WO2018216534A1 - Brake device and electromagnetic valve for brake device - Google Patents

Brake device and electromagnetic valve for brake device Download PDF

Info

Publication number
WO2018216534A1
WO2018216534A1 PCT/JP2018/018637 JP2018018637W WO2018216534A1 WO 2018216534 A1 WO2018216534 A1 WO 2018216534A1 JP 2018018637 W JP2018018637 W JP 2018018637W WO 2018216534 A1 WO2018216534 A1 WO 2018216534A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake device
filter
valve
main body
diameter portion
Prior art date
Application number
PCT/JP2018/018637
Other languages
French (fr)
Japanese (ja)
Inventor
広大 山崎
雅記 御簾納
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018216534A1 publication Critical patent/WO2018216534A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/36Other control devices or valves characterised by definite functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus

Definitions

  • the present invention relates to a brake device and a solenoid valve for a brake device.
  • Patent Document 1 discloses a brake device including a solenoid valve housed in a solenoid valve housing hole of a housing.
  • a filter member for filtering the brake fluid is disposed at the bottom of the electromagnetic valve housing hole.
  • One of the objects of the present invention is to provide a brake device and an electromagnetic valve for a brake device that can suppress an increase in flow path resistance.
  • the filter housing hole in which the filter member of the electromagnetic valve is housed has a narrow region and a wide region with respect to the outer peripheral surface of the filter member.
  • an increase in flow path resistance can be suppressed.
  • FIG. 1 is a schematic configuration diagram of a brake device 1 according to a first embodiment.
  • FIG. 3 is an axial sectional view of SS / V / IN41 of the first embodiment.
  • FIG. 5 is a diagram illustrating a second filter member 62 according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the main part in the axial direction of SS / V IN 41 of the first embodiment.
  • FIG. 6 is a view showing a second filter member 71 of Embodiment 2.
  • FIG. 6 is a view showing a second filter member 72 of Embodiment 3.
  • FIG. 10 is a view showing a second filter member 73 of the fourth embodiment.
  • FIG. 10 is a view showing a second filter member 74 of Embodiment 5.
  • FIG. 10 is a cross-sectional view of the main part in the axial direction of a second filter housing hole 53 of Embodiment 7.
  • FIG. 10 is a cross-sectional view of the main part in the axial direction of a communication valve 36 of an eighth embodiment. It is sectional drawing of the 2nd filter main-body part 67 which shows other embodiment. It is an axial sectional view of SS / V IN 41 showing another embodiment.
  • FIG. 1 is a schematic configuration diagram of a brake device 1 according to the first embodiment.
  • the brake device 1 has a hydraulic brake device suitable for an electric vehicle.
  • the electric vehicle is a hybrid vehicle including an engine (internal combustion engine) and a motor generator (rotating electric machine) as a prime mover for driving wheels, an electric vehicle including only a motor generator, or the like.
  • the brake device 1 may be applied to a vehicle using only the engine as a driving force source.
  • the brake device 1 supplies brake fluid to the wheel cylinders 2a to 2d provided on the wheels FL to RR of the vehicle to generate brake fluid pressure (wheel cylinder fluid pressure Pw).
  • the wheel cylinder 2 may be a wheel cylinder of a drum brake mechanism in addition to a hydraulic brake caliper cylinder in the disc brake mechanism.
  • the brake device 1 has two systems of brake piping, P (primary) and S (secondary), and adopts an X piping format.
  • P (primary) and S (secondary) adopts an X piping format.
  • the suffixes P and S are added to the end of each symbol.
  • the brake device 1 includes a master cylinder unit 3, a hydraulic unit 4, and a control unit 5.
  • the master cylinder unit 3 has a brake pedal 6, a master cylinder 7, and a reservoir tank 8.
  • the brake pedal 6 is a brake operation member that receives an input of a driver's brake operation.
  • the brake pedal 6 is a so-called suspension type, and its base end is rotatably supported by a shaft 6a.
  • a pad 6b At the tip of the brake pedal 6, there is provided a pad 6b that is a target to be depressed by the driver.
  • One end of a push rod 6d is rotatably connected to the base end side between the shaft 6a and the pad 6b of the brake pedal 6 by a shaft 6c.
  • the master cylinder 7 is activated by the operation of the brake pedal 6 (brake operation) by the driver, and generates a master cylinder hydraulic pressure Pm.
  • the brake device 1 does not have a negative pressure type booster device that boosts or amplifies the driver's brake operation force (stepping force F of the brake pedal 6) using intake negative pressure generated by the vehicle engine. Therefore, the brake device 1 can be reduced in size, and is suitable as a brake system for an electric vehicle that does not have a negative pressure source (in many cases, an engine).
  • the master cylinder 7 is connected to the brake pedal 6 via the push rod 6d, and is supplied with brake fluid from the reservoir tank 8.
  • the reservoir tank 8 stores brake fluid.
  • the brake fluid stored in the reservoir tank 8 is released to the atmosphere.
  • the bottom side (vertical direction lower side) inside the reservoir tank 8 is a primary hydraulic chamber space 8c, a secondary hydraulic chamber space 8d, and a pump suction chamber by two partition members 8a and 8b having a predetermined height. It is divided into three spaces 8e.
  • the master cylinder 7 is a tandem type, and has a primary piston 9P and a secondary piston 9S as master cylinder pistons that move in the axial direction in response to a brake operation. Both pistons 9P and 9S are arranged in series.
  • the primary piston 9P is connected to the push rod 6d.
  • the secondary piston 9S is a free piston type.
  • the brake pedal 6 is provided with a stroke sensor 10.
  • the stroke sensor 10 detects the amount of displacement of the brake pedal 6 (pedal stroke S).
  • the stroke sensor 10 may be provided on the push rod 6d or the primary piston 9P to detect the piston stroke.
  • the pedal stroke S corresponds to the axial displacement amount (stroke amount) of the push rod 6d or the primary piston 9P multiplied by the pedal ratio K of the brake pedal.
  • K is a ratio of S to the stroke amount of the primary piston 9P, and is set to a predetermined value. K can be calculated, for example, by the ratio of the distance from the axis 6a to the pad 6b with respect to the distance from the axis 6a to the axis 6c.
  • the stroke simulator 20 operates in accordance with the driver's brake operation, and the brake fluid that has flowed out of the master cylinder 7 flows into the stroke simulator 20 to generate the pedal stroke S.
  • the piston 21 of the stroke simulator 20 moves in the axial direction in the cylinder 22 in accordance with the amount of brake fluid supplied from the master cylinder 7. Thereby, the operation reaction force accompanying the brake operation of the driver is generated.
  • the hydraulic unit 4 adjusts the wheel cylinder hydraulic pressure Pw independently of the driver's brake operation.
  • the control unit 5 controls the operation of the hydraulic unit 4.
  • the hydraulic unit 4 receives supply of brake fluid from the reservoir tank 8 or the master cylinder 7.
  • the hydraulic pressure unit 4 is interposed between the wheel cylinder 2 and the master cylinder 7, and individually supplies the master cylinder hydraulic pressure Pm or the control hydraulic pressure to each wheel cylinder 2.
  • the hydraulic unit 4 includes a motor 11a of the pump 11 and a plurality of control valves (such as an electromagnetic valve 12) as hydraulic equipment for generating a control hydraulic pressure.
  • the pump 11 sucks brake fluid from a brake fluid source (reservoir tank 8 or the like) other than the master cylinder 7 and discharges it toward the wheel cylinder 2.
  • the pump 11 is, for example, a plunger pump or a gear pump.
  • the pump 11 is used in common in both systems, and is rotationally driven by an electric motor 11a as the same drive source.
  • the motor 11a is, for example, a brushed DC motor or a brushless motor.
  • the solenoid valve 12 or the like opens and closes in response to a control signal, and switches the communication state of the first liquid passage 13 and the like that connect between the master cylinder 7 and the wheel cylinder 2. Thereby, the flow of brake fluid is controlled.
  • the hydraulic unit 4 can pressurize the wheel cylinder 2 with the hydraulic pressure generated by the pump 11 in a state where the communication between the master cylinder 7 and the wheel cylinder 2 is cut off.
  • the hydraulic pressure unit 4 includes hydraulic pressure sensors 14 to 16 that detect hydraulic pressures at various locations such as the discharge pressure of the pump 11 and Pm.
  • the control unit 5 is inputted with the detection value sent from the stroke sensor 10 and each of the hydraulic pressure sensors 14 to 16 and the information about the running state (each wheel speed, etc.) sent from the vehicle side.
  • the control unit 5 performs information processing according to a built-in program based on each input information. Further, in accordance with the processing result, a command signal is output to each actuator (motor 11a, electromagnetic valve 12, etc.) of the hydraulic unit 4 to control them. Specifically, the opening / closing operation of the solenoid valve 12 and the like, and the rotation speed of the motor 11a (that is, the discharge amount of the pump 11) are controlled.
  • various brake controls are realized by controlling the wheel cylinder hydraulic pressure Pw of each wheel FL to RR.
  • boost control for vehicle motion control, automatic brake control, regenerative cooperative brake control, and the like are realized.
  • the boost control assists the brake operation by generating a braking force that is insufficient with the driver's brake operation force.
  • Anti-lock control suppresses slipping (lock tendency) of the wheels FL to RR due to braking.
  • Vehicle motion control is vehicle behavior stabilization control that prevents skidding and the like.
  • the automatic brake control is a preceding vehicle following control or the like.
  • the regenerative cooperative brake control controls the wheel cylinder hydraulic pressure Pw so as to achieve the target deceleration (target braking force) in cooperation with the regenerative brake.
  • a primary hydraulic chamber 17P is defined between the pistons 9P and 9S of the master cylinder 7.
  • a coil spring 18P is installed in a compressed state in the primary hydraulic chamber 17P.
  • a secondary hydraulic chamber 17S is defined between the piston 9S and the bottom surface of the cylinder 7a.
  • a coil spring 18S is installed in the compressed state in the secondary hydraulic chamber 17S.
  • a first fluid path 13 opens in each of the fluid pressure chambers 17P and 17S.
  • Each of the hydraulic chambers 17P and 17S is connected to the hydraulic unit 4 through the first liquid passage 13 and is provided so as to communicate with the wheel cylinder 2.
  • the primary hydraulic chamber 17P and the secondary hydraulic chamber 17S are connected to the first hydraulic passage 13P and the first hydraulic passage 13S of the hydraulic unit 4 through brake pipes 19P and 19S, respectively.
  • the brake pipes 19P and 19S constitute a part of the first liquid path 13.
  • the master cylinder 7 can pressurize the P-type wheel cylinders 2a and 2d through the P-system liquid path (first liquid path 13P) by Pm generated in the primary hydraulic chamber 17P.
  • the master cylinder 7 can pressurize the S system wheel cylinders 2b and 2c through the S system liquid path (first liquid path 13S) by Pm generated in the secondary hydraulic chamber 17S.
  • the stroke simulator 20 includes a cylinder 22, a piston 21, and a spring 23.
  • FIG. 1 a cross section passing through the axis of the cylinder 22 is shown.
  • the cylinder 22 is cylindrical and has a cylindrical inner peripheral surface.
  • the cylinder 22 has a piston housing portion 22a and a spring housing portion 22b.
  • the inner peripheral surface of the spring accommodating portion 22b has a larger diameter than the inner peripheral surface of the piston accommodating portion 22a.
  • the piston 21 is installed on the inner peripheral side of the piston accommodating portion 22a so as to be linearly movable along the inner peripheral surface.
  • the piston 21 is a separation member (partition wall) that separates the inside of the cylinder 22 into at least two chambers (a positive pressure chamber 20a and a back pressure chamber 20b).
  • a positive pressure chamber 20a and a back pressure chamber 20b are defined in the cylinder 22 with the piston 21 therebetween.
  • the second liquid passage 25 is always open to the positive pressure chamber 20a.
  • a third liquid passage 24 is always open in the back pressure chamber 20b.
  • a piston seal 26 is installed on the outer periphery of the piston 21 so as to extend in the direction around the axis of the piston 21 (circumferential direction).
  • the piston seal 26 is in sliding contact with the inner peripheral surface of the cylinder 22 (piston accommodating portion 22a) to seal between the inner peripheral surface of the piston accommodating portion 22a and the outer peripheral surface of the piston 21.
  • the piston seal 26 is a separation seal member that seals between the positive pressure chamber 20a and the back pressure chamber 20b and liquid-tightly separates the chambers 20a and 20b, and complements the function of the piston 21 as the separation member.
  • the spring 23 is a coil spring installed in a compressed state in the back pressure chamber 20b, and constantly urges the piston 21 toward the x-axis negative direction.
  • the spring 23 is provided so as to be deformable in the x-axis direction, and can generate a reaction force according to the displacement amount (stroke amount) of the piston 21.
  • the spring 23 includes a first spring 23a and a second spring 23b.
  • the first spring 23a is smaller in diameter and shorter than the second spring 23b, and has a smaller wire diameter.
  • the spring constant of the first spring 23a is smaller than that of the second spring 23b.
  • the first and second springs 23a and 23b are arranged in series via the retainer member 27 between the piston 21 and the cylinder 22 (spring accommodating portion 22b).
  • the members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals.
  • the first fluid path 13 connects the fluid pressure chamber 17 of the master cylinder 7 and the wheel cylinder 2.
  • the first shut-off valve 12P and the second shut-off valve 12S are normally open electromagnetic valves (open in a non-energized state) provided in the first liquid passage 13.
  • the first liquid path 13 is separated by a shutoff valve 12 into a liquid path 13A on the master cylinder 7 side and a liquid path 13B on the wheel cylinder 2 side.
  • the solenoid-in valve (SOL / V IN) 28 is located on the wheel cylinder 2 side (liquid path 13B) with respect to the wheels FL to RR than the shutoff valve 12 in the first liquid path 13 (in the liquid paths 13a to 13d). ) This is a normally open solenoid valve.
  • a bypass liquid path 29 is provided in parallel with the first liquid path 13 by bypassing the SOL / V IN 28.
  • the bypass fluid path 29 is provided with a check valve 30 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 7 side.
  • the suction liquid path 31 is a liquid path connecting the reservoir tank 8 and the suction part 32 of the pump 11.
  • a liquid reservoir 31a having a predetermined volume is provided on the suction liquid passage 31.
  • the liquid reservoir 31a is provided in the vicinity of the upper end in the vertical direction of the hydraulic unit 4 and in the vicinity of the portion to which the brake pipe 19R is connected (the upper side in the vertical direction of the hydraulic unit 4).
  • the pump 11 sucks the brake fluid through the liquid reservoir 31a.
  • the discharge liquid path 33 connects the discharge part 34 of the pump 11 and the shut-off valve 12 and the SOL / V IN 28 in the first liquid path 13B.
  • the check valve 35 is provided in the discharge liquid passage 33 and allows only the flow of brake fluid from the discharge portion 34 side (upstream side) of the pump 11 to the first liquid passage 13 side (downstream side).
  • the check valve 35 is a discharge valve provided in the pump 11.
  • the discharge liquid path 33 branches into a P-system liquid path 33P and an S-system liquid path 33S on the downstream side of the check valve 35.
  • the liquid passages 33P and 33S are connected to the first liquid passages 13P and 13S of the P and S systems.
  • the liquid paths 33P and 33S function as a communication liquid path that connects the first liquid paths 13P and 13S.
  • the communication valves 36P and 36S are normally closed electromagnetic valves (closed in a non-energized state) provided in the liquid passages 33P and 33S.
  • the pump 11 generates a hydraulic pressure in the first fluid path 13 by the brake fluid supplied from the reservoir tank 8 and generates a hydraulic pressure Pw in the wheel cylinder 2.
  • the pump 11 is connected to the wheel cylinders 2a to 2d via the communication liquid path (discharge liquid path 33P, 33S) and the first liquid path 13P, 13S, and the communication liquid path (discharge liquid path 33P, 33S).
  • the wheel cylinder 2 is pressurized by discharging brake fluid.
  • the first depressurizing liquid path 37 connects the suction liquid path 31 between the check valve 35 and the communication valve 36 in the discharge liquid path 33.
  • the pressure regulating valve 38 is a normally open electromagnetic valve provided in the first pressure reducing liquid passage 37.
  • the pressure regulating valve 38 may be a normally closed type.
  • the second decompression liquid path 39 connects the suction liquid path 31 to the wheel cylinder 2 side with respect to the SOL / V IN 28 in the first liquid path 13B.
  • the solenoid-out valve (SOL / V OUT) 28 is a normally closed electromagnetic valve provided in the second decompression liquid path 39.
  • the first depressurizing liquid path 37 on the suction liquid path 31 side from the pressure regulating valve 38 and the second depressurizing liquid path 39 on the suction liquid path 31 side from the SOL / V OUT40 are partially divided. In common.
  • the second liquid passage 25 branches from the first liquid passage 13A and is connected to the positive pressure chamber 20a of the stroke simulator 20. Note that the second fluid passage 25 may directly connect the secondary fluid pressure chamber 17S and the positive pressure chamber 20a without going through the first fluid passage 13A.
  • the third liquid path 24 connects the back pressure chamber 20 b of the stroke simulator 20 and the first liquid path 13. Specifically, the third liquid path 24 branches from between the shutoff valve 12S and the SOL / V IN 28 in the first liquid path 13S (liquid path 13B) and is connected to the back pressure chamber 20b.
  • the stroke simulator-in valve (SS / V IN) 41 is a normally closed electromagnetic valve provided in the third liquid passage 24.
  • the third liquid path 24 is separated by SS / V IN 41 into a liquid path 24A on the back pressure chamber 20b side and a liquid path 24B on the first liquid path 13 side.
  • a bypass liquid path 42 is provided in parallel with the third liquid path 24 by bypassing the SS / V IN 41.
  • the bypass liquid path 42 connects the liquid path 24 and the liquid path 13B.
  • a check valve 43 is provided in the bypass liquid passage. The check valve 43 allows the flow of the brake fluid from the back pressure chamber 20b side (the fluid passage 24) toward the first fluid passage 13 (the fluid passage 13B) and suppresses the flow of the brake fluid in the reverse direction.
  • the fourth liquid path 44 connects the back pressure chamber 20b of the stroke simulator 20 and the reservoir tank 8.
  • the fourth liquid path 44 is located between the back pressure chamber 20b and the SS / V IN 41 in the third liquid path 24 (liquid path 24), and closer to the suction liquid path 31 (or to the suction liquid path 31 side than the pressure regulating valve 38).
  • the first decompression liquid path 37 and the second decompression liquid path 39) closer to the suction liquid path 31 than the SOL / V OUT40 are connected.
  • the fourth liquid passage 44 may be directly connected to the back pressure chamber 20b or the reservoir tank 8.
  • the stroke simulator out valve (SS / V OUT) 45 is a normally closed solenoid valve provided in the fourth liquid passage 44.
  • bypass liquid passage 46 is provided in parallel with the fourth liquid passage 44.
  • the bypass fluid passage 46 allows the flow of brake fluid from the reservoir tank 8 (suction fluid passage 31) side to the third fluid passage 24 side, that is, the back pressure chamber 20b side, and allows the brake fluid flow in the reverse direction.
  • a check valve 47 for suppression is provided.
  • the shutoff valve 12, the SOL / V IN 28, and the pressure regulating valve 38 are proportional control valves in which the valve opening is adjusted according to the current supplied to the solenoid.
  • the other valves that is, SS / V41IN41, SS / V OUT45, communication valve 36, and SOL / V ⁇ OUT40 are two-position valves (on / off valves) in which the opening and closing of the valves is controlled by binary switching. It is also possible to use a proportional control valve as the other valve.
  • a hydraulic pressure sensor 14 for detection is provided between the shutoff valve 12 and the SOL / V IN28 in the first fluid passage 13, there is a fluid pressure sensor 15 (primary system pressure sensor 15P, secondary system pressure sensor) that detects the fluid pressure at this location (wheel cylinder fluid pressure Pw). 15S) is provided. Between the discharge part 34 (check valve 35) of the pump 11 and the communication valve 36 in the discharge liquid path 33, a hydraulic pressure sensor 16 for detecting the liquid pressure (pump discharge pressure) at this point is provided.
  • the control unit 5 includes a brake operation amount detection unit 5a, a target wheel cylinder hydraulic pressure calculation unit 5b, a boost control unit 5c, a sudden brake operation state determination unit 5d, and a second pedal force brake as a configuration for executing each brake control. It has a creation part 5e.
  • the brake operation amount detection unit 5a receives a sensor signal from the stroke sensor 10 and detects the stroke (movement amount) of the push rod 6d.
  • the target wheel cylinder hydraulic pressure calculation unit 5b calculates a target foil cylinder hydraulic pressure.
  • the target wheel cylinder hydraulic pressure calculation unit 5b determines a predetermined boost ratio, that is, the pedal stroke and the driver's required brake hydraulic pressure (vehicle deceleration G requested by the driver). Calculate the target wheel cylinder hydraulic pressure that achieves the ideal relationship between the two. Further, the target wheel cylinder hydraulic pressure calculation unit 5b calculates the target wheel cylinder hydraulic pressure in relation to the regenerative braking force during the regenerative cooperative brake control. For example, the target wheel cylinder hydraulic pressure is such that the sum of the regenerative braking force input from the control unit of the regenerative braking device and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver. calculate. At the time of motion control, for example, the target wheel cylinder hydraulic pressure of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like).
  • the boost control unit 5c operates the pump 11, operates the shut-off valve 12 in the valve closing direction, and operates the communication valve 36 in the valve opening direction when the driver operates the brake.
  • the wheel cylinder hydraulic pressure higher than the master cylinder hydraulic pressure is created using the discharge pressure of the pump 11 as a hydraulic pressure source, and the boost control that generates the hydraulic braking force that is insufficient with the driver's brake operating force can be executed.
  • the boost control unit 5c adjusts the amount of brake fluid supplied from the pump 11 to the wheel cylinder 2 by controlling the pressure regulating valve 38 while operating the pump 11 at a predetermined rotation speed, thereby achieving the target Foil cylinder hydraulic pressure is achieved.
  • the brake control device of the first embodiment exhibits a boosting function that assists the brake operation force by operating the pump 11 instead of the engine negative pressure booster.
  • the boost control unit 5c operates the SS / V IN 41 in the valve closing direction and operates the SS / V OUT 45 in the valve opening direction.
  • the stroke simulator 20 is caused to function.
  • the sudden brake operation state determination unit 5d detects a brake operation state based on an input from the brake operation amount detection unit 5a and the like, and determines (determines) whether or not the brake operation state is a predetermined sudden brake operation state. For example, the sudden brake operation state determination unit 5d determines whether or not the amount of change per hour in the pedal stroke exceeds a predetermined threshold value. When it is judged that the control unit 5 is in the sudden brake operation state, the control unit 5 switches from the generation of the wheel cylinder hydraulic pressure by the boost control unit 5c to the generation of the wheel cylinder hydraulic pressure by the second pedal force brake generation unit 5e.
  • the second pedal force brake generating unit 5e operates the pump 11, operates the shut-off valve 12 in the valve closing direction, operates SS / V IN41 in the valve opening direction, and operates SS / V OUT45 in the valve closing direction.
  • the second pedal force that creates the wheel cylinder hydraulic pressure using the brake fluid flowing out from the back pressure chamber 20b of the stroke simulator 20 until the pump 11 can generate a sufficiently high wheel cylinder hydraulic pressure.
  • the shutoff valve 12 may be operated in the valve opening direction.
  • SS / V IN41 may be operated in the valve closing direction. In this case, the brake fluid from the back pressure chamber 20b is open (because the wheel cylinder 2 side is still at a lower pressure than the back pressure chamber 20b side).
  • the brake fluid can be efficiently supplied from the back pressure chamber 20b side to the wheel cylinder 2 side by operating SS / V IN41 in the valve opening direction.
  • the control unit 5 causes the wheel cylinder by the second pedal force brake generating section 5e to Switching from hydraulic pressure generation to wheel cylinder hydraulic pressure generation by the boost control unit 5c.
  • the boost control unit 5c operates SS / V IN41 in the valve closing direction and operates SS / V OUT45 in the valve opening direction.
  • the stroke simulator 20 is caused to function. Note that switching to regenerative cooperative brake control may be performed after the second pedal effort braking.
  • FIG. 2 is an axial sectional view of the SS / V IN 41 according to the first embodiment.
  • the x-axis is set in the direction (axial direction) in which the central axis O of SS / V IN 41 extends, and the direction from the top to the bottom in FIG. 2 is defined as the positive x-axis direction.
  • the radial direction of the central axis O is defined as the radial direction, and the direction around the central axis O is defined as the circumferential direction.
  • the housing 50 of the hydraulic unit 4 is formed with a valve housing hole 51 extending in the positive x-axis direction.
  • the housing 50 is made of, for example, an aluminum alloy material.
  • a bottom surface 51a extending in the direction perpendicular to the x axis is formed at the positive end of the valve housing hole 51 in the x axis direction.
  • a liquid path 24A extending in the x-axis direction opens in the bottom surface 51a.
  • the valve housing hole 51 has a first filter housing hole 52 and a second filter housing hole 53.
  • the first filter accommodation hole 52 is disposed on the x-axis negative direction side of the second filter accommodation hole 53.
  • the first filter accommodation hole 52 has a larger inner diameter than the second filter accommodation hole 53.
  • a liquid passage 24 ⁇ / b> B extending in the radial direction opens on the inner peripheral surface of the first filter accommodation hole 52.
  • the second filter accommodation hole 53 is arranged at the x-axis positive direction end of the valve accommodation hole 51.
  • SS / V IN 41 Part of the SS / V IN 41 is mounted in the valve accommodating hole 51.
  • SS / V IN41 includes a fixed armature 54, a cylindrical member 55, a movable armature 56, a coil spring 57, a valve body 58, a valve body 59, a seat member 60, a first filter member 61, a check valve 43, and a second filter member, which will be described later. 62 etc. are formed by being combined together.
  • the SS / V IN 41 has a coil 63. The coil 63 is disposed outside the housing 50 on the negative side of the SS / V IN 41 in the x-axis direction.
  • the coil 63 forms a magnetic field when energized and generates an attractive force.
  • the yoke 64 is formed of a magnetic material (for example, iron: a ferromagnetic material constituting a magnetic circuit) that covers the periphery of the coil 63, and forms a magnetic path outside the coil 63.
  • the cylindrical member 55 is disposed on the inner peripheral side of the coil 63 and is formed in a cylindrical shape by a nonmagnetic member.
  • the fixed armature 54 is press-fitted and fixed to the negative end of the cylindrical member 55 in the x-axis direction.
  • the fixed armature 54 is formed in a substantially cylindrical shape from a magnetic material.
  • a concave support portion 54a for supporting the x-axis negative direction end of the coil spring 57 is formed at the x-axis positive direction end of the fixed armature 54.
  • the movable armature 56 is disposed on the inner peripheral side of the cylindrical member 55, and is movable along the x-axis direction in the cylindrical member 55.
  • the movable armature 56 is formed in a substantially cylindrical shape by a magnetic member.
  • a coil spring accommodating hole 56a extending in the x-axis positive direction side is formed at the x-axis negative direction end of the movable armature 56.
  • a coil spring 57 is housed in the coil spring housing hole 56a in a compressed state. The coil spring 57 biases the movable armature 56 toward the sheet member 60 side (x-axis positive direction side).
  • the bottom surface 56b of the coil spring accommodation hole 56a is a support portion that supports the x-axis positive direction end of the coil spring 57.
  • a valve body 58 is fixed to the positive end of the movable armature 56 in the x-axis direction.
  • an axial communication liquid path 65 is formed between the outer peripheral surface of the movable armature 56 and the inner peripheral surface of the cylindrical member 55.
  • the valve body 59 is disposed inside the valve accommodating hole 51 on the positive side of the movable armature 56 in the x-axis direction.
  • the valve body 59 is formed in a substantially cylindrical shape from a magnetic material.
  • the valve body 59 has a cylindrical member press-fit portion 59a on the x-axis negative direction side.
  • the cylindrical member press-fitting portion 59a is press-fitted and fixed to the positive end of the cylindrical member 55 in the x axis direction.
  • the valve body 59 has a crimped portion 59b on the positive side in the x-axis direction of the cylindrical member press-fitting portion 59a.
  • the crimped portion 59b is formed in a flange shape, and is crimped by plastically deforming the housing 50 when the valve body 59 is fixed to the housing 50.
  • FIG. 2 shows a state where the crimped portion 59b is not crimped.
  • a seat member accommodation hole 59c that penetrates the valve body 59 in the x-axis direction is formed.
  • the seat member 60 is press-fitted and fixed in the seat member accommodation hole 59c of the valve body 59.
  • the press-fitting allowance is, for example, 5 to 20 ⁇ m.
  • the sheet member 60 is formed in a substantially cylindrical shape, and a through liquid passage 60a extending in the x-axis direction through the sheet member 60 is formed at the center thereof.
  • the penetrating liquid path 60a opens at the x-axis positive direction end of the sheet member 60.
  • the sheet member 60 has a sheet surface 60b at the x-axis negative direction end.
  • the sheet surface 60b is formed in a hemispherical shape.
  • the seat surface 60b performs a valve action by contacting or separating from the movable armature 56.
  • the sheet member 60 has a sheet hole 60c that connects the sheet surface 60b and the penetrating liquid path 60a.
  • the sheet hole 60c has a smaller inner diameter than the through liquid passage 60a.
  • a solenoid valve internal fluid passage 66 is formed between the outer peripheral surface of the seat member 60 and the inner peripheral surface of the valve body 59.
  • the first filter member 61 is housed in the first filter housing hole 52 on the positive side of the valve body 59 in the x-axis direction.
  • the first filter member 61 removes foreign matter (contamination, etc.) in the brake fluid that is about to flow into the through fluid passage 60a from the fluid passage 24B.
  • the first filter member 61 includes a first filter body 61a and a first filter 61b.
  • the first filter body 61a is formed in a substantially cylindrical shape from a resin material.
  • the sheet member 60 penetrates through the center of the first filter body 61a.
  • the first filter body 61a is inserted into the second filter housing hole 53 on the positive side in the x-axis direction.
  • a predetermined gap that constitutes a part of the bypass liquid passage 42 is set between the outer peripheral surface of the first filter body 61a and the inner peripheral surface of the second filter housing hole 53.
  • the x filter negative direction side of the first filter main body 61a covers the outer periphery of the valve body 59 over the entire periphery.
  • a first filter 61b is integrally formed on the first filter main body 61a on the x-axis negative direction side by using a technique such as insert molding.
  • the first filter 61b is formed in an annular shape from a mesh-like metal material.
  • the first filter main body 61a has a bottom 61c on the inner peripheral side. The bottom 61c comes into contact with the x-axis positive direction end of the valve body 59.
  • a plurality of concave communication grooves 61d are formed on the bottom 61c.
  • Each communication groove 61d extends in the radial direction and communicates the seat member accommodation hole 59c and the space between the outer peripheral surface of the valve body 59 and the inner peripheral surface of the first filter 61b.
  • the check valve 43 is housed in the second filter housing hole 53 on the x-axis positive direction side of the first filter member 61.
  • the x-axis negative direction end of the check valve 43 contacts the x-axis positive direction end of the first filter member 61.
  • the check valve 43 is a lip seal having a substantially cup shape in cross section.
  • the seat member 60 passes through the center of the check valve 43.
  • the check valve 43 has an annular portion 43a and a lip portion 43b.
  • the annular portion 43a covers the outer periphery of the sheet member 60.
  • the lip portion 43b extends from the outer peripheral surface of the annular portion 43a to the x-axis negative direction side.
  • the tip of the lip 43b has a valve action when it contacts or separates from the inner peripheral surface of the second filter housing hole 53.
  • the second filter member 62 is housed in the second filter housing hole 53 on the x-axis positive direction side of the check valve 43.
  • the second filter member 62 has a substantially H-shaped cross section.
  • the x-axis negative direction end of the second filter member 62 contacts the check valve 43.
  • the x-axis positive direction end of the second filter member 62 contacts the bottom surface 51a.
  • the second filter member 62 removes foreign matters (contamination, etc.) in the brake fluid that is about to flow into the penetrating fluid passage 60a from the fluid passage 24A. Details of the second filter member 62 will be described later.
  • the SS / V IN41 is fixed to the housing 50 by inserting the SS / V ⁇ IN41 into the valve accommodating hole 51 and plastically deforming the housing 50 to crimp the crimped portion 59b.
  • FIG. 3A is a view of the second filter member 62 of the first embodiment as viewed from the x-axis direction
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A
  • FIG. FIG. 10 is a perspective view of a second filter member 62 according to form 1.
  • the second filter member 62 has a second filter main body 67 and a second filter 68.
  • the 2nd filter main-body part 67 is formed in the substantially cylindrical shape with the resin material.
  • a gap between the outer peripheral surface of the second filter main body 67 and the inner peripheral surface of the second filter housing hole 53 constitutes a part of the bypass liquid passage 42.
  • a through hole 67a is formed at the center of the second filter main body 67.
  • the second filter main body 67 has a large diameter part 67b and a small diameter part 67c.
  • the large diameter portion 67b is disposed on the x-axis negative direction side of the second filter main body 67.
  • the large diameter portion 67b functions as a receiving surface that receives a load from the check valve 43.
  • the gap between the outer peripheral surface of the large-diameter portion 67b and the inner peripheral surface of the second filter housing hole 53 is set such that a part of the check valve 43 that is deformed by the brake fluid pressure does not enter.
  • the outer diameter of the large diameter portion 67 b is larger than the outer diameter of the annular portion 43 a of the check valve 43 and is substantially equal to the inner diameter of the second filter accommodation hole 53.
  • the small diameter portion 67c is disposed on the x-axis positive direction side of the second filter main body portion 67.
  • the small diameter portion 67c has an outer diameter smaller than that of the large diameter portion 67b.
  • the large diameter portion 67b and the small diameter portion 67c are connected by a step portion 67d.
  • the step portion 67d is disposed at a substantially central position in the x-axis direction of the second filter main body 67.
  • the stepped portion 67d is formed in a tapered shape that gradually decreases in diameter toward the positive x-axis direction.
  • the large diameter portion 67b, the small diameter portion 67c, and the stepped portion 67d are continuous over the entire circumference of the second filter main body 67.
  • each convex portion 67f extends radially from the radially inner side of the second filter main body portion 67 toward the radially outer side.
  • the convex portions 67f are arranged at equal intervals (45 ° pitch) through a predetermined gap in the circumferential direction.
  • a gap between the convex portions 67f and 67f adjacent to each other constitutes a part of the bypass liquid passage.
  • Each convex portion 67f is formed in a substantially fan shape in which the circumferential width widens from the radially inner side to the radially outer side.
  • Each convex portion 67f contacts the bottom surface 51a of the valve housing hole 51 when the SS / V IN 41 is fixed to the housing 50.
  • the second filter body 67 has four protrusions 67g that protrude radially inward from the through hole 67a.
  • Each protrusion 67g is formed in a substantially semicircular shape when viewed from the x-axis direction.
  • the protrusions 67g are arranged at equal intervals (90 ° pitch) in the circumferential direction.
  • Each protrusion 67g is located at the approximate center of the second filter main body 67 in the x-axis direction.
  • Each projection 67g is integrally formed with the second filter 68 using a technique such as insert molding. As shown in FIG.
  • each protrusion 67g abuts the end of the sheet member 60 in the x-axis positive direction in the x-axis direction.
  • the second filter 68 extends in the direction perpendicular to the x axis.
  • the second filter 68 is formed in a disk shape from a mesh-like metal material.
  • FIG. 4 is a cross-sectional view of main parts in the axial direction of the SS / V IN 41 of the first embodiment.
  • SS / V IN41 is opened when the second pedal force brake is realized by the driver's sudden braking operation.
  • the brake fluid that has flowed from the fluid path 24A into the valve housing hole 51 until the brake fluid pressure in the fluid path 24A reaches the brake fluid pressure in the fluid path 24B, It flows to the liquid path 24B via the path L1 and the electromagnetic valve outer flow path L2.
  • the electromagnetic valve flow path L1 is a flow path that passes through the second filter 68, the through liquid path 60a, the sheet hole 60c, the electromagnetic valve internal liquid path 66, the communication groove 61d, and the first filter 61b.
  • the electromagnetic valve outer flow path L2 is a bypass liquid path 42, a space surrounded by the bottom surface 51a, the end surface 67e, and each convex portion 67f, the outer peripheral surface of the second filter main body portion 67, and the second filter housing hole 53.
  • the flow path passes through the space between the peripheral surface and the space between the outer peripheral surface of the first filter body 61a and the inner peripheral surface of the second filter housing hole 53.
  • the initial response to a sudden braking operation can be improved.
  • the brake fluid pressure in the fluid path 24B exceeds the brake fluid pressure in the fluid path 24A
  • the brake fluid that has flowed into the valve housing hole 51 from the fluid path 24B flows into the fluid path 24A via the solenoid valve internal flow path L1. Due to the function of the check valve 43, the brake fluid does not flow through the electromagnetic valve outer flow path L2.
  • the second filter main body 67 has a large diameter portion 67b and a small diameter portion 67c on the outer periphery thereof. That is, the second filter member 62 has a portion whose outer diameter decreases from the x-axis negative direction side toward the x-axis positive direction side. Therefore, in the second filter housing hole 53, as shown in FIG. 4, a region 69 having a narrow gap between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the second filter main body 67, and A region 70 having a wide gap is formed.
  • the region 69 where the gap is narrow is a region between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the large diameter portion 67b.
  • the region 70 with a wide gap is a region between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the small diameter portion 67c.
  • the second filter housing hole 53 is a single system, and since the outer periphery of the second filter main body 67 has a different diameter, the narrow gap 69 and the wide gap 70 are formed. Compared with the case where the filter housing hole 53 side has a different diameter, it is possible to improve productivity and suppress cost increase.
  • the region 69 where the gap is narrow is disposed on the positive side of the second filter body 67 in the x-axis direction.
  • the check valve 43 side has a narrow gap 69, so that a part of the check valve 43 deformed by the brake fluid pressure enters the gap. Can be prevented.
  • the annular member interposed between the second filter body and the check valve supports the force in the positive x-axis direction that acts on the check valve. .
  • the large-diameter portion 67b of the second filter main body 67 supports the force in the positive x-axis direction that acts on the check valve 43. Therefore, an annular member is not necessary and the number of parts is reduced. Cost reduction by reducing the cost can be realized. Further, since the load of the check valve 43 is received by the large-diameter portion 67b having higher rigidity than the small-diameter portion 67c, it is possible to suppress a decrease in strength due to the formation of the small-diameter portion 67c in the second filter main body 67.
  • the large-diameter portion 67b is ensured in a certain range. Suppresses the rebound from.
  • the second filter main body 67 has a stepped portion 67d that connects the large diameter portion 67b and the small diameter portion 67c.
  • a liquid passage having a larger flow-path cross-sectional area region 70 with a wide gap
  • an increase in flow path resistance can be effectively suppressed.
  • the stepped portion 67d is tapered, it is possible to suppress an increase in channel resistance (reduction loss) due to a rapid reduction in the channel cross-sectional area.
  • the small diameter portion 67c continues over the entire circumference of the second filter main body 67.
  • the check valve 43 is a lip seal.
  • the outer periphery of the filter is used as an axial liquid path having a check valve function. Therefore, the second filter member 62 of the first embodiment is particularly suitable as a filter member of SS / V IN 41 having a lip seal.
  • the second filter main body 67 has eight convex portions 67f on the end surface 67e on the x-axis positive direction side, and each convex portion 67f contacts the bottom surface 51a of the second filter accommodation hole 53 in the x-axis direction.
  • eight grooves serving as liquid passages are formed between the convex portions 67f and 67f adjacent to each other in the circumferential direction, so that the flow resistance of the brake fluid passing between the bottom surface 51a and the end surface 67e is reduced. it can.
  • each convex portion 67f is appropriately deformed (collapsed), so that the displacement of the second filter member 62 in the x-axis direction can be suppressed. Further, each convex portion 67f can be appropriately deformed to absorb the load even when the second filter main body 67 receives the load of the check valve 43, so that the durability of the check valve 43 can be improved.
  • Each protrusion 67f has a shape in which the circumferential width widens from the radially inner side to the radially outer side. Thereby, the strength required for the second filter member 62 can be ensured while the flow resistance of the brake fluid passing between the bottom surface 51a and the end surface 67e is kept small.
  • the second filter body 67 has a plurality of protrusions 67g that protrude radially inward from the through holes 67a, and the sheet member 60 abuts each protrusion 67g in the x-axis direction. Thereby, the second filter member 62 can be reliably fixed to the sheet member 60.
  • Each protrusion 67g is partially arranged in the circumferential direction.
  • FIG. 5A is a longitudinal sectional view of the second filter member 71 of the second embodiment
  • FIG. 5B is a perspective view of the second filter member 71 of the second embodiment.
  • the small diameter portion 71c is partially arranged in the circumferential direction in the range from the x-axis positive direction end of the second filter main body 67 to the substantially central position in the x-axis direction. Specifically, the small diameter portion 71c is arranged at the same position as the gap between the convex portions 67f in the circumferential direction.
  • a portion excluding the small diameter portion 71c is a large diameter portion 71b having a larger outer diameter than the small diameter portion 71c.
  • the small diameter part 71c and the large diameter part 71b are connected by a step part 71d.
  • the stepped portion 71d is formed in a tapered shape that gradually decreases in diameter toward the positive x-axis direction.
  • the second embodiment since the small-diameter portion 71c is partially disposed in the circumferential direction, the second embodiment is more than the first embodiment while suppressing the flow resistance of the brake fluid passing through the outside of the second filter main body 67. The strength of the filter main body 67 can be improved.
  • FIG. 6A is a view of the second filter member 72 of the third embodiment as viewed from the x-axis direction
  • FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A
  • FIG. FIG. 10 is a perspective view of a second filter member 72 of form 3.
  • the four protrusions 72g are formed in a substantially rectangular shape when viewed from the x-axis direction.
  • the tip end (radially inner end) of the protruding portion 72g is formed in an arc shape that is convex on the radially outer side. Therefore, the third embodiment has the same effects as the first embodiment.
  • FIG. 7A is a view of the second filter member 73 of the fourth embodiment as viewed from the x-axis direction
  • FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A
  • FIG. FIG. 12 is a perspective view of a second filter member 73 of form 4.
  • the protrusion 73g is formed in an annular shape that extends continuously over the entire circumference in the circumferential direction.
  • the thickness (x-axis direction dimension) of the protrusion 73g is set to a length that can be appropriately deformed when the SS / V IN 41 is assembled to the housing 50.
  • the protrusion 73g is continuous over the entire circumference of the second filter member 73, the support strength of the second filter 68 can be improved as compared with the first embodiment, and the second filter member 73 is attached to the sheet. It can be more securely fixed to the member 60.
  • FIG. 5 is a view of the second filter member 74 of Embodiment 5 as seen from the x-axis direction
  • FIG. 8B is a cross-sectional view taken along the line AA in FIG. 8A
  • FIG. 10 is a perspective view of a second filter member 74 of form 5.
  • Each convex portion 74f is formed in a substantially rectangular shape extending in the radial direction when viewed from the x-axis direction.
  • the gap (liquid path) between the convex portions 74f and 74f adjacent to each other is formed in a substantially fan shape in which the circumferential width widens from the radially inner side toward the radially outer side.
  • each convex portion 74f has a circumferential width that is substantially constant regardless of the radial direction. Therefore, compared to the first embodiment, the flow rate of the brake fluid that passes between the bottom surface 51a and the end surface 67e is reduced. Can increase.
  • FIG. 9 is a perspective view of the second filter member 75 of the sixth embodiment.
  • the large-diameter portion 75b and the small-diameter portion 75c are partially arranged in the circumferential direction in the range from the x-axis positive direction end to the x-axis negative direction end of the second filter main body 67.
  • the small diameter portion 75c is arranged at the same position as the gap between the convex portions 67f in the circumferential direction.
  • the circumferential width of the small diameter portion 75c is such that a part of the check valve 43 deformed by receiving the brake fluid pressure does not enter the gap outside the small diameter portion 75c. It is set to be sufficiently narrower than the circumferential width of the large diameter portion 75b.
  • the small-diameter portion 75c extends from the x-axis positive direction end of the second filter main body 67 to the x-axis negative direction end, so that the brake passing outside the second filter main body 67 compared to the second embodiment. The flow path resistance of the liquid can be reduced.
  • FIG. 10 is a cross-sectional view of the main part in the axial direction of the second filter housing hole 53 of the seventh embodiment.
  • the second filter housing hole 53 has a large diameter portion 76.
  • the large diameter portion 76 is located at the x-axis positive direction end of the second filter housing hole 53 and is set in a range from the x-axis positive direction end of the second filter main body 67 to the x-axis direction central position.
  • the outer peripheral surface 77 of the second filter main body 67 has a single diameter.
  • the outer diameter of the outer peripheral surface 77 is the same as the outer diameter of the large diameter portion 67b of the first embodiment.
  • the second filter housing hole 53 has a large-diameter portion 76 that is a region where the radial width increases from the x-axis positive direction side toward the x-axis negative direction side. Therefore, a region 78 having a wide gap is formed between the inner peripheral surface of the large diameter portion 76 and the outer peripheral surface 77 of the second filter main body portion 67. On the other hand, a narrow region 79 is formed between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface 77 of the second filter body 67 on the x-axis negative direction side of the large diameter portion 76. Yes. Thereby, there exists an effect similar to Embodiment 1.
  • the second filter body 67 has a single diameter, and the inner periphery of the second filter housing hole 53 has a different diameter, thereby forming a narrow region 79 and a wide region 78. is doing. Therefore, complication of the shape of the second filter member 62 can be suppressed as compared with the first embodiment.
  • FIG. 11 is a cross-sectional view of the main part in the axial direction of the communication valve 36 of the eighth embodiment. Since the communication valve 36 of the eighth embodiment has substantially the same configuration as that of the SS / V IN 41 of the first embodiment, the same reference numerals are given to the common components, and description thereof will be omitted.
  • An O-ring 81 is disposed between the first filter member 61 and the second filter member 62 in the x-axis direction. The O-ring 81 seals between the inner peripheral surface of the second filter accommodation hole 53 and the outer peripheral surface of the sheet member 60.
  • the liquid passage 33A opens on the inner peripheral surface of the second filter accommodation hole 53 at the positive end in the x-axis direction of the second filter accommodation hole 53.
  • the liquid path 33B opens on the inner peripheral surface of the first filter accommodation hole 52.
  • the communication valve 36 is opened during boost control.
  • the brake fluid discharged from the pump 11 passes through the fluid path 33A, the second filter 68, the through fluid path 60a, the seat hole 60c, the solenoid valve internal fluid path 66, the communication groove 61d, 1 flows through the filter 61b to the liquid passage 33B and is supplied to the wheel cylinder 2.
  • the second filter member 62 can be used without rebounding.
  • the second filter member 62 can be applied to both a solenoid valve having a lip seal (SS / V IN41) and a solenoid valve having an O-ring (communication valve 36). Sharing can be achieved, and the productivity of the brake device 1 can be improved.
  • FIG. 12A shows a bobbin shape in which the outer peripheral surface 82 of the second filter main body 67 gradually increases in diameter from the center position in the x-axis direction toward the positive x-axis direction and the negative x-axis direction.
  • FIG. 12B shows a tapered shape in which the small-diameter portion 83c of the second filter main body 67 gradually decreases in diameter toward the x-axis positive direction side.
  • FIG. 12C shows a tapered shape in which the outer peripheral surface 84 of the second filter main body 67 gradually decreases in diameter as it goes toward the x-axis positive direction.
  • the stepped portion 85d extends in the direction perpendicular to the x-axis direction.
  • the liquid path 24A and the liquid path 24B in FIG. 2 may be interchanged, and the check valve 43 may be assembled upside down.
  • the material of the second filter body is arbitrary, and can be formed using a resin material, a metal material, a sintered material, a polymer material, or the like.
  • the brake device includes an electromagnetic valve and a housing, and the electromagnetic valve has a valve body movable along a central axis, and the direction in which the central axis extends is an axial direction.
  • a seat member having a seat portion on which the valve body is seated when the valve body moves to the one side in the axial direction, and a filter member disposed on the one side in the axial direction of the seat member,
  • a filter member having a filter disposed on one side in the axial direction, a main body portion that holds the filter, and a seal member that abuts on the other side in the axial direction of the main body portion.
  • a filter housing hole in which the filter member is housed wherein a gap between the radial direction of the central axis and the outer peripheral surface of the main body portion is narrow when the radial direction of the central axis is a radial direction.
  • the narrow region is disposed on the other axial side of the main body.
  • the main body has a portion in which the outer shape in the radial direction decreases from the other axial side toward the one axial side.
  • the main body portion has a large-diameter portion disposed on the other side in the axial direction and an outer diameter disposed on the one side in the axial direction than the large-diameter portion.
  • a small-diameter portion disposed on the other side in the axial direction and an outer diameter disposed on the one side in the axial direction than the large-diameter portion.
  • a small-diameter portion disposed on the other side in the axial direction and an outer diameter disposed on the one side in the axial direction than the large-diameter portion.
  • a step portion connecting the large diameter portion and the small diameter portion is provided.
  • the small-diameter portion is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
  • the small diameter portion is partially disposed in the circumferential direction when a direction around the central axis is a circumferential direction.
  • the filter accommodation hole has a region in which the radial width increases from the other axial side toward the one axial side.
  • the seal member is a lip seal.
  • the seal member is an O-ring.
  • the main body portion has a plurality of convex portions extending from the radially inner side toward the radially outer side on the surface on the one axial side, The convex portion comes into contact with the bottom surface of the filter housing hole in the axial direction.
  • the convex portion when the convex portion has a circumferential direction around the central axis, the circumferential width is substantially constant regardless of the radial position. .
  • the convex portion has a circumferential width from the radially inner side toward the radially outer side when a direction around the central axis is defined as a circumferential direction. spread.
  • the main body has a protrusion that protrudes radially inward from an inner peripheral surface thereof, and the sheet member includes the protrusion and the shaft. Abut in the direction.
  • the protrusion is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
  • the protrusion is partially disposed in the circumferential direction when a direction around the central axis is a circumferential direction.
  • the brake device includes an electromagnetic valve and a housing.
  • the electromagnetic valve is configured to move along a central axis, and to extend in the direction in which the central axis extends.
  • a seat member having a seat portion on which the valve body is seated when the valve body moves to the one axial side, and a filter member disposed on the one axial side of the seat member.
  • a filter disposed on one side in the axial direction from the sheet member, and when holding the filter and letting the radial direction of the central axis be a radial direction, a larger diameter portion and an outer diameter than the large diameter portion
  • a filter housing hole that is, a liquid passage connected to said filter housing hole, the.
  • the large diameter portion is disposed on the other axial side of the main body portion.
  • the electromagnetic valve for a brake device includes a valve body that is movable along a central axis, and the valve body is in the axial direction when the direction in which the central axis extends is an axial direction.
  • a seat member having a seat portion on which the valve element is seated when moved to one side, and a filter member disposed on the one axial side of the seat member, on the one axial side of the sheet member
  • a main body having a large-diameter portion and a small-diameter portion having an outer diameter smaller than that of the large-diameter portion when the arranged filter, the filter is held, and the radial direction of the central axis is the radial direction;
  • a sealing member that contacts the other axial side of the main body. More preferably, in the said aspect, it has the level
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

In the present invention, a second filter housing hole 53 in which a second filter member 62 of a SS/V IN 41 is housed has a region 69 where a gap with respect to the outer peripheral surface of the second filter member 62 is narrow and a region 70 where a gap with respect to the same is wide.

Description

ブレーキ装置およびブレーキ装置用電磁弁Brake device and electromagnetic valve for brake device
 本発明は、ブレーキ装置およびブレーキ装置用電磁弁に関する。 The present invention relates to a brake device and a solenoid valve for a brake device.
 特許文献1には、ハウジングの電磁弁収容孔に収容された電磁弁を備えたブレーキ装置が開示されている。電磁弁収容孔の底部には、ブレーキ液をろ過するフィルタ部材が配置されている。 Patent Document 1 discloses a brake device including a solenoid valve housed in a solenoid valve housing hole of a housing. A filter member for filtering the brake fluid is disposed at the bottom of the electromagnetic valve housing hole.
特開2016-102563号公報JP 2016-102563 A
 しかしながら、特許文献1に示すようなブレーキ装置では、フィルタ部材が単一径であるため、フィルタ部材の外周面と電磁弁収容孔の内周面との間の隙間を液路とする場合、十分な流路断面積を確保できない。このため、流路抵抗が大きく、ブレーキ装置の応答性が低下するおそれがあった。
  本発明の目的の一つは、流路抵抗の増大を抑制できるブレーキ装置およびブレーキ装置用電磁弁を提供することにある。
However, in the brake device as shown in Patent Document 1, since the filter member has a single diameter, when the gap between the outer peripheral surface of the filter member and the inner peripheral surface of the electromagnetic valve housing hole is used as a liquid path, it is sufficient. Cannot secure a sufficient flow path cross-sectional area. For this reason, there was a possibility that channel resistance might be large and the responsiveness of a brake device might fall.
One of the objects of the present invention is to provide a brake device and an electromagnetic valve for a brake device that can suppress an increase in flow path resistance.
 本発明の一実施形態におけるブレーキ装置では、電磁弁のフィルタ部材が収容されるフィルタ収容孔は、フィルタ部材の外周面との間の隙間が、狭い領域と、広い領域とを有する。 In the brake device according to an embodiment of the present invention, the filter housing hole in which the filter member of the electromagnetic valve is housed has a narrow region and a wide region with respect to the outer peripheral surface of the filter member.
 よって、本発明の一実施形態にあっては、流路抵抗の増大を抑制できる。 Therefore, in one embodiment of the present invention, an increase in flow path resistance can be suppressed.
実施形態1のブレーキ装置1の概略構成図である。1 is a schematic configuration diagram of a brake device 1 according to a first embodiment. 実施形態1のSS/V IN41の軸方向断面図である。FIG. 3 is an axial sectional view of SS / V / IN41 of the first embodiment. 実施形態1の第2フィルタ部材62を示す図である。FIG. 5 is a diagram illustrating a second filter member 62 according to the first embodiment. 実施形態1のSS/V IN41の軸方向要部断面図である。FIG. 3 is a cross-sectional view of the main part in the axial direction of SS / V IN 41 of the first embodiment. 実施形態2の第2フィルタ部材71を示す図である。FIG. 6 is a view showing a second filter member 71 of Embodiment 2. 実施形態3の第2フィルタ部材72を示す図である。FIG. 6 is a view showing a second filter member 72 of Embodiment 3. 実施形態4の第2フィルタ部材73を示す図である。FIG. 10 is a view showing a second filter member 73 of the fourth embodiment. 実施形態5の第2フィルタ部材74を示す図である。FIG. 10 is a view showing a second filter member 74 of Embodiment 5. 実施形態6の第2フィルタ部材75を示す図である。It is a figure which shows the 2nd filter member 75 of Embodiment 6. FIG. 実施形態7の第2フィルタ収容孔53の軸方向要部断面図である。FIG. 10 is a cross-sectional view of the main part in the axial direction of a second filter housing hole 53 of Embodiment 7. 実施形態8の連通弁36の軸方向要部断面図である。FIG. 10 is a cross-sectional view of the main part in the axial direction of a communication valve 36 of an eighth embodiment. 他の実施形態を示す第2フィルタ本体部67の断面図である。It is sectional drawing of the 2nd filter main-body part 67 which shows other embodiment. 他の実施形態を示すSS/V IN41の軸方向断面図である。It is an axial sectional view of SS / V IN 41 showing another embodiment.
 〔実施形態1〕
  図1は、実施形態1のブレーキ装置1の概略構成図である。
  ブレーキ装置1は、電動車両に好適な液圧式ブレーキ装置を有する。電動車両は、車輪を駆動する原動機として、エンジン(内燃機関)およびモータジェネレータ(回転電機)を備えたハイブリッド車や、モータジェネレータのみを備えた電気自動車等である。なお、エンジンのみを駆動力源とする車両にブレーキ装置1を適用してもよい。ブレーキ装置1は、車両の各車輪FL~RRに設けられたホイルシリンダ2a~2dにブレーキ液を供給してブレーキ液圧(ホイルシリンダ液圧Pw)を発生させる。このホイルシリンダ液圧Pwによりパッドを移動させ、パッドを車輪側のロータに押し付けることにより、摩擦による制動力が各車輪FL~RRに付与される。ここで、ホイルシリンダ2は、ディスクブレーキ機構における油圧式ブレーキキャリパのシリンダのほか、ドラムブレーキ機構のホイルシリンダであってもよい。ブレーキ装置1は、P(プライマリ)およびS(セカンダリ)の2系統のブレーキ配管を有し、X配管形式を採用する。なお、前後配管等、他の配管形式を採用してもよい。以下、P系統に対応して設けられた部材とS系統に対応する部材とを区別する場合は、それぞれの符号の末尾に添字P,Sを付す。
Embodiment 1
FIG. 1 is a schematic configuration diagram of a brake device 1 according to the first embodiment.
The brake device 1 has a hydraulic brake device suitable for an electric vehicle. The electric vehicle is a hybrid vehicle including an engine (internal combustion engine) and a motor generator (rotating electric machine) as a prime mover for driving wheels, an electric vehicle including only a motor generator, or the like. Note that the brake device 1 may be applied to a vehicle using only the engine as a driving force source. The brake device 1 supplies brake fluid to the wheel cylinders 2a to 2d provided on the wheels FL to RR of the vehicle to generate brake fluid pressure (wheel cylinder fluid pressure Pw). By moving the pad by the wheel cylinder hydraulic pressure Pw and pressing the pad against the wheel-side rotor, a braking force due to friction is applied to each of the wheels FL to RR. Here, the wheel cylinder 2 may be a wheel cylinder of a drum brake mechanism in addition to a hydraulic brake caliper cylinder in the disc brake mechanism. The brake device 1 has two systems of brake piping, P (primary) and S (secondary), and adopts an X piping format. In addition, you may employ | adopt other piping formats, such as front and rear piping. In the following, when distinguishing between members provided corresponding to the P system and members corresponding to the S system, the suffixes P and S are added to the end of each symbol.
 ブレーキ装置1は、マスタシリンダユニット3、液圧ユニット4およびコントロールユニット5を有する。
  マスタシリンダユニット3は、ブレーキペダル6、マスタシリンダ7およびリザーバタンク8を有する。ブレーキペダル6は、ドライバのブレーキ操作の入力を受けるブレーキ操作部材である。ブレーキペダル6は、いわゆる吊下げ型であり、その基端が軸6aによって回転自在に支持されている。ブレーキペダル6の先端には、ドライバが踏み込む対象となるパッド6bが設けられている。ブレーキペダル6の軸6aとパッド6bとの間における基端側には、プッシュロッド6dの一端が、軸6cによって回転自在に接続されている。
  マスタシリンダ7は、ドライバによるブレーキペダル6の操作(ブレーキ操作)により作動し、マスタシリンダ液圧Pmを発生する。なお、ブレーキ装置1は、車両のエンジンが発生する吸気負圧を利用してドライバのブレーキ操作力(ブレーキペダル6の踏力F)を倍力ないし増幅する負圧式の倍力装置を持たない。よって、ブレーキ装置1の小型化が可能であり、かつ、負圧源(多くの場合はエンジン)を有さない電動車両のブレーキシステムとして好適である。マスタシリンダ7は、プッシュロッド6dを介してブレーキペダル6に接続され、リザーバタンク8からブレーキ液を補給される。
The brake device 1 includes a master cylinder unit 3, a hydraulic unit 4, and a control unit 5.
The master cylinder unit 3 has a brake pedal 6, a master cylinder 7, and a reservoir tank 8. The brake pedal 6 is a brake operation member that receives an input of a driver's brake operation. The brake pedal 6 is a so-called suspension type, and its base end is rotatably supported by a shaft 6a. At the tip of the brake pedal 6, there is provided a pad 6b that is a target to be depressed by the driver. One end of a push rod 6d is rotatably connected to the base end side between the shaft 6a and the pad 6b of the brake pedal 6 by a shaft 6c.
The master cylinder 7 is activated by the operation of the brake pedal 6 (brake operation) by the driver, and generates a master cylinder hydraulic pressure Pm. Note that the brake device 1 does not have a negative pressure type booster device that boosts or amplifies the driver's brake operation force (stepping force F of the brake pedal 6) using intake negative pressure generated by the vehicle engine. Therefore, the brake device 1 can be reduced in size, and is suitable as a brake system for an electric vehicle that does not have a negative pressure source (in many cases, an engine). The master cylinder 7 is connected to the brake pedal 6 via the push rod 6d, and is supplied with brake fluid from the reservoir tank 8.
 リザーバタンク8は、ブレーキ液を貯留する。リザーバタンク8に貯留されたブレーキ液は大気開放されている。リザーバタンク8の内部における底部側(鉛直方向下側)は、所定の高さを有する2つの仕切り部材8a,8bにより、プライマリ液圧室用空間8c、セカンダリ液圧室用空間8dおよびポンプ吸入用空間8eの3空間に区画されている。
  マスタシリンダ7はタンデム型であり、ブレーキ操作に応じて軸方向に移動するマスタシリンダピストンとして、プライマリピストン9Pおよびセカンダリピストン9Sを有する。両ピストン9P,9Sは直列に配置されている。プライマリピストン9Pはプッシュロッド6dに接続されている。セカンダリピストン9Sはフリーピストン型である。
  ブレーキペダル6には、ストロークセンサ10が設けられている。ストロークセンサ10は、ブレーキペダル6の変位量(ペダルストロークS)を検出する。なお、ストロークセンサ10をプッシュロッド6dまたはプライマリピストン9Pに設け、ピストンストロークを検出してもよい。この場合、ペダルストロークSは、プッシュロッド6dないしプライマリピストン9Pの軸方向変位量(ストローク量)にブレーキペダルのペダル比Kを乗じたものに相当する。Kは、プライマリピストン9Pのストローク量に対するSの比率であり、所定の値に設定されている。Kは、例えば、軸6aから軸6cまでの距離に対する、軸6aからパッド6bまでの距離の比により算出できる。
The reservoir tank 8 stores brake fluid. The brake fluid stored in the reservoir tank 8 is released to the atmosphere. The bottom side (vertical direction lower side) inside the reservoir tank 8 is a primary hydraulic chamber space 8c, a secondary hydraulic chamber space 8d, and a pump suction chamber by two partition members 8a and 8b having a predetermined height. It is divided into three spaces 8e.
The master cylinder 7 is a tandem type, and has a primary piston 9P and a secondary piston 9S as master cylinder pistons that move in the axial direction in response to a brake operation. Both pistons 9P and 9S are arranged in series. The primary piston 9P is connected to the push rod 6d. The secondary piston 9S is a free piston type.
The brake pedal 6 is provided with a stroke sensor 10. The stroke sensor 10 detects the amount of displacement of the brake pedal 6 (pedal stroke S). The stroke sensor 10 may be provided on the push rod 6d or the primary piston 9P to detect the piston stroke. In this case, the pedal stroke S corresponds to the axial displacement amount (stroke amount) of the push rod 6d or the primary piston 9P multiplied by the pedal ratio K of the brake pedal. K is a ratio of S to the stroke amount of the primary piston 9P, and is set to a predetermined value. K can be calculated, for example, by the ratio of the distance from the axis 6a to the pad 6b with respect to the distance from the axis 6a to the axis 6c.
 ストロークシミュレータ20は、ドライバのブレーキ操作に応じて作動し、マスタシリンダ7の内部から流出したブレーキ液がストロークシミュレータ20内に流入することにより、ペダルストロークSを発生させる。ストロークシミュレータ20のピストン21は、マスタシリンダ7から供給されたブレーキ液量に応じてシリンダ22内を軸方向移動する。これにより、ドライバのブレーキ操作に伴う操作反力が生成される。
  液圧ユニット4は、ドライバのブレーキ操作とは独立にホイルシリンダ液圧Pwを調整する。コントロールユニット5は、液圧ユニット4の作動を制御する。液圧ユニット4は、リザーバタンク8またはマスタシリンダ7からブレーキ液の供給を受ける。液圧ユニット4は、ホイルシリンダ2とマスタシリンダ7との間に介在し、各ホイルシリンダ2にマスタシリンダ液圧Pmまたは制御液圧を個別に供給する。液圧ユニット4は、制御液圧を発生するための液圧機器として、ポンプ11のモータ11aおよび複数の制御弁(電磁弁12等)を有する。ポンプ11は、マスタシリンダ7以外のブレーキ液源(リザーバタンク8等)からブレーキ液を吸入し、ホイルシリンダ2に向けて吐出する。ポンプ11は、例えばプランジャポンプまたはギアポンプである。ポンプ11は、両系統で共通に用いられ、同一の駆動源としての電動式のモータ11aにより回転駆動される。モータ11aは、例えばブラシ付き直流モータまたはブラシレスモータである。電磁弁12等は、制御信号に応じて開閉動作し、マスタシリンダ7とホイルシリンダ2との間を接続する第1液路13等の連通状態を切り替える。これにより、ブレーキ液の流れを制御する。液圧ユニット4は、マスタシリンダ7とホイルシリンダ2との連通を遮断した状態で、ポンプ11が発生する液圧によりホイルシリンダ2を加圧可能である。また、液圧ユニット4は、ポンプ11の吐出圧やPm等、各所の液圧を検出する液圧センサ14~16を有する。
The stroke simulator 20 operates in accordance with the driver's brake operation, and the brake fluid that has flowed out of the master cylinder 7 flows into the stroke simulator 20 to generate the pedal stroke S. The piston 21 of the stroke simulator 20 moves in the axial direction in the cylinder 22 in accordance with the amount of brake fluid supplied from the master cylinder 7. Thereby, the operation reaction force accompanying the brake operation of the driver is generated.
The hydraulic unit 4 adjusts the wheel cylinder hydraulic pressure Pw independently of the driver's brake operation. The control unit 5 controls the operation of the hydraulic unit 4. The hydraulic unit 4 receives supply of brake fluid from the reservoir tank 8 or the master cylinder 7. The hydraulic pressure unit 4 is interposed between the wheel cylinder 2 and the master cylinder 7, and individually supplies the master cylinder hydraulic pressure Pm or the control hydraulic pressure to each wheel cylinder 2. The hydraulic unit 4 includes a motor 11a of the pump 11 and a plurality of control valves (such as an electromagnetic valve 12) as hydraulic equipment for generating a control hydraulic pressure. The pump 11 sucks brake fluid from a brake fluid source (reservoir tank 8 or the like) other than the master cylinder 7 and discharges it toward the wheel cylinder 2. The pump 11 is, for example, a plunger pump or a gear pump. The pump 11 is used in common in both systems, and is rotationally driven by an electric motor 11a as the same drive source. The motor 11a is, for example, a brushed DC motor or a brushless motor. The solenoid valve 12 or the like opens and closes in response to a control signal, and switches the communication state of the first liquid passage 13 and the like that connect between the master cylinder 7 and the wheel cylinder 2. Thereby, the flow of brake fluid is controlled. The hydraulic unit 4 can pressurize the wheel cylinder 2 with the hydraulic pressure generated by the pump 11 in a state where the communication between the master cylinder 7 and the wheel cylinder 2 is cut off. The hydraulic pressure unit 4 includes hydraulic pressure sensors 14 to 16 that detect hydraulic pressures at various locations such as the discharge pressure of the pump 11 and Pm.
 コントロールユニット5には、ストロークセンサ10および各液圧センサ14~16から送られる検出値、並びに車両側から送られる走行状態(各車輪速等)に関する情報が入力される。コントロールユニット5は、入力された各情報に基づき、内蔵されたプログラムに従って情報処理を行う。また、この処理結果に従って液圧ユニット4の各アクチュエータ(モータ11aや電磁弁12等)に指令信号を出力し、これらを制御する。具体的には、電磁弁12等の開閉動作や、モータ11aの回転数(すなわち、ポンプ11の吐出量)を制御する。これにより各車輪FL~RRのホイルシリンダ液圧Pwを制御することで、各種ブレーキ制御を実現する。例えば、倍力制御、アンチロック制御、車両運動制御のためのブレーキ制御、自動ブレーキ制御および回生協調ブレーキ制御等を実現する。倍力制御は、ドライバのブレーキ操作力では不足する制動力を発生してブレーキ操作を補助する。アンチロック制御は、制動による車輪FL~RRのスリップ(ロック傾向)を抑制する。車両運動制御は、横滑り等を防止する車両挙動安定化制御である。自動ブレーキ制御は、先行車追従制御等である。回生協調ブレーキ制御は、回生ブレーキと協調して目標減速度(目標制動力)を達成するようにホイルシリンダ液圧Pwを制御する。 The control unit 5 is inputted with the detection value sent from the stroke sensor 10 and each of the hydraulic pressure sensors 14 to 16 and the information about the running state (each wheel speed, etc.) sent from the vehicle side. The control unit 5 performs information processing according to a built-in program based on each input information. Further, in accordance with the processing result, a command signal is output to each actuator (motor 11a, electromagnetic valve 12, etc.) of the hydraulic unit 4 to control them. Specifically, the opening / closing operation of the solenoid valve 12 and the like, and the rotation speed of the motor 11a (that is, the discharge amount of the pump 11) are controlled. Thus, various brake controls are realized by controlling the wheel cylinder hydraulic pressure Pw of each wheel FL to RR. For example, boost control, antilock control, brake control for vehicle motion control, automatic brake control, regenerative cooperative brake control, and the like are realized. The boost control assists the brake operation by generating a braking force that is insufficient with the driver's brake operation force. Anti-lock control suppresses slipping (lock tendency) of the wheels FL to RR due to braking. Vehicle motion control is vehicle behavior stabilization control that prevents skidding and the like. The automatic brake control is a preceding vehicle following control or the like. The regenerative cooperative brake control controls the wheel cylinder hydraulic pressure Pw so as to achieve the target deceleration (target braking force) in cooperation with the regenerative brake.
 マスタシリンダ7の両ピストン9P,9S間には、プライマリ液圧室17Pが画成されている。プライマリ液圧室17Pには、コイルスプリング18Pが圧縮状態で設置されている。ピストン9Sとシリンダ7aの底面との間には、セカンダリ液圧室17Sが画成されている。セカンダリ液圧室17Sには、コイルスプリング18Sが圧縮状態で設置されている。各液圧室17P,17Sには、第1液路13が開口する。各液圧室17P,17Sは、第1液路13を介して液圧ユニット4と接続すると共に、ホイルシリンダ2と連通可能に設けられている。プライマリ液圧室17Pおよびセカンダリ液圧室17Sと、液圧ユニット4の第1液路13Pおよび第1液路13Sとは、それぞれブレーキ配管19P,19Sを介して接続されている。ブレーキ配管19P,19Sは、第1液路13の一部を構成する。
  ドライバによるブレーキペダル6の踏み込み操作によってピストン9がストロークすると、両液圧室17P,17Sの容積が減少し、容積の減少に応じて液圧Pmが発生する。両液圧室17P,17Sにはほぼ同じPmが発生する。これにより、液圧室17から第1液路13を介してホイルシリンダ2に向けてブレーキ液が供給される。マスタシリンダ7は、プライマリ液圧室17Pに発生したPmによりP系統の液路(第1液路13P)を介してP系統のホイルシリンダ2a,2dを加圧可能である。また、マスタシリンダ7は、セカンダリ液圧室17Sに発生したPmによりS系統の液路(第1液路13S)を介してS系統のホイルシリンダ2b,2cを加圧可能である。
A primary hydraulic chamber 17P is defined between the pistons 9P and 9S of the master cylinder 7. A coil spring 18P is installed in a compressed state in the primary hydraulic chamber 17P. A secondary hydraulic chamber 17S is defined between the piston 9S and the bottom surface of the cylinder 7a. A coil spring 18S is installed in the compressed state in the secondary hydraulic chamber 17S. A first fluid path 13 opens in each of the fluid pressure chambers 17P and 17S. Each of the hydraulic chambers 17P and 17S is connected to the hydraulic unit 4 through the first liquid passage 13 and is provided so as to communicate with the wheel cylinder 2. The primary hydraulic chamber 17P and the secondary hydraulic chamber 17S are connected to the first hydraulic passage 13P and the first hydraulic passage 13S of the hydraulic unit 4 through brake pipes 19P and 19S, respectively. The brake pipes 19P and 19S constitute a part of the first liquid path 13.
When the piston 9 is stroked by depressing the brake pedal 6 by the driver, the volumes of the two hydraulic pressure chambers 17P and 17S are reduced, and the hydraulic pressure Pm is generated in accordance with the decrease in the volume. Almost the same Pm is generated in both hydraulic pressure chambers 17P and 17S. As a result, the brake fluid is supplied from the hydraulic chamber 17 toward the wheel cylinder 2 via the first fluid passage 13. The master cylinder 7 can pressurize the P- type wheel cylinders 2a and 2d through the P-system liquid path (first liquid path 13P) by Pm generated in the primary hydraulic chamber 17P. The master cylinder 7 can pressurize the S system wheel cylinders 2b and 2c through the S system liquid path (first liquid path 13S) by Pm generated in the secondary hydraulic chamber 17S.
 次に、ストロークシミュレータ20の構成を説明する。ストロークシミュレータ20は、シリンダ22、ピストン21およびスプリング23を有する。図1では、シリンダ22の軸心を通る断面を示している。シリンダ22は筒状であり、円筒状の内周面を有する。シリンダ22は、ピストン収容部22aおよびスプリング収容部22bを有する。スプリング収容部22bの内周面はピストン収容部22aの内周面よりも大径である。ピストン21は、ピストン収容部22aの内周側に、その内周面に沿って直線移動可能に設置されている。ピストン21は、シリンダ22内を少なくとも2室(正圧室20aと背圧室20b)に分離する分離部材(隔壁)である。シリンダ22内には、ピストン21を挟んで正圧室20aおよび背圧室20bが画成されている。正圧室20aには第2液路25が常時開口する。背圧室20bには第3液路24が常時開口する。 Next, the configuration of the stroke simulator 20 will be described. The stroke simulator 20 includes a cylinder 22, a piston 21, and a spring 23. In FIG. 1, a cross section passing through the axis of the cylinder 22 is shown. The cylinder 22 is cylindrical and has a cylindrical inner peripheral surface. The cylinder 22 has a piston housing portion 22a and a spring housing portion 22b. The inner peripheral surface of the spring accommodating portion 22b has a larger diameter than the inner peripheral surface of the piston accommodating portion 22a. The piston 21 is installed on the inner peripheral side of the piston accommodating portion 22a so as to be linearly movable along the inner peripheral surface. The piston 21 is a separation member (partition wall) that separates the inside of the cylinder 22 into at least two chambers (a positive pressure chamber 20a and a back pressure chamber 20b). A positive pressure chamber 20a and a back pressure chamber 20b are defined in the cylinder 22 with the piston 21 therebetween. The second liquid passage 25 is always open to the positive pressure chamber 20a. A third liquid passage 24 is always open in the back pressure chamber 20b.
 ピストン21の外周には、ピストン21の軸心の周り方向(周方向)に延びるようにピストンシール26が設置されている。ピストンシール26は、シリンダ22(ピストン収容部22a)の内周面に摺接して、ピストン収容部22aの内周面とピストン21の外周面との間をシールする。ピストンシール26は、正圧室20aと背圧室20bとの間をシールして両室20a,20b間を液密に分離する分離シール部材であり、ピストン21の上記分離部材としての機能を補完する。スプリング23は、背圧室20b内に押し縮められた状態で設置されたコイルスプリングであり、ピストン21をx軸負方向側に常時付勢する。スプリング23は、x軸方向に変形可能に設けられており、ピストン21の変位量(ストローク量)に応じて反力を発生可能である。スプリング23は、第1スプリング23aおよび第2スプリング23bを有する。第1スプリング23aは、第2スプリング23bよりも小径かつ短尺であり、線径が小さい。第1スプリング23aのばね定数は第2スプリング23bよりも小さい。第1および第2スプリング23a,23bは、ピストン21とシリンダ22(スプリング収容部22b)との間に、リテーナ部材27を介して直列に配置されている。 A piston seal 26 is installed on the outer periphery of the piston 21 so as to extend in the direction around the axis of the piston 21 (circumferential direction). The piston seal 26 is in sliding contact with the inner peripheral surface of the cylinder 22 (piston accommodating portion 22a) to seal between the inner peripheral surface of the piston accommodating portion 22a and the outer peripheral surface of the piston 21. The piston seal 26 is a separation seal member that seals between the positive pressure chamber 20a and the back pressure chamber 20b and liquid-tightly separates the chambers 20a and 20b, and complements the function of the piston 21 as the separation member. To do. The spring 23 is a coil spring installed in a compressed state in the back pressure chamber 20b, and constantly urges the piston 21 toward the x-axis negative direction. The spring 23 is provided so as to be deformable in the x-axis direction, and can generate a reaction force according to the displacement amount (stroke amount) of the piston 21. The spring 23 includes a first spring 23a and a second spring 23b. The first spring 23a is smaller in diameter and shorter than the second spring 23b, and has a smaller wire diameter. The spring constant of the first spring 23a is smaller than that of the second spring 23b. The first and second springs 23a and 23b are arranged in series via the retainer member 27 between the piston 21 and the cylinder 22 (spring accommodating portion 22b).
 次に、液圧ユニット4の液圧回路を説明する。各車輪FL~RRに対応する部材には、その符号の末尾にそれぞれ添字a~dを付して適宜区別する。第1液路13は、マスタシリンダ7の液圧室17とホイルシリンダ2とを接続する。第1遮断弁12Pおよび第2遮断弁12Sは、第1液路13に設けられた常開型の(非通電状態で開弁する)電磁弁である。第1液路13は、遮断弁12によって、マスタシリンダ7側の液路13Aとホイルシリンダ2側の液路13Bとに分離されている。ソレノイドイン弁(SOL/V IN)28は、第1液路13における遮断弁12よりもホイルシリンダ2側(液路13B)に、各車輪FL~RRに対応して(液路13a~13dに)設けられた常開型の電磁弁である。なお、SOL/V IN28をバイパスして第1液路13と並列にバイパス液路29が設けられている。バイパス液路29には、ホイルシリンダ2側からマスタシリンダ7側へのブレーキ液の流れのみを許容するチェック弁30が設けられている。 Next, the hydraulic circuit of the hydraulic unit 4 will be described. The members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes a to d at the end of the reference numerals. The first fluid path 13 connects the fluid pressure chamber 17 of the master cylinder 7 and the wheel cylinder 2. The first shut-off valve 12P and the second shut-off valve 12S are normally open electromagnetic valves (open in a non-energized state) provided in the first liquid passage 13. The first liquid path 13 is separated by a shutoff valve 12 into a liquid path 13A on the master cylinder 7 side and a liquid path 13B on the wheel cylinder 2 side. The solenoid-in valve (SOL / V IN) 28 is located on the wheel cylinder 2 side (liquid path 13B) with respect to the wheels FL to RR than the shutoff valve 12 in the first liquid path 13 (in the liquid paths 13a to 13d). ) This is a normally open solenoid valve. A bypass liquid path 29 is provided in parallel with the first liquid path 13 by bypassing the SOL / V IN 28. The bypass fluid path 29 is provided with a check valve 30 that allows only the flow of brake fluid from the wheel cylinder 2 side to the master cylinder 7 side.
 吸入液路31は、リザーバタンク8とポンプ11の吸入部32とを接続する液路である。液圧ユニット4内には、吸入液路31上に、所定容積の液溜まり部31aが設けられている。液溜まり部31aは、液圧ユニット4の鉛直方向上側端付近であって、ブレーキ配管19Rが接続された部位(液圧ユニット4の鉛直方向上側)の近傍に設けられている。ポンプ11は、液溜まり部31aを介してブレーキ液を吸入する。吐出液路33は、ポンプ11の吐出部34と、第1液路13Bにおける遮断弁12とSOL/V IN28との間とを接続する。チェック弁35は、吐出液路33に設けられ、ポンプ11の吐出部34の側(上流側)から第1液路13の側(下流側)へのブレーキ液の流れのみを許容する。チェック弁35は、ポンプ11が備える吐出弁である。吐出液路33は、チェック弁35の下流側でP系統の液路33PとS系統の液路33Sとに分岐する。各液路33P,33SはP,S系統の第1液路13P,13Sと接続している。液路33P,33Sは、両第1液路13P,13S間を接続する連通液路として機能する。連通弁36P,36Sは、液路33P,33Sに設けられた常閉型の(非通電状態で閉弁する)電磁弁である。ポンプ11は、リザーバタンク8から供給されるブレーキ液により第1液路13に液圧を発生させてホイルシリンダ2に液圧Pwを発生させる。ポンプ11は、上記連通液路(吐出液路33P,33S)および第1液路13P,13Sを介してホイルシリンダ2a~2dと接続しており、上記連通液路(吐出液路33P,33S)にブレーキ液を吐出することでホイルシリンダ2を加圧する。 The suction liquid path 31 is a liquid path connecting the reservoir tank 8 and the suction part 32 of the pump 11. In the hydraulic pressure unit 4, a liquid reservoir 31a having a predetermined volume is provided on the suction liquid passage 31. The liquid reservoir 31a is provided in the vicinity of the upper end in the vertical direction of the hydraulic unit 4 and in the vicinity of the portion to which the brake pipe 19R is connected (the upper side in the vertical direction of the hydraulic unit 4). The pump 11 sucks the brake fluid through the liquid reservoir 31a. The discharge liquid path 33 connects the discharge part 34 of the pump 11 and the shut-off valve 12 and the SOL / V IN 28 in the first liquid path 13B. The check valve 35 is provided in the discharge liquid passage 33 and allows only the flow of brake fluid from the discharge portion 34 side (upstream side) of the pump 11 to the first liquid passage 13 side (downstream side). The check valve 35 is a discharge valve provided in the pump 11. The discharge liquid path 33 branches into a P-system liquid path 33P and an S-system liquid path 33S on the downstream side of the check valve 35. The liquid passages 33P and 33S are connected to the first liquid passages 13P and 13S of the P and S systems. The liquid paths 33P and 33S function as a communication liquid path that connects the first liquid paths 13P and 13S. The communication valves 36P and 36S are normally closed electromagnetic valves (closed in a non-energized state) provided in the liquid passages 33P and 33S. The pump 11 generates a hydraulic pressure in the first fluid path 13 by the brake fluid supplied from the reservoir tank 8 and generates a hydraulic pressure Pw in the wheel cylinder 2. The pump 11 is connected to the wheel cylinders 2a to 2d via the communication liquid path (discharge liquid path 33P, 33S) and the first liquid path 13P, 13S, and the communication liquid path (discharge liquid path 33P, 33S). The wheel cylinder 2 is pressurized by discharging brake fluid.
 第1減圧液路37は、吐出液路33におけるチェック弁35と連通弁36との間と、吸入液路31とを接続する。調圧弁38は、第1減圧液路37に設けられた常開型の電磁弁である。なお、調圧弁38は常閉型でもよい。第2減圧液路39は、第1液路13BにおけるSOL/V IN28よりもホイルシリンダ2側と、吸入液路31とを接続する。ソレノイドアウト弁(SOL/V OUT)28は、第2減圧液路39に設けられた常閉型の電磁弁である。なお、実施形態1では、調圧弁38よりも吸入液路31の側の第1減圧液路37と、SOL/V OUT40よりも吸入液路31の側の第2減圧液路39とが、部分的に共通している。 The first depressurizing liquid path 37 connects the suction liquid path 31 between the check valve 35 and the communication valve 36 in the discharge liquid path 33. The pressure regulating valve 38 is a normally open electromagnetic valve provided in the first pressure reducing liquid passage 37. The pressure regulating valve 38 may be a normally closed type. The second decompression liquid path 39 connects the suction liquid path 31 to the wheel cylinder 2 side with respect to the SOL / V IN 28 in the first liquid path 13B. The solenoid-out valve (SOL / V OUT) 28 is a normally closed electromagnetic valve provided in the second decompression liquid path 39. In the first embodiment, the first depressurizing liquid path 37 on the suction liquid path 31 side from the pressure regulating valve 38 and the second depressurizing liquid path 39 on the suction liquid path 31 side from the SOL / V OUT40 are partially divided. In common.
 第2液路25は、第1液路13Aから分岐してストロークシミュレータ20の正圧室20aと接続する。なお、第2液路25が、第1液路13Aを介さずにセカンダリ液圧室17Sと正圧室20aとを直接的に接続するようにしてもよい。
  第3液路24は、ストロークシミュレータ20の背圧室20bと第1液路13とを接続する。具体的には、第3液路24は、第1液路13S(液路13B)における遮断弁12SとSOL/V IN28との間から分岐して背圧室20bに接続する。ストロークシミュレータイン弁(SS/V IN)41は、第3液路24に設けられた常閉型の電磁弁である。第3液路24は、SS/V IN41によって、背圧室20b側の液路24Aと第1液路13側の液路24Bとに分離されている。SS/V IN41をバイパスして第3液路24と並列にバイパス液路42が設けられている。バイパス液路42は、液路24と液路13Bとを接続する。バイパス液路42にはチェック弁43が設けられている。チェック弁43は、背圧室20b側(液路24)から第1液路13側(液路13B)へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制する。
The second liquid passage 25 branches from the first liquid passage 13A and is connected to the positive pressure chamber 20a of the stroke simulator 20. Note that the second fluid passage 25 may directly connect the secondary fluid pressure chamber 17S and the positive pressure chamber 20a without going through the first fluid passage 13A.
The third liquid path 24 connects the back pressure chamber 20 b of the stroke simulator 20 and the first liquid path 13. Specifically, the third liquid path 24 branches from between the shutoff valve 12S and the SOL / V IN 28 in the first liquid path 13S (liquid path 13B) and is connected to the back pressure chamber 20b. The stroke simulator-in valve (SS / V IN) 41 is a normally closed electromagnetic valve provided in the third liquid passage 24. The third liquid path 24 is separated by SS / V IN 41 into a liquid path 24A on the back pressure chamber 20b side and a liquid path 24B on the first liquid path 13 side. A bypass liquid path 42 is provided in parallel with the third liquid path 24 by bypassing the SS / V IN 41. The bypass liquid path 42 connects the liquid path 24 and the liquid path 13B. A check valve 43 is provided in the bypass liquid passage. The check valve 43 allows the flow of the brake fluid from the back pressure chamber 20b side (the fluid passage 24) toward the first fluid passage 13 (the fluid passage 13B) and suppresses the flow of the brake fluid in the reverse direction.
 第4液路44は、ストロークシミュレータ20の背圧室20bとリザーバタンク8とを接続する。第4液路44は、第3液路24における背圧室20bとSS/V IN41との間(液路24)と、吸入液路31(ないし、調圧弁38よりも吸入液路31側の第1減圧液路37や、SOL/V OUT40よりも吸入液路31側の第2減圧液路39)とを接続する。なお、第4液路44を背圧室20bやリザーバタンク8に直接的に接続することとしてもよい。ストロークシミュレータアウト弁(SS/V OUT)45は、第4液路44に設けられた常閉型の電磁弁である。SS/V OUT45をバイパスして、第4液路44と並列にバイパス液路46が設けられている。バイパス液路46には、リザーバタンク8(吸入液路31)側から第3液路24側、すなわち背圧室20b側へ向うブレーキ液の流れを許容し、逆方向へのブレーキ液の流れを抑制するチェック弁47が設けられている。 The fourth liquid path 44 connects the back pressure chamber 20b of the stroke simulator 20 and the reservoir tank 8. The fourth liquid path 44 is located between the back pressure chamber 20b and the SS / V IN 41 in the third liquid path 24 (liquid path 24), and closer to the suction liquid path 31 (or to the suction liquid path 31 side than the pressure regulating valve 38). The first decompression liquid path 37 and the second decompression liquid path 39) closer to the suction liquid path 31 than the SOL / V OUT40 are connected. The fourth liquid passage 44 may be directly connected to the back pressure chamber 20b or the reservoir tank 8. The stroke simulator out valve (SS / V OUT) 45 is a normally closed solenoid valve provided in the fourth liquid passage 44. Bypassing SS / V OUT45, a bypass liquid passage 46 is provided in parallel with the fourth liquid passage 44. The bypass fluid passage 46 allows the flow of brake fluid from the reservoir tank 8 (suction fluid passage 31) side to the third fluid passage 24 side, that is, the back pressure chamber 20b side, and allows the brake fluid flow in the reverse direction. A check valve 47 for suppression is provided.
 遮断弁12、SOL/V IN28および調圧弁38は、ソレノイドに供給される電流に応じて弁の開度が調整される比例制御弁である。他の弁、すなわち、SS/V IN41、SS/V OUT45、連通弁36およびSOL/V OUT40は、弁の開閉が二値的に切り替え制御される2位置弁(オン・オフ弁)である。なお、上記他の弁に比例制御弁を用いることも可能である。第1液路13Sにおける遮断弁12Sとマスタシリンダ7との間(液路13A)には、この箇所の液圧(マスタシリンダ液圧Pmおよびストロークシミュレータ20の正圧室20a内の液圧)を検出する液圧センサ14が設けられている。第1液路13における遮断弁12とSOL/V IN28との間には、この箇所の液圧(ホイルシリンダ液圧Pw)を検出する液圧センサ15(プライマリ系統圧センサ15P、セカンダリ系統圧センサ15S)が設けられている。吐出液路33におけるポンプ11の吐出部34(チェック弁35)と連通弁36との間には、この箇所の液圧(ポンプ吐出圧)を検出する液圧センサ16が設けられている。 The shutoff valve 12, the SOL / V IN 28, and the pressure regulating valve 38 are proportional control valves in which the valve opening is adjusted according to the current supplied to the solenoid. The other valves, that is, SS / V41IN41, SS / V OUT45, communication valve 36, and SOL / V で OUT40 are two-position valves (on / off valves) in which the opening and closing of the valves is controlled by binary switching. It is also possible to use a proportional control valve as the other valve. Between the shutoff valve 12S and the master cylinder 7 in the first fluid passage 13S (fluid passage 13A), the fluid pressure at this location (the fluid pressure in the master cylinder fluid pressure Pm and the positive pressure chamber 20a of the stroke simulator 20) is A hydraulic pressure sensor 14 for detection is provided. Between the shutoff valve 12 and the SOL / V IN28 in the first fluid passage 13, there is a fluid pressure sensor 15 (primary system pressure sensor 15P, secondary system pressure sensor) that detects the fluid pressure at this location (wheel cylinder fluid pressure Pw). 15S) is provided. Between the discharge part 34 (check valve 35) of the pump 11 and the communication valve 36 in the discharge liquid path 33, a hydraulic pressure sensor 16 for detecting the liquid pressure (pump discharge pressure) at this point is provided.
 次に、コントロールユニット5の構成を説明する。
  コントロールユニット5は、各ブレーキ制御を実行するための構成として、ブレーキ操作量検出部5a、目標ホイルシリンダ液圧算出部5b、倍力制御部5c、急ブレーキ操作状態判別部5dおよび第2踏力ブレーキ創生部5eを有する。ブレーキ操作量検出部5aは、ストロークセンサ10からのセンサ信号を受けてプッシュロッド6dのストローク(移動量)を検出する。目標ホイルシリンダ液圧算出部5bは、目標ホイルシリンダ液圧を算出する。具体的には、目標ホイルシリンダ液圧算出部5bは、検出されたペダルストロークに基づき、所定の倍力比、すなわちペダルストロークとドライバの要求ブレーキ液圧(ドライバが要求する車両減速度G)との間の理想の関係特性を実現する目標ホイルシリンダ液圧を算出する。また、目標ホイルシリンダ液圧算出部5bは、回生協調ブレーキ制御時において、回生制動力との関係で目標ホイルシリンダ液圧を算出する。例えば、回生制動装置のコントロールユニットから入力される回生制動力と目標ホイルシリンダ液圧に相当する液圧制動力との和が、ドライバの要求する車両減速度を充足するような目標ホイルシリンダ液圧を算出する。なお、運動制御時には、例えば検出された車両運動状態量(横加速度等)に基づき、所望の車両運動状態を実現するよう、各車輪FL~RRの目標ホイルシリンダ液圧を算出する。
Next, the configuration of the control unit 5 will be described.
The control unit 5 includes a brake operation amount detection unit 5a, a target wheel cylinder hydraulic pressure calculation unit 5b, a boost control unit 5c, a sudden brake operation state determination unit 5d, and a second pedal force brake as a configuration for executing each brake control. It has a creation part 5e. The brake operation amount detection unit 5a receives a sensor signal from the stroke sensor 10 and detects the stroke (movement amount) of the push rod 6d. The target wheel cylinder hydraulic pressure calculation unit 5b calculates a target foil cylinder hydraulic pressure. Specifically, based on the detected pedal stroke, the target wheel cylinder hydraulic pressure calculation unit 5b determines a predetermined boost ratio, that is, the pedal stroke and the driver's required brake hydraulic pressure (vehicle deceleration G requested by the driver). Calculate the target wheel cylinder hydraulic pressure that achieves the ideal relationship between the two. Further, the target wheel cylinder hydraulic pressure calculation unit 5b calculates the target wheel cylinder hydraulic pressure in relation to the regenerative braking force during the regenerative cooperative brake control. For example, the target wheel cylinder hydraulic pressure is such that the sum of the regenerative braking force input from the control unit of the regenerative braking device and the hydraulic braking force corresponding to the target wheel cylinder hydraulic pressure satisfies the vehicle deceleration required by the driver. calculate. At the time of motion control, for example, the target wheel cylinder hydraulic pressure of each wheel FL to RR is calculated so as to realize a desired vehicle motion state based on the detected vehicle motion state amount (lateral acceleration or the like).
 倍力制御部5cは、ドライバのブレーキ操作時に、ポンプ11を作動させ、遮断弁12を閉弁方向に作動させ、連通弁36を開弁方向に作動させる。これにより、ポンプ11の吐出圧を液圧源としてマスタシリンダ液圧よりも高いホイルシリンダ液圧を創生し、ドライバのブレーキ操作力では不足する液圧制動力を発生させる倍力制御が実行可能となる。具体的には、倍力制御部5cは、ポンプ11を所定回転数で作動させたまま調圧弁38を制御してポンプ11からホイルシリンダ2へ供給されるブレーキ液量を調整することで、目標ホイルシリンダ液圧を実現する。実施形態1のブレーキ制御装置は、エンジン負圧ブースタに代えてポンプ11を作動させることで、ブレーキ操作力を補助する倍力機能を発揮する。また、倍力制御部5cは、SS/V IN41を閉弁方向に作動させ、SS/V OUT45を開弁方向に作動させる。これにより、ストロークシミュレータ20を機能させる。
  急ブレーキ操作状態判別部5dは、ブレーキ操作量検出部5a等からの入力に基づきブレーキ操作状態を検出し、ブレーキ操作状態が所定の急ブレーキ操作状態であるか否かを判別(判断)する。例えば、急ブレーキ操作状態判別部5dは、ペダルストロークの時間当り変化量が所定の閾値を超えたか否かを判定する。コントロールユニット5は、急ブレーキ操作状態であると判定されたとき、倍力制御部5cによるホイルシリンダ液圧の創生から第2踏力ブレーキ創生部5eによるホイルシリンダ液圧の創生に切り替える。
The boost control unit 5c operates the pump 11, operates the shut-off valve 12 in the valve closing direction, and operates the communication valve 36 in the valve opening direction when the driver operates the brake. As a result, the wheel cylinder hydraulic pressure higher than the master cylinder hydraulic pressure is created using the discharge pressure of the pump 11 as a hydraulic pressure source, and the boost control that generates the hydraulic braking force that is insufficient with the driver's brake operating force can be executed. Become. Specifically, the boost control unit 5c adjusts the amount of brake fluid supplied from the pump 11 to the wheel cylinder 2 by controlling the pressure regulating valve 38 while operating the pump 11 at a predetermined rotation speed, thereby achieving the target Foil cylinder hydraulic pressure is achieved. The brake control device of the first embodiment exhibits a boosting function that assists the brake operation force by operating the pump 11 instead of the engine negative pressure booster. Further, the boost control unit 5c operates the SS / V IN 41 in the valve closing direction and operates the SS / V OUT 45 in the valve opening direction. Thereby, the stroke simulator 20 is caused to function.
The sudden brake operation state determination unit 5d detects a brake operation state based on an input from the brake operation amount detection unit 5a and the like, and determines (determines) whether or not the brake operation state is a predetermined sudden brake operation state. For example, the sudden brake operation state determination unit 5d determines whether or not the amount of change per hour in the pedal stroke exceeds a predetermined threshold value. When it is judged that the control unit 5 is in the sudden brake operation state, the control unit 5 switches from the generation of the wheel cylinder hydraulic pressure by the boost control unit 5c to the generation of the wheel cylinder hydraulic pressure by the second pedal force brake generation unit 5e.
 第2踏力ブレーキ創生部5eは、ポンプ11を作動させ、遮断弁12を閉弁方向に作動させ、SS/V IN41を開弁方向に作動させ、SS/V OUT45を閉弁方向に作動させる。これにより、ポンプ11が十分に高いホイルシリンダ液圧を発生可能になるまでの間、ストロークシミュレータ20の背圧室20bから流出するブレーキ液を用いてホイルシリンダ液圧を創生する第2の踏力ブレーキを実現する。なお、遮断弁12は開弁方向に作動させてもよい。また、SS/V IN41を閉弁方向に作動させてもよく、この場合、背圧室20bからのブレーキ液は、(ホイルシリンダ2側が背圧室20b側よりも未だ低圧であるため開弁状態となる)チェック弁43を通って、ホイルシリンダ2側へ供給される。実施形態1では、SS/V IN41を開弁方向に作動させることで、背圧室20b側からホイルシリンダ2側へブレーキ液を効率よく供給できる。その後、急ブレーキ操作状態であると判定されなくなる、またはポンプ11の吐出能力が十分となったことを示す所定の条件が成立すると、コントロールユニット5は、第2踏力ブレーキ創生部5eによるホイルシリンダ液圧の創生から倍力制御部5cによるホイルシリンダ液圧の創生に切り替える。倍力制御部5cは、SS/V IN41を閉弁方向に作動させ、SS/V OUT45を開弁方向に作動させる。これにより、ストロークシミュレータ20を機能させる。なお、第2の踏力ブレーキの後に回生協調ブレーキ制御に切り替えるようにしてもよい。 The second pedal force brake generating unit 5e operates the pump 11, operates the shut-off valve 12 in the valve closing direction, operates SS / V IN41 in the valve opening direction, and operates SS / V OUT45 in the valve closing direction. . Thus, the second pedal force that creates the wheel cylinder hydraulic pressure using the brake fluid flowing out from the back pressure chamber 20b of the stroke simulator 20 until the pump 11 can generate a sufficiently high wheel cylinder hydraulic pressure. Realize the brake. The shutoff valve 12 may be operated in the valve opening direction. SS / V IN41 may be operated in the valve closing direction. In this case, the brake fluid from the back pressure chamber 20b is open (because the wheel cylinder 2 side is still at a lower pressure than the back pressure chamber 20b side). Is supplied to the wheel cylinder 2 through the check valve 43. In the first embodiment, the brake fluid can be efficiently supplied from the back pressure chamber 20b side to the wheel cylinder 2 side by operating SS / V IN41 in the valve opening direction. Thereafter, when it is not determined that the brake is suddenly operated, or when a predetermined condition indicating that the discharge capacity of the pump 11 is sufficient is satisfied, the control unit 5 causes the wheel cylinder by the second pedal force brake generating section 5e to Switching from hydraulic pressure generation to wheel cylinder hydraulic pressure generation by the boost control unit 5c. The boost control unit 5c operates SS / V IN41 in the valve closing direction and operates SS / V OUT45 in the valve opening direction. Thereby, the stroke simulator 20 is caused to function. Note that switching to regenerative cooperative brake control may be performed after the second pedal effort braking.
 次に、SS/V IN41の構成について説明する。
  図2は、実施形態1のSS/V IN41の軸方向断面図である。図2において、SS/V IN41の中心軸線Oが延びる方向(軸方向)にx軸を設定し、図2の上方から下方へ向かう方向をx軸正方向と定義する。また、中心軸線Oの放射方向を径方向、中心軸線O周りの方向を周方向と規定する。
  液圧ユニット4のハウジング50には、x軸正方向側へ延びるバルブ収容孔51が形成されている。ハウジング50は、例えばアルミニウム合金材料により形成されている。バルブ収容孔51のx軸正方向端には、x軸の垂直方向に延びる底面51aが形成されている。底面51aには、x軸方向に延びる液路24Aが開口する。バルブ収容孔51は、第1フィルタ収容孔52および第2フィルタ収容孔53を有する。第1フィルタ収容孔52は、第2フィルタ収容孔53のx軸負方向側に配置されている。第1フィルタ収容孔52は、第2フィルタ収容孔53よりも大きな内径を有する。第1フィルタ収容孔52の内周面には、径方向に延びる液路24Bが開口する。第2フィルタ収容孔53は、バルブ収容孔51のx軸正方向端に配置されている。
Next, the configuration of SS / V IN 41 will be described.
FIG. 2 is an axial sectional view of the SS / V IN 41 according to the first embodiment. In FIG. 2, the x-axis is set in the direction (axial direction) in which the central axis O of SS / V IN 41 extends, and the direction from the top to the bottom in FIG. 2 is defined as the positive x-axis direction. The radial direction of the central axis O is defined as the radial direction, and the direction around the central axis O is defined as the circumferential direction.
The housing 50 of the hydraulic unit 4 is formed with a valve housing hole 51 extending in the positive x-axis direction. The housing 50 is made of, for example, an aluminum alloy material. A bottom surface 51a extending in the direction perpendicular to the x axis is formed at the positive end of the valve housing hole 51 in the x axis direction. A liquid path 24A extending in the x-axis direction opens in the bottom surface 51a. The valve housing hole 51 has a first filter housing hole 52 and a second filter housing hole 53. The first filter accommodation hole 52 is disposed on the x-axis negative direction side of the second filter accommodation hole 53. The first filter accommodation hole 52 has a larger inner diameter than the second filter accommodation hole 53. A liquid passage 24 </ b> B extending in the radial direction opens on the inner peripheral surface of the first filter accommodation hole 52. The second filter accommodation hole 53 is arranged at the x-axis positive direction end of the valve accommodation hole 51.
 次に、SS/V IN41の構成要素について説明する。SS/V IN41は、その一部がバルブ収容孔51内に取り付けられている。SS/V IN41は、後述する固定アーマチャ54、円筒部材55、可動アーマチャ56、コイルスプリング57、弁体58、バルブボディ59、シート部材60、第1フィルタ部材61、チェック弁43および第2フィルタ部材62等が一体に組み合わせられることで形成されている。
  SS/V IN41は、コイル63を有する。コイル63は、SS/V IN41のx軸負方向側であって、ハウジング50の外部に配置されている。コイル63は、通電時に磁界を形成し、吸引力を発生する。ヨーク64は、コイル63の周囲を覆う磁性材料(例えば、鉄:磁気回路を構成する強磁性材料)により形成され、コイル63外側の磁路を形成する。円筒部材55は、コイル63の内周側に配置され、非磁性部材により円筒状に形成されている。固定アーマチャ54は、円筒部材55のx軸負方向端に圧入固定されている。固定アーマチャ54は、磁性材料により略円柱状に形成されている。固定アーマチャ54のx軸正方向端には、コイルスプリング57のx軸負方向端を支持する凹状の支持部54aが形成されている。
Next, components of SS / V IN 41 will be described. Part of the SS / V IN 41 is mounted in the valve accommodating hole 51. SS / V IN41 includes a fixed armature 54, a cylindrical member 55, a movable armature 56, a coil spring 57, a valve body 58, a valve body 59, a seat member 60, a first filter member 61, a check valve 43, and a second filter member, which will be described later. 62 etc. are formed by being combined together.
The SS / V IN 41 has a coil 63. The coil 63 is disposed outside the housing 50 on the negative side of the SS / V IN 41 in the x-axis direction. The coil 63 forms a magnetic field when energized and generates an attractive force. The yoke 64 is formed of a magnetic material (for example, iron: a ferromagnetic material constituting a magnetic circuit) that covers the periphery of the coil 63, and forms a magnetic path outside the coil 63. The cylindrical member 55 is disposed on the inner peripheral side of the coil 63 and is formed in a cylindrical shape by a nonmagnetic member. The fixed armature 54 is press-fitted and fixed to the negative end of the cylindrical member 55 in the x-axis direction. The fixed armature 54 is formed in a substantially cylindrical shape from a magnetic material. A concave support portion 54a for supporting the x-axis negative direction end of the coil spring 57 is formed at the x-axis positive direction end of the fixed armature 54.
 可動アーマチャ56は、円筒部材55の内周側に配置され、円筒部材55内をx軸方向に沿って移動可能である。可動アーマチャ56は、磁性部材により略円柱状に形成されている。可動アーマチャ56のx軸負方向端には、x軸正方向側に延びるコイルスプリング収容孔56aが形成されている。コイルスプリング収容孔56aには、コイルスプリング57が圧縮状態で収容されている。コイルスプリング57は、可動アーマチャ56をシート部材60側(x軸正方向側)へ付勢する。コイルスプリング収容孔56aの底面56bは、コイルスプリング57のx軸正方向端を支持する支持部である。可動アーマチャ56のx軸正方向端には、弁体58が固定されている。可動アーマチャ56の外周面と円筒部材55の内周面との間には、軸方向連通液路65が形成されている。可動アーマチャ56は、コイル63の通電時、固定アーマチャ54が発生する電磁力により、x軸負方向側に吸引される。 The movable armature 56 is disposed on the inner peripheral side of the cylindrical member 55, and is movable along the x-axis direction in the cylindrical member 55. The movable armature 56 is formed in a substantially cylindrical shape by a magnetic member. A coil spring accommodating hole 56a extending in the x-axis positive direction side is formed at the x-axis negative direction end of the movable armature 56. A coil spring 57 is housed in the coil spring housing hole 56a in a compressed state. The coil spring 57 biases the movable armature 56 toward the sheet member 60 side (x-axis positive direction side). The bottom surface 56b of the coil spring accommodation hole 56a is a support portion that supports the x-axis positive direction end of the coil spring 57. A valve body 58 is fixed to the positive end of the movable armature 56 in the x-axis direction. Between the outer peripheral surface of the movable armature 56 and the inner peripheral surface of the cylindrical member 55, an axial communication liquid path 65 is formed. When the coil 63 is energized, the movable armature 56 is attracted to the x-axis negative direction side by the electromagnetic force generated by the fixed armature 54.
 バルブボディ59は、可動アーマチャ56のx軸正方向側であって、バルブ収容孔51の内部に配置されている。バルブボディ59は、磁性材料により略円筒状に形成されている。バルブボディ59は、x軸負方向側に円筒部材圧入部59aを有する。円筒部材圧入部59aは、円筒部材55のx軸正方向端に圧入固定されている。バルブボディ59は、円筒部材圧入部59aのx軸正方向側に被カシメ部59bを有する。被カシメ部59bは、フランジ状に形成され、バルブボディ59をハウジング50に固定する際、ハウジング50を塑性変形させることでカシメられる。なお、図2では、被カシメ部59bがカシメられていない状態を示している。バルブボディ59の中心には、バルブボディ59をx軸方向に貫通するシート部材収容孔59cが形成されている。 The valve body 59 is disposed inside the valve accommodating hole 51 on the positive side of the movable armature 56 in the x-axis direction. The valve body 59 is formed in a substantially cylindrical shape from a magnetic material. The valve body 59 has a cylindrical member press-fit portion 59a on the x-axis negative direction side. The cylindrical member press-fitting portion 59a is press-fitted and fixed to the positive end of the cylindrical member 55 in the x axis direction. The valve body 59 has a crimped portion 59b on the positive side in the x-axis direction of the cylindrical member press-fitting portion 59a. The crimped portion 59b is formed in a flange shape, and is crimped by plastically deforming the housing 50 when the valve body 59 is fixed to the housing 50. FIG. 2 shows a state where the crimped portion 59b is not crimped. In the center of the valve body 59, a seat member accommodation hole 59c that penetrates the valve body 59 in the x-axis direction is formed.
 シート部材60は、バルブボディ59のシート部材収容孔59cに圧入固定されている。圧入代は、例えば5~20μmである。シート部材60は、略円筒状に形成され、その中心にはシート部材60をx軸方向に延びる貫通液路60aが形成されている。貫通液路60aはシート部材60のx軸正方向端に開口する。シート部材60は、x軸負方向端にシート面60bを有する。シート面60bは、半球状に形成されている。シート面60bは、可動アーマチャ56がx軸正方向側へ移動したとき、弁体58が着座する。つまり、シート面60bは、可動アーマチャ56と接触または離間することで弁作用をなす。シート部材60は、シート面60bと貫通液路60aとを連通するシート孔60cを有する。シート孔60cは貫通液路60aよりも小さな内径を有する。シート部材60の外周面とバルブボディ59の内周面との間には、電磁弁内液路66が形成されている。 The seat member 60 is press-fitted and fixed in the seat member accommodation hole 59c of the valve body 59. The press-fitting allowance is, for example, 5 to 20 μm. The sheet member 60 is formed in a substantially cylindrical shape, and a through liquid passage 60a extending in the x-axis direction through the sheet member 60 is formed at the center thereof. The penetrating liquid path 60a opens at the x-axis positive direction end of the sheet member 60. The sheet member 60 has a sheet surface 60b at the x-axis negative direction end. The sheet surface 60b is formed in a hemispherical shape. When the movable armature 56 moves to the x axis positive direction side, the valve body 58 is seated on the seat surface 60b. In other words, the seat surface 60b performs a valve action by contacting or separating from the movable armature 56. The sheet member 60 has a sheet hole 60c that connects the sheet surface 60b and the penetrating liquid path 60a. The sheet hole 60c has a smaller inner diameter than the through liquid passage 60a. A solenoid valve internal fluid passage 66 is formed between the outer peripheral surface of the seat member 60 and the inner peripheral surface of the valve body 59.
 第1フィルタ部材61は、バルブボディ59のx軸正方向側であって、第1フィルタ収容孔52に収容されている。第1フィルタ部材61は、液路24Bから貫通液路60aへ流入しようとするブレーキ液内の異物(コンタミ等)を取り除く。第1フィルタ部材61は、第1フィルタ本体部61aおよび第1フィルタ61bを有する。第1フィルタ本体部61aは、樹脂材料により略円筒状に形成されている。第1フィルタ本体部61aの中心にはシート部材60が貫通する。第1フィルタ本体部61aのx軸正方向側は、第2フィルタ収容孔53に挿入されている。第1フィルタ本体部61aの外周面と第2フィルタ収容孔53の内周面との間には、バイパス液路42の一部を構成する所定の隙間が設定されている。第1フィルタ本体部61aのx軸負方向側は、バルブボディ59の外周を全周に亘って覆う。第1フィルタ本体部61aのx軸負方向側には、第1フィルタ61bがインサート成型等の手法を用いて一体成形されている。第1フィルタ61bは、メッシュ状の金属材料により環状に形成されている。第1フィルタ本体部61aは、内周側に底部61cを有する。底部61cは、バルブボディ59のx軸正方向端と当接する。底部61cには、凹状の連通溝61dが複数形成されている。各連通溝61dは、径方向に延び、シート部材収容孔59cと、バルブボディ59の外周面と第1フィルタ61bの内周面との間の空間とを連通する。 The first filter member 61 is housed in the first filter housing hole 52 on the positive side of the valve body 59 in the x-axis direction. The first filter member 61 removes foreign matter (contamination, etc.) in the brake fluid that is about to flow into the through fluid passage 60a from the fluid passage 24B. The first filter member 61 includes a first filter body 61a and a first filter 61b. The first filter body 61a is formed in a substantially cylindrical shape from a resin material. The sheet member 60 penetrates through the center of the first filter body 61a. The first filter body 61a is inserted into the second filter housing hole 53 on the positive side in the x-axis direction. A predetermined gap that constitutes a part of the bypass liquid passage 42 is set between the outer peripheral surface of the first filter body 61a and the inner peripheral surface of the second filter housing hole 53. The x filter negative direction side of the first filter main body 61a covers the outer periphery of the valve body 59 over the entire periphery. A first filter 61b is integrally formed on the first filter main body 61a on the x-axis negative direction side by using a technique such as insert molding. The first filter 61b is formed in an annular shape from a mesh-like metal material. The first filter main body 61a has a bottom 61c on the inner peripheral side. The bottom 61c comes into contact with the x-axis positive direction end of the valve body 59. A plurality of concave communication grooves 61d are formed on the bottom 61c. Each communication groove 61d extends in the radial direction and communicates the seat member accommodation hole 59c and the space between the outer peripheral surface of the valve body 59 and the inner peripheral surface of the first filter 61b.
 チェック弁43は、第1フィルタ部材61のx軸正方向側であって、第2フィルタ収容孔53に収容されている。チェック弁43のx軸負方向端は第1フィルタ部材61のx軸正方向端と当接する。チェック弁43は、断面略カップ形状のリップシールである。チェック弁43の中心にはシート部材60が貫通する。チェック弁43は、円環部43aおよびリップ部43bを有する。円環部43aは、シート部材60の外周を覆う。リップ部43bは、円環部43aの外周面からx軸負方向側に延びる。リップ部43bは、その先端が第2フィルタ収容孔53の内周面と接触または離間することで弁作用をなす。
  第2フィルタ部材62は、チェック弁43のx軸正方向側であって、第2フィルタ収容孔53に収容されている。第2フィルタ部材62は、断面略H字状に形成されている。第2フィルタ部材62のx軸負方向端はチェック弁43と当接する。第2フィルタ部材62のx軸正方向端は底面51aと当接する。第2フィルタ部材62は、液路24Aから貫通液路60aへ流入しようとするブレーキ液内の異物(コンタミ等)を取り除く。第2フィルタ部材62の詳細については後述する。
The check valve 43 is housed in the second filter housing hole 53 on the x-axis positive direction side of the first filter member 61. The x-axis negative direction end of the check valve 43 contacts the x-axis positive direction end of the first filter member 61. The check valve 43 is a lip seal having a substantially cup shape in cross section. The seat member 60 passes through the center of the check valve 43. The check valve 43 has an annular portion 43a and a lip portion 43b. The annular portion 43a covers the outer periphery of the sheet member 60. The lip portion 43b extends from the outer peripheral surface of the annular portion 43a to the x-axis negative direction side. The tip of the lip 43b has a valve action when it contacts or separates from the inner peripheral surface of the second filter housing hole 53.
The second filter member 62 is housed in the second filter housing hole 53 on the x-axis positive direction side of the check valve 43. The second filter member 62 has a substantially H-shaped cross section. The x-axis negative direction end of the second filter member 62 contacts the check valve 43. The x-axis positive direction end of the second filter member 62 contacts the bottom surface 51a. The second filter member 62 removes foreign matters (contamination, etc.) in the brake fluid that is about to flow into the penetrating fluid passage 60a from the fluid passage 24A. Details of the second filter member 62 will be described later.
 次に、SS/V IN41のハウジング50への組み付け方法を説明する。バルブ収容孔51にSS/V IN41のx軸正方向側を挿入する際は、固定アーマチャ54、円筒部材55、可動アーマチャ56、コイルスプリング57、弁体58、バルブボディ59、シート部材60、第1フィルタ部材61、チェック弁43および第2フィルタ部材62を一体的に組み合わせた状態で行う。具体的には、チェック弁43をシート部材60の外周側に配置する際は、シート部材60をx軸正方向側から挿入し、シート部材60のx軸正方向端に第2フィルタ部材62のx軸負方向側を嵌合する。これにより、シート部材60からのチェック弁43の脱落を防止できる。SS/V IN41を一体に組み合わせた後、バルブ収容孔51に挿入し、ハウジング50を塑性変形させて被カシメ部59bをカシメることにより、SS/V IN41がハウジング50に固定される。 Next, the method for assembling SS / VIN41 to the housing 50 will be described. When inserting the positive x-axis side of SS / V IN41 into the valve housing hole 51, the fixed armature 54, the cylindrical member 55, the movable armature 56, the coil spring 57, the valve body 58, the valve body 59, the seat member 60, the first The first filter member 61, the check valve 43 and the second filter member 62 are integrally combined. Specifically, when the check valve 43 is disposed on the outer peripheral side of the seat member 60, the seat member 60 is inserted from the x-axis positive direction side, and the second filter member 62 is inserted into the x-axis positive direction end of the seat member 60. Fit the x-axis negative direction side. Thereby, it is possible to prevent the check valve 43 from falling off the seat member 60. After combining SS / V IN41 integrally, the SS / V IN41 is fixed to the housing 50 by inserting the SS / V 収容 IN41 into the valve accommodating hole 51 and plastically deforming the housing 50 to crimp the crimped portion 59b.
 次に、第2フィルタ部材62を詳細に説明する。
  図3(a)は実施形態1の第2フィルタ部材62をx軸方向から見た図、図3(b)は図3(a)のA-A線矢視断面図、図3(c)は実施形態1の第2フィルタ部材62の斜視図である。
  第2フィルタ部材62は、第2フィルタ本体部67および第2フィルタ68を有する。第2フィルタ本体部67は、樹脂材料により略円筒状に形成されている。第2フィルタ本体部67の外周面と第2フィルタ収容孔53の内周面との間の隙間は、バイパス液路42の一部を構成する。第2フィルタ本体部67の中心には、貫通孔67aが形成されている。第2フィルタ本体部67は、大径部67bおよび小径部67cを有する。大径部67bは、第2フィルタ本体部67のx軸負方向側に配置されている。大径部67bは、チェック弁43から荷重を受ける受け面として機能する。大径部67bの外周面と第2フィルタ収容孔53の内周面との間の隙間は、ブレーキ液圧を受けて変形したチェック弁43の一部が入り込まない程度に設定されている。実施形態1では、大径部67bの外径は、チェック弁43の円環部43aの外径よりも大きく、第2フィルタ収容孔53の内径と略同等である。小径部67cは、第2フィルタ本体部67のx軸正方向側に配置されている。小径部67cは大径部67bよりも小さな外径を有する。大径部67bおよび小径部67c間は、段差部67dにより接続されている。段差部67dは、第2フィルタ本体部67のx軸方向略中央位置に配置されている。段差部67dは、x軸正方向側へ向かうに連れて徐々に縮径するテーパ状に形成されている。大径部67b、小径部67cおよび段差部67dは、第2フィルタ本体部67の全周に亘って連続する。
Next, the second filter member 62 will be described in detail.
3A is a view of the second filter member 62 of the first embodiment as viewed from the x-axis direction, FIG. 3B is a cross-sectional view taken along the line AA in FIG. 3A, and FIG. FIG. 10 is a perspective view of a second filter member 62 according to form 1.
The second filter member 62 has a second filter main body 67 and a second filter 68. The 2nd filter main-body part 67 is formed in the substantially cylindrical shape with the resin material. A gap between the outer peripheral surface of the second filter main body 67 and the inner peripheral surface of the second filter housing hole 53 constitutes a part of the bypass liquid passage 42. A through hole 67a is formed at the center of the second filter main body 67. The second filter main body 67 has a large diameter part 67b and a small diameter part 67c. The large diameter portion 67b is disposed on the x-axis negative direction side of the second filter main body 67. The large diameter portion 67b functions as a receiving surface that receives a load from the check valve 43. The gap between the outer peripheral surface of the large-diameter portion 67b and the inner peripheral surface of the second filter housing hole 53 is set such that a part of the check valve 43 that is deformed by the brake fluid pressure does not enter. In the first embodiment, the outer diameter of the large diameter portion 67 b is larger than the outer diameter of the annular portion 43 a of the check valve 43 and is substantially equal to the inner diameter of the second filter accommodation hole 53. The small diameter portion 67c is disposed on the x-axis positive direction side of the second filter main body portion 67. The small diameter portion 67c has an outer diameter smaller than that of the large diameter portion 67b. The large diameter portion 67b and the small diameter portion 67c are connected by a step portion 67d. The step portion 67d is disposed at a substantially central position in the x-axis direction of the second filter main body 67. The stepped portion 67d is formed in a tapered shape that gradually decreases in diameter toward the positive x-axis direction. The large diameter portion 67b, the small diameter portion 67c, and the stepped portion 67d are continuous over the entire circumference of the second filter main body 67.
 第2フィルタ本体部67のx軸正方向側の端面67eには、8個の凸部67fが形成されている。各凸部67fは、第2フィルタ本体部67の径方向内側から径方向外側へ向かって放射状に延びる。各凸部67fは、周方向に所定の隙間を介して等間隔(45°ピッチ)に配置されている。互いに隣接する凸部67f,67f間の隙間は、バイパス液路42の一部を構成する。各凸部67fは、周方向の幅が径方向内側から径方向外側へ向かって広がる、略扇状に形成されている。各凸部67fは、SS/V IN41をハウジング50に固定したとき、バルブ収容孔51の底面51aと当接する。
  第2フィルタ本体部67は、貫通孔67aから径方向内側へ向かって突出する4個の突起部67gを有する。各突起部67gは、x軸方向から見て略半円状に形成されている。各突起部67gは、周方向に等間隔(90°ピッチ)に配置されている。各突起部67gは、第2フィルタ本体部67のx軸方向略中央に位置する。各突起部67gは、第2フィルタ68がインサート成型等の手法を用いて一体成形されている。図2に示すように、各突起部67gは、シート部材60のx軸正方向端とx軸方向に当接する。第2フィルタ68は、x軸の垂直方向に延びる。第2フィルタ68は、メッシュ状の金属材料により円盤状に形成されている。
On the end surface 67e on the x-axis positive direction side of the second filter main body 67, eight convex portions 67f are formed. Each convex portion 67f extends radially from the radially inner side of the second filter main body portion 67 toward the radially outer side. The convex portions 67f are arranged at equal intervals (45 ° pitch) through a predetermined gap in the circumferential direction. A gap between the convex portions 67f and 67f adjacent to each other constitutes a part of the bypass liquid passage. Each convex portion 67f is formed in a substantially fan shape in which the circumferential width widens from the radially inner side to the radially outer side. Each convex portion 67f contacts the bottom surface 51a of the valve housing hole 51 when the SS / V IN 41 is fixed to the housing 50.
The second filter body 67 has four protrusions 67g that protrude radially inward from the through hole 67a. Each protrusion 67g is formed in a substantially semicircular shape when viewed from the x-axis direction. The protrusions 67g are arranged at equal intervals (90 ° pitch) in the circumferential direction. Each protrusion 67g is located at the approximate center of the second filter main body 67 in the x-axis direction. Each projection 67g is integrally formed with the second filter 68 using a technique such as insert molding. As shown in FIG. 2, each protrusion 67g abuts the end of the sheet member 60 in the x-axis positive direction in the x-axis direction. The second filter 68 extends in the direction perpendicular to the x axis. The second filter 68 is formed in a disk shape from a mesh-like metal material.
 次に、SS/V IN41の動作を説明する。
  図4は、実施形態1のSS/V IN41の軸方向要部断面図である。
  SS/V IN41は、ドライバの急ブレーキ操作により第2の踏力ブレーキを実現する際に開弁される。SS/V IN41の開弁状態では、液路24Aのブレーキ液圧が液路24Bのブレーキ液圧に達するまでの間、液路24Aからバルブ収容孔51へ流入したブレーキ液は、電磁弁内流路L1および電磁弁外流路L2を介して液路24Bへと流れる。電磁弁内流路L1は、第2フィルタ68、貫通液路60a、シート孔60c、電磁弁内液路66、連通溝61d、第1フィルタ61bを通過する流路である。電磁弁外流路L2は、バイパス液路42であって、底面51a、端面67eおよび各凸部67f間に囲まれた空間、第2フィルタ本体部67の外周面と第2フィルタ収容孔53の内周面との間の空間、第1フィルタ本体部61aの外周面と第2フィルタ収容孔53の内周面との間の空間を通過する流路である。2つの流路L1,L2からホイルシリンダ2にブレーキ液を供給することにより、急ブレーキ操作に対する初期応答性を向上できる。液路24Bのブレーキ液圧が液路24Aのブレーキ液圧を上回ると、液路24Bからバルブ収容孔51へ流入したブレーキ液は、電磁弁内流路L1を介して液路24Aへと流れるが、チェック弁43の機能により、電磁弁外流路L2にはブレーキ液が流れない。
Next, the operation of SS / V IN 41 will be described.
FIG. 4 is a cross-sectional view of main parts in the axial direction of the SS / V IN 41 of the first embodiment.
SS / V IN41 is opened when the second pedal force brake is realized by the driver's sudden braking operation. In the valve open state of SS / V IN41, the brake fluid that has flowed from the fluid path 24A into the valve housing hole 51 until the brake fluid pressure in the fluid path 24A reaches the brake fluid pressure in the fluid path 24B, It flows to the liquid path 24B via the path L1 and the electromagnetic valve outer flow path L2. The electromagnetic valve flow path L1 is a flow path that passes through the second filter 68, the through liquid path 60a, the sheet hole 60c, the electromagnetic valve internal liquid path 66, the communication groove 61d, and the first filter 61b. The electromagnetic valve outer flow path L2 is a bypass liquid path 42, a space surrounded by the bottom surface 51a, the end surface 67e, and each convex portion 67f, the outer peripheral surface of the second filter main body portion 67, and the second filter housing hole 53. The flow path passes through the space between the peripheral surface and the space between the outer peripheral surface of the first filter body 61a and the inner peripheral surface of the second filter housing hole 53. By supplying brake fluid to the wheel cylinder 2 from the two flow paths L1, L2, the initial response to a sudden braking operation can be improved. When the brake fluid pressure in the fluid path 24B exceeds the brake fluid pressure in the fluid path 24A, the brake fluid that has flowed into the valve housing hole 51 from the fluid path 24B flows into the fluid path 24A via the solenoid valve internal flow path L1. Due to the function of the check valve 43, the brake fluid does not flow through the electromagnetic valve outer flow path L2.
 次に、実施形態1の作用効果を説明する。
  第2フィルタ部材62において、第2フィルタ本体部67は、その外周に大径部67bおよび小径部67cを有する。つまり、第2フィルタ部材62は、x軸負方向側からx軸正方向側へ向かって外径が小さくなる部位を有する。このため、第2フィルタ収容孔53には、図4に示すように、第2フィルタ収容孔53の内周面と第2フィルタ本体部67の外周面との間に、隙間が狭い領域69および隙間が広い領域70が形成されている。隙間が狭い領域69は、第2フィルタ収容孔53の内周面と大径部67bの外周面との間の領域である。一方、隙間が広い領域70は、第2フィルタ収容孔53の内周面と小径部67cの外周面との間の領域である。これにより、第2フィルタ本体部が単一径、かつ、第2フィルタ本体部の外周面と第2フィルタ本体部の内周面との間の隙間が狭い領域のみであった従来のSS/V INと比べて、第2フィルタ本体部67の外側を通過するブレーキ液の流路抵抗を小さくできる。この結果、特に大流量時における電磁弁外流路L2の流路抵抗増大を抑制できるため、従来のブレーキ装置よりも急ブレーキ操作に対する初期応答性を向上できる。また、第2フィルタ収容孔53は単一系であり、第2フィルタ本体部67の外周を径違いとすることで隙間が狭い領域69および隙間が広い領域70を形成しているため、第2フィルタ収容孔53側を径違いとする場合と比べて、生産性の向上およびコストアップの抑制を実現できる。
Next, the effect of Embodiment 1 is demonstrated.
In the second filter member 62, the second filter main body 67 has a large diameter portion 67b and a small diameter portion 67c on the outer periphery thereof. That is, the second filter member 62 has a portion whose outer diameter decreases from the x-axis negative direction side toward the x-axis positive direction side. Therefore, in the second filter housing hole 53, as shown in FIG. 4, a region 69 having a narrow gap between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the second filter main body 67, and A region 70 having a wide gap is formed. The region 69 where the gap is narrow is a region between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the large diameter portion 67b. On the other hand, the region 70 with a wide gap is a region between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface of the small diameter portion 67c. Thereby, the conventional SS / V in which the second filter main body portion has a single diameter and the gap between the outer peripheral surface of the second filter main body portion and the inner peripheral surface of the second filter main body portion is only narrow. Compared with IN, the flow resistance of the brake fluid passing through the outside of the second filter main body 67 can be reduced. As a result, it is possible to suppress an increase in the flow resistance of the electromagnetic valve external flow path L2 particularly when the flow rate is large, and thus it is possible to improve the initial response to a sudden braking operation as compared with the conventional brake device. Further, the second filter housing hole 53 is a single system, and since the outer periphery of the second filter main body 67 has a different diameter, the narrow gap 69 and the wide gap 70 are formed. Compared with the case where the filter housing hole 53 side has a different diameter, it is possible to improve productivity and suppress cost increase.
 隙間が狭い領域69は、第2フィルタ本体部67のx軸正方向側に配置されている。つまり、第2フィルタ本体部67のx軸方向において、チェック弁43側は隙間が狭い領域69とすることにより、ブレーキ液圧を受けて変形したチェック弁43の一部が当該隙間に入り込むのを防止できる。これにより、当該入り込みに伴うチェック弁43の耐久性低下および破損等を抑制できる。ここで、従来のSS/V INでは、第2フィルタ本体部とチェック弁との間に介装された円環部材により、チェック弁に作用するx軸正方向側への力を支持している。これに対し、実施形態1では、第2フィルタ本体部67の大径部67bでチェック弁43に作用するx軸正方向側への力を支持するため、円環部材が不要であり、部品点数の削減によるコストダウンを実現できる。また、小径部67cよりも剛性の高い大径部67bでチェック弁43の荷重を受けるため、第2フィルタ本体部67に小径部67cを形成したことによる強度低下を抑制できる。つまり、実施形態1では、第2フィルタ本体部67に小径部67cを形成することで大流量時における流路抵抗の増大抑制を図りつつ、大径部67bをある程度の範囲で確保することで従来からの跳ね返りを抑制している。 The region 69 where the gap is narrow is disposed on the positive side of the second filter body 67 in the x-axis direction. In other words, in the x-axis direction of the second filter main body 67, the check valve 43 side has a narrow gap 69, so that a part of the check valve 43 deformed by the brake fluid pressure enters the gap. Can be prevented. As a result, it is possible to suppress a decrease in durability, damage, and the like of the check valve 43 due to the entry. Here, in the conventional SS / V IN, the annular member interposed between the second filter body and the check valve supports the force in the positive x-axis direction that acts on the check valve. . On the other hand, in the first embodiment, the large-diameter portion 67b of the second filter main body 67 supports the force in the positive x-axis direction that acts on the check valve 43. Therefore, an annular member is not necessary and the number of parts is reduced. Cost reduction by reducing the cost can be realized. Further, since the load of the check valve 43 is received by the large-diameter portion 67b having higher rigidity than the small-diameter portion 67c, it is possible to suppress a decrease in strength due to the formation of the small-diameter portion 67c in the second filter main body 67. That is, in the first embodiment, by forming the small-diameter portion 67c in the second filter main body 67, while suppressing the increase in flow resistance at the time of a large flow rate, the large-diameter portion 67b is ensured in a certain range. Suppresses the rebound from.
 第2フィルタ本体部67は、大径部67bおよび小径部67c間を接続する段差部67dを有する。これにより、大径部からx軸正方向側へ向かって縮径する連続的な小径部を設けた場合と比較して、より流路断面積の大きな液路(隙間が広い領域70)を形成できるため、流路抵抗の増大を効果的に抑制できる。また、段差部67dはテーパ状であるため、流路断面積の急激な縮小に伴う流路抵抗(縮小損失)の増大を抑制できる。
  小径部67cは、第2フィルタ本体部67の全周に亘り連続する。これにより、第2フィルタ本体部67の全外周に隙間が広い領域70を形成できるため、小径部を周方向に部分的に配置した場合と比べて、流路抵抗の増大を抑制できる。
  チェック弁43は、リップシールである。リップシールを備える電磁弁では、フィルタの外周はチェック弁の機能を持つ軸方向の液路として使用される。よって、実施形態1の第2フィルタ部材62は、リップシールを備えるSS/V IN41のフィルタ部材として特に好適である。
The second filter main body 67 has a stepped portion 67d that connects the large diameter portion 67b and the small diameter portion 67c. As a result, compared to the case where a continuous small-diameter portion whose diameter is reduced from the large-diameter portion toward the x-axis positive direction side is provided, a liquid passage having a larger flow-path cross-sectional area (region 70 with a wide gap) is formed. Therefore, an increase in flow path resistance can be effectively suppressed. Further, since the stepped portion 67d is tapered, it is possible to suppress an increase in channel resistance (reduction loss) due to a rapid reduction in the channel cross-sectional area.
The small diameter portion 67c continues over the entire circumference of the second filter main body 67. Thereby, since the area | region 70 with a wide clearance gap can be formed in the whole outer periphery of the 2nd filter main-body part 67, compared with the case where a small diameter part is partially arrange | positioned in the circumferential direction, increase in flow path resistance can be suppressed.
The check valve 43 is a lip seal. In a solenoid valve equipped with a lip seal, the outer periphery of the filter is used as an axial liquid path having a check valve function. Therefore, the second filter member 62 of the first embodiment is particularly suitable as a filter member of SS / V IN 41 having a lip seal.
 第2フィルタ本体部67は、x軸正方向側の端面67eに8個の凸部67fを有し、各凸部67fは、第2フィルタ収容孔53の底面51aとx軸方向に当接する。これにより、周方向において互いに隣接する凸部67f,67f間には液路となる8個の溝が形成されるため、底面51aと端面67eとの間を通過するブレーキ液の流路抵抗を小さくできる。また、SS/V IN41をハウジング50に組み付ける際、各凸部67fが適度に変形する(潰れる)ことにより、第2フィルタ部材62のx軸方向の位置ずれを抑制できる。さらに、各凸部67fは、第2フィルタ本体部67がチェック弁43の荷重を受けた場合にも、適度に変形して荷重を吸収できるため、チェック弁43の耐久性を向上できる。
  各凸部67fは、周方向の幅が径方向内側から径方向外側へ向かって広がる形状を有する。これにより、底面51aと端面67eとの間を通過するブレーキ液の流路抵抗を小さく抑えつつ、第2フィルタ部材62に必要な強度を確保できる。
  第2フィルタ本体部67は、貫通孔67aから径方向内側へ向かって突出する複数の突起部67gを有し、シート部材60は、各突起部67gとx軸方向に当接する。これにより、第2フィルタ部材62をシート部材60に対して確実に固定できる。
  各突起部67gは、周方向に部分的に配置されている。SS/V IN41をハウジング50に組み付ける際、各突起部67gが適度に変形することにより、第2フィルタ部材62の強度を確保しつつ、シート部材60の位置ずれを抑制できる。
The second filter main body 67 has eight convex portions 67f on the end surface 67e on the x-axis positive direction side, and each convex portion 67f contacts the bottom surface 51a of the second filter accommodation hole 53 in the x-axis direction. As a result, eight grooves serving as liquid passages are formed between the convex portions 67f and 67f adjacent to each other in the circumferential direction, so that the flow resistance of the brake fluid passing between the bottom surface 51a and the end surface 67e is reduced. it can. Further, when the SS / V IN 41 is assembled to the housing 50, each convex portion 67f is appropriately deformed (collapsed), so that the displacement of the second filter member 62 in the x-axis direction can be suppressed. Further, each convex portion 67f can be appropriately deformed to absorb the load even when the second filter main body 67 receives the load of the check valve 43, so that the durability of the check valve 43 can be improved.
Each protrusion 67f has a shape in which the circumferential width widens from the radially inner side to the radially outer side. Thereby, the strength required for the second filter member 62 can be ensured while the flow resistance of the brake fluid passing between the bottom surface 51a and the end surface 67e is kept small.
The second filter body 67 has a plurality of protrusions 67g that protrude radially inward from the through holes 67a, and the sheet member 60 abuts each protrusion 67g in the x-axis direction. Thereby, the second filter member 62 can be reliably fixed to the sheet member 60.
Each protrusion 67g is partially arranged in the circumferential direction. When the SS / V IN 41 is assembled to the housing 50, the protrusions 67g are appropriately deformed, so that the displacement of the sheet member 60 can be suppressed while ensuring the strength of the second filter member 62.
 〔実施形態2〕
  次に、実施形態2を説明する。実施形態2の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図5(a)は実施形態2の第2フィルタ部材71の縦断面図、図5(b)は実施形態2の第2フィルタ部材71の斜視図である。
  小径部71cは、第2フィルタ本体部67のx軸正方向端からx軸方向略中央位置までの範囲において、周方向に部分的に配置されている。具体的には、小径部71cは、周方向において各凸部67f間の隙間と同じ位置に配置されている。第2フィルタ本体部67の外周において、小径部71cを除く部分は、小径部71cよりも外径の大きな大径部71bである。x軸方向において、小径部71cおよび大径部71b間は段差部71dにより接続されている。段差部71dは、x軸正方向側へ向かうに連れて徐々に縮径するテーパ状に形成されている。
  実施形態2では、小径部71cが周方向に部分的に配置されているため、第2フィルタ本体部67の外側を通過するブレーキ液の流路抵抗を抑制しつつ、実施形態1よりも第2フィルタ本体部67の強度を向上できる。
[Embodiment 2]
Next, Embodiment 2 will be described. Since the basic configuration of the second embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
FIG. 5A is a longitudinal sectional view of the second filter member 71 of the second embodiment, and FIG. 5B is a perspective view of the second filter member 71 of the second embodiment.
The small diameter portion 71c is partially arranged in the circumferential direction in the range from the x-axis positive direction end of the second filter main body 67 to the substantially central position in the x-axis direction. Specifically, the small diameter portion 71c is arranged at the same position as the gap between the convex portions 67f in the circumferential direction. In the outer periphery of the second filter main body 67, a portion excluding the small diameter portion 71c is a large diameter portion 71b having a larger outer diameter than the small diameter portion 71c. In the x-axis direction, the small diameter part 71c and the large diameter part 71b are connected by a step part 71d. The stepped portion 71d is formed in a tapered shape that gradually decreases in diameter toward the positive x-axis direction.
In the second embodiment, since the small-diameter portion 71c is partially disposed in the circumferential direction, the second embodiment is more than the first embodiment while suppressing the flow resistance of the brake fluid passing through the outside of the second filter main body 67. The strength of the filter main body 67 can be improved.
 〔実施形態3〕
  次に、実施形態3を説明する。実施形態3の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図6(a)は実施形態3の第2フィルタ部材72をx軸方向から見た図、図6(b)は図6(a)のA-A線矢視断面図、図6(c)は実施形態3の第2フィルタ部材72の斜視図である。
  実施形態3では、4個の突起部72gは、x軸方向から見て略矩形状に形成されている。突起部72gの先端(径方向内側端)は、径方向外側が凸となる円弧状に形成されている。よって、実施形態3では、実施形態1と同様の作用効果を奏する。
[Embodiment 3]
Next, Embodiment 3 will be described. Since the basic configuration of the third embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
6A is a view of the second filter member 72 of the third embodiment as viewed from the x-axis direction, FIG. 6B is a cross-sectional view taken along the line AA in FIG. 6A, and FIG. FIG. 10 is a perspective view of a second filter member 72 of form 3.
In the third embodiment, the four protrusions 72g are formed in a substantially rectangular shape when viewed from the x-axis direction. The tip end (radially inner end) of the protruding portion 72g is formed in an arc shape that is convex on the radially outer side. Therefore, the third embodiment has the same effects as the first embodiment.
 〔実施形態4〕
  次に、実施形態4を説明する。実施形態4の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図7(a)は実施形態4の第2フィルタ部材73をx軸方向から見た図、図7(b)は図7(a)のA-A線矢視断面図、図7(c)は実施形態4の第2フィルタ部材73の斜視図である。
  突起部73gは、周方向の全周に亘り連続する環状に形成されている。なお、突起部73gの厚さ(x軸方向寸法)は、SS/V IN41をハウジング50に組み付ける際、適度に変形可能な長さに設定されている。
  実施形態4では、突起部73gは、第2フィルタ部材73の全周に亘り連続するため、実施形態1と比べて、第2フィルタ68の支持強度を向上できると共に、第2フィルタ部材73をシート部材60に対してより確実に固定できる。
[Embodiment 4]
Next, a fourth embodiment will be described. Since the basic configuration of the fourth embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
7A is a view of the second filter member 73 of the fourth embodiment as viewed from the x-axis direction, FIG. 7B is a cross-sectional view taken along the line AA in FIG. 7A, and FIG. FIG. 12 is a perspective view of a second filter member 73 of form 4.
The protrusion 73g is formed in an annular shape that extends continuously over the entire circumference in the circumferential direction. The thickness (x-axis direction dimension) of the protrusion 73g is set to a length that can be appropriately deformed when the SS / V IN 41 is assembled to the housing 50.
In the fourth embodiment, since the protrusion 73g is continuous over the entire circumference of the second filter member 73, the support strength of the second filter 68 can be improved as compared with the first embodiment, and the second filter member 73 is attached to the sheet. It can be more securely fixed to the member 60.
 〔実施形態5〕
  次に、実施形態5を説明する。実施形態5の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図8(a)は実施形態5の第2フィルタ部材74をx軸方向から見た図、図8(b)は図8(a)のA-A線矢視断面図、図8(c)は実施形態5の第2フィルタ部材74の斜視図である。
  各凸部74fは、x軸方向から見て径方向に延びる略矩形状に形成されている。互いに隣接する凸部74f,74f間の隙間(液路)は、周方向の幅が径方向内側から径方向外側へ向かって広がる、略扇状に形成されている。
  実施形態5では、各凸部74fは、周方向の幅が径方向にかかわらず略一定であるため、実施形態1と比べて、底面51aと端面67eとの間を通過するブレーキ液の流量を増大できる。
[Embodiment 5]
Next, Embodiment 5 will be described. Since the basic configuration of the fifth embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
8A is a view of the second filter member 74 of Embodiment 5 as seen from the x-axis direction, FIG. 8B is a cross-sectional view taken along the line AA in FIG. 8A, and FIG. FIG. 10 is a perspective view of a second filter member 74 of form 5.
Each convex portion 74f is formed in a substantially rectangular shape extending in the radial direction when viewed from the x-axis direction. The gap (liquid path) between the convex portions 74f and 74f adjacent to each other is formed in a substantially fan shape in which the circumferential width widens from the radially inner side toward the radially outer side.
In the fifth embodiment, each convex portion 74f has a circumferential width that is substantially constant regardless of the radial direction. Therefore, compared to the first embodiment, the flow rate of the brake fluid that passes between the bottom surface 51a and the end surface 67e is reduced. Can increase.
 〔実施形態6〕
  次に、実施形態6を説明する。実施形態6の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図9は、実施形態6の第2フィルタ部材75の斜視図である。
  大径部75bおよび小径部75cは、第2フィルタ本体部67のx軸正方向端からx軸負方向端までの範囲において、周方向に部分的に配置されている。小径部75cは、周方向において各凸部67f間の隙間と同じ位置に配置されている。第2フィルタ本体部67のx軸負方向端において、小径部75cの周方向幅は、ブレーキ液圧を受けて変形したチェック弁43の一部が小径部75cの外側の隙間に入り込まないよう、大径部75bの周方向幅よりも十分に狭く設定されている。
  実施形態6では、小径部75cが第2フィルタ本体部67のx軸正方向端からx軸負方向端まで延びるため、実施形態2と比べて、第2フィルタ本体部67の外側を通過するブレーキ液の流路抵抗を小さくできる。
[Embodiment 6]
Next, Embodiment 6 will be described. Since the basic configuration of the sixth embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
FIG. 9 is a perspective view of the second filter member 75 of the sixth embodiment.
The large-diameter portion 75b and the small-diameter portion 75c are partially arranged in the circumferential direction in the range from the x-axis positive direction end to the x-axis negative direction end of the second filter main body 67. The small diameter portion 75c is arranged at the same position as the gap between the convex portions 67f in the circumferential direction. At the x-axis negative direction end of the second filter main body 67, the circumferential width of the small diameter portion 75c is such that a part of the check valve 43 deformed by receiving the brake fluid pressure does not enter the gap outside the small diameter portion 75c. It is set to be sufficiently narrower than the circumferential width of the large diameter portion 75b.
In the sixth embodiment, the small-diameter portion 75c extends from the x-axis positive direction end of the second filter main body 67 to the x-axis negative direction end, so that the brake passing outside the second filter main body 67 compared to the second embodiment. The flow path resistance of the liquid can be reduced.
 〔実施形態7〕
  次に、実施形態7を説明する。実施形態7の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図10は、実施形態7の第2フィルタ収容孔53の軸方向要部断面図である。
  第2フィルタ収容孔53は、大径部76を有する。大径部76は、第2フィルタ収容孔53のx軸正方向端に位置し、第2フィルタ本体部67のx軸正方向端からx軸方向中央位置までの範囲に設定されている。第2フィルタ本体部67の外周面77は単一径である。外周面77の外径は、実施形態1の大径部67bの外径と同一である。
[Embodiment 7]
Next, Embodiment 7 will be described. Since the basic configuration of the seventh embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
FIG. 10 is a cross-sectional view of the main part in the axial direction of the second filter housing hole 53 of the seventh embodiment.
The second filter housing hole 53 has a large diameter portion 76. The large diameter portion 76 is located at the x-axis positive direction end of the second filter housing hole 53 and is set in a range from the x-axis positive direction end of the second filter main body 67 to the x-axis direction central position. The outer peripheral surface 77 of the second filter main body 67 has a single diameter. The outer diameter of the outer peripheral surface 77 is the same as the outer diameter of the large diameter portion 67b of the first embodiment.
 実施形態7では、第2フィルタ収容孔53は、x軸正方向側からx軸負方向側へ向かって径方向の幅が広がる領域である大径部76を有する。よって、大径部76の内周面と第2フィルタ本体部67の外周面77との間には、隙間が広い領域78が形成されている。一方、大径部76よりもx軸負方向側の第2フィルタ収容孔53の内周面と第2フィルタ本体部67の外周面77との間には、隙間が狭い領域79が形成されている。これにより、実施形態1と同様の作用効果を奏する。
  また、実施形態7では、第2フィルタ本体部67側は単一径であり、第2フィルタ収容孔53の内周を径違いとすることで隙間が狭い領域79および隙間が広い領域78を形成している。よって、実施形態1と比べて、第2フィルタ部材62の形状の複雑化を抑制できる。
In the seventh embodiment, the second filter housing hole 53 has a large-diameter portion 76 that is a region where the radial width increases from the x-axis positive direction side toward the x-axis negative direction side. Therefore, a region 78 having a wide gap is formed between the inner peripheral surface of the large diameter portion 76 and the outer peripheral surface 77 of the second filter main body portion 67. On the other hand, a narrow region 79 is formed between the inner peripheral surface of the second filter housing hole 53 and the outer peripheral surface 77 of the second filter body 67 on the x-axis negative direction side of the large diameter portion 76. Yes. Thereby, there exists an effect similar to Embodiment 1.
In the seventh embodiment, the second filter body 67 has a single diameter, and the inner periphery of the second filter housing hole 53 has a different diameter, thereby forming a narrow region 79 and a wide region 78. is doing. Therefore, complication of the shape of the second filter member 62 can be suppressed as compared with the first embodiment.
 〔実施形態8〕
  次に、実施形態8を説明する。実施形態8の基本的な構成は実施形態1と同じであるため、相違する構成および効果のみを説明する。
  図11は、実施形態8の連通弁36の軸方向要部断面図である。
  実施形態8の連通弁36は、実施形態1のSS/V IN41と略同一構成であるため、共通する構成には同一の符号を付して説明を省略する。
  x軸方向において、第1フィルタ部材61および第2フィルタ部材62間には、Oリング81が設置されている。Oリング81は、第2フィルタ収容孔53の内周面とシート部材60の外周面との間をシールする。液路33Aは、第2フィルタ収容孔53のx軸正方向端において、第2フィルタ収容孔53の内周面に開口する。液路33Bは、第1フィルタ収容孔52の内周面に開口する。
[Embodiment 8]
Next, an eighth embodiment will be described. Since the basic configuration of the eighth embodiment is the same as that of the first embodiment, only different configurations and effects will be described.
FIG. 11 is a cross-sectional view of the main part in the axial direction of the communication valve 36 of the eighth embodiment.
Since the communication valve 36 of the eighth embodiment has substantially the same configuration as that of the SS / V IN 41 of the first embodiment, the same reference numerals are given to the common components, and description thereof will be omitted.
An O-ring 81 is disposed between the first filter member 61 and the second filter member 62 in the x-axis direction. The O-ring 81 seals between the inner peripheral surface of the second filter accommodation hole 53 and the outer peripheral surface of the sheet member 60. The liquid passage 33A opens on the inner peripheral surface of the second filter accommodation hole 53 at the positive end in the x-axis direction of the second filter accommodation hole 53. The liquid path 33B opens on the inner peripheral surface of the first filter accommodation hole 52.
 次に、連通弁36の動作を説明する。
  連通弁36は、倍力制御時に開弁される。連通弁36の開弁状態では、ポンプ11から吐出されたブレーキ液は、液路33Aから、第2フィルタ68、貫通液路60a、シート孔60c、電磁弁内液路66、連通溝61d、第1フィルタ61bを通過して液路33Bへと流れ、ホイルシリンダ2に供給される。
  第2フィルタ部材62は、Oリング81を採用する連通弁36に適用した場合であっても、跳ね返りなく使用できる。つまり、第2フィルタ部材62は、リップシールを持つ電磁弁(SS/V IN41)とOリングを持つ電磁弁(連通弁36)のどちらにも適用可能であるため、第2フィルタ部材62の部品共用化が図れ、ブレーキ装置1の生産性を向上できる。
Next, the operation of the communication valve 36 will be described.
The communication valve 36 is opened during boost control. In the open state of the communication valve 36, the brake fluid discharged from the pump 11 passes through the fluid path 33A, the second filter 68, the through fluid path 60a, the seat hole 60c, the solenoid valve internal fluid path 66, the communication groove 61d, 1 flows through the filter 61b to the liquid passage 33B and is supplied to the wheel cylinder 2.
Even when the second filter member 62 is applied to the communication valve 36 employing the O-ring 81, the second filter member 62 can be used without rebounding. That is, the second filter member 62 can be applied to both a solenoid valve having a lip seal (SS / V IN41) and a solenoid valve having an O-ring (communication valve 36). Sharing can be achieved, and the productivity of the brake device 1 can be improved.
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  第2フィルタ本体部の外周を径違いとする場合、x軸負方向端が大径部であればよい。図12(a)は、第2フィルタ本体部67の外周面82が、x軸方向中央位置からx軸正方向およびx軸負方向へ向かって徐々に拡径する糸巻き状である。図12(b)は、第2フィルタ本体部67の小径部83cが、x軸正方向側へ向かうに連れて徐々に縮径するテーパ状である。図12(c)は、第2フィルタ本体部67の外周面84が、x軸正方向側へ向かうに連れて徐々に縮径するテーパ状である。図12(d)は、段差部85dが、x軸方向と垂直方向に延びる。
  図13に示すように、図2の液路24Aと液路24Bとを入れ替え、チェック弁43を上下逆に組み付けた構成としてもよい。
  第2フィルタ本体部の材料は任意であり、樹脂材料、金属材料、焼結材料または高分子材料等を用いて形成できる。
[Other Embodiments]
Although the embodiment for carrying out the present invention has been described above, the specific configuration of the present invention is not limited to the configuration of the embodiment, and there are design changes and the like within the scope not departing from the gist of the invention. Are also included in the present invention.
When the outer periphery of the second filter main body portion has a different diameter, the x-axis negative direction end may be a large diameter portion. FIG. 12A shows a bobbin shape in which the outer peripheral surface 82 of the second filter main body 67 gradually increases in diameter from the center position in the x-axis direction toward the positive x-axis direction and the negative x-axis direction. FIG. 12B shows a tapered shape in which the small-diameter portion 83c of the second filter main body 67 gradually decreases in diameter toward the x-axis positive direction side. FIG. 12C shows a tapered shape in which the outer peripheral surface 84 of the second filter main body 67 gradually decreases in diameter as it goes toward the x-axis positive direction. In FIG. 12D, the stepped portion 85d extends in the direction perpendicular to the x-axis direction.
As shown in FIG. 13, the liquid path 24A and the liquid path 24B in FIG. 2 may be interchanged, and the check valve 43 may be assembled upside down.
The material of the second filter body is arbitrary, and can be formed using a resin material, a metal material, a sintered material, a polymer material, or the like.
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
  ブレーキ装置は、その一つの態様において、電磁弁と、ハウジングと、を備え、前記電磁弁は、中心軸線に沿って移動可能な弁体と、前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、前記シート部材の前記軸方向一方側に配置されたフィルタ部材であって、前記シート部材よりも前記軸方向一方側に配置されたフィルタと、前記フィルタを保持する本体部と、を有するフィルタ部材と、前記本体部の前記軸方向他方側と当接するシール部材と、を備え、前記ハウジングは、前記フィルタ部材が収容されるフィルタ収容孔であって、前記中心軸線の放射方向を径方向としたとき、前記径方向における前記本体部の外周面との間の隙間が、狭い領域と、広い領域と、を有して前記フィルタ部材が収容されるフィルタ収容孔と、前記フィルタ収容孔と接続する液路と、を備える。
  より好ましい態様では、上記態様において、前記狭い領域は、前記本体部の前記軸方向他方側に配置されている。
  別の好ましい態様では、上記態様のいずれかにおいて、前記本体部は、前記軸方向他方側から前記軸方向一方側へ向かって前記径方向の外形が小さくなる部位を有する。
The technical idea that can be grasped from the embodiment described above will be described below.
In one aspect thereof, the brake device includes an electromagnetic valve and a housing, and the electromagnetic valve has a valve body movable along a central axis, and the direction in which the central axis extends is an axial direction. A seat member having a seat portion on which the valve body is seated when the valve body moves to the one side in the axial direction, and a filter member disposed on the one side in the axial direction of the seat member, A filter member having a filter disposed on one side in the axial direction, a main body portion that holds the filter, and a seal member that abuts on the other side in the axial direction of the main body portion. A filter housing hole in which the filter member is housed, wherein a gap between the radial direction of the central axis and the outer peripheral surface of the main body portion is narrow when the radial direction of the central axis is a radial direction. Comprises a filter accommodating hole into which the filter element has a wide area, a is accommodated, and a liquid passage connected to said filter housing hole, the.
In a more preferred aspect, in the above aspect, the narrow region is disposed on the other axial side of the main body.
In another preferred aspect, in any one of the above aspects, the main body has a portion in which the outer shape in the radial direction decreases from the other axial side toward the one axial side.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記本体部は、前記軸方向他方側に配置された大径部と、前記軸方向一方側に配置され前記大径部よりも外径が小さい小径部と、を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記大径部および前記小径部を接続する段差部を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記小径部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の全周に亘り連続する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記小径部は、前記中心軸線周りの方向を周方向としたとき、前記周方向に部分的に配置されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記フィルタ収容孔は、前記軸方向他方側から前記軸方向一方側へ向かって前記径方向の幅が広がる領域を有する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記シール部材は、リップシールである。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記シール部材は、Oリングである。
In still another preferred aspect, in any one of the above aspects, the main body portion has a large-diameter portion disposed on the other side in the axial direction and an outer diameter disposed on the one side in the axial direction than the large-diameter portion. A small-diameter portion.
In still another preferred aspect, in any one of the above aspects, a step portion connecting the large diameter portion and the small diameter portion is provided.
In still another preferred aspect, in any one of the above aspects, the small-diameter portion is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
In still another preferred aspect, in any one of the above aspects, the small diameter portion is partially disposed in the circumferential direction when a direction around the central axis is a circumferential direction.
In still another preferred aspect, in any one of the above aspects, the filter accommodation hole has a region in which the radial width increases from the other axial side toward the one axial side.
In still another preferred aspect, in any of the above aspects, the seal member is a lip seal.
In still another preferred embodiment, in any of the above embodiments, the seal member is an O-ring.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記本体部は、前記軸方向一方側の面に、前記径方向内側から前記径方向外側へ向かって延びる複数の凸部を有し、前記凸部は、前記フィルタ収容孔の底面と前記軸方向に当接する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記凸部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の幅が前記径方向の位置にかかわらず略一定である。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記凸部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の幅が前記径方向内側から前記径方向外側へ向かって広がる。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記本体部は、その内周面から前記径方向内側へ向かって突出する突起部を有し、前記シート部材は、前記突起部と前記軸方向に当接する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記突起部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の全周に亘り連続する。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記突起部は、前記中心軸線周りの方向を周方向としたとき、前記周方向に部分的に配置されている。
In still another preferred aspect, in any one of the above aspects, the main body portion has a plurality of convex portions extending from the radially inner side toward the radially outer side on the surface on the one axial side, The convex portion comes into contact with the bottom surface of the filter housing hole in the axial direction.
In still another preferred aspect, in any one of the above aspects, when the convex portion has a circumferential direction around the central axis, the circumferential width is substantially constant regardless of the radial position. .
In still another preferred aspect, in any one of the above aspects, the convex portion has a circumferential width from the radially inner side toward the radially outer side when a direction around the central axis is defined as a circumferential direction. spread.
In still another preferred aspect, in any one of the above aspects, the main body has a protrusion that protrudes radially inward from an inner peripheral surface thereof, and the sheet member includes the protrusion and the shaft. Abut in the direction.
In still another preferred aspect, in any one of the above aspects, the protrusion is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
In still another preferred aspect, in any one of the above aspects, the protrusion is partially disposed in the circumferential direction when a direction around the central axis is a circumferential direction.
 また、他の観点から、ブレーキ装置は、ある態様において、電磁弁と、ハウジングと、を備え、前記電磁弁は、中心軸線に沿って移動可能な弁体と、前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、前記シート部材の前記軸方向一方側に配置されたフィルタ部材であって、前記シート部材よりも前記軸方向一方側に配置されたフィルタと、前記フィルタを保持し、前記中心軸線の放射方向を径方向としたとき、大径部と、前記大径部よりも外径が小さい小径部と、を持つ本体部と、を有するフィルタ部材と、前記本体部の前記軸方向他方側と当接するシール部材と、を備え、前記ハウジングは、前記フィルタ部材が前記径方向に隙間をもって収容されるフィルタ収容孔と、前記フィルタ収容孔と接続する液路と、を備える。
  好ましくは、上記態様において、前記大径部は、前記本体部の前記軸方向他方側に配置されている。
In another aspect, the brake device includes an electromagnetic valve and a housing. The electromagnetic valve is configured to move along a central axis, and to extend in the direction in which the central axis extends. A seat member having a seat portion on which the valve body is seated when the valve body moves to the one axial side, and a filter member disposed on the one axial side of the seat member. A filter disposed on one side in the axial direction from the sheet member, and when holding the filter and letting the radial direction of the central axis be a radial direction, a larger diameter portion and an outer diameter than the large diameter portion A filter member having a small-diameter portion having a small-diameter portion, and a seal member that contacts the other axial side of the main-body portion, and the housing has a gap in the radial direction between the filter member and the housing. With Comprising a filter housing hole that is, a liquid passage connected to said filter housing hole, the.
Preferably, in the above aspect, the large diameter portion is disposed on the other axial side of the main body portion.
 さらに、他の観点から、ブレーキ装置用電磁弁は、ある態様において、中心軸線に沿って移動可能な弁体と、前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、前記シート部材の前記軸方向一方側に配置されたフィルタ部材であって、前記シート部材よりも前記軸方向一方側に配置されたフィルタと、前記フィルタを保持し、前記中心軸線の放射方向を径方向としたとき、大径部と、前記大径部よりも外径が小さい小径部と、を持つ本体部と、を有するフィルタ部材と、前記本体部の前記軸方向他方側と当接するシール部材と、を備える。
  より好ましくは、上記態様において、前記大径部および前記小径部を接続する段差部を有する。
Furthermore, from another viewpoint, in a certain aspect, the electromagnetic valve for a brake device includes a valve body that is movable along a central axis, and the valve body is in the axial direction when the direction in which the central axis extends is an axial direction. A seat member having a seat portion on which the valve element is seated when moved to one side, and a filter member disposed on the one axial side of the seat member, on the one axial side of the sheet member A main body having a large-diameter portion and a small-diameter portion having an outer diameter smaller than that of the large-diameter portion when the arranged filter, the filter is held, and the radial direction of the central axis is the radial direction; And a sealing member that contacts the other axial side of the main body.
More preferably, in the said aspect, it has the level | step-difference part which connects the said large diameter part and the said small diameter part.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本願は、2017年5月24日付出願の日本国特許出願第2017-102543号に基づく優先権を主張する。2017年5月24日付出願の日本国特許出願第2017-102543号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2017-102543 filed on May 24, 2017. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-102543 filed on May 24, 2017 is incorporated herein by reference in its entirety.
1  ブレーキ装置24 液路41 SS/V IN(電磁弁、ブレーキ装置用電磁弁)43 チェック弁(シール部材)50 ハウジング53 第2フィルタ収容孔(フィルタ収容孔)58 弁体60 シート部材60b  シート面(シート部)62 第2フィルタ部材(フィルタ部材)67 第2フィルタ本体部(本体部)67b  大径部67c  小径部67d  段差部68 第2フィルタ(フィルタ)69 隙間が狭い領域70 隙間が広い領域 1 brake device 24, fluid passage 41, SS / V IN (solenoid valve, solenoid valve for brake device) 43, check valve (seal member) 50, housing 53, second filter accommodation hole (filter accommodation hole) 58, valve body 60, seat member 60b seat surface (Sheet part) 62 second filter member (filter member) 67 second filter main body part (main body part) 67b large diameter part 67c small diameter part 67d stepped part 68 second filter (filter) 69 narrow area 70 wide gap area

Claims (20)

  1.  ブレーキ装置であって、該ブレーキ装置は、
     電磁弁と、ハウジングと、を備え、
     前記電磁弁は、
     中心軸線に沿って移動可能な弁体と、
     前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、
     前記シート部材の前記軸方向一方側に配置されたフィルタ部材であって、前記シート部材よりも前記軸方向一方側に配置されたフィルタと、前記フィルタを保持する本体部と、を有するフィルタ部材と、
     前記本体部の前記軸方向他方側と当接するシール部材と、
    を備え、
     前記ハウジングは、
     前記フィルタ部材が収容されるフィルタ収容孔を備えており、前記中心軸線の放射方向を径方向としたとき、前記径方向における前記本体部の外周面と、前記フィルタ収容孔との間の隙間が、狭い領域と、広い領域と、を有した状態で前記フィルタ部材が前記フィルタ収容孔に収容されており、
     前記ハウジングは、また、
     前記フィルタ収容孔と接続する液路、
    を備えるブレーキ装置。
    A brake device, the brake device comprising:
    A solenoid valve and a housing;
    The solenoid valve is
    A valve body movable along the central axis,
    When the direction in which the central axis extends is an axial direction, a seat member having a seat portion on which the valve body is seated when the valve body moves to one side in the axial direction;
    A filter member disposed on the one axial side of the sheet member, the filter member having a filter disposed on the one axial side relative to the sheet member, and a main body holding the filter; ,
    A seal member in contact with the other axial side of the main body,
    With
    The housing is
    A filter housing hole for housing the filter member is provided, and when a radial direction of the central axis is a radial direction, a gap between the outer peripheral surface of the main body portion in the radial direction and the filter housing hole is provided. The filter member is accommodated in the filter accommodation hole in a state having a narrow area and a wide area,
    The housing also has
    A liquid path connected to the filter housing hole,
    A brake device comprising:
  2.  請求項1に記載のブレーキ装置において、
     前記狭い領域は、前記本体部の前記軸方向他方側に配置されているブレーキ装置。
    The brake device according to claim 1, wherein
    The narrow device is a brake device disposed on the other axial side of the main body.
  3.  請求項2に記載のブレーキ装置において、
     前記本体部は、前記軸方向他方側から前記軸方向一方側へ向かって前記径方向の外形が小さくなる部位を有するブレーキ装置。
    The brake device according to claim 2,
    The said main-body part is a brake device which has a site | part from which the external shape of the said radial direction becomes small toward the said axial direction one side from the said axial direction other side.
  4.  請求項3に記載のブレーキ装置において、
     前記本体部は、前記軸方向他方側に配置された大径部と、前記軸方向一方側に配置され前記大径部よりも外径が小さい小径部と、を有するブレーキ装置。
    The brake device according to claim 3,
    The said main-body part is a brake device which has a large diameter part arrange | positioned at the said other side of the said axial direction, and a small diameter part arrange | positioned at the said axial direction one side and an outer diameter smaller than the said large diameter part.
  5.  請求項4に記載のブレーキ装置において、
     前記大径部および前記小径部を接続する段差部を有するブレーキ装置。
    The brake device according to claim 4,
    A brake device having a step portion connecting the large diameter portion and the small diameter portion.
  6.  請求項5に記載のブレーキ装置において、
     前記小径部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の全周に亘り連続するブレーキ装置。
    The brake device according to claim 5,
    The small diameter portion is a brake device that is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
  7.  請求項5に記載のブレーキ装置において、
     前記小径部は、前記中心軸線周りの方向を周方向としたとき、前記周方向に部分的に配置されているブレーキ装置。
    The brake device according to claim 5,
    The said small diameter part is a brake device partially arrange | positioned in the said circumferential direction, when the direction around the said center axis line is made into the circumferential direction.
  8.  請求項1に記載のブレーキ装置において、
     前記フィルタ収容孔は、前記軸方向他方側から前記軸方向一方側へ向かって前記径方向の幅が広がる領域を有するブレーキ装置。
    The brake device according to claim 1, wherein
    The said filter accommodation hole is a brake device which has the area | region where the width of the said radial direction spreads from the said axial direction other side toward the said axial direction one side.
  9.  請求項1に記載のブレーキ装置において、
     前記シール部材は、リップシールであるブレーキ装置。
    The brake device according to claim 1, wherein
    The brake device, wherein the seal member is a lip seal.
  10.  請求項1に記載のブレーキ装置において、
     前記シール部材は、Oリングであるブレーキ装置。
    The brake device according to claim 1, wherein
    The brake device, wherein the seal member is an O-ring.
  11.  請求項1に記載のブレーキ装置において、
     前記本体部は、前記軸方向一方側の面に、前記径方向内側から前記径方向外側へ向かって延びる複数の凸部を有し、前記複数の凸部は、前記フィルタ収容孔の底面と前記軸方向に当接するブレーキ装置。
    The brake device according to claim 1, wherein
    The main body has a plurality of convex portions extending from the radial inner side toward the radial outer side on a surface on the one axial side, and the plurality of convex portions include a bottom surface of the filter housing hole and the A brake device that abuts in the axial direction.
  12.  請求項11に記載のブレーキ装置において、
     前記中心軸線周りの方向を周方向としたとき、前記複数の凸部の各々の前記周方向の幅が、前記径方向の位置にかかわらず略一定であるブレーキ装置。
    The brake device according to claim 11,
    The brake device in which the circumferential width of each of the plurality of convex portions is substantially constant regardless of the radial position when the direction around the central axis is the circumferential direction.
  13.  請求項11に記載のブレーキ装置において、
     前記中心軸線周りの方向を周方向としたとき、前記複数の凸部の各々の前記周方向の幅が、前記径方向内側から前記径方向外側へ向かって広がるブレーキ装置。
    The brake device according to claim 11,
    A brake device in which a circumferential width of each of the plurality of convex portions is widened from the radially inner side toward the radially outer side when a direction around the central axis is defined as a circumferential direction.
  14.  請求項1に記載のブレーキ装置において、
     前記本体部は、その内周面から前記径方向内側へ向かって突出する突起部を有し、前記シート部材は、前記突起部と前記軸方向に当接するブレーキ装置。
    The brake device according to claim 1, wherein
    The said main-body part has a projection part which protrudes toward the said radial inside from the internal peripheral surface, The said sheet | seat member is a brake device which contact | abuts the said projection part in the said axial direction.
  15.  請求項14に記載のブレーキ装置において、
     前記突起部は、前記中心軸線周りの方向を周方向としたとき、前記周方向の全周に亘り連続するブレーキ装置。
    The brake device according to claim 14,
    The protrusion is a brake device that is continuous over the entire circumference in the circumferential direction when the direction around the central axis is the circumferential direction.
  16.  請求項14に記載のブレーキ装置において、
     前記突起部は、前記中心軸線周りの方向を周方向としたとき、前記周方向に部分的に配置されているブレーキ装置。
    The brake device according to claim 14,
    The said protrusion part is a brake device partially arrange | positioned in the said circumferential direction, when the direction around the said center axis line is made into the circumferential direction.
  17.  ブレーキ装置であって、該ブレーキ装置は、
     電磁弁と、ハウジングと、を備え、
     前記電磁弁は、
     中心軸線に沿って移動可能な弁体と、
     前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、
     前記シート部材の前記軸方向一方側に配置されたフィルタ部材とを備えており、
     前記フィルタ部材は、
     前記シート部材よりも前記軸方向一方側に配置されたフィルタと、
     前記フィルタを保持する本体部であって、前記中心軸線の放射方向を径方向としたとき、大径部と、前記大径部よりも外径が小さい小径部と、を持つ前記本体部と、を有しており、
     前記電磁弁は、また、
     前記本体部の前記軸方向他方側と当接するシール部材、
    を備えており、
     前記ハウジングは、
     前記フィルタ部材が前記径方向に隙間をもって収容されるフィルタ収容孔と、
     前記フィルタ収容孔と接続する液路と、
    を備えるブレーキ装置。
    A brake device, the brake device comprising:
    A solenoid valve and a housing;
    The solenoid valve is
    A valve body movable along the central axis,
    When the direction in which the central axis extends is an axial direction, a seat member having a seat portion on which the valve body is seated when the valve body moves to one side in the axial direction;
    A filter member disposed on the one axial side of the sheet member,
    The filter member is
    A filter disposed on the one side in the axial direction from the sheet member;
    A main body holding the filter, the main body having a large-diameter portion and a small-diameter portion having an outer diameter smaller than the large-diameter portion when the radial direction of the central axis is a radial direction; Have
    The solenoid valve also has
    A seal member in contact with the other axial side of the main body,
    With
    The housing is
    A filter housing hole in which the filter member is housed with a gap in the radial direction;
    A liquid path connected to the filter accommodation hole;
    A brake device comprising:
  18.  請求項17に記載のブレーキ装置において、
     前記大径部は、前記本体部の前記軸方向他方側に配置されているブレーキ装置。
    The brake device according to claim 17,
    The large diameter portion is a brake device disposed on the other axial side of the main body portion.
  19.  ブレーキ装置用電磁弁であって、該ブレーキ装置用電磁弁は、
     中心軸線に沿って移動可能な弁体と、
     前記中心軸線が延びる方向を軸方向としたとき、前記弁体が前記軸方向一方側へ移動したとき前記弁体が着座するシート部を有するシート部材と、
     前記シート部材の前記軸方向一方側に配置されたフィルタ部材とを備えており、
     前記フィルタ部材は、
     前記シート部材よりも前記軸方向一方側に配置されたフィルタと、
     前記フィルタを保持する本体部であって、前記中心軸線の放射方向を径方向としたとき、大径部と、前記大径部よりも外径が小さい小径部と、を持つ前記本体部と、を有しており、
     前記ブレーキ装置用電磁弁は、また、
     前記本体部の前記軸方向他方側と当接するシール部材、
    を備えるブレーキ装置用電磁弁。
    Brake device solenoid valve, the brake device solenoid valve,
    A valve body movable along the central axis,
    When the direction in which the central axis extends is an axial direction, a seat member having a seat portion on which the valve body is seated when the valve body moves to one side in the axial direction;
    A filter member disposed on the one axial side of the sheet member,
    The filter member is
    A filter disposed on the one side in the axial direction from the sheet member;
    A main body holding the filter, the main body having a large-diameter portion and a small-diameter portion having an outer diameter smaller than the large-diameter portion when the radial direction of the central axis is a radial direction; Have
    The electromagnetic valve for the brake device also has
    A seal member in contact with the other axial side of the main body,
    A solenoid valve for a brake device comprising:
  20.  請求項19に記載のブレーキ装置用電磁弁において、
     前記ブレーキ装置用電磁弁は、
     前記大径部と前記小径部とを接続する段差部を有するブレーキ装置用電磁弁。
    The electromagnetic valve for a brake device according to claim 19,
    The electromagnetic valve for the brake device is
    A solenoid valve for a brake device having a stepped portion connecting the large diameter portion and the small diameter portion.
PCT/JP2018/018637 2017-05-24 2018-05-15 Brake device and electromagnetic valve for brake device WO2018216534A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-102543 2017-05-24
JP2017102543A JP6838237B2 (en) 2017-05-24 2017-05-24 Brake device and solenoid valve for brake device

Publications (1)

Publication Number Publication Date
WO2018216534A1 true WO2018216534A1 (en) 2018-11-29

Family

ID=64395584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018637 WO2018216534A1 (en) 2017-05-24 2018-05-15 Brake device and electromagnetic valve for brake device

Country Status (2)

Country Link
JP (1) JP6838237B2 (en)
WO (1) WO2018216534A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560387B1 (en) * 2022-08-24 2023-07-27 이래에이엠에스 주식회사 Normal closed type solenoid valve with integrated check valve used in electronic brake system for vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173519A1 (en) * 2003-03-07 2004-09-09 Knight Gary R. Filter assembly for a control valve in a vehicular brake system
JP2016102563A (en) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 Brake system and solenoid valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173519A1 (en) * 2003-03-07 2004-09-09 Knight Gary R. Filter assembly for a control valve in a vehicular brake system
JP2016102563A (en) * 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 Brake system and solenoid valve

Also Published As

Publication number Publication date
JP2018197587A (en) 2018-12-13
JP6838237B2 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6361046B2 (en) Brake device and brake system
JPWO2010137059A1 (en) Braking operation device
JP6439170B2 (en) Brake device
WO2017068968A1 (en) Brake control device
JP2016102563A (en) Brake system and solenoid valve
JP5927093B2 (en) Brake device
WO2018216534A1 (en) Brake device and electromagnetic valve for brake device
JP6237484B2 (en) Hydraulic unit for vehicle brake system
US11878673B2 (en) Electromagnetic valve and brake control device
JP5708514B2 (en) Check valve and brake device using the same
JP7093276B2 (en) Brake control device
WO2019146404A1 (en) Brake control device and failure detection method for brake control device
WO2018096978A1 (en) Brake device and brake device control method
JP6273820B2 (en) Press fit fixing structure of valve unit
JP5947691B2 (en) Brake device
JP2008014397A (en) Solenoid valve
JP2002200972A (en) Reservoir
JP2019156147A (en) Brake control device, control method for controlling brake device and brake control system
JP2019147458A (en) Brake control device and electromagnetic valve for brake control device
JP7308206B2 (en) Brake device for bar-handle vehicles
JP2015116878A (en) Pressure-adjusting reservoir
JP5724547B2 (en) Brake device for vehicle
JP2009067269A (en) Brake control device
JP2018043613A (en) Brake control device and method for controlling brake device
JP2019018637A (en) Brake device, brake control method, and brake system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805805

Country of ref document: EP

Kind code of ref document: A1