WO2018216681A1 - Nanofiber manufacturing device and head used for same - Google Patents

Nanofiber manufacturing device and head used for same Download PDF

Info

Publication number
WO2018216681A1
WO2018216681A1 PCT/JP2018/019627 JP2018019627W WO2018216681A1 WO 2018216681 A1 WO2018216681 A1 WO 2018216681A1 JP 2018019627 W JP2018019627 W JP 2018019627W WO 2018216681 A1 WO2018216681 A1 WO 2018216681A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
flow path
gas
outlet surface
head
Prior art date
Application number
PCT/JP2018/019627
Other languages
French (fr)
Japanese (ja)
Inventor
池ヶ谷 守彦
孝嗣 越前谷
曽田 浩義
Original Assignee
エム・テックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テックス株式会社 filed Critical エム・テックス株式会社
Priority to US16/615,949 priority Critical patent/US20200173057A1/en
Priority to RU2019142697A priority patent/RU2760806C2/en
Priority to EP18805205.4A priority patent/EP3633083A4/en
Priority to CN201880046856.9A priority patent/CN111542653A/en
Priority to MYPI2019006854A priority patent/MY194530A/en
Priority to AU2018273416A priority patent/AU2018273416A1/en
Priority to KR1020197037956A priority patent/KR20200038428A/en
Priority to CA3064728A priority patent/CA3064728A1/en
Publication of WO2018216681A1 publication Critical patent/WO2018216681A1/en
Priority to ZA2019/07708A priority patent/ZA201907708B/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0853Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single gas jet and several jets constituted by a liquid or a mixture containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0807Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets
    • B05B7/0861Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point to form intersecting jets with one single jet constituted by a liquid or a mixture containing a liquid and several gas jets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • D04H1/565Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres by melt-blowing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/736Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/025Melt-blowing or solution-blowing dies
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments

Definitions

  • the present invention relates to a nanofiber manufacturing apparatus and a head used in the nanofiber manufacturing apparatus.
  • the nonwoven fabric manufacturing apparatus includes an extruder 915 that extrudes molten resin, a blower 916, and a heating device 917 that heats air from the blower 916.
  • the nonwoven fabric manufacturing apparatus further includes a melt blow unit 911 as a head for spinning the molten resin from the extruder 915 in the form of a filament and blowing hot air supplied from the heating device 917 to the filament-shaped molten resin. .
  • a resin passage 912 for flowing molten resin and hot air passages 913a and 913b for flowing hot air are formed.
  • the hot air passages 913a and 913b are provided with an inclination with respect to the resin passage 912 with the resin passage 912 interposed therebetween, whereby hot air from the hot air passages 913a and 913b is added to the molten resin spun from the resin passage 912. Is sprayed.
  • the hot air passages 913a and 913b of the melt blow part 911 are formed obliquely with respect to the lower surface 911a, if the hot air passages 913a and 913b are formed by cutting with a drill, the lower surface 911a.
  • the drill will be applied diagonally. Therefore, there is a possibility that the tip of the drill may slide on the lower surface 911a, and it is difficult to form the hot air passages 913a and 913b with high accuracy. In order to ensure accuracy, it is necessary to use higher-cost electrolytic processing or the like. there were.
  • the present invention has been made in view of the above problems, and is a nanofiber manufacturing apparatus and a nanofiber manufacturing apparatus that can be manufactured by cutting and can effectively put molten resin on a gas flow.
  • An object is to provide a head to be used.
  • the nanofiber manufacturing apparatus of one embodiment of the present invention includes an angle ⁇ (where 0 ⁇ ⁇ 90 degrees) with respect to a raw material outlet surface on which a raw material flow path through which a liquid raw material is discharged is formed, and the raw material outlet surface. And a gas outlet surface formed with a gas flow path through which gas is ejected, and the raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is The raw material flow path and the gas flow path are formed so as to intersect the gas outlet surface and the liquid raw material discharged from the raw material flow path intersects with the gas ejected from the gas flow path. It is arranged.
  • the nanofiber manufacturing apparatus includes a raw material outlet surface on which a raw material flow path through which a liquid raw material is discharged is formed, and a gas flow that is disposed below the raw material outlet surface and jets gas.
  • the raw material flow path is formed orthogonal to the raw material outlet face, the gas flow path is formed orthogonal to the gas outlet face, and the opening of the gas flow path is connected to the connecting surface.
  • the raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path reaches the opening of the gas flow path through the connecting surface.
  • the head used in the nanofiber manufacturing apparatus includes a raw material outlet surface on which a raw material flow path for discharging a liquid raw material is formed, and an angle ⁇ (provided that 0 ⁇ ⁇ 90 degrees), and a gas outlet surface on which a gas channel through which gas is ejected is formed, and the raw material channel is formed orthogonal to the raw material outlet surface,
  • the gas flow path is formed orthogonal to the gas outlet surface, and the raw material flow path intersects the liquid raw material discharged from the raw material flow path and the gas ejected from the gas flow path.
  • the gas flow path is arranged.
  • a head used in the nanofiber manufacturing apparatus is disposed below a raw material outlet surface on which a raw material flow path for discharging a liquid raw material is formed, and below the raw material outlet surface, and gas is ejected.
  • the gas outlet surface in which the gas flow path is formed is connected to the raw material outlet surface and the gas outlet surface, and is arranged at an angle ⁇ (where 0 ⁇ ⁇ ⁇ 90 degrees) with respect to the raw material outlet surface.
  • the raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is formed orthogonal to the gas outlet face,
  • the raw material flow path and the gas flow path opening are in contact with the connection surface, and the liquid raw material discharged from the raw material flow path reaches the gas flow path opening through the connection surface.
  • a gas flow path is arranged.
  • the raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is formed orthogonal to the gas outlet face. Since it did in this way, a raw material flow path can be formed in a raw material exit surface by cutting, and a gas flow path can be formed in a gas exit surface. Then, the liquid raw material discharged from the raw material flow path is directly or at an angle ⁇ to the gas flow ejected from the gas flow path indirectly through the connection surface connected to the raw material outlet surface and the gas outlet surface. Can be crossed. Therefore, it can manufacture accurately by cutting and can place a liquid raw material on a gas flow effectively.
  • FIG. 1 It is a figure showing the whole nanofiber manufacture device composition concerning a 1st embodiment of the present invention. It is a perspective view of the head which the nanofiber manufacturing apparatus of FIG. 1 has. It is a figure explaining the head of FIG. It is a figure explaining the structure of the modification 1 of the head of FIG. It is a figure explaining the structure of the modification 2 of the head of FIG. It is a figure explaining the structure of the modification 3 of the head of FIG. It is a figure explaining the structure of the modification 4 of the head of FIG. It is a figure explaining the structure of the modification 5 of the head of FIG. It is a figure explaining the structure of the modification 6 of the head of FIG. It is a figure explaining the structure of the modification 7 of the head of FIG.
  • FIG. 32 is a diagram illustrating a configuration of a second modification of the head in FIG. 30.
  • FIG. 32 is a diagram illustrating a configuration of a third modification of the head in FIG. 30.
  • FIG. 32 is a diagram illustrating a configuration of a fourth modification of the head in FIG. 30. It is a figure explaining the structure of the modification 5 of the head of FIG.
  • FIG. 32 is a diagram illustrating a configuration of a sixth modification of the head in FIG. 30.
  • FIG. 31 is a diagram illustrating a configuration of a modification 8 of the head of FIG. 30. It is a figure explaining the basic concept of this invention. It is a figure explaining the structure of the conventional nonwoven fabric manufacturing apparatus.
  • a liquid raw material is supplied to a gas ejected at a relatively high speed to form nanofibers.
  • gas when the term “gas” is used without specifying the composition, it includes gases having any composition and molecular structure.
  • the “raw material” means all materials for forming the nanofiber, and in the following embodiment, an example using a synthetic resin as the “raw material” will be described. However, the present invention is not limited to this, and various composition materials may be used.
  • liquid raw material does not limit that the raw material is liquid.
  • the “liquid raw material” includes, for example, a “solvent” in which a solid raw material as a solute or a liquid raw material is dissolved in advance in a predetermined solvent so as to have a predetermined concentration.
  • the “liquid raw material” includes a “molten raw material” obtained by melting a solid raw material.
  • the “liquid raw material” in the present invention requires a property having a viscosity that allows the “raw material” to be supplied (spouted and discharged) from the supply port (spout port and discharge port).
  • a “raw material” having such a liquid property is referred to as a “liquid raw material”.
  • the concept of the basic invention of the present invention is as follows.
  • (I) As shown in FIG. 39 (a), a raw material outlet surface 22, a gas outlet surface 23, and a liquid raw material formed perpendicular to the raw material outlet surface 22 are discharged.
  • the raw material outlet face 22 and the gas outlet face 23 have an angle ⁇ ( However, by being arranged at 0 ⁇ ⁇ 90 degrees, the axis P of the raw material channel 25 and the axis Q of the gas channel 26 intersect at an angle ⁇ .
  • a gas flow path 26 through which gas formed perpendicular to the gas outlet surface 23 is discharged, and a raw material outlet surface 22 and a connecting surface 24 connected to the gas outlet surface 23, and the gas outlet surface 23 and the connecting surface 24 are arranged at an angle ⁇ (where 0 ⁇ ⁇ ⁇ 90 degrees), the surface direction R of the connecting surface 24 and the axis Q of the gas flow channel 26 are at an angle ⁇ ( ⁇ 90 ° - ⁇ ).
  • the liquid raw material discharged from the raw material flow path 25 is directly as shown in FIG. 39 (a) or as shown in FIG. 39 (b), the raw material outlet surface 22 and the gas outlet surface 23.
  • the gas flows from the gas flow path 26 indirectly through the connecting surface 24 connected to the gas flow path 26 at an angle ⁇ .
  • the raw material supply tangent angle ⁇ should be determined by the distance a, the distance b, and the distance d, and further, the opening diameter c of the high-pressure gas and the gas jetted from the gas flow path 26. It should be determined by the relationship between pressure and temperature.
  • Nanofibers with different diameters and fiber lengths can also be formed.
  • the arrangement conditions of the raw material channel 25 and the gas channel 26 may be selected and changed according to the type of nanofiber to be manufactured.
  • FIG. 1 is a diagram showing the overall configuration of a nanofiber manufacturing apparatus according to a first embodiment of the present invention, where (a) is a side view and (b) is a plan view.
  • FIG. 2 is a perspective view of a head included in the nanofiber manufacturing apparatus of FIG. 3A and 3B are diagrams illustrating the head according to the first embodiment, in which FIG. 3A is a front view, FIG. 3B is a cross-sectional view taken along the line AA ′, and FIG. It is sectional drawing which follows a line.
  • FIGS. 4 to 26 are diagrams for explaining the configurations of Modifications 1 to 15 of the head having the basic configuration shown in FIG. 2. In each of the drawings, perspective views (disassembled perspective views) similar to FIGS.
  • the nanofiber manufacturing apparatus 1 is configured to use a solvent in which a solid raw material or a liquid raw material as a solute is dissolved in advance in a predetermined solvent so as to have a predetermined concentration.
  • the nanofiber manufacturing apparatus 1 includes a rectangular flat base 10, a solvent reservoir 11 installed on the base 10 and having a function of extruding a solvent under a predetermined pressure, and a solvent reservoir 11.
  • a hose 12 for supplying a solvent to the head 20 to be described later, a gas injection unit 13 that is installed on the base 10 and ejects high-pressure gas, and a head 20 connected to the tip of the gas injection unit 13. is doing.
  • a temperature control function such as a heater is provided in each of the solvent reservoir 11, the hose 12 and the head 20 as necessary.
  • the solvent reservoir 11, the hose 12 and the head 20 are made of metal, but depending on various conditions such as the type of solvent and the aspect of the nanofiber product to be manufactured, Other materials such as glass may be used.
  • the head 20 has a substantially rectangular parallelepiped shape, and a front surface 21, a raw material outlet surface 22, and a gas outlet surface 23 facing forward (leftward in FIG. 1) are viewed from above. It is formed in a continuous manner in the lower part.
  • the front surface 21 and the gas outlet surface 23 are parallel to each other, and the gas outlet surface 23 is disposed rearwardly (to the right in FIG. 1) with respect to the front surface 21 by a distance t.
  • the raw material outlet surface 22 and the gas outlet surface 23 are arranged at an angle ⁇ (0 ⁇ ⁇ 90 degrees), and the raw material outlet surface 22 is directed obliquely downward.
  • the head 20 is formed with a rear surface 27 that is parallel to the front surface 21 and faces rearward.
  • the head 20 has a raw material flow path 25 formed orthogonal to the raw material outlet face 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23.
  • the raw material flow path 25 is communicated with the raw material supply path 28 formed orthogonal to the rear surface 27 in the head 20.
  • the gas flow path 26 is formed so as to penetrate the gas outlet surface 23 and the rear surface 27 linearly.
  • the raw material flow path 25 defines a cylindrical space (that is, a circular shape whose cross section perpendicular to the axis is the same throughout), and the gas flow path 26 also defines a cylindrical space.
  • the raw material outlet surface 22 is formed so that its width (length in the vertical direction in FIG. 3) is larger than the diameter of the raw material flow path 25 (about twice the diameter), and the raw material flow path is at the center in the width direction. 25 is arranged.
  • the gas flow path 26 is disposed at a distance from the raw material outlet surface 22.
  • the axis P of the raw material channel 25 and the axis Q of the gas channel 26 are arranged so as to be included in one plane, and the axis P and the axis Q intersect at an angle ⁇ at one point in front of the head 20.
  • the hose 12 is connected to the opening on the rear surface 27 of the raw material supply path 28, and the solvent supplied from the solvent reservoir 11 flows through the hose 12, the raw material supply path 28 and the raw material flow path 25, and the raw material outlet It is discharged from the opening of the raw material flow path 25 on the surface 22.
  • the gas injection unit 13 is connected to the opening on the rear surface 27 of the gas flow channel 26, and the high-pressure gas supplied from the gas injection unit 13 flows through the gas flow channel 26 and is on the gas outlet surface 23. It is ejected from the opening of the gas flow path 26.
  • the configuration is arbitrary as long as the object of the present invention is not violated.
  • the hose 12 and the gas injection unit 13 are directly connected to the head 20.
  • a manifold block in which the hose 12 and the gas injection unit 13 are connected is provided on the rear surface 27 side of the head 20.
  • a configuration may be employed in which the head 20 is detachable from the manifold block, and the raw material and gas are supplied from the hose 12 and the gas injection unit 13 to the head 20 via the manifold block.
  • the nanofiber manufacturing apparatus 1 supplies a solvent from the solvent reservoir 11 and discharges it from the opening of the raw material flow path 25 on the raw material outlet surface 22, and supplies a high-pressure gas from the gas injection unit 13 on the gas outlet surface 23. From the opening of the gas flow path 26. Then, the solvent discharged from the raw material flow path 25 intersects the flow of gas ejected from the gas flow path 26 at an angle ⁇ , and is conveyed forward while being stretched to produce nanofibers.
  • the raw material flow path 25 is formed orthogonal to the raw material outlet surface 22, and the gas flow path 26 is formed orthogonal to the gas outlet surface 23.
  • the raw material flow path 25 can be formed in the raw material outlet surface 22 and the gas flow path 26 can be formed in the gas outlet surface 23 by cutting, and the solvent discharged from the raw material flow path 25 can be
  • the gas flow directly ejected from the gas flow path 26 can be made to intersect at an angle ⁇ . Therefore, it can manufacture with a sufficient precision by cutting and can put a solvent on a gas flow effectively.
  • the nanofiber manufacturing apparatus 1 of the present embodiment can constitute a nanofiber manufacturing apparatus without using a complicated apparatus such as a heating cylinder, a motor, or a screw by using a solvent in which a raw material is dissolved in a solvent. Therefore, the size of the apparatus becomes compact, and space can be saved. In addition, since the apparatus can be configured compactly, a portable nanofiber manufacturing apparatus can be configured. In the case of such a portable type nanofiber manufacturing apparatus, it becomes possible to make a nanofiber product by spraying the nanofiber toward the place where the nanofiber is to be attached, and the use of the nanofiber is further expanded.
  • FIG. 4 shows Modification 1 of the head 20 (hereinafter, also referred to as “basic configuration head 20”) of the nanofiber manufacturing apparatus 1.
  • the head 20 ⁇ / b> A of Modification 1 is formed so that the width of the material outlet surface 22 (the length in the vertical direction in FIG. 4) is the same as the diameter of the material flow path 25.
  • the head 20A of the first modification is the same as the head 20 of the basic configuration.
  • FIG. 5 (Modification 2 of the first embodiment)
  • the modification 2 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown.
  • the head 20B of this modification 2 is formed such that the width of the raw material outlet surface 22 (length in the vertical direction in FIG. 5) is larger than the diameter of the raw material flow path 25 (about three times the diameter), A part of the gas flow path 26 is disposed in contact with the raw material outlet surface 22.
  • the head 20B of the second modification is the same as the head 20 of the basic configuration.
  • FIG. 6 (Modification 3 of the first embodiment)
  • the modification 3 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown.
  • the head 20 ⁇ / b> C of this modification 3 is formed so that the width of the raw material outlet surface 22 (the vertical length in FIG. 6) is the same as the diameter of the raw material flow path 25, and a part of the gas flow path 26. Is disposed in contact with the raw material outlet surface 22. Thereby, the raw material flow path 25 and the gas flow path 26 are disposed in contact with each other.
  • the head 20C of the third modification is the same as the head 20 of the basic configuration.
  • the modification 4 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown.
  • the raw material flow path 25 defines a square columnar space having a rectangular cross section.
  • the head 20D of the fourth modification is the same as the head 20 of the basic configuration.
  • FIG. 8 shows a fifth modification of the head 20 included in the nanofiber manufacturing apparatus 1.
  • the gas flow path 26 defines a square columnar space having a rectangular cross section.
  • the head 20E of the modified example 5 is the same as the head 20 of the basic configuration.
  • FIG. 9 (Modification 6 of the first embodiment)
  • the modification 6 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown.
  • the raw material flow path 25 defines a rectangular column-shaped space having a rectangular cross section
  • the gas flow path 26 also defines a rectangular column-shaped space having a rectangular cross section.
  • the head 20F of the modified example 6 is the same as the head 20 of the basic configuration.
  • FIG. 10 shows a modified example 7 of the head 20 included in the nanofiber manufacturing apparatus 1.
  • the head 20G of the modified example 7 has a rectangular parallelepiped shape, does not have the front surface 21 in front of the head 20, and is forward in front of the entire front surface (front side in FIG. 10A, left direction in FIGS. 10B and 10C). ) Is formed.
  • the gas flow path 26 is formed orthogonally to the gas outlet face 23, and the raw material outlet face 22 disposed at an angle ⁇ with the gas outlet face 23 is formed in the gas flow path 26. ing. Thereby, the gas flow path 26 has divided the columnar space which cut off some cylinders along the string.
  • the head 20G of Modification 7 is formed so that the width of the raw material outlet surface 22 (the length in the vertical direction in FIG. 10A) is the same as the diameter of the raw material flow path 25.
  • the head 20G of the modified example 7 is the same as the head 20 of the basic configuration.
  • Modification 8 of the first embodiment 11 and 12 show a modification 8 of the head 20 included in the nanofiber manufacturing apparatus 1.
  • the part having the front surface 21 and the raw material outlet surface 22 (first part 20a) and the part having the gas outlet surface 23 (second part 20b) in the head 20 having the basic configuration are separated. These parts are detachably coupled to each other by coupling means (not shown) such as a belt or a screw.
  • the first portion 20a of the head 20H of the modified example 8 has a shape in which one side is chamfered in a rectangular parallelepiped, and the front surface 21 and the raw material outlet surface 22 (corresponding to the chamfered portion) are sequentially connected from top to bottom.
  • the raw material flow path 25 is formed and formed orthogonal to the raw material outlet surface 22.
  • the second portion 20 b has a rectangular parallelepiped shape, has a gas outlet surface 23 formed on the entire front surface, and has a gas flow path 26 formed orthogonal to the gas outlet surface 23.
  • the raw material outlet surface 22 and the gas outlet surface 23 are arranged at an angle ⁇ .
  • the head 20H of the modified example 8 has a configuration in which the first portion 20a and the second portion 20b are detachable, and has the same configuration as the head 20 of the basic configuration except that they are coupled to each other.
  • (Modification 9 of the first embodiment) 13 and 14 show a ninth modification of the head 20 included in the nanofiber manufacturing apparatus 1.
  • the second portion 20b has the same configuration as the head 20H of the modification 8, and when the first portion 20a is combined with the second portion 20b, the raw material outlet surface 22 and The angle ⁇ ′ formed by the gas outlet surface 23 is different from that of the head 20H of the modified example 8 ( ⁇ ′ ⁇ ⁇ , 0 ⁇ ′ ⁇ 90 degrees).
  • the head 20I of the modification 9 is the same as the head 20H of the modification 8.
  • Modification 10 of the first embodiment 15 and 16 show a modified example 10 of the head 20 included in the nanofiber manufacturing apparatus 1.
  • the head 20J of the modification 10 has a first part 20a and a second part 20b that are separate from each other, and for example, a coupling means (not shown) such as a belt or a screw.
  • a coupling means such as a belt or a screw.
  • the first portion 20a of the head 20J of the modified example 10 has a rectangular parallelepiped shape, and a front surface 21 facing the front (front side in FIG. 16 (a), left direction in (b) and (c)) on the entire front surface.
  • a raw material outlet surface 22 formed downward and facing downward is formed on the entire lower surface, and has a raw material flow path 25 formed orthogonal to the raw material outlet surface 22.
  • the second portion 20b has the same configuration as the head 20H of the modified example 8, has a rectangular parallelepiped shape, the gas outlet surface 23 is formed on the entire front surface, and the gas formed orthogonal to the gas outlet surface 23.
  • a flow path 26 is provided.
  • FIG. 17A is an exploded perspective view of the head 20K of the modification 11
  • FIG. 17B is a perspective view of the pre-processing member K before the first portion 20a of the head 20A of the modification 11 is cut out.
  • the head 20K of this modified example 11 has a raw material outlet pipe 29 that protrudes from the raw material outlet surface 22 and has a raw material channel 25 formed inside.
  • the head 20K of the modification 11 is the same as the head 20H of the modification 8.
  • Modification 12 of the first embodiment 19 and 20 show a modification 12 of the head 20 included in the nanofiber manufacturing apparatus 1.
  • a concave groove 31 having a rectangular cross section is formed on the upper surface of the second portion 20b in place of the gas flow path 26 that partitions the cylindrical space.
  • the head 20L of the modified example 12 has a rectangular cross section with one surface in contact with the second portion 20b in the first portion 20a and the concave groove 31 of the second portion 20b by coupling the first portion 20a and the second portion 20b.
  • a gas flow path 26 is formed that partitions the square columnar space.
  • the head 20L of the modification 12 is the same as the head 20H of the modification 8.
  • the first portion 20a and the second portion 20b are shifted in the front-rear direction so that the front surface 21 and the gas outlet surface 23 are included in the same plane. May be.
  • (Modification 13 of the first embodiment) 22 and 23 show a modified example 13 of the head 20 included in the nanofiber manufacturing apparatus 1.
  • a groove 31 having a rectangular cross section is formed on the upper surface of the second portion 20b in place of the gas flow path 26 that defines the cylindrical space.
  • the head 20M of the modified example 13 has a rectangular cross section between the first portion 20a and the second portion 20b coupled to each other so that the first portion 20a is in contact with the second portion 20b and the groove 31 of the second portion 20b.
  • a gas flow path 26 is formed that partitions the square columnar space.
  • the head 20M of the modification 13 is the same as the head 20J of the modification 10.
  • the first portion 20a and the second portion 20b may be arranged so as to be shifted so that the front surface 21 and the gas outlet surface 23 are included in the same plane. Good.
  • FIG. 25 (Modification 14 of the first embodiment)
  • the head 20 ⁇ / b> S of the modified example 14 has two raw material flow paths 25, 25, and one gas flow path 26 disposed between the two raw material flow paths 25, 25. In other words, it has one channel set that includes two source channels 25 and 25 and one gas channel 26.
  • two raw material outlet surfaces 22 and 22 are formed so as to sandwich one gas outlet surface 23.
  • the raw material outlet surfaces 22 and 22 and the gas outlet surface 23 are arranged to form an angle ⁇ (0 ⁇ ⁇ 90 degrees).
  • the head 20 ⁇ / b> S of the modified example 14 includes raw material flow paths 25, 25 formed orthogonal to the two raw material outlet faces 22, 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23.
  • the head 20 ⁇ / b> S of the modification 14 is configured such that the raw material flow paths 25, 25 of the raw material flow paths 25, 25 and the gas flow path 26 have an axis Q in front of the head 20 ⁇ / b> S. It intersects at an angle ⁇ at one point.
  • the solvent discharged from the two raw material channels 25, 25 crosses the flow of gas ejected from the gas channel 26 at an angle ⁇ and is carried forward while being stretched.
  • this configuration by discharging different liquid raw materials from the two raw material channels 25, 25, two types of fibers of two different liquid raw materials are simultaneously generated with the same gas, and these are mixed. You can also
  • FIG. 26 (Modification 15 of the first embodiment)
  • the head 20T of this modification 15 has two raw material channels 25, 25 and two gas channels 26, 26. In other words, there are a plurality (two) of channel sets each including one raw material channel 25 and one gas channel 26 corresponding thereto.
  • the head 20T of the modification 15 has two first portions 20a and 20a and a second portion 20b sandwiched between the two first portions 20a and 20a.
  • the first portions 20a and 20a have the same configuration as the first portion 20a of the modified example 8 described above.
  • the 2nd part 20b has a rectangular parallelepiped shape, and the concave grooves 31 and 31 are formed in the upper surface and the lower surface.
  • the first portion 20a, 20a and the second portion 20b are coupled to each other so that the first portion 20a, 20a is in contact with the second portion 20b and the groove 31 of the second portion 20b.
  • 31 form gas flow paths 26, 26 that define a rectangular columnar space having a rectangular cross section.
  • the relationship between the raw material flow path 25 and the gas flow path 26 in the head 20T of the modification 15 is the same as the relationship between the raw material flow path 25 and the gas flow path 26 in the head 20L of the modification 12.
  • different liquid raw materials are discharged from the two raw material flow paths 25, 25 and the same gas is ejected from the two gas flow paths 26, 26, whereby two different liquids are used in the same gas.
  • Table 1 shows an outline of the basic configuration of the head 20 of the first embodiment and the configurations of modifications 1 to 15 thereof.
  • a nanofiber manufacturing apparatus according to a second embodiment of the present invention will be described with reference to FIG.
  • the nanofiber manufacturing apparatus 2 (not shown) of the second embodiment has the same configuration as the nanofiber manufacturing apparatus 1 of the first embodiment shown in FIG. 1 except that the head 20U is provided instead of the head 20.
  • FIGS. 27A and 27B are diagrams for explaining a head included in the nanofiber manufacturing apparatus 2 according to the second embodiment of the present invention, in which FIG. 27A is a front view and FIG. 27B is a cross section taken along the line AA ′. It is a figure, (c) is sectional drawing which follows the BB 'line.
  • the head 20U included in the nanofiber manufacturing apparatus 2 of the second embodiment includes a raw material outlet surface 22 facing forward (a front side of the paper in FIG. 27A, a left direction in FIGS. 27B and 27C), and a connecting surface. 24 and the gas outlet surface 23 are formed so as to be connected in order from top to bottom as an absolute positional relationship.
  • the raw material outlet surface 22 and the gas outlet surface 23 are parallel to each other, and the gas outlet surface 23 is disposed forwardly away from the front surface 21 by a distance t.
  • the head 20U is formed with a rear surface (not shown) that is parallel to the front surface 21 and faces rearward (backward direction in FIG. 27 (a), right direction in (b) and (c)).
  • the head 20U has a raw material flow path 25 formed perpendicular to the raw material outlet face 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23.
  • the raw material channel 25 is formed so as to penetrate the raw material outlet surface 22 and the rear surface in a straight line.
  • the gas flow path 26 is also formed so as to penetrate the gas outlet surface 23 and the rear surface 27 linearly.
  • the axis P of the raw material channel 25 and the axis Q of the gas channel 26 are arranged so as to be included in one plane.
  • the connecting surface 24 and the gas outlet surface 23 are arranged at an angle ⁇ (0 ⁇ ⁇ ⁇ 90 degrees), and the connecting surface 24 is directed obliquely upward.
  • the surface direction R and the axis Q intersect at an angle ⁇ at one point in front of the head 20U.
  • this “lateral direction” is a direction parallel to both the connecting surface 24 and the gas outlet surface 23.
  • the raw material flow path 25 defines a cylindrical space (that is, a circular shape whose cross section perpendicular to the axis is the same throughout), and the gas flow path 26 also defines a cylindrical space.
  • the raw material flow path 25 and the gas flow path 26 may have a shape that partitions a square columnar space.
  • a part of the raw material flow path 25 is in contact with the connection surface 24, and a part of the gas flow path 26 is also in contact with the connection surface 24.
  • a raw material flow groove 24 a that linearly connects the raw material flow path 25 and the gas flow path 26 is formed in the connecting surface 24.
  • the nanofiber manufacturing apparatus supplies a solvent from the solvent reservoir 11 and discharges it from the opening of the raw material flow path 25 on the raw material outlet surface 22, and supplies a high-pressure gas from the gas injection unit 13 on the gas outlet surface 23.
  • the gas channel 26 is ejected from the opening. Then, the solvent discharged from the raw material flow path 25 reaches the opening of the gas flow path 26 through the raw material flow groove 24a, crosses the gas flow ejected from the gas flow path 26 at an angle ⁇ , and stretches. While being carried forward, nanofibers are produced.
  • the raw material flow path 25 is formed orthogonal to the raw material outlet surface 22 and the gas flow path 26 is formed orthogonal to the gas outlet surface 23.
  • the raw material flow path 25 can be formed in the raw material outlet surface 22 and the gas flow path 26 can be formed in the gas outlet surface 23 by cutting, and the solvent discharged from the raw material flow path 25 can be
  • the flow of gas ejected from the gas flow channel 26 indirectly through the connection surface 24 can be made to intersect at an angle ⁇ . Therefore, it can manufacture with a sufficient precision by cutting and can put a solvent on a gas flow effectively.
  • a nanofiber manufacturing apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
  • the nanofiber manufacturing apparatus 3 is configured to use a molten raw material obtained by melting a solid raw material.
  • FIGS. 30A and 30B are diagrams for explaining a head included in the nanofiber manufacturing apparatus of FIG. 28, in which FIG. 30A is a front view and FIG. FIGS. 31 to 38 are views for explaining the configurations of the first to eighth modified examples of the head having the basic configuration shown in FIG. 30.
  • a front view and a sectional view are shown in the same manner as FIG. .
  • terms such as front, rear, left, right, up, down may be used, but these indicate the relative positional relationship of the components, and do not indicate the absolute positional relationship unless otherwise specified. .
  • symbol is attached
  • the nanofiber manufacturing apparatus 3 includes a hopper 62 for feeding pellet-shaped resin (a granular synthetic resin having a fine particle diameter), which is a material of the nanofiber, to the nanofiber manufacturing apparatus 3, and a hopper 62.
  • a heating cylinder 63 for receiving and supplying a resin to heat and melt it, a heater 64 as a heating means for heating the heating cylinder 63 from the outside, and being rotatably accommodated in the heating cylinder 63 and rotating.
  • a gas injection unit (not shown) is connected to the head 70 via a gas supply pipe 68.
  • the components such as the heating cylinder 63 and the head 70 are mainly made of metal, but the type of resin used as the nanofiber material, the mode of the nanofiber product to be manufactured, etc. Depending on the various conditions, other materials such as resin or glass may be used.
  • the head 70 has a front surface 71 facing forward (a front side in FIG. 30A and a left direction in FIG. 30B), a raw material outlet surface 72, and a gas outlet surface 73. They are formed in order from the top to the bottom.
  • the front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed at a distance t from the front surface 71 rearward (to the right in FIG. 30B).
  • the raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle ⁇ (0 ⁇ ⁇ 90 degrees), and the raw material outlet surface 72 is directed obliquely downward.
  • the head 70 is formed with a rear surface (not shown) that is parallel to the front surface 71 and faces rearward.
  • the head 70 also has a plurality of raw material channels 75 formed orthogonal to the raw material outlet surface 72 and a gas channel 76 formed orthogonal to the gas outlet surface 73.
  • the same number (seven) of the raw material channels 75 and the gas channels 76 are provided, and the raw material channels 75 and the gas channels 76 arranged in the vertical direction correspond to each other.
  • a plurality of (seven) channel sets each including one raw material channel 75 and one gas channel 76 arranged corresponding to the source channel 75 are provided.
  • the plurality of flow channel sets are arranged in one direction so that the raw material flow channel 75 and the gas flow channel 76 are arranged on two straight lines parallel to each other.
  • the raw material flow path 75 defines a cylindrical space
  • the gas flow path 76 also defines a cylindrical space.
  • the raw material outlet surface 72 is formed so that the width (the length in the vertical direction in FIG. 30A) is larger than the diameter of the raw material flow path 75 (about twice the diameter).
  • a raw material channel 75 is disposed.
  • the gas flow path 76 is disposed at a distance from the raw material outlet surface 72.
  • the axis P of the source channel 75 and the axis Q of the gas channel 76 are arranged so as to be included in one plane, and the axis P and the axis Q are It intersects at an angle ⁇ at one point in front of the head 70.
  • the plurality of raw material channels 75 are connected to the heating cylinder 63, and the molten raw material supplied from the heating cylinder 63 flows through the plurality of raw material channels 75, and the plurality of raw material channels 75 on the raw material outlet surface 72. It is discharged from the opening.
  • the plurality of gas flow paths 76 are communicated with the gas supply pipe 68 in the head 70, and the high-pressure gas supplied from the gas injection unit flows through the gas supply pipe 68 and the plurality of gas flow paths 76, thereby It is ejected from the openings of the plurality of gas flow paths 76 on the outlet surface 73.
  • the pellet-shaped raw material (resin) charged in the hopper 62 is supplied into the heating cylinder 63 heated by the heater 64 and melted, and the heating cylinder is rotated by the screw 65 rotated by the motor 66.
  • the molten raw material (molten resin) that has been delivered to the front of 63 and reached the tip of the heating cylinder 63 is discharged from the plurality of raw material channels 75 via the inside of the head 70. Further, high-pressure gas is ejected from a plurality of gas flow paths 76 formed in the head 70.
  • the molten raw material discharged from the raw material flow path 75 crosses the flow of the gas ejected from the gas flow path 76 at an angle ⁇ and is stretched. While being carried forward, nanofibers are produced.
  • the raw material flow path 75 is formed orthogonal to the raw material outlet surface 72, and the gas flow path 76 is formed orthogonal to the gas outlet surface 73.
  • a plurality of raw material flow paths 75 can be formed on the raw material outlet surface 72 by cutting, and a plurality of gas flow paths 76 can be formed on the gas outlet surface 73, and are discharged from the raw material flow paths 75.
  • the melted raw material can be made to intersect the gas flow directly ejected from the gas flow path 76 at an angle ⁇ . Therefore, it can manufacture with a sufficient precision by cutting, and can put a molten raw material on the flow of gas effectively.
  • a nanofiber can be manufactured efficiently in large quantities in a short time.
  • FIG. 31 shows a first modification of the head 70 (hereinafter also referred to as “basic configuration head 70”) of the nanofiber manufacturing apparatus 3.
  • the plurality of gas flow paths 76 define a square columnar space having a rectangular cross section.
  • the head 70A of the first modification is the same as the head 70 of the basic configuration.
  • FIG. 32 shows a second modification of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the head 70B of the second modified example has one slit-like gas flow path 76 extending in the lateral direction (the left-right direction in FIG. 32A, the front-back direction in FIG. 32B), and the gas The channel 76 defines a rectangular column-shaped space having a rectangular cross section.
  • the head 70B of the second modification is the same as the head 70 of the basic configuration.
  • the head 70 ⁇ / b> B of Modification 2 includes a channel set including one slit-like gas channel 76 extending in one direction and a plurality of raw material channels 75 arranged side by side in the one direction. I have one.
  • the axis P of the raw material channel 75 and the axis Q of the gas channel 76 intersect at an angle ⁇ at one point in front of the head 70 when viewed from the lateral direction.
  • the “lateral direction” is a direction parallel to both the raw material outlet surface 72 and the gas outlet surface 73.
  • FIG. 33 shows Modification 3 of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the head 70 ⁇ / b> C of this modification 3 has m raw material flow paths 75 and n gas flow paths 76 (where m ⁇ n).
  • the head 70C of Modification 3 has six raw material flow paths 75 and seven gas flow paths 76.
  • the horizontal direction of each raw material flow path 75 (the left-right direction in FIG. Each of them is arranged so that the position (b) (front side to back direction) of b) is an intermediate position between the adjacent gas flow paths 76.
  • the number of gas flow paths 76 may be larger than the number of raw material flow paths.
  • the head 70C of the third modification is the same as the head 70 of the basic configuration.
  • the head 70 ⁇ / b> C of Modification 3 has one channel set that includes m source channels 75 and n gas channels 76.
  • the axis P of the raw material channel 75 and the axis Q of the gas channel 76 intersect at an angle ⁇ at one point in front of the head 70 when viewed from the lateral direction.
  • FIG. 34 shows a fourth modification of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the portion having the front surface 71 and the raw material outlet surface 72 (first portion 70a) and the portion having the gas outlet surface 73 (second portion 70b) in the head 70 having the basic configuration are separated. These parts are configured to be detachable from each other by a coupling means (not shown) such as a belt or a screw.
  • the first portion 70a of the head 70D of Modification 4 has a shape in which a cylindrical body is cut along a radius, and a side corresponding to the radius at one end face is chamfered. (Corresponding to the chamfered portion) are connected in order from the upper side to the lower side, and have a plurality of raw material flow paths 75 formed orthogonal to the raw material outlet surface 72.
  • the second portion 70b has a shape obtained by cutting the cylindrical body along a radius and becomes a cylindrical body by being coupled to the first portion 70a, and a gas outlet surface 73 is formed on the entire front surface. A gas flow path 76 formed orthogonal to the outlet surface 73 is provided.
  • the head 70D of Modification 4 when the first portion 70a and the second portion 70b are coupled, the raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle ⁇ .
  • the head 70D of Modification 4 has a configuration in which the first portion 70a and the second portion 70b are detachable, and has the same configuration as the head 70 of the basic configuration except that they are coupled to each other.
  • FIG. 35 shows a fifth modification example of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the head 70E of this modified example 5 has a cylindrical shape, and has an annular front surface 71 facing forward (the front side of the paper in FIG. 35A and the left direction in FIG. 35B), and an annular raw material outlet surface. 72 and a circular gas outlet surface 73 are concentrically connected in order from the outer periphery toward the center.
  • the front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed rearwardly (to the right in FIG. 30B) by a distance t with respect to the front surface 71.
  • the raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle ⁇ (0 ⁇ ⁇ 90 degrees), and the raw material outlet surface 72 is formed in an inwardly tapered shape. Further, a rear surface (not shown) which is parallel to the front surface 71 and faces rearward is formed on the head 70E of the modified example 5.
  • the head 70E of the modified example 5 includes a plurality of raw material flow paths 75 that are orthogonal to the raw material outlet surface 72 and arranged at equal intervals in the circumferential direction, and one that is orthogonal to the center of the gas outlet surface 73.
  • a gas flow path 76 is provided.
  • a plurality (eight) of raw material flow paths 75 are provided around the gas flow path 76.
  • the head 70 ⁇ / b> E according to the modified example 5 has one flow path set including one gas flow path 76 and a plurality of raw material flow paths 75 arranged around the gas flow path 76. ing.
  • the raw material flow path 75 defines a cylindrical space
  • the gas flow path 76 also defines a cylindrical space.
  • the raw material outlet surface 72 is formed so that the width (the length in the radial direction) is the same as the diameter of the raw material flow path 75.
  • the gas flow path 76 is disposed at a distance from the raw material outlet surface 72.
  • the axis P of the plurality of raw material channels 75 and the axis Q of the gas channel 76 intersect at an angle ⁇ at one point in front of the head 70B.
  • FIG. 36 shows a sixth modification of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the head 70F of this modification 6 has a plurality of raw material outlet pipes 79 protruding from the raw material outlet surface 72 and having a plurality of raw material flow paths 75 formed inside.
  • the head 70F of the modification 6 is the same as the head 70E of the modification 5.
  • FIG. 37 shows a seventh modification of the head 70 included in the nanofiber manufacturing apparatus 3.
  • the head 70G of the modified example 7 has a cylindrical shape, and has an annular front surface 71 facing forward (a front side in FIG. 37A and a left direction in FIG. 37B), and an annular raw material outlet surface. 72 and a circular gas outlet surface 73 are concentrically connected in order from the outer periphery toward the center.
  • the front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed rearwardly (to the right in FIG. 30B) by a distance t with respect to the front surface 71.
  • the raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle ⁇ (0 ⁇ ⁇ 90 degrees), and the raw material outlet surface 72 is formed in an inwardly tapered shape. Further, a rear surface (not shown) which is parallel to the front surface 71 and faces rearward is formed on the head 70G of the modified example 7.
  • the head 70G of the modified example 7 has a plurality of raw material flow passages 75 orthogonal to the raw material outlet surface 72 and arranged at equal intervals in the circumferential direction, and an orthogonal arrangement to the gas outlet surface 73 and arranged at equal intervals in the circumferential direction.
  • a plurality of gas flow paths 76 are provided.
  • a plurality of (eight) heads 70 ⁇ / b> G of Modification 7 are provided so that the raw material flow paths 75 and the gas flow paths 76 correspond to each other.
  • the head 70G of the modified example 7 is provided with a plurality of (eight) flow channel sets including one raw material flow channel 75 and one gas flow channel 76 arranged corresponding to the raw material flow channel 75,
  • the plurality of flow channel sets are arranged in an annular shape so that the raw material flow channel 75 and the gas flow channel 76 are arranged on the circumferences of two concentric circles.
  • the raw material flow path 75 defines a cylindrical space
  • the gas flow path 76 also defines a cylindrical space.
  • the raw material outlet surface 72 is formed so that the width (length in the radial direction) is larger (about twice) than the raw material flow path 75.
  • Each of the plurality of gas flow paths 76 is disposed in contact with the raw material outlet surface 72.
  • the axis P of the material flow path 75 and the axis Q of the gas flow path 76 corresponding to each other intersect at an angle ⁇ at one point in front of the head 70G. (Modification 8 of 3rd Embodiment)
  • FIG. 38 the modification 8 of the head 70 which the said nanofiber manufacturing apparatus 3 has is shown.
  • a plurality of gas flow paths 76 define a rectangular column-shaped space having a rectangular cross section and are spaced from the raw material outlet surface 72.
  • the head 70H of the modified example 8 is the same as the head 70G of the modified example 7.
  • Table 2 shows an outline of the basic configuration of the head 70 of the third embodiment and the configurations of modifications 1 to 8 thereof.
  • the molten resin and the gas ejection port are shown as a horizontal nanofiber manufacturing apparatus in which the horizontal direction is directed to the horizontal direction.
  • the horizontal direction is directed to the horizontal direction.
  • the influence of gravity can be avoided effectively.
  • the position of the raw material flow path and the position of the gas flow path may be interchanged.
  • the position of the raw material outlet surface 22 is replaced with the position of the gas outlet surface 23 so that the front surface 21 and the raw material outlet surface 22 are arranged in parallel.
  • the material outlet face 22 may be disposed at an angle ⁇ , and the raw material outlet face 22 and the gas outlet face 23 may be formed with the raw material outlet face 22 and the gas outlet face 26, respectively.
  • the configuration of the present invention is not limited to the arrangement shown in the drawings of the embodiments.
  • the drawings of the embodiments are turned upside down so that the raw material flow path (raw material outlet surface) and the gas flow paths ( Adopted a configuration in which the position of the gas outlet surface) is changed, or a configuration in which the raw material flow channel (raw material outlet surface) and the gas flow channel (gas outlet surface) are arranged side by side by rotating 90 degrees. Or you may.
  • extrusion means has been described as a screw, it is necessary to take measures against interruption of the nanofiber to be produced. However, there is no problem even if intermittent extrusion is performed using a piston or the like by sequentially supplying solutions as in die casting. .
  • the nanofiber manufacturing apparatus and head of the present invention are materials that use a contact-type heater or the like around the outside of the head in accordance with the conditions of fluidity and property retention of the liquid raw material used and the conditions of fiber generation. It is desirable to have a temperature control function (not shown).
  • the nanofiber manufacturing apparatus and head of the present invention preferably have a gas temperature control function (not shown) for controlling the gas temperature at the gas outlet in accordance with various conditions for fiber generation.
  • Nanofiber manufacturing apparatus 20U ... Head, 21 ... Front surface, 22 ... Raw material exit surface, 23 ... Gas exit surface, 24 ... Connection surface, 24a ... Raw material flow groove, 25 ... Raw material flow path, 26 ... Gas flow path, 27: Rear surface, P: Axis of raw material flow path, Q: Axis of gas flow path, R: Surface direction of connecting surface. (Third embodiment) DESCRIPTION OF SYMBOLS 3 ... Nanofiber manufacturing apparatus, 62 ... Hopper, 63 ... Heating cylinder, 64 ... Heater, 65 ... Screw, 66 ... Motor, 68 ... Gas supply pipe, 69 ... Connection part, 70, 70A-70H ... Head, 70a ... No. 1 part, 70b ...

Abstract

Provided are: a nanofiber manufacturing device which can be manufactured by a cutting process and effectively carry a molten resin on a gas flow; and a head used for the nanofiber manufacturing device. This head (20) for a nanofiber manufacturing device (1) has: a raw material outlet surface (22) in which a raw material flow passage (2) for discharging a liquid-phase raw material is formed; and a gas outlet surface (23) which is disposed so as to form an angle α (where 0<α≤90 degrees) with respect to the raw material outlet surface (22) and in which a gas flow passage (26) for discharging gas is formed. In addition, the raw material flow passage (25) is formed perpendicular to the raw material outlet surface (22), the gas flow passage (26) is formed perpendicular to the gas outlet surface (23), and the raw material flow passage (25) and the gas flow passage (26) are disposed so that gas jetted from the gas flow passage (26) is sprayed and attached to the liquid-phase raw material discharged from the raw material flow passage (25).

Description

ナノファイバー製造装置およびそれに用いられるヘッドNanofiber manufacturing apparatus and head used therefor
 本発明は、ナノファイバー製造装置およびナノファイバー製造装置に用いられるヘッドに関する。 The present invention relates to a nanofiber manufacturing apparatus and a head used in the nanofiber manufacturing apparatus.
 従来の不織布製造装置が特許文献1に開示されている。この不織布製造装置は、図40に示すように、溶融樹脂を押し出す押出機915と、送風機916と、送風機916からの空気を加熱する加熱装置917と、を備える。さらに、この不織布製造装置は、押出機915からの溶融樹脂をフィラメント状にして紡出するとともに加熱装置917から供給される熱風をこのフィラメント状の溶融樹脂に吹き付けるヘッドとしてのメルトブロー部911とを備える。 A conventional nonwoven fabric manufacturing apparatus is disclosed in Patent Document 1. As shown in FIG. 40, the nonwoven fabric manufacturing apparatus includes an extruder 915 that extrudes molten resin, a blower 916, and a heating device 917 that heats air from the blower 916. The nonwoven fabric manufacturing apparatus further includes a melt blow unit 911 as a head for spinning the molten resin from the extruder 915 in the form of a filament and blowing hot air supplied from the heating device 917 to the filament-shaped molten resin. .
 このメルトブロー部911には、溶融樹脂を流すための樹脂通路912と、熱風を流すための熱風通路913a、913bとが形成されている。これら熱風通路913a、913bは樹脂通路912を挟むとともに当該樹脂通路912に対して傾斜して設けられており、これにより、樹脂通路912から紡出される溶融樹脂に、熱風通路913a、913bからの熱風が吹き付けられる。 In the melt blow part 911, a resin passage 912 for flowing molten resin and hot air passages 913a and 913b for flowing hot air are formed. The hot air passages 913a and 913b are provided with an inclination with respect to the resin passage 912 with the resin passage 912 interposed therebetween, whereby hot air from the hot air passages 913a and 913b is added to the molten resin spun from the resin passage 912. Is sprayed.
特開2010-185153号公報JP 2010-185153 A
 しかしながら、上記不織布製造装置では、メルトブロー部911の熱風通路913a、913bが下面911aに対して斜めに形成されているので、これら熱風通路913a、913bをドリルによる切削加工で形成しようとすると、下面911aに対して斜めにドリルを当てることになる。そのため、ドリル先端が下面911a上を滑ってしまうおそれがあり、熱風通路913a、913bを高精度で形成することが難しく、精度を確保するためには、よりコストの高い電解加工などを用いる必要があった。 However, in the nonwoven fabric manufacturing apparatus, since the hot air passages 913a and 913b of the melt blow part 911 are formed obliquely with respect to the lower surface 911a, if the hot air passages 913a and 913b are formed by cutting with a drill, the lower surface 911a. The drill will be applied diagonally. Therefore, there is a possibility that the tip of the drill may slide on the lower surface 911a, and it is difficult to form the hot air passages 913a and 913b with high accuracy. In order to ensure accuracy, it is necessary to use higher-cost electrolytic processing or the like. there were.
 そこで、本発明は、上記課題に鑑みてなされたものであり、切削加工により製造することができかつ溶融樹脂をガスの流れに効果的に乗せることができるナノファイバー製造装置およびナノファイバー製造装置で用いられるヘッドを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and is a nanofiber manufacturing apparatus and a nanofiber manufacturing apparatus that can be manufactured by cutting and can effectively put molten resin on a gas flow. An object is to provide a head to be used.
 本発明の一態様のナノファイバー製造装置は、液状性原料が吐出される原料流路が形成された原料出口面と、前記原料出口面に対して角度α(ただし、0<α≦90度)をなして配置され、ガスが噴出されるガス流路が形成されたガス出口面と、を有し、前記原料流路が、前記原料出口面に直交して形成され、前記ガス流路が、前記ガス出口面に直交して形成され、前記原料流路から吐出された前記液状性原料と前記ガス流路から噴出されたガスとが交わるように、前記原料流路と前記ガス流路とが配置されていることを特徴とする。 The nanofiber manufacturing apparatus of one embodiment of the present invention includes an angle α (where 0 <α ≦ 90 degrees) with respect to a raw material outlet surface on which a raw material flow path through which a liquid raw material is discharged is formed, and the raw material outlet surface. And a gas outlet surface formed with a gas flow path through which gas is ejected, and the raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is The raw material flow path and the gas flow path are formed so as to intersect the gas outlet surface and the liquid raw material discharged from the raw material flow path intersects with the gas ejected from the gas flow path. It is arranged.
 本発明の他の一態様のナノファイバー製造装置は、液状性原料が吐出される原料流路が形成された原料出口面と、前記原料出口面より下方に配置され、ガスが噴出されるガス流路が形成されたガス出口面と、前記原料出口面および前記ガス出口面に連なり、前記原料出口面に対して角度β(ただし、0≦β<90度)をなして配置された連結面と、を有し、前記原料流路が、前記原料出口面に直交して形成され、前記ガス流路が、前記ガス出口面に直交して形成され、前記ガス流路の開口が、前記連結面に接し、前記原料流路から吐出された前記液状性原料が前記連結面を伝って前記ガス流路の開口に至るように、前記原料流路と前記ガス流路とが配置されていることを特徴とする。 The nanofiber manufacturing apparatus according to another aspect of the present invention includes a raw material outlet surface on which a raw material flow path through which a liquid raw material is discharged is formed, and a gas flow that is disposed below the raw material outlet surface and jets gas. A gas outlet surface in which a passage is formed, and a connecting surface that is connected to the raw material outlet surface and the gas outlet surface and is disposed at an angle β (where 0 ≦ β <90 degrees) with respect to the raw material outlet surface; The raw material flow path is formed orthogonal to the raw material outlet face, the gas flow path is formed orthogonal to the gas outlet face, and the opening of the gas flow path is connected to the connecting surface. The raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path reaches the opening of the gas flow path through the connecting surface. Features.
 本発明の他の一態様のナノファイバー製造装置で用いられるヘッドは、液状性原料が吐出される原料流路が形成された原料出口面と、前記原料出口面に対して角度α(ただし、0<α≦90度)をなして配置され、ガスが噴出されるガス流路が形成されたガス出口面と、を有し、前記原料流路が、前記原料出口面に直交して形成され、前記ガス流路が、前記ガス出口面に直交して形成され、前記原料流路から吐出された前記液状性原料と前記ガス流路から噴出されたガスとが交わるように、前記原料流路と前記ガス流路とが配置されていることを特徴とする。 The head used in the nanofiber manufacturing apparatus according to another aspect of the present invention includes a raw material outlet surface on which a raw material flow path for discharging a liquid raw material is formed, and an angle α (provided that 0 <Α ≦ 90 degrees), and a gas outlet surface on which a gas channel through which gas is ejected is formed, and the raw material channel is formed orthogonal to the raw material outlet surface, The gas flow path is formed orthogonal to the gas outlet surface, and the raw material flow path intersects the liquid raw material discharged from the raw material flow path and the gas ejected from the gas flow path. The gas flow path is arranged.
 本発明の他の一態様のナノファイバー製造装置で用いられるヘッドは、液状性原料が吐出される原料流路が形成された原料出口面と、前記原料出口面より下方に配置され、ガスが噴出されるガス流路が形成されたガス出口面と、前記原料出口面および前記ガス出口面に連なり、前記原料出口面に対して角度β(ただし、0≦β<90度)をなして配置された連結面と、を有し、前記原料流路が、前記原料出口面に直交して形成され、前記ガス流路が、前記ガス出口面に直交して形成され、
 前記ガス流路の開口が、前記連結面に接し、前記原料流路から吐出された前記液状性原料が前記連結面を伝って前記ガス流路の開口に至るように、前記原料流路と前記ガス流路とが配置されていることを特徴とする。
A head used in the nanofiber manufacturing apparatus according to another aspect of the present invention is disposed below a raw material outlet surface on which a raw material flow path for discharging a liquid raw material is formed, and below the raw material outlet surface, and gas is ejected. The gas outlet surface in which the gas flow path is formed is connected to the raw material outlet surface and the gas outlet surface, and is arranged at an angle β (where 0 ≦ β <90 degrees) with respect to the raw material outlet surface. The raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is formed orthogonal to the gas outlet face,
The raw material flow path and the gas flow path opening are in contact with the connection surface, and the liquid raw material discharged from the raw material flow path reaches the gas flow path opening through the connection surface. A gas flow path is arranged.
 本発明によれば、原料流路が、原料出口面に直交して形成され、ガス流路が、ガス出口面に直交して形成されている。このようにしたことから、切削加工によって原料流路を原料出口面に形成できかつガス流路をガス出口面に形成することができる。そして、原料流路から吐出された液状性原料を、直接的、または、原料出口面及びガス出口面に連なる連結面を介して間接的にガス流路から噴出されるガスの流れに角度αで交わらせることができる。そのため、切削加工により精度よく製造することができかつ液状性原料をガスの流れに効果的に乗せることができる。 According to the present invention, the raw material flow path is formed orthogonal to the raw material outlet face, and the gas flow path is formed orthogonal to the gas outlet face. Since it did in this way, a raw material flow path can be formed in a raw material exit surface by cutting, and a gas flow path can be formed in a gas exit surface. Then, the liquid raw material discharged from the raw material flow path is directly or at an angle α to the gas flow ejected from the gas flow path indirectly through the connection surface connected to the raw material outlet surface and the gas outlet surface. Can be crossed. Therefore, it can manufacture accurately by cutting and can place a liquid raw material on a gas flow effectively.
本発明の第1実施形態に係るナノファイバー製造装置の全体構成を示す図である。It is a figure showing the whole nanofiber manufacture device composition concerning a 1st embodiment of the present invention. 図1のナノファイバー製造装置が有するヘッドの斜視図である。It is a perspective view of the head which the nanofiber manufacturing apparatus of FIG. 1 has. 図2のヘッドを説明する図である。It is a figure explaining the head of FIG. 図2のヘッドの変形例1の構成を説明する図である。It is a figure explaining the structure of the modification 1 of the head of FIG. 図2のヘッドの変形例2の構成を説明する図である。It is a figure explaining the structure of the modification 2 of the head of FIG. 図2のヘッドの変形例3の構成を説明する図である。It is a figure explaining the structure of the modification 3 of the head of FIG. 図2のヘッドの変形例4の構成を説明する図である。It is a figure explaining the structure of the modification 4 of the head of FIG. 図2のヘッドの変形例5の構成を説明する図である。It is a figure explaining the structure of the modification 5 of the head of FIG. 図2のヘッドの変形例6の構成を説明する図である。It is a figure explaining the structure of the modification 6 of the head of FIG. 図2のヘッドの変形例7の構成を説明する図である。It is a figure explaining the structure of the modification 7 of the head of FIG. 図2のヘッドの変形例8の斜視図である。It is a perspective view of the modification 8 of the head of FIG. 図2のヘッドの変形例8の構成を説明する図である。It is a figure explaining the structure of the modification 8 of the head of FIG. 図2のヘッドの変形例9の斜視図である。It is a perspective view of the modification 9 of the head of FIG. 図2のヘッドの変形例9の構成を説明する図である。It is a figure explaining the structure of the modification 9 of the head of FIG. 図2のヘッドの変形例10の斜視図である。It is a perspective view of the modification 10 of the head of FIG. 図2のヘッドの変形例10の構成を説明する図である。It is a figure explaining the structure of the modification 10 of the head of FIG. 図2のヘッドの変形例11の斜視図である。It is a perspective view of the modification 11 of the head of FIG. 図2のヘッドの変形例11の構成を説明する図である。It is a figure explaining the structure of the modification 11 of the head of FIG. 図2のヘッドの変形例12の斜視図である。It is a perspective view of the modification 12 of the head of FIG. 図2のヘッドの変形例12の構成を説明する図である。It is a figure explaining the structure of the modification 12 of the head of FIG. 図2のヘッドの変形例12の構成を説明する図である。It is a figure explaining the structure of the modification 12 of the head of FIG. 図2のヘッドの変形例13の斜視図である。It is a perspective view of the modification 13 of the head of FIG. 図2のヘッドの変形例13の構成を説明する図である。It is a figure explaining the structure of the modification 13 of the head of FIG. 図2のヘッドの変形例13の構成を説明する図である。It is a figure explaining the structure of the modification 13 of the head of FIG. 図2のヘッドの変形例14の斜視図である。It is a perspective view of the modification 14 of the head of FIG. 図2のヘッドの変形例15の斜視図である。It is a perspective view of the modification 15 of the head of FIG. 本発明の第2実施形態に係るナノファイバー製造装置が有するヘッドを説明する図である。It is a figure explaining the head which the nanofiber manufacturing apparatus concerning a 2nd embodiment of the present invention has. 本発明の第3実施形態に係るナノファイバー製造装置の斜視図である。It is a perspective view of the nanofiber manufacturing apparatus concerning a 3rd embodiment of the present invention. 図28のナノファイバー製造装置の断面図である。It is sectional drawing of the nanofiber manufacturing apparatus of FIG. 図28のナノファイバー製造装置が有するヘッドを説明する図である。It is a figure explaining the head which the nanofiber manufacturing apparatus of FIG. 28 has. 図30のヘッドの変形例1の構成を説明する図である。It is a figure explaining the structure of the modification 1 of the head of FIG. 図30のヘッドの変形例2の構成を説明する図である。FIG. 32 is a diagram illustrating a configuration of a second modification of the head in FIG. 30. 図30のヘッドの変形例3の構成を説明する図である。FIG. 32 is a diagram illustrating a configuration of a third modification of the head in FIG. 30. 図30のヘッドの変形例4の構成を説明する図である。FIG. 32 is a diagram illustrating a configuration of a fourth modification of the head in FIG. 30. 図30のヘッドの変形例5の構成を説明する図である。It is a figure explaining the structure of the modification 5 of the head of FIG. 図30のヘッドの変形例6の構成を説明する図である。FIG. 32 is a diagram illustrating a configuration of a sixth modification of the head in FIG. 30. 図30のヘッドの変形例7の構成を説明する図である。It is a figure explaining the structure of the modification 7 of the head of FIG. 図30のヘッドの変形例8の構成を説明する図である。FIG. 31 is a diagram illustrating a configuration of a modification 8 of the head of FIG. 30. 本発明の基本概念を説明する図である。It is a figure explaining the basic concept of this invention. 従来の不織布製造装置の構成を説明する図である。It is a figure explaining the structure of the conventional nonwoven fabric manufacturing apparatus.
 本発明を実施するための形態を以下に説明する。もちろん、本発明は、その発明の趣旨に反しない範囲で、本実施形態において説明した以外の構成のものに対しても容易に適用可能である。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described below. Of course, the present invention can be easily applied to configurations other than those described in the present embodiment as long as they do not contradict the spirit of the present invention.
 本発明は、比較的高速で噴出されるガスに対して液状性原料を供給してナノファイバーを形成するものである。本明細書において、特に組成を特定せずに「ガス」と称した場合には、あらゆる組成や分子構造からなる気体を包含するものである。また、本明細書において「原料」とはナノファイバーを成形する際の全ての材料を意味するものであり、以下の実施形態においては、「原料」として合成樹脂を用いた例を説明するが、これに限定されず、種々の組成材料を用いてもよい。 In the present invention, a liquid raw material is supplied to a gas ejected at a relatively high speed to form nanofibers. In the present specification, when the term “gas” is used without specifying the composition, it includes gases having any composition and molecular structure. Further, in the present specification, the “raw material” means all materials for forming the nanofiber, and in the following embodiment, an example using a synthetic resin as the “raw material” will be described. However, the present invention is not limited to this, and various composition materials may be used.
 また、本明細書において「液状性原料」との用語は、原料の性状が液体であることを限定するものではない。この「液状性原料」には、例えば、所定の溶媒に対して溶質としての固形の原料または液状の原料を所定濃度となるようにあらかじめ溶解した「溶剤」を含む。さらには、「液状性原料」には、固形の原料を溶融した「溶融原料」を含む。つまり、本発明における「液状性原料」とは、「原料」を供給口(噴出口、吐出口)から供給(噴出、吐出)することが可能な程度の粘性を有した性状が必要なものであり、本発明においては、このような液状の性質をもった「原料」を「液状性原料」と称している。 In addition, in this specification, the term “liquid raw material” does not limit that the raw material is liquid. The “liquid raw material” includes, for example, a “solvent” in which a solid raw material as a solute or a liquid raw material is dissolved in advance in a predetermined solvent so as to have a predetermined concentration. Furthermore, the “liquid raw material” includes a “molten raw material” obtained by melting a solid raw material. In other words, the “liquid raw material” in the present invention requires a property having a viscosity that allows the “raw material” to be supplied (spouted and discharged) from the supply port (spout port and discharge port). In the present invention, a “raw material” having such a liquid property is referred to as a “liquid raw material”.
 本発明の基本発明の概念は、(I)図39(a)に示すように、原料出口面22と、ガス出口面23と、原料出口面22に直交して形成された液状性原料が吐出される原料流路25と、ガス出口面23に直交して形成されたガスが排出されるガス流路26と、を有しており、原料出口面22とガス出口面23とが角度α(ただし0<α≦90度)をなして配置されていることにより、原料流路25の軸線Pとガス流路26の軸線Qとが角度αで交わることにある。 The concept of the basic invention of the present invention is as follows. (I) As shown in FIG. 39 (a), a raw material outlet surface 22, a gas outlet surface 23, and a liquid raw material formed perpendicular to the raw material outlet surface 22 are discharged. The raw material flow path 25 and the gas flow path 26 through which the gas formed orthogonally to the gas outlet face 23 is discharged. The raw material outlet face 22 and the gas outlet face 23 have an angle α ( However, by being arranged at 0 <α ≦ 90 degrees, the axis P of the raw material channel 25 and the axis Q of the gas channel 26 intersect at an angle α.
 また、(II)図39(b)に示すように、原料出口面22と、ガス出口面23と、原料出口面22に直交して形成された液状性原料が吐出される原料流路25と、ガス出口面23に直交して形成されたガスが排出されるガス流路26と、原料出口面22およびガス出口面23に連接された連結面24と、を有しており、ガス出口面23と連結面24とが角度β(ただし0≦β<90度)をなして配置されていることにより、連結面24の面方向Rとガス流路26の軸線Qとが角度α(α=90度-β)で交わることにある。 (II) As shown in FIG. 39 (b), a raw material outlet surface 22, a gas outlet surface 23, and a raw material flow path 25 through which a liquid raw material formed orthogonal to the raw material outlet surface 22 is discharged; A gas flow path 26 through which gas formed perpendicular to the gas outlet surface 23 is discharged, and a raw material outlet surface 22 and a connecting surface 24 connected to the gas outlet surface 23, and the gas outlet surface 23 and the connecting surface 24 are arranged at an angle β (where 0 ≦ β <90 degrees), the surface direction R of the connecting surface 24 and the axis Q of the gas flow channel 26 are at an angle α (α = 90 ° -β).
 これにより、原料流路25から吐出された液状性原料が、図39(a)に示すように直接的に、または、図39(b)に示すように、原料出口面22とガス出口面23とに連なる連結面24を伝って間接的に、ガス流路26から排出されるガスの流れに角度αで交わる。 Thereby, the liquid raw material discharged from the raw material flow path 25 is directly as shown in FIG. 39 (a) or as shown in FIG. 39 (b), the raw material outlet surface 22 and the gas outlet surface 23. The gas flows from the gas flow path 26 indirectly through the connecting surface 24 connected to the gas flow path 26 at an angle α.
 図39(a)において、各構成要件の位置関係は次のとおりである。ガス流路26が形成されたガス出口面23の位置を基準として、そこからガス流路26の軸線Qに沿って下流側に進んだ位置関係で表現すれば、aは原料流路25までの距離であり、bは原料流路25からの液状性原料が交差する位置までの距離である。また、cはガス流路26の開口径であり、dは原料流路25とガス流路26との間の軸線Qと直交する方向に沿う距離である。図39(b)においても同様である(ただしa=0)。 In FIG. 39 (a), the positional relationship of each component is as follows. If the position of the gas outlet surface 23 where the gas flow path 26 is formed is used as a reference, and expressed as a positional relationship that proceeds downstream from the position along the axis Q of the gas flow path 26, a is the distance to the raw material flow path 25. B is the distance from the raw material flow path 25 to the position where the liquid raw material intersects. Further, c is an opening diameter of the gas flow path 26, and d is a distance along a direction perpendicular to the axis Q between the raw material flow path 25 and the gas flow path 26. The same applies to FIG. 39B (where a = 0).
 ここで、ガス流路26の軸線Qに対して原料流路25軸線Pは角度αをなしており、「tanα=d/(b-a)」で表される原料供給正接角度αが、0<θ≦90度の範囲で設定されるものである。 Here, the raw material flow channel 25 axis P forms an angle α with respect to the axis Q of the gas flow channel 26, and the raw material supply tangent angle α represented by “tan α = d / (ba)” is 0. <Θ ≦ 90 degrees is set.
 このように、原料供給正接角度αは、上記距離a、上記距離b、上記距離dによって決められるべきものであり、さらに、高圧ガスの上記開口径c及びガス流路26から噴出されるガスの圧力及び温度との関係により決められるべきものである。 In this way, the raw material supply tangent angle α should be determined by the distance a, the distance b, and the distance d, and further, the opening diameter c of the high-pressure gas and the gas jetted from the gas flow path 26. It should be determined by the relationship between pressure and temperature.
 また、原料流路25やガス流路26の配置条件として、個数、配置間隔、配置距離(ガス噴出口からの距離a)、配置角度(角度α)、流路径などを変更することにより、均一でない径や繊維長を持つナノファイバーを形成することもできる。このように、製造するナノファイバーの種類に応じて原料流路25およびガス流路26の配置条件を選択・変更すればよい。 In addition, by changing the number, the arrangement interval, the arrangement distance (distance a from the gas ejection port), the arrangement angle (angle α), the diameter of the flow path, etc. Nanofibers with different diameters and fiber lengths can also be formed. Thus, the arrangement conditions of the raw material channel 25 and the gas channel 26 may be selected and changed according to the type of nanofiber to be manufactured.
(第1実施形態)
 本発明の第1実施形態に係るナノファイバー製造装置について、図1~図26を参照して説明する。
(First embodiment)
A nanofiber manufacturing apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
 図1は、本発明の第1実施形態に係るナノファイバー製造装置の全体構成を示す図であって、(a)は側面図であり、(b)は平面図である。図2は、図1のナノファイバー製造装置が有するヘッドの斜視図である。図3は、第1実施形態のヘッドを説明する図であって、(a)が正面図であり、(b)がA-A’線に沿う断面図であり、(c)がB-B’線に沿う断面図である。図4~図26は、図2に示す基本構成のヘッドの変形例1~変形例15の構成を説明する図であり、各図において、図2および図3と同様に斜視図(分解斜視図含む)、または、正面図および断面図を示している。なお、以下の説明において、前後左右上下との用語を用いることがあるが、これらは構成要素の相対的な位置関係を示すものであり、特に明示しない限り絶対的な位置関係を示すものではない。また、各図において、同一機能を有する構成には同一符号を付して詳細説明を省略する。 FIG. 1 is a diagram showing the overall configuration of a nanofiber manufacturing apparatus according to a first embodiment of the present invention, where (a) is a side view and (b) is a plan view. FIG. 2 is a perspective view of a head included in the nanofiber manufacturing apparatus of FIG. 3A and 3B are diagrams illustrating the head according to the first embodiment, in which FIG. 3A is a front view, FIG. 3B is a cross-sectional view taken along the line AA ′, and FIG. It is sectional drawing which follows a line. FIGS. 4 to 26 are diagrams for explaining the configurations of Modifications 1 to 15 of the head having the basic configuration shown in FIG. 2. In each of the drawings, perspective views (disassembled perspective views) similar to FIGS. Or a front view and a cross-sectional view. In the following description, terms such as front, rear, left, right, up, down may be used, but these indicate the relative positional relationship of the components, and do not indicate the absolute positional relationship unless otherwise specified. . Moreover, in each figure, the same code | symbol is attached | subjected to the structure which has the same function, and detailed description is abbreviate | omitted.
 第1実施形態のナノファイバー製造装置1は、所定の溶媒に対して溶質としての固形の原料または液状の原料を所定濃度となるように予め溶解させた溶剤を用いる構成のものである。 The nanofiber manufacturing apparatus 1 according to the first embodiment is configured to use a solvent in which a solid raw material or a liquid raw material as a solute is dissolved in advance in a predetermined solvent so as to have a predetermined concentration.
 図1に示すように、ナノファイバー製造装置1は、矩形平板状のベース10と、ベース10上に設置され、溶剤に所定圧力をかけて押し出す機能を有する溶剤貯蔵器11と、溶剤貯蔵器11から後述するヘッド20に溶剤を供給するためのホース12と、ベース10上に設置され、高圧ガスを噴出するガス噴射部13と、ガス噴射部13の先端に接続されたヘッド20と、を有している。また、製造諸条件等に応じて溶剤を温度制御する場合には、溶剤貯蔵器11、ホース12およびヘッド20のそれぞれに、必要に応じて、ヒーター等の温度制御機能(図示なし)を設けてもよい。本実施形態において、溶剤貯蔵器11、ホース12およびヘッド20は、金属製のものを採用しているが、溶剤の種類や製造するナノファイバー製品の態様等の各種条件に応じて、樹脂製やガラス製などの他の材質のものを採用してもよい。 As shown in FIG. 1, the nanofiber manufacturing apparatus 1 includes a rectangular flat base 10, a solvent reservoir 11 installed on the base 10 and having a function of extruding a solvent under a predetermined pressure, and a solvent reservoir 11. A hose 12 for supplying a solvent to the head 20 to be described later, a gas injection unit 13 that is installed on the base 10 and ejects high-pressure gas, and a head 20 connected to the tip of the gas injection unit 13. is doing. In addition, when the temperature of the solvent is controlled according to manufacturing conditions, etc., a temperature control function (not shown) such as a heater is provided in each of the solvent reservoir 11, the hose 12 and the head 20 as necessary. Also good. In this embodiment, the solvent reservoir 11, the hose 12 and the head 20 are made of metal, but depending on various conditions such as the type of solvent and the aspect of the nanofiber product to be manufactured, Other materials such as glass may be used.
 図2および図3に示すように、ヘッド20は、略直方体形状を有し、前方(図1の左方向)を向く前面21と、原料出口面22と、ガス出口面23と、が上方から下方に順に連接して形成されている。前面21とガス出口面23とは互いに平行でかつ前面21に対してガス出口面23が後方(図1の右方向)に距離tずれて配置されている。また、原料出口面22とガス出口面23とは角度α(0<α≦90度)をなして配置されており、原料出口面22は斜め下方を向けられている。また、ヘッド20には、前面21と平行でかつ後方を向く後面27が形成されている。 As shown in FIGS. 2 and 3, the head 20 has a substantially rectangular parallelepiped shape, and a front surface 21, a raw material outlet surface 22, and a gas outlet surface 23 facing forward (leftward in FIG. 1) are viewed from above. It is formed in a continuous manner in the lower part. The front surface 21 and the gas outlet surface 23 are parallel to each other, and the gas outlet surface 23 is disposed rearwardly (to the right in FIG. 1) with respect to the front surface 21 by a distance t. The raw material outlet surface 22 and the gas outlet surface 23 are arranged at an angle α (0 <α ≦ 90 degrees), and the raw material outlet surface 22 is directed obliquely downward. The head 20 is formed with a rear surface 27 that is parallel to the front surface 21 and faces rearward.
 また、ヘッド20は、原料出口面22に直交して形成された原料流路25およびガス出口面23に直交して形成されたガス流路26を有している。原料流路25は、後面27に直交して形成された原料供給路28とヘッド20内で連通されている。ガス流路26は、ガス出口面23と後面27とを直線状に貫通するように形成されている。 The head 20 has a raw material flow path 25 formed orthogonal to the raw material outlet face 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23. The raw material flow path 25 is communicated with the raw material supply path 28 formed orthogonal to the rear surface 27 in the head 20. The gas flow path 26 is formed so as to penetrate the gas outlet surface 23 and the rear surface 27 linearly.
 本実施形態において、原料流路25が円柱状の空間(すなわち、軸線に直交する断面が全体にわたって同一の円形状)を区画し、ガス流路26も円柱状の空間を区画している。原料出口面22は、その幅(図3における上下方向の長さ)が原料流路25の径より大きく(当該径の約2倍)なるように形成されており、幅方向中央に原料流路25が配置されている。ガス流路26は、原料出口面22と間隔をあけて配置されている。原料流路25の軸線Pおよびガス流路26の軸線Qは、一平面に含まれるように配置されており、軸線Pと軸線Qとがヘッド20の前方の1点で角度αで交わる。 In the present embodiment, the raw material flow path 25 defines a cylindrical space (that is, a circular shape whose cross section perpendicular to the axis is the same throughout), and the gas flow path 26 also defines a cylindrical space. The raw material outlet surface 22 is formed so that its width (length in the vertical direction in FIG. 3) is larger than the diameter of the raw material flow path 25 (about twice the diameter), and the raw material flow path is at the center in the width direction. 25 is arranged. The gas flow path 26 is disposed at a distance from the raw material outlet surface 22. The axis P of the raw material channel 25 and the axis Q of the gas channel 26 are arranged so as to be included in one plane, and the axis P and the axis Q intersect at an angle α at one point in front of the head 20.
 原料供給路28の後面27上の開口には、ホース12が接続されており、溶剤貯蔵器11から供給された溶剤が、ホース12、原料供給路28および原料流路25を流れて、原料出口面22上の原料流路25の開口から吐出される。 The hose 12 is connected to the opening on the rear surface 27 of the raw material supply path 28, and the solvent supplied from the solvent reservoir 11 flows through the hose 12, the raw material supply path 28 and the raw material flow path 25, and the raw material outlet It is discharged from the opening of the raw material flow path 25 on the surface 22.
 ガス流路26の後面27上の開口には、ガス噴射部13が接続されており、ガス噴射部13から供給された高圧のガスが、ガス流路26を流れて、ガス出口面23上のガス流路26の開口から噴出される。 The gas injection unit 13 is connected to the opening on the rear surface 27 of the gas flow channel 26, and the high-pressure gas supplied from the gas injection unit 13 flows through the gas flow channel 26 and is on the gas outlet surface 23. It is ejected from the opening of the gas flow path 26.
 もちろん、このような構成は一例であって、角度α(0<α≦90度)をなして配置された原料出口面22およびガス出口面23のそれぞれに直交して形成された原料流路25およびガス流路26を有しているものであれば、本発明の目的に反しない限り、構成は任意である。本実施形態ではヘッド20に直接ホース12およびガス噴射部13が接続された構成であるが、例えば、ヘッド20の後面27側にホース12およびガス噴射部13が接続されたマニホールドブロックを設けて当該マニホールドブロックにヘッド20を着脱可能とし、マニホールドブロックを介してホース12およびガス噴射部13からヘッド20に原料およびガスを供給する構成を採用してもよい。 Of course, such a configuration is merely an example, and a raw material flow path 25 formed orthogonal to each of the raw material outlet surface 22 and the gas outlet surface 23 arranged at an angle α (0 <α ≦ 90 degrees). As long as it has the gas flow path 26, the configuration is arbitrary as long as the object of the present invention is not violated. In this embodiment, the hose 12 and the gas injection unit 13 are directly connected to the head 20. For example, a manifold block in which the hose 12 and the gas injection unit 13 are connected is provided on the rear surface 27 side of the head 20. A configuration may be employed in which the head 20 is detachable from the manifold block, and the raw material and gas are supplied from the hose 12 and the gas injection unit 13 to the head 20 via the manifold block.
 本実施形態のナノファイバー製造装置1およびヘッド20の動作について説明する。ナノファイバー製造装置1は、溶剤貯蔵器11から溶剤を供給して原料出口面22上の原料流路25の開口から吐出させ、ガス噴射部13から高圧のガスを供給してガス出口面23上のガス流路26の開口から噴出させる。すると、原料流路25から吐出された溶剤が、ガス流路26から噴出されたガスの流れに角度αで交わって、引き延ばされながら前方に運ばれて、ナノファイバーが作製される。 The operation of the nanofiber manufacturing apparatus 1 and the head 20 of this embodiment will be described. The nanofiber manufacturing apparatus 1 supplies a solvent from the solvent reservoir 11 and discharges it from the opening of the raw material flow path 25 on the raw material outlet surface 22, and supplies a high-pressure gas from the gas injection unit 13 on the gas outlet surface 23. From the opening of the gas flow path 26. Then, the solvent discharged from the raw material flow path 25 intersects the flow of gas ejected from the gas flow path 26 at an angle α, and is conveyed forward while being stretched to produce nanofibers.
 上述した本実施形態のナノファイバー製造装置1およびヘッド20によれば、原料流路25が、原料出口面22に直交して形成され、ガス流路26が、ガス出口面23に直交して形成されている。このようにしたことから、切削加工によって原料流路25を原料出口面22に形成できかつガス流路26をガス出口面23に形成することができ、原料流路25から吐出された溶剤を、直接的にガス流路26から噴出されるガスの流れに角度αで交わらせることができる。そのため、切削加工により精度よく製造することができかつ溶剤をガスの流れに効果的に乗せることができる。 According to the nanofiber manufacturing apparatus 1 and the head 20 of the present embodiment described above, the raw material flow path 25 is formed orthogonal to the raw material outlet surface 22, and the gas flow path 26 is formed orthogonal to the gas outlet surface 23. Has been. Since it did in this way, the raw material flow path 25 can be formed in the raw material outlet surface 22 and the gas flow path 26 can be formed in the gas outlet surface 23 by cutting, and the solvent discharged from the raw material flow path 25 can be The gas flow directly ejected from the gas flow path 26 can be made to intersect at an angle α. Therefore, it can manufacture with a sufficient precision by cutting and can put a solvent on a gas flow effectively.
 本実施形態のナノファイバー製造装置1は、原料を溶媒に溶かした溶剤を用いることで、加熱シリンダーやモーター、スクリューといった複雑な装置を用いることなくナノファイバー製造装置を構成することができる。そのため、装置のサイズがコンパクトになり、省スペース化を図ることができる。また、装置がコンパクトに構成できることにより、ポータブルなナノファイバー製造装置を構成することも可能となる。このようなポータブルタイプのナノファイバー製造装置の場合は、ナノファイバーを付着させたい場所に向けてナノファイバーを吹き付けることでナノファイバー製品とすることが可能となり、ナノファイバーの用途がより広がる。 The nanofiber manufacturing apparatus 1 of the present embodiment can constitute a nanofiber manufacturing apparatus without using a complicated apparatus such as a heating cylinder, a motor, or a screw by using a solvent in which a raw material is dissolved in a solvent. Therefore, the size of the apparatus becomes compact, and space can be saved. In addition, since the apparatus can be configured compactly, a portable nanofiber manufacturing apparatus can be configured. In the case of such a portable type nanofiber manufacturing apparatus, it becomes possible to make a nanofiber product by spraying the nanofiber toward the place where the nanofiber is to be attached, and the use of the nanofiber is further expanded.
(第1実施形態の変形例1)
 図4に、上記ナノファイバー製造装置1が有するヘッド20(以下、「基本構成のヘッド20」ともいう。)の変形例1を示す。この変形例1のヘッド20Aは、原料出口面22の幅(図4における上下方向の長さ)が、原料流路25の径と同一になるように形成されている。これ以外の構成について、変形例1のヘッド20Aは基本構成のヘッド20と同一である。
(Modification 1 of the first embodiment)
FIG. 4 shows Modification 1 of the head 20 (hereinafter, also referred to as “basic configuration head 20”) of the nanofiber manufacturing apparatus 1. The head 20 </ b> A of Modification 1 is formed so that the width of the material outlet surface 22 (the length in the vertical direction in FIG. 4) is the same as the diameter of the material flow path 25. For other configurations, the head 20A of the first modification is the same as the head 20 of the basic configuration.
(第1実施形態の変形例2)
 図5に、上記ナノファイバー製造装置1が有するヘッド20の変形例2を示す。この変形例2のヘッド20Bは、原料出口面22の幅(図5における上下方向の長さ)が原料流路25の径より大きく(当該径の約3倍)なるように形成されており、ガス流路26の一部が原料出口面22と接して配置されている。これ以外の構成について、変形例2のヘッド20Bは基本構成のヘッド20と同一である。
(Modification 2 of the first embodiment)
In FIG. 5, the modification 2 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. The head 20B of this modification 2 is formed such that the width of the raw material outlet surface 22 (length in the vertical direction in FIG. 5) is larger than the diameter of the raw material flow path 25 (about three times the diameter), A part of the gas flow path 26 is disposed in contact with the raw material outlet surface 22. For other configurations, the head 20B of the second modification is the same as the head 20 of the basic configuration.
(第1実施形態の変形例3)
 図6に、上記ナノファイバー製造装置1が有するヘッド20の変形例3を示す。この変形例3のヘッド20Cは、原料出口面22の幅(図6における上下方向の長さ)が原料流路25の径と同一になるように形成されており、ガス流路26の一部が原料出口面22と接して配置されている。これにより、原料流路25とガス流路26とが接して配置されている。これ以外の構成について、変形例3のヘッド20Cは基本構成のヘッド20と同一である。
(Modification 3 of the first embodiment)
In FIG. 6, the modification 3 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. The head 20 </ b> C of this modification 3 is formed so that the width of the raw material outlet surface 22 (the vertical length in FIG. 6) is the same as the diameter of the raw material flow path 25, and a part of the gas flow path 26. Is disposed in contact with the raw material outlet surface 22. Thereby, the raw material flow path 25 and the gas flow path 26 are disposed in contact with each other. For other configurations, the head 20C of the third modification is the same as the head 20 of the basic configuration.
(第1実施形態の変形例4)
 図7に、上記ナノファイバー製造装置1が有するヘッド20の変形例4を示す。この変形例4のヘッド20Dは、原料流路25が断面長方形の四角柱状の空間を区画している。これ以外の構成について、変形例4のヘッド20Dは基本構成のヘッド20と同一である。
(Modification 4 of the first embodiment)
In FIG. 7, the modification 4 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. In the head 20 </ b> D of the fourth modified example, the raw material flow path 25 defines a square columnar space having a rectangular cross section. For other configurations, the head 20D of the fourth modification is the same as the head 20 of the basic configuration.
(第1実施形態の変形例5)
 図8に、上記ナノファイバー製造装置1が有するヘッド20の変形例5を示す。この変形例5のヘッド20Eは、ガス流路26が断面長方形の四角柱状の空間を区画している。これ以外の構成について、変形例5のヘッド20Eは基本構成のヘッド20と同一である。
(Modification 5 of the first embodiment)
FIG. 8 shows a fifth modification of the head 20 included in the nanofiber manufacturing apparatus 1. In the head 20 </ b> E of the fifth modification, the gas flow path 26 defines a square columnar space having a rectangular cross section. With respect to other configurations, the head 20E of the modified example 5 is the same as the head 20 of the basic configuration.
(第1実施形態の変形例6)
 図9に、上記ナノファイバー製造装置1が有するヘッド20の変形例6を示す。この変形例6のヘッド20Fは、原料流路25が断面長方形の四角柱状の空間を区画し、ガス流路26も断面長方形の四角柱状の空間を区画している。これ以外の構成について、変形例6のヘッド20Fは基本構成のヘッド20と同一である。
(Modification 6 of the first embodiment)
In FIG. 9, the modification 6 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. In the head 20F of the modified example 6, the raw material flow path 25 defines a rectangular column-shaped space having a rectangular cross section, and the gas flow path 26 also defines a rectangular column-shaped space having a rectangular cross section. For the other configurations, the head 20F of the modified example 6 is the same as the head 20 of the basic configuration.
(第1実施形態の変形例7)
 図10に、上記ナノファイバー製造装置1が有するヘッド20の変形例7を示す。この変形例7のヘッド20Gは、直方体形状を有し、ヘッド20の正面に前面21がなくかつ正面全体に前方(図10(a)の紙面手前方向、(b)および(c)の左方向)を向くガス出口面23が形成されている。そして、ガス流路26が、ガス出口面23に直交して形成されているとともに、このガス流路26内に、ガス出口面23と角度αをなして配置された原料出口面22が形成されている。これにより、ガス流路26が円柱の一部を弦に沿って切り取った柱状の空間を区画している。変形例7のヘッド20Gは、原料出口面22の幅(図10(a)における上下方向の長さ)が、原料流路25の径と同一になるように形成されている。これ以外の構成について、変形例7のヘッド20Gは基本構成のヘッド20と同一である。
(Modification 7 of the first embodiment)
FIG. 10 shows a modified example 7 of the head 20 included in the nanofiber manufacturing apparatus 1. The head 20G of the modified example 7 has a rectangular parallelepiped shape, does not have the front surface 21 in front of the head 20, and is forward in front of the entire front surface (front side in FIG. 10A, left direction in FIGS. 10B and 10C). ) Is formed. The gas flow path 26 is formed orthogonally to the gas outlet face 23, and the raw material outlet face 22 disposed at an angle α with the gas outlet face 23 is formed in the gas flow path 26. ing. Thereby, the gas flow path 26 has divided the columnar space which cut off some cylinders along the string. The head 20G of Modification 7 is formed so that the width of the raw material outlet surface 22 (the length in the vertical direction in FIG. 10A) is the same as the diameter of the raw material flow path 25. For other configurations, the head 20G of the modified example 7 is the same as the head 20 of the basic configuration.
(第1実施形態の変形例8)
 図11および図12に、上記ナノファイバー製造装置1が有するヘッド20の変形例8を示す。この変形例8のヘッド20Hは、基本構成のヘッド20において前面21および原料出口面22を有する部分(第1部分20a)と、ガス出口面23を有する部分(第2部分20b)を別体で構成し、これら部分を、例えば、ベルトやネジなどの図示しない結合手段によって互いに着脱可能に結合したものである。
(Modification 8 of the first embodiment)
11 and 12 show a modification 8 of the head 20 included in the nanofiber manufacturing apparatus 1. In the head 20H of the modified example 8, the part having the front surface 21 and the raw material outlet surface 22 (first part 20a) and the part having the gas outlet surface 23 (second part 20b) in the head 20 having the basic configuration are separated. These parts are detachably coupled to each other by coupling means (not shown) such as a belt or a screw.
 変形例8のヘッド20Hの第1部分20aは、直方体において一辺が面取りされた形状を有しており、前面21と原料出口面22(面取り部分に対応)とが上方から下方に順に連接して形成され、原料出口面22に直交して形成された原料流路25を有している。第2部分20bは、直方体形状を有し、正面全体にガス出口面23が形成されており、ガス出口面23に直交して形成されたガス流路26を有している。変形例8のヘッド20Hは、第1部分20aと第2部分20bとが結合されると、原料出口面22とガス出口面23とが角度αをなして配置される。変形例8のヘッド20Hは、第1部分20aと第2部分20bとが着脱可能な構成を有し、互いに結合されること以外は、基本構成のヘッド20と同一の構成を有している。 The first portion 20a of the head 20H of the modified example 8 has a shape in which one side is chamfered in a rectangular parallelepiped, and the front surface 21 and the raw material outlet surface 22 (corresponding to the chamfered portion) are sequentially connected from top to bottom. The raw material flow path 25 is formed and formed orthogonal to the raw material outlet surface 22. The second portion 20 b has a rectangular parallelepiped shape, has a gas outlet surface 23 formed on the entire front surface, and has a gas flow path 26 formed orthogonal to the gas outlet surface 23. In the head 20H of the modified example 8, when the first portion 20a and the second portion 20b are joined, the raw material outlet surface 22 and the gas outlet surface 23 are arranged at an angle α. The head 20H of the modified example 8 has a configuration in which the first portion 20a and the second portion 20b are detachable, and has the same configuration as the head 20 of the basic configuration except that they are coupled to each other.
(第1実施形態の変形例9)
 図13および図14に、上記ナノファイバー製造装置1が有するヘッド20の変形例9を示す。この変形例9のヘッド20Iは、第2部分20bが変形例8のヘッド20Hと同一の構成を有しており、第1部分20aが、第2部分20bと結合したときに原料出口面22とガス出口面23とがなす角度α’となり、上記変形例8のヘッド20Hと異なる角度となるように構成されている(α’≠α、0<α’≦90度)。これ以外の構成について、変形例9のヘッド20Iは変形例8のヘッド20Hと同一である。変形例8および変形例9のように、結合したときに原料出口面22とガス出口面23とが異なる角度となる複数種類の第1部分20aおよび第2部分20bを用意しておくことで、第1部分20aと第2部分20bとの組み合わせを変えて原料流路25の軸線Pとガス流路26の軸線Qとが交わる角度を容易に変更することができる。また、第1部分20aを第2部分20bに対して前後方向にずらすことで、軸線Pと軸線Qとが交わる位置を容易に変更することができる。この場合、第1部分20aまたは第2部分20bの後方側に原料またはガスの流路が形成されたスペーサを配置する。
(Modification 9 of the first embodiment)
13 and 14 show a ninth modification of the head 20 included in the nanofiber manufacturing apparatus 1. In the head 20I of the modification 9, the second portion 20b has the same configuration as the head 20H of the modification 8, and when the first portion 20a is combined with the second portion 20b, the raw material outlet surface 22 and The angle α ′ formed by the gas outlet surface 23 is different from that of the head 20H of the modified example 8 (α ′ ≠ α, 0 <α ′ ≦ 90 degrees). Regarding the configuration other than this, the head 20I of the modification 9 is the same as the head 20H of the modification 8. By preparing a plurality of types of the first portion 20a and the second portion 20b having different angles between the raw material outlet surface 22 and the gas outlet surface 23 when combined, as in Modification 8 and Modification 9, By changing the combination of the first part 20a and the second part 20b, the angle at which the axis P of the raw material channel 25 and the axis Q of the gas channel 26 intersect can be easily changed. Moreover, the position where the axis line P and the axis line Q intersect can be easily changed by shifting the first part 20a in the front-rear direction with respect to the second part 20b. In this case, a spacer in which a raw material or gas flow path is formed is disposed on the rear side of the first portion 20a or the second portion 20b.
(第1実施形態の変形例10)
 図15および図16に、上記ナノファイバー製造装置1が有するヘッド20の変形例10を示す。この変形例10のヘッド20Jは、変形例8のヘッド20Hと同様に、互いに別体の第1部分20aと第2部分20bとを有しており、例えば、ベルトやネジなどの図示しない結合手段によって第1部分20aと第2部分20bとが互いに着脱可能に結合したものである。
(Modification 10 of the first embodiment)
15 and 16 show a modified example 10 of the head 20 included in the nanofiber manufacturing apparatus 1. Similarly to the head 20H of the modification 8, the head 20J of the modification 10 has a first part 20a and a second part 20b that are separate from each other, and for example, a coupling means (not shown) such as a belt or a screw. Thus, the first portion 20a and the second portion 20b are detachably coupled to each other.
 変形例10のヘッド20Jの第1部分20aは、直方体形状を有し、正面全体に前方(図16(a)の紙面手前方向、(b)および(c)の左方向)を向く前面21が形成され、下面全体に下方を向く原料出口面22が形成されており、原料出口面22に直交して形成された原料流路25を有している。第2部分20bは、変形例8のヘッド20Hと同一の構成を有しており、直方体形状で正面全体にガス出口面23が形成されており、ガス出口面23に直交して形成されたガス流路26を有している。変形例10のヘッド20Jは、第1部分20aと第2部分20bとが結合されると、原料出口面22とガス出口面23とが直交(α=90度)するように配置される。 The first portion 20a of the head 20J of the modified example 10 has a rectangular parallelepiped shape, and a front surface 21 facing the front (front side in FIG. 16 (a), left direction in (b) and (c)) on the entire front surface. A raw material outlet surface 22 formed downward and facing downward is formed on the entire lower surface, and has a raw material flow path 25 formed orthogonal to the raw material outlet surface 22. The second portion 20b has the same configuration as the head 20H of the modified example 8, has a rectangular parallelepiped shape, the gas outlet surface 23 is formed on the entire front surface, and the gas formed orthogonal to the gas outlet surface 23. A flow path 26 is provided. When the first portion 20a and the second portion 20b are joined, the head 20J of the modified example 10 is disposed such that the raw material outlet surface 22 and the gas outlet surface 23 are orthogonal (α = 90 degrees).
(第1実施形態の変形例11)
 図17および図18に、上記ナノファイバー製造装置1が有するヘッド20の変形例11を示す。図17(a)は、変形例11のヘッド20Kの分解斜視図であり、(b)は変形例11のヘッド20Aの第1部分20aを削り出す前の加工前部材Kの斜視図である。この変形例11のヘッド20Kは、原料出口面22に突出して形成されかつ原料流路25が内側に形成された原料出口管29を有している。これ以外の構成について、変形例11のヘッド20Kは変形例8のヘッド20Hと同一である。なお、上記原料出口管29と同様にして、ガス出口面23に突出して形成されかつガス流路26が内側に形成されたガス出口管(図示なし)を有する構成としてもよい。
(Modification 11 of the first embodiment)
17 and 18 show a modification 11 of the head 20 included in the nanofiber manufacturing apparatus 1. FIG. 17A is an exploded perspective view of the head 20K of the modification 11 and FIG. 17B is a perspective view of the pre-processing member K before the first portion 20a of the head 20A of the modification 11 is cut out. The head 20K of this modified example 11 has a raw material outlet pipe 29 that protrudes from the raw material outlet surface 22 and has a raw material channel 25 formed inside. For other configurations, the head 20K of the modification 11 is the same as the head 20H of the modification 8. In addition, it is good also as a structure which has the gas exit pipe | tube (not shown) which protruded and formed in the gas exit surface 23 similarly to the said raw material exit pipe | tube 29 and the gas flow path 26 was formed inside.
(第1実施形態の変形例12)
 図19および図20に、上記ナノファイバー製造装置1が有するヘッド20の変形例12を示す。この変形例12のヘッド20Lは、変形例8のヘッド20Hにおいて、円柱状の空間を区画するガス流路26に代えて、第2部分20bの上面に断面長方形の凹溝31が形成されている。変形例12のヘッド20Lは、第1部分20aと第2部分20bとが結合されることにより、第1部分20aにおける第2部分20bと接する一面と第2部分20bの凹溝31とで断面長方形の四角柱状の空間を区画するガス流路26を形成する。これ以外の構成について、変形例12のヘッド20Lは変形例8のヘッド20Hと同一である。なお、変形例12のヘッド20Lにおいて、図21に示すように、前面21とガス出口面23とが同一平面に含まれるように第1部分20aと第2部分20bとを前後方向にずらして配置してもよい。
(Modification 12 of the first embodiment)
19 and 20 show a modification 12 of the head 20 included in the nanofiber manufacturing apparatus 1. In the head 20L of the modified example 12, in the head 20H of the modified example 8, a concave groove 31 having a rectangular cross section is formed on the upper surface of the second portion 20b in place of the gas flow path 26 that partitions the cylindrical space. . The head 20L of the modified example 12 has a rectangular cross section with one surface in contact with the second portion 20b in the first portion 20a and the concave groove 31 of the second portion 20b by coupling the first portion 20a and the second portion 20b. A gas flow path 26 is formed that partitions the square columnar space. For other configurations, the head 20L of the modification 12 is the same as the head 20H of the modification 8. In the head 20L of the modified example 12, as shown in FIG. 21, the first portion 20a and the second portion 20b are shifted in the front-rear direction so that the front surface 21 and the gas outlet surface 23 are included in the same plane. May be.
(第1実施形態の変形例13)
 図22および図23に、上記ナノファイバー製造装置1が有するヘッド20の変形例13を示す。この変形例13のヘッド20Mは、変形例10のヘッド20Jにおいて、円柱状の空間を区画するガス流路26に代えて、第2部分20bの上面に断面長方形の凹溝31が形成されている。変形例13のヘッド20Mは、第1部分20aと第2部分20bとが結合されることにより、第1部分20aにおける第2部分20bと接する一面と第2部分20bの凹溝31とで断面長方形の四角柱状の空間を区画するガス流路26を形成する。これ以外の構成について、変形例13のヘッド20Mは変形例10のヘッド20Jと同一である。なお、変形例13のヘッド20Mにおいて、図24に示すように、前面21とガス出口面23とが同一平面に含まれるように第1部分20aと第2部分20bとをずらして配置してもよい。
(Modification 13 of the first embodiment)
22 and 23 show a modified example 13 of the head 20 included in the nanofiber manufacturing apparatus 1. In the head 20M of this modification 13, in the head 20J of the modification 10, a groove 31 having a rectangular cross section is formed on the upper surface of the second portion 20b in place of the gas flow path 26 that defines the cylindrical space. . The head 20M of the modified example 13 has a rectangular cross section between the first portion 20a and the second portion 20b coupled to each other so that the first portion 20a is in contact with the second portion 20b and the groove 31 of the second portion 20b. A gas flow path 26 is formed that partitions the square columnar space. Regarding the configuration other than this, the head 20M of the modification 13 is the same as the head 20J of the modification 10. In the head 20M of the modified example 13, as shown in FIG. 24, the first portion 20a and the second portion 20b may be arranged so as to be shifted so that the front surface 21 and the gas outlet surface 23 are included in the same plane. Good.
(第1実施形態の変形例14)
 図25に、上記ナノファイバー製造装置1が有するヘッド20の変形例14を示す。この変形例14のヘッド20Sは、2つの原料流路25、25と、これら2つの原料流路25、25の間に配置された1つのガス流路26を有している。換言すると、2つの原料流路25、25と1つのガス流路26とを1組とする流路セットを1つ有している。変形例14のヘッド20Sは、1つのガス出口面23を挟むように2つの原料出口面22、22が形成されている。原料出口面22、22とガス出口面23とは角度α(0<α≦90度)をなすように配置されている。変形例14のヘッド20Sは、2つの原料出口面22、22のそれぞれに直交して形成された原料流路25、25と、ガス出口面23に直交して形成されたガス流路26とを有している。変形例14のヘッド20Sは、上記ナノファイバー製造装置1が有するヘッド20と同様に、図示しない原料流路25、25の軸線P、Pおよびガス流路26の軸線Qが、ヘッド20Sの前方の1点で角度αで交わっている。これにより、2つの原料流路25、25から吐出された溶剤が、ガス流路26から噴出されたガスの流れに角度αで交わって、引き延ばされながら前方に運ばれる。なお、本構成においては、2つの原料流路25、25から異なる液状性原料を吐出することにより、同一のガスで異なる2種の液状性原料による2種のファイバを同時に生成し、これらを混合することもできる。
(Modification 14 of the first embodiment)
In FIG. 25, the modification 14 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. The head 20 </ b> S of the modified example 14 has two raw material flow paths 25, 25, and one gas flow path 26 disposed between the two raw material flow paths 25, 25. In other words, it has one channel set that includes two source channels 25 and 25 and one gas channel 26. In the head 20 </ b> S of the modified example 14, two raw material outlet surfaces 22 and 22 are formed so as to sandwich one gas outlet surface 23. The raw material outlet surfaces 22 and 22 and the gas outlet surface 23 are arranged to form an angle α (0 <α ≦ 90 degrees). The head 20 </ b> S of the modified example 14 includes raw material flow paths 25, 25 formed orthogonal to the two raw material outlet faces 22, 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23. Have. Similarly to the head 20 of the nanofiber manufacturing apparatus 1, the head 20 </ b> S of the modification 14 is configured such that the raw material flow paths 25, 25 of the raw material flow paths 25, 25 and the gas flow path 26 have an axis Q in front of the head 20 </ b> S. It intersects at an angle α at one point. As a result, the solvent discharged from the two raw material channels 25, 25 crosses the flow of gas ejected from the gas channel 26 at an angle α and is carried forward while being stretched. In this configuration, by discharging different liquid raw materials from the two raw material channels 25, 25, two types of fibers of two different liquid raw materials are simultaneously generated with the same gas, and these are mixed. You can also
(第1実施形態の変形例15)
 図26に、上記ナノファイバー製造装置1が有するヘッド20の変形例15を示す。この変形例15のヘッド20Tは、2つの原料流路25、25と、2つのガス流路26、26と、を有している。換言すると、1つの原料流路25とそれに対応する1つのガス流路26とを1組とする流路セットを複数(2つ)有している。変形例15のヘッド20Tは、2つの第1部分20a、20aと、これら2つの第1部分20a、20aに挟まれた第2部分20bと、を有している。第1部分20a、20aは、上述した変形例8の第1部分20aと同一の構成を有している。第2部分20bは、直方体形状を有し、上面および下面に凹溝31、31が形成されている。変形例15のヘッド20Tは、第1部分20a、20aと第2部分20bとが結合されることにより、第1部分20a、20aにおける第2部分20bと接する一面と第2部分20bの凹溝31、31とで断面長方形の四角柱状の空間を区画するガス流路26、26を形成する。変形例15のヘッド20Tにおける原料流路25とガス流路26との関係は、上記変形例12のヘッド20Lにおける原料流路25とガス流路26との関係と同一である。なお、本構成においては、2つの原料流路25、25から異なる液状性原料を吐出するとともに2つのガス流路26、26から同一ガスを噴出することにより、同一のガスで異なる2種の液状性原料による2種のファイバを同時に生成し、これらを混合することもできる。さらには、本構成においては、2つの原料流路25、25から異なる液状性原料を吐出するとともに2つのガス流路26、26から異なるガスを噴出することにより、異なる2種のガスで異なる2種の液状性原料による2種のファイバを同時に生成し、これらを混合することもできる。
(Modification 15 of the first embodiment)
In FIG. 26, the modification 15 of the head 20 which the said nanofiber manufacturing apparatus 1 has is shown. The head 20T of this modification 15 has two raw material channels 25, 25 and two gas channels 26, 26. In other words, there are a plurality (two) of channel sets each including one raw material channel 25 and one gas channel 26 corresponding thereto. The head 20T of the modification 15 has two first portions 20a and 20a and a second portion 20b sandwiched between the two first portions 20a and 20a. The first portions 20a and 20a have the same configuration as the first portion 20a of the modified example 8 described above. The 2nd part 20b has a rectangular parallelepiped shape, and the concave grooves 31 and 31 are formed in the upper surface and the lower surface. In the head 20T according to the modified example 15, the first portion 20a, 20a and the second portion 20b are coupled to each other so that the first portion 20a, 20a is in contact with the second portion 20b and the groove 31 of the second portion 20b. , 31 form gas flow paths 26, 26 that define a rectangular columnar space having a rectangular cross section. The relationship between the raw material flow path 25 and the gas flow path 26 in the head 20T of the modification 15 is the same as the relationship between the raw material flow path 25 and the gas flow path 26 in the head 20L of the modification 12. In this configuration, different liquid raw materials are discharged from the two raw material flow paths 25, 25 and the same gas is ejected from the two gas flow paths 26, 26, whereby two different liquids are used in the same gas. It is also possible to simultaneously produce two types of fibers made of a raw material and to mix them. Furthermore, in this configuration, different liquid raw materials are discharged from the two raw material flow paths 25, 25 and different gases are ejected from the two gas flow paths 26, 26, whereby two different kinds of gas are different. It is also possible to simultaneously produce two types of fibers made of various liquid raw materials and to mix them.
 表1に実施形態1のヘッド20の基本構成およびその変形例1~15の構成の概略を示す。 Table 1 shows an outline of the basic configuration of the head 20 of the first embodiment and the configurations of modifications 1 to 15 thereof.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(第2実施形態)
 本発明の第2実施形態に係るナノファイバー製造装置について、図27を参照して説明する。第2実施形態のナノファイバー製造装置2(図示なし)は、ヘッド20に代えてヘッド20Uを有すること以外は、図1に示す第1実施形態のナノファイバー製造装置1と同一の構成を有する。
(Second Embodiment)
A nanofiber manufacturing apparatus according to a second embodiment of the present invention will be described with reference to FIG. The nanofiber manufacturing apparatus 2 (not shown) of the second embodiment has the same configuration as the nanofiber manufacturing apparatus 1 of the first embodiment shown in FIG. 1 except that the head 20U is provided instead of the head 20.
 図27は、本発明の第2実施形態に係るナノファイバー製造装置2が有するヘッドを説明する図であって、(a)が正面図であり、(b)がA-A’線に沿う断面図であり、(c)がB-B’線に沿う断面図である。 FIGS. 27A and 27B are diagrams for explaining a head included in the nanofiber manufacturing apparatus 2 according to the second embodiment of the present invention, in which FIG. 27A is a front view and FIG. 27B is a cross section taken along the line AA ′. It is a figure, (c) is sectional drawing which follows the BB 'line.
 第2実施形態のナノファイバー製造装置2が有するヘッド20Uには、前方(図27(a)の紙面手前方向、(b)および(c)の左方向)を向く原料出口面22と、連結面24と、ガス出口面23と、が絶対的な位置関係として上方から下方に順に連接して形成されている。原料出口面22とガス出口面23とは互いに平行でかつ前面21に対してガス出口面23が前方に距離tずれて配置されている。また、ヘッド20Uは、前面21と平行でかつ後方(図27(a)の紙面奥方向、(b)および(c)の右方向)を向く後面(図示なし)が形成されている。 The head 20U included in the nanofiber manufacturing apparatus 2 of the second embodiment includes a raw material outlet surface 22 facing forward (a front side of the paper in FIG. 27A, a left direction in FIGS. 27B and 27C), and a connecting surface. 24 and the gas outlet surface 23 are formed so as to be connected in order from top to bottom as an absolute positional relationship. The raw material outlet surface 22 and the gas outlet surface 23 are parallel to each other, and the gas outlet surface 23 is disposed forwardly away from the front surface 21 by a distance t. The head 20U is formed with a rear surface (not shown) that is parallel to the front surface 21 and faces rearward (backward direction in FIG. 27 (a), right direction in (b) and (c)).
 また、ヘッド20Uは、原料出口面22に直交して形成された原料流路25およびガス出口面23に直交して形成されたガス流路26を有している。原料流路25は、原料出口面22と後面とを直線状に貫通するように形成されている。ガス流路26も、ガス出口面23と後面27とを直線状に貫通するように形成されている。原料流路25の軸線Pおよびガス流路26の軸線Qは、一平面に含まれるように配置されている。 Further, the head 20U has a raw material flow path 25 formed perpendicular to the raw material outlet face 22 and a gas flow path 26 formed orthogonal to the gas outlet face 23. The raw material channel 25 is formed so as to penetrate the raw material outlet surface 22 and the rear surface in a straight line. The gas flow path 26 is also formed so as to penetrate the gas outlet surface 23 and the rear surface 27 linearly. The axis P of the raw material channel 25 and the axis Q of the gas channel 26 are arranged so as to be included in one plane.
 また、連結面24とガス出口面23とは角度β(0≦β<90度)をなして配置されており、連結面24は斜め上方に向けられている。換言すると、連結面24の面方向Rとガス流路26の軸線Qとは、角度α(α=90-β)をなしている。ヘッド20Uは、横方向(図27(b)および(c)の紙面手前-奥方向)から見たとき、面方向Rと軸線Qとがヘッド20Uの前方の1点で角度αで交わる。この「横方向」は、換言すると、連結面24とガス出口面23との両方と平行となる方向である。 Further, the connecting surface 24 and the gas outlet surface 23 are arranged at an angle β (0 ≦ β <90 degrees), and the connecting surface 24 is directed obliquely upward. In other words, the surface direction R of the connecting surface 24 and the axis Q of the gas flow path 26 form an angle α (α = 90−β). When the head 20U is viewed from the lateral direction (front to back in FIG. 27B and FIG. 27C), the surface direction R and the axis Q intersect at an angle α at one point in front of the head 20U. In other words, this “lateral direction” is a direction parallel to both the connecting surface 24 and the gas outlet surface 23.
 本実施形態において、原料流路25が円柱状の空間(すなわち、軸線に直交する断面が全体にわたって同一の円形状)を区画し、ガス流路26も円柱状の空間を区画している。これ以外にも、原料流路25およびガス流路26は、四角柱状の空間を区画する形状などであってもよい。原料流路25は、一部が連結面24に接しており、ガス流路26も、一部が連結面24に接している。そして、連結面24には、原料流路25とガス流路26とを直線的に結ぶ原料流動溝24aが形成されている。 In the present embodiment, the raw material flow path 25 defines a cylindrical space (that is, a circular shape whose cross section perpendicular to the axis is the same throughout), and the gas flow path 26 also defines a cylindrical space. In addition to this, the raw material flow path 25 and the gas flow path 26 may have a shape that partitions a square columnar space. A part of the raw material flow path 25 is in contact with the connection surface 24, and a part of the gas flow path 26 is also in contact with the connection surface 24. A raw material flow groove 24 a that linearly connects the raw material flow path 25 and the gas flow path 26 is formed in the connecting surface 24.
 本実施形態のナノファイバー製造装置およびヘッド20Uの動作について説明する。ナノファイバー製造装置は、溶剤貯蔵器11から溶剤を供給して原料出口面22上の原料流路25の開口から吐出させ、ガス噴射部13から高圧のガスを供給してガス出口面23上のガス流路26の開口から噴出させる。すると、原料流路25から吐出された溶剤が、原料流動溝24aを伝ってガス流路26の開口に至り、ガス流路26から噴出されたガスの流れに角度αで交わって、引き延ばされながら前方に運ばれて、ナノファイバーが作製される。 The operation of the nanofiber manufacturing apparatus and the head 20U of the present embodiment will be described. The nanofiber manufacturing apparatus supplies a solvent from the solvent reservoir 11 and discharges it from the opening of the raw material flow path 25 on the raw material outlet surface 22, and supplies a high-pressure gas from the gas injection unit 13 on the gas outlet surface 23. The gas channel 26 is ejected from the opening. Then, the solvent discharged from the raw material flow path 25 reaches the opening of the gas flow path 26 through the raw material flow groove 24a, crosses the gas flow ejected from the gas flow path 26 at an angle α, and stretches. While being carried forward, nanofibers are produced.
 上述した本実施形態のナノファイバー製造装置2およびヘッド20Uによれば、原料流路25が、原料出口面22に直交して形成され、ガス流路26が、ガス出口面23に直交して形成されている。このようにしたことから、切削加工によって原料流路25を原料出口面22に形成できかつガス流路26をガス出口面23に形成することができ、原料流路25から吐出された溶剤を、連結面24を介して間接的にガス流路26から噴出されるガスの流れに角度αで交わらせることができる。そのため、切削加工により精度よく製造することができかつ溶剤をガスの流れに効果的に乗せることができる。 According to the nanofiber manufacturing apparatus 2 and the head 20U of the present embodiment described above, the raw material flow path 25 is formed orthogonal to the raw material outlet surface 22 and the gas flow path 26 is formed orthogonal to the gas outlet surface 23. Has been. Since it did in this way, the raw material flow path 25 can be formed in the raw material outlet surface 22 and the gas flow path 26 can be formed in the gas outlet surface 23 by cutting, and the solvent discharged from the raw material flow path 25 can be The flow of gas ejected from the gas flow channel 26 indirectly through the connection surface 24 can be made to intersect at an angle α. Therefore, it can manufacture with a sufficient precision by cutting and can put a solvent on a gas flow effectively.
(第3実施形態)
 本発明の第3実施形態に係るナノファイバー製造装置について、図28~図38を参照して説明する。このナノファイバー製造装置3は、固形の原料を溶融させた溶融原料を用いる構成のものである。
(Third embodiment)
A nanofiber manufacturing apparatus according to a third embodiment of the present invention will be described with reference to FIGS. The nanofiber manufacturing apparatus 3 is configured to use a molten raw material obtained by melting a solid raw material.
 図28および図29は、本発明の第3実施形態に係るナノファイバー製造装置の斜視図および断面図である。図30は、図28のナノファイバー製造装置が有するヘッドを説明する図であって、(a)が正面図であり、(b)がA-A’線に沿う断面図である。図31~図38は、図30に示す基本構成のヘッドの変形例1~変形例8の構成を説明する図であり、各図において、図30と同様に正面図および断面図を示している。なお、以下の説明において、前後左右上下との用語を用いることがあるが、これらは構成要素の相対的な位置関係を示すものであり、特に明示しない限り絶対的な位置関係を示すものではない。また、各図において、同一機能を有する構成には同一符号を付して詳細説明を省略する。 28 and 29 are a perspective view and a sectional view of a nanofiber manufacturing apparatus according to the third embodiment of the present invention. FIGS. 30A and 30B are diagrams for explaining a head included in the nanofiber manufacturing apparatus of FIG. 28, in which FIG. 30A is a front view and FIG. FIGS. 31 to 38 are views for explaining the configurations of the first to eighth modified examples of the head having the basic configuration shown in FIG. 30. In each of the drawings, a front view and a sectional view are shown in the same manner as FIG. . In the following description, terms such as front, rear, left, right, up, down may be used, but these indicate the relative positional relationship of the components, and do not indicate the absolute positional relationship unless otherwise specified. . Moreover, in each figure, the same code | symbol is attached | subjected to the structure which has the same function, and detailed description is abbreviate | omitted.
 本実施形態のナノファイバー製造装置3は、ナノファイバーの素材となるペレット状の樹脂(微細粒径の粒体状合成樹脂)をナノファイバー製造装置3へ投入するためのホッパー62と、ホッパー62から樹脂の供給を受けてこれを加熱溶融させるための加熱シリンダー63と、加熱シリンダー63を外側から加熱する加熱手段としてのヒーター64と、加熱シリンダー63内にて回転可能に収容され、回転することで溶融樹脂を加熱シリンダー63の先端へ移動させるための押出手段としてのスクリュー65と、スクリュー65を連結部69(詳細は図示せず)を介して回転させる駆動手段としてのモーター66と、加熱シリンダー63の先端に設けられた円柱形状のヘッド70と、を有している。ヘッド70には、ガス供給管68を介してガス噴射部(図示なし)が接続されている。なお、本実施形態において、加熱シリンダー63やヘッド70などの各構成要素は主に金属製のものを採用しているが、ナノファイバーの素材となる樹脂の種類や製造するナノファイバー製品の態様等の各種条件に応じて、樹脂製やガラス製などの他の材質のものを採用してもよい。 The nanofiber manufacturing apparatus 3 according to the present embodiment includes a hopper 62 for feeding pellet-shaped resin (a granular synthetic resin having a fine particle diameter), which is a material of the nanofiber, to the nanofiber manufacturing apparatus 3, and a hopper 62. A heating cylinder 63 for receiving and supplying a resin to heat and melt it, a heater 64 as a heating means for heating the heating cylinder 63 from the outside, and being rotatably accommodated in the heating cylinder 63 and rotating. A screw 65 as an extruding means for moving the molten resin to the tip of the heating cylinder 63, a motor 66 as a driving means for rotating the screw 65 via a connecting portion 69 (not shown in detail), and the heating cylinder 63 And a columnar head 70 provided at the tip. A gas injection unit (not shown) is connected to the head 70 via a gas supply pipe 68. In the present embodiment, the components such as the heating cylinder 63 and the head 70 are mainly made of metal, but the type of resin used as the nanofiber material, the mode of the nanofiber product to be manufactured, etc. Depending on the various conditions, other materials such as resin or glass may be used.
 図30に示すように、ヘッド70には、前方(図30(a)の紙面手前方向、(b)の左方向)を向く前面71と、原料出口面72と、ガス出口面73と、が上方から下方に順に連接して形成されている。前面71とガス出口面73とは互いに平行でかつ前面71に対してガス出口面73が後方(図30(b)の右方向)に距離tずれて配置されている。また、原料出口面72とガス出口面73とは角度α(0<α≦90度)をなして配置されており、原料出口面72は斜め下方を向けられている。また、ヘッド70には、前面71と平行でかつ後方を向く後面(図示なし)が形成されている。 As shown in FIG. 30, the head 70 has a front surface 71 facing forward (a front side in FIG. 30A and a left direction in FIG. 30B), a raw material outlet surface 72, and a gas outlet surface 73. They are formed in order from the top to the bottom. The front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed at a distance t from the front surface 71 rearward (to the right in FIG. 30B). The raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle α (0 <α ≦ 90 degrees), and the raw material outlet surface 72 is directed obliquely downward. The head 70 is formed with a rear surface (not shown) that is parallel to the front surface 71 and faces rearward.
 また、ヘッド70は、原料出口面72に直交して形成された複数の原料流路75およびガス出口面73に直交して形成されたガス流路76を有している。また、本実施形態において、原料流路75とガス流路76とは同数(7つ)設けられており、上下方向に並ぶ原料流路75とガス流路76とが互いに対応している。換言すると、1つの原料流路75とこれに対応して配置された1つのガス流路76とを1組とする流路セットが複数(7つ)設けられ、
これら複数の流路セットが、原料流路75およびガス流路76が互いに平行な2本の直線上に配列されるように一方向に並べて配置されている。
The head 70 also has a plurality of raw material channels 75 formed orthogonal to the raw material outlet surface 72 and a gas channel 76 formed orthogonal to the gas outlet surface 73. In the present embodiment, the same number (seven) of the raw material channels 75 and the gas channels 76 are provided, and the raw material channels 75 and the gas channels 76 arranged in the vertical direction correspond to each other. In other words, a plurality of (seven) channel sets each including one raw material channel 75 and one gas channel 76 arranged corresponding to the source channel 75 are provided.
The plurality of flow channel sets are arranged in one direction so that the raw material flow channel 75 and the gas flow channel 76 are arranged on two straight lines parallel to each other.
 本実施形態において、原料流路75が円柱状の空間を区画し、ガス流路76も円柱状の空間を区画している。原料出口面72は、その幅(図30(a)における上下方向の長さ)が原料流路75の径より大きく(当該径の約2倍)なるように形成されており、幅方向中央に原料流路75が配置されている。ガス流路76は、原料出口面72と間隔をあけて配置されている。互いに対応する原料流路75およびガス流路76について、原料流路75の軸線Pおよびガス流路76の軸線Qは、一平面に含まれるように配置されており、軸線Pと軸線Qとがヘッド70の前方の1点で角度αで交わる。 In the present embodiment, the raw material flow path 75 defines a cylindrical space, and the gas flow path 76 also defines a cylindrical space. The raw material outlet surface 72 is formed so that the width (the length in the vertical direction in FIG. 30A) is larger than the diameter of the raw material flow path 75 (about twice the diameter). A raw material channel 75 is disposed. The gas flow path 76 is disposed at a distance from the raw material outlet surface 72. Regarding the raw material channel 75 and the gas channel 76 corresponding to each other, the axis P of the source channel 75 and the axis Q of the gas channel 76 are arranged so as to be included in one plane, and the axis P and the axis Q are It intersects at an angle α at one point in front of the head 70.
 複数の原料流路75は、加熱シリンダー63と接続されており、加熱シリンダー63から供給された溶融原料が、複数の原料流路75を流れて、原料出口面72上の複数の原料流路75の開口から吐出される。 The plurality of raw material channels 75 are connected to the heating cylinder 63, and the molten raw material supplied from the heating cylinder 63 flows through the plurality of raw material channels 75, and the plurality of raw material channels 75 on the raw material outlet surface 72. It is discharged from the opening.
 複数のガス流路76は、ヘッド70内においてガス供給管68と連通されており、ガス噴射部から供給された高圧のガスが、ガス供給管68および複数のガス流路76を流れて、ガス出口面73上の複数のガス流路76の開口から噴出される。 The plurality of gas flow paths 76 are communicated with the gas supply pipe 68 in the head 70, and the high-pressure gas supplied from the gas injection unit flows through the gas supply pipe 68 and the plurality of gas flow paths 76, thereby It is ejected from the openings of the plurality of gas flow paths 76 on the outlet surface 73.
 もちろん、このような構成は一例であって、角度α(0<α≦90度)をなして配置された原料出口面72およびガス出口面73のそれぞれに直交して形成された原料流路75およびガス流路76を有しているものであれば、本発明の目的に反しない限り、構成は任意である。 Of course, such a configuration is merely an example, and a raw material flow path 75 formed orthogonal to each of the raw material outlet surface 72 and the gas outlet surface 73 arranged at an angle α (0 <α ≦ 90 degrees). As long as the gas channel 76 is provided, the configuration is arbitrary as long as the object of the present invention is not violated.
 本実施形態のナノファイバー製造装置3およびヘッド70の動作について説明する。ナノファイバー製造装置3においては、ホッパー62に投入されるペレット状の原料(樹脂)をヒーター64によって加熱された加熱シリンダー63内に供給して溶融し、モーター66によって回転されるスクリュー65によって加熱シリンダー63の前方に送出して、加熱シリンダー63の先端に到達した溶融原料(溶融樹脂)をヘッド70の内部を経由して複数の原料流路75から吐出させる。また、ヘッド70に形成された複数のガス流路76から高圧のガスを噴出させる。すると、互いに対応する原料流路75およびガス流路76において、原料流路75から吐出された溶融原料が、ガス流路76から噴出されたガスの流れに角度αで交わって、引き延ばされながら前方に運ばれて、ナノファイバーが作製される。 The operation of the nanofiber manufacturing apparatus 3 and the head 70 of this embodiment will be described. In the nanofiber manufacturing apparatus 3, the pellet-shaped raw material (resin) charged in the hopper 62 is supplied into the heating cylinder 63 heated by the heater 64 and melted, and the heating cylinder is rotated by the screw 65 rotated by the motor 66. The molten raw material (molten resin) that has been delivered to the front of 63 and reached the tip of the heating cylinder 63 is discharged from the plurality of raw material channels 75 via the inside of the head 70. Further, high-pressure gas is ejected from a plurality of gas flow paths 76 formed in the head 70. Then, in the raw material flow path 75 and the gas flow path 76 corresponding to each other, the molten raw material discharged from the raw material flow path 75 crosses the flow of the gas ejected from the gas flow path 76 at an angle α and is stretched. While being carried forward, nanofibers are produced.
 上述した本実施形態のナノファイバー製造装置3およびヘッド70によれば、原料流路75が、原料出口面72に直交して形成され、ガス流路76が、ガス出口面73に直交して形成されている。このようにしたことから、切削加工によって複数の原料流路75を原料出口面72に形成できかつ複数のガス流路76をガス出口面73に形成することができ、原料流路75から吐出された溶融原料を、直接的にガス流路76から噴出されるガスの流れに角度αで交わらせることができる。そのため、切削加工により精度よく製造することができかつ溶融原料をガスの流れに効果的に乗せることができる。また、複数の原料流路75および複数のガス流路76を有しているので、短時間で効率よく大量にナノファイバーを製造できる。 According to the nanofiber manufacturing apparatus 3 and the head 70 of the present embodiment described above, the raw material flow path 75 is formed orthogonal to the raw material outlet surface 72, and the gas flow path 76 is formed orthogonal to the gas outlet surface 73. Has been. Thus, a plurality of raw material flow paths 75 can be formed on the raw material outlet surface 72 by cutting, and a plurality of gas flow paths 76 can be formed on the gas outlet surface 73, and are discharged from the raw material flow paths 75. The melted raw material can be made to intersect the gas flow directly ejected from the gas flow path 76 at an angle α. Therefore, it can manufacture with a sufficient precision by cutting, and can put a molten raw material on the flow of gas effectively. Moreover, since it has the some raw material flow path 75 and the some gas flow path 76, a nanofiber can be manufactured efficiently in large quantities in a short time.
(第3実施形態の変形例1)
 図31に、上記ナノファイバー製造装置3が有するヘッド70(以下、「基本構成のヘッド70」ともいう。)の変形例1を示す。この変形例1のヘッド70Aは、複数のガス流路76が断面長方形の四角柱状の空間を区画している。これ以外の構成について、変形例1のヘッド70Aは基本構成のヘッド70と同一である。
(Modification 1 of 3rd Embodiment)
FIG. 31 shows a first modification of the head 70 (hereinafter also referred to as “basic configuration head 70”) of the nanofiber manufacturing apparatus 3. In the head 70 </ b> A of the first modification, the plurality of gas flow paths 76 define a square columnar space having a rectangular cross section. For other configurations, the head 70A of the first modification is the same as the head 70 of the basic configuration.
(第3実施形態の変形例2)
 図32に、上記ナノファイバー製造装置3が有するヘッド70の変形例2を示す。この変形例2のヘッド70Bは、横方向(図32(a)の左右方向、(b)の紙面手前-奥方向)に延在する1つのスリット状のガス流路76を有し、当該ガス流路76が断面長方形の四角柱状の空間を区画している。これ以外の構成について、変形例2のヘッド70Bは基本構成のヘッド70と同一である。変形例2のヘッド70Bは、一方向に延在するスリット状の1つのガス流路76と、当該一方向に並べて配置された複数の原料流路75とを1組とする流路セットを、1つ有している。この変形例2のヘッド70Bは、横方向から見たときに、原料流路75の軸線Pおよびガス流路76の軸線Qがヘッド70の前方の1点で角度αで交わる。この「横方向」は、換言すると、原料出口面72とガス出口面73との両方と平行となる方向である。
(Modification 2 of 3rd Embodiment)
FIG. 32 shows a second modification of the head 70 included in the nanofiber manufacturing apparatus 3. The head 70B of the second modified example has one slit-like gas flow path 76 extending in the lateral direction (the left-right direction in FIG. 32A, the front-back direction in FIG. 32B), and the gas The channel 76 defines a rectangular column-shaped space having a rectangular cross section. For other configurations, the head 70B of the second modification is the same as the head 70 of the basic configuration. The head 70 </ b> B of Modification 2 includes a channel set including one slit-like gas channel 76 extending in one direction and a plurality of raw material channels 75 arranged side by side in the one direction. I have one. In the head 70 </ b> B according to the second modification, the axis P of the raw material channel 75 and the axis Q of the gas channel 76 intersect at an angle α at one point in front of the head 70 when viewed from the lateral direction. In other words, the “lateral direction” is a direction parallel to both the raw material outlet surface 72 and the gas outlet surface 73.
(第3実施形態の変形例3)
 図33に、上記ナノファイバー製造装置3が有するヘッド70の変形例3を示す。この変形例3のヘッド70Cは、m個の原料流路75とn個のガス流路76とを有している(ただし、m≠n)。変形例3のヘッド70Cにおいては、6個の原料流路75と7個のガス流路76とを有しており、各原料流路75の横方向(図33(a)の左右方向、(b)の紙面手前-奥方向)位置が、隣接するガス流路76の中間位置となるようにそれぞれが配置されている。ガス流路76の数が、原料流路の数より多くてもよい。これ以外の構成について、変形例3のヘッド70Cは基本構成のヘッド70と同一である。変形例3のヘッド70Cは、m個の原料流路75とn個のガス流路76とを1つの組とする流路セットを、1つ有している。この変形例3のヘッド70Cは、横方向から見たときに、原料流路75の軸線Pおよびガス流路76の軸線Qがヘッド70の前方の1点で角度αで交わる。
(Modification 3 of 3rd Embodiment)
FIG. 33 shows Modification 3 of the head 70 included in the nanofiber manufacturing apparatus 3. The head 70 </ b> C of this modification 3 has m raw material flow paths 75 and n gas flow paths 76 (where m ≠ n). The head 70C of Modification 3 has six raw material flow paths 75 and seven gas flow paths 76. The horizontal direction of each raw material flow path 75 (the left-right direction in FIG. Each of them is arranged so that the position (b) (front side to back direction) of b) is an intermediate position between the adjacent gas flow paths 76. The number of gas flow paths 76 may be larger than the number of raw material flow paths. For other configurations, the head 70C of the third modification is the same as the head 70 of the basic configuration. The head 70 </ b> C of Modification 3 has one channel set that includes m source channels 75 and n gas channels 76. In the head 70 </ b> C of the third modification, the axis P of the raw material channel 75 and the axis Q of the gas channel 76 intersect at an angle α at one point in front of the head 70 when viewed from the lateral direction.
(第3実施形態の変形例4)
 図34に、上記ナノファイバー製造装置3が有するヘッド70の変形例4を示す。この変形例4のヘッド70Dは、基本構成のヘッド70において前面71および原料出口面72を有する部分(第1部分70a)と、ガス出口面73を有する部分(第2部分70b)を別体で構成し、これら部分を、例えば、ベルトやネジなどの図示しない結合手段によって互いに着脱可能としたものである。
(Modification 4 of 3rd Embodiment)
FIG. 34 shows a fourth modification of the head 70 included in the nanofiber manufacturing apparatus 3. In the head 70D of the fourth modified example, the portion having the front surface 71 and the raw material outlet surface 72 (first portion 70a) and the portion having the gas outlet surface 73 (second portion 70b) in the head 70 having the basic configuration are separated. These parts are configured to be detachable from each other by a coupling means (not shown) such as a belt or a screw.
 変形例4のヘッド70Dの第1部分70aは、円柱体を半径に沿って切断するとともに一方の端面における半径に対応する辺が面取りされた形状を有しており、前面71と原料出口面72(面取り部分に対応)とが上方から下方に順に連接して形成され、原料出口面72に直交して形成された複数の原料流路75を有している。第2部分70bは、円柱体を半径に沿って切断した形状でかつ第1部分70aと結合することにより円柱体となる形状を有し、正面全体にガス出口面73が形成されており、ガス出口面73に直交して形成されたガス流路76を有している。変形例4のヘッド70Dは、第1部分70aと第2部分70bとが結合されると、原料出口面72とガス出口面73とが角度αをなして配置される。変形例4のヘッド70Dは、第1部分70aと第2部分70bとが着脱可能な構成を有し、互いに結合されること以外は、基本構成のヘッド70と同一の構成を有している。 The first portion 70a of the head 70D of Modification 4 has a shape in which a cylindrical body is cut along a radius, and a side corresponding to the radius at one end face is chamfered. (Corresponding to the chamfered portion) are connected in order from the upper side to the lower side, and have a plurality of raw material flow paths 75 formed orthogonal to the raw material outlet surface 72. The second portion 70b has a shape obtained by cutting the cylindrical body along a radius and becomes a cylindrical body by being coupled to the first portion 70a, and a gas outlet surface 73 is formed on the entire front surface. A gas flow path 76 formed orthogonal to the outlet surface 73 is provided. In the head 70D of Modification 4, when the first portion 70a and the second portion 70b are coupled, the raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle α. The head 70D of Modification 4 has a configuration in which the first portion 70a and the second portion 70b are detachable, and has the same configuration as the head 70 of the basic configuration except that they are coupled to each other.
(第3実施形態の変形例5)
 図35に、上記ナノファイバー製造装置3が有するヘッド70の変形例5を示す。この変形例5のヘッド70Eは、円柱体形状を有し、前方(図35(a)の紙面手前方向、(b)の左方向)を向く円環状の前面71と、円環状の原料出口面72と、円形状のガス出口面73と、が外周から中心に向かって順に連接された同心円状に形成されている。前面71とガス出口面73とは互いに平行でかつ前面71に対してガス出口面73が後方(図30(b)において右方向)に距離tずれて配置されている。また、原料出口面72とガス出口面73とは角度α(0<α≦90度)をなして配置されており、原料出口面72は内向きのテーパー状に形成されている。また、変形例5のヘッド70Eには、前面71と平行でかつ後方を向く後面(図示なし)が形成されている。
(Modification 5 of the third embodiment)
FIG. 35 shows a fifth modification example of the head 70 included in the nanofiber manufacturing apparatus 3. The head 70E of this modified example 5 has a cylindrical shape, and has an annular front surface 71 facing forward (the front side of the paper in FIG. 35A and the left direction in FIG. 35B), and an annular raw material outlet surface. 72 and a circular gas outlet surface 73 are concentrically connected in order from the outer periphery toward the center. The front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed rearwardly (to the right in FIG. 30B) by a distance t with respect to the front surface 71. The raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle α (0 <α ≦ 90 degrees), and the raw material outlet surface 72 is formed in an inwardly tapered shape. Further, a rear surface (not shown) which is parallel to the front surface 71 and faces rearward is formed on the head 70E of the modified example 5.
 また、変形例5のヘッド70Eは、原料出口面72に直交しかつ周方向に等間隔に配列された複数の原料流路75、およびガス出口面73の中央に直交して形成された1つガス流路76を有している。変形例5のヘッド70Eは、原料流路75がガス流路76の周囲に複数(8つ)設けられている。換言すると、変形例5のヘッド70Eは、1つのガス流路76と、ガス流路76の周囲に配置された複数の原料流路75とを1組とする流路セットを、1つ有している。 Further, the head 70E of the modified example 5 includes a plurality of raw material flow paths 75 that are orthogonal to the raw material outlet surface 72 and arranged at equal intervals in the circumferential direction, and one that is orthogonal to the center of the gas outlet surface 73. A gas flow path 76 is provided. In the head 70 </ b> E of Modification 5, a plurality (eight) of raw material flow paths 75 are provided around the gas flow path 76. In other words, the head 70 </ b> E according to the modified example 5 has one flow path set including one gas flow path 76 and a plurality of raw material flow paths 75 arranged around the gas flow path 76. ing.
 また、変形例5のヘッド70Eでは、原料流路75が円柱状の空間を区画し、ガス流路76も円柱状の空間を区画している。原料出口面72は、その幅(半径方向の長さ)が原料流路75の径と同一になるように形成されている。ガス流路76は、原料出口面72と間隔をあけて配置されている。複数の原料流路75の軸線Pおよびガス流路76の軸線Qは、ヘッド70Bの前方の1点で角度αで交わる。 Further, in the head 70E of the modified example 5, the raw material flow path 75 defines a cylindrical space, and the gas flow path 76 also defines a cylindrical space. The raw material outlet surface 72 is formed so that the width (the length in the radial direction) is the same as the diameter of the raw material flow path 75. The gas flow path 76 is disposed at a distance from the raw material outlet surface 72. The axis P of the plurality of raw material channels 75 and the axis Q of the gas channel 76 intersect at an angle α at one point in front of the head 70B.
(第3実施形態の変形例6)
 図36に、上記ナノファイバー製造装置3が有するヘッド70の変形例6を示す。この変形例6のヘッド70Fは、原料出口面72に突出して形成されかつ複数の原料流路75が内側に形成された複数の原料出口管79を有している。これ以外の構成について、変形例6のヘッド70Fは変形例5のヘッド70Eと同一である。
(Modification 6 of 3rd Embodiment)
FIG. 36 shows a sixth modification of the head 70 included in the nanofiber manufacturing apparatus 3. The head 70F of this modification 6 has a plurality of raw material outlet pipes 79 protruding from the raw material outlet surface 72 and having a plurality of raw material flow paths 75 formed inside. With respect to the other configuration, the head 70F of the modification 6 is the same as the head 70E of the modification 5.
(第3実施形態の変形例7)
 図37に、上記ナノファイバー製造装置3が有するヘッド70の変形例7を示す。この変形例7のヘッド70Gは、円柱体形状を有し、前方(図37(a)の紙面手前方向、(b)の左方向)を向く円環状の前面71と、円環状の原料出口面72と、円形状のガス出口面73と、が外周から中心に向かって順に連接された同心円状に形成されている。前面71とガス出口面73とは互いに平行でかつ前面71に対してガス出口面73が後方(図30(b)において右方向)に距離tずれて配置されている。また、原料出口面72とガス出口面73とは角度α(0<α≦90度)をなして配置されており、原料出口面72は内向きのテーパー状に形成されている。また、変形例7のヘッド70Gには、前面71と平行でかつ後方を向く後面(図示なし)が形成されている。
(Modification 7 of the third embodiment)
FIG. 37 shows a seventh modification of the head 70 included in the nanofiber manufacturing apparatus 3. The head 70G of the modified example 7 has a cylindrical shape, and has an annular front surface 71 facing forward (a front side in FIG. 37A and a left direction in FIG. 37B), and an annular raw material outlet surface. 72 and a circular gas outlet surface 73 are concentrically connected in order from the outer periphery toward the center. The front surface 71 and the gas outlet surface 73 are parallel to each other, and the gas outlet surface 73 is disposed rearwardly (to the right in FIG. 30B) by a distance t with respect to the front surface 71. The raw material outlet surface 72 and the gas outlet surface 73 are arranged at an angle α (0 <α ≦ 90 degrees), and the raw material outlet surface 72 is formed in an inwardly tapered shape. Further, a rear surface (not shown) which is parallel to the front surface 71 and faces rearward is formed on the head 70G of the modified example 7.
 また、変形例7のヘッド70Gは、原料出口面72に直交しかつ周方向に等間隔に配列された複数の原料流路75、およびガス出口面73に直交しかつ周方向に等間隔に配列された複数のガス流路76を有している。変形例7のヘッド70Gは、原料流路75とガス流路76とが対応するように複数(8つ)設けられている。換言すると、変形例7のヘッド70Gは、1つの原料流路75とこれに対応して配置された1つのガス流路76とを1組とする流路セットが複数(8つ)設けられ、これら複数の流路セットが、原料流路75およびガス流路76が同心円となる2つの円の円周上に配列されるように円環状に並べて配置されている。 Further, the head 70G of the modified example 7 has a plurality of raw material flow passages 75 orthogonal to the raw material outlet surface 72 and arranged at equal intervals in the circumferential direction, and an orthogonal arrangement to the gas outlet surface 73 and arranged at equal intervals in the circumferential direction. A plurality of gas flow paths 76 are provided. A plurality of (eight) heads 70 </ b> G of Modification 7 are provided so that the raw material flow paths 75 and the gas flow paths 76 correspond to each other. In other words, the head 70G of the modified example 7 is provided with a plurality of (eight) flow channel sets including one raw material flow channel 75 and one gas flow channel 76 arranged corresponding to the raw material flow channel 75, The plurality of flow channel sets are arranged in an annular shape so that the raw material flow channel 75 and the gas flow channel 76 are arranged on the circumferences of two concentric circles.
 また、変形例7のヘッド70Gでは、原料流路75が円柱状の空間を区画し、ガス流路76も円柱状の空間を区画している。原料出口面72は、その幅(半径方向の長さ)が原料流路75より大きく(約2倍)なるように形成されている。複数のガス流路76は、それぞれが原料出口面72と接して配置されている。互いに対応する原料流路75の軸線Pおよびガス流路76の軸線Qは、ヘッド70Gの前方の1点で角度αで交わる。
(第3実施形態の変形例8)
 図38に、上記ナノファイバー製造装置3が有するヘッド70の変形例8を示す。この変形例8のヘッド70Hは、複数のガス流路76が断面長方形の四角柱状の空間を区画しかつ原料出口面72と間隔をあけて配置されている。これ以外の構成について、変形例8のヘッド70Hは変形例7のヘッド70Gと同一である。
Further, in the head 70G of the modified example 7, the raw material flow path 75 defines a cylindrical space, and the gas flow path 76 also defines a cylindrical space. The raw material outlet surface 72 is formed so that the width (length in the radial direction) is larger (about twice) than the raw material flow path 75. Each of the plurality of gas flow paths 76 is disposed in contact with the raw material outlet surface 72. The axis P of the material flow path 75 and the axis Q of the gas flow path 76 corresponding to each other intersect at an angle α at one point in front of the head 70G.
(Modification 8 of 3rd Embodiment)
In FIG. 38, the modification 8 of the head 70 which the said nanofiber manufacturing apparatus 3 has is shown. In the head 70 </ b> H according to the modified example 8, a plurality of gas flow paths 76 define a rectangular column-shaped space having a rectangular cross section and are spaced from the raw material outlet surface 72. With respect to the other configuration, the head 70H of the modified example 8 is the same as the head 70G of the modified example 7.
 表2に実施形態3のヘッド70の基本構成およびその変形例1~8の構成の概略を示す。 Table 2 shows an outline of the basic configuration of the head 70 of the third embodiment and the configurations of modifications 1 to 8 thereof.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の実施形態について詳述したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
 例えば、上記実施形態では溶融樹脂及びガス噴出口を水平方向に向けた横型のナノファイバー製造装置として示しているが、これに限定せず、下方に向けて構成した縦型のナノファイバー製造装置およびヘッドとしても何ら問題ない。その方が重力による影響が有効に避けられる。 For example, in the above-described embodiment, the molten resin and the gas ejection port are shown as a horizontal nanofiber manufacturing apparatus in which the horizontal direction is directed to the horizontal direction. There is no problem as a head. In that case, the influence of gravity can be avoided effectively.
 また、各実施形態およびその変形例において、原料流路の位置とガス流路の位置とを入れ替えて配置してもよい。具体的には、例えば、実施形態1のヘッド20において、原料出口面22の位置をガス出口面23の位置と入れ替えて前面21と原料出口面22とを平行に配置し、ガス出口面23を原料出口面22に対して角度αをなして配置し、これら原料出口面22およびガス出口面23に、それぞれ原料流路25およびガス流路26を形成してもよい。また、本発明の構成は各実施形態の図面に示された配置に限定されるものではなく、例えば、各実施形態の図面を上下反転して原料流路(原料出口面)およびガス流路(ガス出口面)の位置を入れ替えて配置した構成を採用したり、90度回転して原料流路(原料出口面)およびガス流路(ガス出口面)を横方向に並べて配置した構成を採用したりしてもよい。 Moreover, in each embodiment and its modification, the position of the raw material flow path and the position of the gas flow path may be interchanged. Specifically, for example, in the head 20 of the first embodiment, the position of the raw material outlet surface 22 is replaced with the position of the gas outlet surface 23 so that the front surface 21 and the raw material outlet surface 22 are arranged in parallel. The material outlet face 22 may be disposed at an angle α, and the raw material outlet face 22 and the gas outlet face 23 may be formed with the raw material outlet face 22 and the gas outlet face 26, respectively. Further, the configuration of the present invention is not limited to the arrangement shown in the drawings of the embodiments. For example, the drawings of the embodiments are turned upside down so that the raw material flow path (raw material outlet surface) and the gas flow paths ( Adopted a configuration in which the position of the gas outlet surface) is changed, or a configuration in which the raw material flow channel (raw material outlet surface) and the gas flow channel (gas outlet surface) are arranged side by side by rotating 90 degrees. Or you may.
 また、押出手段をスクリューとして説明したが、製造するナノファイバーが途切れることの対策が必要となるが、ダイカストのように溶液を順次供給してピストン等を用いた間欠的な押し出しによっても何ら問題ない。 Moreover, although the extrusion means has been described as a screw, it is necessary to take measures against interruption of the nanofiber to be produced. However, there is no problem even if intermittent extrusion is performed using a piston or the like by sequentially supplying solutions as in die casting. .
 また、本発明のナノファイバー製造装置およびヘッドは、使用する液状性原料の流動性や特性保持の諸条件、さらにファイバ生成の諸条件に伴い、ヘッド外側周囲に密着型のヒーター等を用いた原料温度制御機能(図示せず)を具備することが望ましい。 In addition, the nanofiber manufacturing apparatus and head of the present invention are materials that use a contact-type heater or the like around the outside of the head in accordance with the conditions of fluidity and property retention of the liquid raw material used and the conditions of fiber generation. It is desirable to have a temperature control function (not shown).
 また、本発明のナノファイバー製造装置およびヘッドは、ファイバ生成の諸条件に伴い、ガス出口でのガスの温度を制御するガス温度制御機能(図示せず)を具備することが望ましい。 Also, the nanofiber manufacturing apparatus and head of the present invention preferably have a gas temperature control function (not shown) for controlling the gas temperature at the gas outlet in accordance with various conditions for fiber generation.
(第1実施形態)
 1…ナノファイバー製造装置、10…ベース、11…溶剤貯蔵器、12…ホース、13…ガス噴射部、20、20A~20M、20S、20T…ヘッド、20a…第1部分、20b…第2部分、21…前面、22…原料出口面、23…ガス出口面、25…原料流路、26…ガス流路、27…後面、28…原料供給路、29…原料出口管、31…凹溝、P…原料流路の軸線、Q…ガス流路の軸線。
(第2実施形態)
 2…ナノファイバー製造装置、20U…ヘッド、21…前面、22…原料出口面、23…ガス出口面、24…連結面、24a…原料流動溝、25…原料流路、26…ガス流路、27…後面、P…原料流路の軸線、Q…ガス流路の軸線、R…連結面の面方向。
(第3実施形態)
 3…ナノファイバー製造装置、62…ホッパー、63…加熱シリンダー、64…ヒーター、65…スクリュー、66…モーター、68…ガス供給管、69…連結部、70、70A~70H…ヘッド、70a…第1部分、70b…第2部分、71…前面、72…原料出口面、73…ガス出口面、75…原料流路、76…ガス流路、79…原料出口管、P…原料流路の軸線、Q…ガス流路の軸線。
 
(First embodiment)
DESCRIPTION OF SYMBOLS 1 ... Nanofiber manufacturing apparatus, 10 ... Base, 11 ... Solvent reservoir, 12 ... Hose, 13 ... Gas injection part, 20, 20A-20M, 20S, 20T ... Head, 20a ... First part, 20b ... Second part , 21 ... front face, 22 ... raw material outlet face, 23 ... gas outlet face, 25 ... raw material flow path, 26 ... gas flow path, 27 ... rear face, 28 ... raw material supply path, 29 ... raw material outlet pipe, 31 ... concave groove, P: Axis of raw material flow path, Q: Axis of gas flow path.
(Second Embodiment)
DESCRIPTION OF SYMBOLS 2 ... Nanofiber manufacturing apparatus, 20U ... Head, 21 ... Front surface, 22 ... Raw material exit surface, 23 ... Gas exit surface, 24 ... Connection surface, 24a ... Raw material flow groove, 25 ... Raw material flow path, 26 ... Gas flow path, 27: Rear surface, P: Axis of raw material flow path, Q: Axis of gas flow path, R: Surface direction of connecting surface.
(Third embodiment)
DESCRIPTION OF SYMBOLS 3 ... Nanofiber manufacturing apparatus, 62 ... Hopper, 63 ... Heating cylinder, 64 ... Heater, 65 ... Screw, 66 ... Motor, 68 ... Gas supply pipe, 69 ... Connection part, 70, 70A-70H ... Head, 70a ... No. 1 part, 70b ... 2nd part, 71 ... front surface, 72 ... raw material outlet surface, 73 ... gas outlet surface, 75 ... raw material flow path, 76 ... gas flow path, 79 ... raw material outlet pipe, P ... axis of raw material flow path , Q: axis of gas flow path.

Claims (14)

  1.  液状性原料が吐出される原料流路が形成された原料出口面と、
     前記原料出口面に対して角度α(ただし、0<α≦90度)をなして配置され、ガスが噴出されるガス流路が形成されたガス出口面と、を有し、
     前記原料流路が、前記原料出口面に直交して形成され、
     前記ガス流路が、前記ガス出口面に直交して形成され、
     前記原料流路から吐出された前記液状性原料と前記ガス流路から噴出されたガスとが交わるように、前記原料流路と前記ガス流路とが配置されていることを特徴とするナノファイバー製造装置。
    A raw material outlet surface formed with a raw material flow path through which the liquid raw material is discharged;
    A gas outlet surface that is arranged at an angle α (where 0 <α ≦ 90 degrees) with respect to the raw material outlet surface, and has a gas flow path through which gas is ejected,
    The raw material flow path is formed orthogonal to the raw material outlet surface,
    The gas flow path is formed orthogonal to the gas outlet surface;
    The nanofiber, wherein the raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path and the gas ejected from the gas flow path intersect each other Manufacturing equipment.
  2.  1つの前記原料流路とこれに対応して配置された1つの前記ガス流路とを1組とする流路セットを、1つまたは複数有していることを特徴とする請求項1に記載のナノファイバー製造装置。 2. The apparatus according to claim 1, further comprising one or a plurality of channel sets each including one source channel and one gas channel arranged corresponding to the source channel. Nanofiber manufacturing equipment.
  3.  前記流路セットを複数有し、これら複数の前記流路セットが、前記原料流路および前記ガス流路が互いに平行な2本の直線上に配列されるように一方向に並べて配置されていることを特徴とする請求項2に記載のナノファイバー製造装置。 A plurality of the flow channel sets are provided, and the plurality of flow channel sets are arranged in one direction so that the raw material flow channel and the gas flow channel are arranged on two straight lines parallel to each other. The nanofiber manufacturing apparatus according to claim 2.
  4.  前記流路セットを複数有し、これら複数の前記流路セットが、前記原料流路および前記ガス流路が同心円となる2つの円の円周上に配列されるように円環状に並べて配置されていることを特徴とする請求項2に記載のナノファイバー製造装置。 A plurality of the flow channel sets are provided, and the plurality of the flow channel sets are arranged in an annular shape so that the raw material flow channel and the gas flow channel are arranged on the circumference of two circles that are concentric circles. The nanofiber manufacturing apparatus according to claim 2, wherein the apparatus is a nanofiber manufacturing apparatus.
  5.  前記ガス流路の軸線とこれに対応して配置された前記原料流路の軸線とが、一平面に含まれることを特徴とする請求項1~請求項4のいずれか一項に記載のナノファイバー製造装置。 5. The nano of any one of claims 1 to 4, wherein the axis of the gas flow path and the axis of the raw material flow path arranged corresponding to the gas flow path are included in one plane. Fiber manufacturing equipment.
  6.  複数の前記原料流路とこれらに対応して配置された1つの前記ガス流路とを1組とする流路セットを、1つまたは複数有していることを特徴とする請求項1に記載のナノファイバー製造装置。 2. The apparatus according to claim 1, further comprising one or a plurality of flow path sets each including a plurality of the raw material flow paths and one gas flow path arranged corresponding to the raw material flow paths. Nanofiber manufacturing equipment.
  7.  前記流路セットが、一方向に延在するスリット状の1つの前記ガス流路と、前記一方向に並べて配置された複数の前記原料流路とを有していることを特徴とする請求項6に記載のナノファイバー製造装置。 The flow path set includes one slit-shaped gas flow path extending in one direction and a plurality of the raw material flow paths arranged side by side in the one direction. 6. The nanofiber production apparatus according to 6.
  8.  前記流路セットが、1つの前記ガス流路と、前記ガス流路の周囲に配置された複数の前記原料流路とを有していることを特徴とする請求項6に記載のナノファイバー製造装置。 The said flow path set has one said gas flow path and the said some raw material flow path arrange | positioned around the said gas flow path, The nanofiber manufacture of Claim 6 characterized by the above-mentioned. apparatus.
  9.  前記原料出口面から突出するとともに前記原料流路が内側に形成された原料出口管をさらに有していることを特徴とする請求項1~請求項8のいずれか一項に記載のナノファイバー製造装置。 The nanofiber production according to any one of claims 1 to 8, further comprising a raw material outlet pipe protruding from the raw material outlet surface and having the raw material flow path formed therein. apparatus.
  10.  前記ガス出口面から突出するとともに前記ガス流路が内側に形成されたガス出口管をさらに有していることを特徴とする請求項1~請求項9のいずれか一項に記載のナノファイバー製造装置。 The nanofiber manufacturing method according to any one of claims 1 to 9, further comprising a gas outlet pipe protruding from the gas outlet face and having the gas flow path formed therein. apparatus.
  11.  前記原料出口面を有する第1部分と、
     前記ガス出口面を有する第2部分と、を有し、
     前記第1部分と前記第2部分とが着脱可能に結合されていることを特徴とする請求項1~請求項10のいずれか一項に記載のナノファイバー製造装置。
    A first portion having the raw material outlet surface;
    A second portion having the gas outlet surface,
    The nanofiber manufacturing apparatus according to any one of claims 1 to 10, wherein the first portion and the second portion are detachably coupled to each other.
  12.  液状性原料が吐出される原料流路が形成された原料出口面と、
     前記原料出口面より下方に配置され、ガスが噴出されるガス流路が形成されたガス出口面と、
     前記原料出口面および前記ガス出口面に連なり、前記原料出口面に対して角度β(ただし、0≦β<90度)をなして配置された連結面と、を有し、
     前記原料流路が、前記原料出口面に直交して形成され、
     前記ガス流路が、前記ガス出口面に直交して形成され、
     前記ガス流路の開口が、前記連結面に接し、
     前記原料流路から吐出された前記液状性原料が前記連結面を伝って前記ガス流路の開口に至るように、前記原料流路と前記ガス流路とが配置されていることを特徴とするナノファイバー製造装置。
    A raw material outlet surface formed with a raw material flow path through which the liquid raw material is discharged;
    A gas outlet surface disposed below the raw material outlet surface and having a gas flow path through which gas is ejected;
    A connecting surface that is connected to the raw material outlet surface and the gas outlet surface and is disposed at an angle β (where 0 ≦ β <90 degrees) with respect to the raw material outlet surface;
    The raw material flow path is formed orthogonal to the raw material outlet surface,
    The gas flow path is formed orthogonal to the gas outlet surface;
    The opening of the gas flow path is in contact with the connecting surface;
    The raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path reaches the opening of the gas flow path through the connection surface. Nanofiber manufacturing equipment.
  13.  ナノファイバー製造装置で用いられるヘッドであって、
     液状性原料が吐出される原料流路が形成された原料出口面と、
     前記原料出口面に対して角度α(ただし、0<α≦90度)をなして配置され、ガスが噴出されるガス流路が形成されたガス出口面と、を有し、
     前記原料流路が、前記原料出口面に直交して形成され、
     前記ガス流路が、前記ガス出口面に直交して形成され、
     前記原料流路から吐出された前記液状性原料と前記ガス流路から噴出されたガスとが交わるように、前記原料流路と前記ガス流路とが配置されていることを特徴とするヘッド。
    A head used in a nanofiber manufacturing apparatus,
    A raw material outlet surface formed with a raw material flow path through which the liquid raw material is discharged;
    A gas outlet surface that is arranged at an angle α (where 0 <α ≦ 90 degrees) with respect to the raw material outlet surface, and has a gas flow path through which gas is ejected,
    The raw material flow path is formed orthogonal to the raw material outlet surface,
    The gas flow path is formed orthogonal to the gas outlet surface;
    The head, wherein the raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path and the gas ejected from the gas flow path intersect.
  14.  ナノファイバー製造装置で用いられるヘッドであって、
     液状性原料が吐出される原料流路が形成された原料出口面と、
     前記原料出口面より下方に配置され、ガスが噴出されるガス流路が形成されたガス出口面と、
     前記原料出口面および前記ガス出口面に連なり、前記原料出口面に対して角度β(ただし、0≦β<90度)をなして配置された連結面と、を有し、
     前記原料流路が、前記原料出口面に直交して形成され、
     前記ガス流路が、前記ガス出口面に直交して形成され、
     前記ガス流路の開口が、前記連結面に接し、
     前記原料流路から吐出された前記液状性原料が前記連結面を伝って前記ガス流路の開口に至るように、前記原料流路と前記ガス流路とが配置されていることを特徴とするヘッド。
    A head used in a nanofiber manufacturing apparatus,
    A raw material outlet surface formed with a raw material flow path through which the liquid raw material is discharged;
    A gas outlet surface disposed below the raw material outlet surface and having a gas flow path through which gas is ejected;
    A connecting surface that is connected to the raw material outlet surface and the gas outlet surface and is disposed at an angle β (where 0 ≦ β <90 degrees) with respect to the raw material outlet surface;
    The raw material flow path is formed orthogonal to the raw material outlet surface,
    The gas flow path is formed orthogonal to the gas outlet surface;
    The opening of the gas flow path is in contact with the connecting surface;
    The raw material flow path and the gas flow path are arranged so that the liquid raw material discharged from the raw material flow path reaches the opening of the gas flow path through the connection surface. head.
PCT/JP2018/019627 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for same WO2018216681A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/615,949 US20200173057A1 (en) 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for same
RU2019142697A RU2760806C2 (en) 2017-05-22 2018-05-22 Device for the production of nanofibers and the die head used in it
EP18805205.4A EP3633083A4 (en) 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for same
CN201880046856.9A CN111542653A (en) 2017-05-22 2018-05-22 Nanofiber manufacturing apparatus and shower head for nanofiber manufacturing apparatus
MYPI2019006854A MY194530A (en) 2017-05-22 2018-05-22 Apparatus for producing nanofiber and nozzle head used for the same
AU2018273416A AU2018273416A1 (en) 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for same
KR1020197037956A KR20200038428A (en) 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for it
CA3064728A CA3064728A1 (en) 2017-05-22 2018-05-22 Apparatus for producing nanofiber and nozzle head used for the same
ZA2019/07708A ZA201907708B (en) 2017-05-22 2019-11-21 Nanofiber manufacturing device and head used for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017101292A JP6964861B2 (en) 2017-05-22 2017-05-22 Nanofiber manufacturing equipment and heads used for it
JP2017-101292 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216681A1 true WO2018216681A1 (en) 2018-11-29

Family

ID=64395707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019627 WO2018216681A1 (en) 2017-05-22 2018-05-22 Nanofiber manufacturing device and head used for same

Country Status (13)

Country Link
US (1) US20200173057A1 (en)
EP (1) EP3633083A4 (en)
JP (1) JP6964861B2 (en)
KR (1) KR20200038428A (en)
CN (1) CN111542653A (en)
AU (1) AU2018273416A1 (en)
CA (1) CA3064728A1 (en)
MY (1) MY194530A (en)
RU (1) RU2760806C2 (en)
SG (1) SG10202110627TA (en)
TW (1) TW201908546A (en)
WO (1) WO2018216681A1 (en)
ZA (1) ZA201907708B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240052524A1 (en) * 2021-03-02 2024-02-15 Board Of Regents, The University Of Texas System Handheld/portable apparatus for the production of fine fibers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113809A (en) * 1984-08-30 1986-05-31 キンバリ− クラ−ク コ−ポレ−シヨン Extrusion method and extrusion die having central air jet
JP2005515316A (en) * 2002-01-22 2005-05-26 ザ ユニバーシティ オブ アクロン Method and apparatus for producing nanofibers
JP2010185153A (en) 2009-02-13 2010-08-26 Japan Vilene Co Ltd Method for producing extra fine fiber non-woven fabric, and apparatus for producing the same
JP2012112077A (en) * 2010-11-26 2012-06-14 Japan Vilene Co Ltd Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2016023399A (en) * 2014-11-08 2016-02-08 ゼプト 株式会社 Ejection nozzle head for forming nanofibers and manufacturing apparatus of nanofibers provided with ejection nozzle head for forming nanofibers
JP2016183435A (en) * 2015-03-26 2016-10-20 セイントフォース株式会社 Nanofiber production apparatus and nanofiber production method
JP2017008450A (en) * 2015-06-23 2017-01-12 紘邦 張本 Spinneret and ultrafine fiber production apparatus
JP2017203231A (en) * 2016-05-11 2017-11-16 パナソニックIpマネジメント株式会社 Nonwoven fabric and sound absorption material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818464A (en) * 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
JPH01239150A (en) * 1988-03-15 1989-09-25 Polymer Processing Res Inst Arrangement fixing method of multifilament group
JP3657700B2 (en) * 1996-06-18 2005-06-08 新日本石油化学株式会社 Method for producing high-quality nonwoven fabric
WO2000022207A2 (en) * 1998-10-01 2000-04-20 The University Of Akron Process and apparatus for the production of nanofibers
US6045907A (en) * 1998-10-09 2000-04-04 E. I. Du Pont De Nemours And Company Grafted poly(p-phenylene terephthalamide) fibers
JP4233181B2 (en) * 1999-09-30 2009-03-04 新日本石油株式会社 Method and apparatus for producing a horizontally arranged web
US6776858B2 (en) * 2000-08-04 2004-08-17 E.I. Du Pont De Nemours And Company Process and apparatus for making multicomponent meltblown web fibers and webs
KR100406981B1 (en) * 2000-12-22 2003-11-28 한국과학기술연구원 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor
JP5225885B2 (en) * 2009-02-16 2013-07-03 パナソニック株式会社 Nanofiber manufacturing apparatus and manufacturing method
FI127137B (en) * 2014-12-23 2017-12-15 Spinnova Oy Process for producing high tensile strength of nanofiber yarn
JP5946569B1 (en) * 2015-04-17 2016-07-06 紘邦 張本 Melt blow cap and ultrafine fiber manufacturing equipment
CN105369365B (en) * 2015-12-02 2018-01-19 苏州大学 A kind of fiber prepares and uses melt-blowing nozzles structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113809A (en) * 1984-08-30 1986-05-31 キンバリ− クラ−ク コ−ポレ−シヨン Extrusion method and extrusion die having central air jet
JP2005515316A (en) * 2002-01-22 2005-05-26 ザ ユニバーシティ オブ アクロン Method and apparatus for producing nanofibers
JP2010185153A (en) 2009-02-13 2010-08-26 Japan Vilene Co Ltd Method for producing extra fine fiber non-woven fabric, and apparatus for producing the same
JP2012112077A (en) * 2010-11-26 2012-06-14 Japan Vilene Co Ltd Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2016023399A (en) * 2014-11-08 2016-02-08 ゼプト 株式会社 Ejection nozzle head for forming nanofibers and manufacturing apparatus of nanofibers provided with ejection nozzle head for forming nanofibers
JP2016183435A (en) * 2015-03-26 2016-10-20 セイントフォース株式会社 Nanofiber production apparatus and nanofiber production method
JP2017008450A (en) * 2015-06-23 2017-01-12 紘邦 張本 Spinneret and ultrafine fiber production apparatus
JP2017203231A (en) * 2016-05-11 2017-11-16 パナソニックIpマネジメント株式会社 Nonwoven fabric and sound absorption material

Also Published As

Publication number Publication date
RU2019142697A (en) 2021-06-24
MY194530A (en) 2022-11-30
RU2760806C2 (en) 2021-11-30
SG10202110627TA (en) 2021-11-29
JP2018197401A (en) 2018-12-13
EP3633083A1 (en) 2020-04-08
JP6964861B2 (en) 2021-11-10
RU2019142697A3 (en) 2021-09-24
CA3064728A1 (en) 2018-05-22
AU2018273416A1 (en) 2020-01-23
CN111542653A (en) 2020-08-14
KR20200038428A (en) 2020-04-13
ZA201907708B (en) 2021-05-26
EP3633083A4 (en) 2021-03-17
TW201908546A (en) 2019-03-01
US20200173057A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
CN107614764B (en) Nanofiber manufacturing device and nanofiber manufacturing method
JPH0623831A (en) Plasticator for extruding hollow tube after injection molding for forming plastic container by blowing
JP2006272629A (en) Die device and manufacturing method of double-layered extrusion molded product using it
WO2018216681A1 (en) Nanofiber manufacturing device and head used for same
JP2015182468A (en) Device and method for homogenization of plastic material melt
JP3943125B1 (en) Injection resin mixing element and injection molding nozzle using the same
US20240100761A1 (en) Melt conductor for an extrusion tool of an extrusion system, extrusion tool, extrusion system and method for operating an extrusion system of this type
US20240131769A1 (en) Melt conveyor for an extrusion tool of an extrusion system, extrusion tool, extrusion system and method for operating an extrusion system of this type
JP6894153B2 (en) Nanofiber manufacturing equipment and nanofiber manufacturing method
WO2017003307A1 (en) Manifold for the heads of an extruder, and related method for producing plastic products using such an extruder
WO2022259662A1 (en) Extrusion device and die head
JP6741317B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
US20230120659A1 (en) Static mixer for blending fluids with melt
KR101612917B1 (en) Supplying device of multi-head resin liquid for recycle filament yarn manufacturing
JP2018071037A (en) Nanofiber production apparatus and nanofiber production method
KR200471098Y1 (en) Apparatus for a plurality of raw material feeding device in a synthetic resin fiber spinning machine
JP2016183445A (en) Nanofiber production apparatus and nanofiber production method
CA3016083A1 (en) Coextrusion mandrel for extrusion die
KR20200042460A (en) Discharge nozzle for nanofiber manufacturing apparatus, and nanofiber manufacturing apparatus having discharge nozzle
US20070176318A1 (en) Mold and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064728

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018273416

Country of ref document: AU

Date of ref document: 20180522

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018805205

Country of ref document: EP

Effective date: 20200102