WO2016052078A1 - Plastic container - Google Patents

Plastic container Download PDF

Info

Publication number
WO2016052078A1
WO2016052078A1 PCT/JP2015/075232 JP2015075232W WO2016052078A1 WO 2016052078 A1 WO2016052078 A1 WO 2016052078A1 JP 2015075232 W JP2015075232 W JP 2015075232W WO 2016052078 A1 WO2016052078 A1 WO 2016052078A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
plastic container
water
less
degrees
Prior art date
Application number
PCT/JP2015/075232
Other languages
French (fr)
Japanese (ja)
Inventor
泰士 田辺
晃寿 伊藤
俊 後藤
充 岩田
高見 新川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016052078A1 publication Critical patent/WO2016052078A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a plastic container for culturing cells and tissues and observing the cultured cells and tissues.
  • the phase contrast microscope is a typical device for imaging live cells, and includes a phase difference observation capacitor having a ring slit and a phase difference observation objective lens having a ring-shaped phase difference plate. Living cells are placed in a plastic container and placed between a phase difference observation capacitor and a phase difference observation objective lens and imaged.
  • a plastic container used in a phase-contrast microscope also serves as a culture container for culturing living cells, and has a plurality of recesses (hereinafter referred to as culturing and observing living cells).
  • a plastic container is called a microplate, a microtiter plate, a microwell plate, a multiwell plate, a well plate, or the like.
  • the surface of the culture solution for culturing living cells may be curved in a concave or convex shape. That is, the liquid level of the culture solution may become a meniscus.
  • the liquid level of the culture solution is a meniscus, a phase difference occurs in the light passing through the culture solution between the vicinity of the well wall and the center of the well.
  • the meniscus on the surface of the culture solution acts as a lens.
  • plastic containers with various contrivances are known in the biological and biochemical fields.
  • a plastic container that smoothly guides a hydrophilic solution such as DNA (DeoxyriboNucleic® Acid) to the bottom surface of the well Known (Japanese Patent Laid-Open No. 2002-065299).
  • a hydrophilic solution may be smoothly guided to the bottom surface of the well by making the inner surface of the well water-repellent and making the bottom surface hydrophilic (see Japanese translation 2002). -525573).
  • Plastic containers that make the inner surface of the well water-repellent are also known to make it difficult for the aqueous solution in the well to overflow or to prevent contamination due to sample contamination between the wells (cross-contamination). JP 2003-066033, JP 2004-212359 A).
  • An object of the present invention is to provide a plastic container capable of culturing cells and tissues and imaging them with a phase-contrast microscope while they are alive.
  • the plastic container of the present invention has an equivalent circle diameter of an opening of 0.5 mm or more and less than 2 cm, a depth of 2 mm or more and less than 2 cm, an inner surface having water repellency, and a bottom surface having hydrophilicity. At least two wells are provided.
  • a water-repellent coat containing fluorine is provided on the inner side surface of the well, and the water-repellent coat preferably has a fluorine content of 0.01 mg / cm 2 or more and less than 1.5 mg / cm 2 .
  • the inner surface of the well is preferably provided with a diamond-like coating.
  • the inner surface of the well preferably has a contact angle with pure water of 75 ° to 100 °.
  • the bottom surface of the well has a contact angle with respect to pure water of 0 ° or more and 70 ° or less.
  • the difference between the contact angle of the inner surface of the well with pure water and the contact angle of the well bottom with pure water is preferably 5 degrees or more and 110 degrees or less.
  • the inner surface of the well is preferably roughened.
  • the inner surface of the well is preferably subjected to a surface treatment by a vapor phase method.
  • It is preferably formed of polystyrene, polyethylene terephthalate, or polycarbonate.
  • cells and tissues can be cultured, and these can be imaged with a phase contrast microscope while they are alive.
  • a plastic container 10 is a container for culturing living cells such as living cells and tissues, and a container for imaging (or observing) the cultured living cells with a phase contrast microscope. is there.
  • the plastic container 10 is a so-called multi-well plate, and has a plurality of wells 11 opened in a circular shape.
  • the well 11 is a recess for storing a living cell to be imaged after culturing and a culture solution for culturing the living cell.
  • a 96-well plate having 96 wells 11 in 8 rows and 12 columns is shown as an example, but the plastic container 10 only needs to have at least two wells 11. The number of is arbitrary.
  • a multiwell plate having 6, 24, or 384 wells 11 is often used.
  • Suitable materials for the plastic container 10 include, for example, polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE). ), Medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyether sulfone, polyethylene naphthalate, polypropylene, urethane acrylate and other acrylic materials, cellulose, glass and the like.
  • a resin such as a biodegradable polymer such as polylactic acid, polyglycolic acid, polycaprolactan, or a copolymer thereof can be used.
  • polyethylene terephthalate, polystyrene, and polycarbonate can be preferably used, and polystyrene can be particularly preferably used. This is because the cytotoxicity is low.
  • the surface of the plastic container 10 may be subjected to any surface treatment (for example, irradiation with plasma, corona, microwave, electron beam, ultraviolet light, etc.).
  • the well 11 is a non-through hole and is opened on the surface of the plastic container 10.
  • a living cell 13 to be cultured and a culture solution 12 (for example, serum solution) for culturing the living cell 13 are injected into the well 11 from the opening.
  • the culture solution 12 injected into the well 11 is always in the vicinity of the opening of the well 11 during culturing of the living cells 13 and during imaging with a phase contrast microscope. Contact with air. For this reason, the cultured living cells 13 are imaged (observed) with a phase contrast microscope while alive.
  • the well 11 has an opening diameter R of 0.5 mm or more and less than 2 cm, and a depth D of 2 mm or more and less than 2 cm.
  • the reason why the diameter R of the opening of the well 11 is 0.5 mm or more and less than 2 cm is that it is preferable for obtaining data that converges the number of living cells 13 cultured in the same environment without variation. .
  • the diameter R of the opening of the well 11 is more preferably 1 mm or more. When the diameter R of the opening of the well 11 is less than 2 cm, the meniscus of the liquid surface 12a of the culture solution 12 becomes prominent. Therefore, the present invention is particularly useful, and the diameter R of the opening of the well 11 is 1 cm or less. It is particularly suitable for the case.
  • the diameter of the opening of the well 11 is 6 mm, for example.
  • the diameter of the opening of the well 11 is 3 mm, for example. is there.
  • the depth D of the well 11 is the height from the bottom surface 11b of the well 11 to the opening (the surface of the plastic container 10), and the depth D of the well 11 is formed to be 2 mm or more. This is because a sufficient medium for culturing 13 and a sufficient amount of the culture solution 12 for culturing the living cells 13 are secured.
  • the depth D of the well 11 is formed to be less than 2 cm in order to prevent a decrease in the amount of light in the peripheral visual field due to vignetting when observing with a transmission microscope. If the depth D of the well 11 is in the range of 3 mm or more and 1 cm or less, it is particularly suitable for the culture and imaging of the living cells 13. Further, the amount of the culture solution 12 put into the well 11 is preferably 1 ⁇ 2 or less of the depth D of the well 11.
  • the inner surface 11a of the well 11 has water repellency. As shown in FIG. 3, the inner surface 11a of the well 11 is provided with, for example, a water-repellent coating 17 containing fluorine. When a minute droplet 16 of pure water is dropped, the droplet 16 and the well 11 11 has a water repellency such that the contact angle ⁇ with the inner side surface 11a is 75 degrees or more and 110 degrees or less.
  • the inner surface 11a of the well 11 preferably has water repellency such that the contact angle ⁇ with the pure water droplet 16 is 80 degrees or more and 100 degrees or less, and the contact angle ⁇ with the pure water droplet 16 is 85. It is particularly preferable that the angle is not less than 95 degrees and not more than 95 degrees.
  • the contact angle ⁇ can be measured with a commercially available contact angle meter by cutting out a part of the inner surface 11 a of the well 11 and dropping a pure water droplet 16.
  • the fluorine content of the water-repellent coat 17 is preferably 0.01 mg / cm 2 or more and less than 1.5 mg / cm 2 .
  • the fluorine content of the water-repellent coat 17 is less than 0.01 mg / cm 2 , there is a problem that pinholes are formed in the water-repellent coat 17 or the water-repellent coat 17 has low durability and thus dissolves. There is.
  • the fluorine content of the water repellent coat 17 is 1.5 mg / cm 2 or more, the water repellent coat 17 becomes thick and the observation field of the well 11 may be narrowed.
  • the bottom surface 11b of the well 11 has hydrophilicity.
  • the bottom surface 11b of the well 11 is subjected to a hydrophilic treatment on the surface of the material of the plastic container 10 by, for example, plasma treatment (IHI Technical Report Vol. 52 No. 4 (2012) p. 65) or corona treatment.
  • the contact angle ⁇ of the minute pure water droplet 16 with respect to the bottom surface 11 b of the well 11 is in the range of 0 degrees to 70 degrees.
  • the reason why the bottom surface 11b of the well 11 is hydrophilic is that the living cells 13 are stably adsorbed on the bottom surface 11b of the well 11 and cultured (growth).
  • the bottom surface 11b of the well 11 has a hydrophilic property so that the contact angle ⁇ of the pure water droplet 16 is 10 degrees or more and 65 degrees or less. .
  • the plastic container 10 includes the well 11 in which the diameter R and the depth D of the opening are determined, the inner side surface 11a has water repellency, and the bottom surface 11b has hydrophilicity.
  • the angle ⁇ 1 formed by the inner surface 11a of the well 11 and the liquid surface 12a of the culture solution 12 becomes approximately 90 degrees.
  • the components of the culture solution 12 may change for each of the plurality of wells 11 (or for each measurement in which the contents of the well 11 are replaced), but in any case, the culture solution 12 is still an aqueous solution.
  • an angle ⁇ 1 formed by the liquid surface 12a of the culture medium 12 with respect to the inner surface 11a of the well 11 can be obtained by simply using the plastic container 10 without floating a transparent flat plate on the culture liquid 12. It will be about 90 degrees.
  • the living cells 13 are set together with the plastic container 10 in a phase contrast microscope and imaged.
  • the phase contrast microscope 20 includes a light source 21 that emits illumination light, a phase difference observation capacitor 22, a phase difference observation objective lens 26, and an image sensor 29. Is arranged between the phase difference observation capacitor 22 and the phase difference observation objective lens 26.
  • the imaging sensor 29 is arranged at a position where the light from the phase difference observation objective lens 26 directly enters, but a mirror (not shown) is provided between the phase difference observation objective lens 26 and the imaging sensor 29. , And the light from the phase difference observation objective lens 26 may be bent 90 degrees by a mirror and incident on the image sensor 26.
  • the phase difference observation capacitor 22 includes a ring slit 23 provided with a slit on the ring and a condenser lens 24.
  • the illumination light emitted from the light source 21 is linked by the ring slit 23, and the plastic is formed by the condenser lens 24.
  • a specific well 11 of the container 10 is passed.
  • the phase difference observation objective lens 26 includes an objective lens 27 and a ring-like phase difference plate 28, and the light passing through the specific well 11 is imaged on the image sensor 29 by the objective lens 27. In the process, the phase difference of the light passing through the specific well 11 is shifted by the phase difference plate 28. If there are no living cells 13 in the well 11, the light of all the optical paths passes through the phase difference plate 28, so that an image with uniform brightness is captured as a whole.
  • the phase difference plate 28 advances the phase by a quarter wavelength or delays the wavelength by a quarter wavelength to cause these lights to interfere with each other.
  • the phase difference is imaged as contrast. That is, the imaging sensor 29 images the substantially transparent living cells 13 in the transparent culture solution 12.
  • the phase contrast microscope 20 images the phase difference of the diffracted light from the living cells 13 as a contrast. It is assumed that the surface 12 a is substantially perpendicular to the inner surface 11 a of the well 11 and no phase difference is caused by the culture solution 12. According to the plastic container 10, since the liquid surface 12a of the culture solution 12 is substantially perpendicular to the inner surface 11a of the well 11, the plastic container 10 that is a culture container for the living cells 13 is used as it is. With the phase-contrast microscope 20, the living cells 13 can be imaged with good image quality while being alive.
  • the liquid surface 12 a of the culture solution 12 is The angle ⁇ 2 formed with the inner surface 11a is larger than 90 degrees, and the liquid surface 12a of the culture solution 12 becomes a concave meniscus.
  • the angle ⁇ 3 formed by the liquid surface 12 a of the culture solution 12 and the inner surface 11 a of the well 11 is smaller than 90 degrees.
  • the liquid surface 12a becomes a convex meniscus.
  • the optical path length passing through the culture solution 12 differs depending on the position in the well 11, so that the light passing through the well 11 has a corresponding phase difference.
  • the meniscus on the liquid surface 12a of the culture solution 12 acts as a lens.
  • the inner surface 11a of the well 11 is substantially perpendicular to the front and back surfaces of the plastic container 10, but the well 11 has an inner surface 211a as in the plastic container 210 shown in FIG.
  • the well 211 may be inclined and constricted from the opening to the bottom surface 211b.
  • the well 221 may have a shape in which the inner side surface 221a is inclined and expands from the opening to the bottom surface 221b.
  • the liquid surface 12a of the culture solution 12 can be made substantially horizontal.
  • the plastic container 220 may be molded by injection integral molding, and the inner side surface 221a of the well 221 may be formed.
  • the first plate 231 provided with the holes to be formed and the second plate 232 forming the bottom surface 221b of the well 221 may be separately molded and pasted together.
  • the first plate provided with holes for forming the inner surface of the well and the second plate for forming the bottom surface of the well. And may be created separately and bonded together.
  • the well 11 is opened in a circular shape, but the opening shape of the well 11 is arbitrary, and may be opened in an arbitrary shape such as a quadrangle.
  • the inner side surface 11a of the well 11 has water repellency by providing the water repellent coat 17, but instead of providing the water repellent coat 17, the inner side surface 11a of the well 11 is roughened by sandblasting or the like. It may be made to have water repellency by surfaceizing and providing fine irregularities on the surface. Further, the inner surface 11a of the well 11 may be provided with water repellency by surface treatment by a vapor phase method such as atmospheric pressure plasma treatment or ultraviolet irradiation treatment.
  • the water repellent coating 17 containing fluorine gives the inner surface 11a of the well 11 water repellency.
  • the inner surface 11a of the well 11 is water repellent by coating with a silicone resin. May be given.
  • the inner surface 11a of the well 11 is given water repellency by the water repellent coat 17 containing fluorine.
  • a diamond-like coating is provided to provide the well 11
  • the inner side surface 11a may have water repellency.
  • the diamond-like coating is formed by, for example, a combination of atmospheric pressure plasma treatment and carbon coating.
  • the diamond-like coating formed in this case is diamond-like carbon.
  • a diamond-like coating can be formed using silicon (Si) instead of a carbon coating.
  • the inner surface 11 a of the well 11 may be given water repellency by exposing the base material of the plastic container 10 to the inner surface 11 a of the well 11. good.
  • the plastic container 10 is formed of polystyrene
  • the hydrophilic treatment is performed by plasma treatment or corona treatment
  • the contact angle ⁇ of the pure water droplet 16 with respect to polystyrene becomes 70 degrees or less. Otherwise, the contact angle ⁇ of the pure water droplet 16 with respect to polystyrene is about 91 degrees. Therefore, if polystyrene that has not been subjected to hydrophilic treatment is exposed on the inner side surface 11a of the well 11, the inner side surface 11a of the well 11 can have the same water repellency as in the above embodiment.
  • the thickness of the water repellent coat 17 is preferably 0.001 ⁇ m or more and 1000 ⁇ m or less.
  • the water-repellent layer and the layer subjected to various treatments for imparting water repellency water-repellent layer
  • the thickness of the treatment layer is preferably 0.001 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the water repellent coat 17 is preferably 0.02 ⁇ m or more. Furthermore, in order to prevent the water-repellent coat 17 from having a sufficient rubbing resistance, practically preventing the water-repellent from being lowered immediately, and to withstand repeated use, the water-repellent coat 17 The thickness is particularly preferably 0.5 ⁇ m or more.
  • the water repellent coat 17 and various treatments performed in place of the water repellent coat 17 do not need to be performed on the entire inner surface 11 a of the well 11.
  • the inner surface 11a of the well 11 only needs to have water repellency by the water-repellent coat 17 or the like in a range where at least the liquid surface of the culture solution 12 can contact the inner surface 11a of the well 11.
  • the water repellency of the inner surface 11a and the hydrophilicity of the bottom surface 11b of the well 11 can be set separately, but both the culture of the living cells 13 and the observation with the phase contrast microscope 20 are compatible.
  • the balance between the water repellency of the inner surface 11a of the well 11 and the hydrophilicity of the bottom surface 11b is important. Therefore, for example, the difference (
  • the image obtained by imaging the living cells 13 with the phase-contrast microscope 20 can be used, for example, to acquire the number of living cells 13 cultured by image processing.
  • the number of living cells 13 can be determined by, for example, detecting cells from an image by counting the number of cells using a threshold separation method such as the Otsu method, a method using machine learning such as a Level Set method, or the like. Can be acquired.
  • the plastic container 10 of the said embodiment since the living cell 13 can be imaged with the phase-contrast microscope 20 in the state of being alive, culture
  • the cell lineage tree can be obtained by the method of Kanade et al.
  • the living cell 13 is imaged by the phase contrast microscope 20 using the plastic container 10, but the plastic container 10 is also used for imaging and observation using other microscopes such as a transmission microscope. Is preferred.

Abstract

Provided is a plastic container in which cells or tissues can be cultured and an image of the cells or tissues can be taken in a living state with a phase contrast microscope. The plastic container (10) is a multi-well plate having at least two wells (11). The diameter R of the opening of each of the wells (11) is 0.5 mm or more and less than 2 cm, and the depth D of each of the wells (11) is 2 mm or more and less than 2 cm. The inside surface (11a) of each of the wells (11) has water repellency, and the bottom surface (11b) of each of the wells (11) has hydrophilicity.

Description

プラスチック製容器Plastic container
 本発明は、細胞や組織を培養し、かつ、培養した細胞や組織を観察するためのプラスチック製容器に関する。 The present invention relates to a plastic container for culturing cells and tissues and observing the cultured cells and tissues.
 近年、創薬や再生医療の分野において、染色等をせず、生きたままの細胞や組織(以下、生細胞という)を撮像する技術に注目が集まっている。位相差顕微鏡は、生細胞を撮像するための代表的な装置であり、リングスリットを有する位相差観察用コンデンサと、リング状の位相差板を有する位相差観察用対物レンズとを備える。生細胞はプラスチック製容器に入れられた状態で、位相差観察用コンデンサと位相差観察用対物レンズとの間に配置され、撮像される。近年ではスクリーニングをハイスループット化するために、位相差顕微鏡で用いられるプラスチック製容器は、生細胞を培養するための培養容器を兼ねており、生細胞を培養及び観察するための複数の凹部(以下、ウェルという)を有している。このようなプラスチック製容器は、マイクロプレート、マイクロタイタープレート、マイクロウェルプレート、マルチウェルプレート、または、ウェルプレート等と呼ばれる。 In recent years, in the fields of drug discovery and regenerative medicine, attention has been focused on techniques for imaging living cells and tissues (hereinafter referred to as live cells) without staining. The phase contrast microscope is a typical device for imaging live cells, and includes a phase difference observation capacitor having a ring slit and a phase difference observation objective lens having a ring-shaped phase difference plate. Living cells are placed in a plastic container and placed between a phase difference observation capacitor and a phase difference observation objective lens and imaged. In recent years, in order to increase the throughput of screening, a plastic container used in a phase-contrast microscope also serves as a culture container for culturing living cells, and has a plurality of recesses (hereinafter referred to as culturing and observing living cells). , Well). Such a plastic container is called a microplate, a microtiter plate, a microwell plate, a multiwell plate, a well plate, or the like.
 ところで、プラスチック製容器(あるいはウェルの内壁)の培養液に対する性質や、ウェルの開口の大きさによっては、生細胞を培養するための培養液の表面が凹状または凸状に湾曲する場合がある。すなわち、培養液の液面がメニスカスになる場合がある。培養液の液面がメニスカスになっていると、ウェルの壁面付近とウェルの中央付近とで、培養液中を通過する光に位相差が生じる。また、培養液の液面のメニスカスがレンズとして作用してしまう。位相差顕微鏡は、位相差をコントラストに変換して観察するので、培養液液面のメニスカスによって、ウェル内での位置による位相差が生じたりすると、生細胞を正常に撮像できないことや、生細胞を撮像できるとしても、画質が良くない場合がある。このため、ウェルに入れた培養液の液面に、透明な平板を浮かせることにより、培養液の液面を平面化する方法が知られている(特許第3133786号)。 By the way, depending on the nature of the plastic container (or the inner wall of the well) with respect to the culture solution and the size of the opening of the well, the surface of the culture solution for culturing living cells may be curved in a concave or convex shape. That is, the liquid level of the culture solution may become a meniscus. When the liquid level of the culture solution is a meniscus, a phase difference occurs in the light passing through the culture solution between the vicinity of the well wall and the center of the well. In addition, the meniscus on the surface of the culture solution acts as a lens. Since the phase contrast microscope observes the phase difference by converting it into contrast, if the phase difference due to the position in the well occurs due to the meniscus on the liquid surface of the culture solution, it is impossible to image live cells normally. May be imaged, the image quality may not be good. For this reason, a method of flattening the liquid level of the culture solution by floating a transparent flat plate on the level of the culture solution placed in the well is known (Japanese Patent No. 3133786).
 この他、上記のように位相差顕微鏡で用いるのに好適なプラスチック製容器ではないが、生物分野や生化学分野では、様々な工夫がされたプラスチック製容器が知られている。例えば、ウェルの内側面を撥水性(疎水性)にし、底面を親水性にすることで、DNA(DeoxyriboNucleic Acid)等の親水性溶液をウェルの底面にスムースに誘導するようにしたプラスチック製容器が知られている(特開2002-065299号公報)。同様に、試薬分析用のプラスチック製容器においても、ウェルの内側面を撥水性にし、底面を親水性にすることで、親水性溶液をウェルの底面にスムースに誘導する場合がある(特表2002-525573号公報)。ウェルに入れる水溶液を溢れ難くしたり、ウェル間での試料混入による汚染(クロスコンタミネーション)を防止したりするために、ウェルの内側面を撥水性にするプラスチック製容器も知られている(特開2003-066033号公報,特開2004-212359号公報)。 In addition, although not a plastic container suitable for use in a phase-contrast microscope as described above, plastic containers with various contrivances are known in the biological and biochemical fields. For example, by making the inner surface of the well water repellent (hydrophobic) and making the bottom surface hydrophilic, a plastic container that smoothly guides a hydrophilic solution such as DNA (DeoxyriboNucleic® Acid) to the bottom surface of the well Known (Japanese Patent Laid-Open No. 2002-065299). Similarly, in a plastic container for reagent analysis, a hydrophilic solution may be smoothly guided to the bottom surface of the well by making the inner surface of the well water-repellent and making the bottom surface hydrophilic (see Japanese translation 2002). -525573). Plastic containers that make the inner surface of the well water-repellent are also known to make it difficult for the aqueous solution in the well to overflow or to prevent contamination due to sample contamination between the wells (cross-contamination). JP 2003-066033, JP 2004-212359 A).
 特許第3133786号のように、ウェルに入れた培養液の液面に透明な平板を浮かせると、培養液の液面を平面化し、メニスカスを低減することができるが、培養液内の生細胞への酸素の供給路が絶たれてしまう。このため、培養液の液面に透明な平板を浮かせてメニスカスを低減すると、生細胞は死滅し、あるいは、生細胞に多大なストレスを与えてしまうので、この方法で生細胞を撮像し、観察するのは困難である。 As in Japanese Patent No. 3133786, if a transparent flat plate is floated on the liquid level of the culture solution placed in the well, the liquid level of the culture solution can be flattened and meniscus can be reduced. The oxygen supply path is cut off. For this reason, if the meniscus is reduced by floating a transparent flat plate on the liquid surface of the culture solution, the living cells will die or give a lot of stress to the living cells. It is difficult to do.
 すなわち、生細胞を培養し、生きたままの状態で撮像し、観察するためには、ウェルは開口させておくことが必要である。そして、位相差顕微鏡で生細胞を撮像するためには、ウェルを開口させた状態で、培養液の液面に生じるメニスカスを低減する必要がある。 That is, in order to cultivate live cells, image and observe in a live state, it is necessary to keep the well open. And in order to image a living cell with a phase-contrast microscope, it is necessary to reduce the meniscus which arises on the liquid level of a culture solution in the state which opened the well.
 本発明は、細胞や組織を培養し、これらを生きたままの状態で位相差顕微鏡によって撮像することができるプラスチック製容器を提供することを目的とする。 An object of the present invention is to provide a plastic container capable of culturing cells and tissues and imaging them with a phase-contrast microscope while they are alive.
 本発明のプラスチック製容器は、開口の円相当径が0.5mm以上2cm未満であり、深さが2mm以上2cm未満であり、内側面が撥水性を有し、かつ、底面が親水性を有するウェルを、少なくとも2つ以上備える。 The plastic container of the present invention has an equivalent circle diameter of an opening of 0.5 mm or more and less than 2 cm, a depth of 2 mm or more and less than 2 cm, an inner surface having water repellency, and a bottom surface having hydrophilicity. At least two wells are provided.
 ウェルの内側面には、フッ素を含む撥水性コートが設けられており、撥水性コートは、フッ素含有量が0.01mg/cm2以上1.5mg/cm2未満であることが好ましい。 A water-repellent coat containing fluorine is provided on the inner side surface of the well, and the water-repellent coat preferably has a fluorine content of 0.01 mg / cm 2 or more and less than 1.5 mg / cm 2 .
 ウェルの内側面は、ダイヤモンドライクコーティングが設けられていることが好ましい。 The inner surface of the well is preferably provided with a diamond-like coating.
 ウェルの内側面は、純水に対する接触角が75度以上100度以下であることが好ましい。 The inner surface of the well preferably has a contact angle with pure water of 75 ° to 100 °.
 ウェルの底面は、純水に対する接触角が0度以上70度以下であることが好ましい。 It is preferable that the bottom surface of the well has a contact angle with respect to pure water of 0 ° or more and 70 ° or less.
 ウェルの内側面の純水に対する接触角と、ウェルの底面の純水に対する接触角との差が、5度以上110度以下であることが好ましい。 The difference between the contact angle of the inner surface of the well with pure water and the contact angle of the well bottom with pure water is preferably 5 degrees or more and 110 degrees or less.
 ウェルの内側面は、粗面化されていることが好ましい。 The inner surface of the well is preferably roughened.
 ウェルの内側面は、気相法による表面処理が施されていることが好ましい。 The inner surface of the well is preferably subjected to a surface treatment by a vapor phase method.
 ポリスチレン、ポリエチレンテレフタレート、またはポリカーボネートで形成されていることが好ましい。 It is preferably formed of polystyrene, polyethylene terephthalate, or polycarbonate.
 本発明のプラスチック製容器によれは、細胞や組織を培養し、これらを生きたままの状態で位相差顕微鏡によって撮像することができる。 According to the plastic container of the present invention, cells and tissues can be cultured, and these can be imaged with a phase contrast microscope while they are alive.
プラスチック製容器の外観図である。It is an external view of a plastic container. プラスチック製容器の断面図である。It is sectional drawing of a plastic container. ウェルの内側面に対する純水の接触角を示す説明図である。It is explanatory drawing which shows the contact angle of the pure water with respect to the inner surface of a well. ウェルの底面に対する純水の接触角を示す説明図である。It is explanatory drawing which shows the contact angle of the pure water with respect to the bottom face of a well. 培養液の液面を示す説明図である。It is explanatory drawing which shows the liquid level of a culture solution. 位相差顕微鏡の説明図である。It is explanatory drawing of a phase-contrast microscope. 比較例のプラスチック製容器における培養液の液面を示す説明図である。It is explanatory drawing which shows the liquid level of the culture solution in the plastic container of a comparative example. 比較例のプラスチック製容器における培養液の液面を示す説明図である。It is explanatory drawing which shows the liquid level of the culture solution in the plastic container of a comparative example. 内側面が傾斜したウェルを有するプラスチック製容器である。It is a plastic container having a well whose inner surface is inclined. 内側面が傾斜したウェルを有するプラスチック製容器である。It is a plastic container having a well whose inner surface is inclined.
 図1に示すように、プラスチック製容器10は、生物の細胞や組織等の生細胞を培養する容器であり、かつ、培養した生細胞を位相差顕微鏡で撮像(あるいは観察)するための容器である。また、プラスチック製容器10は、いわゆるマルチウェルプレートであり、円形に開口された複数のウェル11を有している。ウェル11は、培養及び培養後に撮像する生細胞と生細胞を培養するための培養液を入れる凹部である。図1では、一例として、8行12列の96個のウェル11を有する96ウェルプレートを示しているが、プラスチック製容器10は、ウェル11を少なくとも2つ以上有していれば良く、ウェル11の個数は任意である。96ウェルプレートの他には、ウェル11が、6個、24個、または384個のマルチウェルプレートがよく用いられる。 As shown in FIG. 1, a plastic container 10 is a container for culturing living cells such as living cells and tissues, and a container for imaging (or observing) the cultured living cells with a phase contrast microscope. is there. The plastic container 10 is a so-called multi-well plate, and has a plurality of wells 11 opened in a circular shape. The well 11 is a recess for storing a living cell to be imaged after culturing and a culture solution for culturing the living cell. In FIG. 1, a 96-well plate having 96 wells 11 in 8 rows and 12 columns is shown as an example, but the plastic container 10 only needs to have at least two wells 11. The number of is arbitrary. In addition to the 96 well plate, a multiwell plate having 6, 24, or 384 wells 11 is often used.
 プラスチック製容器10に好適な材料は、例えば、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリカーボネート(PC)、TAC(トリアセチルセルロース)、ポリイミド(PI)、ナイロン(Ny)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、塩化ビニル、塩化ビニリデン、ポリフェニレンサルファイド、ポリエーテルサルフォン、ポリエチレンナフタレート、ポリプロピレン、ウレタンアクリレート等のアクリル系材料、セルロース、ガラス等が挙げられる。また、ポリ乳酸、ポリグリコール酸、ポリカプロラクタン、もしくはその共重合体のような生分解性ポリマー等の樹脂等を用いることができる。これらのなかでも、ポリエチレンテレフタレート、ポリスチレン、ポリカーボネートを好ましく用いることができ、特に、ポリスチレンを好ましく用いることができる。細胞毒性が低いからである。また、プラスチック製容器10の表面は、任意の表面処理(例えば、プラズマ、コロナ、マイクロウェーブ、電子線および紫外線等の照射等)が施されていても良い。 Suitable materials for the plastic container 10 include, for example, polyethylene terephthalate (PET), polystyrene (PS), polycarbonate (PC), TAC (triacetyl cellulose), polyimide (PI), nylon (Ny), low density polyethylene (LDPE). ), Medium density polyethylene (MDPE), vinyl chloride, vinylidene chloride, polyphenylene sulfide, polyether sulfone, polyethylene naphthalate, polypropylene, urethane acrylate and other acrylic materials, cellulose, glass and the like. In addition, a resin such as a biodegradable polymer such as polylactic acid, polyglycolic acid, polycaprolactan, or a copolymer thereof can be used. Among these, polyethylene terephthalate, polystyrene, and polycarbonate can be preferably used, and polystyrene can be particularly preferably used. This is because the cytotoxicity is low. Further, the surface of the plastic container 10 may be subjected to any surface treatment (for example, irradiation with plasma, corona, microwave, electron beam, ultraviolet light, etc.).
 図2に示すように、ウェル11は非貫通孔であり、プラスチック製容器10の表面に開口されている。ウェル11には、開口から、培養する生細胞13と生細胞13を培養するための培養液12(例えば血清液)とが注入される。プラスチック製容器10を用いる場合、ウェル11は開口されているので、ウェル11に注入された培養液12は、生細胞13の培養中及び位相差顕微鏡での撮像時にも常にウェル11の開口近傍で空気に接触する。このため、培養された生細胞13は生きたまま位相差顕微鏡によって撮像(観察)される。 As shown in FIG. 2, the well 11 is a non-through hole and is opened on the surface of the plastic container 10. A living cell 13 to be cultured and a culture solution 12 (for example, serum solution) for culturing the living cell 13 are injected into the well 11 from the opening. When the plastic container 10 is used, since the well 11 is opened, the culture solution 12 injected into the well 11 is always in the vicinity of the opening of the well 11 during culturing of the living cells 13 and during imaging with a phase contrast microscope. Contact with air. For this reason, the cultured living cells 13 are imaged (observed) with a phase contrast microscope while alive.
 プラスチック製容器10では、ウェル11は、開口の直径Rが0.5mm以上2cm未満に形成され、深さDが2mm以上2cm未満に形成されている。ウェル11の開口の直径Rが0.5mm以上2cm未満に形成されているのは、同一環境下で培養された生細胞13の細胞数をばらつきなく収束したデータを取得するために好ましいからである。ウェル11の開口の直径Rは、1mm以上であることがより好ましい。ウェル11の開口の直径Rが2cm未満の場合には、培養液12の液面12aのメニスカスが顕著になるので、本発明が特に有用であり、ウェル11の開口の直径Rは1cm以下である場合に特に好適である。例えば、96個のウェル11を有する96ウェルプレートの場合、ウェル11の開口の直径は例えば6mmである、384個のウェル11を有する384ウェルプレートの場合、ウェル11の開口の直径は例えば3mmである。 In the plastic container 10, the well 11 has an opening diameter R of 0.5 mm or more and less than 2 cm, and a depth D of 2 mm or more and less than 2 cm. The reason why the diameter R of the opening of the well 11 is 0.5 mm or more and less than 2 cm is that it is preferable for obtaining data that converges the number of living cells 13 cultured in the same environment without variation. . The diameter R of the opening of the well 11 is more preferably 1 mm or more. When the diameter R of the opening of the well 11 is less than 2 cm, the meniscus of the liquid surface 12a of the culture solution 12 becomes prominent. Therefore, the present invention is particularly useful, and the diameter R of the opening of the well 11 is 1 cm or less. It is particularly suitable for the case. For example, in the case of a 96 well plate having 96 wells 11, the diameter of the opening of the well 11 is 6 mm, for example. In the case of a 384 well plate having 384 wells 11, the diameter of the opening of the well 11 is 3 mm, for example. is there.
 ウェル11の深さDとは、ウェル11の底面11bから開口(プラスチック製容器10の表面)までの高さであり、ウェル11の深さDが2mm以上に形成されているのは、生細胞13を培養するために十分な培地を確保し、かつ、生細胞13を培養するために十分な培養液12の量を確保するためである。ウェル11の深さDが2cm未満に形成されているのは、透過型顕微鏡で観察する場合のケラレによる周辺視野の光量低下を防ぐためである。ウェル11の深さDが3mm以上1cm以下の範囲内であれば、生細胞13の培養及び撮像に特に好適である。また、ウェル11に入れる培養液12の量は、ウェル11の深さDの1/2以下であることが好ましい。 The depth D of the well 11 is the height from the bottom surface 11b of the well 11 to the opening (the surface of the plastic container 10), and the depth D of the well 11 is formed to be 2 mm or more. This is because a sufficient medium for culturing 13 and a sufficient amount of the culture solution 12 for culturing the living cells 13 are secured. The depth D of the well 11 is formed to be less than 2 cm in order to prevent a decrease in the amount of light in the peripheral visual field due to vignetting when observing with a transmission microscope. If the depth D of the well 11 is in the range of 3 mm or more and 1 cm or less, it is particularly suitable for the culture and imaging of the living cells 13. Further, the amount of the culture solution 12 put into the well 11 is preferably ½ or less of the depth D of the well 11.
 また、ウェル11の内側面11aは、撥水性を有している。図3に示すように、ウェル11の内側面11aには、例えば、フッ素を含む撥水性コート17が設けられており、純水の微小な液滴16を滴下した場合に、液滴16とウェル11の内側面11aとの接触角αが、75度以上110度以下になる撥水性を有する。ウェル11の内側面11aは、純水の液滴16との接触角αが80度以上100度以下になる撥水性を有することがより好ましく、純水の液滴16との接触角αが85度以上95度以下であることが特に好ましい。接触角αは、ウェル11の内側面11aの一部を切り出し、純水の液滴16を滴下して市販の接触角計によって測定することができる。撥水性コート17のフッ素含有量は0.01mg/cm2以上1.5mg/cm2未満であることが好ましい。撥水性コート17のフッ素含有量が0.01mg/cm2未満の場合、撥水性コート17にピンホールが形成される、撥水性コート17の耐久性が低いために溶解するなどの不具合が生じる場合がある。また、撥水性コート17のフッ素含有量が1.5mg/cm2以上の場合、撥水性コート17が厚くなり、ウェル11の観察視野が狭くなってしまう場合がある。 The inner surface 11a of the well 11 has water repellency. As shown in FIG. 3, the inner surface 11a of the well 11 is provided with, for example, a water-repellent coating 17 containing fluorine. When a minute droplet 16 of pure water is dropped, the droplet 16 and the well 11 11 has a water repellency such that the contact angle α with the inner side surface 11a is 75 degrees or more and 110 degrees or less. The inner surface 11a of the well 11 preferably has water repellency such that the contact angle α with the pure water droplet 16 is 80 degrees or more and 100 degrees or less, and the contact angle α with the pure water droplet 16 is 85. It is particularly preferable that the angle is not less than 95 degrees and not more than 95 degrees. The contact angle α can be measured with a commercially available contact angle meter by cutting out a part of the inner surface 11 a of the well 11 and dropping a pure water droplet 16. The fluorine content of the water-repellent coat 17 is preferably 0.01 mg / cm 2 or more and less than 1.5 mg / cm 2 . When the fluorine content of the water-repellent coat 17 is less than 0.01 mg / cm 2 , there is a problem that pinholes are formed in the water-repellent coat 17 or the water-repellent coat 17 has low durability and thus dissolves. There is. When the fluorine content of the water repellent coat 17 is 1.5 mg / cm 2 or more, the water repellent coat 17 becomes thick and the observation field of the well 11 may be narrowed.
 ウェル11の底面11bは、親水性を有する。ウェル11の底面11bは、例えば、プラズマ処理(IHI技報Vol.52 No.4(2012) p.65)やコロナ処理等によって、プラスチック製容器10の材料の表面に対して親水化処理が施されており、図4に示すように、ウェル11の底面11bに対する純水の微小な液滴16の接触角βは、0度以上70度以下担っている。ウェル11の底面11bに親水性を持たせているのは、生細胞13をウェル11の底面11bに安定的に吸着させ、培養(成長)させるためである。生細胞13を安定して培養するためには、ウェル11の底面11bは、純水の液滴16の接触角βが10度以上65度以下になる親水性を有していることが特に好ましい。 The bottom surface 11b of the well 11 has hydrophilicity. The bottom surface 11b of the well 11 is subjected to a hydrophilic treatment on the surface of the material of the plastic container 10 by, for example, plasma treatment (IHI Technical Report Vol. 52 No. 4 (2012) p. 65) or corona treatment. As shown in FIG. 4, the contact angle β of the minute pure water droplet 16 with respect to the bottom surface 11 b of the well 11 is in the range of 0 degrees to 70 degrees. The reason why the bottom surface 11b of the well 11 is hydrophilic is that the living cells 13 are stably adsorbed on the bottom surface 11b of the well 11 and cultured (growth). In order to stably culture the living cells 13, it is particularly preferable that the bottom surface 11b of the well 11 has a hydrophilic property so that the contact angle β of the pure water droplet 16 is 10 degrees or more and 65 degrees or less. .
 プラスチック製容器10は、上記のように、開口の直径R及び深さDが定められ、内側面11aが撥水性を有し、かつ、底面11bが親水性を有するウェル11を備えている。このため、図5に示すように、ウェル11に生細胞13と培養液12を注入すると、ウェル11の内側面11aと培養液12の液面12aのなす角γ1は、概ね90度になる。培養液12の成分は、複数あるウェル11毎に(あるいはウェル11の内容物を入れ替えた測定毎に)変わることがあるが、何れの場合も培養液12が水溶液であることに変わりはないので、プラスチック製容器10を用いれば、透明な平板を培養液12に浮かせるまでもなく、プラスチック製容器10を用いるだけで、ウェル11の内側面11aに対する培養液12の液面12aのなす角度γ1は概ね90度になる。 As described above, the plastic container 10 includes the well 11 in which the diameter R and the depth D of the opening are determined, the inner side surface 11a has water repellency, and the bottom surface 11b has hydrophilicity. For this reason, as shown in FIG. 5, when the living cells 13 and the culture solution 12 are injected into the well 11, the angle γ1 formed by the inner surface 11a of the well 11 and the liquid surface 12a of the culture solution 12 becomes approximately 90 degrees. The components of the culture solution 12 may change for each of the plurality of wells 11 (or for each measurement in which the contents of the well 11 are replaced), but in any case, the culture solution 12 is still an aqueous solution. If the plastic container 10 is used, an angle γ1 formed by the liquid surface 12a of the culture medium 12 with respect to the inner surface 11a of the well 11 can be obtained by simply using the plastic container 10 without floating a transparent flat plate on the culture liquid 12. It will be about 90 degrees.
 プラスチック製容器10で培養された生細胞13を培養した後、あるいは生細胞13の培養の過程で、生細胞13はプラスチック製容器10ごと位相差顕微鏡にセットされ、撮像される。例えば、図6に示すように、位相差顕微鏡20は、照明光を発する光源21と、位相差観察用コンデンサ22と、位相差観察用対物レンズ26と、撮像センサ29を備え、プラスチック製容器10は、位相差観察用コンデンサ22と位相差観察用対物レンズ26との間に配置される。なお、図6では、位相差観察用対物レンズ26からの光が直接入射する位置に撮像センサ29を配置しているが、位相差観察用対物レンズ26と撮像センサ29の間には図示しないミラーを配置し、位相差観察用対物レンズ26からの光をミラーによって90度曲げて撮像センサ26に入射するようにしても良い。 After culturing the living cells 13 cultured in the plastic container 10, or in the process of culturing the living cells 13, the living cells 13 are set together with the plastic container 10 in a phase contrast microscope and imaged. For example, as shown in FIG. 6, the phase contrast microscope 20 includes a light source 21 that emits illumination light, a phase difference observation capacitor 22, a phase difference observation objective lens 26, and an image sensor 29. Is arranged between the phase difference observation capacitor 22 and the phase difference observation objective lens 26. In FIG. 6, the imaging sensor 29 is arranged at a position where the light from the phase difference observation objective lens 26 directly enters, but a mirror (not shown) is provided between the phase difference observation objective lens 26 and the imaging sensor 29. , And the light from the phase difference observation objective lens 26 may be bent 90 degrees by a mirror and incident on the image sensor 26.
 位相差観察用コンデンサ22は、リング上のスリットが設けられたリングスリット23とコンデンサレンズ24を有しており、光源21が発した照明光をリングスリット23によってリンク状にし、コンデンサレンズ24によってプラスチック製容器10の特定のウェル11を通過させる。位相差観察用対物レンズ26は、対物レンズ27とリング状の位相差板28とを有しており、特定のウェル11を通過した光を対物レンズ27によって撮像センサ29に結像させる。その過程で、位相差板28によって特定のウェル11を通過した光の位相差をずらす。ウェル11に生細胞13がなければ、全ての光路の光が位相差板28を通るので、全体が均一な明るさの像が撮像される。 The phase difference observation capacitor 22 includes a ring slit 23 provided with a slit on the ring and a condenser lens 24. The illumination light emitted from the light source 21 is linked by the ring slit 23, and the plastic is formed by the condenser lens 24. A specific well 11 of the container 10 is passed. The phase difference observation objective lens 26 includes an objective lens 27 and a ring-like phase difference plate 28, and the light passing through the specific well 11 is imaged on the image sensor 29 by the objective lens 27. In the process, the phase difference of the light passing through the specific well 11 is shifted by the phase difference plate 28. If there are no living cells 13 in the well 11, the light of all the optical paths passes through the phase difference plate 28, so that an image with uniform brightness is captured as a whole.
 一方、ウェル11に生細胞13があると、生細胞13を通る光と、培養液12だけを通る光との間には光路長に差が生じる。このため、位相差板28によって位相を1/4波長進め、または1/4波長遅らせることによって、これらの各光を干渉させることにより、生細胞13を通る光と培養液12だけを通る光との位相差がコントラストとして撮像される。すなわち、透明な培養液12中にあるほぼ透明な生細胞13が撮像センサ29によって撮像される。 On the other hand, if there are living cells 13 in the well 11, a difference occurs in the optical path length between the light passing through the living cells 13 and the light passing through only the culture solution 12. For this reason, the phase difference plate 28 advances the phase by a quarter wavelength or delays the wavelength by a quarter wavelength to cause these lights to interfere with each other. The phase difference is imaged as contrast. That is, the imaging sensor 29 images the substantially transparent living cells 13 in the transparent culture solution 12.
 上記のように、位相差顕微鏡20でウェル11中にある生細胞13を撮像する場合、位相差顕微鏡20は、生細胞13による回折光の位相差をコントラストとして撮像するので、培養液12の液面12aがウェル11の内側面11aに対して略垂直であり、培養液12によって位相差が生じないことが前提となっている。プラスチック製容器10によれば、ウェル11の内側面11aに対して培養液12の液面12aはほぼ垂直になっているので、生細胞13の培養容器であるプラスチック製容器10をそのまま用い、位相差顕微鏡20で生細胞13を生きたままの状態で良好な画質で撮像することができる。 As described above, when imaging the living cells 13 in the well 11 with the phase contrast microscope 20, the phase contrast microscope 20 images the phase difference of the diffracted light from the living cells 13 as a contrast. It is assumed that the surface 12 a is substantially perpendicular to the inner surface 11 a of the well 11 and no phase difference is caused by the culture solution 12. According to the plastic container 10, since the liquid surface 12a of the culture solution 12 is substantially perpendicular to the inner surface 11a of the well 11, the plastic container 10 that is a culture container for the living cells 13 is used as it is. With the phase-contrast microscope 20, the living cells 13 can be imaged with good image quality while being alive.
 例えば図7に示すように、ウェル11の寸法や内側面11aまたは底面13bの特性が上記実施形態の特性を満たさない比較例のプラスチック製容器110では、培養液12の液面12aがウェル11の内側面11aとなす角γ2が90度よりも大きくなって、培養液12の液面12aは凹状のメニスカスになる。同様に、例えば図8に示すように、比較例のプラスチック製容器120では、培養液12の液面12aがウェル11の内側面11aとなす角γ3が90度よりも小さくなって、培養液12の液面12aは凸状のメニスカスになる。これらのように、培養液12の液面12aがメニスカスになると、ウェル11内の位置によって培養液12を通過する光路長が違うので、ウェル11を通過する光にはその分の位相差が生じる。また、培養液12の液面12aのメニスカスによってレンズとして作用してしまう。これらのことから、上記実施形態の特性を満たさない比較例のプラスチック製容器110,120では、生細胞13を正しく撮像できなかったり、画質が悪かったりするが、上記実施形態のプラスチック製容器10によれば、こうした不具合がなく、生細胞13を生きたままの状態で位相差顕微鏡20によって正しくかつ高画質で撮像することができる。 For example, as shown in FIG. 7, in the plastic container 110 of the comparative example in which the dimensions of the well 11 and the characteristics of the inner surface 11 a or the bottom surface 13 b do not satisfy the characteristics of the above embodiment, the liquid surface 12 a of the culture solution 12 is The angle γ2 formed with the inner surface 11a is larger than 90 degrees, and the liquid surface 12a of the culture solution 12 becomes a concave meniscus. Similarly, for example, as shown in FIG. 8, in the plastic container 120 of the comparative example, the angle γ3 formed by the liquid surface 12 a of the culture solution 12 and the inner surface 11 a of the well 11 is smaller than 90 degrees. The liquid surface 12a becomes a convex meniscus. As described above, when the liquid surface 12a of the culture solution 12 becomes a meniscus, the optical path length passing through the culture solution 12 differs depending on the position in the well 11, so that the light passing through the well 11 has a corresponding phase difference. . Further, the meniscus on the liquid surface 12a of the culture solution 12 acts as a lens. For these reasons, in the plastic containers 110 and 120 of the comparative example that do not satisfy the characteristics of the above embodiment, the live cells 13 cannot be imaged correctly or the image quality is poor, but the plastic container 10 of the above embodiment has the same effect. According to this, there is no such inconvenience, and the living cell 13 can be imaged correctly and with high image quality by the phase-contrast microscope 20 in a state where it is alive.
 上記実施形態では、プラスチック製容器10の表面及び裏面に対して、ウェル11の内側面11aが略垂直であるが、ウェル11は、図9に示すプラスチック製容器210のように、内側面211aが傾斜し、開口から底面211bにかけて窄まる形状のウェル211にしても良い。また、図10に示すプラスチック製容器220のように、内側面221aが傾斜し、開口から底面221bにかけて拡がる形状のウェル221にしても良い。プラスチック製容器210,220のように、内側面が傾斜したウェルを形成する場合も、ウェルの内側面の傾斜が数度程度であれば、上記実施形態のプラスチック製容器10のウェル11と同様に形成すれば、培養液12の液面12aを略水平にすることができる。 In the above embodiment, the inner surface 11a of the well 11 is substantially perpendicular to the front and back surfaces of the plastic container 10, but the well 11 has an inner surface 211a as in the plastic container 210 shown in FIG. The well 211 may be inclined and constricted from the opening to the bottom surface 211b. Further, like the plastic container 220 shown in FIG. 10, the well 221 may have a shape in which the inner side surface 221a is inclined and expands from the opening to the bottom surface 221b. In the case of forming a well having an inclined inner surface like the plastic containers 210 and 220, as long as the inclination of the inner surface of the well is about several degrees, similar to the well 11 of the plastic container 10 of the above embodiment. If formed, the liquid surface 12a of the culture solution 12 can be made substantially horizontal.
 また、図10に示すプラスチック製容器220のように、開口から底面221bにかけて拡がる形状のウェル221を形成する場合、プラスチック製容器220の成形方法は射出一体成型でも良く、ウェル221の内側面221aを形成する孔を設けた第1プレート231と、ウェル221の底面221bを形成する第2プレート232とをそれぞれ別々に成形し、これらを貼合成形しても良い。もちろん、上記実施形態のプラスチック製容器10や図9に示すプラスチック製容器210を作製する場合も、ウェルの内側面を形成する孔を設けた第1プレートと、ウェルの底面を形成する第2プレートとを別々に作成し、これらを貼合しても良い。 In the case of forming a well 221 having a shape that expands from the opening to the bottom surface 221b as in the plastic container 220 shown in FIG. 10, the plastic container 220 may be molded by injection integral molding, and the inner side surface 221a of the well 221 may be formed. The first plate 231 provided with the holes to be formed and the second plate 232 forming the bottom surface 221b of the well 221 may be separately molded and pasted together. Of course, also in the case of producing the plastic container 10 of the above embodiment and the plastic container 210 shown in FIG. 9, the first plate provided with holes for forming the inner surface of the well and the second plate for forming the bottom surface of the well. And may be created separately and bonded together.
 上記実施形態では、ウェル11は円形に開口しているが、ウェル11の開口形状は任意であり、四角形等、任意の形状に開口していても良い。この場合、上記実施形態におけるウェル11の開口の直径Rとは、開口の面積を円に換算した場合の直径(以下、円相当径という)である。例えば、1辺が長さpの正方形の場合、R=2(p2/π)1/2である。 In the above-described embodiment, the well 11 is opened in a circular shape, but the opening shape of the well 11 is arbitrary, and may be opened in an arbitrary shape such as a quadrangle. In this case, the diameter R of the opening of the well 11 in the above embodiment is a diameter when the area of the opening is converted into a circle (hereinafter referred to as an equivalent circle diameter). For example, in the case of a square with one side having a length p, R = 2 (p 2 / π) 1/2 .
 上記実施形態では、ウェル11の内側面11aは、撥水性コート17を設けることによって撥水性を有しているが、撥水性コート17を設ける代わりに、ウェル11の内側面11aをサンドブラスト等により粗面化し、表面に細かい凹凸を設けることにより撥水性を持たせても良い。また、大気圧プラズマ処理や紫外線照射処理等の気相法による表面処理によって、ウェル11の内側面11aに撥水性を持たせても良い。 In the above embodiment, the inner side surface 11a of the well 11 has water repellency by providing the water repellent coat 17, but instead of providing the water repellent coat 17, the inner side surface 11a of the well 11 is roughened by sandblasting or the like. It may be made to have water repellency by surfaceizing and providing fine irregularities on the surface. Further, the inner surface 11a of the well 11 may be provided with water repellency by surface treatment by a vapor phase method such as atmospheric pressure plasma treatment or ultraviolet irradiation treatment.
 上記実施形態では、フッ素を含む撥水性コート17(いわゆるフッ素コーティング)によってウェル11の内側面11aに撥水性を持たせているが、シリコーン樹脂をコーティングすることによってウェル11の内側面11aに撥水性を持たせても良い。 In the above embodiment, the water repellent coating 17 containing fluorine (so-called fluorine coating) gives the inner surface 11a of the well 11 water repellency. However, the inner surface 11a of the well 11 is water repellent by coating with a silicone resin. May be given.
 上記実施形態では、フッ素を含む撥水性コート17によってウェル11の内側面11aに撥水性を持たせているが、フッ素を含む撥水性コート17の代わりに、ダイヤモンドライクコーティングを設けることにより、ウェル11の内側面11aに撥水性を持たせても良い。ダイヤモンドライクコーティングは、例えば、大気圧プラズマ処理とカーボンコーティングの組み合わせによって形成される。この場合に形成されるダイヤモンドライクコーティングは、ダイヤモンドライクカーボン(Diamond‐Like Carbon)である。カーボンコーティングの代わりにシリコン(Si)を用いてダイヤモンドライクコーティングを形成することができる。ダイヤモンドライクコーティングを用いる場合、培養液12の液面12aのメニスカス形状の経時安定性に特に優れ、環境安全性も高い。 In the above embodiment, the inner surface 11a of the well 11 is given water repellency by the water repellent coat 17 containing fluorine. However, instead of the water repellent coat 17 containing fluorine, a diamond-like coating is provided to provide the well 11 The inner side surface 11a may have water repellency. The diamond-like coating is formed by, for example, a combination of atmospheric pressure plasma treatment and carbon coating. The diamond-like coating formed in this case is diamond-like carbon. A diamond-like coating can be formed using silicon (Si) instead of a carbon coating. When using diamond-like coating, the meniscus shape of the liquid surface 12a of the culture solution 12 is particularly excellent in stability over time, and environmental safety is also high.
 また、フッ素を含む撥水性コート17を設ける代わりに、プラスチック製容器10の基材をウェル11の内側面11aに露呈させておくことで、ウェル11の内側面11aに撥水性を持たせても良い。プラスチック製容器10をポリスチレンで形成する場合、プラズマ処理やコロナ処理等によって親水化処理を施すと、ポリスチレンに対する純水の液滴16の接触角αは70度以下になるが、こうした親水化処理を行わなければ、ポリスチレンに対する純水の液滴16の接触角αは約91度である。したがって、親水化処理を行っていないポリスチレンをウェル11の内側面11aに露呈させておけば、ウェル11の内側面11aに上記実施形態と同様の撥水性を持たせることができる。 Further, instead of providing the water-repellent coating 17 containing fluorine, the inner surface 11 a of the well 11 may be given water repellency by exposing the base material of the plastic container 10 to the inner surface 11 a of the well 11. good. When the plastic container 10 is formed of polystyrene, if the hydrophilic treatment is performed by plasma treatment or corona treatment, the contact angle α of the pure water droplet 16 with respect to polystyrene becomes 70 degrees or less. Otherwise, the contact angle α of the pure water droplet 16 with respect to polystyrene is about 91 degrees. Therefore, if polystyrene that has not been subjected to hydrophilic treatment is exposed on the inner side surface 11a of the well 11, the inner side surface 11a of the well 11 can have the same water repellency as in the above embodiment.
 撥水性コート17の厚さは、0.001μm以上1000μm以下であることが好ましい。同様に、撥水性コート17の代わりに上記各種処理等をウェル11の内側面11aに施す場合も同様であり、撥水性を有する層や撥水性を持たせるための各種処理を施す層(撥水処理層)の厚さは、0.001μm以上1000μm以下であることが好ましい。撥水性コート17等の厚さが0.001μm未満の場合、撥水性コート17等が薄すぎてその他の条件が満たされていても必要な撥水性が得られない場合があり、1000μmよりも厚いと、ウェル11の視野が狭窄されてしまうからである。また、撥水性コート17が十分な連続性を有するためには、撥水性コート17の厚さは0.02μm以上であることが好ましい。さらに、撥水性コート17が十分な耐擦性を有し、実用上、すぐに撥水性が低下してしまうのを防ぎ、繰り返しの利用に耐え得るようにするためには、撥水性コート17の厚さは0.5μm以上であることが特に好ましい。 The thickness of the water repellent coat 17 is preferably 0.001 μm or more and 1000 μm or less. Similarly, in the case where the above-described various treatments are applied to the inner side surface 11a of the well 11 instead of the water-repellent coat 17, the water-repellent layer and the layer subjected to various treatments for imparting water repellency (water-repellent layer) The thickness of the treatment layer is preferably 0.001 μm or more and 1000 μm or less. When the thickness of the water-repellent coat 17 or the like is less than 0.001 μm, the water-repellent coat 17 or the like is too thin and other conditions may not be obtained, and the necessary water-repellent property may not be obtained, and is thicker than 1000 μm. This is because the field of view of the well 11 is narrowed. In order for the water repellent coat 17 to have sufficient continuity, the thickness of the water repellent coat 17 is preferably 0.02 μm or more. Furthermore, in order to prevent the water-repellent coat 17 from having a sufficient rubbing resistance, practically preventing the water-repellent from being lowered immediately, and to withstand repeated use, the water-repellent coat 17 The thickness is particularly preferably 0.5 μm or more.
 撥水性コート17や撥水性コート17の代わりに施す各種処理等は、ウェル11の内側面11aの全部に施されている必要はない。ウェル11の内側面11aは、少なくとも培養液12の液面がウェル11の内側面11aに接触し得る範囲において、撥水性コート17等による撥水性を有していれば良い。 The water repellent coat 17 and various treatments performed in place of the water repellent coat 17 do not need to be performed on the entire inner surface 11 a of the well 11. The inner surface 11a of the well 11 only needs to have water repellency by the water-repellent coat 17 or the like in a range where at least the liquid surface of the culture solution 12 can contact the inner surface 11a of the well 11.
 なお、上記実施形態では、ウェル11の内側面11aの撥水性と底面11bの親水性は、それぞれ別々に設定することができるが、生細胞13の培養と位相差顕微鏡20による観察を両立させるためには、ウェル11の内側面11aの撥水性と底面11bの親水性のバランスが重要である。このため、例えば、ウェル11の内側面11aに対する純水の液滴16の接触角αと、ウェル11の底面11bに対する純水の液滴16の接触角βの差(|α-β|)は、5度以上110度以下であることが好ましく、10度以上80度以下であることがより好ましい。 In the above embodiment, the water repellency of the inner surface 11a and the hydrophilicity of the bottom surface 11b of the well 11 can be set separately, but both the culture of the living cells 13 and the observation with the phase contrast microscope 20 are compatible. For this, the balance between the water repellency of the inner surface 11a of the well 11 and the hydrophilicity of the bottom surface 11b is important. Therefore, for example, the difference (| α−β |) between the contact angle α of the pure water droplet 16 with the inner surface 11 a of the well 11 and the contact angle β of the pure water droplet 16 with the bottom surface 11 b of the well 11 is It is preferably 5 degrees or more and 110 degrees or less, and more preferably 10 degrees or more and 80 degrees or less.
 なお、位相差顕微鏡20で生細胞13を撮像して得た画像は、例えば、画像処理により培養した生細胞13の細胞数を取得するために用いることができる。生細胞13の細胞数は、例えば、Otsu法をはじめとする閾値分離の方法、Level Set法をはじめとする機械学習を用いた方法などによって画像から細胞を検出し、その個数を計数することによって取得することができる。 In addition, the image obtained by imaging the living cells 13 with the phase-contrast microscope 20 can be used, for example, to acquire the number of living cells 13 cultured by image processing. The number of living cells 13 can be determined by, for example, detecting cells from an image by counting the number of cells using a threshold separation method such as the Otsu method, a method using machine learning such as a Level Set method, or the like. Can be acquired.
 また、上記実施形態のプラスチック製容器10を用いれば、生細胞13を生きたままの状態で位相差顕微鏡20によって撮像することができるので、位相差顕微鏡20による撮像後、生細胞13の培養を継続した後に再び位相差顕微鏡20によって同じウェル11を位相差顕微鏡20で撮像することができる。このため、培養と撮像を繰り返すことにより得た複数の画像を用いて画像処理をすることにより、細胞系統樹を取得することができる。細胞系統樹の取得方法は、カーネギーメロン大Kanadeらの方法(“Cell Image Analysis: Algorithms, System and Applications” 2011 IEEE Workshop on Applications of Computer Vision, WACV 2011など)でもよいし、Kurokawaらの方法("Software for precise tracking of cell proliferation" Biochemical and Biophysical Research Communications 417 (2012) 1080-1085)でもよい。 Moreover, if the plastic container 10 of the said embodiment is used, since the living cell 13 can be imaged with the phase-contrast microscope 20 in the state of being alive, culture | cultivation of the living cell 13 is imaged after imaging with the phase-contrast microscope 20. After the continuation, the same well 11 can be imaged with the phase contrast microscope 20 again by the phase contrast microscope 20. For this reason, a cell phylogenetic tree can be acquired by performing image processing using a plurality of images obtained by repeating culture and imaging. The cell lineage tree can be obtained by the method of Kanade et al. (“Cell ら Image (Analysis: Algorithms, System and Applications” 2011 IEEE Workshopon Applications of Computer Vision, “WACV 2011”) or the method of Kurokawa et al. Software for precise tracking of cell proliferation "Biochemical and Biophysical Research Communications 417 (2012) 1080-1085).
 なお、上記実施形態では、プラスチック製容器10を用いて位相差顕微鏡20で生細胞13を撮像しているが、透過顕微鏡等、他の顕微鏡等を用いた撮像や観察にもプラスチック製容器10は好適である。 In the above embodiment, the living cell 13 is imaged by the phase contrast microscope 20 using the plastic container 10, but the plastic container 10 is also used for imaging and observation using other microscopes such as a transmission microscope. Is preferred.

Claims (9)

  1.  開口の円相当径が0.5mm以上2cm未満であり、深さが2mm以上2cm未満であり、内側面が撥水性を有し、かつ、底面が親水性を有するウェルを、少なくとも2つ以上備えるプラスチック製容器。 The equivalent circle diameter of the opening is 0.5 mm or more and less than 2 cm, the depth is 2 mm or more and less than 2 cm, the inner side surface has water repellency, and the bottom surface has hydrophilicity at least two or more wells. Plastic container.
  2.  前記ウェルの内側面には、フッ素を含む撥水性コートが設けられており、
     前記撥水性コートのフッ素含有量が0.01mg/cm2以上1.5mg/cm2未満である請求項1に記載のプラスチック製容器。
    A water-repellent coat containing fluorine is provided on the inner surface of the well,
    The plastic container according to claim 1, wherein the fluorine content of the water-repellent coat is 0.01 mg / cm 2 or more and less than 1.5 mg / cm 2 .
  3.  前記ウェルの内側面は、ダイヤモンドライクコーティングが設けられている請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein the inner surface of the well is provided with a diamond-like coating.
  4.  前記ウェルの内側面は、純水に対する接触角が75度以上100度以下である請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein the inner surface of the well has a contact angle with respect to pure water of 75 degrees or more and 100 degrees or less.
  5.  前記ウェルの底面は、純水に対する接触角が0度以上70度以下である請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein the bottom surface of the well has a contact angle with respect to pure water of not less than 0 degrees and not more than 70 degrees.
  6.  前記ウェルの内側面の純水に対する接触角と、前記ウェルの底面の純水に対する接触角との差が、5度以上110度以下である請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein a difference between a contact angle of the inner surface of the well with pure water and a contact angle of the bottom surface of the well with pure water is 5 degrees or more and 110 degrees or less.
  7.  前記ウェルの内側面は、粗面化されている請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein the inner surface of the well is roughened.
  8.  前記ウェルの内側面は、気相法による表面処理が施されている請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, wherein the inner surface of the well is subjected to a surface treatment by a vapor phase method.
  9.  ポリスチレン、ポリエチレンテレフタレート、またはポリカーボネートで形成されている請求項1に記載のプラスチック製容器。 The plastic container according to claim 1, which is made of polystyrene, polyethylene terephthalate, or polycarbonate.
PCT/JP2015/075232 2014-09-30 2015-09-04 Plastic container WO2016052078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-202650 2014-09-30
JP2014202650A JP2016067322A (en) 2014-09-30 2014-09-30 Plastic container

Publications (1)

Publication Number Publication Date
WO2016052078A1 true WO2016052078A1 (en) 2016-04-07

Family

ID=55630121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075232 WO2016052078A1 (en) 2014-09-30 2015-09-04 Plastic container

Country Status (2)

Country Link
JP (1) JP2016067322A (en)
WO (1) WO2016052078A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180813A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Device, method and program for evaluating cell image

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216568A1 (en) * 2017-05-24 2018-11-29 株式会社ニコン Container, sheet and cylindrical body used for container, and method for manufacturing container, sheet and cylindrical body
JP7091635B2 (en) * 2017-11-15 2022-06-28 大日本印刷株式会社 Object detector, image analysis device, object detection method, image analysis method, program, and training data
WO2019167960A1 (en) 2018-02-28 2019-09-06 株式会社幹細胞&デバイス研究所 Cell holding and transporting device
EP3926383A4 (en) 2019-02-12 2022-08-31 Yamachu Co., Ltd. Microscopic device
JP6801728B2 (en) * 2019-03-08 2020-12-16 住友ベークライト株式会社 Analytical device
WO2024009636A1 (en) * 2022-07-07 2024-01-11 三井化学株式会社 Well plate and culture method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269979A (en) * 1985-09-20 1987-03-31 Terumo Corp Meniscus controlling apparatus and light transmitting type testing device equipped therewith
US5229163A (en) * 1989-12-21 1993-07-20 Hoffmann-La Roche Inc. Process for preparing a microtiter tray for immunometric determinations
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
JP2003066033A (en) * 2001-08-23 2003-03-05 Kawamura Inst Of Chem Res Microplate and producing method thereof
JP2004245727A (en) * 2003-02-14 2004-09-02 Olympus Corp Micro-plate
JP2005522219A (en) * 2002-04-10 2005-07-28 ジーンオーム サイエンシーズ、インク. Hydrophobic zone device
JP2006125897A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Reaction vessel and automatic analyzer using the same
JP2006267063A (en) * 2005-03-25 2006-10-05 Univ Of Tokushima Judging method of allergic disease and judging kit of allergic disease
JP2008200012A (en) * 2007-02-22 2008-09-04 Toyo Kohan Co Ltd Microarray for detecting heat-resistant bacterium
JP2009210265A (en) * 2008-02-29 2009-09-17 Sony Corp Optical detection field having diamond-like carbon membrane formed thereto
US20130101480A1 (en) * 2011-10-25 2013-04-25 Samsung Electro-Mechanics Co., Ltd. Bio chip
JP2014173969A (en) * 2013-03-08 2014-09-22 Panasonic Corp Multi-well plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269979A (en) * 1985-09-20 1987-03-31 Terumo Corp Meniscus controlling apparatus and light transmitting type testing device equipped therewith
US5229163A (en) * 1989-12-21 1993-07-20 Hoffmann-La Roche Inc. Process for preparing a microtiter tray for immunometric determinations
JP2002502955A (en) * 1998-02-04 2002-01-29 メルク エンド カムパニー インコーポレーテッド Virtual wells for high-throughput screening assays
JP2003066033A (en) * 2001-08-23 2003-03-05 Kawamura Inst Of Chem Res Microplate and producing method thereof
JP2005522219A (en) * 2002-04-10 2005-07-28 ジーンオーム サイエンシーズ、インク. Hydrophobic zone device
JP2004245727A (en) * 2003-02-14 2004-09-02 Olympus Corp Micro-plate
JP2006125897A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Reaction vessel and automatic analyzer using the same
JP2006267063A (en) * 2005-03-25 2006-10-05 Univ Of Tokushima Judging method of allergic disease and judging kit of allergic disease
JP2008200012A (en) * 2007-02-22 2008-09-04 Toyo Kohan Co Ltd Microarray for detecting heat-resistant bacterium
JP2009210265A (en) * 2008-02-29 2009-09-17 Sony Corp Optical detection field having diamond-like carbon membrane formed thereto
US20130101480A1 (en) * 2011-10-25 2013-04-25 Samsung Electro-Mechanics Co., Ltd. Bio chip
JP2014173969A (en) * 2013-03-08 2014-09-22 Panasonic Corp Multi-well plate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"SBS Recommended Microplate Specifications", 25 January 2006 (2006-01-25), Retrieved from the Internet <URL:http://openwetware.org/images/4/43/ Microplate-dimensions.pdf> [retrieved on 20151119] *
BUTTER RS ET AL.: "Production and wetting properties of fluorinated diamond-like carbon coatings", THIN SOLID FILMS, vol. 311, no. 1-2, 1997, pages 107 - 113, XP004121327, ISSN: 0040-6090, DOI: doi:10.1016/S0040-6090(97)00337-4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180813A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Device, method and program for evaluating cell image
US11030751B2 (en) 2017-03-30 2021-06-08 Fujifilm Corporation Cell image evaluation device, method, and program

Also Published As

Publication number Publication date
JP2016067322A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2016052078A1 (en) Plastic container
US10620419B2 (en) Arrangement for light sheet microscopy
Isozaki et al. AI on a chip
US20080063251A1 (en) Method and Device for Identifying an Image of a Well in an Image of a Well-Bearing
JP2016525229A (en) Equipment for optical sheet microscopy
US20070274871A1 (en) Well plate
Auld et al. Microplate selection and recommended practices in high-throughput screening and quantitative biology
EP2752482A1 (en) Culturing sheet, culturing equipment material, and manufacturing method
JP2016517971A (en) Microscope module for imaging samples
JP2018516591A (en) Cell culture incubator with built-in imaging system
JP4731847B2 (en) Petri dish, chamber apparatus, optical microscope observation method and sample analysis method
Cutarelli et al. Vertically-aligned functionalized silicon micropillars for 3D culture of human pluripotent stem cell-derived cortical progenitors
US11931737B2 (en) Platforms and systems for automated cell culture
US20140243243A1 (en) Device and method for cell-exclusion patterning
EP3263219B1 (en) Well plate and method of using the same
US20170191013A1 (en) Container for culturing organisms, method for monitoring the culturing of organisms inside said container, and monitoring system
Fernandez et al. Cell-shaping micropatterns for quantitative super-resolution microscopy imaging of membrane mechanosensing proteins
Trask Guidelines for microplate selection in high content imaging
JP6521432B2 (en) Cell incubator and cell culture method
JP4048265B2 (en) Single-cell long-term observation device
WO2017163378A1 (en) Culture vessel
JP7113645B2 (en) Sample holder and light sheet microscope
JP2022509823A (en) Small optical imaging system for cell culture monitoring
Polanco et al. Fabrication and bonding of refractive index matched microfluidics for precise measurements of cell mass
US20170067008A1 (en) Medium retaining chamber and chamber system for growth and microscopic observations of cultured cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846950

Country of ref document: EP

Kind code of ref document: A1