WO2018216373A1 - Method for producing ashless coal and device for producing ashless coal - Google Patents

Method for producing ashless coal and device for producing ashless coal Download PDF

Info

Publication number
WO2018216373A1
WO2018216373A1 PCT/JP2018/014885 JP2018014885W WO2018216373A1 WO 2018216373 A1 WO2018216373 A1 WO 2018216373A1 JP 2018014885 W JP2018014885 W JP 2018014885W WO 2018216373 A1 WO2018216373 A1 WO 2018216373A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
coal
heating
slurry
radical stabilizer
Prior art date
Application number
PCT/JP2018/014885
Other languages
French (fr)
Japanese (ja)
Inventor
康爾 堺
憲幸 奥山
吉田 拓也
繁 木下
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020197036297A priority Critical patent/KR102291836B1/en
Priority to CN201880033426.3A priority patent/CN110651027B/en
Publication of WO2018216373A1 publication Critical patent/WO2018216373A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels

Definitions

  • the present invention relates to a method for producing ashless coal and an apparatus for producing ashless coal.
  • Coal is widely used as a raw material for thermal power generation and boiler fuel or chemicals.
  • HPC ash-free charcoal
  • Attempts have been made to use ash-free charcoal (HPC) from which ash has been removed as a fuel to replace liquid fuel such as LNG.
  • Attempts have also been made to use ashless coal as coking coal for ironmaking coke such as blast furnace coke.
  • a method for producing ashless coal As a method for producing ashless coal, a method of separating a solution containing a coal component soluble in a solvent (hereinafter also referred to as a solvent-soluble component) from a slurry using a gravity sedimentation method has been proposed (for example, JP, A 2005-120185).
  • This method includes a slurry preparation step in which coal and a solvent are mixed to prepare a slurry, and an extraction step in which the slurry obtained in the slurry preparation step is heated to extract a solvent-soluble component.
  • This method further includes a separation step of separating the solution in which the solvent-soluble component is dissolved from the slurry from which the solvent-soluble component has been extracted in the extraction step, and separating the solvent from the solution separated in the separation step to obtain ashless coal.
  • ashless coal is obtained by separating the solvent from a solution containing a coal component that is soluble in the solvent. Therefore, the yield of ashless coal depends on the proportion of coal components soluble in the solvent, that is, the extraction rate. For this reason, in order to raise the manufacture efficiency of ashless coal, the further improvement of this extraction rate is desired.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a method for producing ashless coal and an apparatus for producing ashless coal with an increased extraction rate.
  • the inventors of the present invention have found that the extraction rate of ashless coal can be increased by adding a radical stabilizer to the slurry before heating to extract the solvent-soluble component, and completed the present invention. This is presumably because the radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating the slurry.
  • the invention made in order to solve the above problems includes a step of heating a mixture of coal, a radical stabilizer and a solvent, and a component soluble in the solvent from the coal in the slurry obtained in the heating step.
  • An elution step a step of separating the slurry eluted in the elution step into a liquid component containing a solvent-soluble component and a solvent insoluble component, and a step of evaporating the solvent from the liquid component separated in the separation step.
  • a method for producing ashless coal is a method for producing ashless coal.
  • a radical stabilizer is added to the slurry before heating to extract solvent-soluble components. Since this radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating of the slurry, it is possible to increase the soluble components of coal eluted in the elution step. Therefore, the extraction rate of ashless coal can be increased by using the method for producing ashless coal.
  • the heating step may include a step of mixing coal, a radical stabilizer and a solvent, and a step of raising the temperature of the slurry obtained in the mixing step.
  • a step of mixing coal a radical stabilizer and a solvent
  • a step of raising the temperature of the slurry obtained in the mixing step by heating the slurry after mixing the radical stabilizer, the polymerization of coal radicals can be effectively suppressed, so that the extraction rate of ashless coal can be further increased.
  • the heating step includes a step of heating a solvent, a step of transporting the solvent heated in the solvent heating step to the elution step, and a step of supplying coal and a radical stabilizer to the solvent in the solvent transport step. It is good to have.
  • coal can be heated up rapidly and coal and a solvent can be stirred with the flow of a solvent.
  • coal can be melt
  • a radical stabilizer together with coal it is possible to effectively inhibit the polymerization of coal radicals, thereby further increasing the extraction rate of ashless coal.
  • the amount of the radical stabilizer added to coal on an anhydrous coal basis is preferably 0.045 mmol / g or more and 0.4 mmol / g or less.
  • the radical stabilizer is preferably an amine or an ammonium salt.
  • the extraction rate of ashless charcoal can further be raised by using the radical stabilizer as an amine or an ammonium salt.
  • the amine is preferably a monoamine, diamine or triamine.
  • the amine is preferably a monoamine, diamine or triamine.
  • Another invention made to solve the above-mentioned problems is a heating part for heating a mixture of coal, a radical stabilizer and a solvent, and a component soluble in the solvent from the coal in the slurry obtained in the heating part.
  • An elution part for elution, a solid-liquid separation part for separating the slurry after elution in the elution part into a liquid component containing a solvent-soluble component and a solvent-insoluble component, and the liquid component separated in the solid-liquid separation unit An ashless coal manufacturing apparatus including an evaporation separation unit that evaporates a solvent.
  • the said ashless coal manufacturing apparatus extracts the solvent-soluble component by heating the slurry to which the radical stabilizer is added in the heating section. Since this radical stabilizer can suppress polymerization due to the polycondensation of coal radicals caused by heating the slurry, it is possible to increase the soluble components of coal eluted in the elution part. Therefore, the extraction rate of ashless coal can be increased by using the ashless coal manufacturing apparatus.
  • ashless coal is a type of modified coal obtained by reforming coal, and a modified coal that removes ash and insoluble components from coal as much as possible using a solvent. It is.
  • the ashless coal may contain ash as long as the fluidity and expansibility of the ashless coal are not significantly impaired.
  • coal contains ash content of 7% by mass or more and 20% by mass or less, but ashless coal may contain ash content of about 2% by mass, and in some cases about 5% by mass.
  • “Ash” means a value measured in accordance with JIS-M8812: 2004.
  • the extraction rate of ashless coal can be increased by using the method and apparatus for producing ashless coal of the present invention.
  • the apparatus for producing ashless coal shown in FIG. 1 mainly includes a heating unit 1, an elution unit 2, a solid-liquid separation unit 3, a first solvent separation unit 4, and a second solvent separation unit 5.
  • the heating unit 1 includes a solvent tank 11, a pump 12, a preheater 13, and a feeder 14 that supplies coal and a radical stabilizer.
  • the heating unit 1 also includes a transport pipe 15 that transports the solvent in the solvent tank 11 to the elution unit 2.
  • the solvent tank 11 stores a solvent to be mixed with coal.
  • the solvent is not particularly limited as long as it dissolves coal.
  • a bicyclic aromatic compound derived from coal is preferably used. Since this bicyclic aromatic compound has a basic structure similar to the structural molecule of coal, it has a high affinity with coal and can obtain a relatively high extraction rate.
  • the bicyclic aromatic compound derived from coal include methyl naphthalene oil and naphthalene oil, which are distilled oils of by-products when carbon is produced by carbonization to produce coke.
  • the boiling point of the solvent is not particularly limited.
  • the lower limit of the boiling point of the solvent is preferably 180 ° C., more preferably 230 ° C.
  • the upper limit of the boiling point of the solvent is preferably 300 ° C and more preferably 280 ° C. If the boiling point of the solvent is less than the above lower limit, the solvent is likely to volatilize, and it may be difficult to adjust and maintain the mixing ratio of coal and solvent in the slurry. Conversely, if the boiling point of the solvent exceeds the upper limit, separation of the solvent-soluble component from the solvent becomes difficult, and the solvent recovery rate may be reduced.
  • the pump 12 is disposed in the transport pipe 15 and transports the solvent in the solvent tank 11 to the elution unit 2.
  • the type of the pump 12 is not particularly limited as long as the solvent can be pumped to the elution part 2 through the transport pipe 15, and for example, a positive displacement pump or a non-positive displacement pump can be used. More specifically, a diaphragm pump, a tube diaphragm pump, or the like can be used as the positive displacement pump, and a spiral pump or the like can be used as the non-positive displacement pump.
  • the lower limit of the pressure (the internal pressure of the conveying pipe 15) when the solvent is pumped to the elution part 2 by the pump 12 is preferably 1.1 MPa, and more preferably 1.5 MPa.
  • the upper limit of the internal pressure of the transport pipe 15 is preferably 5 MPa, and more preferably 4 MPa. If the internal pressure of the transport pipe 15 is less than the lower limit, the power of stirring the coal when the coal is supplied to the solvent being transported, which will be described later, becomes weak, so that the coal may not be sufficiently dissolved. Conversely, if the internal pressure of the transport pipe 15 exceeds the above upper limit, the effect of improving coal dissolution obtained with respect to an increase in the cost of manufacturing equipment for ensuring the pressure resistance required for the heating unit 1 may be insufficient. There is.
  • the said solvent conveyed by the pump 12 may be conveyed in a laminar flow state, it is good to be conveyed in a turbulent flow state.
  • a turbulent flow state By transporting the solvent in a turbulent state in this way, the force with which the solvent stirs the coal at the time of supplying the coal to the solvent being transported is increased, so that the coal is easily mixed with the solvent and the dissolution of the coal is promoted.
  • laminar flow state means a state where the Reynolds number Re is less than 2100
  • the “turbulent state” means a state where the Reynolds number Re is 2100 or more, more preferably, the Reynolds number Re is 4000 or more.
  • the lower limit of the flow rate of the solvent conveyed by the pump 12 is preferably 0.5 m / sec, and more preferably 1 m / sec.
  • the upper limit of the flow rate of the solvent is preferably 10 m / sec, and more preferably 5 m / sec.
  • the preheater 13 will not be specifically limited if the solvent which passes the inside of the preheater 13 can be heated, For example, a resistance heating type heater and an induction heating coil are mentioned. Moreover, you may heat using a heat medium.
  • a heating pipe is arranged around the solvent flow path that passes through the preheater 13, and the solvent passing through the preheater 13 can be heated by supplying a heating medium such as steam or oil to the heating pipe. .
  • the lower limit of the temperature of the solvent after heating by the preheater 13 is preferably 300 ° C, more preferably 350 ° C.
  • the upper limit of the temperature of the solvent is not particularly limited as long as it is a temperature at which elution is possible, but is preferably 480 ° C and more preferably 450 ° C. If the temperature of the solvent is lower than the lower limit, the binding between the molecules constituting the coal in the elution part 2 cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the solvent exceeds the upper limit, the amount of heat for maintaining the temperature of the solvent becomes unnecessarily large, which may increase the manufacturing cost.
  • the lower limit of the heating rate by the preheater 13 is preferably 10 ° C / min, and more preferably 20 ° C / min.
  • the upper limit of the heating rate is preferably 100 ° C./min, more preferably 50 ° C./min. If the heating rate is less than the lower limit, it takes time to heat the solvent to a predetermined temperature, which may reduce the production efficiency of ashless coal. On the other hand, when the heating rate exceeds the upper limit, energy for heating, costs for manufacturing equipment, and the like may increase unnecessarily.
  • the heating time by the preheater 13 is not particularly limited, but can be set to, for example, 10 minutes or more and 30 minutes or less because of the relationship between the temperature and the heating rate described above.
  • the supplier 14 supplies coal and a radical stabilizer to the transport pipe 15.
  • a known hopper such as a normal pressure hopper used in a normal pressure state or a pressure hopper used in a normal pressure state or a pressurized state can be used.
  • the coal and radical stabilizer are mixed and charged into the hopper.
  • coal As the coal supplied from the supply device 14, various quality coals can be used. As the coal, for example, bituminous coal having a high extraction rate of ashless coal or cheaper inferior quality coal (subbituminous coal or lignite) is preferably used. Further, when coal is classified by particle size, finely pulverized coal is preferably used.
  • finely pulverized coal means, for example, coal in which the mass ratio of coal having a particle size of less than 1 mm to the mass of the entire coal is 80% or more.
  • lump coal can also be used as coal supplied from the supply device 14.
  • particle size refers to a value measured in accordance with the JIS-Z8815 (1994) general screening test rules. For sorting according to the particle size of coal, for example, a metal mesh screen defined in JIS-Z8801-1 (2006) can be used.
  • the lower limit of the proportion of inferior coal in the whole coal to be supplied is preferably 80% by mass, and more preferably 90% by mass.
  • the lower limit of the carbon content of the inferior coal is preferably 70% by mass.
  • the upper limit of the carbon content of the inferior coal is preferably 85% by mass, and more preferably 82% by mass.
  • the radical stabilizer is mixed with the coal and charged into the feeder 14.
  • radical stabilizers examples include amine stabilizers and phenol stabilizers, among which amine stabilizers such as amines and ammonium salts are preferred, and amines are particularly preferred.
  • the amine is preferably a monoamine such as octadecylamine, a diamine such as N-alkyl-1,3-diaminopropane, or a triamine such as beef tallow dipropylenetriamine, and more preferably a monoamine.
  • the addition amount of the above-mentioned radical stabilizer to coal on an anhydrous carbon basis 0.045 mmol / g is preferred and 0.15 mmol / g is more preferred.
  • the upper limit of the amount of radical stabilizer added is preferably 0.4 mmol / g, more preferably 0.22 mmol / g. If the added amount of the radical stabilizer is less than the lower limit, the effect of improving the extraction rate of ashless coal may be insufficient. Conversely, if the amount of the radical stabilizer added exceeds the upper limit, the cost of the radical stabilizer may be too high for the effect of improving the extraction rate of ashless coal.
  • the mixture of coal and radical stabilizer should be preheated. By preheating the mixture, it is possible to prevent the temperature of the slurry from being lowered when the mixture is supplied to the transport pipe 15 and mixed with the solvent. Although it does not specifically limit as preheating temperature of the said mixture, For example, it can be 200 degreeC or more and 300 degrees C or less.
  • a mixture obtained by mixing a solvent into a slurry may be used as the mixture supplied from the supply device 14 to the transport pipe 15.
  • the coal and the radical stabilizer are easily mixed with the solvent in the transport pipe 15, and the coal can be dissolved more quickly.
  • the lower limit of the coal concentration on the basis of anhydrous carbon in the slurry is preferably 20% by mass, more preferably 30% by mass.
  • the upper limit of the coal concentration is preferably 70% by mass, and more preferably 60% by mass. If the coal concentration is less than the above lower limit, the elution amount of solvent-soluble components eluted in the elution part 2 to be described later decreases with respect to the slurry processing amount, which may reduce the production efficiency of ashless coal. . Conversely, if the coal concentration exceeds the upper limit, the effect of facilitating the mixing of coal and solvent by slurrying may be insufficient.
  • the transport pipe 15 transports the solvent in the solvent tank 11 to the elution unit 2. Further, the mixture of coal and radical stabilizer supplied from the supply device 14 to the transport pipe 15 is mixed with the heated solvent flowing in the transport pipe 15 in the transport pipe 15 and rapidly heated.
  • “rapid temperature rise” means heating at a heating rate of about 10 ° C./second or more and 500 ° C./second or less, for example.
  • the temperature of the slurry which is a mixture of the solvent, the coal, and the radical stabilizer, becomes a relatively uniform temperature within a few seconds to a few dozen seconds after the coal and the radical stabilizer are added.
  • the temperature of the slurry is lower than the temperature of the solvent after heating by the sensible heat of coal, for example, about 350 ° C. or more and 420 ° C. or less.
  • the lower limit of the coal concentration on the basis of anhydrous carbon in the slurry is preferably 5% by mass, and more preferably 10% by mass.
  • the upper limit of the coal concentration is preferably 40% by mass, and more preferably 30% by mass. If the coal concentration is less than the above lower limit, the elution amount of solvent-soluble components eluted in the elution part 2 to be described later decreases with respect to the slurry processing amount, which may reduce the production efficiency of ashless coal. . Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
  • the elution part 2 elutes a coal component soluble in a solvent from the coal in the slurry obtained in the heating part 1.
  • the elution part 2 has an extraction tank 21.
  • the slurry is supplied to the extraction tank 21 from the transport pipe 15.
  • coal components soluble in the solvent are eluted from the coal while maintaining the temperature of the slurry.
  • the extraction tank 21 has a stirrer 21a. The elution can be promoted by stirring the slurry with the stirrer 21a.
  • the lower limit of the internal pressure of the extraction tank 21 is preferably 1.1 MPa, and more preferably 1.5 MPa.
  • the upper limit of the internal pressure of the extraction tank 21 is preferably 5 MPa, and more preferably 4 MPa.
  • the elution time in the elution part 2 is not particularly limited, but can be 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of solvent-soluble components and the extraction efficiency.
  • the slurry from which the soluble coal component is eluted in the elution unit 2 is sent to the solid-liquid separation unit 3 through the supply pipe.
  • the solid-liquid separation unit 3 separates the solution obtained by dissolving the coal component obtained in the elution unit 2 in the solvent and the solid concentrate containing the solvent-insoluble component from the slurry.
  • the solvent-insoluble component refers to an extraction residue that is mainly composed of ash and insoluble coal that are insoluble in the extraction solvent, and also includes the extraction solvent.
  • the separation in the solid-liquid separation unit 3 can be performed by, for example, a gravity sedimentation method.
  • the gravity sedimentation method is a separation method in which a solid content is settled by using gravity in a sedimentation tank to perform solid-liquid separation.
  • a solution containing a solvent-soluble component is accumulated at the upper part of the solid-liquid separation unit 3.
  • This solution is filtered using a filter unit as necessary, and then discharged to the first solvent separation unit 4.
  • the solid concentrate containing the solvent-insoluble component is collected at the lower part of the solid-liquid separation unit 3 and discharged to the second solvent separation unit 5.
  • the liquid containing the solvent-soluble component and the solid content containing the solvent-insoluble component are discharged from the settling tank while continuously supplying the slurry into the solid-liquid separation unit 3. be able to. Thereby, continuous solid-liquid separation processing becomes possible.
  • the time for maintaining the slurry in the solid-liquid separation unit 3 is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the solid-liquid separation unit 3 is performed within this time.
  • the time which maintains a slurry in the solid-liquid separation part 3 can be shortened.
  • the solid-liquid separation unit 3 It is preferable to heat and pressurize the solid-liquid separation unit 3. As a minimum of heating temperature in solid-liquid separation part 3, 300 ° C is preferred and 350 ° C is more preferred. On the other hand, as an upper limit of the heating temperature in the solid-liquid separation part 3, 420 degreeC is preferable and 400 degreeC is more preferable. If the heating temperature is less than the lower limit, the solvent-soluble component may reprecipitate and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
  • the pressure in the solid-liquid separation part 3 1 MPa is preferable and 1.4 MPa is more preferable.
  • the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may reprecipitate and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
  • a method of isolate separating the said solution and solid content concentrate
  • it is not restricted to a gravity sedimentation method
  • a filtration method or a centrifugation method is used as the solid-liquid separation method
  • a filter, a centrifuge, or the like is used as the solid-liquid separation unit 3.
  • the first solvent separation unit 4 evaporates the solvent from the solution separated by the solid-liquid separation unit 3. Ashless coal HPC is obtained by evaporating and separating the solvent.
  • the first solvent separation unit 4 can be called an evaporation separation unit.
  • the ashless coal HPC obtained in this way exhibits a higher calorific value than, for example, coke raw material coal. Furthermore, ashless coal has a significantly improved softening and melting property, which is a particularly important quality as a raw material for iron-making coke, and exhibits fluidity far superior to, for example, raw material coal. Therefore, ashless coal can also be used as coal blended with coke raw materials.
  • a separation method including a general distillation method using an evaporative separator or an evaporation method (spray drying method or the like) can be used.
  • the solvent evaporated in the first solvent separation unit 4 may be liquefied by, for example, a heat exchanger, supplied to the heating unit 1, and used as a solvent to be mixed with coal and a radical stabilizer.
  • a heat exchanger supplied to the heating unit 1
  • the recycling cost of a solvent can reduce the manufacturing cost of ashless coal.
  • the second solvent separation unit 5 evaporates and separates the solvent from the solid concentrate separated by the solid-liquid separation unit 3 to obtain by-product coal RC.
  • By-product charcoal RC does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal RC does not inhibit the softening and melting properties of other coals included in this blended coal when used as a blended coal. Therefore, this byproduct charcoal RC can be used, for example, as a part of the blended coal of the coke raw material. Moreover, you may utilize byproduct coal RC as a fuel similarly to general coal.
  • a general distillation method or evaporation method e.g., spray drying method
  • an evaporation separator is used, as in the separation method of the first solvent separation unit 4. it can.
  • the solvent evaporated in the second solvent separation unit 5 may be liquefied by, for example, a heat exchanger, supplied to the heating unit 1, and used as a solvent to be mixed with coal and a radical stabilizer.
  • a heat exchanger supplied to the heating unit 1
  • the recycling cost of a solvent can reduce the manufacturing cost of ashless coal.
  • the method for producing ashless coal includes a heating step, an elution step, a separation step, a first evaporation step, and a second evaporation step.
  • the said ashless coal manufacturing method can be performed using the manufacturing apparatus of ashless coal of FIG.
  • the heating process includes a solvent heating process, a solvent transport process, and a supply process for supplying coal and a radical stabilizer.
  • the solvent heating step the solvent is heated. Specifically, the solvent stored in the solvent tank 11 is caused to flow to the transport pipe 15 by the pump 12, and the solvent flowing in the transport pipe 15 is heated while passing through the preheater 13.
  • the solvent heated in the solvent heating step is transported to the elution step. Specifically, the solvent is supplied to the elution part 2 through the transport pipe 15.
  • coal and a radical stabilizer are supplied to the solvent in the solvent transport step.
  • coal and a radical stabilizer are supplied from the feeder 14 to the conveying pipe 15 through which the heated solvent flows, and the coal, the radical stabilizer and the solvent are mixed to form a slurry.
  • the coal and radical stabilizer supplied to the transport pipe 15 are rapidly heated by the solvent, and the solvent flowing through the transport pipe 15 stirs the coal, so that the coal is easily dissolved and the solvent and the coal are well mixed. A slurry is obtained.
  • the lower limit of the coal heating rate in the supplying step is preferably 600 ° C./min, and more preferably 700 ° C./min.
  • the upper limit of the heating rate is not particularly limited, but can be 30000 ° C./min.
  • the temperature increase rate exceeds the upper limit, the cost for temperature increase may increase unnecessarily.
  • the said temperature increase rate can be adjusted with the heating temperature of the solvent in the said solvent heating process.
  • a coal component soluble in a solvent is eluted from the coal in the slurry obtained in the heating step.
  • the slurry prepared in the heating step is supplied to the extraction tank 21, and the solvent-soluble component is extracted while being held at a predetermined temperature while being stirred by the stirrer 21a.
  • the separation step the slurry eluted in the elution step is separated into a liquid component containing a solvent-soluble component and a solid content concentrate containing a solvent-insoluble component.
  • the slurry discharged from the extraction tank 21 is supplied to the solid-liquid separation unit 3, and the slurry supplied into the solid-liquid separation unit 3 is separated into the liquid component and the solid content concentrate by, for example, gravity sedimentation. To do.
  • First evaporation step the solvent is evaporated from the solution separated in the separation step. Specifically, the solution separated by the solid-liquid separation unit 3 is supplied to the first solvent separation unit 4, and the solvent is evaporated by the first solvent separation unit 4. This separates the solution into solvent and ashless coal.
  • ⁇ Second evaporation step> the solvent is evaporated from the solid content concentrate separated in the separation step. Specifically, the solid concentrate separated by the solid-liquid separation unit 3 is supplied to the second solvent separation unit 5, and the solvent is evaporated by the second solvent separation unit 5 to separate the solvent and by-product coal. .
  • a radical stabilizer is added to the slurry before heating and extracting a solvent soluble component. Since this radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating the slurry, it is possible to increase the soluble components of coal to be eluted. Therefore, the extraction rate of ashless coal can be increased by using the ashless coal production apparatus and the ashless coal production method.
  • coal in the said ashless coal manufacturing apparatus and the said ashless coal manufacturing method, while supplying coal to the heated solvent in conveyance, coal can be heated up rapidly and coal and a solvent by the flow of a solvent. And can be stirred. Thereby, coal can be melt
  • the heating unit 10 in FIG. 2 is used in place of the heating unit 1 of the ashless coal manufacturing apparatus in FIG. 1.
  • the heating unit 10 in FIG. 2 includes a solvent tank 11, a feeder 14, a mixing unit 16, a pump 17, and a temperature raising unit 18.
  • the solvent tank 11 and the supply device 14 are the same as those in the ashless coal production apparatus of FIG.
  • the mixing unit 16 mixes the solvent supplied from the solvent tank 11 with the coal and radical stabilizer supplied from the supplier 14.
  • a preparation tank 19 can be used as the mixing unit 16.
  • the preparation tank 19 is supplied with the coal, radical stabilizer and solvent through a supply pipe.
  • the supplied coal, radical stabilizer and solvent are mixed to prepare a slurry.
  • the said preparation tank 19 has the stirrer 19a, and maintains the mixing state of a slurry by hold
  • the slurry prepared in the preparation tank 19 of the mixing unit 16 is sent to the temperature raising unit 18 through the supply pipe.
  • the pump 17 is disposed in a supply pipe that supplies the slurry from the mixing unit 16 to the temperature raising unit 18, and pumps the slurry stored in the preparation tank 19 to the temperature raising unit 18.
  • the type of the pump 17 is not particularly limited as long as it can pump the slurry to the temperature raising unit 18 through the supply pipe, and for example, a positive displacement pump or a non-positive displacement pump can be used.
  • a positive displacement pump or a non-positive displacement pump can be used.
  • the positive displacement pump include a diaphragm pump and a tube diaphragm pump
  • examples of the non-positive displacement pump include a spiral pump.
  • the temperature raising unit 18 raises the temperature of the slurry obtained in the mixing unit 16.
  • the temperature raising unit 18 is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit 18 may be configured to raise the temperature using a heat medium.
  • the temperature raising unit 18 includes a heating pipe disposed around the flow path of the slurry passing through the inside, and the heating pipe The slurry may be configured to be heated by supplying a heating medium such as steam or oil.
  • the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
  • the method for producing ashless coal includes a heating step, an elution step, a separation step, a first evaporation step, and a second evaporation step.
  • the ashless coal production method can be performed using an ashless coal production apparatus having the heating unit 10 of FIG.
  • an elution process, a separation process, a 1st evaporation process, and a 2nd evaporation process can be performed similarly to the manufacturing method of ashless coal of 1st Embodiment, only a heating process is demonstrated here.
  • the heating step the mixture of coal, radical stabilizer and solvent is heated.
  • the heating step includes a mixing step and a temperature raising step.
  • coal, radical stabilizer and solvent are mixed. Specifically, coal and radical stabilizer supplied from the supply device 14 and the solvent supplied from the solvent tank 11 are mixed in the preparation tank 19 of the mixing unit 16 to form a slurry.
  • the temperature raising step the temperature of the slurry obtained in the mixing step is raised. Specifically, the slurry is supplied to the temperature raising unit 18 by the pump 17 to raise the temperature of the slurry.
  • the manufacturing apparatus of ashless coal and the manufacturing method of ashless coal of this invention are not limited to the said embodiment.
  • the configuration in which a mixture in which coal and a radical stabilizer are mixed in advance is supplied from a feeder, but the coal and the radical stabilizer may be supplied separately.
  • the preheater is disposed on the downstream side of the pump as the heating unit, but the arrangement order of the pump and the preheater may be reversed.
  • the mixing part of the manufacturing apparatus of ashless coal demonstrated the structure which has a preparation tank, if not only this structure but mixing of a solvent, coal, and a radical stabilizer can be performed, a preparation tank will be abbreviate
  • the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the temperature raising unit.
  • bituminous coal 40g was prepared as coal.
  • the said coal was grind
  • 240 g of 1-methylnaphthalene was prepared as an ashless coal extraction solvent. This coal and solvent were mixed to prepare a slurry.
  • octadecylamine which is a monoamine
  • the slurry was put into an autoclave having a capacity of 500 cc having a stainless steel filter, and the temperature was raised to 380 ° C. under a pressure condition of 2 MPa. And it stirred for 40 minutes, keeping temperature at 380 degreeC, and the coal component soluble in a solvent was eluted from coal.
  • the filtration was carried out with the above extraction temperature, the mass of the filter residue (solvent insoluble component) was measured, and the proportion of coal component soluble in the solvent, that is, the extraction rate was calculated.
  • the addition amount of monoamine being 0 g, 0.5 g, 1 g, and 4 g. Note that “the amount of monoamine added is 0 g” means that no monoamine is added.
  • the “increase rate” is an amount calculated by (Y ⁇ X) / X ⁇ 100, where X is the extraction rate when the addition amount is 0 g, and Y is the extraction rate under the condition for calculating the increase rate. It is.
  • the horizontal axis is converted to the amount of the radical stabilizer added to coal (mmol / g) based on anhydrous carbon.
  • the types of radical stabilizers are primary monoamine octadecylamine (amine A), secondary monoamine dioctadecylamine (amine B), and quaternary ammonium.
  • the same treatment was carried out as the salt dialkyldimethylammonium chloride (amine C), primary diamine N-alkyl-1,3-diaminopropane (amine D), and primary triamine tallow dipropylene triamine (amine E).
  • the extraction rate increase rate (mass%) was calculated.
  • FIG. FIG. 5 is a graph showing the above results based on the amount (mol amount) of the radical stabilizer added to the coal based on anhydrous carbon.
  • the extraction rate of ashless coal can be increased by using the method and apparatus for producing ashless coal of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

The method for producing ashless coal according to an embodiment of the present invention includes: a step of heating a mixture of coal, a radical stabilizer, and a solvent; a step of eluting components soluble in the solvent from the coal in the slurry obtained in the heating step; a step of separating the slurry after elution in the eluting step into a liquid containing the solvent soluble components and solvent insoluble components; and a step of evaporating the solvent from the liquid separated in the separating step. The device for producing ashless coal according to an embodiment of the present invention includes: a heating unit that heats a mixture of coal, a radical stabilizer, and a solvent; an eluting unit that elutes components soluble in the solvent from the coal in the slurry obtained by the heating unit; a solid-liquid separating unit that separates the slurry after elution by the eluting unit into a liquid containing the solvent soluble components and solvent insoluble components; and an evaporating separating unit that evaporates the solvent from the liquid separated by the solid-liquid separating unit.

Description

無灰炭の製造方法及び無灰炭の製造装置Ashless coal manufacturing method and ashless coal manufacturing apparatus
 本発明は、無灰炭の製造方法及び無灰炭の製造装置に関する。 The present invention relates to a method for producing ashless coal and an apparatus for producing ashless coal.
 石炭は、火力発電やボイラーの燃料又は化学品の原料として幅広く利用されている。環境対策の一つとして石炭中の灰分を効率的に除去する技術の開発が強く望まれている。例えば、ガスタービン燃焼による高効率複合発電システムでは、LNG等の液体燃料に代わる燃料として、灰分が除去された無灰炭(HPC)を使用する試みがなされている。また高炉用コークス等の製鉄用コークスの原料炭として、無灰炭を使用する試みがなされている。 Coal is widely used as a raw material for thermal power generation and boiler fuel or chemicals. As one of the environmental measures, the development of technology that efficiently removes ash in coal is strongly desired. For example, in a high-efficiency combined power generation system using gas turbine combustion, attempts have been made to use ash-free charcoal (HPC) from which ash has been removed as a fuel to replace liquid fuel such as LNG. Attempts have also been made to use ashless coal as coking coal for ironmaking coke such as blast furnace coke.
 無灰炭の製造方法としては、重力沈降法を用いてスラリーから溶剤に可溶な石炭成分(以下、溶剤可溶成分とも言う)を含む溶液を分離する方法が提案されている(例えば特開2005-120185号公報参照)。この方法は、石炭及び溶剤を混合してスラリーを調製するスラリー調製工程と、スラリー調製工程で得られたスラリーを加熱して溶剤可溶成分を抽出する抽出工程とを備える。さらにこの方法は、抽出工程で溶剤可溶成分が抽出されたスラリーから溶剤可溶成分が溶解した溶液を分離する分離工程と、分離工程で分離された溶液から溶剤を分離して無灰炭を得る無灰炭取得工程とを備える。 As a method for producing ashless coal, a method of separating a solution containing a coal component soluble in a solvent (hereinafter also referred to as a solvent-soluble component) from a slurry using a gravity sedimentation method has been proposed (for example, JP, A 2005-120185). This method includes a slurry preparation step in which coal and a solvent are mixed to prepare a slurry, and an extraction step in which the slurry obtained in the slurry preparation step is heated to extract a solvent-soluble component. This method further includes a separation step of separating the solution in which the solvent-soluble component is dissolved from the slurry from which the solvent-soluble component has been extracted in the extraction step, and separating the solvent from the solution separated in the separation step to obtain ashless coal. An ashless coal acquisition step.
 また、上記従来の無灰炭の製造方法より溶剤可溶成分の抽出時間を短縮できる無灰炭の製造方法も提案されている(特開2016-56282号公報参照)。この無灰炭の製造方法では、溶剤と石炭とを混合したスラリーを急速に昇温することで、溶剤可溶成分の抽出時間を短縮している。 In addition, a method for producing ashless coal that can shorten the extraction time of the solvent-soluble component from the conventional method for producing ashless coal has been proposed (see JP-A-2016-56282). In this method for producing ashless coal, the time for extracting solvent-soluble components is shortened by rapidly heating the slurry in which the solvent and coal are mixed.
 これら従来の無灰炭の製造方法では、いずれも無灰炭は、溶剤に可溶な石炭成分を含む溶液から溶剤を分離して得られる。従って、無灰炭の収率は、溶剤に可溶な石炭成分の割合、つまり抽出率に依存する。このため、無灰炭の製造効率を高めるためには、この抽出率のさらなる改善が望まれている。 In any of these conventional methods for producing ashless coal, ashless coal is obtained by separating the solvent from a solution containing a coal component that is soluble in the solvent. Therefore, the yield of ashless coal depends on the proportion of coal components soluble in the solvent, that is, the extraction rate. For this reason, in order to raise the manufacture efficiency of ashless coal, the further improvement of this extraction rate is desired.
特開2005-120185号公報Japanese Patent Laid-Open No. 2005-120185 特開2016-56282号公報JP 2016-56282 A
 本発明は、上述のような事情に基づいてなされたものであり、抽出率を高めた無灰炭の製造方法及び無灰炭の製造装置を提供することを目的とする。 The present invention has been made based on the above circumstances, and an object thereof is to provide a method for producing ashless coal and an apparatus for producing ashless coal with an increased extraction rate.
 本発明者らは、加熱して溶剤可溶成分を抽出する前のスラリーにラジカル安定剤を添加しておくことで無灰炭の抽出率を高められることを見出し、本発明を完成させた。これは、スラリーの加熱により生じる石炭ラジカルの重縮合による高分子化をラジカル安定剤が抑制できるためと考えられる。 The inventors of the present invention have found that the extraction rate of ashless coal can be increased by adding a radical stabilizer to the slurry before heating to extract the solvent-soluble component, and completed the present invention. This is presumably because the radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating the slurry.
 すなわち、上記課題を解決するためになされた発明は、石炭、ラジカル安定剤及び溶剤の混合物を加熱する工程と、上記加熱工程で得られたスラリー中の上記石炭から上記溶剤に可溶な成分を溶出させる工程と、上記溶出工程で溶出後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分に分離する工程と、上記分離工程で分離した上記液体分から溶剤を蒸発させる工程とを備える無灰炭の製造方法である。 That is, the invention made in order to solve the above problems includes a step of heating a mixture of coal, a radical stabilizer and a solvent, and a component soluble in the solvent from the coal in the slurry obtained in the heating step. An elution step, a step of separating the slurry eluted in the elution step into a liquid component containing a solvent-soluble component and a solvent insoluble component, and a step of evaporating the solvent from the liquid component separated in the separation step. A method for producing ashless coal.
 当該無灰炭の製造方法では、加熱して溶剤可溶成分を抽出する前のスラリーにラジカル安定剤を添加する。このラジカル安定剤が、スラリーの加熱により生じる石炭ラジカルの重縮合による高分子化を抑制できるので、溶出工程で溶出される石炭の可溶成分を増加させることができる。従って、当該無灰炭の製造方法を用いることで無灰炭の抽出率を高められる。 In the method for producing ashless coal, a radical stabilizer is added to the slurry before heating to extract solvent-soluble components. Since this radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating of the slurry, it is possible to increase the soluble components of coal eluted in the elution step. Therefore, the extraction rate of ashless coal can be increased by using the method for producing ashless coal.
 上記加熱工程が、石炭、ラジカル安定剤及び溶剤を混合する工程と、上記混合工程で得られたスラリーを昇温する工程とを備えるとよい。このように加熱工程において、ラジカル安定剤を混合した後にスラリーを昇温することで、石炭ラジカルの高分子化を効果的に抑止できるので、無灰炭の抽出率をさらに高められる。 The heating step may include a step of mixing coal, a radical stabilizer and a solvent, and a step of raising the temperature of the slurry obtained in the mixing step. In this way, in the heating step, by heating the slurry after mixing the radical stabilizer, the polymerization of coal radicals can be effectively suppressed, so that the extraction rate of ashless coal can be further increased.
 上記加熱工程が、溶剤を加熱する工程と、上記溶剤加熱工程で加熱した上記溶剤を上記溶出工程に搬送する工程と、上記溶剤搬送工程で上記溶剤に石炭及びラジカル安定剤を供給する工程とを備えるとよい。このように搬送中の加熱された溶剤に石炭を供給することで、石炭を急速に昇温できると共に、溶剤の流れにより石炭と溶剤とを攪拌することができる。これにより、短い時間で石炭を溶剤に溶解できる。また、ラジカル安定剤を石炭と共に供給することで、石炭ラジカルの高分子化を効果的に抑止できるので、無灰炭の抽出率をさらに高められる。 The heating step includes a step of heating a solvent, a step of transporting the solvent heated in the solvent heating step to the elution step, and a step of supplying coal and a radical stabilizer to the solvent in the solvent transport step. It is good to have. Thus, by supplying coal to the heated solvent in conveyance, coal can be heated up rapidly and coal and a solvent can be stirred with the flow of a solvent. Thereby, coal can be melt | dissolved in a solvent in a short time. Further, by supplying a radical stabilizer together with coal, it is possible to effectively inhibit the polymerization of coal radicals, thereby further increasing the extraction rate of ashless coal.
 上記供給工程における石炭の昇温速度が600℃/分以上となるように、上記溶剤加熱工程での溶剤の加熱温度を調整するとよい。このように上記供給工程における石炭の昇温速度を上記下限以上とすることで、石炭ラジカルの高分子化をさらに効果的に抑止できるので、無灰炭の抽出率をさらに高められる。 It is good to adjust the heating temperature of the solvent in the solvent heating step so that the heating rate of coal in the supplying step is 600 ° C./min or more. In this way, by setting the coal heating rate in the supply step to be equal to or higher than the lower limit, it is possible to more effectively suppress the polymerization of coal radicals, thereby further increasing the extraction rate of ashless coal.
 無水炭基準での石炭に対する上記ラジカル安定剤の添加量としては、0.045mmol/g以上0.4mmol/g以下が好ましい。ラジカル安定剤の添加量を上記範囲内とすることで、ラジカル安定剤の添加による製造コストの上昇を抑止しつつ、効果的に無灰炭の抽出率を高めることができる。 The amount of the radical stabilizer added to coal on an anhydrous coal basis is preferably 0.045 mmol / g or more and 0.4 mmol / g or less. By making the addition amount of the radical stabilizer within the above range, it is possible to effectively increase the extraction rate of ashless coal while suppressing an increase in production cost due to the addition of the radical stabilizer.
 上記ラジカル安定剤が、アミン又はアンモニウム塩であるとよい。このように上記ラジカル安定剤をアミン又はアンモニウム塩とすることで、無灰炭の抽出率をさらに高められる。 The radical stabilizer is preferably an amine or an ammonium salt. Thus, the extraction rate of ashless charcoal can further be raised by using the radical stabilizer as an amine or an ammonium salt.
 上記アミンが、モノアミン、ジアミン又はトリアミンであるとよい。このように上記アミンをモノアミン、ジアミン又はトリアミンとすることで、ラジカル安定剤の添加による製造コストの上昇を抑止しつつ、効果的に無灰炭の抽出率を高めることができる。 The amine is preferably a monoamine, diamine or triamine. Thus, by making the said amine into monoamine, diamine or triamine, it is possible to effectively increase the extraction rate of ashless coal while suppressing an increase in production cost due to the addition of the radical stabilizer.
 上記課題を解決するためになされた別の発明は、石炭、ラジカル安定剤及び溶剤の混合物を加熱する加熱部と、上記加熱部で得られたスラリー中の上記石炭から上記溶剤に可溶な成分を溶出させる溶出部と、上記溶出部で溶出後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分に分離する固液分離部と、上記固液分離部で分離した上記液体分から溶剤を蒸発させる蒸発分離部とを備える無灰炭の製造装置である。 Another invention made to solve the above-mentioned problems is a heating part for heating a mixture of coal, a radical stabilizer and a solvent, and a component soluble in the solvent from the coal in the slurry obtained in the heating part. An elution part for elution, a solid-liquid separation part for separating the slurry after elution in the elution part into a liquid component containing a solvent-soluble component and a solvent-insoluble component, and the liquid component separated in the solid-liquid separation unit An ashless coal manufacturing apparatus including an evaporation separation unit that evaporates a solvent.
 当該無灰炭の製造装置は、加熱部でラジカル安定剤が添加されたスラリーを加熱して溶剤可溶成分を抽出する。このラジカル安定剤が、スラリーの加熱により生じる石炭ラジカルの重縮合による高分子化を抑制できるので、溶出部で溶出される石炭の可溶成分を増加させることができる。従って、当該無灰炭の製造装置を用いることで無灰炭の抽出率を高められる。 The said ashless coal manufacturing apparatus extracts the solvent-soluble component by heating the slurry to which the radical stabilizer is added in the heating section. Since this radical stabilizer can suppress polymerization due to the polycondensation of coal radicals caused by heating the slurry, it is possible to increase the soluble components of coal eluted in the elution part. Therefore, the extraction rate of ashless coal can be increased by using the ashless coal manufacturing apparatus.
 ここで、無灰炭(ハイパーコール、HPC)とは、石炭を改質した改質炭の一種であり、溶剤を用いて石炭から灰分と非溶解性成分とを可能な限り除去した改質炭である。しかしながら、無灰炭の流動性や膨張性を著しく損ねない範囲で、無灰炭は灰分を含んでもよい。一般に石炭は7質量%以上20質量%以下の灰分を含むが、無灰炭においては2質量%程度、場合によっては5%質量程度の灰分を含んでもよい。なお、「灰分」とは、JIS-M8812:2004に準拠して測定される値を意味する。 Here, ashless coal (Hypercoal, HPC) is a type of modified coal obtained by reforming coal, and a modified coal that removes ash and insoluble components from coal as much as possible using a solvent. It is. However, the ashless coal may contain ash as long as the fluidity and expansibility of the ashless coal are not significantly impaired. In general, coal contains ash content of 7% by mass or more and 20% by mass or less, but ashless coal may contain ash content of about 2% by mass, and in some cases about 5% by mass. “Ash” means a value measured in accordance with JIS-M8812: 2004.
 以上説明したように、本発明の無灰炭の製造方法及び製造装置を用いることで、無灰炭の抽出率を高められる。 As described above, the extraction rate of ashless coal can be increased by using the method and apparatus for producing ashless coal of the present invention.
本発明の第一実施形態の無灰炭の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the ashless coal of 1st embodiment of this invention. 図1の無灰炭の製造装置の加熱部とは異なる加熱部を示す概略図である。It is the schematic which shows the heating part different from the heating part of the manufacturing apparatus of ashless coal of FIG. 実施例におけるモノアミンの添加量と抽出率増加率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the monoamine in an Example, and an extraction rate increase rate. 実施例におけるラジカル安定剤の種類と抽出率増加率との関係を示すグラフである。It is a graph which shows the relationship between the kind of radical stabilizer in an Example, and an extraction rate increase rate. 実施例における無水炭基準での石炭に対するラジカル安定剤の添加量と抽出率増加率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of the radical stabilizer with respect to coal on the anhydrous carbon reference | standard in an Example, and an extraction rate increase rate.
 以下、本発明に係る無灰炭の製造方法及び無灰炭の製造装置の実施形態について説明する。 Hereinafter, embodiments of the method for producing ashless coal and the apparatus for producing ashless coal according to the present invention will be described.
〔第1実施形態〕
 図1に示す無灰炭の製造装置は、加熱部1と、溶出部2と、固液分離部3と、第1溶剤分離部4と、第2溶剤分離部5とを主に備える。
[First Embodiment]
The apparatus for producing ashless coal shown in FIG. 1 mainly includes a heating unit 1, an elution unit 2, a solid-liquid separation unit 3, a first solvent separation unit 4, and a second solvent separation unit 5.
[加熱部]
 加熱部1は、溶剤タンク11と、ポンプ12と、予熱器13と、石炭及びラジカル安定剤を供給する供給器14とを備える。また、加熱部1は、溶剤タンク11の溶剤を溶出部2へ搬送する搬送管15を備える。
[Heating section]
The heating unit 1 includes a solvent tank 11, a pump 12, a preheater 13, and a feeder 14 that supplies coal and a radical stabilizer. The heating unit 1 also includes a transport pipe 15 that transports the solvent in the solvent tank 11 to the elution unit 2.
<溶剤タンク>
 溶剤タンク11は、石炭と混合する溶剤を貯留する。
<Solvent tank>
The solvent tank 11 stores a solvent to be mixed with coal.
 上記溶剤は、石炭を溶解するものであれば特に限定されないが、例えば石炭由来の二環芳香族化合物が好適に用いられる。この二環芳香族化合物は、基本的な構造が石炭の構造分子と類似していることから石炭との親和性が高く、比較的高い抽出率を得ることができる。石炭由来の二環芳香族化合物としては、例えば石炭を乾留してコークスを製造する際の副生油の蒸留油であるメチルナフタレン油、ナフタレン油等を挙げることができる。 The solvent is not particularly limited as long as it dissolves coal. For example, a bicyclic aromatic compound derived from coal is preferably used. Since this bicyclic aromatic compound has a basic structure similar to the structural molecule of coal, it has a high affinity with coal and can obtain a relatively high extraction rate. Examples of the bicyclic aromatic compound derived from coal include methyl naphthalene oil and naphthalene oil, which are distilled oils of by-products when carbon is produced by carbonization to produce coke.
 上記溶剤の沸点は、特に限定されないが、例えば上記溶剤の沸点の下限としては、180℃が好ましく、230℃がより好ましい。一方、上記溶剤の沸点の上限としては、300℃が好ましく、280℃がより好ましい。上記溶剤の沸点が上記下限未満であると、溶剤が揮発し易くなるため、スラリー中の石炭と溶剤との混合比の調整及び維持が困難となるおそれがある。逆に、上記溶剤の沸点が上記上限を超えると、溶剤可溶成分と溶剤との分離が困難となるため、溶剤の回収率が低下するおそれがある。 The boiling point of the solvent is not particularly limited. For example, the lower limit of the boiling point of the solvent is preferably 180 ° C., more preferably 230 ° C. On the other hand, the upper limit of the boiling point of the solvent is preferably 300 ° C and more preferably 280 ° C. If the boiling point of the solvent is less than the above lower limit, the solvent is likely to volatilize, and it may be difficult to adjust and maintain the mixing ratio of coal and solvent in the slurry. Conversely, if the boiling point of the solvent exceeds the upper limit, separation of the solvent-soluble component from the solvent becomes difficult, and the solvent recovery rate may be reduced.
<ポンプ>
 ポンプ12は、搬送管15に配設され、溶剤タンク11の溶剤を溶出部2へ搬送する。
<Pump>
The pump 12 is disposed in the transport pipe 15 and transports the solvent in the solvent tank 11 to the elution unit 2.
 上記ポンプ12の種類は、搬送管15を介して上記溶剤を溶出部2へ圧送できるものであれば特に限定されないが、例えば容積型ポンプ又は非容積型ポンプを用いることができる。より具体的には、容積型ポンプとしてダイヤフラムポンプやチューブフラムポンプ等を用いることができ、非容積型ポンプとして渦巻ポンプ等を用いることができる。 The type of the pump 12 is not particularly limited as long as the solvent can be pumped to the elution part 2 through the transport pipe 15, and for example, a positive displacement pump or a non-positive displacement pump can be used. More specifically, a diaphragm pump, a tube diaphragm pump, or the like can be used as the positive displacement pump, and a spiral pump or the like can be used as the non-positive displacement pump.
 ポンプ12により上記溶剤を溶出部2へ圧送する際の圧力(搬送管15の内部圧力)の下限としては、1.1MPaが好ましく、1.5MPaがより好ましい。一方、上記搬送管15の内部圧力の上限としては、5MPaが好ましく、4MPaがより好ましい。上記搬送管15の内部圧力が上記下限未満であると、後述する搬送中の溶剤への石炭供給時に溶剤が石炭を攪拌する力が弱くなるため石炭の溶解が不十分となるおそれがある。逆に、上記搬送管15の内部圧力が上記上限を超えると、加熱部1に必要な耐圧を確保するための製造設備のコスト上昇に対して得られる石炭溶解の向上効果が不十分となるおそれがある。 The lower limit of the pressure (the internal pressure of the conveying pipe 15) when the solvent is pumped to the elution part 2 by the pump 12 is preferably 1.1 MPa, and more preferably 1.5 MPa. On the other hand, the upper limit of the internal pressure of the transport pipe 15 is preferably 5 MPa, and more preferably 4 MPa. If the internal pressure of the transport pipe 15 is less than the lower limit, the power of stirring the coal when the coal is supplied to the solvent being transported, which will be described later, becomes weak, so that the coal may not be sufficiently dissolved. Conversely, if the internal pressure of the transport pipe 15 exceeds the above upper limit, the effect of improving coal dissolution obtained with respect to an increase in the cost of manufacturing equipment for ensuring the pressure resistance required for the heating unit 1 may be insufficient. There is.
 また、ポンプ12により搬送される上記溶剤は、層流状態で搬送されてもよいが、乱流状態で搬送されるとよい。このように溶剤を乱流状態で搬送することで、搬送中の溶剤への石炭供給時に溶剤が石炭を攪拌する力が高まるので、石炭が溶剤と混合し易くなると共に、石炭の溶解が促進される。ここで、「層流状態」とはレイノルズ数Reが2100未満の状態をいい、「乱流状態」とはレイノルズ数Reが2100以上、より好ましくはレイノルズ数Reが4000以上の状態をいう。 Moreover, although the said solvent conveyed by the pump 12 may be conveyed in a laminar flow state, it is good to be conveyed in a turbulent flow state. By transporting the solvent in a turbulent state in this way, the force with which the solvent stirs the coal at the time of supplying the coal to the solvent being transported is increased, so that the coal is easily mixed with the solvent and the dissolution of the coal is promoted. The Here, the “laminar flow state” means a state where the Reynolds number Re is less than 2100, and the “turbulent state” means a state where the Reynolds number Re is 2100 or more, more preferably, the Reynolds number Re is 4000 or more.
 ポンプ12により搬送される上記溶剤の流速の下限としては、0.5m/秒が好ましく、1m/秒がより好ましい。一方、上記溶剤の流速の上限としては、10m/秒が好ましく、5m/秒がより好ましい。上記溶剤の流速が上記下限未満であると、搬送中の溶剤への石炭供給時に溶剤が石炭を攪拌する力が弱くなるため石炭の溶解が不十分となるおそれがある。逆に、上記溶剤の流速が上記上限を超えると、ポンプ12を強力なものとするためのコスト上昇に対して得られる石炭溶解の向上効果が不十分となるおそれがある。 The lower limit of the flow rate of the solvent conveyed by the pump 12 is preferably 0.5 m / sec, and more preferably 1 m / sec. On the other hand, the upper limit of the flow rate of the solvent is preferably 10 m / sec, and more preferably 5 m / sec. When the flow rate of the solvent is less than the above lower limit, the power of stirring the coal when the coal is supplied to the solvent being transported becomes weak, so that the dissolution of coal may be insufficient. On the contrary, when the flow rate of the solvent exceeds the upper limit, the effect of improving coal dissolution obtained for the cost increase for making the pump 12 strong may be insufficient.
<予熱器>
 予熱器13は、予熱器13内を通過する溶剤を加熱できるものであれば特に限定されないが、例えば抵抗加熱式ヒーターや誘導加熱コイルが挙げられる。また、熱媒を用いて加熱を行ってもよい。例えば予熱器13を通過する溶剤の流路の周囲に加熱管を配し、この加熱管に蒸気、油等の熱媒を供給することで予熱器13内を通過する溶剤を加熱することができる。
<Preheater>
Although the preheater 13 will not be specifically limited if the solvent which passes the inside of the preheater 13 can be heated, For example, a resistance heating type heater and an induction heating coil are mentioned. Moreover, you may heat using a heat medium. For example, a heating pipe is arranged around the solvent flow path that passes through the preheater 13, and the solvent passing through the preheater 13 can be heated by supplying a heating medium such as steam or oil to the heating pipe. .
 予熱器13による加熱後の溶剤の温度の下限としては、300℃が好ましく、350℃がより好ましい。一方、上記溶剤の温度の上限としては、溶出可能な温度であれば特に限定されないが、480℃が好ましく、450℃がより好ましい。上記溶剤の温度が上記下限未満であると、溶出部2において石炭を構成する分子間の結合を十分に弱められず、溶出率が低下するおそれがある。逆に、上記溶剤の温度が上記上限を超えると、溶剤の温度を維持するための熱量が不必要に大きくなるため、製造コストが増大するおそれがある。 The lower limit of the temperature of the solvent after heating by the preheater 13 is preferably 300 ° C, more preferably 350 ° C. On the other hand, the upper limit of the temperature of the solvent is not particularly limited as long as it is a temperature at which elution is possible, but is preferably 480 ° C and more preferably 450 ° C. If the temperature of the solvent is lower than the lower limit, the binding between the molecules constituting the coal in the elution part 2 cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the solvent exceeds the upper limit, the amount of heat for maintaining the temperature of the solvent becomes unnecessarily large, which may increase the manufacturing cost.
 予熱器13による加熱速度の下限としては、10℃/分が好ましく、20℃/分がより好ましい。一方、上記加熱速度の上限としては、100℃/分が好ましく、50℃/分がより好ましい。上記加熱速度が上記下限未満であると、溶剤を所定温度まで加熱する時間を要するため、無灰炭の製造効率が低下するおそれがある。逆に、上記加熱速度が上記上限を超えると、加熱するためのエネルギーや製造設備等のコストが不要に増大するおそれがある。 The lower limit of the heating rate by the preheater 13 is preferably 10 ° C / min, and more preferably 20 ° C / min. On the other hand, the upper limit of the heating rate is preferably 100 ° C./min, more preferably 50 ° C./min. If the heating rate is less than the lower limit, it takes time to heat the solvent to a predetermined temperature, which may reduce the production efficiency of ashless coal. On the other hand, when the heating rate exceeds the upper limit, energy for heating, costs for manufacturing equipment, and the like may increase unnecessarily.
 予熱器13による加熱時間としては、特に限定されないが、上述の温度や加熱速度の関係から、例えば10分以上30分以下とできる。 The heating time by the preheater 13 is not particularly limited, but can be set to, for example, 10 minutes or more and 30 minutes or less because of the relationship between the temperature and the heating rate described above.
<供給器>
 供給器14は、石炭及びラジカル安定剤を搬送管15へ供給する。供給器14としては、常圧状態で使用される常圧ホッパー、常圧状態及び加圧状態で使用される加圧ホッパー等の公知のホッパーを用いることができる。上記石炭及びラジカル安定剤は、混合して上記ホッパーへ投入される。
<Supplyer>
The supplier 14 supplies coal and a radical stabilizer to the transport pipe 15. As the supply device 14, a known hopper such as a normal pressure hopper used in a normal pressure state or a pressure hopper used in a normal pressure state or a pressurized state can be used. The coal and radical stabilizer are mixed and charged into the hopper.
(石炭)
 供給器14から供給する石炭としては、様々な品質の石炭を用いることができる。上記石炭としては、例えば無灰炭の抽出率の高い瀝青炭や、より安価な劣質炭(亜瀝青炭や褐炭)が好適に用いられる。また、石炭を粒度で分類すると、細かく粉砕された石炭が好適に用いられる。ここで「細かく粉砕された石炭」とは、例えば石炭全体の質量に対する粒度1mm未満の石炭の質量割合が80%以上である石炭を意味する。また、供給器14から供給する石炭として塊炭を用いることもできる。ここで「塊炭」とは、例えば石炭全体の質量に対する粒度5mm以上の石炭の質量割合が50%以上である石炭を意味する。塊炭は、細かく粉砕された石炭に比べて石炭の粒度が大きいため、後述する固液分離部3での分離を効率化することができる。ここで、「粒度(粒径)」とは、JIS-Z8815(1994)のふるい分け試験通則に準拠して測定した値をいう。なお、石炭の粒度による仕分けには、例えばJIS-Z8801-1(2006)に規定する金属製網ふるいを用いることができる。
(coal)
As the coal supplied from the supply device 14, various quality coals can be used. As the coal, for example, bituminous coal having a high extraction rate of ashless coal or cheaper inferior quality coal (subbituminous coal or lignite) is preferably used. Further, when coal is classified by particle size, finely pulverized coal is preferably used. Here, “finely pulverized coal” means, for example, coal in which the mass ratio of coal having a particle size of less than 1 mm to the mass of the entire coal is 80% or more. Moreover, lump coal can also be used as coal supplied from the supply device 14. Here, “coal” means, for example, coal in which the mass ratio of coal having a particle size of 5 mm or more to the mass of the entire coal is 50% or more. Since the lump coal has a larger coal particle size than the finely pulverized coal, the separation in the solid-liquid separation unit 3 described later can be made efficient. Here, “particle size (particle size)” refers to a value measured in accordance with the JIS-Z8815 (1994) general screening test rules. For sorting according to the particle size of coal, for example, a metal mesh screen defined in JIS-Z8801-1 (2006) can be used.
 また、溶出時間の短縮という観点から、供給器14から供給する石炭として劣質炭を多く含むものを用いることが好ましい。この場合、供給する石炭全体における劣質炭の割合の下限としては、80質量%が好ましく、90質量%がより好ましい。供給する石炭に含まれる劣質炭の割合が上記下限未満であると、溶剤可溶成分を溶出する時間が長くなるおそれがある。 Further, from the viewpoint of shortening the elution time, it is preferable to use coal containing a large amount of inferior coal as coal supplied from the feeder 14. In this case, the lower limit of the proportion of inferior coal in the whole coal to be supplied is preferably 80% by mass, and more preferably 90% by mass. There exists a possibility that the time which elutes a solvent soluble component may become long that the ratio of the inferior quality coal contained in the coal to supply is less than the said minimum.
 上記劣質炭の炭素含有率の下限としては、70質量%が好ましい。一方、上記劣質炭の炭素含有率の上限としては、85質量%が好ましく、82質量%がより好ましい。上記劣質炭の炭素含有率が上記下限未満であると、溶剤可溶成分の溶出率が低下するおそれがある。逆に、上記劣質炭の炭素含有率が上記上限を超えると、供給する石炭のコストが高くなるおそれがある。 The lower limit of the carbon content of the inferior coal is preferably 70% by mass. On the other hand, the upper limit of the carbon content of the inferior coal is preferably 85% by mass, and more preferably 82% by mass. There exists a possibility that the elution rate of a solvent soluble component may fall that the carbon content rate of the said inferior coal is less than the said minimum. Conversely, if the carbon content of the inferior coal exceeds the upper limit, the cost of the supplied coal may increase.
(ラジカル安定剤)
 ラジカル安定剤は、上記石炭と混合して供給器14に投入される。
(Radical stabilizer)
The radical stabilizer is mixed with the coal and charged into the feeder 14.
 ラジカル安定剤としては、アミン系安定剤やフェノール系安定剤等を挙げることができるが、中でもアミン及びアンモニウム塩等のアミン系安定剤が好ましく、アミンが特に好ましい。また、上記アミンとしてはオクタデシルアミン等のモノアミン、N-アルキル-1,3-ジアミノプロパン等のジアミン又は牛脂ジプロピレントリアミン等のトリアミンが好ましく、モノアミンがより好ましい。 Examples of radical stabilizers include amine stabilizers and phenol stabilizers, among which amine stabilizers such as amines and ammonium salts are preferred, and amines are particularly preferred. The amine is preferably a monoamine such as octadecylamine, a diamine such as N-alkyl-1,3-diaminopropane, or a triamine such as beef tallow dipropylenetriamine, and more preferably a monoamine.
 無水炭基準での石炭に対する上記ラジカル安定剤の添加量の下限としては、0.045mmol/gが好ましく、0.15mmol/gがより好ましい。一方、上記ラジカル安定剤の添加量の上限としては、0.4mmol/gが好ましく、0.22mmol/gがより好ましい。上記ラジカル安定剤の添加量が上記下限未満であると、無灰炭の抽出率の向上効果が不足するおそれがある。逆に、上記ラジカル安定剤の添加量が上記上限を超えると、無灰炭の抽出率の向上効果に対してラジカル安定剤のコストが高くなり過ぎるおそれがある。 As a minimum of the addition amount of the above-mentioned radical stabilizer to coal on an anhydrous carbon basis, 0.045 mmol / g is preferred and 0.15 mmol / g is more preferred. On the other hand, the upper limit of the amount of radical stabilizer added is preferably 0.4 mmol / g, more preferably 0.22 mmol / g. If the added amount of the radical stabilizer is less than the lower limit, the effect of improving the extraction rate of ashless coal may be insufficient. Conversely, if the amount of the radical stabilizer added exceeds the upper limit, the cost of the radical stabilizer may be too high for the effect of improving the extraction rate of ashless coal.
 上記石炭とラジカル安定剤との混合物は、予熱しておくとよい。上記混合物を予熱しておくことで、搬送管15へ供給し、溶剤と混合した際にスラリーの温度が低下することを防ぐことができる。上記混合物の予熱温度としては、特に限定されないが、例えば200℃以上300℃以下とできる。 ¡The mixture of coal and radical stabilizer should be preheated. By preheating the mixture, it is possible to prevent the temperature of the slurry from being lowered when the mixture is supplied to the transport pipe 15 and mixed with the solvent. Although it does not specifically limit as preheating temperature of the said mixture, For example, it can be 200 degreeC or more and 300 degrees C or less.
 なお、供給器14から搬送管15へ供給する上記混合物として、溶剤を混合してスラリー化した混合物を用いてもよい。供給器14からスラリー化した混合物を搬送管15へ供給することにより、搬送管15内で石炭及びラジカル安定剤が溶剤と混合し易くなり、石炭をより早く溶解させることができる。 It should be noted that a mixture obtained by mixing a solvent into a slurry may be used as the mixture supplied from the supply device 14 to the transport pipe 15. By supplying the slurry mixture from the supply device 14 to the transport pipe 15, the coal and the radical stabilizer are easily mixed with the solvent in the transport pipe 15, and the coal can be dissolved more quickly.
 上記スラリーにおける無水炭基準での石炭濃度の下限としては、20質量%が好ましく、30質量%がより好ましい。一方、上記石炭濃度の上限としては、70質量%が好ましく、60質量%がより好ましい。上記石炭濃度が上記下限未満であると、後述する溶出部2で溶出される溶剤可溶成分の溶出量がスラリー処理量に対して少なくなるため、無灰炭の製造効率が低下するおそれがある。逆に、上記石炭濃度が上記上限を超えると、スラリー化による石炭と溶剤との混合容易化効果が不十分となるおそれがある。 The lower limit of the coal concentration on the basis of anhydrous carbon in the slurry is preferably 20% by mass, more preferably 30% by mass. On the other hand, the upper limit of the coal concentration is preferably 70% by mass, and more preferably 60% by mass. If the coal concentration is less than the above lower limit, the elution amount of solvent-soluble components eluted in the elution part 2 to be described later decreases with respect to the slurry processing amount, which may reduce the production efficiency of ashless coal. . Conversely, if the coal concentration exceeds the upper limit, the effect of facilitating the mixing of coal and solvent by slurrying may be insufficient.
<搬送管>
 搬送管15は、溶剤タンク11の溶剤を溶出部2へ搬送する。また、供給器14から搬送管15に供給された石炭とラジカル安定剤との混合物は、搬送管15内を流れる加熱後の溶剤とこの搬送管15内で混合され、急速昇温される。ここで、「急速昇温」とは、例えば10℃/秒以上500℃/秒以下程度の加熱速度で加熱されることをいう。その結果、溶剤と石炭及びラジカル安定剤との混合体であるスラリーの温度は、石炭及びラジカル安定剤を投入後、数秒から十数秒の間に比較的均一な温度となる。なお、上記スラリーの温度は、加熱後の溶剤の温度より石炭の顕熱分だけ低く、例えば350℃以上420℃以下程度である。
<Transport pipe>
The transport pipe 15 transports the solvent in the solvent tank 11 to the elution unit 2. Further, the mixture of coal and radical stabilizer supplied from the supply device 14 to the transport pipe 15 is mixed with the heated solvent flowing in the transport pipe 15 in the transport pipe 15 and rapidly heated. Here, “rapid temperature rise” means heating at a heating rate of about 10 ° C./second or more and 500 ° C./second or less, for example. As a result, the temperature of the slurry, which is a mixture of the solvent, the coal, and the radical stabilizer, becomes a relatively uniform temperature within a few seconds to a few dozen seconds after the coal and the radical stabilizer are added. The temperature of the slurry is lower than the temperature of the solvent after heating by the sensible heat of coal, for example, about 350 ° C. or more and 420 ° C. or less.
 上記スラリー中の無水炭基準での石炭濃度の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、上記石炭濃度の上限としては、40質量%が好ましく、30質量%がより好ましい。上記石炭濃度が上記下限未満であると、後述する溶出部2で溶出される溶剤可溶成分の溶出量がスラリー処理量に対して少なくなるため、無灰炭の製造効率が低下するおそれがある。逆に、上記石炭濃度が上記上限を超えると、溶剤中で上記溶剤可溶成分が飽和するため、上記溶剤可溶成分の溶出率が低下するおそれがある。 The lower limit of the coal concentration on the basis of anhydrous carbon in the slurry is preferably 5% by mass, and more preferably 10% by mass. On the other hand, the upper limit of the coal concentration is preferably 40% by mass, and more preferably 30% by mass. If the coal concentration is less than the above lower limit, the elution amount of solvent-soluble components eluted in the elution part 2 to be described later decreases with respect to the slurry processing amount, which may reduce the production efficiency of ashless coal. . Conversely, if the coal concentration exceeds the upper limit, the solvent-soluble component is saturated in the solvent, and the elution rate of the solvent-soluble component may be reduced.
[溶出部]
 溶出部2は、上記加熱部1で得られたスラリー中の上記石炭から溶剤に可溶な石炭成分を溶出させる。上記溶出部2は、抽出槽21を有する。
[Elution part]
The elution part 2 elutes a coal component soluble in a solvent from the coal in the slurry obtained in the heating part 1. The elution part 2 has an extraction tank 21.
 抽出槽21には、上記搬送管15からスラリーが供給される。上記抽出槽21では、このスラリーの温度を保持しながら溶剤に可溶な石炭成分が石炭から溶出される。また、上記抽出槽21は、攪拌機21aを有している。この攪拌機21aによりスラリーを攪拌することで上記溶出を促進できる。 The slurry is supplied to the extraction tank 21 from the transport pipe 15. In the extraction tank 21, coal components soluble in the solvent are eluted from the coal while maintaining the temperature of the slurry. The extraction tank 21 has a stirrer 21a. The elution can be promoted by stirring the slurry with the stirrer 21a.
 上記抽出槽21の内部圧力の下限としては、1.1MPaが好ましく、1.5MPaがより好ましい。一方、上記抽出槽21の内部圧力の上限としては、5MPaが好ましく、4MPaがより好ましい。上記抽出槽21の内部圧力が上記下限未満であると、溶剤が蒸発することで減少し、石炭の溶解が不十分となるおそれがある。逆に、上記抽出槽21の内部圧力が上記上限を超えると、圧力を維持するためのコスト上昇に対して得られる石炭溶解の向上効果が不十分となるおそれがある。 The lower limit of the internal pressure of the extraction tank 21 is preferably 1.1 MPa, and more preferably 1.5 MPa. On the other hand, the upper limit of the internal pressure of the extraction tank 21 is preferably 5 MPa, and more preferably 4 MPa. When the internal pressure of the extraction tank 21 is less than the lower limit, the solvent is reduced by evaporation, and there is a possibility that the coal may not be sufficiently dissolved. On the contrary, when the internal pressure of the extraction tank 21 exceeds the upper limit, there is a possibility that the improvement effect of coal dissolution obtained for the cost increase for maintaining the pressure is insufficient.
 なお、溶出部2での溶出時間としては、特に限定されないが、溶剤可溶成分の抽出量と抽出効率との観点から10分以上70分以下とできる。 In addition, the elution time in the elution part 2 is not particularly limited, but can be 10 minutes or more and 70 minutes or less from the viewpoint of the extraction amount of solvent-soluble components and the extraction efficiency.
 溶出部2で可溶な石炭成分が溶出されたスラリーは供給管を介して固液分離部3へ送られる。 The slurry from which the soluble coal component is eluted in the elution unit 2 is sent to the solid-liquid separation unit 3 through the supply pipe.
[固液分離部]
 固液分離部3は、上記溶出部2で得られた石炭成分が溶剤に溶解した溶液と溶剤不溶成分を含む固形分濃縮液とを上記スラリーから分離する。なお、溶剤不溶成分とは、主に抽出用溶剤に不溶な灰分と不溶石炭とで構成されており、抽出用溶剤も含まれている抽出残分をいう。
[Solid-liquid separation unit]
The solid-liquid separation unit 3 separates the solution obtained by dissolving the coal component obtained in the elution unit 2 in the solvent and the solid concentrate containing the solvent-insoluble component from the slurry. The solvent-insoluble component refers to an extraction residue that is mainly composed of ash and insoluble coal that are insoluble in the extraction solvent, and also includes the extraction solvent.
 固液分離部3における上記分離は、例えば重力沈降法により行うことができる。ここで重力沈降法とは、沈降槽内で重力を利用して固形分を沈降させて固液分離する分離方法である。重力沈降法により分離を行う場合、溶剤可溶成分を含む溶液は固液分離部3の上部に溜まる。この溶液は必要に応じてフィルターユニットを用いて濾過した後、第1溶剤分離部4に排出される。一方、溶剤不溶成分を含む固形分濃縮液は、固液分離部3の下部に溜まり、第2溶剤分離部5に排出される。 The separation in the solid-liquid separation unit 3 can be performed by, for example, a gravity sedimentation method. Here, the gravity sedimentation method is a separation method in which a solid content is settled by using gravity in a sedimentation tank to perform solid-liquid separation. When separation is performed by the gravity sedimentation method, a solution containing a solvent-soluble component is accumulated at the upper part of the solid-liquid separation unit 3. This solution is filtered using a filter unit as necessary, and then discharged to the first solvent separation unit 4. On the other hand, the solid concentrate containing the solvent-insoluble component is collected at the lower part of the solid-liquid separation unit 3 and discharged to the second solvent separation unit 5.
 また、重力沈降法により分離を行う場合、スラリーを固液分離部3内に連続的に供給しながら溶剤可溶成分を含む液体分及び溶剤不溶成分を含む固形分濃縮液を沈降槽から排出することができる。これにより連続的な固液分離処理が可能となる。 Further, when separation is performed by the gravity sedimentation method, the liquid containing the solvent-soluble component and the solid content containing the solvent-insoluble component are discharged from the settling tank while continuously supplying the slurry into the solid-liquid separation unit 3. be able to. Thereby, continuous solid-liquid separation processing becomes possible.
 固液分離部3内でスラリーを維持する時間は、特に限定されないが、例えば30分以上120分以下とでき、この時間内で固液分離部3内の沈降分離が行われる。なお、石炭として塊炭を使用する場合には、沈降分離が効率化されるので、固液分離部3内でスラリーを維持する時間を短縮できる。 The time for maintaining the slurry in the solid-liquid separation unit 3 is not particularly limited, but can be, for example, 30 minutes or more and 120 minutes or less, and sedimentation separation in the solid-liquid separation unit 3 is performed within this time. In addition, when using lump coal as coal, since sedimentation separation is made efficient, the time which maintains a slurry in the solid-liquid separation part 3 can be shortened.
 固液分離部3内は、加熱及び加圧することが好ましい。固液分離部3内の加熱温度の下限としては、300℃が好ましく、350℃がより好ましい。一方、固液分離部3内の加熱温度の上限としては、420℃が好ましく、400℃がより好ましい。上記加熱温度が上記下限未満であると、溶剤可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記加熱温度が上記上限を超えると、加熱のための運転コストが高くなるおそれがある。 It is preferable to heat and pressurize the solid-liquid separation unit 3. As a minimum of heating temperature in solid-liquid separation part 3, 300 ° C is preferred and 350 ° C is more preferred. On the other hand, as an upper limit of the heating temperature in the solid-liquid separation part 3, 420 degreeC is preferable and 400 degreeC is more preferable. If the heating temperature is less than the lower limit, the solvent-soluble component may reprecipitate and the separation efficiency may be reduced. Conversely, if the heating temperature exceeds the upper limit, the operating cost for heating may increase.
 また、固液分離部3内の圧力の下限としては、1MPaが好ましく、1.4MPaがより好ましい。一方、上記圧力の上限としては、3MPaが好ましく、2MPaがより好ましい。上記圧力が上記下限未満であると、溶剤可溶成分が再析出し、分離効率が低下するおそれがある。逆に、上記圧力が上記上限を超えると、加圧のための運転コストが高くなるおそれがある。 Moreover, as a minimum of the pressure in the solid-liquid separation part 3, 1 MPa is preferable and 1.4 MPa is more preferable. On the other hand, the upper limit of the pressure is preferably 3 MPa, more preferably 2 MPa. If the pressure is less than the lower limit, the solvent-soluble component may reprecipitate and the separation efficiency may be reduced. Conversely, when the pressure exceeds the upper limit, the operating cost for pressurization may increase.
 なお、上記溶液及び固形分濃縮液を分離する方法としては、重力沈降法に限られず、例えば濾過法や遠心分離法を用いてもよい。固液分離方法として濾過法や遠心分離法を用いる場合、固液分離部3として濾過器や遠心分離器などが使用される。 In addition, as a method of isolate | separating the said solution and solid content concentrate, it is not restricted to a gravity sedimentation method, For example, you may use the filtration method and the centrifugation method. When a filtration method or a centrifugation method is used as the solid-liquid separation method, a filter, a centrifuge, or the like is used as the solid-liquid separation unit 3.
[第1溶剤分離部]
 第1溶剤分離部4は、上記固液分離部3で分離した上記溶液から溶剤を蒸発させる。この溶剤の蒸発分離により無灰炭HPCが得られる。この第1溶剤分離部4は、蒸発分離部と呼ぶことができる。
[First solvent separation unit]
The first solvent separation unit 4 evaporates the solvent from the solution separated by the solid-liquid separation unit 3. Ashless coal HPC is obtained by evaporating and separating the solvent. The first solvent separation unit 4 can be called an evaporation separation unit.
 このようにして得られる無灰炭HPCは、例えばコークスの原料石炭よりも高い発熱量を示す。さらに無灰炭は、製鉄用コークスの原料として特に重要な品質である軟化溶融性が大幅に改善され、例えば原料石炭よりも遥かに優れた流動性を示す。従って無灰炭は、コークス原料に配合する石炭として使用することもできる。 The ashless coal HPC obtained in this way exhibits a higher calorific value than, for example, coke raw material coal. Furthermore, ashless coal has a significantly improved softening and melting property, which is a particularly important quality as a raw material for iron-making coke, and exhibits fluidity far superior to, for example, raw material coal. Therefore, ashless coal can also be used as coal blended with coke raw materials.
 溶剤を蒸発分離する方法としては、蒸発分離器を用いた一般的な蒸留法や蒸発法(スプレードライ法等)を含む分離方法を用いることができる。 As a method for evaporating and separating the solvent, a separation method including a general distillation method using an evaporative separator or an evaporation method (spray drying method or the like) can be used.
 なお、第1溶剤分離部4で蒸発させた溶剤は、例えば熱交換器により液化して、加熱部1に供給し、石炭及びラジカル安定剤と混合する溶剤として利用するとよい。このように溶剤を循環利用することで、無灰炭の製造コストを低減できる。 The solvent evaporated in the first solvent separation unit 4 may be liquefied by, for example, a heat exchanger, supplied to the heating unit 1, and used as a solvent to be mixed with coal and a radical stabilizer. Thus, the recycling cost of a solvent can reduce the manufacturing cost of ashless coal.
[第2溶剤分離部]
 第2溶剤分離部5は、固液分離部3で分離された上記固形分濃縮液から、溶剤を蒸発分離させて副生炭RCを得る。
[Second solvent separation unit]
The second solvent separation unit 5 evaporates and separates the solvent from the solid concentrate separated by the solid-liquid separation unit 3 to obtain by-product coal RC.
 副生炭RCは、軟化溶融性は示さないが、含酸素官能基が脱離されている。そのため、副生炭RCは、配合炭として用いた場合にこの配合炭に含まれる他の石炭の軟化溶融性を阻害しない。従って、この副生炭RCは例えばコークス原料の配合炭の一部として使用することができる。また、副生炭RCは一般の石炭と同様に燃料として利用してもよい。 By-product charcoal RC does not show softening and melting properties, but the oxygen-containing functional groups are eliminated. Therefore, by-product coal RC does not inhibit the softening and melting properties of other coals included in this blended coal when used as a blended coal. Therefore, this byproduct charcoal RC can be used, for example, as a part of the blended coal of the coke raw material. Moreover, you may utilize byproduct coal RC as a fuel similarly to general coal.
 固形分濃縮液から溶剤を分離する方法としては、第1溶剤分離部4の分離方法と同様に、蒸発分離器を用いた一般的な蒸留法や蒸発法(スプレードライ法等)を用いることができる。 As a method for separating the solvent from the solid concentrate, a general distillation method or evaporation method (e.g., spray drying method) using an evaporation separator is used, as in the separation method of the first solvent separation unit 4. it can.
 なお、第2溶剤分離部5で蒸発させた溶剤は、例えば熱交換器により液化して、加熱部1に供給し、石炭及びラジカル安定剤と混合する溶剤として利用するとよい。このように溶剤を循環利用することで、無灰炭の製造コストを低減できる。 Note that the solvent evaporated in the second solvent separation unit 5 may be liquefied by, for example, a heat exchanger, supplied to the heating unit 1, and used as a solvent to be mixed with coal and a radical stabilizer. Thus, the recycling cost of a solvent can reduce the manufacturing cost of ashless coal.
[無灰炭の製造方法]
 当該無灰炭の製造方法は、加熱工程と、溶出工程と、分離工程と、第1蒸発工程と、第2蒸発工程とを備える。当該無灰炭の製造方法は、図1の無灰炭の製造装置を用いて行うことができる。
[Production method of ashless coal]
The method for producing ashless coal includes a heating step, an elution step, a separation step, a first evaporation step, and a second evaporation step. The said ashless coal manufacturing method can be performed using the manufacturing apparatus of ashless coal of FIG.
<加熱工程>
 加熱工程では、石炭、ラジカル安定剤及び溶剤の混合物を加熱する。加熱工程は、溶剤加熱工程と、溶剤搬送工程と、石炭及びラジカル安定剤を供給する供給工程とを備える。
<Heating process>
In the heating step, the mixture of coal, radical stabilizer and solvent is heated. The heating process includes a solvent heating process, a solvent transport process, and a supply process for supplying coal and a radical stabilizer.
 上記溶剤加熱工程では、溶剤を加熱する。具体的には、溶剤タンク11に貯留された溶剤をポンプ12により搬送管15へ流し、この搬送管15内を流れる溶剤が予熱器13を通る間に加熱される。 In the solvent heating step, the solvent is heated. Specifically, the solvent stored in the solvent tank 11 is caused to flow to the transport pipe 15 by the pump 12, and the solvent flowing in the transport pipe 15 is heated while passing through the preheater 13.
 上記溶剤搬送工程では、上記溶剤加熱工程で加熱した上記溶剤を上記溶出工程に搬送する。具体的には、搬送管15により溶剤が溶出部2へ供給される。 In the solvent transport step, the solvent heated in the solvent heating step is transported to the elution step. Specifically, the solvent is supplied to the elution part 2 through the transport pipe 15.
 上記供給工程では、上記溶剤搬送工程で上記溶剤に石炭及びラジカル安定剤を供給する。具体的には、供給器14から上記加熱後の溶剤が流れる搬送管15へ石炭及びラジカル安定剤を供給し、石炭及びラジカル安定剤と溶剤とを混合してスラリーとする。搬送管15へ供給された石炭及びラジカル安定剤は溶剤により急速昇温され、また、搬送管15を流れる溶剤が石炭を攪拌するので、石炭が溶解し易く、溶剤と石炭とがよく混合されたスラリーが得られる。 In the supply step, coal and a radical stabilizer are supplied to the solvent in the solvent transport step. Specifically, coal and a radical stabilizer are supplied from the feeder 14 to the conveying pipe 15 through which the heated solvent flows, and the coal, the radical stabilizer and the solvent are mixed to form a slurry. The coal and radical stabilizer supplied to the transport pipe 15 are rapidly heated by the solvent, and the solvent flowing through the transport pipe 15 stirs the coal, so that the coal is easily dissolved and the solvent and the coal are well mixed. A slurry is obtained.
 上記供給工程における石炭の昇温速度の下限としては、600℃/分が好ましく、700℃/分がより好ましい。上記昇温速度が上記下限未満であると、ラジカル安定剤による無灰炭の抽出率の向上効果が不足するおそれがある。一方、上記昇温速度の上限としては、特に限定されないが、30000℃/分とできる。上記昇温速度が上記上限を超えると、昇温のためのコストが不要に増大するおそれがある。なお、上記昇温速度は、上記溶剤加熱工程での溶剤の加熱温度により調整できる。 The lower limit of the coal heating rate in the supplying step is preferably 600 ° C./min, and more preferably 700 ° C./min. There exists a possibility that the improvement effect of the extraction rate of ashless coal by a radical stabilizer may be insufficient that the said temperature increase rate is less than the said minimum. On the other hand, the upper limit of the heating rate is not particularly limited, but can be 30000 ° C./min. When the temperature increase rate exceeds the upper limit, the cost for temperature increase may increase unnecessarily. In addition, the said temperature increase rate can be adjusted with the heating temperature of the solvent in the said solvent heating process.
<溶出工程>
 溶出工程では、上記加熱工程で得られたスラリー中の上記石炭から、溶剤に可溶な石炭成分を溶出させる。具体的には、加熱工程で調製されたスラリーを抽出槽21に供給し、攪拌機21aで攪拌しながら所定温度で保持して溶剤可溶成分の抽出を行う。
<Elution process>
In the elution step, a coal component soluble in a solvent is eluted from the coal in the slurry obtained in the heating step. Specifically, the slurry prepared in the heating step is supplied to the extraction tank 21, and the solvent-soluble component is extracted while being held at a predetermined temperature while being stirred by the stirrer 21a.
<分離工程>
 分離工程では、上記溶出工程で溶出後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分を含む固形分濃縮液に分離する。具体的には、抽出槽21から排出されるスラリーを固液分離部3へ供給し、固液分離部3内に供給されたスラリーを例えば重力沈降法により上記液体分及び固形分濃縮液に分離する。
<Separation process>
In the separation step, the slurry eluted in the elution step is separated into a liquid component containing a solvent-soluble component and a solid content concentrate containing a solvent-insoluble component. Specifically, the slurry discharged from the extraction tank 21 is supplied to the solid-liquid separation unit 3, and the slurry supplied into the solid-liquid separation unit 3 is separated into the liquid component and the solid content concentrate by, for example, gravity sedimentation. To do.
<第1蒸発工程>
 第1蒸発工程では、上記分離工程で分離した上記溶液から溶剤を蒸発させる。具体的には、固液分離部3で分離された溶液を第1溶剤分離部4に供給し、第1溶剤分離部4で溶剤を蒸発させる。これにより上記溶液を溶剤と無灰炭とに分離する。
<First evaporation step>
In the first evaporation step, the solvent is evaporated from the solution separated in the separation step. Specifically, the solution separated by the solid-liquid separation unit 3 is supplied to the first solvent separation unit 4, and the solvent is evaporated by the first solvent separation unit 4. This separates the solution into solvent and ashless coal.
<第2蒸発工程>
 第2蒸発工程では、上記分離工程で分離した上記固形分濃縮液から溶剤を蒸発させる。具体的には、固液分離部3で分離された固形分濃縮液を第2溶剤分離部5に供給し、第2溶剤分離部5で溶剤を蒸発させて溶剤と副生炭とに分離する。
<Second evaporation step>
In the second evaporation step, the solvent is evaporated from the solid content concentrate separated in the separation step. Specifically, the solid concentrate separated by the solid-liquid separation unit 3 is supplied to the second solvent separation unit 5, and the solvent is evaporated by the second solvent separation unit 5 to separate the solvent and by-product coal. .
[利点]
 当該無灰炭の製造装置及び当該無灰炭の製造方法では、加熱して溶剤可溶成分を抽出する前のスラリーにラジカル安定剤を添加する。このラジカル安定剤が、スラリーの加熱により生じる石炭ラジカルの重縮合による高分子化を抑制できるので、溶出される石炭の可溶成分を増加させることができる。従って、当該無灰炭の製造装置及び当該無灰炭の製造方法を用いることで無灰炭の抽出率を高められる。
[advantage]
In the said ashless coal manufacturing apparatus and the said ashless coal manufacturing method, a radical stabilizer is added to the slurry before heating and extracting a solvent soluble component. Since this radical stabilizer can suppress polymerization due to polycondensation of coal radicals caused by heating the slurry, it is possible to increase the soluble components of coal to be eluted. Therefore, the extraction rate of ashless coal can be increased by using the ashless coal production apparatus and the ashless coal production method.
 また、当該無灰炭の製造装置及び当該無灰炭の製造方法では、搬送中の加熱された溶剤に石炭を供給することで、石炭を急速に昇温できると共に、溶剤の流れにより石炭と溶剤とを攪拌することができる。これにより、短い時間で石炭を溶剤に溶解できる。また、ラジカル安定剤を石炭と共に供給することで、石炭ラジカルの高分子化を効果的に抑止できるので、無灰炭の抽出率をさらに高められる。 Moreover, in the said ashless coal manufacturing apparatus and the said ashless coal manufacturing method, while supplying coal to the heated solvent in conveyance, coal can be heated up rapidly and coal and a solvent by the flow of a solvent. And can be stirred. Thereby, coal can be melt | dissolved in a solvent in a short time. Further, by supplying a radical stabilizer together with coal, it is possible to effectively inhibit the polymerization of coal radicals, thereby further increasing the extraction rate of ashless coal.
〔第2実施形態〕
 図2の加熱部10は、図1の無灰炭の製造装置の加熱部1に代えて用いられる。図2の加熱部10は、溶剤タンク11と、供給器14と、混合部16と、ポンプ17と、昇温部18とを備える。なお、溶剤タンク11と供給器14とは、図1の無灰炭の製造装置におけるものと同様であるので、同一符合を付して説明を省略する。
[Second Embodiment]
The heating unit 10 in FIG. 2 is used in place of the heating unit 1 of the ashless coal manufacturing apparatus in FIG. 1. The heating unit 10 in FIG. 2 includes a solvent tank 11, a feeder 14, a mixing unit 16, a pump 17, and a temperature raising unit 18. The solvent tank 11 and the supply device 14 are the same as those in the ashless coal production apparatus of FIG.
<混合部>
 混合部16は、溶剤タンク11から供給する溶剤と、供給器14から供給する石炭及びラジカル安定剤とを混合する。
<Mixing section>
The mixing unit 16 mixes the solvent supplied from the solvent tank 11 with the coal and radical stabilizer supplied from the supplier 14.
 上記混合部16としては、調製槽19を用いることができる。この調製槽19には、供給管を介して上記石炭、ラジカル安定剤及び溶剤が供給される。上記調製槽19では、この供給された石炭、ラジカル安定剤及び溶剤が混合され、スラリーが調製される。また、上記調製槽19は、攪拌機19aを有しており、混合したスラリーを攪拌機19aで攪拌しながら保持することによりスラリーの混合状態を維持する。 As the mixing unit 16, a preparation tank 19 can be used. The preparation tank 19 is supplied with the coal, radical stabilizer and solvent through a supply pipe. In the preparation tank 19, the supplied coal, radical stabilizer and solvent are mixed to prepare a slurry. Moreover, the said preparation tank 19 has the stirrer 19a, and maintains the mixing state of a slurry by hold | maintaining the mixed slurry, stirring with the stirrer 19a.
 なお、混合部16の調製槽19で調製されたスラリーは、供給管を介して昇温部18へ送られる。 In addition, the slurry prepared in the preparation tank 19 of the mixing unit 16 is sent to the temperature raising unit 18 through the supply pipe.
<ポンプ>
 ポンプ17は、混合部16から昇温部18へスラリーを供給する供給管に配設されており、上記調製槽19に貯留されているスラリーを昇温部18へ圧送する。
<Pump>
The pump 17 is disposed in a supply pipe that supplies the slurry from the mixing unit 16 to the temperature raising unit 18, and pumps the slurry stored in the preparation tank 19 to the temperature raising unit 18.
 上記ポンプ17の種類は、供給管を介して上記スラリーを昇温部18へ圧送できるものであれば特に限定されないが、例えば容積型ポンプ又は非容積型ポンプを用いることができる。上記容積型ポンプとしては、ダイヤフラムポンプやチューブフラムポンプ等が挙げられ、上記非容積型ポンプとしては、渦巻ポンプ等が挙げられる。 The type of the pump 17 is not particularly limited as long as it can pump the slurry to the temperature raising unit 18 through the supply pipe, and for example, a positive displacement pump or a non-positive displacement pump can be used. Examples of the positive displacement pump include a diaphragm pump and a tube diaphragm pump, and examples of the non-positive displacement pump include a spiral pump.
<昇温部>
 昇温部18は、上記混合部16で得られるスラリーを昇温する。
<Temperature riser>
The temperature raising unit 18 raises the temperature of the slurry obtained in the mixing unit 16.
 昇温部18としては、内部を通過するスラリーを昇温できるものであれば特に限定されないが、例えば抵抗加熱式ヒーターや誘導加熱コイルが挙げられる。また、昇温部18は、熱媒を用いて昇温を行うよう構成されていてもよく、例えば内部を通過するスラリーの流路の周囲に配設される加熱管を有し、この加熱管に蒸気、油等の熱媒を供給することでスラリーを昇温可能に構成されていてもよい。 The temperature raising unit 18 is not particularly limited as long as it can raise the temperature of the slurry passing through the inside, and examples thereof include a resistance heating heater and an induction heating coil. Further, the temperature raising unit 18 may be configured to raise the temperature using a heat medium. For example, the temperature raising unit 18 includes a heating pipe disposed around the flow path of the slurry passing through the inside, and the heating pipe The slurry may be configured to be heated by supplying a heating medium such as steam or oil.
 昇温部18による昇温後のスラリーの温度の下限としては、300℃が好ましく、360℃がより好ましい。一方、上記スラリーの温度の上限としては、420℃が好ましく、400℃がより好ましい。上記スラリーの温度が上記下限未満であると、石炭を構成する分子間の結合を十分に弱められず、溶出率が低下するおそれがある。逆に、上記スラリーの温度が上記上限を超えると、スラリーの温度を維持するための熱量が不必要に大きくなるため、多孔質炭素粒子の製造コストが増大するおそれがある。 As a minimum of the temperature of the slurry after temperature rising by temperature rising part 18, 300 ° C is preferred and 360 ° C is more preferred. On the other hand, the upper limit of the temperature of the slurry is preferably 420 ° C., more preferably 400 ° C. If the temperature of the slurry is less than the lower limit, the bonds between the molecules constituting the coal cannot be sufficiently weakened, and the elution rate may decrease. On the contrary, when the temperature of the slurry exceeds the upper limit, the amount of heat for maintaining the temperature of the slurry becomes unnecessarily large, which may increase the production cost of the porous carbon particles.
[無灰炭の製造方法]
 当該無灰炭の製造方法は、加熱工程と、溶出工程と、分離工程と、第1蒸発工程と、第2蒸発工程とを備える。当該無灰炭の製造方法は、図2の加熱部10を有する無灰炭の製造装置を用いて行うことができる。なお、溶出工程、分離工程、第1蒸発工程、及び第2蒸発工程は、第1実施形態の無灰炭の製造方法と同様に行うことができるので、ここでは加熱工程についてのみ説明する。
[Production method of ashless coal]
The method for producing ashless coal includes a heating step, an elution step, a separation step, a first evaporation step, and a second evaporation step. The ashless coal production method can be performed using an ashless coal production apparatus having the heating unit 10 of FIG. In addition, since an elution process, a separation process, a 1st evaporation process, and a 2nd evaporation process can be performed similarly to the manufacturing method of ashless coal of 1st Embodiment, only a heating process is demonstrated here.
<加熱工程>
 加熱工程では、石炭、ラジカル安定剤及び溶剤の混合物を加熱する。上記加熱工程は、混合工程と、昇温工程とを備える。
<Heating process>
In the heating step, the mixture of coal, radical stabilizer and solvent is heated. The heating step includes a mixing step and a temperature raising step.
 混合工程では、石炭、ラジカル安定剤及び溶剤を混合する。具体的には、供給器14から供給される石炭及びラジカル安定剤と、溶剤タンク11から供給される溶剤を混合部16の調製槽19により混合してスラリーとする。 In the mixing process, coal, radical stabilizer and solvent are mixed. Specifically, coal and radical stabilizer supplied from the supply device 14 and the solvent supplied from the solvent tank 11 are mixed in the preparation tank 19 of the mixing unit 16 to form a slurry.
 昇温工程では、上記混合工程で得られたスラリーを昇温する。具体的には、上記スラリーをポンプ17によって昇温部18に供給してスラリーを昇温する。 In the temperature raising step, the temperature of the slurry obtained in the mixing step is raised. Specifically, the slurry is supplied to the temperature raising unit 18 by the pump 17 to raise the temperature of the slurry.
[利点]
 当該無灰炭の製造装置及び当該無灰炭の製造方法では、ラジカル安定剤を混合した後にスラリーを昇温することで、石炭ラジカルの高分子化を効果的に抑止できるので、無灰炭の抽出率をさらに高められる。
[advantage]
In the ashless coal production apparatus and the ashless coal production method, since the temperature of the slurry is increased after mixing the radical stabilizer, polymerization of coal radicals can be effectively suppressed. The extraction rate can be further increased.
〔その他の実施形態〕
 なお、本発明の無灰炭の製造装置及び無灰炭の製造方法は、上記実施形態に限定されるものではない。
[Other Embodiments]
In addition, the manufacturing apparatus of ashless coal and the manufacturing method of ashless coal of this invention are not limited to the said embodiment.
 上記実施形態では、石炭とラジカル安定剤とを予め混合した混合物を供給器から供給する構成を説明したが、石炭とラジカル安定剤とは別々に供給してもよい。 In the above embodiment, the configuration in which a mixture in which coal and a radical stabilizer are mixed in advance is supplied from a feeder, but the coal and the radical stabilizer may be supplied separately.
 また、上記実施形態では、無灰炭の製造方法として第2蒸発工程を備える場合を説明したが、例えば副生炭を利用しない場合、この第2蒸発工程は省略可能である。第2蒸発工程を行わない場合、無灰炭の製造装置は、第2溶剤分離部を備えなくともよい。 Moreover, although the case where the 2nd evaporation process was provided as a manufacturing method of ashless coal was demonstrated in the said embodiment, for example, when not using by-product coal, this 2nd evaporation process is omissible. When not performing a 2nd evaporation process, the manufacturing apparatus of ashless coal does not need to be equipped with a 2nd solvent separation part.
 上記第1実施形態では、加熱部としてポンプの下流側に予熱器が配設されている場合を説明したが、ポンプと予熱器との配設順は逆であってもよい。 In the first embodiment, the case where the preheater is disposed on the downstream side of the pump as the heating unit has been described, but the arrangement order of the pump and the preheater may be reversed.
 上記第2実施形態では、無灰炭の製造装置の混合部が調製槽を有する構成について説明したが、この構成に限らず、溶剤と石炭及びラジカル安定剤との混合ができれば、調製槽を省略してもよい。例えばラインミキサーにより上記混合が完了するような場合には、調製槽を省略して供給管と昇温部との間にラインミキサーを備える構成としてもよい。 In the said 2nd Embodiment, although the mixing part of the manufacturing apparatus of ashless coal demonstrated the structure which has a preparation tank, if not only this structure but mixing of a solvent, coal, and a radical stabilizer can be performed, a preparation tank will be abbreviate | omitted. May be. For example, when the above mixing is completed by a line mixer, the preparation tank may be omitted and a line mixer may be provided between the supply pipe and the temperature raising unit.
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 石炭として、瀝青炭を40g準備した。なお、上記石炭は、全石炭に対する粒子径1mm未満の石炭の割合が90質量%以上となるように粉砕して使用した。また、無灰炭の抽出用溶剤として、1-メチルナフタレンを240g準備した。この石炭及び溶剤を混合してスラリーを調製した。 40g of bituminous coal was prepared as coal. In addition, the said coal was grind | pulverized and used so that the ratio of coal with a particle diameter of less than 1 mm with respect to all the coal might be 90 mass% or more. In addition, 240 g of 1-methylnaphthalene was prepared as an ashless coal extraction solvent. This coal and solvent were mixed to prepare a slurry.
 ラジカル安定剤として、モノアミンであるオクタデシルアミンを2g準備し、上記スラリーに添加して混合した。 2 g of octadecylamine, which is a monoamine, was prepared as a radical stabilizer and added to the slurry and mixed.
 ステンレスフィルタを有する容量500ccのオートクレーブに上記スラリーを投入し、2MPaの圧力条件で380℃に昇温した。そして、温度を380℃に保持したまま40分間攪拌し、石炭から溶剤に可溶な石炭成分を溶出させた。 The slurry was put into an autoclave having a capacity of 500 cc having a stainless steel filter, and the temperature was raised to 380 ° C. under a pressure condition of 2 MPa. And it stirred for 40 minutes, keeping temperature at 380 degreeC, and the coal component soluble in a solvent was eluted from coal.
 上記抽出温度のまま濾過を行い、濾残(溶剤不溶成分)の質量を測定し、溶剤に可溶な石炭成分の割合、つまり抽出率を算出した。 The filtration was carried out with the above extraction temperature, the mass of the filter residue (solvent insoluble component) was measured, and the proportion of coal component soluble in the solvent, that is, the extraction rate was calculated.
 モノアミンの添加量を0g、0.5g、1g、4gとして、同様の処理を行った。なお、「モノアミンの添加量を0gとする」とは、モノアミンを添加しないことを意味する。 The same treatment was performed with the addition amount of monoamine being 0 g, 0.5 g, 1 g, and 4 g. Note that “the amount of monoamine added is 0 g” means that no monoamine is added.
 モノアミンの添加量が0gであるときの抽出率を基準とし、他の添加量における抽出率の増加率(質量%)を算出した。結果を図3に示す。なお、「増加率」は、添加量が0gであるときの抽出率をX、増加率を算出する条件における抽出率をYとするとき、(Y-X)/X×100で計算される量である。また、図3において横軸は無水炭基準での石炭に対する上記ラジカル安定剤の添加量(mmol/g)に換算している。 Based on the extraction rate when the addition amount of monoamine was 0 g, the increase rate (mass%) of the extraction rate at other addition amounts was calculated. The results are shown in FIG. The “increase rate” is an amount calculated by (Y−X) / X × 100, where X is the extraction rate when the addition amount is 0 g, and Y is the extraction rate under the condition for calculating the increase rate. It is. Moreover, in FIG. 3, the horizontal axis is converted to the amount of the radical stabilizer added to coal (mmol / g) based on anhydrous carbon.
 図3の結果から、添加量が0.045mmol/g以上で効果が認められるようになり(抽出率の増加が3%以上となり)、0.4mmol/g程度までモノアミンの添加量に比例して抽出率が増加することが分かる。 From the result of FIG. 3, the effect is recognized when the addition amount is 0.045 mmol / g or more (the increase in extraction rate is 3% or more), and is proportional to the addition amount of monoamine up to about 0.4 mmol / g. It can be seen that the extraction rate increases.
 また、ラジカル安定剤の添加量を2gに固定したまま、ラジカル安定剤の種類を第1級モノアミンのオクタデシルアミン(アミンA)、第2級モノアミンのジオクタデシルアミン(アミンB)、第4級アンモニウム塩の塩化ジアルキルジメチルアンモニウム(アミンC)、第1級ジアミンのN-アルキル-1,3-ジアミノプロパン(アミンD)、第1級トリアミンの牛脂ジプロピレントリアミン(アミンE)として、同様の処理を行い、抽出率の増加率(質量%)を算出した。結果を図4に示す。また、図5に上述の結果を無水炭基準での石炭に対するラジカル安定剤の添加量(mol量)を基準にグラフ化したものを示す。 In addition, with the amount of radical stabilizer added fixed at 2 g, the types of radical stabilizers are primary monoamine octadecylamine (amine A), secondary monoamine dioctadecylamine (amine B), and quaternary ammonium. The same treatment was carried out as the salt dialkyldimethylammonium chloride (amine C), primary diamine N-alkyl-1,3-diaminopropane (amine D), and primary triamine tallow dipropylene triamine (amine E). The extraction rate increase rate (mass%) was calculated. The results are shown in FIG. FIG. 5 is a graph showing the above results based on the amount (mol amount) of the radical stabilizer added to the coal based on anhydrous carbon.
 図4、図5の結果から、いずれのラジカル安定剤においても抽出率が増加することが分かる。中でもモノアミンをラジカル安定剤とする場合、抽出率の増加率が高いことが分かる。また、無水炭基準での石炭に対するラジカル安定剤の添加量を増加することで、抽出率を高められることが分かる。以上から、ラジカル安定剤を添加することで、抽出率を高められると考えられる。 4 and 5 show that the extraction rate increases with any radical stabilizer. In particular, when monoamine is used as the radical stabilizer, it can be seen that the rate of increase in the extraction rate is high. Moreover, it turns out that an extraction rate can be raised by increasing the addition amount of the radical stabilizer with respect to coal on an anhydrous coal basis. From the above, it is considered that the extraction rate can be increased by adding a radical stabilizer.
 以上説明したように、本発明の無灰炭の製造方法及び製造装置を用いることで、無灰炭の抽出率を高められる。 As described above, the extraction rate of ashless coal can be increased by using the method and apparatus for producing ashless coal of the present invention.
1、10 加熱部
11 溶剤タンク
12、17 ポンプ
13 予熱器
14 供給器
15 搬送管
16 混合部
18 昇温部
19 調製槽
19a 攪拌機
2 溶出部
21 抽出槽
21a 攪拌機
3 固液分離部
4 第1溶剤分離部
5 第2溶剤分離部
 
DESCRIPTION OF SYMBOLS 1,10 Heating part 11 Solvent tank 12, 17 Pump 13 Preheater 14 Feeder 15 Conveying pipe 16 Mixing part 18 Temperature rising part 19 Preparation tank 19a Stirrer 2 Elution part 21 Extraction tank 21a Stirrer 3 Solid-liquid separation part 4 1st solvent Separator 5 Second solvent separator

Claims (8)

  1.  石炭、ラジカル安定剤及び溶剤の混合物を加熱する工程と、
     上記加熱工程で得られたスラリー中の上記石炭から上記溶剤に可溶な成分を溶出させる工程と、
     上記溶出工程で溶出後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分に分離する工程と、
     上記分離工程で分離した上記液体分から溶剤を蒸発させる工程と
     を備える無灰炭の製造方法。
    Heating a mixture of coal, radical stabilizer and solvent;
    A step of eluting components soluble in the solvent from the coal in the slurry obtained in the heating step;
    Separating the slurry after elution in the elution step into a liquid component containing a solvent-soluble component and a solvent-insoluble component;
    And a step of evaporating the solvent from the liquid component separated in the separation step.
  2.  上記加熱工程が、
     石炭、ラジカル安定剤及び溶剤を混合する工程と、
     上記混合工程で得られたスラリーを昇温する工程と
     を備える請求項1に記載の無灰炭の製造方法。
    The heating step is
    Mixing coal, radical stabilizer and solvent;
    The method for producing ashless coal according to claim 1, further comprising: raising the temperature of the slurry obtained in the mixing step.
  3.  上記加熱工程が、
     溶剤を加熱する工程と、
     上記溶剤加熱工程で加熱した上記溶剤を上記溶出工程に搬送する工程と、
     上記溶剤搬送工程で上記溶剤に石炭及びラジカル安定剤を供給する工程と
     を備える請求項1に記載の無灰炭の製造方法。
    The heating step is
    Heating the solvent;
    Conveying the solvent heated in the solvent heating step to the elution step;
    The method for producing ashless coal according to claim 1, further comprising: supplying coal and a radical stabilizer to the solvent in the solvent conveying step.
  4.  上記供給工程における石炭の昇温速度が600℃/分以上となるように、上記溶剤加熱工程での溶剤の加熱温度を調整する請求項3に記載の無灰炭の製造方法。 The method for producing ashless coal according to claim 3, wherein the heating temperature of the solvent in the solvent heating step is adjusted so that the heating rate of the coal in the supplying step is 600 ° C / min or more.
  5.  無水炭基準での石炭に対する上記ラジカル安定剤の添加量が、0.045mmol/g以上0.4mmol/g以下である請求項1に記載の無灰炭の製造方法。 The method for producing ashless coal according to claim 1, wherein the amount of the radical stabilizer added to coal on an anhydrous coal basis is 0.045 mmol / g or more and 0.4 mmol / g or less.
  6.  上記ラジカル安定剤が、アミン又はアンモニウム塩である請求項1から請求項5のいずれか1項に記載の無灰炭の製造方法。 The method for producing ashless coal according to any one of claims 1 to 5, wherein the radical stabilizer is an amine or an ammonium salt.
  7.  上記アミンが、モノアミン、ジアミン又はトリアミンである請求項6に記載の無灰炭の製造方法。 The method for producing ashless coal according to claim 6, wherein the amine is monoamine, diamine or triamine.
  8.  石炭、ラジカル安定剤及び溶剤の混合物を加熱する加熱部と、
     上記加熱部で得られたスラリー中の上記石炭から上記溶剤に可溶な成分を溶出させる溶出部と、
     上記溶出部で溶出後の上記スラリーを、溶剤可溶成分を含む液体分及び溶剤不溶成分に分離する固液分離部と、
     上記固液分離部で分離した上記液体分から溶剤を蒸発させる蒸発分離部と
     を備える無灰炭の製造装置。
     
     
    A heating section for heating a mixture of coal, radical stabilizer and solvent;
    An elution part for eluting components soluble in the solvent from the coal in the slurry obtained in the heating part;
    A solid-liquid separation part for separating the slurry after elution in the elution part into a liquid component containing a solvent-soluble component and a solvent-insoluble component;
    An ashless coal manufacturing apparatus, comprising: an evaporation separation unit that evaporates a solvent from the liquid component separated by the solid-liquid separation unit.

PCT/JP2018/014885 2017-05-24 2018-04-09 Method for producing ashless coal and device for producing ashless coal WO2018216373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197036297A KR102291836B1 (en) 2017-05-24 2018-04-09 Method for manufacturing ashless coal and apparatus for manufacturing ashless coal
CN201880033426.3A CN110651027B (en) 2017-05-24 2018-04-09 Method for producing ashless coal and apparatus for producing ashless coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-102605 2017-05-24
JP2017102605A JP6827884B2 (en) 2017-05-24 2017-05-24 Ash-free coal manufacturing method and ash-free coal manufacturing equipment

Publications (1)

Publication Number Publication Date
WO2018216373A1 true WO2018216373A1 (en) 2018-11-29

Family

ID=64396576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014885 WO2018216373A1 (en) 2017-05-24 2018-04-09 Method for producing ashless coal and device for producing ashless coal

Country Status (4)

Country Link
JP (1) JP6827884B2 (en)
KR (1) KR102291836B1 (en)
CN (1) CN110651027B (en)
WO (1) WO2018216373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621799A (en) * 2020-12-10 2022-06-14 株式会社神户制钢所 Method for producing ashless coal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815590A (en) * 1981-07-22 1983-01-28 Neos Co Ltd Dehydrating agent for coal/water slurry
JPS61285286A (en) * 1985-06-12 1986-12-16 Nippon Steel Chem Co Ltd Carbonization of coal
JP2009227729A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Manufacturing method for ashless coal
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2012502158A (en) * 2008-09-12 2012-01-26 タータ スチール リミテッド Development of techno-economic organic refining method for coal
JP2016056282A (en) * 2014-09-09 2016-04-21 株式会社神戸製鋼所 Method and apparatus for producing ashless coal
JP2016069570A (en) * 2014-09-30 2016-05-09 株式会社神戸製鋼所 Method for producing ashless coal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912991A (en) * 1982-07-13 1984-01-23 Mitsui Eng & Shipbuild Co Ltd Storage of liquefied oil of coal
JP4045229B2 (en) 2003-10-15 2008-02-13 株式会社神戸製鋼所 Production method of ashless coal
CN101177640B (en) * 2007-11-30 2010-05-19 华南理工大学 Stable ash-free method for preparing nano coal slurry
JP5982666B2 (en) * 2013-12-25 2016-08-31 株式会社神戸製鋼所 Production method of ashless coal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815590A (en) * 1981-07-22 1983-01-28 Neos Co Ltd Dehydrating agent for coal/water slurry
JPS61285286A (en) * 1985-06-12 1986-12-16 Nippon Steel Chem Co Ltd Carbonization of coal
JP2009227729A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Manufacturing method for ashless coal
JP2012502158A (en) * 2008-09-12 2012-01-26 タータ スチール リミテッド Development of techno-economic organic refining method for coal
JP2010083907A (en) * 2008-09-29 2010-04-15 Kobe Steel Ltd Method for manufacturing ashless coal
JP2016056282A (en) * 2014-09-09 2016-04-21 株式会社神戸製鋼所 Method and apparatus for producing ashless coal
JP2016069570A (en) * 2014-09-30 2016-05-09 株式会社神戸製鋼所 Method for producing ashless coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621799A (en) * 2020-12-10 2022-06-14 株式会社神户制钢所 Method for producing ashless coal
CN114621799B (en) * 2020-12-10 2024-02-09 株式会社神户制钢所 Method for producing ashless coal

Also Published As

Publication number Publication date
JP2018197306A (en) 2018-12-13
CN110651027A (en) 2020-01-03
JP6827884B2 (en) 2021-02-10
KR20200004872A (en) 2020-01-14
KR102291836B1 (en) 2021-08-23
CN110651027B (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6035559B2 (en) Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP5259216B2 (en) Production method of ashless coal
WO2018216373A1 (en) Method for producing ashless coal and device for producing ashless coal
WO2018030161A1 (en) Method for producing ash-free coal and apparatus for producing ash-free coal
JP6003001B2 (en) Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP2020007466A (en) Manufacturing method of ashless coal
JP2019077816A (en) Manufacturing method of ashless coal
JP6297412B2 (en) Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP6815968B2 (en) Ash-free coal manufacturing method and ash-free coal manufacturing equipment
JP6203698B2 (en) Production method of ashless coal
KR102646022B1 (en) Method for producing ash-free coal
JP6203692B2 (en) Ashless coal manufacturing method and ashless coal manufacturing apparatus
JP6632486B2 (en) Ashless coal production method and ashless coal production apparatus
JP6618866B2 (en) Method for producing coking coal for coke production, device for producing coking coal for coke production, and method for producing coke for blast furnace
JP2023174409A (en) Method of manufacturing ashless coal and apparatus for manufacturing ashless coal
JP2023174408A (en) Method of manufacturing ashless coal and apparatus for manufacturing ashless coal
CN107406781B (en) Method for producing ashless coal
JP6203690B2 (en) Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP2020002273A (en) Manufacturing method of coke
JP2020066722A (en) Method of producing coke

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036297

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18805792

Country of ref document: EP

Kind code of ref document: A1