路数据的接收。
其中,根据上行分配信息的嵌入情况,可以包括以下两种实施方式:
第一种实施方式,对应于上述步骤12的第一种实施方式,即下行控制信息中包括:上行分配信息的嵌入配置信息。
参照图7-1根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤22可以包括:
在步骤2211中,从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
第一种情况,若所述下行控制信息指示:本帧的上行分配资源嵌入在帧头部的下行控制信息传输单位中,则在第一个下行控制信息传输单位达到后,从中获取上行分配信息,如图2-3所示。
第二种情况,若所述下行控制信息指示:本帧的上行分配资源嵌入在预设的下行数据传输单位中,则在检测到预设下行数据传输单位后,从中获取上行分配信息,如图2-1、2-2、2-5所示。
在步骤2212中,从剩余下行数据传输资源中获取下行数据。
对应上述第一种情况,从下行数据传输单位中获取下行数据,如图2-3,从依次到达的符号1、2、3、4对应的下行数据传输单位中获取下行数据。
对应上述第二种情况,从剩余下行数据传输资源中获取下行数据。即,从目标下行数据传输单位的剩余资源和其他下行数据传输单位中获取下行数据,如图2-1、2-2、2-5所示。以图2-5为例,依次从符号1、2、3对应的下行数据传输单位中获取下行数据,并且从符号4对应的部分下行数据传输资源中获取下行数据。
第二种实施方式,对应于上述步骤12的第二种实施方式,即下行控制信息中包括:上行分配信息单独占用一个下行控制信息传输单位的情况,如图2-4所示,符号4作为一个下行控制信息传输单位,单独承载上行分 配信息Dc0
参照图7-2根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤22可以包括:
在步骤2221中,从目标下行控制信息传输单位中获取上行分配信息;
在步骤2222中,从预设下行数据传输单位中获取下行数据。
如图2-4所示,UE可以依次从符号1、2、3对应的下行数据传输单位Dd中获取下行数据,并从符号4对应的下行控制信息传输单位Dc中获取上行分配信息。
在步骤23中,经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据。
与上述步骤13相对应,根据下行反馈资源的配置情况不同,步骤23也可以包括以下两种实施方式:
第一种实施方式,对应上述步骤13的第一种实施方式,即下行反馈资源被嵌入在一个上行数据传输单位中的情况,如图2-1至图2-4所示。
参照图8-1根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤23可以包括:
在步骤2311中,经过一个转换时延后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
用户设备在下行数据传输链路上接收下行数据之后,根据下行数据是否接收成功,生成HARQ反馈信息,包括:ACK信息、NACK信息。之后,将上述HARQ反馈信息比如ACK信息载入目标上行数据传输单位中的下行反馈资源中,比如,第一个上行数据传输单位的预置下行反馈资源中,发送给基站。示例性的,如图2-4所示,在符号5对应的上行数据传输单位中的预置下行反馈资源Uc0中,载入对符号1、2、3对应的下行数据的接收情况,若接收成功,则将确定信息ACK载入符号5中的下行反馈资源Uc0中,反馈给基站。
在步骤2312中,利用剩余上行数据传输资源向基站发送上行数据。
其中,上述剩余上行数据传输资源包括:第一个上行数据传输单位中的剩余资源和其他上行数据传输单位。
仍以图2-4所示帧结构为例,将上行数据载入符号5对应的剩余上行资源和符号6、7、8对应的上行数据传输单位中,发送给基站。
第二种实施方式,对应上述步骤13的第二种实施方式,即下行反馈资源被嵌入在一个上行数据传输单位中的情况。
参照图8-2根据一示例性实施例示出的另一种传输数据的方法流程图,上述步骤23可以包括:
在步骤2321中,经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
参照图2-5所示的帧结构示意图,此种情况下,HARQ反馈信息可以单独占用一个上行信息传输单位,称为上行控制信息传输单位。为了缩短下行数据传输的HARQ信息的反馈时延,可以将该上行控制信息传输单位作为转换时延后的第一个上行信息传输单位,如图2-5所示,将Gp之后的符号5对应的上行信息传输单位作为承载下行数据传输的HARQ反馈信息的上行控制信息传输单位。
在步骤2322中,通过预设上行数据传输单位向基站发送上行数据。
仍以图2-5所示帧结构为例,利用符号6、7、8对应的上行数据传输单位向基站发送上行数据。
可见,采用本公开提供的传输数据的方法,用户设备在一个数据帧中可以实现对下行数据的完整接收过程,在经过一个从下行切换到上行的转换时延后,还可以在该帧内完成一次上行数据的完整传输过程。
而在相关技术中一个数据帧中仅能实现一种完整数据传输,用户设备要完成上述两个完整数据的传输过程,至少需要两个数据帧,并至少等待两个上下行转换时延,如图2-6根据一示例性实施例示出的连续上下行数据传输的示意图,第一帧用于完成一个完整的下行数据传输,需要等到 一个转换时延Gp;紧接着利用第二帧完成一个上行数据传输,也需要等待一个转换时延。
经过比较可知,采用本公开提供的传输数据的方法,可以有效缩短上下行转换时延,且不影响下行数据传输的HARQ信息反馈的及时性,同时还可以使用一个数据帧完成两个完整的数据传输过程,有效提高了数据传输效率,尤其是可以有效提高时延敏感业务数据的传输效率,提升设备的用户体验。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应的终端的实施例。
参照图9根据一示例性实施例示出的一种传输数据的装置框图,设置于基站中,所述装置包括:
控制信息获取模块31,被配置为获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
下行信息传输模块32,被配置为根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
上行信息获取模块33,被配置为经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据。
参照图10根据一示例性实施例示出的另一种传输数据的装置框图, 在图9所示装置实施例的基础上,装置还可以包括:
帧结构确定模块30,被配置为根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
参照图11根据一示例性实施例示出的另一种传输数据的装置框图,在图9所示装置实施例的基础上,所述下行信息传输模块32可以包括:
第一下行传输子模块3211,被配置为将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
第二下行传输子模块3212,被配置为将待传输下行数据载入剩余下行数据传输资源中进行传输。
参照图12根据一示例性实施例示出的另一种传输数据的装置框图,在图9所示装置实施例的基础上,所述下行信息传输模块32可以包括:
第三下行传输子模块3201,被配置为将本帧的上行分配信息载入目标下行控制信息传输单位中进行传输;
第四下行传输子模块3202,被配置为将待传输下行数据载入预设下行数据传输单位中进行传输。
参照图13根据一示例性实施例示出的另一种传输数据的装置框图,在图9所示装置实施例的基础上,所述上行信息获取模块33可以包括:
第一上行信息获取子模块3311,被配置为经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
第二上行信息获取子模块3312,被配置为从剩余上行数据传输资源中获取上行数据。
参照图14根据一示例性实施例示出的另一种传输数据的装置框图,在图9所示装置实施例的基础上,所述上行信息获取模块33可以包括:
第三上行信息获取子模块3301,被配置为经过一个转换时延后,在指定的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
第四上行信息获取子模块3302,被配置为从预设上行数据传输单位 中获取上行数据。
相应的,本公开还提供了一种设置于用户设备中的传输数据的装置。参照图15根据一示例性实施例示出的一种传输数据的装置框图,所述装置可以包括:
控制信息获取模块41,被配置为获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
本公开实施例中,所述控制信息获取模块41可以采用以下至少一种方式获取所述下行控制信息:
从系统广播信令中获取;
从无线资源控制RRC上层控制信令中获取;
从本帧头部的下行控制信息传输单位中获取;
从物理下行控制信道的物理层控制信令中获取。
下行信息获取模块42,被配置为根据所述下行控制信息获取下行数据和上行分配信息;
上行信息发送模块43,被配置为经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据。
参照图16根据一示例性实施例示出的另一种传输数据的装置框图,在图15所示装置实施例的基础上,所述下行信息获取模块42可以包括:
第一下行信息获取子模块4211,被配置为从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
第二下行信息获取子模块4212,被配置为从剩余下行数据传输资源中获取下行数据。
参照图17根据一示例性实施例示出的另一种传输数据的装置框图, 在图15所示装置实施例的基础上,所述下行信息获取模块42可以包括:
第三下行信息获取子模块4201,被配置为从目标下行控制信息传输单位中获取上行分配信息;
第四下行信息获取子模块4202,被配置为从预设下行数据传输单位中获取下行数据。
参照图18根据一示例性实施例示出的另一种传输数据的装置框图,在图15所示装置实施例的基础上,所述上行信息发送模块43可以包括:
第一上行发送子模块4311,被配置为经过一个转换时延之后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
第二上行发送子模块4312,被配置为利用剩余上行数据传输资源向基站发送上行数据。
参照图19根据一示例性实施例示出的另一种传输数据的装置框图,在图15所示装置实施例的基础上,所述上行信息发送模块43可以包括:
第三上行发送子模块4301,被配置为经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
第四上行发送子模块4302,被配置为通过预设上行数据传输单位向基站发送上行数据。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,一方面提供了一种传输数据的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
相应的,另一方面还提供了一种传输数据的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
根据所述下行控制信息获取下行数据和上行分配信息;
经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
如图20所示,图20是根据一示例性实施例示出的一种用于传输数据的装置2000的一结构示意图。装置2000可以被提供为一基站。
参照图20,装置2000包括处理组件2022、无线发射/接收组件2024、天线组件2026、以及无线接口特有的信号处理部分,处理组件2022可进 一步包括一个或多个处理器。
处理组件2022中的其中一个处理器可以被配置为:
获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,其上存储有计算机指令,上述计算机指令可由装置2000的处理组件2022执行以完成图1~5-2任一所述的传输数据的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图21是根据一示例性实施例示出的一种传输数据的装置2100的结构示意图。例如,装置2100可以是终端,可以具体为移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理,可穿戴设备如智能手表、智能眼镜、智能手环、智能跑鞋等。
参照图21,装置2100可以包括以下一个或多个组件:处理组件2102,存储器2104,电源组件2106,多媒体组件2108,音频组件2110,输入/输出(I/O)的接口2112,传感器组件2114,以及通信组件2116。
处理组件2102通常控制装置2100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2102可以包括一个或多个处理器2120来执行指令,以完成上述的方法的全部或部分步骤。 此外,处理组件2102可以包括一个或多个模块,便于处理组件2102和其他组件之间的交互。例如,处理组件2102可以包括多媒体模块,以方便多媒体组件2108和处理组件2102之间的交互。
存储器2104被配置为存储各种类型的数据以支持在设备2100的操作。这些数据的示例包括用于在装置2100上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件2106为装置2100的各种组件提供电力。电源组件2106可以包括电源管理系统,一个或多个电源,及其他与为装置2100生成、管理和分配电力相关联的组件。
多媒体组件2108包括在上述装置2100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。上述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与上述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2108包括一个前置摄像头和/或后置摄像头。当设备2100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2110被配置为输出和/或输入音频信号。例如,音频组件2110包括一个麦克风(MIC),当装置2100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2104或经由通信组件2116发送。在一些实施例 中,音频组件2110还包括一个扬声器,用于输出音频信号。
I/O接口2112为处理组件2102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2114包括一个或多个传感器,用于为装置2100提供各个方面的状态评估。例如,传感器组件2114可以检测到设备2100的打开/关闭状态,组件的相对定位,例如上述组件为装置2100的显示器和小键盘,传感器组件2114还可以检测装置2100或装置2100一个组件的位置改变,用户与装置2100接触的存在或不存在,装置2100方位或加速/减速和装置2100的温度变化。传感器组件2114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2114还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2116被配置为便于装置2100和其他设备之间有线或无线方式的通信。装置2100可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,上述通信组件2116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2104,上述指令可由装置2100的处理 器2120执行以完成上述传输数据的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种传输数据的方法,其特征在于,应用于基站,所述方法包括:
    获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
    根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
    经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
  2. 根据权利要求1所述的方法,其特征在于,在所述获取待调度帧的下行控制信息之前,所述方法还包括:
    根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
  3. 根据权利要求1所述的方法,其特征在于,所述根据下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息,包括:
    将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
    将待传输下行数据载入剩余下行数据传输资源中进行传输。
  4. 根据权利要求1所述的方法,其特征在于,所述根据下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息,包括:
    将本帧的上行分配信息载入目标下行控制信息传输单位中进行传输;
    将待传输下行数据载入预设下行数据传输单位中进行传输。
  5. 根据权利要求1所述的方法,其特征在于,所述经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取所述下行数据传输 的HARQ反馈信息和上行数据,包括:
    经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
    从剩余上行数据传输资源中获取上行数据。
  6. 根据权利要求1所述的方法,其特征在于,所述经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取所述下行数据传输的HARQ反馈信息和上行数据,包括:
    经过一个转换时延后,在指定的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
    从预设上行数据传输单位中获取上行数据。
  7. 一种传输数据的方法,其特征在于,应用于用户设备中,所述方法包括:
    获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
    根据所述下行控制信息获取下行数据和上行分配信息;
    经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
  8. 根据权利要求7所述的方法,其特征在于,采用以下至少一种方式获取所述下行控制信息:
    从系统广播信令中获取;
    从无线资源控制RRC上层控制信令中获取;
    从本帧头部的下行控制信息传输单位中获取;
    从物理下行控制信道的物理层控制信令中获取。
  9. 根据权利要求7所述的方法,其特征在于,所述根据所述下行控制 信息获取下行数据和上行分配信息,包括:
    从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
    从剩余下行数据传输资源中获取下行数据。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述下行控制信息获取下行数据和上行分配信息,包括:
    从目标下行控制信息传输单位中获取上行分配信息;
    从预设下行数据传输单位中获取下行数据。
  11. 根据权利要求7所述的方法,其特征在于,所述经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据,包括:
    经过一个转换时延之后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
    利用剩余上行数据传输资源向基站发送上行数据。
  12. 根据权利要求7所述的方法,其特征在于,所述经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据,包括:
    经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
    通过预设上行数据传输单位向基站发送上行数据。
  13. 一种传输数据的装置,其特征在于,设置于基站中,所述装置包括:
    控制信息获取模块,被配置为获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
    下行信息传输模块,被配置为根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
    上行信息获取模块,被配置为经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上 行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    帧结构确定模块,被配置为根据待传输业务确定目标帧结构,其中,所述目标帧中至少包括:下行数据传输单位、一个转换时延、上行数据传输单位。
  15. 根据权利要求13所述的装置,其特征在于,所述下行信息传输模块包括:
    第一下行传输子模块,被配置为将本帧的上行分配信息载入目标下行信息传输单位的预置上行分配资源中进行传输;
    第二下行传输子模块,被配置为将待传输下行数据载入剩余下行数据传输资源中进行传输。
  16. 根据权利要求13所述的装置,其特征在于,所述下行信息传输模块包括:
    第三下行传输子模块,被配置为将本帧的上行分配信息载入目标下行控制信息传输单位中进行传输;
    第四下行传输子模块,被配置为将待传输下行数据载入预设下行数据传输单位中进行传输。
  17. 根据权利要求13所述的装置,其特征在于,所述上行信息获取模块包括:
    第一上行信息获取子模块,被配置为经过一个转换时延后,在指定的上行数据传输单位中获取下行数据传输的HARQ反馈信息;
    第二上行信息获取子模块,被配置为从剩余上行数据传输资源中获取上行数据。
  18. 根据权利要求13所述的装置,其特征在于,所述上行信息获取模 块包括:
    第三上行信息获取子模块,被配置为经过一个转换时延后,在指定的上行控制信息传输单位中获取下行数据传输的HARQ反馈信息;
    第四上行信息获取子模块,被配置为从预设上行数据传输单位中获取上行数据。
  19. 一种传输数据的装置,其特征在于,设置于用户设备中,所述装置包括:
    控制信息获取模块,被配置为获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
    下行信息获取模块,被配置为根据所述下行控制信息获取下行数据和上行分配信息;
    上行信息发送模块,被配置为经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
  20. 根据权利要求19所述的装置,其特征在于,所述控制信息获取模块采用以下至少一种方式获取所述下行控制信息:
    从系统广播信令中获取;
    从无线资源控制RRC上层控制信令中获取;
    从本帧头部的下行控制信息传输单位中获取;
    从物理下行控制信道的物理层控制信令中获取。
  21. 根据权利要求19所述的装置,其特征在于,所述下行信息获取模块包括:
    第一下行信息获取子模块,被配置为从目标下行信息传输单位的预置上行分配资源中获取上行分配信息;
    第二下行信息获取子模块,被配置为从剩余下行数据传输资源中获取下行数据。
  22. 根据权利要求19所述的装置,其特征在于,所述下行信息获取模块包括:
    第三下行信息获取子模块,被配置为从目标下行控制信息传输单位中获取上行分配信息;
    第四下行信息获取子模块,被配置为从预设下行数据传输单位中获取下行数据。
  23. 根据权利要求19所述的装置,其特征在于,所述上行信息发送模块包括:
    第一上行发送子模块,被配置为经过一个转换时延之后,将下行数据传输的HARQ反馈信息载入目标上行数据传输单位中的下行反馈资源中进行传输;
    第二上行发送子模块,被配置为利用剩余上行数据传输资源向基站发送上行数据。
  24. 根据权利要求19所述的装置,其特征在于,所述上行信息发送模块包括:
    第三上行发送子模块,被配置为经过一个转换时延后,将下行数据传输的HARQ反馈信息载入预设上行控制信息传输单位中进行传输;
    第四上行发送子模块,被配置为通过预设上行数据传输单位向基站发送上行数据。
  25. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求1~6任一所述方法的步骤。
  26. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其特征在于,该指令被处理器执行时实现权利要求7~12任一所述方法的步骤。
  27. 一种传输数据的装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取待调度帧的下行控制信息,所述下行控制信息至少包括:所述待调度帧的嵌入资源配置信息;
    根据所述下行控制信息,调度下行信息传输单位传输下行数据和本帧的上行分配信息;
    经过一个转换时延后,根据所述上行分配信息从上行信息传输单位中获取下行数据传输的HARQ反馈信息和上行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的混合自动重传请求HARQ反馈信息的下行反馈资源。
  28. 一种传输数据的装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:
    获取下行控制信息,所述下行控制信息至少包括:一个帧结构的嵌入资源配置信息;
    根据所述下行控制信息获取下行数据和上行分配信息;
    经过一个转换时延后,通过所述上行分配信息指示的上行资源向基站发送下行数据传输的HARQ反馈信息和上行数据;
    其中,所述嵌入资源包括:嵌入在下行信息传输单位中、用于承载上行分配信息的上行分配资源;和/或,嵌入在上行数据传输单位中、用于承载下行数据传输的HARQ反馈信息的下行反馈资源。
PCT/CN2017/086574 2017-05-31 2017-05-31 传输数据的方法及装置 WO2018218491A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780000441.3A CN108391466B (zh) 2017-05-31 2017-05-31 传输数据的方法及装置
EP17911806.2A EP3633912B1 (en) 2017-05-31 2017-05-31 Data transmission method and device
PCT/CN2017/086574 WO2018218491A1 (zh) 2017-05-31 2017-05-31 传输数据的方法及装置
US16/699,492 US11503625B2 (en) 2017-05-31 2019-11-29 Method and apparatus for transmitting data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086574 WO2018218491A1 (zh) 2017-05-31 2017-05-31 传输数据的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/699,492 Continuation US11503625B2 (en) 2017-05-31 2019-11-29 Method and apparatus for transmitting data

Publications (1)

Publication Number Publication Date
WO2018218491A1 true WO2018218491A1 (zh) 2018-12-06

Family

ID=63077560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086574 WO2018218491A1 (zh) 2017-05-31 2017-05-31 传输数据的方法及装置

Country Status (4)

Country Link
US (1) US11503625B2 (zh)
EP (1) EP3633912B1 (zh)
CN (1) CN108391466B (zh)
WO (1) WO2018218491A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109217996B (zh) * 2017-06-30 2021-01-29 华为技术有限公司 无线通信方法、装置及系统
CN109766369A (zh) * 2018-12-07 2019-05-17 黑匣子(杭州)车联网科技有限公司 一种车联网大数据分析系统
CN111432475B (zh) * 2019-01-09 2023-05-12 中国移动通信有限公司研究院 一种上行低时延业务的承载方法和网络设备
US11496970B2 (en) 2019-03-06 2022-11-08 Qualcomm Incorporated Support of high pathloss mode
US11438808B2 (en) 2019-04-17 2022-09-06 Qualcomm Incorporated Acknowledgment messaging for resource reservations
US11463964B2 (en) 2019-04-17 2022-10-04 Qualcomm Incorporated Communication configuration for high pathloss operations
US11510071B2 (en) 2019-04-17 2022-11-22 Qualcomm Incorporated Beam direction selection for high pathloss mode operations
US11445408B2 (en) 2019-04-17 2022-09-13 Qualcomm Incorporated High pathloss mode multiplexing
US11477747B2 (en) 2019-04-17 2022-10-18 Qualcomm Incorporated Synchronization signal periodicity adjustment
CN111800230B (zh) * 2019-08-23 2021-12-03 维沃移动通信有限公司 一种反馈混合自动重传请求确认的方法和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426275A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中确定传输参数的方法和系统
US20150271839A1 (en) * 2012-11-05 2015-09-24 Alcatel Lucent Method of determining position of acknowledgement information for harq in pucch
CN106162656A (zh) * 2015-03-30 2016-11-23 中国电信股份有限公司 数据传输的方法、基站、终端及通信系统
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106685603A (zh) * 2015-11-11 2017-05-17 华为技术有限公司 Tdd系统信息传输的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060699A (zh) * 2006-04-17 2007-10-24 北京三星通信技术研究有限公司 下行控制信令的传输方法和设备
US9642125B2 (en) * 2011-06-17 2017-05-02 Lg Electronics Inc. Method for transceiving data in wireless access system and terminal therefor
KR102217646B1 (ko) * 2012-05-24 2021-02-19 삼성전자 주식회사 이동 통신 시스템 및 그 이동 통신 시스템에서 채널 송수신 방법
KR20130125695A (ko) * 2012-05-09 2013-11-19 주식회사 팬택 인터밴드 tdd 전송 방식에서 채널 셀렉션 전송을 위한 harq-ack 인덱스 매핑 및 업링크 자원 할당을 제어하는 방법 및 장치
CN103517422A (zh) * 2012-06-20 2014-01-15 中兴通讯股份有限公司 Tdd上下行配置的更新方法及装置
KR20140040902A (ko) * 2012-09-27 2014-04-04 삼성전자주식회사 동적 시분할 복식 시스템에서 제어채널의 송수신 방법 및 장치
US10491334B2 (en) * 2015-10-16 2019-11-26 Intel IP Corporation Flexible universal extended frame structure
US10432386B2 (en) * 2015-10-19 2019-10-01 Qualcomm Incorporated Flexible time division duplexing (TDD) subframe structure with latency reduction
WO2017078465A1 (en) * 2015-11-04 2017-05-11 Lg Electronics Inc. Method and apparatus for handling overlap of different channels in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426275A (zh) * 2007-10-29 2009-05-06 大唐移动通信设备有限公司 一种随机接入过程中确定传输参数的方法和系统
US20150271839A1 (en) * 2012-11-05 2015-09-24 Alcatel Lucent Method of determining position of acknowledgement information for harq in pucch
CN106162656A (zh) * 2015-03-30 2016-11-23 中国电信股份有限公司 数据传输的方法、基站、终端及通信系统
CN106507486A (zh) * 2015-09-08 2017-03-15 华为技术有限公司 用于上行数据传输的方法、网络设备和终端设备
CN106685603A (zh) * 2015-11-11 2017-05-17 华为技术有限公司 Tdd系统信息传输的方法和装置
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633912A4 *

Also Published As

Publication number Publication date
CN108391466A (zh) 2018-08-10
CN108391466B (zh) 2020-06-19
EP3633912A1 (en) 2020-04-08
EP3633912B1 (en) 2023-12-27
US20200107355A1 (en) 2020-04-02
US11503625B2 (en) 2022-11-15
EP3633912A4 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP7418539B2 (ja) 情報多重伝送方法及び装置、情報受信方法及び装置
WO2018218491A1 (zh) 传输数据的方法及装置
US11038657B2 (en) Method and apparatus for transmitting and obtaining uplink HARQ feedback
WO2020019351A1 (zh) 传输配置指示的配置方法及装置
EP3739790B1 (en) Information feedback method and apparatus
JP7353484B2 (ja) フィードバック方法、フィードバック装置及び記憶媒体
US11362766B2 (en) Method and apparatus for obtaining HARQ feedback and method and apparatus for transmitting HARQ feedback
JP7282909B2 (ja) 伝送指示方法及び装置
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2019095390A1 (zh) 请求上行传输资源的方法及装置
US11050526B2 (en) Method and apparatus for transmitting and obtaining uplink HARQ feedback
WO2018086069A1 (zh) 用于发送和接收系统消息的方法、装置、用户设备及基站
WO2019192021A1 (zh) 上行资源请求方法及装置
US11503642B2 (en) Method and device for determining an uplink-downlink switching point
WO2020029147A1 (zh) 传输harq反馈信息的方法、装置、基站及终端
WO2020124499A1 (zh) 传输上行信息的方法、装置、基站及终端
US11963158B2 (en) Transmission configuration method and apparatus, device, system, and storage medium
WO2019218367A1 (zh) 信息传输方法及装置
WO2019222924A1 (zh) 信息传输方法及装置
WO2019090723A1 (zh) 数据传输方法及装置
WO2018213985A1 (zh) 数据传输方法及装置
WO2022110028A1 (zh) 上行控制信息传输方法、装置及存储介质
RU2791294C1 (ru) Способ осуществления обратной связи, устройство для осуществления обратной связи и носитель данных
US20240080137A1 (en) Communication method, communication apparatus, and storage medium
CN112789806B (zh) 数据传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017911806

Country of ref document: EP

Effective date: 20200102