WO2018216568A1 - Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body - Google Patents

Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body Download PDF

Info

Publication number
WO2018216568A1
WO2018216568A1 PCT/JP2018/018926 JP2018018926W WO2018216568A1 WO 2018216568 A1 WO2018216568 A1 WO 2018216568A1 JP 2018018926 W JP2018018926 W JP 2018018926W WO 2018216568 A1 WO2018216568 A1 WO 2018216568A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
container
wall
sheet
cylindrical body
Prior art date
Application number
PCT/JP2018/018926
Other languages
French (fr)
Japanese (ja)
Inventor
政彦 金岡
康明 金指
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2018216568A1 publication Critical patent/WO2018216568A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a container, a sheet and a cylinder used for the container, and a method for manufacturing the container, the sheet, and the cylinder.
  • a microplate which is a flat plate provided with a number of depressions (wells), each well is used as a test tube or petri dish, biochemical analysis such as DNA analysis and immunoassay, clinical examination, drug schooling Used for cell culture and the like.
  • biochemical analysis such as DNA analysis and immunoassay
  • clinical examination drug schooling Used for cell culture and the like.
  • the inside of the well is also observed with an optical microscope.
  • the liquid level La of the culture solution L in the well 11 of the microplate 10 is higher in the liquid level height near the inner wall 11a of the well than the liquid level at the center of the liquid level.
  • a concave meniscus in which the liquid surface is bent concavely (convexly downward) may occur.
  • the concave meniscus is generated when the force attracting the culture solution and the inner wall 11a of the well is stronger than the influence of the surface tension of the culture solution.
  • This can be attributed to the fact that the inner walls of the wells of cell culture microplates are generally hydrophilized, and that amino acids and proteins in the culture medium are adsorbed on the inner walls of the wells during the culture period.
  • Patent Document 1 proposes a meniscus control device that suppresses the meniscus of the liquid in the well.
  • further meniscus suppression has been demanded.
  • the container is capable of holding a liquid, has at least one liquid holding portion that holds the liquid and includes an inner wall, and at least a part of the inner wall of the liquid holding portion.
  • a fine structure is formed, and the fine structure includes a plurality of protrusions, the height of the plurality of protrusions is in the range of 10 nm to 1000 ⁇ m, and the pitch between the plurality of protrusions is Containers are provided that are in the range of 10 nm to 1000 ⁇ m.
  • a cylinder used for a container including a container main body having a container for containing a liquid, and when the cylinder is disposed in the container, the outer wall of the cylinder is The inner wall of the cylinder is in contact with the inner wall of the container, the inner wall of the cylinder is in contact with the liquid, and a microstructure is formed on at least a part of the inner wall of the cylinder, and the microstructure has a plurality of convex portions.
  • a height of the plurality of protrusions is in the range of 10 nm to 1000 ⁇ m
  • a pitch between the plurality of protrusions is in the range of 10 nm to 1000 ⁇ m.
  • a sheet for use in a container including a container body having a container for containing a liquid, and a microstructure is formed on at least one surface of the sheet,
  • the cylindrical body is arranged in the housing portion by bending or bending the sheet so that one surface is the inner wall and the other surface is the outer wall, the outer wall of the tubular body is the inner wall of the housing portion
  • the microstructure is configured to include a plurality of convex portions, and the height of the plurality of convex portions is in the range of 10 nm to 1000 ⁇ m
  • a sheet having a pitch between the plurality of convex portions in the range of 10 nm to 1000 ⁇ m is provided.
  • a method for producing the container according to the first aspect, the cylindrical body according to the second aspect, or the sheet according to the third aspect includes forming a microstructure.
  • FIG. 1 It is a cross-sectional schematic diagram around the accommodating part (well) of the cell culture container of 1st Embodiment. It is a photograph of an example of a container main part (microplate) of a 1st embodiment.
  • (A) is a schematic diagram of the sheet
  • (b) is a schematic diagram which shows the state which curved the sheet
  • (b) is a schematic diagram which shows the meniscus of the culture solution accommodated in the cell culture container of 1st Embodiment
  • FIG. 1 It is a figure which shows the shape of the cross section of the liquid level of the culture solution accommodated in the microplate, and the inclination of this cross section. It is a figure explaining phase contrast observation using a phase contrast microscope.
  • (A) is a schematic diagram which shows a mode that the ring slit image of the direct light condensed with the objective lens is settled in the phase ring
  • (b) and (C) are the ring slit images settled in the phase ring.
  • FIG. 3 is a view showing the cross-sectional shape of the liquid surface of the culture solution accommodated in the cell culture containers of Examples 2 to 5 and Comparative Example 1.
  • (A) is a microscope picture which shows the observable area
  • (b) is a microscope picture which shows the observable area
  • the cell culture container 100 includes a plate body 12 and a container body 10 that is provided as a depression of the plate 12 and has a storage portion 11 that stores the culture solution L, and a cylindrical body 20 that is disposed in the storage portion 11.
  • the surface 20a constituting the inner wall of the cylindrical body 20 is provided with a region 20c in which a fine structure having liquid repellency is formed.
  • the entire surface 20a is the region 20c.
  • the surface 20a constituting the inner wall of the cylindrical body 20 defines a liquid holding unit that holds the culture solution L.
  • the culture medium that can be accommodated in the cell culture vessel 100 of the present embodiment is not particularly limited.
  • an aqueous culture medium that is, an aqueous solution is mainly used.
  • the aqueous culture solution (aqueous solution) has a polarity almost equal to that of water, but tends to increase in viscosity when it contains serum, fatty acids, and amino acids.
  • an organic solvent culture solution such as alcohol, ether, hexane, or a water-organic solvent mixed culture solution is also used.
  • a culture solution containing an organic solvent is different from water in polarity and viscosity.
  • the cell culture container 100 of the present embodiment can cope with culture solutions having various polarities and viscosities by appropriately changing the liquid repellency of the surface 20a constituting the inner wall in contact with the culture solution L.
  • Specific examples of the culture liquid L include, for example, physiological saline, Dulbecco's modified Eagle medium (DMEM), Eagle's medium (MEM), ⁇ -modified Eagle's MEM medium, RPMI 1640 medium, Click medium, and Iskov modified Dulbecco medium (IMDM). , L-15 medium, McCoy's 5A medium, MCDB medium, 199 medium, and other general-purpose culture media used for cell culture.
  • the container body 10 is not particularly limited as long as it has a storage portion 11 capable of storing the culture medium L, and examples thereof include a petri dish (petri dish), a test tube, a Spitz tube, and the like. Although the container main body 10 should just have at least one accommodating part 11, it is preferable to have multiple.
  • a microplate (well plate) 10 ⁇ / b> W having a plurality of accommodating portions as shown in FIG. 2 is used as the container body 10.
  • the microplate 10W is an experimental / inspection instrument provided with a plurality of wells (depressions or holes) 11W that function as a container for the culture medium L, and each well 11W can be used as a test tube or a petri dish.
  • the wells 11W are arranged in an array of 8 vertical and 12 horizontal.
  • the capacity of the well 11W is generally several ⁇ L to several mL.
  • the accommodating portion 11 of the container body 10 (hereinafter referred to as “well 11 of the microplate 10” in the present embodiment as appropriate) is partitioned by a substantially cylindrical inner wall 11a and a bottom 11b.
  • the bottom 11b may be a flat flat bottom, a U-shaped round bottom, a V-shaped conical bottom, or the like, depending on the use of the microplate 10.
  • the bottom 11b is preferably a flat bottom so that observation can be performed without being affected by the shape of the bottom.
  • the shape of the well 11 is a substantially cylindrical shape.
  • the well 11 may have a shape in which the inner diameter ⁇ 2 of the bottom is smaller than the inner diameter ⁇ 1 of the opening, and the inner wall 11a is tapered from the opening toward the bottom.
  • the material constituting the microplate 10 is not particularly limited, and plastics such as polystyrene, polypropylene, polyethylene, acrylic resin, glass, or the like can be used depending on the application. Among them, polystyrene is excellent as a material for a microplate for microscopic observation because it has high transparency and excellent optical properties.
  • the microplate 10 may be a black plate, a white plate, a transparent plate, or the like depending on the application. When performing microscopic observation, the microplate is preferably a transparent plate, and at least the bottom 11b of the well 11 is preferably transparent.
  • the meniscus of the culture solution L in the well 11 can be reduced, and a region in the culture solution that can be observed with a microscope can be widely used. For this reason, in this embodiment, even a microplate with a large number of wells, a microplate with a small well capacity, or a microplate with a small well diameter ( ⁇ 1), which is strongly influenced by the meniscus of the culture solution, is used as a container body. Can be efficiently used for microscopic observation. For example, in this embodiment, a microplate having 6 to 384 wells, preferably 6 to 96, more preferably 6, 24, or 96 wells is used. it can.
  • a microplate or petri dish having a well volume of 20 to 16000 ⁇ L, preferably 100 to 16000 ⁇ L, and a microplate or petri dish having a well diameter ( ⁇ 1) of 2 to 50 mm, preferably 6 to 35 mm can be used.
  • the cylindrical body 20 shown in FIG. 3B is used as the cylindrical body 20 disposed in the well 11 by bending the flexible sheet 20A shown in FIG.
  • One surface 20a of the sheet 20A has a region 20c in which a fine structure having liquid repellency is formed.
  • the surface 20a is curved and disposed in the well 11 so that the surface 20a becomes the inner wall of the cylindrical body 20.
  • one surface 20 a of the sheet 20 ⁇ / b> A serves as an inner wall of the cylindrical body 20 and contacts the culture medium L
  • the other surface 20 b serves as an outer wall of the cylindrical body 20. It contacts the inner wall 11 a of the well 11.
  • a fine structure is formed on the entire surface 20a of the sheet 20A, and the entire surface 20a is a liquid-repellent region 20c, but the liquid-repellent region 20c is the liquid-repellent region 20c. Since the area
  • the liquid-repellent region 20c is the entire surface 20a, that is, when the fine structure is formed on the entire surface 20a, the position adjustment of the liquid surface La of the culture solution is not necessary, and the sheet 20A is manufactured. There are advantages such as being easy.
  • the liquid repellent region 20c is limited to a minimum region in contact with the liquid surface La of the culture solution L, so that the liquid repellent fine The effect of structure on culture formation is minimized.
  • the microstructure is not formed on the other surface 20b, but the present embodiment is not limited to this. If a fine structure is formed on one surface 20a, a fine structure may or may not be formed on the other surface 20b.
  • the region 20c where the fine structure is formed exhibits liquid repellency due to the so-called lotus effect (lotus leaf effect) and has a low affinity with the culture medium L, and therefore the force to attract the culture medium L is weak.
  • lotus effect lotus leaf effect
  • the meniscus of the liquid level of the culture solution L in the cell culture container 100 of this embodiment shown in FIG. 4A is compared with the meniscus of the culture solution L in the microplate 10 shown in FIG. Become smaller.
  • the liquid level La of the culture solution L approaches a flat surface, and the range (field of view) in which the optical microscope can be observed can be expanded.
  • the fine structure having liquid repellency of the present embodiment is formed from a plurality of irregularities, and if the liquid repellency is increased compared to before providing the structure by providing the structure, the shape and size of the irregularities are particularly It is not limited.
  • the expression of liquid repellency due to the fine unevenness is presumed to be due to the fact that the liquid cannot enter the recessed portions of the unevenness and an air layer exists there. Due to the presence of this air layer, the number of contact points between the surface on which the irregularities are formed and the liquid is reduced, and the apparent contact angle is larger than the contact angle with respect to the liquid originally possessed by the material with the irregularities. .
  • the liquid repellency phenomenon when the surface is provided with unevenness can be explained by the Cassie equation represented by the following equation (1).
  • the cell culture container of this embodiment can change liquid repellency suitably by designing a microstructure based on Cassie's formula.
  • ⁇ f is the apparent contact angle of the surface on which the unevenness to the liquid is formed
  • ⁇ m is the original contact angle of the material on which the unevenness to the liquid is formed
  • a is the unevenness of the unevenness shown in FIG.
  • the width of the portion, L indicates the width (periodic width) that combines the concave and convex portions of the concave and convex portions shown in FIG.
  • the fine structure of the present embodiment may include a plurality of convex portions.
  • a moth-eye structure composed of a large number of cone-shaped protrusions (convex portions) can be mentioned, but the shape of the convex portions is not limited thereto.
  • seat 20A may be circular, an ellipse, a triangle, a square, a rectangle, a polygon, and these may be arbitrary combinations.
  • the fine structure may be constituted by a combination of very complicated uneven shapes, or may be a fractal structure.
  • the size of the protrusions for example, the height, diameter, width, etc. of the protrusions can be selected preferably in the range of 10 nm to 1000 ⁇ m, more preferably 10 nm to 100 ⁇ m, and the pitch between the protrusions is preferably It can be selected from the range of 10 nm to 1000 ⁇ m, more preferably 1 ⁇ m to 1000 ⁇ m, and still more preferably 10 ⁇ m to 1000 ⁇ m.
  • the contact angle with respect to the culture solution L accommodated in the well 11 is preferably 120 ° or more. If the contact angle with respect to the culture solution L is 120 ° or more, the concave meniscus of the culture solution L can be sufficiently reduced, and a region that can be observed with a microscope can be widely used. Moreover, it is preferable that the contact angle with respect to the culture solution L of the area
  • the contact angle of the region 20c with respect to the culture solution L is 130 ° or less, the convex meniscus of the culture solution L can be sufficiently reduced.
  • the contact angle of the region 20c with respect to the culture medium L is more preferably 120 ° to 130 °, and further preferably 125 ° to 130 °.
  • the contact angle in this embodiment means the value in room temperature (23 degreeC).
  • the contact angle of the region 20c where the fine structure is formed with respect to the culture solution L can be adjusted by changing the shape, size, period, etc. of the fine structure according to the type of the culture solution L.
  • the method of forming a fine structure having liquid repellency on the sheet 20A is not particularly limited.
  • the microstructure may be directly cut into the sheet 20A using a tool or the like, or the sheet 20A is hot-pressed using a mold in which the microstructure is formed, thereby converting the microstructure into the sheet 20A.
  • the fine structure may be formed by the attached fine particles by attaching the fine particles to the surface of the sheet 20A.
  • the microstructure may be formed on the sheet 20 by dry etching such as reactive ion etching (RIE) or sputter etching.
  • RIE reactive ion etching
  • a fine structure may be formed on the sheet 20 by shot blasting described later in the second embodiment.
  • the material constituting the sheet 20A is not particularly limited and can be selected according to the use, but it is necessary to have flexibility that can be bent into a cylindrical shape, so that polystyrene, polypropylene, polyethylene, acrylic resin, cycloolefin-based A plastic such as a resin, polytetrafluoroethylene (PTFE), or amorphous fluororesin is preferred. Further, it is preferable that the fine structure of the sheet 20A is formed of the same material as the portion other than the fine structure of the sheet 20A.
  • the region 20c of the sheet 20A is provided with a liquid-repellent fluorine coat or the like, the liquid-repellent property can be ensured, but the coating material dissolves into the culture solution in the well, and is applied to cells and bacteria. There are concerns about adverse effects.
  • the fine structure and the portion other than the fine structure of the sheet 20A are made of the same material without providing such a liquid repellant coating. Can be formed.
  • the sheet 20A is preferably formed of the same material as the microplate 10.
  • the microplate 10 is made of polystyrene
  • the sheet 20A is also preferably made of polystyrene.
  • the sheet 20A is formed of a material different from that of the microplate 10, it is necessary to check whether the material used in the sheet 20A has an adverse effect on cells or the like accommodated in the microplate 10, This is because if the sheet 20A is formed of the same material as the microplate 10, such a confirmation experiment or the like becomes unnecessary.
  • the cylindrical body 20 made of the sheet 20A may have a cylindrical shape by curving the sheet 20A, or the sheet 20A unless the field of view for microscopic observation is abnormally narrow.
  • 20A may be bent into a polygonal cylinder.
  • the thickness D20 of the sheet 20A is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less so that processing into a cylindrical shape is easy.
  • the thickness of the sheet 20A is preferably 100 ⁇ m or more, and more preferably 150 ⁇ m or more so as to have rigidity capable of maintaining the shape of the cylindrical body.
  • the sheet 20A of the present embodiment that is arranged in the well 11 by being bent or the like always has a force to return to the plane body due to its rigidity. With this force, the sheet 20A can be brought into close contact with the inner wall 11a of the well 11 without using an adhesive or the like. Therefore, there is no risk of contamination of the culture solution by an adhesive or the like.
  • the vertical length 20d of the sheet 20A is substantially the same as the depth 11d of the well. It is also preferable that the size is 90% to 110% of the cell depth 11d.
  • the lateral length 20e of the sheet 20A is preferably substantially the same as the perimeter of the well opening with the inner diameter ⁇ 1, or is 90% to 110% of the perimeter of the cell opening with the inner diameter ⁇ 1. It is preferable.
  • the cylindrical body 20 made of the sheet 20 ⁇ / b> A may be arranged in any manner in the well 11 as long as the region 20 c where the fine structure is formed is arranged so as to come into contact with the liquid level La of the culture solution L. .
  • the cylindrical body 20 may be completely stored in the well 11.
  • the cylindrical body 20 may protrude from the opening of the well 11 to the extent that it does not interfere with microscopic observation or other experimental work.
  • the cylindrical body 20 made of the sheet 20A may be disposed in all the wells 11 included in the microplate 10, or may be disposed only in some of the wells.
  • the inclination of the liquid level with respect to the horizontal plane is ⁇ 0.02 to 0 in a cross section passing through the liquid level center of the liquid level La of the culture liquid.
  • the liquid level region of 0.02 is preferably 50% or more of the entire liquid level, and more preferably 70% or more.
  • the liquid level center is the center of the circle.
  • FIG. 6 shows a cross-sectional shape passing through the center of the liquid level of the culture solution contained in the well of the microplate.
  • FIG. 6 also shows the primary differential coefficient (dh / dx) of the liquid level as the inclination of the liquid level.
  • the region that can be observed with a microscope is a circular region having a diameter of 13.2 mm centering on the center of the liquid surface.
  • the inclination (dh / dx) of the liquid level in the region that can be observed with a microscope is 0 to 0.02.
  • the cell culture container of the present embodiment can be obtained by setting the region where the inclination of the liquid level is ⁇ 0.02 to 0.02 to 50% or more, more preferably 70% or more of the entire liquid surface area of the culture solution. A field of view sufficient as an observation container can be obtained.
  • a concave meniscus is generated, and the inclination of the liquid level when the liquid level is higher than the height at the center of the liquid level is indicated by a positive value.
  • a convex meniscus is generated, and the inclination of the liquid level when the liquid level descends from the height at the center of the liquid level is indicated by a negative value.
  • the inclination of the liquid level of the culture solution in this embodiment means a value at room temperature (23 ° C.).
  • the inclination of the liquid level of the culture solution can be adjusted by changing the shape, size, period, etc. of the microstructure provided in the cell culture vessel according to the type of the culture solution.
  • the allowable inclination of the liquid surface that is, the inclination (dh / dx) of the liquid surface in the region where the microscope can be observed varies depending on the numerical aperture NA and magnification of the eyepiece of the microscope used for observation. For example, the larger the numerical aperture NA and the magnification, the smaller the allowable range of the liquid level inclination. Even if the numerical aperture NA and the magnification are relatively large, a sufficient microscope can be used if the region where the inclination of the liquid level is ⁇ 0.02 to 0.02 is 50% or more of the entire liquid surface area of the culture medium. Observations can be made.
  • the sample to be observed is, for example, a transparent microorganism such as a cell or a bacteria cultured in the culture solution L in the storage unit 11.
  • These samples are phase objects that give a phase change to light entering the sample.
  • the human eye cannot perceive light differences that differ only in phase.
  • the phase contrast microscope visualizes this phase difference and enables observation (phase difference observation).
  • FIG. 7 shows a phase difference observation optical system 50 of a phase contrast microscope.
  • a ring diaphragm (ring slit) 52 having a ring-shaped opening, a condenser lens 53, a stage 54, an objective, along the optical path of light from the light source 51 toward the sample image plane 57.
  • the lens 55 and the phase plate 58 are arranged in this order.
  • the ring diaphragm 52 is disposed at the front focal position of the condenser lens 53, and the phase plate 58 is disposed at the exit pupil position of the objective lens 55 (the rear focal position of the objective lens 55 or its conjugate position).
  • the cell culture container 100 of this embodiment is disposed on the stage 54, and the observation target sample in the cell culture container 100 is disposed at the rear focal position of the condenser lens 53.
  • the phase plate 58 has a phase film (for example, a phase film that shifts the phase of the light by a quarter wavelength) and a filter that reduces the light by absorbing the incident light on the transparent plate.
  • a phase ring 56 (for example, an ND filter) is formed around the optical axis of the phase difference observation optical system 50.
  • the observation light incident on the phase plate 58 the observation light incident on the phase ring 56 is attenuated and the phase shifts.
  • the observation light that has come off the phase ring 56 and entered the transparent plate passes through the phase plate 58 without being subjected to a phase shift action or a dimming action.
  • the light beam emitted from the light source 51 is narrowed into a ring shape by the opening of the ring diaphragm 52.
  • the light beam that has passed through the opening of the ring diaphragm 52 becomes parallel light by the condenser lens 53 and enters the sample on the stage 54 as uniform illumination light.
  • the light that has entered the sample is divided into direct light that passes through the sample or medium portion, and diffracted light that is delayed in phase by the sample (phase object) and diffracted and bent.
  • the diffracted light includes structural information inside the sample, such as a boundary portion between the sample (cell or the like) and the solution, as a phase change.
  • the diffracted light and the direct light that have passed through the sample reach the phase plate 58 through the objective lens 55, respectively.
  • the direct light incident on the phase plate 58 through the cell culture vessel 100 forms an image of the opening of the phase stop 52 (that is, a pupil stop image) on the phase ring 56 on the phase plate 58. For this reason, the brightness of the direct light is reduced at the same time as the phase is shifted by a predetermined amount.
  • the diffracted light is diffracted by the phase object, only a small amount of diffracted light passes through the phase ring 56, and most of the diffracted light passes through the transparent plate off the phase ring 56. For this reason, most of the diffracted light travels without being subjected to a phase shift effect or a dimming effect.
  • the direct light that has passed through the phase plate 58 and the diffracted light reach the image plane 57 and interfere with each other to form an image.
  • the phase ring 56 shifts the phase of the direct light so that the phase difference between the diffracted light and the direct light becomes 1 / 2 ⁇ or 0 (zero), thereby causing a phase difference between the diffracted light and the direct light. Becomes 1 / 2 ⁇ or 0 (zero), and the phase difference caused by the sample (phase object) is observed as the contrast of light.
  • the direct light is condensed by the objective lens 55 so as to fall within the ring width of the phase ring 56.
  • the observation optical system including the illumination optical system and the objective optical system of the phase contrast microscope is adjusted so that these are realized.
  • the problem described below occurs.
  • the culture solution L acts as an optical lens, and the magnification, focal length, and aberration of the phase difference observation optical system 50 are reduced. affect.
  • the ring slit image 60 of the direct light condensed on the phase plate 58 by the objective lens 55 becomes a blurred image as shown in FIG. , It will not fit in the phase ring 56.
  • the straight light (leakage light) passing through the transparent plate off the phase ring 56 is mixed with diffracted light having sample information, and the contrast and resolution of the observation image on the image plane 57 are reduced.
  • the area where the ring slit image 60 and the phase ring 58 do not overlap that is, the amount of leakage light, tends to increase as the radius of curvature of the meniscus of the liquid surface La decreases.
  • the optical axis of the lens formed by the culture solution L in addition to the above-mentioned image blur is generated.
  • the ring slit image 60 is shifted in the direction perpendicular to the optical axis of the objective lens 55 due to the eccentricity of the lens formed by the culture medium L, and is distorted (deformed) into the shape of the image. Occurs.
  • the image shift direction tends to spread radially around the optical axis of the phase difference observation optical system 50 in the eccentric direction of the culture solution lens with respect to the phase difference observation optical system 50.
  • the cell culture container 100 of this embodiment solves the above-described problems in phase difference observation by reducing the meniscus of the culture solution L in the well 11.
  • the coefficient a of the quadratic term that is a measure of the curvature of the liquid surface shape is preferably ⁇ 0.013 to 0.013.
  • the liquid level center is the center of the circle.
  • the coefficient a of the secondary term is ⁇ 0.013 to 0.013, the above-described displacement and deformation of the ring slit image 60 can be suppressed.
  • the ring slit image 60 formed by the direct light passing thereover overlaps the phase ring 56 as shown in FIG. Thereby, an observation image with high contrast and high resolution can be obtained.
  • the ring slit image 60 formed by the direct light passing therethrough is not displaced or deformed at all.
  • the coefficient a of the quadratic term is more preferably ⁇ 0.005 to 0.005 because the above-described displacement and deformation of the ring slit image 60 can be further suppressed.
  • the coefficient a of the secondary term is ⁇ 0.005 to 0.005
  • the ring slit image 60 formed by the direct light that has passed therethrough is 50% or more of the total liquid surface area of the culture medium L. Overlap. Thereby, in 50% or more of the whole liquid surface area of the culture solution L, an observation image with high contrast and resolution can be obtained from the light passing therethrough.
  • the cell culture container 100 of the present embodiment described above can reduce the meniscus generated on the liquid surface La of the culture medium L, and can widen the range that can be observed with a microscope. Further, the region 20c of the cylindrical body 20 that comes into contact with the liquid surface La is not coated with a liquid repellent material, but has liquid repellency due to the Lotus effect due to the fine structure. For this reason, there is no possibility that the coating material dissolves into the culture medium L and adversely affects cells and the like. Furthermore, since the liquid repellency of the region 20c can be designed by the shape, size, pitch, and the like of the fine structure, a cell culture vessel that can handle various types of culture solutions L can be obtained.
  • the microplate (container body) 10 and the cylindrical body 20 are separate members. For this reason, it is possible to configure the cell culture container 100 by selecting the optimal cylinder 20 according to the type of the culture solution L.
  • the cylindrical body 20 may be always arranged in the well 11 during cell culture. However, the cylindrical body 20 is placed in the well 11 only when it is desired to reduce the meniscus of the liquid level of the culture solution such as microscopic observation. It is also possible to use the method of arranging When cells or the like adhere to the cylinder 20 and are contaminated, the effect of reducing the meniscus of the culture solution L is weakened.
  • the contact time between the culture solution L and the cylinder 20 is shortened, so that the cylinder 20 is contaminated. Can reduce the possibility.
  • the cell culture container 100 of this embodiment is not connected with the some cylinders 20, but is independent. For this reason, for example, even when different types of culture solutions are used in one well plate, different types of cylinders suitable for each culture solution can be arranged in each well. In addition, it is possible to selectively place cylinders only in the wells where the meniscus needs to be lowered, and even when the sheet is contaminated by cell adhesion or the like, only the contaminated sheet can be replaced. Is economical.
  • the cell culture container 100 of the present embodiment uses a cylindrical body of a flexible sheet 20A.
  • the size of the cylinder 20 formed from the sheet 20A can be adjusted to some extent, and one size sheet 20 can correspond to a plurality of wells 11 having a plurality of sizes and shapes.
  • FIG. 9 a cell culture container using the cylinder 30 shown in FIG. 9 will be described.
  • the cell culture container of this embodiment is the same as the cell culture container 100 of the first embodiment shown in FIG. 1 except that the cylinder 30 shown in FIG. 9 is used instead of the cylinder 20 shown in FIG. It is the same composition as. Therefore, description of configurations other than the cylindrical body 30 shown in FIG. 9 is omitted.
  • a cylinder 30 formed in a cylindrical shape is used.
  • the inner wall 30a of the cylindrical body 30 has a region 30c in which a fine structure having liquid repellency is formed.
  • the entire inner wall 30a is a region 30c where a fine structure is formed.
  • the material, size, and structure of the fine structure having liquid repellency of the cylindrical body 30 of the present embodiment are the same as those of the cylindrical body 20 of the first embodiment.
  • the cylindrical body 30 of the present embodiment does not need to be curved unlike the cylindrical body 20 of the first embodiment, so it is not necessary to have flexibility, and the upper limit value of the thickness D30 of the cylindrical body 30 is also There is no particular limitation as long as the field of view that can be observed with a microscope is not extremely narrowed.
  • the thickness D30 of the cylindrical body 30 can be set to 200 ⁇ m to 1600 ⁇ m, for example.
  • a method for forming a fine structure having liquid repellency on the inner wall 30a of the cylindrical body 30 is not particularly limited.
  • the microstructure can be transferred to the inner wall 30a of the cylindrical body 30.
  • the mold in which the microstructure is formed is preferably made of a material having a large volume expansion coefficient among ordinary mold materials and having a specific heat smaller than that of the resin material of the cylindrical body 30 to be molded.
  • a mold having a large volume expansion coefficient and a small specific heat is disposed in a space defined by the inner wall 30a of the cylindrical body 30 and expands sufficiently during hot pressing to contact the inner wall 30a of the cylindrical body 30.
  • the microstructure can be transferred to. Thereafter, when the resin material of the cylinder 30 having a large specific heat relative to the mold and a sufficiently large volume expansion coefficient is heated, the cylinder 30 is sufficiently expanded and separated from the mold, and the mold is removed from the mold. The body 30 can be easily taken out from the space.
  • the volume expansion coefficient of the material constituting such a mold is preferably 5 ⁇ 10 ⁇ 6 / K to 20 ⁇ 10 ⁇ 6 / K.
  • the material of the mold is preferably a metal, and examples thereof include steel containing iron as a main component and containing a metal such as carbon, chromium, molybdenum, and tungsten.
  • a shot blasting process in which a particle collides with a workpiece.
  • a shot blasting process for example, a sandblasting process
  • no mold is required.
  • the inventor of the present application has found that the degree of liquid repellency depends on the particle size of blast particles in sandblasting.
  • a fine structure having liquid repellency when a fine structure having liquid repellency is formed on a substrate of a resin material such as polystyrene (PS), the contact angle of water tends to increase as the particle size of the blast particle increases.
  • PS polystyrene
  • the inventor of the present application has found that a fine structure having hydrophobicity with a contact angle of 120 ° or more can be formed by blasting the surface of a polystyrene substrate using blast particles having a particle diameter of 20 ⁇ m or more.
  • the mold 30 may be shot and blasted to give the mold a fine structure having liquid repellency, and the cylinder 30 may be hot pressed using the mold.
  • the smaller the blast particle size the larger the water contact angle.
  • the contact angle can be measured using, for example, a contact angle meter (manufactured by Kyowa Interface Science, DropMaster DM700).
  • the cell culture container of the present embodiment described above can reduce the meniscus generated on the liquid surface of the culture solution, can widen the range that can be observed with a microscope, and has no risk of adversely affecting cells or the like in the culture solution.
  • the same effects as those of the cell culture container 100 of the first embodiment described above can be obtained.
  • the cell culture container of this embodiment does not need to process a sheet
  • the plurality of cylinders 30 may be independent from each other, or provided with a connecting portion that connects the cylinders 30 arranged in the adjacent wells 11. The plurality of cylinders 30 may be connected to each other. By doing so, the trouble of arranging the cylindrical body 30 in each of the plurality of wells 11 can be saved.
  • a cell culture container 300 having at least one liquid holding unit that holds the culture solution L shown in FIG. 10 will be described.
  • the cell culture container 300 of this embodiment is comprised from the container main body 40, and unlike a 1st and 2nd embodiment, it does not have a cylinder. Instead, a fine structure having liquid repellency is formed directly on the container body 40.
  • a container body 40 shown in FIG. 10 includes a plate 42 and a storage portion 41 that is provided as a depression of the plate 42 and stores the culture medium L.
  • the storage portion 41 is partitioned by a substantially cylindrical inner wall 41a and a bottom 41b.
  • the And the substantially cylindrical inner wall 41a has the area
  • a fine structure is formed on the entire inner wall 41a of the container body 40, and the entire inner wall 41a is a region 40c, but the region 40c is in contact with the liquid surface La of the culture medium L. If there is, it may be a part of the inner wall 40a.
  • the configuration of the container body 40 of the present embodiment is the same as that of the container body 10 of the first embodiment, except that a fine structure is provided on the inner wall 41a.
  • the structure of the fine structure provided in the inner wall 40a of this embodiment is the same as the structure of the fine structure provided in the cylinder 20 of the first embodiment.
  • a method for forming a fine structure having liquid repellency on the inner wall 41a of the container body 40 is not particularly limited.
  • the inner wall 41a is formed using a mold having a fine structure.
  • the microstructure may be transferred to the inner wall 41a by hot pressing, or the microstructure may be formed on the inner wall 41a by shot blasting.
  • the bottom part 41b of the accommodating part 41, the part except the accommodating part (well) 41 in the plate 42, ie, the connection part which connects the some accommodating part 41, are mentioned, for example. .
  • the cell culture container 300 of the present embodiment described above can reduce meniscus generated on the liquid surface of the culture solution, widen the range that can be observed with a microscope, and has no risk of adversely affecting cells or the like in the culture solution.
  • the same effects as those of the cell culture containers of the first and second embodiments described above can be obtained.
  • the cell culture container 300 of this embodiment does not need to arrange
  • Example 1 In Example 1, a sheet 20A (see FIG. 3) constituting the cylindrical body 20 used in the cell culture container 100 shown in FIG. 1 was produced.
  • a fine structure having liquid repellency was formed on one surface of the polystyrene sheet by reactive ion etching (RIE) to produce a sheet having a fine structure.
  • RIE reactive ion etching
  • aluminum oxide particles are generated from the aluminum oxide substrate and deposited on the polystyrene sheet.
  • the polystyrene sheet is etched with the aluminum oxide particles functioning as a mask, and as a result, a fine structure is formed on the polystyrene sheet.
  • the polystyrene sheet was ultrasonically washed with pure water to obtain a sheet on which a fine structure was formed.
  • FIGS. 11A and 11B show SEM photographs of microstructures formed by reactive ion etching (RIE) for 15 seconds.
  • ⁇ Measurement of sheet contact angle> The contact angle of the surface of the obtained sheet subjected to the RIE treatment, that is, the surface on which the fine structure was formed, was measured using a contact angle meter (DropMaster DM700, manufactured by Kyowa Interface Science). As the culture solution, DMEM (Dulbecco's modified Eagle medium) was used, and the contact angle was measured at room temperature (23 ° C.). The results are shown in Table 1.
  • Example 2 to 5 In Examples 2 to 5, as shown in Table 1, the sheet 20A shown in FIG. 3 was formed by the same method as in Example 1 except that the etching time was 60 seconds, 70 seconds, 80 seconds, and 90 seconds, respectively. Produced. Furthermore, the contact angle with respect to the culture solution of the surface on which the microstructure was formed was measured by the same method as in Example 1. The results are shown in Table 1.
  • the produced sheet 20A was curved to form a cylindrical body 20 and placed in the well 11 of the microplate 10 to produce the cell culture container 100 shown in FIG.
  • a polystyrene microplate having 24 wells 11 (well diameter: 16 mm) was used (BD, BD Falcon).
  • FIG. 12 shows a cross-sectional shape passing through the center of the liquid level of the culture liquid in Examples 2 to 5.
  • the value of coefficient a was determined.
  • Table 1 The liquid level shape was measured at room temperature (23 ° C.).
  • Comparative Example 1 In Comparative Example 1, a polystyrene sheet not subjected to RIE treatment was used. The contact angle with respect to the culture solution of the sheet not subjected to RIE treatment was measured by the same method as in Example 1. The results are shown in Table 1. Further, the cell culture vessel 100 shown in FIG. 1 was prepared by the same method as in Examples 2 to 5 except that a sheet not subjected to RIE treatment was used, and the liquid level shape of the liquid level La of the culture solution was measured. did. FIG. 12 shows a cross-sectional shape passing through the center of the liquid level of the culture solution. Similarly to Examples 2 to 5, the liquid surface shape in the diametric direction of the cell from the liquid surface center shown in FIG.
  • the region in which the fine structure of the sheet produced in Examples 2 to 5 was formed has a high contact angle of 120 ° or more with respect to the culture solution, and the fine structure
  • the liquid repellency was improved as compared with the sheet of Comparative Example 1 in which no was formed.
  • the meniscus of the culture solution was suppressed. This is presumably because, in Examples 2 to 5, the liquid repellency of the region in contact with the liquid level of the culture medium of the sheet was improved by forming the fine structure.
  • Example 3 the liquid level was able to be suppressed flat over the whole surface. Further, from the results of Examples 2 to 5, it was confirmed that there was a boundary between the downwardly convex meniscus and the upwardly convex meniscus when the contact angle was around 125 °.
  • Example 6 In the well 11 of the cell culture vessel 100 having a well diameter ( ⁇ 1) of 16 mm (24 wells), the cells are cultured in the culture medium L, and then a sheet prepared under the same conditions as the sheet used in Example 3 is prepared in the well 11. The microscopic observation in the well was performed.
  • Eagle's medium (MEM) was used as the culture solution, and Hela cells were used as the cells to be cultured.
  • a cell observation device capable of phase difference observation (Nikon Engineering Co., Ltd., BioStudio-T) is used, and a phase difference observation objective lens (Nikon Corporation CFI plan Fluor DL 4 ⁇ ) is used. The phase difference was observed.
  • the magnification of the objective lens is 4 times and the NA is 0.13.
  • a photograph of the observation result is shown in FIG. In the photograph of FIG. 13 (a), a region where the microscopic observation of the cell in the central portion of the well is indicated by a dotted line.
  • Example 2 Microscopic observation in the well was performed in the same manner as in Example 6 using a cell culture container having the same configuration as in Example 6 except that the sheet on which the microstructure was formed was not used. That is, in Comparative Example 2, the microplate itself was used as the cell culture container. A photograph of the observation result is shown in FIG. Also in the photograph of FIG. 13 (b), similarly to the photograph of FIG. 13 (a), a region where the cells in the central portion of the well can be observed with a microscope is indicated by a dotted line.
  • Example 6 was wider than the microscopic observable region in Comparative Example 2.
  • Example 6 as shown in FIG. 13A, a good observation image with high contrast and high resolution was obtained over a wide range from the center of the well to the periphery.
  • Comparative Example 2 as shown in FIG. 13B, the contrast of the observation image obtained in the center portion of the well is low, and the resolution is significantly lowered in the region slightly deviated from the center portion in the outer peripheral direction. The image could not be obtained.
  • Example 6 it is presumed that the meniscus generated on the liquid surface of the culture solution is reduced by arranging the sheet in which the fine structure is formed in the well, and the culture solution surface in the well has become flat (horizontal). . Therefore, in Example 6, it is presumed that in the phase difference observation, the displacement and deformation of the ring slit image 60 shown in FIG. 8 can be suppressed, thereby obtaining an observation image with high contrast and high resolution.
  • the cell culture container of this embodiment can reduce the meniscus generated on the liquid surface of the culture solution accommodated therein, and can expand the range that can be observed with a microscope.
  • the cell culture container of the present embodiment can be appropriately changed by designing the shape, size, pitch, etc. of the fine structure having liquid repellency, so that it is compatible with various types of culture liquids. Is possible.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

This container is capable of retaining liquid, and has at least one liquid reservoir retaining the liquid and provided with an inner wall, wherein a fine structure is formed on at least a portion of the inner wall of the liquid reservoir, and is provided with a plurality of protrusion sections having a height in the range of 10 nm to 1000 μm, and a pitch therebetween in the range of 10 nm to 1000 μm.

Description

容器、容器に用いるシート及び筒体、並びに容器、シート及び筒体の製造方法Container, sheet and cylinder used for container, and method for manufacturing container, sheet and cylinder
 本発明は、容器、容器に用いるシート及び筒体、並びに容器、シート及び筒体の製造方法に関する。 The present invention relates to a container, a sheet and a cylinder used for the container, and a method for manufacturing the container, the sheet, and the cylinder.
 多数の窪み(ウェル)が設けられた平板であるマイクロプレート(ウェルプレート)は、それぞれのウェルが試験管あるいはシャーレとして利用され、DNA分析及び免疫分析等の生化学的分析、臨床検査、薬物スクーリング、細胞培養などに用いられる。マイクロプレートの各ウェル内に培養液を入れて細胞の培養を行い、その細胞や細菌の育成状況を調べるために、ウェル内を光学顕微鏡で観察することも行われる。 A microplate (well plate), which is a flat plate provided with a number of depressions (wells), each well is used as a test tube or petri dish, biochemical analysis such as DNA analysis and immunoassay, clinical examination, drug schooling Used for cell culture and the like. In order to cultivate cells by putting a culture solution into each well of the microplate, and to examine the growth state of the cells and bacteria, the inside of the well is also observed with an optical microscope.
 例えば、図4(c)に示すように、マイクロプレート10のウェル11内の培養液Lの液面Laは、液面中央の液面高さよりもウェルの内壁11a付近の液面高さが上昇し、この結果、液面が凹(下に凸)に屈曲する凹のメニスカスが発生する場合がある。凹のメニスカスは、培養液の表面張力の影響よりも、培養液とウェルの内壁11aとが引き合う力が強い場合に発生する。この原因としては、一般的に細胞培養用のマイクロプレートのウェルの内壁が親水化処理してあることや、培養液中のアミノ酸やタンパク質等の成分が培養期間中にウェルの内壁に吸着して、ウェルの内壁を親水化することが挙げられる。培養液の液面に凹のメニスカスが発生すると、ウェル内の顕微鏡観察において、液面が傾斜しているウェルの内壁周辺部は焦点が定まらず、顕微鏡観察可能な領域が液面の中央部に狭められるという問題が生じる。 For example, as shown in FIG. 4C, the liquid level La of the culture solution L in the well 11 of the microplate 10 is higher in the liquid level height near the inner wall 11a of the well than the liquid level at the center of the liquid level. As a result, a concave meniscus in which the liquid surface is bent concavely (convexly downward) may occur. The concave meniscus is generated when the force attracting the culture solution and the inner wall 11a of the well is stronger than the influence of the surface tension of the culture solution. This can be attributed to the fact that the inner walls of the wells of cell culture microplates are generally hydrophilized, and that amino acids and proteins in the culture medium are adsorbed on the inner walls of the wells during the culture period. And hydrophilizing the inner wall of the well. When a concave meniscus is generated on the liquid level of the culture solution, the microscopic observation in the well does not focus on the inner wall periphery of the well where the liquid level is inclined, and the microscopic observation area is at the center of the liquid level. The problem of being narrowed arises.
 この問題を解決する手段として、特許文献1には、ウェル内の液体のメニスカスを抑制するメニスカス制御用器具が提案されている。しかしながら、顕微鏡観察等をより効率よく行うためには、更なるメニスカスの抑制が求められていた。 As means for solving this problem, Patent Document 1 proposes a meniscus control device that suppresses the meniscus of the liquid in the well. However, in order to perform microscopic observation and the like more efficiently, further meniscus suppression has been demanded.
特開昭62‐69979号公報JP-A-62-69979
 本発明の第1の態様に従えば、液体を保持可能な容器であって、前記液体を保持し、内壁を備える少なくとも1つの液体保持部を有し、前記液体保持部の内壁の少なくとも一部に微細構造が形成され、前記微細構造は、複数の凸部を含んで構成され、前記複数の凸部の高さは、10nm~1000μmの範囲内であり、前記複数の凸部間のピッチは、10nm~1000μmの範囲内である容器が提供される。 According to the first aspect of the present invention, the container is capable of holding a liquid, has at least one liquid holding portion that holds the liquid and includes an inner wall, and at least a part of the inner wall of the liquid holding portion. A fine structure is formed, and the fine structure includes a plurality of protrusions, the height of the plurality of protrusions is in the range of 10 nm to 1000 μm, and the pitch between the plurality of protrusions is Containers are provided that are in the range of 10 nm to 1000 μm.
 本発明の第2の態様に従えば、液体を収容する収容部を有する容器本体を備える容器に用いる筒体であって、前記筒体を前記収容部に配置したとき、前記筒体の外壁は前記収容部の内壁と接触し、前記筒体の内壁は前記液体と接触し、前記筒体の内壁の少なくとも一部には、微細構造が形成されており、前記微細構造は、複数の凸部を含んで構成され、前記複数の凸部の高さは、10nm~1000μmの範囲内であり、前記複数の凸部間のピッチは、10nm~1000μmの範囲内である筒体が提供される。 According to the second aspect of the present invention, a cylinder used for a container including a container main body having a container for containing a liquid, and when the cylinder is disposed in the container, the outer wall of the cylinder is The inner wall of the cylinder is in contact with the inner wall of the container, the inner wall of the cylinder is in contact with the liquid, and a microstructure is formed on at least a part of the inner wall of the cylinder, and the microstructure has a plurality of convex portions. And a height of the plurality of protrusions is in the range of 10 nm to 1000 μm, and a pitch between the plurality of protrusions is in the range of 10 nm to 1000 μm.
 本発明の第3の態様に従えば、液体を収容する収容部を有する容器本体を備える容器に用いるシートであって、前記シートの少なくとも一方の面には、微細構造が形成されており、前記一方の面が内壁、他方の面が外壁となるように前記シートを湾曲又は、屈曲させて筒型とした筒体を前記収容部に配置したとき、前記筒体の外壁は前記収容部の内壁と接触し、前記筒体の内壁は前記液体と接触し、前記微細構造は、複数の凸部を含んで構成され、前記複数の凸部の高さは、10nm~1000μmの範囲内であり、前記複数の凸部間のピッチは、10nm~1000μmの範囲内であるシートが提供される。 According to a third aspect of the present invention, there is provided a sheet for use in a container including a container body having a container for containing a liquid, and a microstructure is formed on at least one surface of the sheet, When the cylindrical body is arranged in the housing portion by bending or bending the sheet so that one surface is the inner wall and the other surface is the outer wall, the outer wall of the tubular body is the inner wall of the housing portion The inner wall of the cylindrical body is in contact with the liquid, the microstructure is configured to include a plurality of convex portions, and the height of the plurality of convex portions is in the range of 10 nm to 1000 μm, A sheet having a pitch between the plurality of convex portions in the range of 10 nm to 1000 μm is provided.
 本発明の第4の態様に従えば、第1の態様の前記容器、第2の態様の前記筒体、又は第3の態様の前記シートの製造方法であって、ショット・ブラスト加工により、前記微細構造を形成することを含む製造方法が提供される。 According to a fourth aspect of the present invention, there is provided a method for producing the container according to the first aspect, the cylindrical body according to the second aspect, or the sheet according to the third aspect. A manufacturing method is provided that includes forming a microstructure.
第1の実施形態の細胞培養容器の収容部(ウェル)周辺の断面模式図である。It is a cross-sectional schematic diagram around the accommodating part (well) of the cell culture container of 1st Embodiment. 第1の実施形態の容器本体(マイクロプレート)の一例の写真である。It is a photograph of an example of a container main part (microplate) of a 1st embodiment. (a)は、第1の実施形態の筒体を構成するシートの模式図であり、(b)は、シートを湾曲させて筒型とした状態を示す模式図である。(A) is a schematic diagram of the sheet | seat which comprises the cylinder of 1st Embodiment, (b) is a schematic diagram which shows the state which curved the sheet | seat and was made into the cylinder shape. (a)及び(b)は、第1の実施形態の細胞培養容器に収容された培養液のメニスカスを示す模式図であり、(c)は、マイクロプレートに収容された培養液のメニスカスを示す模式図である。(A) And (b) is a schematic diagram which shows the meniscus of the culture solution accommodated in the cell culture container of 1st Embodiment, (c) shows the meniscus of the culture solution accommodated in the microplate. It is a schematic diagram. Cassieの式を説明する図である。It is a figure explaining the expression of Cassie. マイクロプレートに収容された培養液の液面の断面の形状と、該断面の傾きを示す図である。It is a figure which shows the shape of the cross section of the liquid level of the culture solution accommodated in the microplate, and the inclination of this cross section. 位相差顕微鏡を用いた位相差観察について説明する図である。It is a figure explaining phase contrast observation using a phase contrast microscope. (a)は、対物レンズによって集光した直接光のリングスリット像が位相リングに収まっている様子を示す模式図であり、(b)及び(C)は、リングスリット像が、位相リングに収まっていない様子を示す模式図である。(A) is a schematic diagram which shows a mode that the ring slit image of the direct light condensed with the objective lens is settled in the phase ring, (b) and (C) are the ring slit images settled in the phase ring. It is a schematic diagram which shows a mode that it is not. 第2の実施形態の筒体の模式図である。It is a schematic diagram of the cylinder of 2nd Embodiment. 第3の実施形態の細胞培養容器の収容部(ウェル)周辺の断面模式図である。It is a cross-sectional schematic diagram around the accommodating part (well) of the cell culture container of 3rd Embodiment. (a)及び(b)は、実施例1で作製したシートの微細構造を有する領域のSEM写真である。(A) And (b) is the SEM photograph of the area | region which has the microstructure of the sheet | seat produced in Example 1. FIG. 実施例2~5及び比較例1の細胞培養容器に収容された培養液の液面の断面の形状を示す図である。FIG. 3 is a view showing the cross-sectional shape of the liquid surface of the culture solution accommodated in the cell culture containers of Examples 2 to 5 and Comparative Example 1. (a)は、実施例6における細胞培養容器のウェル内の観察可能領域を示す顕微鏡写真であり、(b)は、比較例2における細胞培養容器のウェル内の観察可能領域を示す顕微鏡写真である。(A) is a microscope picture which shows the observable area | region in the well of the cell culture container in Example 6, (b) is a microscope picture which shows the observable area | region in the well of the cell culture container in Comparative Example 2. is there.
[第1の実施形態]
 第1の実施形態として、図1に示す培養液Lを保持する、少なくとも1つの液体保持部を有する細胞培養容器100について説明する。細胞培養容器100は、プレート12及びプレート12の窪みとして設けられて培養液Lを収容する収容部11を有する容器本体10と、収容部11内に配置される筒体20とを有する。筒体20の内壁を構成する面20aには、撥液性を有する微細構造が形成された領域20cが設けられる。図1に示す本実施形態では、面20aの全面に微細構造が設けられているため、面20aの全面が領域20cである。本実施形態においては、筒体20の内壁を構成する面20aが、培養液Lを保持する液体保持部を区画している。
[First Embodiment]
As a first embodiment, a cell culture container 100 having at least one liquid holding unit that holds the culture medium L shown in FIG. 1 will be described. The cell culture container 100 includes a plate body 12 and a container body 10 that is provided as a depression of the plate 12 and has a storage portion 11 that stores the culture solution L, and a cylindrical body 20 that is disposed in the storage portion 11. The surface 20a constituting the inner wall of the cylindrical body 20 is provided with a region 20c in which a fine structure having liquid repellency is formed. In the present embodiment shown in FIG. 1, since the fine structure is provided on the entire surface 20a, the entire surface 20a is the region 20c. In the present embodiment, the surface 20a constituting the inner wall of the cylindrical body 20 defines a liquid holding unit that holds the culture solution L.
 本実施形態の細胞培養容器100が収容可能な培養液は、特に限定されず、例えば、動物細胞を培養する場合には、水系培養液、即ち、水溶液が主に用いられる。水系培養液(水溶液)は、その極性が水とほぼ同等であるが、血清、脂肪酸、アミノ酸を含む場合は粘度が高くなる傾向がある。また、植物細胞や細菌を培養する場合には、水系培養液以外に、アルコール、エーテル、ヘキサン等の有機溶媒系培養液、または、水-有機溶媒混合系培養液も用いられる。有機溶媒を含有する培養液は、極性及び粘度が水と異なる。本実施形態の細胞培養容器100は、培養液Lと接触する内壁を構成する面20aの撥液性を適宜変更することで、様々な極性や粘度を有する培養液に対応することが可能である。具体的な培養液Lとしては、例えば、生理食塩水、ダルベッコ改変イーグル培地(DMEM)、イーグルの培地(MEM)、α改変イーグルのMEM培地、RPMI1640培地、クリック培地、イスコフ改変ダルベッコ培地(IMDM)、L-15培地、マッコイ5A培地、MCDB培地、199培地、等の細胞培養に用いる汎用の培養液が挙げられる。 The culture medium that can be accommodated in the cell culture vessel 100 of the present embodiment is not particularly limited. For example, when culturing animal cells, an aqueous culture medium, that is, an aqueous solution is mainly used. The aqueous culture solution (aqueous solution) has a polarity almost equal to that of water, but tends to increase in viscosity when it contains serum, fatty acids, and amino acids. In addition, when cultivating plant cells and bacteria, in addition to an aqueous culture solution, an organic solvent culture solution such as alcohol, ether, hexane, or a water-organic solvent mixed culture solution is also used. A culture solution containing an organic solvent is different from water in polarity and viscosity. The cell culture container 100 of the present embodiment can cope with culture solutions having various polarities and viscosities by appropriately changing the liquid repellency of the surface 20a constituting the inner wall in contact with the culture solution L. . Specific examples of the culture liquid L include, for example, physiological saline, Dulbecco's modified Eagle medium (DMEM), Eagle's medium (MEM), α-modified Eagle's MEM medium, RPMI 1640 medium, Click medium, and Iskov modified Dulbecco medium (IMDM). , L-15 medium, McCoy's 5A medium, MCDB medium, 199 medium, and other general-purpose culture media used for cell culture.
 容器本体10としては、培養液Lを収容可能な収容部11を有していれば特に限定されず、例えば、シャーレ(ペトリ皿)、試験管、スピッツ管、等が挙げられる。容器本体10は、収容部11を少なくとも1つ有していればよいが、複数有することが好ましい。本実施形態では、容器本体10として、図2に示すような収容部を複数有するマイクロプレート(ウェルプレート)10Wを用いる。マイクロプレート10Wは、培養液Lの収容部として機能する複数のウェル(窪み、又は孔)11Wが設けられた実験・検査器具で、それぞれのウェル11Wを試験管あるいはシャーレとして利用できる。マイクロプレート10Wは、ウェル11Wの数が6個、24個、96個、384個、1536個、9600個等のものが知られており、長方形の平板にウェル11Wが、縦:横=2:3の割合で整列して配置される。例えば、図2に示すように、ウェル11Wの数が96個のマイクロプレート10Wの場合、ウェル11Wは縦8個、横12個に整列して配置される。また、ウェル11Wの容量は、一般に、数μL~数mLである。 The container body 10 is not particularly limited as long as it has a storage portion 11 capable of storing the culture medium L, and examples thereof include a petri dish (petri dish), a test tube, a Spitz tube, and the like. Although the container main body 10 should just have at least one accommodating part 11, it is preferable to have multiple. In the present embodiment, a microplate (well plate) 10 </ b> W having a plurality of accommodating portions as shown in FIG. 2 is used as the container body 10. The microplate 10W is an experimental / inspection instrument provided with a plurality of wells (depressions or holes) 11W that function as a container for the culture medium L, and each well 11W can be used as a test tube or a petri dish. In the microplate 10W, the number of wells 11W is known to be 6, 24, 96, 384, 1536, 9600, etc., and the well 11W is formed on a rectangular flat plate, and the length: width = 2: They are arranged at a ratio of 3. For example, as shown in FIG. 2, in the case of a microplate 10W having 96 wells 11W, the wells 11W are arranged in an array of 8 vertical and 12 horizontal. The capacity of the well 11W is generally several μL to several mL.
 容器本体10の収容部11(以下、本実施形態において、適宜「マイクロプレート10のウェル11」と記載する)は、略円筒状の内壁11aと、底11bによって区画される。底11bは、マイクロプレート10の用途に応じて、平らな平底、U字の丸い底、V字の円錐状の底、等とすることができる。ウェル11内の収容物を顕微鏡観察する場合には、底の形状の影響を受けずに観察が可能なように、底11bは平底であることが好ましい。この場合、ウェル11の形状は略円柱形となる。また、ウェル11は、開口部の内径φ1よりも、底の内径φ2の方が小さく、開口部から底に向かって内壁11aにテーパを設けた形状であってもよい。 The accommodating portion 11 of the container body 10 (hereinafter referred to as “well 11 of the microplate 10” in the present embodiment as appropriate) is partitioned by a substantially cylindrical inner wall 11a and a bottom 11b. The bottom 11b may be a flat flat bottom, a U-shaped round bottom, a V-shaped conical bottom, or the like, depending on the use of the microplate 10. When the contents in the well 11 are observed with a microscope, the bottom 11b is preferably a flat bottom so that observation can be performed without being affected by the shape of the bottom. In this case, the shape of the well 11 is a substantially cylindrical shape. The well 11 may have a shape in which the inner diameter φ2 of the bottom is smaller than the inner diameter φ1 of the opening, and the inner wall 11a is tapered from the opening toward the bottom.
 マイクロプレート10を構成する材料としては、特に限定されず、用途に応じて、ポリスチレン、ポリプロピレン、ポリエチレン、アクリル樹脂等のプラスチック、又はガラス等を用いることができる。なかでも、ポリスチレンは、透明性が高く、優れた光学特性を有しているため、顕微鏡観察用のマイクロプレートの材料として優れている。また、マイクロプレート10は、その用途に応じて、黒色のプレート、白色のプレート、透明のプレート、等を用いることができる。顕微鏡観察を行う場合、マイクロプレートは透明のプレートであることが好ましく、少なくとも、ウェル11の底11bは透明であることが好ましい。 The material constituting the microplate 10 is not particularly limited, and plastics such as polystyrene, polypropylene, polyethylene, acrylic resin, glass, or the like can be used depending on the application. Among them, polystyrene is excellent as a material for a microplate for microscopic observation because it has high transparency and excellent optical properties. The microplate 10 may be a black plate, a white plate, a transparent plate, or the like depending on the application. When performing microscopic observation, the microplate is preferably a transparent plate, and at least the bottom 11b of the well 11 is preferably transparent.
 本実施形態では、ウェル11内の培養液Lのメニスカスを低減し、培養液中の細胞等の顕微鏡観察可能な領域を広く使うことができる。このため、本実施形態では、培養液のメニスカスの影響を強く受ける、ウェル数が多いマイクロプレート、ウェル容量が小さいマイクロプレート、ウェル径(φ1)が小さいマイクロプレートであっても、これらを容器本体として用いて効率よく顕微鏡観察を行うことができる。例えば、本実施形態では、ウェル数が6~384個、好ましくは、6~96個のマイクロプレート、より好ましくは、ウェル数が、6個、24個、又は96個のマイクロプレートを用いることができる。また、ウェル容量が20~16000μL、好ましくは、100~16000μLのマイクロプレート又はシャーレ、ウェル径(φ1)が2~50mm、好ましくは、6~35mmのマイクロプレート又はシャーレを用いることができる。 In this embodiment, the meniscus of the culture solution L in the well 11 can be reduced, and a region in the culture solution that can be observed with a microscope can be widely used. For this reason, in this embodiment, even a microplate with a large number of wells, a microplate with a small well capacity, or a microplate with a small well diameter (φ1), which is strongly influenced by the meniscus of the culture solution, is used as a container body. Can be efficiently used for microscopic observation. For example, in this embodiment, a microplate having 6 to 384 wells, preferably 6 to 96, more preferably 6, 24, or 96 wells is used. it can. A microplate or petri dish having a well volume of 20 to 16000 μL, preferably 100 to 16000 μL, and a microplate or petri dish having a well diameter (φ1) of 2 to 50 mm, preferably 6 to 35 mm can be used.
 本実施形態では、ウェル11内に配置される筒体20として、図3(a)に示す可撓性のシート20Aを湾曲させて、図3(b)に示す筒型としたものを用いる。シート20Aの一方の面20aは、撥液性を有する微細構造が形成された領域20cを有し、面20aが筒体20の内壁となるように湾曲させてウェル11内に配置する。図1に示すように、ウェル11内において、シート20Aの一方の面20aは、筒体20の内壁となって培養液Lと接触し、他方の面20bは、筒体20の外壁となってウェル11の内壁11aと接触する。 In this embodiment, the cylindrical body 20 shown in FIG. 3B is used as the cylindrical body 20 disposed in the well 11 by bending the flexible sheet 20A shown in FIG. One surface 20a of the sheet 20A has a region 20c in which a fine structure having liquid repellency is formed. The surface 20a is curved and disposed in the well 11 so that the surface 20a becomes the inner wall of the cylindrical body 20. As shown in FIG. 1, in the well 11, one surface 20 a of the sheet 20 </ b> A serves as an inner wall of the cylindrical body 20 and contacts the culture medium L, and the other surface 20 b serves as an outer wall of the cylindrical body 20. It contacts the inner wall 11 a of the well 11.
 本実施形態では、図3に示すように、シート20Aの面20a全面に微細構造が形成され、面20a全面が撥液性の領域20cであるが、撥液性の領域20cは培養液Lの液面Laと接触する領域で足りるので、面20aの一部分であってもよい。撥液性の領域20cが面20aの全面である場合、即ち、微細構造が面20a全面に形成されている場合は、培養液の液面Laの位置調整が不要である、シート20Aの製造が容易である等の利点がある。一方、領域20cが面20aの一部である場合は、例えば、撥液性の領域20cを培養液Lの液面Laと接触する最小限の領域に限定することで、撥液性を有する微細構造が培養体形成に及ぼす影響を最小限に抑えられる。尚、図3に示すシート20Aでは、他方の面20bに微細構造は形成されていないが、本実施形態はこれに限定されない。一方の面20aに微細構造が形成されていれば、他方の面20bには、微細構造が形成されていてもよいし、されていなくてもよい。 In the present embodiment, as shown in FIG. 3, a fine structure is formed on the entire surface 20a of the sheet 20A, and the entire surface 20a is a liquid-repellent region 20c, but the liquid-repellent region 20c is the liquid-repellent region 20c. Since the area | region which contacts the liquid level La is sufficient, a part of surface 20a may be sufficient. When the liquid-repellent region 20c is the entire surface 20a, that is, when the fine structure is formed on the entire surface 20a, the position adjustment of the liquid surface La of the culture solution is not necessary, and the sheet 20A is manufactured. There are advantages such as being easy. On the other hand, when the region 20c is a part of the surface 20a, for example, the liquid repellent region 20c is limited to a minimum region in contact with the liquid surface La of the culture solution L, so that the liquid repellent fine The effect of structure on culture formation is minimized. In the sheet 20A shown in FIG. 3, the microstructure is not formed on the other surface 20b, but the present embodiment is not limited to this. If a fine structure is formed on one surface 20a, a fine structure may or may not be formed on the other surface 20b.
 微細構造が形成される領域20cは、所謂、ロータス効果(ハスの葉効果)により撥液性が発現し、培養液Lとの親和性が低いため、培養液Lを引き寄せる力が弱い。このため、図4(a)に示す本実施形態の細胞培養容器100内の培養液Lの液面のメニスカスは、図4(c)に示すマイクロプレート10内の培養液Lのメニスカスと比較して小さくなる。これにより、培養液Lの液面Laは平面に近づき、光学顕微鏡観察可能な範囲(視野)を広げることができる。 The region 20c where the fine structure is formed exhibits liquid repellency due to the so-called lotus effect (lotus leaf effect) and has a low affinity with the culture medium L, and therefore the force to attract the culture medium L is weak. For this reason, the meniscus of the liquid level of the culture solution L in the cell culture container 100 of this embodiment shown in FIG. 4A is compared with the meniscus of the culture solution L in the microplate 10 shown in FIG. Become smaller. Thereby, the liquid level La of the culture solution L approaches a flat surface, and the range (field of view) in which the optical microscope can be observed can be expanded.
 本実施形態の撥液性を有する微細構造は、複数の凹凸から形成され、その構造を設けることにより、構造を設ける前と比較して撥液性が高まれば、凹凸の形状及びサイズは、特に限定されない。微細な凹凸による撥液性の発現は、凹凸の凹部内まで液体が入り込めず、そこに空気層が存在することによると推測される。この空気層の存在により、凹凸が形成された表面と、液体との接点が少なくなり、凹凸が形成された材料が本来有している液体に対する接触角よりも、見かけ上の接触角が大きくなる。このように表面に凹凸を付与した場合の撥液現象は、以下の式(1)で表されるCassieの式で説明可能である。本実施形態の細胞培養容器は、Cassieの式に基づいて微細構造を設計することにより、撥液性を適宜変更することが可能となる。 The fine structure having liquid repellency of the present embodiment is formed from a plurality of irregularities, and if the liquid repellency is increased compared to before providing the structure by providing the structure, the shape and size of the irregularities are particularly It is not limited. The expression of liquid repellency due to the fine unevenness is presumed to be due to the fact that the liquid cannot enter the recessed portions of the unevenness and an air layer exists there. Due to the presence of this air layer, the number of contact points between the surface on which the irregularities are formed and the liquid is reduced, and the apparent contact angle is larger than the contact angle with respect to the liquid originally possessed by the material with the irregularities. . Thus, the liquid repellency phenomenon when the surface is provided with unevenness can be explained by the Cassie equation represented by the following equation (1). The cell culture container of this embodiment can change liquid repellency suitably by designing a microstructure based on Cassie's formula.
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、θfは、液体に対する凹凸が形成された表面の見かけの接触角、θmは、液体に対する凹凸が形成された材料本来の接触角、aは、図5に示す凹凸の凸部の幅、Lは、図5に示す凹凸の凹部と凸部とを合わせた幅(周期幅)を示す。
Figure JPOXMLDOC01-appb-M000001
In the above formula (1), θf is the apparent contact angle of the surface on which the unevenness to the liquid is formed, θm is the original contact angle of the material on which the unevenness to the liquid is formed, and a is the unevenness of the unevenness shown in FIG. The width of the portion, L, indicates the width (periodic width) that combines the concave and convex portions of the concave and convex portions shown in FIG.
 本実施形態の微細構造は、複数の凸部を含んで構成されてもよい。代表的な撥液性を有する微細構造としては、多数のコーン状の突起(凸部)からなるモスアイ構造が挙げられるが、凸部の形状はこれに限定されない。本実施形態の凸部は、例えば、シート20Aの面20aに垂直な断面形状が、円形、楕円形、三角形、正方形、矩形、多角であってもよく、これらの任意の組合せであってもよい。また、微細構造は、非常に複雑な凹凸形状の組合せにより構成されてもよく、フラクタル構造であってもよい。凸部の大きさ、例えば、凸部の高さ、直径、幅等は、好ましくは10nm~1000μm、より好ましくは10nm~100μmの範囲から選択することができ、凸部間のピッチは、好ましくは10nm~1000μm、より好ましくは、1μm~1000μm、更により好ましくは、10μm~1000μmの範囲から選択することができる。 The fine structure of the present embodiment may include a plurality of convex portions. As a typical fine structure having liquid repellency, a moth-eye structure composed of a large number of cone-shaped protrusions (convex portions) can be mentioned, but the shape of the convex portions is not limited thereto. As for the convex part of this embodiment, the cross-sectional shape perpendicular | vertical to the surface 20a of the sheet | seat 20A may be circular, an ellipse, a triangle, a square, a rectangle, a polygon, and these may be arbitrary combinations. . Further, the fine structure may be constituted by a combination of very complicated uneven shapes, or may be a fractal structure. The size of the protrusions, for example, the height, diameter, width, etc. of the protrusions can be selected preferably in the range of 10 nm to 1000 μm, more preferably 10 nm to 100 μm, and the pitch between the protrusions is preferably It can be selected from the range of 10 nm to 1000 μm, more preferably 1 μm to 1000 μm, and still more preferably 10 μm to 1000 μm.
 微細構造が形成される領域20cは、ウェル11に収容される培養液Lに対する接触角が120°以上であることが好ましい。培養液Lに対する接触角が120°以上であれば、培養液Lの凹のメニスカスを十分に低減でき、顕微鏡観察可能な領域を広く使うことができる。また、領域20cの培養液Lに対する接触角は、130°以下であることが好ましい。領域20cの培養液Lに対する接触角が、例えば、125°を超えると、培養液Lの表面表力により、培養液のメニスカスが凸となる(図4(b)参照)。領域20cの培養液Lに対する接触角が130°以下であれば、培養液Lの凸のメニスカスを十分に低減できる。以上から、領域20cの培養液Lに対する接触角は、120°~130°がより好ましく、125°~130°が更に好ましい。尚、本実施形態における接触角は、室温(23℃)における値を意味する。また、微細構造が形成される領域20cの培養液Lに対する接触角は、培養液Lの種類に応じて、微細構造の形状、サイズ、周期等を変化させることによって調整可能である。 In the region 20c where the fine structure is formed, the contact angle with respect to the culture solution L accommodated in the well 11 is preferably 120 ° or more. If the contact angle with respect to the culture solution L is 120 ° or more, the concave meniscus of the culture solution L can be sufficiently reduced, and a region that can be observed with a microscope can be widely used. Moreover, it is preferable that the contact angle with respect to the culture solution L of the area | region 20c is 130 degrees or less. When the contact angle of the region 20c with respect to the culture solution L exceeds, for example, 125 °, the meniscus of the culture solution becomes convex due to the surface surface force of the culture solution L (see FIG. 4B). If the contact angle of the region 20c with respect to the culture solution L is 130 ° or less, the convex meniscus of the culture solution L can be sufficiently reduced. From the above, the contact angle of the region 20c with respect to the culture medium L is more preferably 120 ° to 130 °, and further preferably 125 ° to 130 °. In addition, the contact angle in this embodiment means the value in room temperature (23 degreeC). Further, the contact angle of the region 20c where the fine structure is formed with respect to the culture solution L can be adjusted by changing the shape, size, period, etc. of the fine structure according to the type of the culture solution L.
 シート20Aに撥液性を有する微細構造を形成する方法は、特に限定されない。例えば、バイト等を用いて、直接、シート20Aに微細構造を切削加工してもよいし、微細構造が形成された金型を用いてシート20Aを熱プレスすることにより、微細構造をシート20Aに転写してもよい。また、インプリント技術を用いてシート上に微細構造を形成してもよい。または、微粒子をシート20Aの表面に付着させることによって、付着した微粒子によって微細構造を形成してもよい。または、反応性イオンエッチング(RIE:Reactive Ion Etching)や、スパッタエッチング等のドライエッチングにより、シート20に微細構造を形成してもよい。また、第2の実施形態において後述する、ショット・ブラスト加工によりシート20に微細構造を形成してもよい。 The method of forming a fine structure having liquid repellency on the sheet 20A is not particularly limited. For example, the microstructure may be directly cut into the sheet 20A using a tool or the like, or the sheet 20A is hot-pressed using a mold in which the microstructure is formed, thereby converting the microstructure into the sheet 20A. You may transcribe. Moreover, you may form a fine structure on a sheet | seat using an imprint technique. Alternatively, the fine structure may be formed by the attached fine particles by attaching the fine particles to the surface of the sheet 20A. Alternatively, the microstructure may be formed on the sheet 20 by dry etching such as reactive ion etching (RIE) or sputter etching. In addition, a fine structure may be formed on the sheet 20 by shot blasting described later in the second embodiment.
 シート20Aを構成する材料としては、特に限定されず、用途に応じて選択できるが、筒型に湾曲できる可撓性を有する必要があることから、ポリスチレン、ポリプロピレン、ポリエチレン、アクリル樹脂、シクロオレフィン系樹脂、ポリテトラフルオロエチレン(PTFE)、アモルファスフッ素樹脂等のプラスチックであることが好ましい。また、シート20Aの微細構造は、シート20Aの微細構造以外の部分と同一の材料で形成されていることが好ましい。例えば、シート20Aの領域20cに撥液性のフッ素コート等が設けられていると、撥液性を確保することはできるが、コーティング材料がウェル内の培養液中に溶け出し、細胞や細菌に悪影響を与えることが懸念される。これに対して本実施形態では、微細構造によって撥液性を発現させるため、このような撥液性のコーティングを設けることなく、微細構造と、シート20Aの微細構造以外の部分とを同一の材料で形成することができる。また、シート20Aは、マイクロプレート10と同一の材料で形成されていることが好ましい。例えば、マイクロプレート10がポリスチレンで形成されている場合、シート20Aもポリスチレンで形成されていることが好ましい。もし、シート20Aがマイクロプレート10と異なる材料で形成されている場合、シート20Aに使用されている材料がマイクロプレート10内に収容される細胞等に悪影響を与えないか確認する必要があるが、シート20Aがマイクロプレート10と同一の材料で形成されていれば、そのような確認実験等が不要となるからである。 The material constituting the sheet 20A is not particularly limited and can be selected according to the use, but it is necessary to have flexibility that can be bent into a cylindrical shape, so that polystyrene, polypropylene, polyethylene, acrylic resin, cycloolefin-based A plastic such as a resin, polytetrafluoroethylene (PTFE), or amorphous fluororesin is preferred. Further, it is preferable that the fine structure of the sheet 20A is formed of the same material as the portion other than the fine structure of the sheet 20A. For example, if the region 20c of the sheet 20A is provided with a liquid-repellent fluorine coat or the like, the liquid-repellent property can be ensured, but the coating material dissolves into the culture solution in the well, and is applied to cells and bacteria. There are concerns about adverse effects. On the other hand, in this embodiment, since the liquid repellency is expressed by the fine structure, the fine structure and the portion other than the fine structure of the sheet 20A are made of the same material without providing such a liquid repellant coating. Can be formed. The sheet 20A is preferably formed of the same material as the microplate 10. For example, when the microplate 10 is made of polystyrene, the sheet 20A is also preferably made of polystyrene. If the sheet 20A is formed of a material different from that of the microplate 10, it is necessary to check whether the material used in the sheet 20A has an adverse effect on cells or the like accommodated in the microplate 10, This is because if the sheet 20A is formed of the same material as the microplate 10, such a confirmation experiment or the like becomes unnecessary.
 シート20Aからなる筒体20の形状は、図3(b)に示すように、シート20Aを湾曲させて円筒としたものでもよいし、顕微鏡観察の視界を異常に狭くするものでなければ、シート20Aを屈曲させて多角筒としたものであってもよい。また、シート20Aの厚みD20は、筒型に加工が容易なように、300μm以下であることが好ましく、200μm以下であることがより好ましい。また、筒体の形態を維持できる剛性を有するように、シート20Aの厚みは、100μm以上であることが好ましく、150μm以上であることがより好ましい。また、湾曲等させてウェル11内に配置された本実施形態のシート20Aは、その剛性により平面体に戻ろうとする力が常に働いている。この力により、シート20Aは、接着剤等を用いることなく、ウェル11の内壁11aに密着することができる。したがって、接着剤等による培養液の汚染の虞もない。 As shown in FIG. 3B, the cylindrical body 20 made of the sheet 20A may have a cylindrical shape by curving the sheet 20A, or the sheet 20A unless the field of view for microscopic observation is abnormally narrow. 20A may be bent into a polygonal cylinder. Further, the thickness D20 of the sheet 20A is preferably 300 μm or less, and more preferably 200 μm or less so that processing into a cylindrical shape is easy. Further, the thickness of the sheet 20A is preferably 100 μm or more, and more preferably 150 μm or more so as to have rigidity capable of maintaining the shape of the cylindrical body. Further, the sheet 20A of the present embodiment that is arranged in the well 11 by being bent or the like always has a force to return to the plane body due to its rigidity. With this force, the sheet 20A can be brought into close contact with the inner wall 11a of the well 11 without using an adhesive or the like. Therefore, there is no risk of contamination of the culture solution by an adhesive or the like.
 シート20Aの縦の長さ20d、即ち、シート20Aを筒型としてセル11内に配置したときのシート20Aのセル11の深さ方向の長さ20dは、ウェルの深さ11dと略同一であることが好ましく、または、セルの深さ11dの90%~110%の大きさであることが好ましい。シート20Aの横の長さ20eは、内径φ1のウェル開口部の周囲長と略同一であることが好ましく、または、内径φ1のセル開口部の周囲長の90%~110%の大きさであることが好ましい。このように、シート20Aの大きさをウェル11の内壁11aの大きさに近づけることで、シート20Aをウェル11内に配置したときに内壁11aの大部分を覆うことができ、液面の位置を調節する必要がなくなるため、種々な液量の培養液に対応することができる。 The vertical length 20d of the sheet 20A, that is, the length 20d in the depth direction of the cell 11 of the sheet 20A when the sheet 20A is disposed in the cell 11 as a cylindrical shape is substantially the same as the depth 11d of the well. It is also preferable that the size is 90% to 110% of the cell depth 11d. The lateral length 20e of the sheet 20A is preferably substantially the same as the perimeter of the well opening with the inner diameter φ1, or is 90% to 110% of the perimeter of the cell opening with the inner diameter φ1. It is preferable. Thus, by making the size of the sheet 20A close to the size of the inner wall 11a of the well 11, most of the inner wall 11a can be covered when the sheet 20A is placed in the well 11, and the position of the liquid level can be changed. Since there is no need to adjust, it is possible to deal with various culture volumes.
 シート20Aからなる筒体20は、微細構造が形成されている領域20cが培養液Lの液面Laと接触するように配置されるのであれば、ウェル11内にどのように配置されてもよい。例えば、図1に示すように、ウェル11内に筒体20を完全に収納してもよい。または、顕微鏡観察やその他の実験作業の支障とならない程度に、ウェル11の開口から筒体20が突出していてもよい。また、シート20Aからなる筒体20は、マイクロプレート10が有する全てのウェル11内に配置されてもよいし、又は、一部のウェル内にのみ配置されてもよい。 The cylindrical body 20 made of the sheet 20 </ b> A may be arranged in any manner in the well 11 as long as the region 20 c where the fine structure is formed is arranged so as to come into contact with the liquid level La of the culture solution L. . For example, as shown in FIG. 1, the cylindrical body 20 may be completely stored in the well 11. Alternatively, the cylindrical body 20 may protrude from the opening of the well 11 to the extent that it does not interfere with microscopic observation or other experimental work. Further, the cylindrical body 20 made of the sheet 20A may be disposed in all the wells 11 included in the microplate 10, or may be disposed only in some of the wells.
 本実施形態の細胞培養容器100は、ウェル11内に培養液Lを収容したとき、培養液の液面Laの液面中央を通る断面において、水平面に対する液面の傾きが-0.02~0.02となる液面の領域が液面全体の50%以上であることが好ましく、70%以上であることがより好ましい。ここで、液面中央とは、液面Laが円形である場合は、その円の中心である。図6に、マイクロプレートのウェル内に収容された培養液の液面の液面中央を通る断面形状を示す。液面中央(x=0)は、ウェルの内壁の影響を受けないため、液面は水平であるが、液面中央から離れてウェル内壁に近づくとメニスカスが発生して液面の高さ(h)が上昇し、液面に傾きが発生する。液面中央付近は顕微鏡観察が可能であるが、ウェル内壁付近は顕微鏡観察が困難となる。本願の発明者は、顕微鏡観察可能な領域と、液面形状とを照合することにより、顕微鏡観察の可否が液面の傾きにより決定されるとの知見を得た。図6に、液面の傾きとして、液面の一次微分係数(dh/dx)を併せて示す。例えば、ウェル径35mmのウェル内に培養液を収容して顕微鏡観察を行うと、顕微鏡観察可能な領域は、液面中央を中心とする直径13.2mmの円形領域である。この培養液の液面を立体形状計測装置により計測すると、顕微鏡観察可能な領域の液面の傾き(dh/dx)は、0~0.02である。液面の傾きが-0.02~0.02となる領域を培養液の液面面積全体の50%以上、より好ましくは70%以上とすることで、本実施形態の細胞培養容器は、顕微鏡観察用容器として十分な視野を得ることができる。尚、本実施形態では、凹のメニスカスが発生し、液面中央の高さより液面が上昇している場合の液面の傾きを正の値で示す。反対に、凸のメニスカスが発生し、液面中央の高さより液面が下降する場合の液面の傾きを負の値で示す。また、本実施形態における培養液の液面の傾きは、室温(23℃)における値を意味する。また、培養液の液面の傾きは、培養液の種類に応じて、細胞培養容器に設けられる微細構造の形状、サイズ、周期等を変化させることによって調整可能である。尚、許容できる液面の傾き、即ち、顕微鏡観察可能な領域の液面の傾き(dh/dx)は、観察に用いる顕微鏡の接眼レンズの開口数NAと倍率により変動する。例えば、開口数NA及び倍率が大きい程、液面の傾きの許容範囲は小さくなる。開口数NA及び倍率が比較的大きい場合であっても、液面の傾きが-0.02~0.02となる領域が培養液の液面面積全体の50%以上であれば、十分な顕微鏡観察を行うことができる。 In the cell culture container 100 of the present embodiment, when the culture medium L is accommodated in the well 11, the inclination of the liquid level with respect to the horizontal plane is −0.02 to 0 in a cross section passing through the liquid level center of the liquid level La of the culture liquid. The liquid level region of 0.02 is preferably 50% or more of the entire liquid level, and more preferably 70% or more. Here, when the liquid level La is circular, the liquid level center is the center of the circle. FIG. 6 shows a cross-sectional shape passing through the center of the liquid level of the culture solution contained in the well of the microplate. The liquid level center (x = 0) is not affected by the inner wall of the well, so the liquid level is horizontal. However, when the distance from the center of the liquid level approaches the inner wall of the well, a meniscus is generated and the height of the liquid level ( h) rises and the liquid surface is tilted. Microscopic observation is possible near the center of the liquid surface, but microscopic observation is difficult near the inner wall of the well. The inventor of the present application has obtained the knowledge that the possibility of microscopic observation is determined by the inclination of the liquid surface by collating the region that can be observed with a microscope and the liquid surface shape. FIG. 6 also shows the primary differential coefficient (dh / dx) of the liquid level as the inclination of the liquid level. For example, when a culture solution is accommodated in a well having a well diameter of 35 mm and microscopic observation is performed, the region that can be observed with a microscope is a circular region having a diameter of 13.2 mm centering on the center of the liquid surface. When the liquid level of this culture solution is measured by a three-dimensional shape measuring apparatus, the inclination (dh / dx) of the liquid level in the region that can be observed with a microscope is 0 to 0.02. The cell culture container of the present embodiment can be obtained by setting the region where the inclination of the liquid level is −0.02 to 0.02 to 50% or more, more preferably 70% or more of the entire liquid surface area of the culture solution. A field of view sufficient as an observation container can be obtained. In the present embodiment, a concave meniscus is generated, and the inclination of the liquid level when the liquid level is higher than the height at the center of the liquid level is indicated by a positive value. On the contrary, a convex meniscus is generated, and the inclination of the liquid level when the liquid level descends from the height at the center of the liquid level is indicated by a negative value. Moreover, the inclination of the liquid level of the culture solution in this embodiment means a value at room temperature (23 ° C.). In addition, the inclination of the liquid level of the culture solution can be adjusted by changing the shape, size, period, etc. of the microstructure provided in the cell culture vessel according to the type of the culture solution. Note that the allowable inclination of the liquid surface, that is, the inclination (dh / dx) of the liquid surface in the region where the microscope can be observed varies depending on the numerical aperture NA and magnification of the eyepiece of the microscope used for observation. For example, the larger the numerical aperture NA and the magnification, the smaller the allowable range of the liquid level inclination. Even if the numerical aperture NA and the magnification are relatively large, a sufficient microscope can be used if the region where the inclination of the liquid level is −0.02 to 0.02 is 50% or more of the entire liquid surface area of the culture medium. Observations can be made.
 次に、位相差顕微鏡を用いて、本実施形態の細胞培養容器100中の試料を観察する場合の効果について説明する。観察対象の試料は、例えば、収容部11中の培養液Lで培養される細胞、細菌等の透明な微生物である。これらの試料は、試料に入ってきた光に位相変化を与える位相物体である。人間の目は、位相のみが異なる光の差を感知することはできない。位相差顕微鏡は、この位相差を可視化して観察可能にする(位相差観察)。 Next, the effect of observing the sample in the cell culture container 100 of this embodiment using a phase contrast microscope will be described. The sample to be observed is, for example, a transparent microorganism such as a cell or a bacteria cultured in the culture solution L in the storage unit 11. These samples are phase objects that give a phase change to light entering the sample. The human eye cannot perceive light differences that differ only in phase. The phase contrast microscope visualizes this phase difference and enables observation (phase difference observation).
 図7に、位相差顕微鏡の位相差観察光学系50を示す。位相差顕微鏡では、図7に示すように、光源51から試料像面57に向う光の光路に沿って、リング形状の開口を有するリング絞り(リングスリット)52、コンデンサレンズ53、ステージ54、対物レンズ55、位相板58が、この順に配置される。リング絞り52は、コンデンサレンズ53の前側焦点位置に配置され、位相板58は、対物レンズ55の射出瞳位置(対物レンズ55の後側焦点位置又はその共役位置)に配置される。本実施形態の細胞培養容器100は、ステージ54上に配置され、細胞培養容器100中の観察対象試料は、コンデンサレンズ53の後側焦点位置に配置される。位相板58は、透明板上に、入射光の位相を所定量シフトさせる位相膜(例えば、光の位相を1/4波長シフトさせる位相膜)と入射光を吸収して減光作用を示すフィルタ(例えば、NDフィルタ)とからなる位相リング56が、位相差観察光学系50の光軸を中心として形成されたものである。位相板58に入射した観察光のうち、位相リング56に入射した観察光は光が弱められるとともに、位相がシフトする。一方、位相リング56を外れ、透明板に入射した観察光は、位相シフト作用も減光作用も受けずに位相板58を通過する。 FIG. 7 shows a phase difference observation optical system 50 of a phase contrast microscope. In the phase contrast microscope, as shown in FIG. 7, a ring diaphragm (ring slit) 52 having a ring-shaped opening, a condenser lens 53, a stage 54, an objective, along the optical path of light from the light source 51 toward the sample image plane 57. The lens 55 and the phase plate 58 are arranged in this order. The ring diaphragm 52 is disposed at the front focal position of the condenser lens 53, and the phase plate 58 is disposed at the exit pupil position of the objective lens 55 (the rear focal position of the objective lens 55 or its conjugate position). The cell culture container 100 of this embodiment is disposed on the stage 54, and the observation target sample in the cell culture container 100 is disposed at the rear focal position of the condenser lens 53. The phase plate 58 has a phase film (for example, a phase film that shifts the phase of the light by a quarter wavelength) and a filter that reduces the light by absorbing the incident light on the transparent plate. A phase ring 56 (for example, an ND filter) is formed around the optical axis of the phase difference observation optical system 50. Of the observation light incident on the phase plate 58, the observation light incident on the phase ring 56 is attenuated and the phase shifts. On the other hand, the observation light that has come off the phase ring 56 and entered the transparent plate passes through the phase plate 58 without being subjected to a phase shift action or a dimming action.
 次に、位相差顕微鏡を用いた、試料の位相差観察について説明する。光源51から出た光束は、リング絞り52の開口部により光束がリング形状に絞られる。リング絞り52の開口部を通過した光束は、コンデンサレンズ53で平行光になり、均質な照明光として、ステージ54上の試料に入射する。試料に入射した光は、試料または培地部分を通過する直接光と、試料(位相物体)により位相が遅れ、且つ回折し曲がって進む回折光とに分かれる。回折現象は屈折率に違いのある部位で発生するので、回折光は試料(細胞等)と溶液との境界部分等、試料内部の構造情報を位相の変化として含む。試料を通過した回折光と直接光は、それぞれ、対物レンズ55を通り位相板58に到達する。このとき、細胞培養容器100を経て位相板58に入射する直接光は、位相板58上の位相リング56上に、位相絞り52の開口部の像(すなわち瞳絞り像)を結ぶ。このため、直接光は位相が所定量シフトすると同時に、明るさが弱められる。一方、回折光は位相物体により回折しているので位相リング56を通過する回折光は僅かであり、回折光の大部分は、位相リング56を外れて透明板を経由する。このため、回折光の大部分は位相シフト作用も減光作用も受けずに進行する。位相板58を通過した直接光と、回折光とは、像面57に到達して干渉して像を形成する。このとき、位相リング56は、回折光と直接光との位相差が1/2λ又は0(ゼロ)になるように、直接光の位相をシフトすることにより、回折光と直接光との位相差が、1/2λ又は0(ゼロ)となり、試料(位相物体)によりもたらされた位相の差は、光の明暗のコントラストとして観察される。 Next, the phase difference observation of the sample using the phase contrast microscope will be described. The light beam emitted from the light source 51 is narrowed into a ring shape by the opening of the ring diaphragm 52. The light beam that has passed through the opening of the ring diaphragm 52 becomes parallel light by the condenser lens 53 and enters the sample on the stage 54 as uniform illumination light. The light that has entered the sample is divided into direct light that passes through the sample or medium portion, and diffracted light that is delayed in phase by the sample (phase object) and diffracted and bent. Since the diffraction phenomenon occurs at a portion where the refractive index is different, the diffracted light includes structural information inside the sample, such as a boundary portion between the sample (cell or the like) and the solution, as a phase change. The diffracted light and the direct light that have passed through the sample reach the phase plate 58 through the objective lens 55, respectively. At this time, the direct light incident on the phase plate 58 through the cell culture vessel 100 forms an image of the opening of the phase stop 52 (that is, a pupil stop image) on the phase ring 56 on the phase plate 58. For this reason, the brightness of the direct light is reduced at the same time as the phase is shifted by a predetermined amount. On the other hand, since the diffracted light is diffracted by the phase object, only a small amount of diffracted light passes through the phase ring 56, and most of the diffracted light passes through the transparent plate off the phase ring 56. For this reason, most of the diffracted light travels without being subjected to a phase shift effect or a dimming effect. The direct light that has passed through the phase plate 58 and the diffracted light reach the image plane 57 and interfere with each other to form an image. At this time, the phase ring 56 shifts the phase of the direct light so that the phase difference between the diffracted light and the direct light becomes 1 / 2λ or 0 (zero), thereby causing a phase difference between the diffracted light and the direct light. Becomes 1 / 2λ or 0 (zero), and the phase difference caused by the sample (phase object) is observed as the contrast of light.
 以上説明した位相差観察において、良好な観察像(像面57上の像)を得るためには、対物レンズ55により直接光を位相リング56のリングの幅におさまるように集光させることが好ましい。位相差顕微鏡の照明光学系及び対物光学系からなる観察光学系は、これらが実現されるよう調整される。 In the phase difference observation described above, in order to obtain a good observation image (an image on the image surface 57), it is preferable that the direct light is condensed by the objective lens 55 so as to fall within the ring width of the phase ring 56. . The observation optical system including the illumination optical system and the objective optical system of the phase contrast microscope is adjusted so that these are realized.
 しかし、試料を含む培養液の液面Laにメニスカスが発生すると、以下に説明する問題が発生する。まず、観察部位が液面Laの中央部にある場合、即ち、ウェル11の中央部では、培養液Lが光学レンズとして作用して、位相差観察光学系50の倍率、焦点距離および収差などに影響を及ぼす。その結果、例えば、液面Laに凹のメニスカスが発生した場合、図8(b)に示すように、対物レンズ55で位相板58に集光される直接光のリングスリット像60はボケ像となり、位相リング56に収まらなくなる。位相リング56を外れて透明板を通過する直進光(漏れ光)は、試料の情報を有する回折光と混ざり、像面57における観察像のコントラスト及び解像度を低下させる。なお、リングスリット像60と位相リング58とが重ならない部分の面積、即ち、漏れ光の量は液面Laのメニスカスの曲率半径が小さくなるほど増大する傾向がある。さらに、観察部位が液面Laの中央部から外れた位置にある場合、即ち、ウェル11の中央部から外れた位置では、前述の像ボケに加え、培養液Lが形成するレンズの光軸が位相差観察光学系50の光軸から外れる。例えば、図8(c)に示すように、培養液Lが形成するレンズの偏心により、リングスリット像60は対物レンズ55の光軸と垂直方向へシフトするとともに、像の形状に歪み(変形)が生じる。像のシフト方向は、位相差観察光学系50の光軸を中心として、位相差観察光学系50に対する培養液レンズの偏心方向に、放射状に広がる傾向がある。これにより、ウェル11の中心からの距離が大きくなるほど、そこを通過した直接光により形成されるリングスリット像60の変位及び変形が増大してリングスリット像60と位相リング58とが重ならない部分の面積が増大する。このため、ウェル11の中央部の僅かな領域以外は、観察像から試料の情報を得ることが困難となる。 However, when a meniscus is generated on the liquid level La of the culture solution containing the sample, the problem described below occurs. First, when the observation site is in the central portion of the liquid surface La, that is, in the central portion of the well 11, the culture solution L acts as an optical lens, and the magnification, focal length, and aberration of the phase difference observation optical system 50 are reduced. affect. As a result, for example, when a concave meniscus is generated on the liquid surface La, the ring slit image 60 of the direct light condensed on the phase plate 58 by the objective lens 55 becomes a blurred image as shown in FIG. , It will not fit in the phase ring 56. The straight light (leakage light) passing through the transparent plate off the phase ring 56 is mixed with diffracted light having sample information, and the contrast and resolution of the observation image on the image plane 57 are reduced. Note that the area where the ring slit image 60 and the phase ring 58 do not overlap, that is, the amount of leakage light, tends to increase as the radius of curvature of the meniscus of the liquid surface La decreases. Further, when the observation site is at a position deviated from the central portion of the liquid surface La, that is, at a position deviated from the central portion of the well 11, the optical axis of the lens formed by the culture solution L in addition to the above-mentioned image blur is generated. It deviates from the optical axis of the phase difference observation optical system 50. For example, as shown in FIG. 8C, the ring slit image 60 is shifted in the direction perpendicular to the optical axis of the objective lens 55 due to the eccentricity of the lens formed by the culture medium L, and is distorted (deformed) into the shape of the image. Occurs. The image shift direction tends to spread radially around the optical axis of the phase difference observation optical system 50 in the eccentric direction of the culture solution lens with respect to the phase difference observation optical system 50. Thereby, as the distance from the center of the well 11 increases, the displacement and deformation of the ring slit image 60 formed by the direct light passing therethrough increases and the ring slit image 60 and the phase ring 58 do not overlap. The area increases. For this reason, it is difficult to obtain information on the sample from the observation image except for a small area at the center of the well 11.
 本実施形態の細胞培養容器100は、ウェル11内の培養液Lのメニスカスを低減することで、上述の位相差観察における課題を解決する。特に、本実施形態の細胞培養容器100は、ウェル11内に培養液Lを収容し、培養液の液面Laの液面中央を通る断面における液面形状を二次関数:y=ax+bxで近似したときに、液面形状の曲率の目安となる二次項の係数aが-0.013~0.013であることが好ましい。ここで、液面中央とは、液面Laが円形である場合は、その円の中心である。 The cell culture container 100 of this embodiment solves the above-described problems in phase difference observation by reducing the meniscus of the culture solution L in the well 11. In particular, the cell culture container 100 of the present embodiment contains the culture medium L in the well 11 and the liquid level shape in a cross section passing through the liquid level center of the liquid level La of the culture liquid is a quadratic function: y = ax 2 + bx , The coefficient a of the quadratic term that is a measure of the curvature of the liquid surface shape is preferably −0.013 to 0.013. Here, when the liquid level La is circular, the liquid level center is the center of the circle.
 二次項の係数aが-0.013~0.013であると、上述したリングスリット像60の変位及び変形を抑制できる。ウェル11の中央部では、そこを通過した直接光により形成されるリングスリット像60は、図8(a)に示すように、位相リング56と重なる。これにより、コントラストおよび解像度が高い観察像が得られる。また、ウェル11の中央部から外れた部分においても、そこを通過した直接光により形成されるリングスリット像60の変位及び変形は無いか、あっても僅かである。 When the coefficient a of the secondary term is −0.013 to 0.013, the above-described displacement and deformation of the ring slit image 60 can be suppressed. In the central portion of the well 11, the ring slit image 60 formed by the direct light passing thereover overlaps the phase ring 56 as shown in FIG. Thereby, an observation image with high contrast and high resolution can be obtained. In addition, even in a portion deviated from the central portion of the well 11, the ring slit image 60 formed by the direct light passing therethrough is not displaced or deformed at all.
 二次項の係数aは、-0.005~0.005であると、上述したリングスリット像60の変位及び変形を更に抑制できるため、より好ましい。二次項の係数aが-0.005~0.005であると、培養液Lの液面面積全体の50%以上において、そこを通過した直接光が形成するリングスリット像60が位相リング56と重なる。これにより、培養液Lの液面面積全体の50%以上において、そこを通過した光からコントラストおよび解像度が高い観察像が得られる。 The coefficient a of the quadratic term is more preferably −0.005 to 0.005 because the above-described displacement and deformation of the ring slit image 60 can be further suppressed. When the coefficient a of the secondary term is −0.005 to 0.005, the ring slit image 60 formed by the direct light that has passed therethrough is 50% or more of the total liquid surface area of the culture medium L. Overlap. Thereby, in 50% or more of the whole liquid surface area of the culture solution L, an observation image with high contrast and resolution can be obtained from the light passing therethrough.
 以上説明した本実施形態の細胞培養容器100は、培養液Lの液面Laに生じるメニスカスを低減し、顕微鏡観察可能な範囲を広げることができる。また、液面Laと接触する筒体20の領域20cは、撥液性材料をコーティングしているのではなく、微細構造によるロータス効果により撥液性を得ている。このため、コーティング材料が培養液L中へ溶け出して細胞等に悪影響を与える虞がない。更に、領域20cの撥液性は、微細構造の形状、大きさ、ピッチ等により設計できるため、種々な種類の培養液Lに対応可能な細胞培養容器を得ることができる。 The cell culture container 100 of the present embodiment described above can reduce the meniscus generated on the liquid surface La of the culture medium L, and can widen the range that can be observed with a microscope. Further, the region 20c of the cylindrical body 20 that comes into contact with the liquid surface La is not coated with a liquid repellent material, but has liquid repellency due to the Lotus effect due to the fine structure. For this reason, there is no possibility that the coating material dissolves into the culture medium L and adversely affects cells and the like. Furthermore, since the liquid repellency of the region 20c can be designed by the shape, size, pitch, and the like of the fine structure, a cell culture vessel that can handle various types of culture solutions L can be obtained.
 また、本実施形態の細胞培養容器100は、マイクロプレート(容器本体)10と、筒体20とが別部材である。このため、培養液Lの種類に応じて最適な筒体20を選択して、細胞培養容器100を構成することができる。また、細胞培養中、常に、ウェル11内に筒体20を配置していてもよいが、顕微鏡観察等、培養液の液面のメニスカスを低下させたいときのみに、ウェル11内に筒体20を配置するという使用方法も可能である。筒体20に細胞等が付着して汚染されると、培養液Lのメニスカスを低減させる効果が弱まるが、培養液Lと筒体20との接触時間を短くすることで、筒体20の汚染の可能性を低くすることができる。また、本実施形態の細胞培養容器100は、複数の筒体20同士が連結しておらず、独立している。このため、例えば、1つのウェルプレートにおいて、異なる種類の培養液を用いる場合であっても、それぞれの培養液に適した異なる種類の筒体をそれぞれのウェルに配置することができる。また、メニスカスを低下させる必要があるウェルのみに選択的に筒体を配置することもでき、更に、シートが細胞の付着等により汚染された場合も、汚染されたシートのみ交換することができるため、経済的である。 Further, in the cell culture container 100 of the present embodiment, the microplate (container body) 10 and the cylindrical body 20 are separate members. For this reason, it is possible to configure the cell culture container 100 by selecting the optimal cylinder 20 according to the type of the culture solution L. In addition, the cylindrical body 20 may be always arranged in the well 11 during cell culture. However, the cylindrical body 20 is placed in the well 11 only when it is desired to reduce the meniscus of the liquid level of the culture solution such as microscopic observation. It is also possible to use the method of arranging When cells or the like adhere to the cylinder 20 and are contaminated, the effect of reducing the meniscus of the culture solution L is weakened. However, the contact time between the culture solution L and the cylinder 20 is shortened, so that the cylinder 20 is contaminated. Can reduce the possibility. Moreover, the cell culture container 100 of this embodiment is not connected with the some cylinders 20, but is independent. For this reason, for example, even when different types of culture solutions are used in one well plate, different types of cylinders suitable for each culture solution can be arranged in each well. In addition, it is possible to selectively place cylinders only in the wells where the meniscus needs to be lowered, and even when the sheet is contaminated by cell adhesion or the like, only the contaminated sheet can be replaced. Is economical.
 また、本実施形態の細胞培養容器100は、可撓性のシート20Aを筒型としたものを筒体20として用いる。このため、シート20Aから形成される筒体20のサイズは、ある程度、調整することが可能であり、1つサイズのシート20で複数のサイズ及び形状のウェル11に対応することができる。 In addition, the cell culture container 100 of the present embodiment uses a cylindrical body of a flexible sheet 20A. For this reason, the size of the cylinder 20 formed from the sheet 20A can be adjusted to some extent, and one size sheet 20 can correspond to a plurality of wells 11 having a plurality of sizes and shapes.
[第2の実施形態]
 第2の実施形態として、図9に示す筒体30を用いた細胞培養容器について説明する。本実施形態の細胞培養容器は、図3(b)に示す筒体20の代わりに、図9に示す筒体30を用いた以外は、図1に示す第1の実施形態の細胞培養容器100と同様の構成である。したがって、図9に示す筒体30以外の構成については説明を省略する。
[Second Embodiment]
As a second embodiment, a cell culture container using the cylinder 30 shown in FIG. 9 will be described. The cell culture container of this embodiment is the same as the cell culture container 100 of the first embodiment shown in FIG. 1 except that the cylinder 30 shown in FIG. 9 is used instead of the cylinder 20 shown in FIG. It is the same composition as. Therefore, description of configurations other than the cylindrical body 30 shown in FIG. 9 is omitted.
 本実施形態では、フィルムを湾曲等して筒体を形成する第1の実施形態とは異なり、図9に示すように、筒形状に成形されている筒体30を用いる。筒体30の内壁30aは、撥液性を有する微細構造が形成された領域30cを有する。本実施形態では、内壁30a全面が、微細構造が形成されている領域30cである。筒体30が容器本体(マイクロプレート)10のウェル11内に配置されるとき、筒体30の内壁30aは、培養液Lと接触し、筒体30の外壁30bは、ウェル11の内壁11aと接触する。したがって、本実施形態においては、筒体30の内壁30aが、培養液Lを保持する液体保持部を区画している。 In this embodiment, unlike the first embodiment in which a film is formed by bending a film or the like, as shown in FIG. 9, a cylinder 30 formed in a cylindrical shape is used. The inner wall 30a of the cylindrical body 30 has a region 30c in which a fine structure having liquid repellency is formed. In the present embodiment, the entire inner wall 30a is a region 30c where a fine structure is formed. When the cylindrical body 30 is disposed in the well 11 of the container body (microplate) 10, the inner wall 30 a of the cylindrical body 30 is in contact with the culture solution L, and the outer wall 30 b of the cylindrical body 30 is in contact with the inner wall 11 a of the well 11. Contact. Therefore, in the present embodiment, the inner wall 30a of the cylindrical body 30 defines a liquid holding unit that holds the culture solution L.
 本実施形態の筒体30の材料、大きさ、撥液性を有する微細構造の構成等は、第1の実施形態の筒体20と同様である。但し、本実施形態の筒体30は、第1の実施形態の筒体20と異なり、湾曲させる必要がないため、可撓性を有する必要はなく、筒体30の厚みD30の上限値も、顕微鏡観察可能な視野を極端に狭めることがなければ、特に制限されない。筒体30の厚みD30は、例えば、200μm~1600μmとすることができる。 The material, size, and structure of the fine structure having liquid repellency of the cylindrical body 30 of the present embodiment are the same as those of the cylindrical body 20 of the first embodiment. However, the cylindrical body 30 of the present embodiment does not need to be curved unlike the cylindrical body 20 of the first embodiment, so it is not necessary to have flexibility, and the upper limit value of the thickness D30 of the cylindrical body 30 is also There is no particular limitation as long as the field of view that can be observed with a microscope is not extremely narrowed. The thickness D30 of the cylindrical body 30 can be set to 200 μm to 1600 μm, for example.
 筒体30の内壁30aに撥液性を有する微細構造を形成する方法は、特に限定されないが、例えば、外周に微細構造が形成された金型を用いて筒体30を熱プレスすることにより、微細構造を筒体30の内壁30aに転写できる。この場合、微細構造が形成された金型は、通常の金型材料の中でも体積膨張率が大きく、成形される筒体30の樹脂材料よりも比熱の小さい材料で形成されていることが好ましい。体積膨張率が大きく且つ比熱の小さい金型は、筒体30の内壁30aにより区画される空間内に配置されて、熱プレス時には十分に膨張して筒体30の内壁30aに接触して、そこに微細構造を転写できる。その後、金型に対して相対的に比熱が大きく且つ体積膨張率が十分大きい筒体30の樹脂材料が加熱されると、筒体30は十分に膨張して金型から離れ、金型を筒体30の該空間から容易に取り出すことができる。このような金型を構成する材料の体積膨張率は、5×10-6/K~20×10-6/Kが好ましい。また、金型の材料としては、金属が好ましく、例えば、鉄を主成分とし、炭素、クロム、モリブデン、タングステン等の金属を含む鋼が挙げられる。 A method for forming a fine structure having liquid repellency on the inner wall 30a of the cylindrical body 30 is not particularly limited. For example, by hot pressing the cylindrical body 30 using a mold having a fine structure formed on the outer periphery, The microstructure can be transferred to the inner wall 30a of the cylindrical body 30. In this case, the mold in which the microstructure is formed is preferably made of a material having a large volume expansion coefficient among ordinary mold materials and having a specific heat smaller than that of the resin material of the cylindrical body 30 to be molded. A mold having a large volume expansion coefficient and a small specific heat is disposed in a space defined by the inner wall 30a of the cylindrical body 30 and expands sufficiently during hot pressing to contact the inner wall 30a of the cylindrical body 30. The microstructure can be transferred to. Thereafter, when the resin material of the cylinder 30 having a large specific heat relative to the mold and a sufficiently large volume expansion coefficient is heated, the cylinder 30 is sufficiently expanded and separated from the mold, and the mold is removed from the mold. The body 30 can be easily taken out from the space. The volume expansion coefficient of the material constituting such a mold is preferably 5 × 10 −6 / K to 20 × 10 −6 / K. The material of the mold is preferably a metal, and examples thereof include steel containing iron as a main component and containing a metal such as carbon, chromium, molybdenum, and tungsten.
 撥液性を有する微細構造を形成するその他の方法としては、粒体を加工物に衝突させるショット・ブラスト加工が挙げられる。本方法は、筒体30の樹脂材料に直接にショット・ブラスト加工(例えばサンドブラスト加工)を施すため、金型が不要である。また、撥液性を付与する必要のない部分にはマスキングをして、ショット・ブラスト加工を行うことができる。マスキングした部分には、微細構造は形成されない。また、本願の発明者は、サンドブラスト加工において、撥液性の程度は、ブラスト粒子の粒径に依存することを見出した。例えば、ポリスチレン(PS)のような樹脂材料の基材に撥液性を有する微細構造を形成する場合、ブラスト粒子の粒径が大きい程、水の接触角が大きくなる傾向がある。本願の発明者は、ポリスチレンの基材表面を粒径20μm以上のブラスト粒子を用いてブラスト加工を行うことにより、接触角120°以上となる疎水性を有する微細構造を形成できることを見出した。 As another method for forming a fine structure having liquid repellency, there is a shot blasting process in which a particle collides with a workpiece. In this method, since a shot blasting process (for example, a sandblasting process) is directly performed on the resin material of the cylindrical body 30, no mold is required. Further, it is possible to perform shot blasting by masking a portion which does not need to be provided with liquid repellency. A fine structure is not formed in the masked portion. Further, the inventor of the present application has found that the degree of liquid repellency depends on the particle size of blast particles in sandblasting. For example, when a fine structure having liquid repellency is formed on a substrate of a resin material such as polystyrene (PS), the contact angle of water tends to increase as the particle size of the blast particle increases. The inventor of the present application has found that a fine structure having hydrophobicity with a contact angle of 120 ° or more can be formed by blasting the surface of a polystyrene substrate using blast particles having a particle diameter of 20 μm or more.
 もちろん、金型にショット・ブラスト加工を施すことにより、金型に撥液性を有する微細構造を付与し、その金型を用いて筒体30を熱プレスしてもよい。金型にショット・ブラスト加工を施す場合、ブラスト粒子の粒径が小さい程、水の接触角が大きくなる傾向がある。十分な撥液性を有する微細加工を金型に施すためには、粒径約4μm以下のブラスト粒子を用いてブラスト加工を行うことが好ましい。尚、接触角は、例えば、接触角計(協和界面科学製、DropMaster DM700)を用いて測定できる。 Of course, the mold 30 may be shot and blasted to give the mold a fine structure having liquid repellency, and the cylinder 30 may be hot pressed using the mold. When performing shot blasting on a mold, the smaller the blast particle size, the larger the water contact angle. In order to perform fine processing with sufficient liquid repellency on the mold, it is preferable to perform blasting using blast particles having a particle size of about 4 μm or less. The contact angle can be measured using, for example, a contact angle meter (manufactured by Kyowa Interface Science, DropMaster DM700).
 以上説明した本実施形態の細胞培養容器は、培養液の液面に生じるメニスカスを低減し、顕微鏡観察可能な範囲を広げることができ、且つ培養液中の細胞等に悪影響を与える虞がない等、先に説明した第1の実施形態の細胞培養容器100と同様の効果を奏することができる。また、本実施形態の細胞培養容器は、第1の実施形態のようにシートを筒形状に加工する必要がないため、作業の手間及び時間を短縮することができる。尚、本実施形態の細胞培養容器においては、複数の筒体30は、それぞれ別個独立していてもよいし、隣接するウェル11内に配置される筒体30同士を連結する連結部を設けて、複数の筒体30を互いに連結してもよい。こうすることで、複数のウェル11の1つ1つに筒体30を配置する手間が省ける。 The cell culture container of the present embodiment described above can reduce the meniscus generated on the liquid surface of the culture solution, can widen the range that can be observed with a microscope, and has no risk of adversely affecting cells or the like in the culture solution. The same effects as those of the cell culture container 100 of the first embodiment described above can be obtained. Moreover, since the cell culture container of this embodiment does not need to process a sheet | seat into a cylinder shape like 1st Embodiment, the effort and time of an operation | work can be shortened. In the cell culture container of the present embodiment, the plurality of cylinders 30 may be independent from each other, or provided with a connecting portion that connects the cylinders 30 arranged in the adjacent wells 11. The plurality of cylinders 30 may be connected to each other. By doing so, the trouble of arranging the cylindrical body 30 in each of the plurality of wells 11 can be saved.
[第3の実施形態]
 第3の実施形態として、図10に示す、培養液Lを保持する、少なくとも1つの液体保持部を有する細胞培養容器300について説明する。本実施形態の細胞培養容器300は、容器本体40から構成され、第1及び第2の実施形態とは異なり、筒体を有さない。その代わりに、容器本体40に直接、撥液性を有する微細構造が形成される。
[Third Embodiment]
As a third embodiment, a cell culture container 300 having at least one liquid holding unit that holds the culture solution L shown in FIG. 10 will be described. The cell culture container 300 of this embodiment is comprised from the container main body 40, and unlike a 1st and 2nd embodiment, it does not have a cylinder. Instead, a fine structure having liquid repellency is formed directly on the container body 40.
 図10に示す容器本体40は、プレート42及びプレート42の窪みとして設けられ培養液Lを収容する収容部41を有し、収容部41は、略円筒状の内壁41aと、底41bによって区画される。そして、略円筒状の内壁41aは、撥液性の微細構造を有する領域41cを有し、収容部41に培養液Lを収容したとき、培養液Lの液面Laが領域41cと接触する。したがって、本実施形態においては、容器本体40の内壁41aが、培養液Lを保持する液体保持部を区画している。本実施形態では、図10に示すように、容器本体40の内壁41a全面に微細構造が形成され、内壁41a全面が領域40cであるが、領域40cは培養液Lの液面Laと接触するのであれば、内壁40aの一部分であってもよい。 A container body 40 shown in FIG. 10 includes a plate 42 and a storage portion 41 that is provided as a depression of the plate 42 and stores the culture medium L. The storage portion 41 is partitioned by a substantially cylindrical inner wall 41a and a bottom 41b. The And the substantially cylindrical inner wall 41a has the area | region 41c which has a liquid-repellent fine structure, and when the culture solution L is accommodated in the accommodating part 41, the liquid level La of the culture solution L contacts the area | region 41c. Therefore, in the present embodiment, the inner wall 41a of the container body 40 defines a liquid holding part that holds the culture solution L. In the present embodiment, as shown in FIG. 10, a fine structure is formed on the entire inner wall 41a of the container body 40, and the entire inner wall 41a is a region 40c, but the region 40c is in contact with the liquid surface La of the culture medium L. If there is, it may be a part of the inner wall 40a.
 本実施形態の容器本体40の構成は、微細構造を内壁41aに設けたこと以外、第1の実施形態の容器本体10の構成と同様である。また、本実施形態の内壁40aに設けた微細構造の構成は、第1の実施形態の筒体20に設けた微細構造の構成と同一である。容器本体40の内壁41aに撥液性を有する微細構造を形成する方法は、特に限定されないが、例えば、第2の実施形態と同様に、微細構造が形成された金型を用いて内壁41aを熱プレスすることにより、微細構造を内壁41aに転写してもよいし、ショット・ブラスト加工により微細構造を内壁41aに形成してもよい。撥液性を付与する必要のない部分にはマスキングをして、ショット・ブラスト加工を行うことができる。マスキングした部分には、微細構造は形成されない。撥液性を付与する必要のない部分としては、例えば、収納部41の底面41b、プレート42において収容部(ウェル)41を除く部分、即ち、複数の収容部41を連結する連結部が挙げられる。 The configuration of the container body 40 of the present embodiment is the same as that of the container body 10 of the first embodiment, except that a fine structure is provided on the inner wall 41a. Moreover, the structure of the fine structure provided in the inner wall 40a of this embodiment is the same as the structure of the fine structure provided in the cylinder 20 of the first embodiment. A method for forming a fine structure having liquid repellency on the inner wall 41a of the container body 40 is not particularly limited. For example, as in the second embodiment, the inner wall 41a is formed using a mold having a fine structure. The microstructure may be transferred to the inner wall 41a by hot pressing, or the microstructure may be formed on the inner wall 41a by shot blasting. It is possible to perform shot blasting by masking a portion that does not need to have liquid repellency. A fine structure is not formed in the masked portion. As a part which does not need to provide liquid repellency, the bottom part 41b of the accommodating part 41, the part except the accommodating part (well) 41 in the plate 42, ie, the connection part which connects the some accommodating part 41, are mentioned, for example. .
 以上説明した本実施形態の細胞培養容器300は、培養液の液面に生じるメニスカスを低減し、顕微鏡観察可能な範囲を広げることができ、且つ培養液中の細胞等に悪影響を与える虞がない等、先に説明した第1及び第2の実施形態の細胞培養容器と同様の効果を奏することができる。また、本実施形態の細胞培養容器300は、第1及び第2の実施形態のように、筒体を容器本体に配置する必要がないため、作業の手間及び時間を短縮することができる。 The cell culture container 300 of the present embodiment described above can reduce meniscus generated on the liquid surface of the culture solution, widen the range that can be observed with a microscope, and has no risk of adversely affecting cells or the like in the culture solution. The same effects as those of the cell culture containers of the first and second embodiments described above can be obtained. Moreover, since the cell culture container 300 of this embodiment does not need to arrange | position a cylinder to a container main body like the 1st and 2nd embodiment, the effort and time of an operation | work can be shortened.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明は下記の実施例及び比較例により制限されない。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited by the following examples and comparative examples.
 [実施例1]
 実施例1では、図1に示す細胞培養容器100に用いる筒体20を構成するシート20A(図3参照)を作製した。
[Example 1]
In Example 1, a sheet 20A (see FIG. 3) constituting the cylindrical body 20 used in the cell culture container 100 shown in FIG. 1 was produced.
<シートの作製>
 ポリスチレンシートの一方の面に、反応性イオンエッチング(RIE)により、撥液性を有する微細構造を形成して、微細構造が形成されたシートを作製した。本実施例では、酸化アルミ板とポリスチレンシートとを同時にエッチングすることで、酸化アルミニウム基板から酸化アルミニウムの粒子が発生し、ポリスチレンシート上に堆積する。この酸化アルミニウム粒子がマスクとして機能した状態で、ポリスチレンシートのエッチングが行われ、結果として、ポリスチレンシート上に、微細構造が形成される。RIE後、ポリスチレンシートを純水により超音波洗浄し、微細構造が形成されたシートを得た。
<Production of sheet>
A fine structure having liquid repellency was formed on one surface of the polystyrene sheet by reactive ion etching (RIE) to produce a sheet having a fine structure. In the present embodiment, by simultaneously etching the aluminum oxide plate and the polystyrene sheet, aluminum oxide particles are generated from the aluminum oxide substrate and deposited on the polystyrene sheet. The polystyrene sheet is etched with the aluminum oxide particles functioning as a mask, and as a result, a fine structure is formed on the polystyrene sheet. After RIE, the polystyrene sheet was ultrasonically washed with pure water to obtain a sheet on which a fine structure was formed.
 具体的には、まず、RIE装置(SUMCO製、RIE-4800N)のチャンバー内に、酸化アルミニウム(Al)板を敷き、その上に加工対象となる25mm×50mm×200μmのポリスチレンシートを設置した。この状態で、アルミニウム板とポリスチレンシートの反応性イオンエッチング(RIE)を行った。RF出力は500Wとし、反応性ガスとして四フッ化炭素(CF4)とアルゴン(Ar)を用いた。図11(a)及び(b)に、15秒の反応性イオンエッチング(RIE)を行って形成した微細構造のSEM写真を示す。 Specifically, first, an aluminum oxide (Al 2 O 3 ) plate is laid in the chamber of an RIE apparatus (manufactured by SUMCO, RIE-4800N), and a polystyrene sheet of 25 mm × 50 mm × 200 μm to be processed is placed thereon. installed. In this state, reactive ion etching (RIE) of the aluminum plate and the polystyrene sheet was performed. The RF output was 500 W, and carbon tetrafluoride (CF4) and argon (Ar) were used as reactive gases. FIGS. 11A and 11B show SEM photographs of microstructures formed by reactive ion etching (RIE) for 15 seconds.
<シートの接触角の測定>
 得られたシートのRIE処理を施した面、即ち、微細構造を形成した面の培養液に対する接触角を、接触角計(協和界面科学製、DropMaster DM700)を用いて測定した。培養液としては、DMEM(ダルベッコ改変イーグル培地)を用い、接触角の測定は室温(23℃)で行った。結果を表1に示す。
<Measurement of sheet contact angle>
The contact angle of the surface of the obtained sheet subjected to the RIE treatment, that is, the surface on which the fine structure was formed, was measured using a contact angle meter (DropMaster DM700, manufactured by Kyowa Interface Science). As the culture solution, DMEM (Dulbecco's modified Eagle medium) was used, and the contact angle was measured at room temperature (23 ° C.). The results are shown in Table 1.
[実施例2~5]
 実施例2~5では、エッチング時間を表1に示すように、それぞれ、60秒、70秒、80秒及び90秒とした以外は実施例1と同様の方法により、図3に示すシート20Aを作製した。更に、微細構造を形成した面の培養液に対する接触角を、実施例1と同様の方法により測定した。結果を表1に示す。
[Examples 2 to 5]
In Examples 2 to 5, as shown in Table 1, the sheet 20A shown in FIG. 3 was formed by the same method as in Example 1 except that the etching time was 60 seconds, 70 seconds, 80 seconds, and 90 seconds, respectively. Produced. Furthermore, the contact angle with respect to the culture solution of the surface on which the microstructure was formed was measured by the same method as in Example 1. The results are shown in Table 1.
<細胞培養容器の作製>
 実施例2~5では、作製したシート20Aを湾曲させて筒体20とし、マイクロプレート10のウェル11内に配置して、図1に示す細胞培養容器100を作製した。マイクロプレート10としては、ウェル11の数が24個(ウェル直径:16mm)のポリスチレン製のマイクロプレートを用いた(BD製、BD Falcon)。
<Preparation of cell culture container>
In Examples 2 to 5, the produced sheet 20A was curved to form a cylindrical body 20 and placed in the well 11 of the microplate 10 to produce the cell culture container 100 shown in FIG. As the microplate 10, a polystyrene microplate having 24 wells 11 (well diameter: 16 mm) was used (BD, BD Falcon).
<培養液の液面形状測定>
 実施例2~5で作製した細胞培養容器100のウェル11内に培養液Lを約2mL収容し、培養液の液面形状を、立体形状計測装置(株式会社ニコン製、NEXIV)を用いて測定した。培養液としては、DMEMを用いた。図12に、実施例2~5における、培養液の液面の液面中央を通る断面形状を示す。また、実施例2~5において、図12に示す、液面中央からセルの直径方向の液面形状を二次関数:y=ax+bxで近似し、液面曲率の指標となる二次項の係数aの値を求めた。結果を表1に示す。尚、液面形状の測定は、室温(23℃)で行った。
<Measurement of liquid surface shape of culture solution>
About 2 mL of the culture medium L is accommodated in the well 11 of the cell culture vessel 100 produced in Examples 2 to 5, and the liquid surface shape of the culture medium is measured using a three-dimensional shape measuring device (NEXIV, manufactured by Nikon Corporation). did. DMEM was used as the culture solution. FIG. 12 shows a cross-sectional shape passing through the center of the liquid level of the culture liquid in Examples 2 to 5. In Examples 2 to 5, the liquid surface shape in the diameter direction of the cell from the center of the liquid surface shown in FIG. 12 is approximated by a quadratic function: y = ax 2 + bx, and a quadratic term serving as an index of the liquid surface curvature is obtained. The value of coefficient a was determined. The results are shown in Table 1. The liquid level shape was measured at room temperature (23 ° C.).
[比較例1]
 比較例1では、RIE処理を施さないポリスチレンシートを用いた。RIE処理を施さないシートの培養液に対する接触角を、実施例1と同様の方法により測定した。結果を表1に示す。また、RIE処理を施さないシートを用いた以外は実施例2~5と同様の方法により、図1に示す細胞培養容器100を作製し、更に、培養液の液面Laの液面形状を測定した。培養液の液面の液面中央を通る断面形状を図12に示す。また、実施例2~5と同様に、図12に示す、液面中央からセルの直径方向の液面形状を二次関数:y=ax+bxで近似し、液面曲率の指標となる二次項の係数aの値を求めた。結果を表1に示す。尚、液面形状の測定は、室温(23℃)で行った。
[Comparative Example 1]
In Comparative Example 1, a polystyrene sheet not subjected to RIE treatment was used. The contact angle with respect to the culture solution of the sheet not subjected to RIE treatment was measured by the same method as in Example 1. The results are shown in Table 1. Further, the cell culture vessel 100 shown in FIG. 1 was prepared by the same method as in Examples 2 to 5 except that a sheet not subjected to RIE treatment was used, and the liquid level shape of the liquid level La of the culture solution was measured. did. FIG. 12 shows a cross-sectional shape passing through the center of the liquid level of the culture solution. Similarly to Examples 2 to 5, the liquid surface shape in the diametric direction of the cell from the liquid surface center shown in FIG. 12 is approximated by a quadratic function: y = ax 2 + bx, which is an index of the liquid surface curvature. The value of coefficient a of the next term was obtained. The results are shown in Table 1. The liquid level shape was measured at room temperature (23 ° C.).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び図12に示すように、実施例2~5で作製したシートの微細構造が形成された領域は、前記培養液に対して120°以上の高い接触角を有しており、微細構造を形成しなかった比較例1のシートと比較して撥液性が向上していた。比較例1と比較して、実施例2~5では、培養液のメニスカスが抑制されていた。これは、実施例2~5では、微細構造を形成することにより、シートの培養液の液面と接触する領域の撥液性が向上したためだと推測される。また、実施例3においては液面を全面に亘ってフラットに抑えることができた。また、実施例2~5の結果から、接触角が125°近傍において下に凸のメニスカスと上に凸のメニスカスとの境界が存在することが確認できた。 As shown in Table 1 and FIG. 12, the region in which the fine structure of the sheet produced in Examples 2 to 5 was formed has a high contact angle of 120 ° or more with respect to the culture solution, and the fine structure The liquid repellency was improved as compared with the sheet of Comparative Example 1 in which no was formed. Compared with Comparative Example 1, in Examples 2 to 5, the meniscus of the culture solution was suppressed. This is presumably because, in Examples 2 to 5, the liquid repellency of the region in contact with the liquid level of the culture medium of the sheet was improved by forming the fine structure. Moreover, in Example 3, the liquid level was able to be suppressed flat over the whole surface. Further, from the results of Examples 2 to 5, it was confirmed that there was a boundary between the downwardly convex meniscus and the upwardly convex meniscus when the contact angle was around 125 °.
[実施例6]
 ウェル径(φ1)が16mm(24well)の細胞培養容器100のウェル11内において、細胞を培養液L中で培養し、その後、実施例3で用いたシートと同条件で作製したシートをウェル11内に配置して、ウェル内の顕微鏡観察を行った。本実施例では、培養液としてイーグルの培地(MEM)を、培養する細胞としてHela細胞を用いた。ウェル内を観察する顕微鏡としては、位相差観察が行える細胞観察装置(株式会社ニコンエンジニアリング製、BioStudio-T)を用い、位相差観察用対物レンズ(株式会社ニコン製 CFI plan Fluor DL 4×)にて位相差観察を行った。対物レンズの倍率は4倍、NAは0.13である。観察結果の写真を図13(a)に示す。図13(a)の写真では、ウェルの中央部分の細胞の顕微鏡観察が可能な領域を点線で示す。
[Example 6]
In the well 11 of the cell culture vessel 100 having a well diameter (φ1) of 16 mm (24 wells), the cells are cultured in the culture medium L, and then a sheet prepared under the same conditions as the sheet used in Example 3 is prepared in the well 11. The microscopic observation in the well was performed. In this example, Eagle's medium (MEM) was used as the culture solution, and Hela cells were used as the cells to be cultured. As a microscope for observing the inside of a well, a cell observation device capable of phase difference observation (Nikon Engineering Co., Ltd., BioStudio-T) is used, and a phase difference observation objective lens (Nikon Corporation CFI plan Fluor DL 4 ×) is used. The phase difference was observed. The magnification of the objective lens is 4 times and the NA is 0.13. A photograph of the observation result is shown in FIG. In the photograph of FIG. 13 (a), a region where the microscopic observation of the cell in the central portion of the well is indicated by a dotted line.
[比較例2]
 微細構造が形成されたシートを用いなかった以外は、実施例6と同様の構成の細胞培養容器を用いて、実施例6と同様の方法でウェル内の顕微鏡観察を行った。即ち、比較例2では、細胞培養容器として、マイクロプレートそのものを用いた。観察結果の写真を図13(b)に示す。図13(b)の写真においても、図13(a)の写真と同様に、ウェルの中央部分の細胞の顕微鏡観察が可能領域を点線で示す。
[Comparative Example 2]
Microscopic observation in the well was performed in the same manner as in Example 6 using a cell culture container having the same configuration as in Example 6 except that the sheet on which the microstructure was formed was not used. That is, in Comparative Example 2, the microplate itself was used as the cell culture container. A photograph of the observation result is shown in FIG. Also in the photograph of FIG. 13 (b), similarly to the photograph of FIG. 13 (a), a region where the cells in the central portion of the well can be observed with a microscope is indicated by a dotted line.
 図13(a)及び(b)に示す結果から、実施例6における顕微鏡観察可能領域の方が、比較例2における顕微鏡観察可能領域よりも広いことが確認できた。実施例6では、図13(a)に示すように、ウェル中央部分から周辺までの広範囲に渡り、高コントラストで分解能の高い良好な観察像が得られた。一方、比較例2では、図13(b)に示すように、ウェル中央部分において得られる観察像のコントラストが低く、且つ中心部分からわずかに外周方向に外れた領域で分解能が著しく低下して観察像を得ることができなかった。実施例6では、微細構造が形成されたシートをウェル内に配置することにより、培養液の液面に生じるメニスカスが低減され、ウェル内の培養液面がフラット(水平)に近づいたと推測される。したがって、実施例6では、位相差観察において、図8に示す、リングスリット像60の変位および変形を抑制でき、これにより、高コントラスト且つ分解能の高い観察像を得ることができたと推測される。 From the results shown in FIGS. 13 (a) and (b), it was confirmed that the microscopic observable region in Example 6 was wider than the microscopic observable region in Comparative Example 2. In Example 6, as shown in FIG. 13A, a good observation image with high contrast and high resolution was obtained over a wide range from the center of the well to the periphery. On the other hand, in Comparative Example 2, as shown in FIG. 13B, the contrast of the observation image obtained in the center portion of the well is low, and the resolution is significantly lowered in the region slightly deviated from the center portion in the outer peripheral direction. The image could not be obtained. In Example 6, it is presumed that the meniscus generated on the liquid surface of the culture solution is reduced by arranging the sheet in which the fine structure is formed in the well, and the culture solution surface in the well has become flat (horizontal). . Therefore, in Example 6, it is presumed that in the phase difference observation, the displacement and deformation of the ring slit image 60 shown in FIG. 8 can be suppressed, thereby obtaining an observation image with high contrast and high resolution.
 本実施形態の細胞培養容器は、それに収容される培養液の液面に生じるメニスカスを低減し、顕微鏡観察可能な範囲を広げることができる。また、本実施形態の細胞培養容器は、撥液性を有する微細構造の形状、大きさ、ピッチ等を設計することにより、その撥液性を適宜変更できるため、種々な種類の培養液に対応可能である。 The cell culture container of this embodiment can reduce the meniscus generated on the liquid surface of the culture solution accommodated therein, and can expand the range that can be observed with a microscope. In addition, the cell culture container of the present embodiment can be appropriately changed by designing the shape, size, pitch, etc. of the fine structure having liquid repellency, so that it is compatible with various types of culture liquids. Is possible.
10、40   容器本体
11、41   収容部
12、42   プレート
20、30   筒体
20A     シート
20a     面
20c、30c、41c 撥液性の微細構造が形成された領域
100、300 細胞培養容器
L       培養液
La      培養液Lの液面
10, 40 Container body 11, 41 Container 12, 42 Plate 20, 30 Tube 20A Sheet 20a Surface 20c, 30c, 41c Region 100, 300 in which liquid-repellent microstructure is formed Cell culture vessel L Culture solution La Culture Liquid level of liquid L

Claims (29)

  1.  液体を保持可能な容器であって、
     前記液体を保持し、内壁を備える少なくとも1つの液体保持部を有し、
     前記液体保持部の内壁の少なくとも一部に微細構造が形成され、
     前記微細構造は、複数の凸部を含んで構成され、
     前記複数の凸部の高さは、10nm~1000μmの範囲内であり、
     前記複数の凸部間のピッチは、10nm~1000μmの範囲内である容器。
    A container capable of holding liquid,
    Holding at least one liquid, and having at least one liquid holding portion having an inner wall;
    A fine structure is formed on at least a part of the inner wall of the liquid holding part,
    The fine structure includes a plurality of convex portions,
    The height of the plurality of convex portions is in the range of 10 nm to 1000 μm,
    A container in which a pitch between the plurality of convex portions is in a range of 10 nm to 1000 μm.
  2.  前記微細構造は、前記液体保持部の内壁における少なくとも前記液体の液面と接触する部分に形成されている請求項1に記載の容器。 The container according to claim 1, wherein the fine structure is formed in at least a portion of the inner wall of the liquid holding portion that is in contact with the liquid surface of the liquid.
  3.  前記微細構造は、前記液体保持部の内壁の全面に形成されている請求項1に記載の容器。 The container according to claim 1, wherein the fine structure is formed on the entire inner wall of the liquid holding portion.
  4.  前記液体は細胞の培養液である請求項1~3のいずれか一項に記載の容器。 The container according to any one of claims 1 to 3, wherein the liquid is a cell culture solution.
  5.  前記微細構造が形成されている領域は、前記液体に対して、120°以上の接触角を有する請求項1~4のいずれか一項に記載の容器。 The container according to any one of claims 1 to 4, wherein the region in which the fine structure is formed has a contact angle of 120 ° or more with respect to the liquid.
  6.  前記微細構造が形成されている領域は、前記液体に対して、120°~130°の接触角を有する請求項1~4のいずれか一項に記載の容器。 The container according to any one of claims 1 to 4, wherein the region in which the fine structure is formed has a contact angle of 120 ° to 130 ° with respect to the liquid.
  7.  前記液体保持部の内壁において、前記微細構造は、前記微細構造が形成されていない領域と同じ材料で形成されている請求項1~6のいずれか一項に記載の容器。 The container according to any one of claims 1 to 6, wherein in the inner wall of the liquid holding portion, the fine structure is formed of the same material as a region where the fine structure is not formed.
  8.  前記容器は、
     内壁を備える少なくとも1つの収容部を有する容器本体と、
     前記収容部内に配置される筒体とを有し、
     前記筒体の外壁は前記収容部の内壁と接触し、前記筒体の内壁は前記液体保持部の内壁を構成する請求項1~7のいずれか一項に記載の容器。
    The container is
    A container body having at least one housing portion with an inner wall;
    A cylinder disposed in the housing portion,
    The container according to any one of claims 1 to 7, wherein an outer wall of the cylindrical body is in contact with an inner wall of the accommodating portion, and the inner wall of the cylindrical body constitutes an inner wall of the liquid holding portion.
  9.  前記筒体は、前記微細構造が一方の面に形成されたシートを、前記一方の面が前記筒体の内壁となるように湾曲又は、屈曲させて筒型としたものである請求項8に記載の容器。 9. The cylindrical body according to claim 8, wherein a sheet having the microstructure formed on one surface is curved or bent so that the one surface becomes an inner wall of the cylindrical body. Container as described.
  10.  前記シートの厚みが、100μm~200μmである請求項9に記載の容器。 10. The container according to claim 9, wherein the thickness of the sheet is 100 μm to 200 μm.
  11.  前記容器本体と、前記筒体とが、同一の材料で形成されている請求項8~10のいずれか一項に記載の容器。 The container according to any one of claims 8 to 10, wherein the container body and the cylindrical body are formed of the same material.
  12.  前記容器本体が、マイクロプレートである請求項8~11のいずれか一項に記載の容器。 The container according to any one of claims 8 to 11, wherein the container body is a microplate.
  13.  前記液体保持部に前記液体を保持したとき、前記液体の液面の液面中央を通る断面において、液面形状を二次関数:y=ax+bxで近似したときの二次項の係数aが、-0.013~0.013である請求項1~12のいずれか一項に記載の容器。 When the liquid is held in the liquid holding part, the coefficient a of the quadratic term when the liquid surface shape is approximated by a quadratic function: y = ax 2 + bx in the cross section passing through the liquid surface center of the liquid surface of the liquid is The container according to any one of claims 1 to 12, which is -0.013 to 0.013.
  14.  前記液体保持部に前記液体を保持したとき、前記液体の液面の液面中央を通る断面において、水平面に対する液面の傾きが-0.02~0.02となる液面の領域が、液面全体の50%以上である請求項1~13のいずれか一項に記載の容器。 When the liquid is held in the liquid holding part, in the cross section passing through the center of the liquid level of the liquid, the area of the liquid level where the inclination of the liquid level with respect to the horizontal plane is −0.02 to 0.02 The container according to any one of claims 1 to 13, which is 50% or more of the entire surface.
  15.  前記液体保持部を複数有する請求項1~14のいずれか一項に記載の容器。 The container according to any one of claims 1 to 14, wherein the container has a plurality of the liquid holding portions.
  16.  前記容器が、顕微鏡観察用容器である請求項1~15のいずれか一項に記載の容器。 The container according to any one of claims 1 to 15, wherein the container is a microscope observation container.
  17.  液体を収容する収容部を有する容器本体を備える容器に用いる筒体であって、
     前記筒体を前記収容部に配置したとき、
     前記筒体の外壁は前記収容部の内壁と接触し、前記筒体の内壁は前記液体と接触し、
     前記筒体の内壁の少なくとも一部には、微細構造が形成されており、
     前記微細構造は、複数の凸部を含んで構成され、
     前記複数の凸部の高さは、10nm~1000μmの範囲内であり、
     前記複数の凸部間のピッチは、10nm~1000μmの範囲内である筒体。
    A cylinder used for a container including a container main body having a storage portion for storing a liquid,
    When the cylindrical body is disposed in the housing portion,
    The outer wall of the cylindrical body is in contact with the inner wall of the housing portion, the inner wall of the cylindrical body is in contact with the liquid,
    A fine structure is formed on at least a part of the inner wall of the cylindrical body,
    The fine structure includes a plurality of convex portions,
    The height of the plurality of convex portions is in the range of 10 nm to 1000 μm,
    A cylindrical body in which a pitch between the plurality of convex portions is in a range of 10 nm to 1000 μm.
  18.  前記微細構造は、前記筒体の内壁における少なくとも前記液体の液面と接触する部分に形成されている請求項17に記載の筒体。 The cylinder according to claim 17, wherein the fine structure is formed at least in a portion of the inner wall of the cylinder that contacts the liquid surface.
  19.  前記微細構造は、前記筒体の内壁の全面に形成されている請求項17に記載の筒体。 The cylinder according to claim 17, wherein the fine structure is formed on the entire inner wall of the cylinder.
  20.  前記液体は細胞の培養液である請求項17~19のいずれか一項に記載の筒体。 The cylinder according to any one of claims 17 to 19, wherein the liquid is a cell culture solution.
  21.  前記容器本体が、マイクロプレートである請求項17~20のいずれか一項に記載の筒体。 The cylinder according to any one of claims 17 to 20, wherein the container body is a microplate.
  22.  液体を収容する収容部を有する容器本体を備える容器に用いるシートであって、
     前記シートの少なくとも一方の面には、微細構造が形成されており、
     前記一方の面が内壁、他方の面が外壁となるように前記シートを湾曲又は、屈曲させて筒型とした筒体を前記収容部に配置したとき、
     前記筒体の外壁は前記収容部の内壁と接触し、前記筒体の内壁は前記液体と接触し、
     前記微細構造は、複数の凸部を含んで構成され、
     前記複数の凸部の高さは、10nm~1000μmの範囲内であり、
     前記複数の凸部間のピッチは、10nm~1000μmの範囲内であるシート。
    A sheet used for a container including a container main body having a storage portion for storing a liquid,
    A microstructure is formed on at least one surface of the sheet,
    When the cylindrical body formed by bending or bending the sheet so that the one surface is the inner wall and the other surface is the outer wall is disposed in the accommodating portion,
    The outer wall of the cylindrical body is in contact with the inner wall of the housing portion, the inner wall of the cylindrical body is in contact with the liquid,
    The fine structure includes a plurality of convex portions,
    The height of the plurality of convex portions is in the range of 10 nm to 1000 μm,
    A sheet having a pitch between the plurality of convex portions in a range of 10 nm to 1000 μm.
  23.  前記微細構造は、前記筒体の内壁における少なくとも前記液体の液面と接触する部分に形成されている請求項22に記載のシート。 23. The sheet according to claim 22, wherein the fine structure is formed on at least a portion of the inner wall of the cylindrical body that is in contact with the liquid surface of the liquid.
  24.  前記微細構造は、前記筒体の内壁の全面に形成されている請求項22に記載のシート。 The sheet according to claim 22, wherein the fine structure is formed on the entire inner wall of the cylindrical body.
  25.  前記液体は細胞の培養液である請求項22~24のいずれか一項に記載のシート。 The sheet according to any one of claims 22 to 24, wherein the liquid is a cell culture solution.
  26.  前記容器本体が、マイクロプレートである請求項22~25のいずれか一項に記載のシート。 The sheet according to any one of claims 22 to 25, wherein the container body is a microplate.
  27.  請求項1~16のいずれか一項に記載の容器の製造方法であって、
     ショット・ブラスト加工により、前記液体保持部の内壁に前記微細構造を形成することを含む容器の製造方法。
    A method for producing a container according to any one of claims 1 to 16,
    A method for manufacturing a container, comprising: forming the microstructure on an inner wall of the liquid holding part by shot blasting.
  28.  請求項17~21のいずれか一項に記載の容器に用いる筒体の製造方法であって、
     ショット・ブラスト加工により、前記微細構造を前記筒体の内壁に形成することを含む筒体の製造方法。
    A method for producing a cylinder used for the container according to any one of claims 17 to 21,
    A method of manufacturing a cylinder including forming the microstructure on an inner wall of the cylinder by shot blasting.
  29.  請求項22~26のいずれか一項に記載の容器に用いるシートの製造方法であって、
     ショット・ブラスト加工により、前記微細構造を前記シートの少なくとも一方の面に形成することを含むシートの製造方法。
    A method for producing a sheet for use in the container according to any one of claims 22 to 26,
    A method for producing a sheet, comprising forming the microstructure on at least one surface of the sheet by shot blasting.
PCT/JP2018/018926 2017-05-24 2018-05-16 Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body WO2018216568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-102945 2017-05-24
JP2017102945 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018216568A1 true WO2018216568A1 (en) 2018-11-29

Family

ID=64395564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018926 WO2018216568A1 (en) 2017-05-24 2018-05-16 Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body

Country Status (1)

Country Link
WO (1) WO2018216568A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269979A (en) * 1985-09-20 1987-03-31 Terumo Corp Meniscus controlling apparatus and light transmitting type testing device equipped therewith
JPH11153523A (en) * 1997-11-19 1999-06-08 Advance Co Ltd Liquid holding container
JP2005249399A (en) * 2004-03-01 2005-09-15 Kawamura Inst Of Chem Res Micro-fluid element and its manufacturing method
US20100047845A1 (en) * 2007-02-26 2010-02-25 Stemcell Technologies Inc. Method of reducing curvature in a meniscus of liquid medium
JP2016067322A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Plastic container
JP2016116539A (en) * 2016-03-31 2016-06-30 大日本印刷株式会社 Bottle-shaped cell culture vessel, and manufacturing method of the same
JP2017001166A (en) * 2015-06-15 2017-01-05 学校法人関東学院 Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method
WO2017030196A1 (en) * 2015-08-20 2017-02-23 東京エレクトロン株式会社 Culture container and cell culturing method and cell observation method using culture container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269979A (en) * 1985-09-20 1987-03-31 Terumo Corp Meniscus controlling apparatus and light transmitting type testing device equipped therewith
JPH11153523A (en) * 1997-11-19 1999-06-08 Advance Co Ltd Liquid holding container
JP2005249399A (en) * 2004-03-01 2005-09-15 Kawamura Inst Of Chem Res Micro-fluid element and its manufacturing method
US20100047845A1 (en) * 2007-02-26 2010-02-25 Stemcell Technologies Inc. Method of reducing curvature in a meniscus of liquid medium
JP2016067322A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Plastic container
JP2017001166A (en) * 2015-06-15 2017-01-05 学校法人関東学院 Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method
WO2017030196A1 (en) * 2015-08-20 2017-02-23 東京エレクトロン株式会社 Culture container and cell culturing method and cell observation method using culture container
JP2016116539A (en) * 2016-03-31 2016-06-30 大日本印刷株式会社 Bottle-shaped cell culture vessel, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP6634024B2 (en) Light sheet microscope and microscope objective
JP6466930B2 (en) Equipment for light sheet microscopy
JP6511654B2 (en) Culture container and cell culture method and cell observation method using the culture container
US9261454B2 (en) Cell culture vessels for meniscus reduction with aqueous solutions
CN108732738B (en) Immersion objective for microscopes
JP2010063429A (en) Structure, method and apparatus for measuring cell
JP2018535449A (en) Sample partitioning element, microscopy method, and microscope
WO2016052078A1 (en) Plastic container
CN113866966B (en) Imaging lens of gene sequencer, gene sequencer and gene sequencing system
US11119301B2 (en) Immersion matrix, its use and immersion device
WO2018216568A1 (en) Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body
US9359631B2 (en) Method for observing a sample
JPH09236756A (en) Plastic slide for optical microscope
JP2022519567A (en) Wave surface analyzer, fluorescence microscope imaging system and method of microscopic imaging of an object
Castleman et al. Fundamentals of microscopy
JP3133786B2 (en) How to observe with a microscope
Lee et al. Ferrofluid-molding method for polymeric microlens arrays fabrication
US20180267286A1 (en) Observation Device with Optical Compensation
CN113050290B (en) Optical intensity modulation element, structure design method and optical shaping system
Gottmann et al. High speed and high precision fs-laser writing using a scanner with large numerical aperture
JP4448385B2 (en) Microfluidic device
JP3321870B2 (en) Immersion condenser lens
US20110058252A1 (en) Bottomless micro-mirror well for 3d imaging for an object of interest
CN110554491B (en) Miniature phase difference digital microscope for observing unstained cells of living body
US7915033B2 (en) Incubation container system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP