WO2018218448A1 - 通信网络架构、信令传输方法及装置 - Google Patents

通信网络架构、信令传输方法及装置 Download PDF

Info

Publication number
WO2018218448A1
WO2018218448A1 PCT/CN2017/086383 CN2017086383W WO2018218448A1 WO 2018218448 A1 WO2018218448 A1 WO 2018218448A1 CN 2017086383 W CN2017086383 W CN 2017086383W WO 2018218448 A1 WO2018218448 A1 WO 2018218448A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
control signaling
point
base station
signaling
Prior art date
Application number
PCT/CN2017/086383
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2017/086383 priority Critical patent/WO2018218448A1/zh
Priority to CN201780000378.3A priority patent/CN109362243A/zh
Priority to EP17911659.5A priority patent/EP3634083A4/en
Publication of WO2018218448A1 publication Critical patent/WO2018218448A1/zh
Priority to US16/679,131 priority patent/US20200077378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a communication network architecture, a signaling transmission method, and an apparatus.
  • Drones are more and more extensive.
  • LTE Long Term Evolution
  • the bandwidth and delay required for the current service of the drone cannot be ensured, and if a point-to-point communication system is used with the drone Communication, however, cannot interact with the network side in real time.
  • NR New Radio
  • 3GPP 3rd Generation Partnership Project
  • the embodiments of the present disclosure provide a communication network architecture, a signaling transmission method, and an apparatus.
  • a communication network architecture including at least one steerable device and a multimode base station, the multimode base station supporting at least a 5G communication mode and a point-to-point communication mode;
  • the steerable device communicates with the multi-mode base station based on a point-to-point communication manner.
  • the multimode base station is a common mode base station of a 5G communication system and a point-to-point communication system.
  • the communication network architecture further includes at least one communication node
  • the communication node and the stewards device are based on a point-to-point communication manner Line communication
  • the communication node communicates with the multimode base station based on a 5G communication mode.
  • the communication node communicates with the steerable device by using a wireless communication frequency band corresponding to the 5G communication system.
  • the communication node communicates with the multi-mode base station by using a preset communication interface.
  • the stewards devices communicate according to a point-to-point communication manner.
  • a signaling transmission method the method being used in the traversable device in the communication network architecture described in the first aspect, the method comprising:
  • control signaling sent by the multimode base station based on a point-to-point communication manner, where the control signaling is signaling used by the terminal to send to the multimode base station to control the stewards;
  • the method further includes:
  • the method further includes:
  • the multimode base station transmits the feedback information to the terminal.
  • a signaling transmission method is provided, the method The multimode base station used in the communication network architecture described in the above first aspect, the method comprising:
  • control signaling sent by the terminal, where the control signaling is signaling for controlling a steerable device in the communication network architecture;
  • the method further includes:
  • the method further includes:
  • the stewards Receiving, by the stewards, feedback information sent to the multimode base station according to a point-to-point communication manner; the feedback information is information collected by the stewards according to the control signaling;
  • the method further includes:
  • the communication node in the communication network architecture Receiving, by the communication node in the communication network architecture, feedback information that is forwarded to the multi-mode base station by using a 5G communication manner; the feedback information is information collected by the stewards according to the control signaling;
  • a signaling transmission apparatus wherein the apparatus is used in the traversable device in the communication network architecture described in the first aspect, the apparatus includes:
  • a first receiving module configured to receive control signaling sent by the multimode base station according to a point-to-point communication manner, where the control signaling is a signaling sent by the terminal to the multimode base station to control the stewards ;
  • An execution module is configured to perform a corresponding operation according to the control signaling.
  • the device further includes:
  • a second receiving module configured to receive, by the communication node in the communication network architecture, control signaling sent by the multimode base station to the communication node, which is forwarded by the communication node according to the point-to-point communication manner; the control signaling is sent by the terminal to the terminal Signaling of the multimode base station for controlling the stewards;
  • the control module is configured to, after the second receiving module receives the control signaling forwarded by the communication node, control the execution module to perform a corresponding operation according to the control signaling.
  • the device further comprises any one of the following modules:
  • a first sending module configured to: when the control signaling is used to control a feedback operation of the steerable device to perform information, send feedback information collected according to the control signaling to the a multimode base station, to enable the multimode base station to send the feedback information to the terminal;
  • a second sending module configured to: when the control signaling is used to control a feedback operation of the steerable device to perform information, send feedback information collected according to the control signaling to the And the communication node sends the feedback information to the terminal by the multi-mode base station after the communication node sends the feedback information to the multi-mode base station according to a 5G communication manner.
  • a signaling transmission apparatus wherein the apparatus is used in a multimode base station in a communication network architecture according to the above first aspect, the apparatus comprising:
  • a third receiving module configured to receive control signaling sent by the terminal, where the control signaling is used to control signaling of the stewards in the communication network architecture;
  • the third sending module is configured to send the control signaling to the stewards according to a point-to-point communication manner, so that the stewards device performs a corresponding operation according to the control signaling.
  • the device further includes:
  • a fourth sending module configured to send the control signaling to a communication node in the network architecture based on a 5G communication manner, so that the communication node forwards according to a point-to-point communication manner
  • the control signaling is to the steerable device.
  • the device further includes:
  • a fourth receiving module configured to receive feedback information that is sent by the steerable device to the multi-mode base station according to a point-to-point communication manner; the feedback information is information that is collected by the stewards according to the control signaling;
  • the fifth sending module is configured to send the feedback information to the terminal.
  • the device further includes:
  • a fifth receiving module configured to receive feedback information that the communication node in the communication network architecture forwards to the multi-mode base station based on the 5G communication manner; the feedback information is that the stewards device collects based on the control signaling Information to;
  • the sixth sending module is configured to send the feedback information to the terminal.
  • a computer readable storage medium storing a computer program for performing the signaling transmission method of the second aspect described above.
  • a computer readable storage medium storing a computer program for performing the signaling transmission method of the above third aspect.
  • a signaling transmission apparatus wherein the apparatus is used in the traversable device in the communication network architecture described in the second aspect, comprising:
  • a memory for storing processor-executable signaling
  • processor is configured to:
  • control signaling sent by the multimode base station based on a point-to-point communication manner, where the control signaling is signaling used by the terminal to send to the multimode base station to control the stewards;
  • a ninth aspect of the embodiments of the present disclosure there is provided a signaling transmission apparatus, where the apparatus is used in the multi-mode base station in the communication network architecture described in the foregoing third aspect, including:
  • a memory for storing processor-executable signaling
  • processor is configured to:
  • control signaling sent by the terminal, where the control signaling is signaling for controlling a steerable device in the communication network architecture;
  • Embodiments of the present disclosure provide a communication network architecture including at least one steerable device and a multimode base station, and the multimode base station supports at least a 5G communication mode and a point-to-point communication mode. Further, the steerable device communicates with the multimode base station based on a point-to-point communication mode.
  • the multi-mode base station can perform normal communication with the terminal based on the 5G communication mode, and communicates with the steerable device based on the point-to-point communication mode, thereby providing a network architecture that combines the 5G system with the steerable device for communication. Program.
  • the multimode base station may be a common mode base station of a 5G communication system and a point-to-point communication system. Therefore, on the basis of the existing wireless system, only a small change is required, and a multi-mode base station that communicates with the steerable device in combination with the 5G system can be realized, and the availability is high.
  • At least one communication node may be further included, and the communication node communicates with the steerable device based on a point-to-point communication manner, and the communication node and the multi-mode base station Communication is based on 5G communication.
  • the communication network architecture it is possible to communicate with more steerable devices through different communication nodes at the same time point, and the availability is higher.
  • a plurality of steerable devices can communicate according to a point-to-point communication manner, thereby avoiding collision between the steerable devices, and better assisting the user in positioning and coordinating the steerable devices. .
  • the stewards device receives the multimode base station based on the peer-to-peer communication side After the control signaling is sent, the corresponding operation may be performed according to the control signaling.
  • the control signaling is signaling used by the terminal to send the multi-mode base station to control the stewards.
  • the steerable device may further perform a corresponding operation according to a control instruction forwarded by the communication node based on the peer-to-peer communication mode.
  • the communication node performs point-to-point communication with the steerable device, and the communication node performs 5G communication with the multi-mode base station, and also achieves the purpose of real-time communication with the steerable device in the 5G network system.
  • the steerable device may further send the feedback information collected in real time according to the control signaling to the multimode base station based on the point-to-point communication mode, or send the communication node to the communication node based on the point-to-point communication mode, and the communication node
  • the feedback information is sent to the multimode base station based on a 5G communication manner.
  • the multimode base station sends the feedback information to the terminal.
  • the multi-mode base station may send the control signaling to the steerable device based on the peer-to-peer communication manner, so that the steerable device can perform the corresponding operation according to the control signaling.
  • FIG. 1 is a schematic diagram of a communication network architecture according to an exemplary embodiment.
  • FIG. 2 is a schematic diagram of another communication network architecture according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of another communication network architecture according to an exemplary embodiment.
  • FIG. 4 is a flowchart of a signaling transmission method according to an exemplary embodiment.
  • FIG. 5 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 6A is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 6B is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 7 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 8 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 9 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 10 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 11 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 12 is a flowchart of another signaling transmission method according to an exemplary embodiment.
  • FIG. 13 is a block diagram of a signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 14 is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 15A is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 15B is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 16 is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 17 is a block diagram of another signaling transmission apparatus, according to an exemplary embodiment.
  • FIG. 18 is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 19 is a block diagram of another signaling transmission apparatus according to an exemplary embodiment.
  • FIG. 20 is a schematic structural diagram of a signaling transmission apparatus according to an exemplary embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of another signaling transmission apparatus according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • the embodiment of the present disclosure provides a communication network architecture.
  • the communication network architecture includes at least one steerable device 100 and a multi-mode base station 200.
  • the steerable device 100 can be a robot or a drone, and the multimode base station 200 supports at least a 5G communication mode and a point-to-point communication mode.
  • the multimode base station 200 may be a common mode base station of a 5G communication system and a point-to-point communication system.
  • the common mode base station means that different communication systems use the same chassis or cabinet, that is, different communication systems can use the same BBU (Building Baseband Unit) and RRU (Remote Radio Unit remote radio frequency). Module).
  • the multimode base station 200 can employ a common mode base station of a 5G communication system and a point-to-point communication system.
  • the multi-mode base station 200 can also perform normal communication with the terminal 400 based on the 5G communication manner, and in addition, the multi-mode base station 200 is in the same manner as the steerable device 100. When communicating, it can be based on a point-to-point communication method, such as the PC5 method. That is, in the communication network architecture provided by the embodiments of the present disclosure, the multimode base station 200 can communicate with the steerable device 100 using a separate frequency, and does not ring normal wireless communication between the multimode base station 200 and the terminal 400.
  • the multi-mode base station can perform normal communication with the terminal based on the 5G communication mode, and communicates with the steerable device based on the point-to-point communication mode, thereby providing a network architecture that combines the 5G system with the steerable device for communication. Program.
  • FIG. 2 is another communication network architecture according to the embodiment shown in FIG. 1, and further includes: A communication node 300.
  • the communication node 300 can be a small base station; corresponding to the multi-mode base station 200, the communication node 300 can be a communication hotspot device.
  • communication between the communication node 300 and the steerable device 100 may be performed using a frequency band and communication standard different from the wireless communication in the related art.
  • the communication node 300 and the steerable device 100 can communicate according to a point-to-point communication manner, for example, a PC5 manner; and the communication node 300 communicates with the steerable device 100 by using a wireless communication frequency band corresponding to the 5G communication system.
  • the communication node 300 and the multimode base station 200 can communicate based on the 5G communication method.
  • a communication node 300 can communicate peer-to-peer with a steerable device 100 at a certain point in time.
  • Each communication node 300 can perform 5G communication with the multimode base station 200 through the preset communication interface 500, and the number of communication nodes that can communicate with the multimode base station 200 can be multiple, thereby implementing the combined 5G system and the same time point.
  • the plurality of steerable devices 100 simultaneously communicate for the purpose.
  • the preset communication interface between the communication node 300 and the multimode base station 200 may be defined as a dN interface.
  • the preset communication interfaces may be connected in a wireless manner or in a wired manner, and the preset communication interface supports 5G or a newly defined communication standard in the future. Among them, when the connection is made by wire, the connection can be made through an optical fiber.
  • the location of the communication node 300 may be mobile, as shown in FIG. 3, optionally, the communication node 300 may be deployed in a controllable manner.
  • the controller of device 100 Real-time communication with the steerable device 100 and the multi-mode base station 200 can be performed by the communication node 300.
  • the location of the communication node 300 may be fixed, and may alternatively be deployed in a public place such as a sports park or the like.
  • the public can communicate with the steerable device 100 and the multimode base station 200 in real time through the communication node 300.
  • the communication network architecture may further include at least one communication node, the communication node and the stewards device communicate according to a point-to-point communication manner, such as a PC5 manner, and the communication node and the multimode base station are based on 5G. Communication mode for communication.
  • a point-to-point communication manner such as a PC5 manner
  • 5G. Communication mode for communication With the above communication network architecture, it is possible to communicate with more steerable devices through different communication nodes at the same time point, and the availability is higher.
  • the steerable devices 100 can communicate according to the point-to-point communication mode.
  • the relative position information and the like between itself and the other steerable device 100 can be automatically obtained by the steerable device 100 based on the point-to-point communication mode, when the relative distance value indicated by the relative position information is less than the preset distance value, The avoidance is automatically performed by the steerable device 100, thereby avoiding collisions between the steerable devices 100, and can better assist the user in positioning and coordinating the steerable devices.
  • Embodiments of the present disclosure also provide a signaling transmission method, which may be used in a steerable device in the above communication network architecture.
  • FIG. 4 is a signaling transmission method according to an embodiment of the present application, including the following steps:
  • step 101 the control signaling sent by the multi-mode base station based on the point-to-point communication mode is received, where the control signaling is signaling used by the terminal to send to the multi-mode base station to control the stewards.
  • step 102 a corresponding operation is performed according to the control signaling.
  • the steerable device may perform a corresponding operation according to the control signaling.
  • the control signaling is signaling used by the terminal to send the multi-mode base station to control the stewards.
  • the terminal may be a smart phone, a computer, a personal digital assistant (PDA), or the like.
  • the terminal may be bound to the steerable device in advance, and further, the terminal generates control signaling for controlling the stewards according to the related technology, and sends the control signaling to the multimode base station.
  • the multimode base station can directly receive the control signaling.
  • the multi-mode base station may send the control signaling to the stewards according to a point-to-point communication manner, for example, a PC5 manner.
  • the control device After the control device sends the control signaling sent by the multi-mode base station according to the point-to-point communication mode, the operation corresponding to the control signaling may be performed.
  • the operations include, but are not limited to, takeoff, landing, altitude lift or decrease, flight according to a preset trajectory, and feedback operation of information.
  • the feedback information collected by the steerable device may be height measurement information, geological exploration information, real-time image information, or other information that needs to be collected.
  • FIG. 5 is another signaling transmission method according to the embodiment shown in FIG. 4, and may further include the following steps. :
  • step 103 receiving a communication node in the communication network architecture based on a point-to-point communication a control signaling forwarded by the multimode base station to the communication node in a signaling manner;
  • the control signaling is a signaling sent by the terminal to the multimode base station for controlling the stewards device;
  • the multimode base station may determine, in the foregoing communication network architecture, a communication node corresponding to the stewards device, and the control signaling Sending to the communication node based on the 5G communication method.
  • control signaling is forwarded by the communication node to the stewards based on a point-to-point communication manner.
  • the steerable device may perform step 102 to perform a corresponding operation according to the control signaling.
  • the steerable device may further perform a corresponding operation according to a control instruction forwarded by the communication node based on the point-to-point communication mode.
  • the communication node performs point-to-point communication with the steerable device, and the communication node performs 5G communication with the multi-mode base station, and also achieves the purpose of real-time communication with the steerable device in the 5G network system.
  • FIG. 6A is based on the embodiment shown in FIG. 6A
  • Another signaling transmission method may further include the following steps:
  • step 104 the feedback information collected according to the control signaling is sent to the multi-mode base station according to a point-to-point communication manner, so that the multi-mode base station sends the feedback information to the terminal.
  • the steerable device collects feedback information according to the control signaling according to related technologies.
  • the feedback information may be height measurement information, geological exploration information, real-time image information, or other information that needs to be collected.
  • the feedback information may be directly sent to the multi-mode base station according to a point-to-point communication manner, for example, a PC5 manner.
  • the feedback information may be sent to the terminal according to related technologies.
  • control signaling is to control the steerable device to perform aerial photography
  • the steerable device The captured real-time image may be sent to the multi-mode base station based on a point-to-point communication manner, and then sent by the multi-mode base station to the terminal.
  • the terminal displays the real-time image according to related art.
  • control signaling is used to control the feedback operation of the executable device to perform information
  • the method is shown in FIG. 6B, and FIG. 6B is based on the embodiment shown in FIG.
  • Another signaling transmission method may further include the following steps:
  • step 105 the feedback information collected according to the control signaling is sent to the communication node based on a point-to-point communication manner, so that the communication node sends the feedback information to the multimode based on a 5G communication manner.
  • the feedback information is sent by the multimode base station to the terminal.
  • the steerable device may send the feedback information to the corresponding communication node according to a point-to-point communication manner, for example, a PC5 manner. Further, the feedback information is sent by the communication node to the multi-mode base station based on a 5G communication manner. After receiving, the multi-mode base station sends the signal to the terminal.
  • FIG. 7 is another signaling transmission method according to an embodiment of the present application, including the following steps:
  • step 201 receiving control signaling sent by the terminal, where the control signaling is signaling for controlling a steerable device in the communication network architecture;
  • step 202 the control signaling is sent to the steerable device based on a point-to-point communication manner, so that the stewards device performs a corresponding operation according to the control signaling.
  • the multi-mode base station may send the control signaling to the steerable device based on the point-to-point communication manner, so that the steerable device can Corresponding operations are performed according to the control signaling.
  • the terminal may send the control signaling to the multi-mode base station after the control signaling for controlling the steerable device is generated according to the related technology, where the multi-mode base station directly receives the control signaling can.
  • the multi-mode base station may directly send the control signaling to the steerable device according to a point-to-point communication manner, for example, a PC5 manner.
  • the steerable device may perform a corresponding operation according to the control signaling.
  • FIG. 8 is another signaling transmission method according to the embodiment shown in FIG. 7. After completing step 201, , can also include the following steps:
  • step 203 the control signaling is sent to the communication node in the network architecture based on the 5G communication manner, so that the communication node forwards the control signaling to the stewards according to the point-to-point communication mode.
  • the base station may send the control signaling to the communication node according to the 5G communication manner, and then the control signaling is performed by the communication node. Forwarding to the steerable device based on peer-to-peer communication.
  • the steerable device After receiving the control signaling, the steerable device also performs a corresponding operation according to the control signaling.
  • the real-time communication with the steerable device is also implemented in the 5G system. Further, real-time control of the steerable device can be implemented by the terminal.
  • FIG. 9 is another signaling transmission method according to the embodiment shown in FIG. 7, and may further include the following steps. :
  • step 204 receiving feedback information that the stewards device sends to the multi-mode base station based on a point-to-point communication manner; the feedback information is information collected by the stewards according to the control signaling;
  • the stewards device may perform information collection according to the control signaling, obtain feedback information, and further base the feedback information on The point-to-point communication mode is sent to the multi-mode base station, and the multi-mode base station can receive it directly.
  • step 205 the feedback information is sent to the terminal.
  • the multi-mode base station may send the feedback information to the terminal after receiving the feedback information according to related technologies.
  • the terminal may directly display the feedback information.
  • the multi-mode base station may directly receive the feedback information sent by the steerable device based on the point-to-point communication, and then send the feedback information to the terminal.
  • real-time communication between the steerable device and the terminal can be supported based on the communication network architecture provided by the embodiment of the present disclosure.
  • FIG. 10 is another signaling transmission method according to the embodiment shown in FIG. 7, and may further include the following steps. :
  • step 206 receiving feedback information that the communication node in the communication network architecture forwards to the multi-mode base station based on the 5G communication mode; the feedback information is information collected by the stewards device based on the control signaling ;
  • the stewards device sends the feedback information to the corresponding communication node based on the point-to-point communication manner.
  • the multimode base station may receive the feedback information forwarded by the foregoing communication node to the multimode base station based on a 5G communication manner.
  • step 207 the feedback information is sent to the terminal.
  • the multi-mode base station can be sent based on the related technology and based on the 5G communication method. Sending the feedback information to the terminal. After the terminal receives the feedback information, the feedback information may be displayed.
  • the multimode base station may receive feedback information forwarded by the communication node based on the 5G communication mode, and then send the feedback information to the terminal.
  • real-time communication between the steerable device and the terminal can also be supported based on the communication network architecture provided by the embodiment of the present disclosure.
  • FIG. 11 is another signaling transmission method according to an embodiment of the present application, including the following steps:
  • step 301 the terminal sends control signaling to the multimode base station;
  • the control signaling is signaling for controlling the steerable device in the communication network architecture;
  • step 302 the multimode base station transmits the control signaling to the stewards based on a point-to-point communication manner.
  • step 303 the stewards device performs a corresponding operation according to the control signaling.
  • step 304 when the control signaling is used to control the feedback operation of the steerable device to perform information, the stewards device sends the feedback information collected according to the control signaling to the location based on the peer-to-peer communication method.
  • a multimode base station is described.
  • step 305 the multimode base station transmits the feedback information to the terminal.
  • corresponding processing may be performed, for example, displaying the feedback information to a user.
  • the multimode base station may receive the control signaling sent by the terminal according to the 5G communication manner, and then send the control signaling to the stewards according to the peer-to-peer communication manner, where the stewards device receives the After the control signaling, the corresponding operation is performed. If the control signaling is used to control the feedback operation of the steerable device to perform information, the steerable device may send the feedback information to the multimode base station based on the peer-to-peer communication method, and the multi-mode base station re-sends the terminal.
  • FIG. 12 is another signaling transmission method according to an embodiment of the present application, including the following steps:
  • the multimode base station receives control signaling sent by the terminal;
  • the control signaling is signaling for controlling a steerable device in the communication network architecture;
  • step 402 the multimode base station transmits the control signaling to the communication node based on the 5G communication mode.
  • step 403 the communication node forwards the control signaling to the stewards based on a point-to-point communication manner.
  • step 404 the stewards device performs a corresponding operation in accordance with the control signaling.
  • step 405 when the control signaling is used to control the feedback operation of the steerable device to perform information, the stewards device sends the feedback information collected according to the control signaling to the location based on the peer-to-peer communication method. Said communication node.
  • step 406 the communication node transmits the feedback information to the multi-mode base station based on a 5G communication manner.
  • step 407 the multimode base station transmits the feedback information to the terminal.
  • the feedback information may be displayed.
  • the multimode base station may receive the control signaling sent by the terminal according to the 5G communication mode, and then send the control signaling to the communication node according to the 5G communication manner, and further, the communication node forwards the method according to the point-to-point communication manner.
  • the control signaling is sent to the stewards device, and after receiving the control signaling, the stewards device performs a corresponding operation. If the control signaling is used to control the feedback operation of the steerable device to perform information, the steerable device may send the feedback information to the communication node based on the peer-to-peer communication method, and the communication node forwards the After the multimode base station is sent to the terminal by the multimode base station.
  • the present disclosure also provides an application function implementation apparatus and an embodiment of a corresponding terminal.
  • FIG. 13 is a block diagram of a signaling transmission apparatus, which is used in the above-mentioned communication network architecture, according to an exemplary embodiment, the apparatus includes:
  • the first receiving module 510 is configured to receive control signaling sent by the multimode base station according to a point-to-point communication manner, where the control signaling is a message sent by the terminal to the multimode base station for controlling the stewards make;
  • the execution module 520 is configured to perform a corresponding operation according to the control signaling.
  • FIG. 14 is a block diagram of another signaling transmission apparatus according to the embodiment shown in FIG. 13, the apparatus further comprising:
  • the second receiving module 530 is configured to receive, by the communication node in the communication network architecture, the control signaling that is sent by the multi-mode base station to the communication node, which is forwarded by the communication node according to the point-to-point communication mode; the control signaling is sent by the terminal Signaling to the multimode base station for controlling the stewards;
  • the control module 540 is configured to, after the second receiving module receives the control signaling forwarded by the communication node, control the execution module to perform a corresponding operation according to the control signaling.
  • FIG. 15A is a block diagram of another signaling transmission apparatus according to the embodiment shown in FIG. 13, the apparatus further comprising:
  • the first sending module 550 is configured to: when the control signaling is used to control the feedback operation of the steerable device to perform information, send the feedback information collected according to the control signaling to the location based on the peer-to-peer communication mode
  • the multi-mode base station is configured to enable the multi-mode base station to send the feedback information to the terminal.
  • FIG. 15B is a block diagram of another signaling transmission apparatus according to the embodiment shown in FIG. 13, the apparatus further comprising:
  • the second sending module 560 is configured to send the feedback information collected according to the control signaling to the location based on the peer-to-peer communication mode when the control signaling is used to control the feedback operation of the steerable device to perform information
  • the communication node is configured to: after the communication node sends the feedback information to the multi-mode base station according to a 5G communication manner, the feedback information is sent by the multi-mode base station to the terminal.
  • the apparatus includes:
  • the third receiving module 610 is configured to receive control signaling sent by the terminal, where the control signaling is used to control signaling of the stewards device in the communication network architecture;
  • the third sending module 620 is configured to send the control signaling to the stewards according to a point-to-point communication manner, so that the stewards device performs a corresponding operation according to the control signaling.
  • FIG. 17 is a block diagram showing another signaling transmission apparatus according to the embodiment shown in FIG. 16, the apparatus further comprising:
  • the fourth sending module 630 is configured to send the control signaling to the communication node in the network architecture based on the 5G communication manner, so that the communication node forwards the control signaling to the Control the device.
  • FIG. 18 is a block diagram showing another signaling transmission apparatus according to the embodiment shown in FIG. 16, the apparatus further comprising:
  • the fourth receiving module 640 is configured to receive feedback information that is sent by the steerable device to the multi-mode base station according to a point-to-point communication manner; the feedback information is information that the stewards device collects based on the control signaling ;
  • the fifth sending module 650 is configured to send the feedback information to the terminal.
  • FIG. 19 is a block diagram showing another signaling transmission apparatus according to the embodiment shown in FIG. 16, the apparatus further comprising:
  • the fifth receiving module 660 is configured to receive feedback information that the communication node in the communication network architecture forwards to the multi-mode base station according to the 5G communication manner; the feedback information is that the steerable device is based on the control signaling Collected information;
  • the sixth sending module 670 is configured to send the feedback information to the terminal.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located in one Places, or they can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objectives of the present disclosure. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the storage medium stores a computer program for performing a signaling transmission method on the steerable device side in the communication network architecture.
  • an embodiment of the present disclosure further provides a computer readable storage medium, where the storage medium stores a computer program for performing a signaling transmission method on a multimode base station side in the above communication network architecture.
  • the embodiment of the present disclosure further provides a signaling transmission device, where the device is used in the traversable device in the communication network architecture, and includes:
  • a memory for storing processor-executable signaling
  • processor is configured to:
  • control signaling sent by the multimode base station based on a point-to-point communication manner, where the control signaling is signaling used by the terminal to send to the multimode base station to control the stewards;
  • FIG. 20 shows a block diagram of a signaling transmission device 2000 according to an exemplary embodiment of the present invention.
  • Device 2000 can be provided as a steerable device, such as a robot Or drones, etc.
  • the device includes a processor, an internal bus, a wireless communication interface, a memory, and a non-volatile memory, and may of course include hardware required for other services.
  • the processor can receive the computer command sent by the remote controller into the memory through the wireless communication interface and then run to form a steerable device on a logical level.
  • the present application does not exclude other implementation manners, such as a logic device or a combination of software and hardware, etc., that is, the execution body of the following processing flow is not limited to each logical unit, and may be Hardware or logic device.
  • the embodiment of the present disclosure further provides a signaling transmission apparatus, where the apparatus is used in a multi-mode base station in the foregoing communication network architecture, including:
  • a memory for storing processor-executable signaling
  • processor is configured to:
  • control signaling sent by the terminal, where the control signaling is signaling for controlling a steerable device in the communication network architecture;
  • FIG. 21 is a schematic structural diagram of a signaling transmission apparatus 2100 according to an exemplary embodiment.
  • the device 2100 can be provided as a multimode base station.
  • the multimode base station supports at least a 5G communication mode and a point-to-point communication mode.
  • the multimode base station is a common mode base station of a 5G communication system and a point-to-point communication system.
  • apparatus 2100 includes a processing component 2122, a wireless transmit/receive component 2124, an antenna component 2126, and a signal processing portion specific to the wireless interface.
  • the processing component 2122 can further include one or more processors.
  • One of the processing components 2322 can be configured to:
  • control signaling sent by the terminal, where the control signaling is signaling for controlling a steerable device in the communication network architecture;

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种通信网络架构、信令传输方法及装置,其中,所述网络架构包括:至少一个可操控设备和多模基站,所述多模基站至少支持5G通信方式和点对点通信方式;所述可操控设备与所述多模基站之间基于点对点通信方式进行通信。本公开中,多模基站可以基于5G通信方式与终端进行正常通信,并基于点对点通信方式与可操控设备进行通信,从而给出了结合5G系统与可操控设备进行通信的网络架构的方案。

Description

通信网络架构、信令传输方法及装置 技术领域
本公开涉及通信领域,尤其涉及通信网络架构、信令传输方法及装置。
背景技术
目前,Drones(无人机)的应用越来越广泛。相关技术中,如果采用LTE(Long Term Evolution,长期演进)通信系统与无人机进行通信,则无法确保无人机当前业务所需要的带宽和时延,如果采用点对点通信系统与无人机进行通信,则又无法实时与网络侧进行交互。
5G即NR(New Radio)网络相关标准化正在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)中进行。在5G系统中,目前还没有与无人机进行通信的方案。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种通信网络架构、信令传输方法及装置。
根据本公开实施例的第一方面,提供一种通信网络架构,所述通信网络架构包括至少一个可操控设备和多模基站,所述多模基站至少支持5G通信方式和点对点通信方式;
其中,所述可操控设备与所述多模基站之间基于点对点通信方式进行通信。
可选地,所述多模基站是5G通信系统和点对点通信系统的共模基站。
可选地,所述通信网络架构还包括至少一个通信节点;
其中,所述通信节点与所述可操控设备之间基于点对点通信方式进 行通信;
所述通信节点与所述多模基站之间基于5G通信方式进行通信。
可选地,所述通信节点与所述可操控设备之间采用5G通信系统所对应的无线通信频段进行通信。
可选地,所述通信节点与所述多模基站之间通过预设通信接口进行通信。
可选地,所述可操控设备的数目为多个时,所述可操控设备之间基于点对点通信方式进行通信。
根据本公开实施例的第二方面,提供一种信令传输方法,所述方法用于上述第一方面所述的通信网络架构中的可操控设备,所述方法包括:
接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
根据所述控制信令执行对应的操作。
可选地,所述方法还包括:
接收所述通信网络架构中的通信节点基于点对点通信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
在接收到所述通信节点转发的所述控制信令之后,执行所述根据所述控制信令执行对应的操作的步骤。
可选地,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端;或
将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
根据本公开实施例的第三方面,提供一种信令传输方法,所述方法 用于上述第一方面所述的通信网络架构中的多模基站,所述方法包括:
接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
可选地,所述接收终端发送的控制信令之后,所述方法还包括:
基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备。
可选地,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
发送所述反馈信息给所述终端。
可选地,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
发送所述反馈信息给所述终端。
根据本公开实施例的第四方面,提供一种信令传输装置,所述装置用于上述第一方面所述的通信网络架构中的可操控设备,所述装置包括:
第一接收模块,被配置为接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
执行模块,被配置为根据所述控制信令执行对应的操作。
可选地,所述装置还包括:
第二接收模块,被配置为接收所述通信网络架构中的通信节点基于点对点通信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
控制模块,被配置为在所述第二接收模块接收到所述通信节点转发的所述控制信令之后,控制所述执行模块根据所述控制信令执行对应的操作。
可选地,所述装置还包括以下任一模块:
第一发送模块,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端;
第二发送模块,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
根据本公开实施例的第五方面,提供一种信令传输装置,所述装置用于上述第一方面所述的通信网络架构中的多模基站,所述装置包括:
第三接收模块,被配置为接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
第三发送模块,被配置为基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
可选地,所述装置还包括:
第四发送模块,被配置为基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发 所述控制信令给所述可操控设备。
可选地,所述装置还包括:
第四接收模块,被配置为接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
第五发送模块,被配置为发送所述反馈信息给所述终端。
可选地,所述装置还包括:
第五接收模块,被配置为接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
第六发送模块,被配置为发送所述反馈信息给所述终端。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第二方面所述的信令传输方法。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述第三方面所述的信令传输方法。
根据本公开实施例的第八方面,提供一种信令传输装置,所述装置用于上述第二方面所述的通信网络架构中的可操控设备,包括:
处理器;
用于存储处理器可执行信令的存储器;
其中,所述处理器被配置为:
接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
根据所述控制信令执行对应的操作。
根据本公开实施例的第九方面,提供一种信令传输装置,所述装置用于上述第三方面所述的通信网络架构中的多模基站,包括:
处理器;
用于存储处理器可执行信令的存储器;
其中,所述处理器被配置为:
接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开实施例提供了一种通信网络架构,该通信网络架构包括至少一个可操控设备和多模基站,多模基站至少支持5G通信方式和点对点通信方式。进一步地,可操控设备与多模基站之间基于点对点通信方式进行通信。在上述通信网络架构中,多模基站可以基于5G通信方式与终端进行正常通信,并基于点对点通信方式与可操控设备进行通信,从而给出了结合5G系统与可操控设备进行通信的网络架构的方案。
本公开实施例中,可选地,多模基站可以是5G通信系统和点对点通信系统的共模基站。从而在已有无线系统的基础上,只需要进行较少的改动,就可以实现结合5G系统与可操控设备进行通信的多模基站,可用性高。
本公开实施例提供的通信网络架构中,可选地,还可以包括至少一个通信节点,所述通信节点与可操控设备之间基于点对点通信方式进行通信,且所述通信节点与多模基站之间基于5G通信方式进行通信。采用上述通信网络架构,可以在同一时间点通过不同的通信节点与更多的可操控设备进行通信,可用性更高。
本公开实施例提供的通信网络架构中,多个可操控设备之间可以基于点对点通信方式进行通信,从而避免可操控设备之间发生碰撞,更好地帮助用户进行可操控设备的定位和协调等。
本公开实施例中,可操控设备在接收到多模基站基于点对点通信方 式发送的控制信令后,可以根据所述控制信令执行对应的操作。其中,所述控制信令是终端发送给所述多模基站的用于控制所述可操控设备的信令。通过上述过程,由多模基站与可操控设备直接进行点对点通信,从而在5G网络系统中实现了与可操控设备进行实时通信的目的,进一步地,可以实时控制可操控设备执行对应操作。
本公开实施例中,可选地,可操控设备还可以根据通信节点基于点对点通信方式转发的控制指令,来执行对应的操作。上述过程中,由通信节点与可操控设备进行点对点通信,而该通信节点与多模基站之间进行5G通信,同样在5G网络系统中,实现了与可操控设备进行实时通信的目的。
本公开实施例中,可操控设备还可以将根据控制信令实时采集到的反馈信息,基于点对点通信方式直接发送给多模基站,或基于点对点通信方式发送给通信节点后,由所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站。进一步地,多模基站会将该反馈信息发送给终端。通过上述过程,在5G系统中可以将可操控设备采集到的反馈信息实时发送给终端。
本公开实施例中,多模基站可以在接收到终端发送的控制信令之后,基于点对点通信方式将控制信令发送给可操控设备,使得可操控设备可以根据所述控制信令执行对应的操作。通过上述过程,在5G系统中实现了与可操控设备进行实时通信的目的,进一步地,可以通过终端实现对可操控设备的实时控制。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种通信网络架构示意图。
图2是根据一示例性实施例示出的另一种通信网络架构示意图。
图3是根据一示例性实施例示出的另一种通信网络架构示意图。
图4是根据一示例性实施例示出的一种信令传输方法流程图。
图5是根据一示例性实施例示出的另一种信令传输方法流程图。
图6A是根据一示例性实施例示出的另一种信令传输方法流程图。
图6B是根据一示例性实施例示出的另一种信令传输方法流程图。
图7是根据一示例性实施例示出的另一种信令传输方法流程图。
图8是根据一示例性实施例示出的另一种信令传输方法流程图。
图9是根据一示例性实施例示出的另一种信令传输方法流程图。
图10是根据一示例性实施例示出的另一种信令传输方法流程图。
图11是根据一示例性实施例示出的另一种信令传输方法流程图。
图12是根据一示例性实施例示出的另一种信令传输方法流程图。
图13是根据一示例性实施例示出的一种信令传输装置框图。
图14是根据一示例性实施例示出的另一种信令传输装置框图。
图15A是根据一示例性实施例示出的另一种信令传输装置框图。
图15B是根据一示例性实施例示出的另一种信令传输装置框图。
图16是根据一示例性实施例示出的另一种信令传输装置框图。
图17是根据一示例性实施例示出的另一种信令传输装置框图。
图18是根据一示例性实施例示出的另一种信令传输装置框图。
图19是根据一示例性实施例示出的另一种信令传输装置框图。
图20是本公开根据一示例性实施例示出的一种用于信令传输装置的一结构示意图。
图21是本公开根据一示例性实施例示出的另一种用于信令传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下 面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本公开实施例提供了一种通信网络架构,如图1所示,所述通信网络架构包括:至少一个可操控设备100和多模基站200。其中,可操控设备100可以是机器人或无人机等,多模基站200至少支持5G通信方式和点对点通信方式。
可选地,多模基站200可以是5G通信系统和点对点通信系统的共模基站。相关技术中,共模基站是指不同通信系统采用同一机框或机柜,也就是说,不同通信系统可以采用相同的BBU(Building Baseband Unit,室内基带处理单元)和RRU(Remote Radio Unit远端射频模块)。在本公开实施例中,多模基站200可以采用5G通信系统和点对点通信系统的共模基站。
在图1所示的通信网络架构中,多模基站200还可以与终端400基于5G通信方式进行正常通信,另外,多模基站200在与可操控设备100 进行通信时,可以基于点对点通信方式,例如PC5方式。也就是说,在本公开实施例提供的通信网络架构中,多模基站200可以采用单独的频率与可操控设备100进行通信,且不响多模基站200与终端400之间正常的无线通信。
在上述通信网络架构中,多模基站可以基于5G通信方式与终端进行正常通信,并基于点对点通信方式与可操控设备进行通信,从而给出了结合5G系统与可操控设备进行通信的网络架构的方案。
考虑到可操控设备100与多模基站200之间基于点对点通信方式进行通信,则在某一时间点,一个多模基站200可以与一个可操控设备100进行通信。但是,这样会造成5G系统资源的浪费。因此,本公开实施例中还提供了另一种通信网络架构,如图2所示,图2是根据图1所示实施例的基础上示出的另一种通信网络架构,还包括:至少一个通信节点300。其中,对应于可操控设备100,该通信节点300可以为小基站;对应于多模基站200,则该通信节点300可以为通信热点设备。
在上述通信网络架构中,为了确保通信节点300与可操控设备100之间的正常通信,通信节点300与可操控设备100之间可以采用与相关技术中的无线通信不同的频段和通信标准进行通信。可选地,通信节点300与可操控设备100之间可以基于点对点通信方式,例如PC5方式进行通信;且通信节点300与可操控设备100之间采用5G通信系统所对应的无线通信频段进行通信。
而通信节点300与多模基站200之间则可以基于5G通信方式进行通信。
在上述通信网络架构中,一个通信节点300在某一时间点可以与一个可操控设备100进行点对点通信。而每个通信节点300可以通过预设通信接口500与多模基站200进行5G通信,且与多模基站200进行通信的通信节点数目可以为多个,从而在同一时间点实行了结合5G系统与多个可操控设备100同时进行通信的目的。
可选地,通信节点300与多模基站200之间的预设通信接口可以定义为dN接口。所述预设通信接口之间可以采用无线方式或有线方式进行连接,且该预设通信接口支持5G或未来新定义的通信标准。其中,通过有线方式进行连接时,可以通过光纤进行连接。
在实际应用中,通信节点300与多模基站200之间采用无线方式进行连接时,通信节点300的位置可以是移动的,如图3所示,可选地,通信节点300可以部署在可操控设备100的控制器上。通过该通信节点300可以与可操控设备100、多模基站200进行实时通信。
通信节点300与多模基站200之间采用有线方式进行连接时,通信节点300的位置可以是固定的,可选地,可以部署在公共场所,例如体育公园等。公众可以通过该通信节点300来与可操控设备100、多模基站200进行实时通信。
上述实施例中,通信网络架构还可以包括至少一个通信节点,所述通信节点与可操控设备之间基于点对点通信方式,例如PC5方式进行通信,且所述通信节点与多模基站之间基于5G通信方式进行通信。采用上述通信网络架构,可以在同一时间点通过不同的通信节点与更多的可操控设备进行通信,可用性更高。
本公开实施例中,在上述任一所述的通信网络架构中,可选地,当可操控设备100的数目为多个时,可以让可操控设备100之间基于点对点通信方式进行通信。可选地,可以由可操控设备100基于点对点通信方式自动获得自身与其他可操控设备100之间的相对位置信息等,在所述相对位置信息所指示的相对距离值小于预设距离值时,由可操控设备100自动进行躲避,从而避免可操控设备100之间发生碰撞,且可以更好地帮助用户进行可操控设备的定位和协调等。
本公开实施例还提供了一种信令传输方法,所述方法可以用于上述通信网络架构中的可操控设备。参照图4所示,图4是本申请根据一实施例示出的一种信令传输方法,包括以下步骤:
在步骤101中,接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
在步骤102中,根据所述控制信令执行对应的操作。
上述实施例中,可操控设备在接收到多模基站基于点对点通信方式发送的控制信令后,可以根据所述控制信令执行对应的操作。其中,所述控制信令是终端发送给所述多模基站的用于控制所述可操控设备的信令。通过上述过程,由多模基站与可操控设备直接进行点对点通信,从而在5G网络系统中实现了与可操控设备进行实时通信的目的,进一步地,可以实时控制可操控设备执行对应操作。
针对上述步骤101,可选地,终端可以是智能手机、电脑、个人数字助理(Personal Digital Assistant,PDA)等。所述终端可以预先与可操控设备进行绑定,进一步地,由所述终端按照相关技术,生成用于控制该可操控设备的控制信令,并将所述控制信令发送给多模基站。多模基站可以直接接收所述控制信令。
进一步地,所述多模基站接收到所述控制信令后,可以基于点对点通信方式,例如PC5方式将所述控制信令发送给所述可操控设备。
针对上述步骤102,所述可操控设备基于点对点通信方式接收到所述多模基站发送的所述控制信令后,可以执行与所述控制信令对应的操作。
可选地,所述操作包括但不限于起飞、降落、高度拉升或降低、按照预设轨迹飞行以及信息的反馈操作等。所述可操控设备采集的反馈信息可以是高度测量信息、地质勘探信息、实时图像信息或其他需要进行采集的信息。
本公开实施例还提供了另一种信令传输方法,参照图5所示,图5是根据图4所示实施例的基础上示出的另一种信令传输方法,还可以包括以下步骤:
在步骤103中,接收所述通信网络架构中的通信节点基于点对点通 信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
本步骤中,终端按照相关技术将所述控制信令发送给多模基站之后,多模基站可以在上述通信网络架构中确定与所述可操控设备对应的通信节点,并将所述控制信令基于5G通信方式发送给所述通信节点。
进一步地,由所述通信节点基于点对点通信方式将所述控制信令转发给所述可操控设备。
所述可操控设备在接收到所述通信节点转发的所述控制信令后,可以执行步骤102,根据所述控制信令执行对应的操作。
上述实施例中,可选地,可操控设备还可以根据通信节点基于点对点通信方式转发的控制指令,来执行对应的操作。上述过程中,由通信节点与可操控设备进行点对点通信,而该通信节点与多模基站之间进行5G通信,同样在5G网络系统中,实现了与可操控设备进行实时通信的目的。
本公开实施例中,如果所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法参照图6A所示,图6A是根据图4所示实施例的基础上示出的另一种信令传输方法,还可以包括以下步骤:
在步骤104中,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端。
本步骤中,所述可操控设备按照相关技术,根据所述控制信令采集反馈信息。可选地,所述反馈信息可以是高度测量信息、地质勘探信息、实时图像信息或其他需要进行采集的信息。
所述可操控设备采集到所述反馈信息之后,可以基于点对点通信方式,例如PC5方式将所述反馈信息直接发送给所述多模基站。所述多模基站接收后,就可以按照相关技术,将所述反馈信息发送给所述终端。
例如所述控制信令是控制可操控设备进行航拍,则所述可操控设备 可以将拍摄到的实时图像基于点对点通信方式发送所述多模基站,进而由所述多模基站发送给所述终端。所述终端按照相关技术显示所述实时图像。通过上述过程,可以实时向用户显示可操控设备进行航拍时采集到的图像,在5G系统中实现了可操控设备与终端之间的实时通信。
本公开实施例中,如果所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法参照图6B所示,图6B是根据图4所示实施例的基础上示出的另一种信令传输方法,还可以包括以下步骤:
在步骤105中,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
本步骤中,所述可操控设备按照相关技术,根据所述控制信令采集反馈信息之后,可以基于点对点通信方式,例如PC5方式将所述反馈信息发送给对应的通信节点。进一步地,由所述通信节点基于5G通信方式,将所述反馈信息发送给所述多模基站。所述多模基站接收后,再发送给所述终端。
通过上述过程,同样在5G系统中实现了可操控设备与终端之间的实时通信。
本公开实施例还提供了另一种信令传输方法,所述方法可以用于上述通信网络架构中的多模基站。参照图7所示,图7是本申请根据一实施例示出的另一种信令传输方法,包括以下步骤:
在步骤201中,接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
在步骤202中,基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
上述实施例中,多模基站可以在接收到终端发送的控制信令之后,基于点对点通信方式将控制信令发送给可操控设备,使得可操控设备可以 根据所述控制信令执行对应的操作。通过上述过程,在5G系统中实现了与可操控设备进行实时通信的目的,进一步地,可以通过终端实现对可操控设备的实时控制。
针对上述步骤201,终端可以在按照相关技术生成用于控制可操控设备的控制信令后,发送所述控制信令给所述多模基站,所述多模基站直接接收所述控制信令即可。
针对上述步骤202,所述多模基站接收到所述终端发送的所述控制信令之后,可以直接基于点对点通信方式,例如PC5方式将所述控制信令发送给所述可操控设备。
所述可操控设备接收到所述控制信令之后,可以根据所述控制信令执行对应的操作。
本公开实施例还提供了另一种信令传输方法,参照图8所示,图8是根据图7所示实施例的基础上示出的另一种信令传输方法,在完成步骤201之后,还可以包括以下步骤:
在步骤203中,基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备。
本步骤中,所述基站在接收到所述终端发送的所述控制信令之后,可以基于5G通信方式将所述控制信令发送给通信节点,后续由所述通信节点将所述控制信令基于点对点通信方式转发给所述可操控设备。
可操控设备接收到所述控制信令后,同样根据所述控制信令执行对应的操作。
上述实施例中,同样在5G系统中实现了与可操控设备进行实时通信的目的,进一步地,可以通过终端实现对可操控设备的实时控制。
本公开实施例还提供了另一种信令传输方法,参照图9所示,图9是根据图7所示实施例的基础上示出的另一种信令传输方法,还可以包括以下步骤:
在步骤204中,接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
本步骤中,在控制信令用于控制所述可操控设备执行信息的反馈操作时,所述可操控设备可以根据所述控制信令进行信息采集,获得反馈信息,进而将所述反馈信息基于点对点通信方式发送给所述多模基站,所述多模基站直接接收即可。
在步骤205中,发送所述反馈信息给所述终端。
本步骤中,所述多模基站可以按照相关技术在接收到所述反馈信息之后,发送所述反馈信息给所述终端。所述终端可以直接显示所述反馈信息。
上述实施例中,多模基站可以直接接收可操控设备基于点对点通信发送的反馈信息,进而将所述反馈信息发送给所述终端。通过上述过程,可以基于本公开实施例提供的通信网络架构,支持可操控设备和终端之间的实时通信。
本公开实施例还提供了另一种信令传输方法,参照图10所示,图10是根据图7所示实施例的基础上示出的另一种信令传输方法,还可以包括以下步骤:
在步骤206中,接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
本步骤中,所述可操控设备根据所述控制信令采集到反馈信息之后,由所述可操控设备基于点对点通信方式将所述反馈信息发送给对应的通信节点。进一步地,所述多模基站可以接收由上述通信节点基于5G通信方式转发给所述多模基站的所述反馈信息。
在步骤207中,发送所述反馈信息给所述终端。
本步骤中,所述多模基站可以按照相关技术,基于5G通信方式发 送所述反馈信息给所述终端。所述终端接收到所述反馈信息之后,可以显示所述反馈信息。
上述实施例中,多模基站可以接收由通信节点基于5G通信方式转发的反馈信息,进而将所述反馈信息发送给所述终端。通过上述过程,同样可以基于本公开实施例提供的通信网络架构,支持可操控设备和终端之间的实时通信。
本公开实施例还提供了另一种信令传输方法,所述方法可以用于上述任一所述的通信网络架构中。参照图11所示,图11是本申请根据一实施例示出的另一种信令传输方法,包括以下步骤:
在步骤301中,终端发送控制信令给多模基站;所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
在步骤302中,多模基站基于点对点通信方式将所述控制信令发送给所述可操控设备。
在步骤303中,所述可操控设备根据所述控制信令执行对应的操作。
在步骤304中,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述可操控设备将根据所述控制信令采集的反馈信息,基于点对点通信方式发送给所述多模基站。
在步骤305中,所述多模基站将所述反馈信息发送给所述终端。
可选地,所述终端接收后,可以进行相应处理,例如向用户显示所述反馈信息。
上述实施例中,多模基站可以基于5G通信方式接收终端发送的控制信令,进而基于点对点通信方式将所述控制信令发送给所述可操控设备,所述可操控设备在接收到所述控制信令后,会执行对应的操作。如果控制信令用于控制所述可操控设备执行信息的反馈操作时,可操控设备可以将反馈信息同样基于点对点通信方式发送给所述多模基站,由所述多模基站再发送给所述终端。通过上述过程,实现了终端与可操控设备之间实时通信的目的。
本公开实施例还提供了另一种信令传输方法,所述方法可以用于上述任一所述的通信网络架构中。参照图12所示,图12是本申请根据一实施例示出的另一种信令传输方法,包括以下步骤:
在步骤401中,多模基站接收终端发送的控制信令;所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
在步骤402中,多模基站基于5G通信方式将所述控制信令发送给通信节点。
在步骤403中,所述通信节点基于点对点通信方式将所述控制信令转发给所述可操控设备。
在步骤404中,所述可操控设备根据所述控制信令执行对应的操作。
在步骤405中,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述可操控设备将根据所述控制信令采集的反馈信息,基于点对点通信方式发送给所述通信节点。
在步骤406中,所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站。
在步骤407中,所述多模基站将所述反馈信息发送给所述终端。
可选地,所述终端接收后,可以显示所述反馈信息。
上述实施例中,多模基站可以基于5G通信方式接收终端发送的控制信令,进而基于5G通信方式将所述控制信令发送给通信节点,进一步地,由所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备,所述可操控设备在接收到所述控制信令后,会执行对应的操作。如果控制信令用于控制所述可操控设备执行信息的反馈操作时,可操控设备可以将反馈信息同样基于点对点通信方式发送给所述通信节点,所述通信节点基于5G通信方式转发给所述多模基站后,再由所述多模基站发送给所述终端。通过上述过程,同样实现了终端与可操控设备之间实时通信的目的。
对于前述的各方法实施例,为了简单描述,故将其都表述为一系列 的动作组合,但是本领域技术人员应该知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。
其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置及相应的终端的实施例。
参照图13根据一示例性实施例示出的一种信令传输装置框图,所述装置用于上述通信网络架构中的所述可操控设备,所述装置包括:
第一接收模块510,被配置为接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
执行模块520,被配置为根据所述控制信令执行对应的操作。
参照图14,图14是根据图13所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第二接收模块530,被配置为接收所述通信网络架构中的通信节点基于点对点通信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
控制模块540,被配置为在所述第二接收模块接收到所述通信节点转发的所述控制信令之后,控制所述执行模块根据所述控制信令执行对应的操作。
参照图15A,图15A是根据图13所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第一发送模块550,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端。
参照图15B,图15B是根据图13所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第二发送模块560,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
参照图16根据一示例性实施例示出的另一种信令传输装置框图,所述装置用于上述通信网络架构中的多模基站,所述装置包括:
第三接收模块610,被配置为接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
第三发送模块620,被配置为基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
参照图17,图17是根据图16所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第四发送模块630,被配置为基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备。
参照图18,图18是根据图16所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第四接收模块640,被配置为接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
第五发送模块650,被配置为发送所述反馈信息给所述终端。
参照图19,图19是根据图16所示的实施例的基础上示出的另一种信令传输装置框图,所述装置还包括:
第五接收模块660,被配置为接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
第六发送模块670,被配置为发送所述反馈信息给所述终端。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应的,本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述通信网络架构中的可操控设备侧的信令传输方法。
相应的,本公开实施例还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述通信网络架构中的多模基站侧的信令传输方法。
相应的,本公开实施例还提供了一种信令传输装置,所述装置用于上述通信网络架构中的可操控设备,包括:
处理器;
用于存储处理器可执行信令的存储器;
其中,所述处理器被配置为:
接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
根据所述控制信令执行对应的操作。
图20示出了根据本发明的一示例性实施例的一种信令传输装置2000的一结构示意图。装置2000可以被提供为可操控设备,例如机器人 或无人机等。请参考图20,在硬件层面,该设备包括处理器、内部总线、无线通信接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器通过无线通信接口可以接收遥控器发送的计算机指令到内存中然后运行,在逻辑层面上形成可操控设备。当然,除了软件实现方式之外,本申请并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。
相应的,本公开实施例还提供了一种信令传输装置,所述装置用于上述通信网络架构中的多模基站,包括:
处理器;
用于存储处理器可执行信令的存储器;
其中,所述处理器被配置为:
接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
如图21所示,图21是根据一示例性实施例示出的一种信令传输装置2100的一结构示意图。装置2100可以被提供为多模基站。所述多模基站至少支持5G通信方式和点对点通信方式,可选地,所述多模基站是5G通信系统和点对点通信系统的共模基站。参照图21,装置2100包括处理组件2122、无线发射/接收组件2124、天线组件2126、以及无线接口特有的信号处理部分,处理组件2122可进一步包括一个或多个处理器。
处理组件2322中的其中一个处理器可以被配置为:
接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种通信网络架构,其特征在于,所述通信网络架构包括至少一个可操控设备和多模基站,所述多模基站至少支持5G通信方式和点对点通信方式;
    其中,所述可操控设备与所述多模基站之间基于点对点通信方式进行通信。
  2. 根据权利要求1所述的通信网络架构,其特征在于,所述多模基站是5G通信系统和点对点通信系统的共模基站。
  3. 根据权利要求1所述的通信网络架构,其特征在于,所述通信网络架构还包括至少一个通信节点;
    其中,所述通信节点与所述可操控设备之间基于点对点通信方式进行通信;
    所述通信节点与所述多模基站之间基于5G通信方式进行通信。
  4. 根据权利要求3所述的通信网络架构,其特征在于,所述通信节点与所述可操控设备之间采用5G通信系统所对应的无线通信频段进行通信。
  5. 根据权利要求3所述的通信网络架构,其特征在于,所述通信节点与所述多模基站之间通过预设通信接口进行通信。
  6. 根据权利要求1-5任一所述的通信网络架构,其特征在于,所述可操控设备的数目为多个时,所述可操控设备之间基于点对点通信方式进行通信。
  7. 一种信令传输方法,其特征在于,所述方法用于权利要求1-6任一项所述的通信网络架构中的可操控设备,所述方法包括:
    接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
    根据所述控制信令执行对应的操作。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述通信网络架构中的通信节点基于点对点通信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
    在接收到所述通信节点转发的所述控制信令之后,执行所述根据所述控制信令执行对应的操作的步骤。
  9. 根据权利要求7所述的方法,其特征在于,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
    将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端;或
    将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
  10. 一种信令传输方法,其特征在于,所述方法用于权利要求1-6任一项所述的通信网络架构中的多模基站,所述方法包括:
    接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
    基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
  11. 根据权利要求10所述的方法,其特征在于,所述接收终端发送的控制信令之后,所述方法还包括:
    基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备。
  12. 根据权利要求10所述的方法,其特征在于,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
    接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
    发送所述反馈信息给所述终端。
  13. 根据权利要求10所述的方法,其特征在于,当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,所述方法还包括:
    接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
    发送所述反馈信息给所述终端。
  14. 一种信令传输装置,其特征在于,所述装置用于权利要求1-6任一项所述的通信网络架构中的可操控设备,所述装置包括:
    第一接收模块,被配置为接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
    执行模块,被配置为根据所述控制信令执行对应的操作。
  15. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    第二接收模块,被配置为接收所述通信网络架构中的通信节点基于点对点通信方式转发的由所述多模基站发送给所述通信节点的控制信令;所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
    控制模块,被配置为在所述第二接收模块接收到所述通信节点转发的所述控制信令之后,控制所述执行模块根据所述控制信令执行对应的操作。
  16. 根据权利要求14所述的装置,其特征在于,所述装置还包括以下任一模块:
    第一发送模块,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对点通信方式发送给所述多模基站,以使所述多模基站将所述反馈信息发送给所述终端;
    第二发送模块,被配置为当所述控制信令用于控制所述可操控设备执行信息的反馈操作时,将根据所述控制信令采集到的反馈信息,基于点对 点通信方式发送给所述通信节点,以使所述通信节点基于5G通信方式将所述反馈信息发送给所述多模基站后,由所述多模基站将所述反馈信息发送给所述终端。
  17. 一种信令传输装置,其特征在于,所述装置用于权利要求1-6任一项所述的通信网络架构中的多模基站,所述装置包括:
    第三接收模块,被配置为接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
    第三发送模块,被配置为基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    第四发送模块,被配置为基于5G通信方式将所述控制信令发送给所述网络架构中的通信节点,以使所述通信节点基于点对点通信方式转发所述控制信令给所述可操控设备。
  19. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    第四接收模块,被配置为接收所述可操控设备基于点对点通信方式发送给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
    第五发送模块,被配置为发送所述反馈信息给所述终端。
  20. 根据权利要求17所述的装置,其特征在于,所述装置还包括:
    第五接收模块,被配置为接收所述通信网络架构中的通信节点基于5G通信方式转发给所述多模基站的反馈信息;所述反馈信息是所述可操控设备基于所述控制信令采集到的信息;
    第六发送模块,被配置为发送所述反馈信息给所述终端。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求7-9任一所述的信令传输方法。
  22. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计 算机程序,所述计算机程序用于执行上述权利要求10-13任一所述的信令传输方法。
  23. 一种信令传输装置,其特征在于,所述装置用于权利要求1-6任一项所述的通信网络架构中的可操控设备,包括:
    处理器;
    用于存储处理器可执行信令的存储器;
    其中,所述处理器被配置为:
    接收所述多模基站基于点对点通信方式发送的控制信令,所述控制信令是终端发送到所述多模基站的用于控制所述可操控设备的信令;
    根据所述控制信令执行对应的操作。
  24. 一种信令传输装置,其特征在于,所述装置用于权利要求1-6任一项所述的通信网络架构中的多模基站,包括:
    处理器;
    用于存储处理器可执行信令的存储器;
    其中,所述处理器被配置为:
    接收终端发送的控制信令,所述控制信令是用于控制所述通信网络架构中的可操控设备的信令;
    基于点对点通信方式将所述控制信令发送给所述可操控设备,以使所述可操控设备根据所述控制信令执行对应的操作。
PCT/CN2017/086383 2017-05-27 2017-05-27 通信网络架构、信令传输方法及装置 WO2018218448A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/086383 WO2018218448A1 (zh) 2017-05-27 2017-05-27 通信网络架构、信令传输方法及装置
CN201780000378.3A CN109362243A (zh) 2017-05-27 2017-05-27 通信网络架构、信令传输方法及装置
EP17911659.5A EP3634083A4 (en) 2017-05-27 2017-05-27 COMMUNICATIONS NETWORK ARCHITECTURE, AND SIGNALING TRANSPORTATION METHOD AND APPARATUS
US16/679,131 US20200077378A1 (en) 2017-05-27 2019-11-08 Communications network architecture and signaling transport method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086383 WO2018218448A1 (zh) 2017-05-27 2017-05-27 通信网络架构、信令传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/679,131 Continuation US20200077378A1 (en) 2017-05-27 2019-11-08 Communications network architecture and signaling transport method and apparatus

Publications (1)

Publication Number Publication Date
WO2018218448A1 true WO2018218448A1 (zh) 2018-12-06

Family

ID=64454136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086383 WO2018218448A1 (zh) 2017-05-27 2017-05-27 通信网络架构、信令传输方法及装置

Country Status (4)

Country Link
US (1) US20200077378A1 (zh)
EP (1) EP3634083A4 (zh)
CN (1) CN109362243A (zh)
WO (1) WO2018218448A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204350174U (zh) * 2014-11-27 2015-05-20 昆山优力电能运动科技有限公司 超视距空中观光系统
CN105843183A (zh) * 2016-03-10 2016-08-10 赛度科技(北京)有限责任公司 一种基于4g/wifi网络通讯技术的无人机综合运行管理系统
CN205788719U (zh) * 2016-05-26 2016-12-07 深圳市天鼎微波科技有限公司 一种多天线无人机系统
CN106375738A (zh) * 2016-11-28 2017-02-01 东莞职业技术学院 智能车视频无人驾驶控制装置及系统
CN106604205A (zh) * 2016-11-18 2017-04-26 重庆零度智控智能科技有限公司 终端通讯方法、无人机通讯方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516141B (zh) * 2008-12-05 2011-01-19 中国移动通信集团广东有限公司 一种移动终端与因特网进行通信的方法及系统
US8817690B2 (en) * 2011-04-04 2014-08-26 Qualcomm Incorporated Method and apparatus for scheduling network traffic in the presence of relays
WO2013040749A1 (en) * 2011-09-20 2013-03-28 Huawei Technologies Co., Ltd. Method for transmission of control signals in a wireless communication system
GB2497078A (en) * 2011-11-24 2013-06-05 Sharp Kk Mobile relay handover in a wireless telecommunications system
CN203206233U (zh) * 2013-04-23 2013-09-18 深圳市共进电子股份有限公司 一种基于4g标准的无线宽带装置
CN104753627A (zh) * 2013-12-26 2015-07-01 中兴通讯股份有限公司 多路径传输方法、系统及数据发送装置和数据接收装置
US10756804B2 (en) * 2014-05-08 2020-08-25 Apple Inc. Lawful intercept reporting in wireless networks using public safety relays
US9505494B1 (en) * 2015-04-30 2016-11-29 Allstate Insurance Company Enhanced unmanned aerial vehicles for damage inspection
US20170023939A1 (en) * 2015-05-06 2017-01-26 Joel David Krouse System and Method for Controlling an Unmanned Aerial Vehicle over a Cellular Network
KR101809439B1 (ko) * 2015-07-22 2017-12-15 삼성에스디에스 주식회사 드론 관제 장치 및 방법
CN105045282A (zh) * 2015-08-19 2015-11-11 无锡觅睿恪科技有限公司 飞行器的控制系统
CN106483971A (zh) * 2015-08-27 2017-03-08 成都鼎桥通信技术有限公司 无人机数据传输方法和装置
US20170142766A1 (en) * 2015-11-17 2017-05-18 Electronics And Telecommunications Research Institute Method and apparatus for controlling access of terminal equipment in wireless communication system
CN107170298A (zh) * 2016-03-07 2017-09-15 群光电子股份有限公司 无人飞行器的防碰撞系统及其方法
CN105676249B (zh) * 2016-04-20 2018-05-08 中国民航大学 一种基于4g/3g/bds的通航飞机通信导航监视系统及方法
CN205983223U (zh) * 2016-08-24 2017-02-22 广州空天通讯技术服务有限公司 基于北斗卫星的移动飞行器超视距监控系统
CN106549705A (zh) * 2016-11-22 2017-03-29 深圳市元征科技股份有限公司 无人机及基于无人机的通信方法
US11490246B2 (en) * 2017-05-03 2022-11-01 Qualcomm Incorporated Determining whether a drone-coupled user equipment is engaged in a flying state
CN110603841A (zh) * 2017-05-05 2019-12-20 英特尔Ip公司 用于对于飞行器发信号的方法和布置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204350174U (zh) * 2014-11-27 2015-05-20 昆山优力电能运动科技有限公司 超视距空中观光系统
CN105843183A (zh) * 2016-03-10 2016-08-10 赛度科技(北京)有限责任公司 一种基于4g/wifi网络通讯技术的无人机综合运行管理系统
CN205788719U (zh) * 2016-05-26 2016-12-07 深圳市天鼎微波科技有限公司 一种多天线无人机系统
CN106604205A (zh) * 2016-11-18 2017-04-26 重庆零度智控智能科技有限公司 终端通讯方法、无人机通讯方法及装置
CN106375738A (zh) * 2016-11-28 2017-02-01 东莞职业技术学院 智能车视频无人驾驶控制装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3634083A4 *

Also Published As

Publication number Publication date
EP3634083A1 (en) 2020-04-08
EP3634083A4 (en) 2020-06-10
CN109362243A (zh) 2019-02-19
US20200077378A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6876838B2 (ja) モビリティシグナリング負荷低減
CN110831261B (zh) 用于组合的rrc非活动恢复、rrc rna&nas注册过程的装置
JP2023120188A (ja) 5gネットワークでのローカルエリアデータネットワーク(ladn)への接続を管理する方法
US11019540B2 (en) User equipment path transfer method, user equipment state conversion control method, user equipment, and base station
WO2019047502A1 (zh) 无人机控制系统及实现方法、地面控制设备和中继站
WO2019237314A1 (zh) 信息传输方法及装置
US10917527B2 (en) Policy device selection by common IMS
EP3796571B1 (en) Method and device for controlling unmanned aerial vehicle to access network
EP3952599A1 (en) Method for establishing communication bearer, device and system
EP3307012A1 (en) Method and device for communications
US10805782B1 (en) Hybrid Bluetooth low energy mesh networks having proxy devices
US20230199902A1 (en) eDRX ENHANCEMENT FOR REDUCED CAPABILITY DEVICE
CN109983834A (zh) 用于处理用户设备事务的混合释放
CN110268732A (zh) 数据传输方法、基站、本地疏导控制器、网关和系统
WO2019019159A1 (zh) 一种控制可操控设备的方法及装置
KR102567386B1 (ko) 데이터를 송수신하는 방법 및 통신 기기
JP7013423B2 (ja) ハンドオーバーでのアップリンクベアラーバインディング
WO2018218448A1 (zh) 通信网络架构、信令传输方法及装置
EP4132199A1 (en) Apparatus, methods, and computer programs
KR20240039074A (ko) 세컨더리 셀 그룹 활성화 시 빔 장애 복구 트리거
CN113348652B (zh) 标记上行链路数据分组
US9521199B2 (en) Reliable transfer of data from an image capturing device to a remote data storage
CN114390482A (zh) 中继的配置方法、装置及用户设备
US20230308907A1 (en) Methods, devices, and systems for configuring user equipment for minimization of drive test
US11909500B2 (en) Method and apparatus for interworking between multiple drone communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017911659

Country of ref document: EP

Effective date: 20200102