WO2018216331A1 - Hydrogen combustion boiler - Google Patents

Hydrogen combustion boiler Download PDF

Info

Publication number
WO2018216331A1
WO2018216331A1 PCT/JP2018/011158 JP2018011158W WO2018216331A1 WO 2018216331 A1 WO2018216331 A1 WO 2018216331A1 JP 2018011158 W JP2018011158 W JP 2018011158W WO 2018216331 A1 WO2018216331 A1 WO 2018216331A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
burner
valve
combustion
purge
Prior art date
Application number
PCT/JP2018/011158
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 務
立季 小林
宏偉 彭
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Publication of WO2018216331A1 publication Critical patent/WO2018216331A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements

Definitions

  • the present invention relates to a hydrogen combustion boiler.
  • This application claims priority based on Japanese Patent Application No. 2017-104875 filed in Japan on May 26, 2017, the contents of which are incorporated herein by reference.
  • Hydrogen combustion boilers using hydrogen gas as fuel are known.
  • Hydrogen combustion boilers are attracting attention because they do not generate carbon dioxide when fuel is burned.
  • hydrogen gas which is a fuel
  • hydrocarbon gas has a higher combustion speed than hydrocarbon gas, and has a wide combustion range when mixed with air, preventing the flame generated in the burner from flowing back to the hydrogen supply line.
  • Patent Document 1 The boiler disclosed in Patent Document 1 is useful in that the hydrogen supply line is purged with an inert gas, thereby improving the safety when the burner is stopped.
  • boiler combustion frequently starts and stops.
  • an object of the present invention is to provide a hydrogen combustion boiler that can purge the hydrogen supply line more efficiently.
  • the present invention includes a burner, a hydrogen supply line that is connected to the burner and supplies hydrogen gas to the burner, a shutoff valve that is disposed in the hydrogen supply line and opens and closes the flow path of the hydrogen supply line, and the shutoff
  • a purge line connected to the vicinity of the shutoff valve on the downstream side of the valve and supplying an inert gas to the hydrogen supply line; a supply valve disposed in the purge line for adjusting the supply amount of the inert gas;
  • a control unit that controls opening and closing of the shutoff valve and the supply valve, and the control unit closes the shutoff valve when the combustion of hydrogen gas in the burner is stopped, and the shutoff valve is closed.
  • the present invention relates to a hydrogen combustion boiler provided with a post-purge control unit that opens the supply valve only.
  • the hydrogen combustion boiler further includes a can body, the burner is disposed on an upper end surface of the can body, the hydrogen supply line is connected to the burner from above the burner, and the purge line is an oxygen It is preferable to supply a lighter inert gas.
  • the post-purge control unit controls the opening and closing of the supply valve so as to supply an inert gas that is four times or more the volume of the hydrogen supply line between the burner and the shutoff valve.
  • control unit opens the supply valve for a predetermined time before starting combustion of hydrogen gas by the burner, supplies the inert gas from the purge line, and then closes the supply valve. It is preferable that a pre-purge control unit that opens the shut-off valve after being closed is further provided, and the pre-purge control unit allows the supply valve to be opened only when the shut-off valve is closed.
  • the pre-purge control unit controls the opening and closing of the supply valve so as to supply an inert gas that is four times or more the volume of the hydrogen supply line between the burner and the shutoff valve.
  • control unit further includes an abnormality detection unit that closes the shut-off valve when an abnormality in combustion of hydrogen gas in the burner is detected, and after the shut-off valve is closed by the abnormality detection unit, It is preferable to perform control by the pre-purge control unit when combustion is started.
  • the hydrogen combustion boiler further includes an orifice disposed in the purge line, and the pressure of the inert gas downstream of the orifice in the purge line is cut off in the hydrogen supply line in a minimum combustion state of the burner.
  • the pressure is preferably set lower than the pressure of the hydrogen gas supplied to the downstream side of the valve.
  • the pressure of the inert gas upstream of the orifice in the purge line is set higher than the pressure of hydrogen gas supplied downstream of the shutoff valve in the hydrogen supply line in the maximum combustion state of the burner. It is preferable.
  • the hydrogen combustion boiler is further provided with a pressure detection unit that is disposed in the purge line and detects the pressure of the inert gas, and the control unit is configured such that the pressure of the inert gas detected by the pressure detection unit is a predetermined value. It is preferable to stop the combustion of hydrogen gas by the burner when the temperature is lower than that.
  • FIG. 1 is a diagram schematically showing the configuration of a hydrogen combustion boiler according to a first embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a configuration of a hydrogen combustion boiler according to a second embodiment of the present invention.
  • the hydrogen combustion boiler 1 which concerns on 1st Embodiment of this invention is demonstrated with reference to FIG.
  • the hydrogen combustion boiler 1 of the first embodiment is a boiler that uses hydrogen gas G1 as fuel.
  • the hydrogen combustion boiler 1 is, for example, a once-through boiler.
  • the hydrogen gas G1 is supplied from a line that supplies the hydrogen gas G1 to the burner 20 disposed in the can 10.
  • the hydrogen gas G1 remaining in the line supplying the hydrogen gas G1 is purged by the inert gas G2 when the burner 20 is stopped and when the burner 20 is started.
  • the purge when the combustion of the burner 20 is stopped is referred to as a post purge
  • the purge when the combustion of the burner 20 is started is referred to as a pre-purge.
  • the hydrogen combustion boiler 1 includes a can 10, a burner 20, a blower 30, and a control unit 40.
  • the hydrogen combustion boiler 1 includes a hydrogen supply line L100, a purge line L200, and an air supply line L300.
  • the “line” in this specification is a general term for a flow path, a path, a pipe line, and the like.
  • the can body 10 includes a lower header, a plurality of water pipes, an upper header (all not shown), a combustion chamber B, and the like, and heats water supplied to the can body 10 to generate steam. .
  • the burner 20 is disposed on the upper portion of the can 10.
  • the burner 20 burns hydrogen gas G1 in the combustion chamber B of the can 10.
  • the blower 30 supplies combustion air (combustion air A ⁇ b> 1) to the burner 20.
  • the control unit 40 controls the combustion of the hydrogen combustion boiler 1. Details of the control unit 40 will be described later.
  • the hydrogen supply line L100 supplies hydrogen gas G1 to the burner 20 as fuel. More specifically, the hydrogen supply line L100 has a downstream side connected to the burner 20 from above the burner 20, and an upstream side connected to a supply source (not shown) that supplies the hydrogen gas G1.
  • the flame arrester 50 In the above hydrogen supply line L100, the flame arrester 50, the shutoff valves V11 and V12, and the flow rate adjusting valve V21 are arranged.
  • the flame arrester 50 is disposed on the hydrogen supply line L100, and is disposed on the downstream side of a connection position with a purge line L200 described later.
  • the flame arrester 50 prevents the backfire generated in the hydrogen supply line L100 from the burner 20 from proceeding upstream.
  • the shutoff valves V11 and V12 are disposed upstream of the flame arrester 50 in the hydrogen supply line L100.
  • the shutoff valves V11 and V12 are constituted by electromagnetic valves and open and close the flow path of the hydrogen supply line L100.
  • the flow rate adjusting valve V21 is disposed upstream of the shutoff valve V11 in the hydrogen supply line L100.
  • the flow rate adjustment valve V21 adjusts the flow rate of the hydrogen gas G1 flowing through the hydrogen supply line L100.
  • the purge line L200 is a line that supplies the inert gas G2 to the can body 10 through the hydrogen supply line L100.
  • the upstream side of the purge line L200 is connected to the supply source 60 of the inert gas G2, and the downstream side is connected between the cutoff valve V12 and the flame arrester 50 in the hydrogen supply line L100.
  • the purge line L200 is connected in the vicinity of the shutoff valve V12.
  • a gas having a lighter specific gravity than oxygen such as nitrogen, helium, or neon, is used.
  • nitrogen is used as the inert gas G2.
  • Supply valves V31 and V32 and an orifice 70 are arranged in the purge line L200.
  • the supply valves V31 and V32 are constituted by electromagnetic valves, and adjust the supply amount of the inert gas G2 by opening and closing the flow path of the purge line L200.
  • the orifice 70 is disposed downstream of the supply valve V32 in the purge line L200.
  • the orifice 70 restricts the inert gas G2 flowing through the purge line L200 and lowers the pressure of the inert gas G2 flowing downstream.
  • an inert gas G2 having a pressure higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 is supplied. That is, the pressure of the inert gas G2 upstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the maximum combustion state of the burner 20.
  • the pressure of the inert gas G2 downstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the minimum combustion state of the burner 20. It is set to be low. As a result, the pressure of the inert gas G2 on the downstream side of the orifice 70 becomes lower than the sum of the pressure of the hydrogen gas G1 on the downstream side of the shutoff valve V12 in the hydrogen supply line L100 and the reverse pressure resistance of the shutoff valve V12.
  • the air supply line L300 supplies combustion air A1 to the burner 20.
  • the upstream side of the air supply line L300 is connected to the blower 30.
  • the downstream side of the air supply line L300 is connected to the burner 20.
  • the control unit 40 controls the opening and closing of the shutoff valves V11 and V12 and the supply valves V31 and V32.
  • the control unit 40 controls the start and stop of the blower 30.
  • the control unit 40 includes a post-purge control unit 41 and a pre-purge control unit 42.
  • the post-purge control unit 41 purges the hydrogen supply line L100 when the combustion of the hydrogen gas G1 in the burner 20 is stopped.
  • the pre-purge control unit 42 purges the hydrogen supply line L100 before the combustion of the hydrogen gas G1 by the burner 20 is started. Operations of the post-purge control unit 41 and the pre-purge control unit 42 will be described later.
  • the post purge by the post purge control unit 41 closes the shut-off valves V11 and V12. By closing the shutoff valves V11 and V12, the hydrogen supply line L100 is closed and the supply of the hydrogen gas G1 to the burner 20 is stopped.
  • the post-purge control unit 41 opens the supply valves V31 and V32 for a predetermined time after the shut-off valves V11 and V12 are closed, and performs post-purge.
  • the post-purge control unit 41 allows the supply valves V31 and V32 to be opened only when the shutoff valves V11 and V12 are closed. Thereby, it is possible to prevent the hydrogen gas G1 from being supplied to the burner 20 by mistake when performing the post purge.
  • the inert gas G2 is supplied from the supply source 60 of the inert gas G2 to the hydrogen supply line L100 through the purge line L200.
  • the inert gas G ⁇ b> 2 supplied to the hydrogen supply line L ⁇ b> 100 passes through the flame arrester 50 and is ejected from the burner 20.
  • the hydrogen gas G1 ejected from the burner 20 is purged from the combustion chamber B of the can body 10 together with the combustion air A1 supplied to the burner 20 from the air supply line L300.
  • the post-purge control unit 41 supplies the inert gas G2 at least four times the internal volume of the hydrogen supply line L100 from the outlet of the burner 20 to the shutoff valve V12. Controls opening and closing.
  • the post-purge control unit 41 supplies a predetermined amount of the inert gas G2 to the hydrogen supply line L100 by opening the supply valves V31 and V32 for a predetermined time.
  • the hydrogen gas G1 remaining in the hydrogen supply line L100 is diluted to 1% or less.
  • the concentration of the hydrogen gas G1 remaining in the hydrogen supply line L100 deviates from the combustible range (4% to 75%).
  • the post-purge control unit 41 closes the supply valves V31 and V32 after purging the hydrogen supply line L100 with the inert gas G2 supplied from the purge line L200. Next, the post-purge control unit 41 stops the blower 30 and ends the combustion stop operation of the hydrogen gas G1 by the burner 20.
  • the pre-purge control part 42 starts the air blower 30, and starts supply of the combustion air A1 to the burner 20 from the air supply line L300.
  • the pre-purge control unit 42 opens the supply valves V31 and V32. By opening the supply valves V31 and V32, the inert gas G2 is supplied from the supply source 60 of the inert gas G2 to the hydrogen supply line L100 through the purge line L200.
  • the inert gas G ⁇ b> 2 supplied to the hydrogen supply line L ⁇ b> 100 passes through the flame arrester 50 and is ejected from the burner 20.
  • the post-purge control unit 41 allows the supply valves V31 and V32 to be opened only when the shutoff valves V11 and V12 are closed. Thereby, it is possible to prevent the hydrogen gas G1 from being supplied to the burner 20 by mistake when performing the post purge.
  • the pre-purge control unit 42 controls the opening and closing of the supply valves V31 and V32 so as to supply an inert gas G2 that is four times the volume of the hydrogen supply line L100 between the burner 20 and the shutoff valves V11 and V12. To do.
  • the pre-purge control unit 42 supplies a predetermined amount of the inert gas G2 to the hydrogen supply line L100 by opening the supply valves V31 and V32 for a predetermined time.
  • the pre-purge control unit 42 purges the hydrogen supply line L100 with the inert gas G2 supplied from the purge line L200, and then closes the supply valves V31 and V32.
  • the pre-purge control unit 42 opens the shut-off valves V11 and V12.
  • the shutoff valves V11 and V12 are opened, the hydrogen supply line L100 is opened, and the supply of the hydrogen gas G1 to the burner 20 is started.
  • the pre-purge control part 42 complete
  • the hydrogen combustion boiler 1 is disposed on the downstream side of the burner 20, the hydrogen supply line L100 for supplying the burner 20 with the hydrogen gas G1, the shutoff valves V11 and V12 disposed in the hydrogen feed line L100, and the shutoff valve V12.
  • a purge line L200 that is connected in the vicinity of the shutoff valve V12 and supplies the inert gas G2 to the hydrogen supply line L100; and supply valves V31 and V32 that are arranged in the purge line L200 and adjust the supply amount of the inert gas G2. Consists of.
  • a purge line L200 is connected in the vicinity of the downstream side of the shutoff valve V12 in the hydrogen supply line L100.
  • the inert gas G2 can be supplied from the immediate vicinity of the cutoff valve V12. Therefore, the hydrogen gas G1 remaining in the hydrogen supply line L100 from the burner 20 to the shutoff valve V12 can be efficiently purged.
  • the hydrogen combustion boiler 1 includes a post-purge control unit 41, and before the combustion of the hydrogen gas G1 by the burner 20 is started in the post-purge control unit 41, the supply valves V31 and V32 are opened for a predetermined time.
  • the inert gas G2 was supplied from the purge line L200, and then the supply valves V31 and V32 were closed, and the shutoff valves V11 and V12 were allowed to open only when the supply valves V31 and V32 were closed. Thereby, it is possible to prevent the hydrogen gas G1 from being erroneously supplied when performing the post purge. Therefore, the safety of the hydrogen combustion boiler 1 can be further improved.
  • the hydrogen combustion boiler 1 was configured including the can body 10, and the burner 20 was disposed on the upper end surface of the can body 10. Further, the hydrogen supply line L100 was connected to the burner 20 from above the burner 20, and an inert gas G2 lighter than oxygen was further supplied from the purge line L200. As a result, the burner 20 and the hydrogen supply line L100 can be positioned above the can body 10, so that the space between the shutoff valve V12 and the burner 20 in the hydrogen supply line L100 is filled with an inert gas G2 that is lighter than oxygen. Moreover, it can suppress that the inert gas G2 will be substituted with the oxygen which exists in the inside of the can 10. Therefore, mixing of oxygen into the hydrogen supply line L100 can be prevented.
  • the post-purge control unit 41 is controlled to open and close the supply valves V31 and V32 so as to supply an inert gas G2 that is four times or more the volume of the hydrogen supply line L100 between the burner 20 and the shutoff valve V12. It was. Thereby, when combustion of the hydrogen gas G1 in the burner 20 is stopped, the hydrogen gas G1 remaining in the hydrogen supply line L100 can be suitably purged.
  • the hydrogen combustion boiler 1 includes a pre-purge control unit 42, and the pre-purge control unit 42 is purged by opening the supply valves V31 and V32 for a predetermined time before starting the combustion of the hydrogen gas G1 by the burner 20.
  • Inert gas G2 was supplied from line L200, then supply valves V31 and V32 were closed, and after supply valves V31 and V32 were closed, shut-off valves V11 and V12 were opened. Further, the shutoff valves V11 and V12 are allowed to be opened only when the supply valves V31 and V32 are closed.
  • the hydrogen supply line L100 can be purged before the burner 20 is ignited, and hydrogen gas G1 can be prevented from being erroneously supplied when pre-purging is performed. Therefore, the safety of the hydrogen combustion boiler 1 can be further improved.
  • the hydrogen combustion boiler 1 is configured to include an orifice 70 disposed in the purge line L200, and the pressure of the inert gas G2 downstream of the orifice 70 in the purge line L200 is reduced to hydrogen in the minimum combustion state of the burner 20.
  • the pressure was set lower than the pressure of the hydrogen gas G1 supplied to the downstream side of the shutoff valve V12 in the supply line L100. Thereby, it is possible to prevent the shutoff valves V11 and V12 from being opened from the downstream side by the inert gas G2 supplied from the purge line L200.
  • the pressure of the inert gas G2 upstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the maximum combustion state of the burner 20. Set high. Thereby, it is possible to prevent the hydrogen gas G1 from flowing back into the purge line L200.
  • a hydrogen combustion boiler 1A according to a second embodiment of the present invention will be described with reference to FIG.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • 1 A of hydrogen combustion boilers of 2nd Embodiment implement a pre purge only when starting combustion after having stopped abnormally.
  • the case where the start of combustion of the hydrogen gas G1 by the burner 20 is interlocked due to the abnormal combustion of the burner 20 or the pressure drop of the inert gas G2 will be described as an example.
  • the hydrogen combustion boiler 1 ⁇ / b> A is mainly the first in that it includes a pressure detection unit 80 and a burner monitoring unit 90, and the control unit 40 ⁇ / b> A includes an abnormality detection unit 43. Different from the embodiment.
  • the pressure detector 80 is disposed in the purge line L200 and detects the pressure of the inert gas G2.
  • the pressure detection unit 80 is disposed on the upstream side of the supply valve V31 and detects the pressure of the inert gas G2 on the upstream side of the supply valve V31.
  • the pressure detector 80 is, for example, a pressure switch, and indicates that the pressure has decreased when the pressure of the inert gas G2 flowing upstream from the supply valve V31 is lower than a predetermined pressure. An abnormal signal to be shown is sent to an abnormality detection unit 43 described later.
  • the burner monitoring unit 90 is constituted by a flame detector, for example, and monitors the combustion of the hydrogen gas G1 in the burner 20.
  • the burner monitoring unit 90 indicates that an abnormality has occurred in combustion when an abnormality has occurred in the combustion of the hydrogen gas G1 in the burner 20 (for example, when flame detection is no longer performed when a combustion instruction is issued).
  • An abnormality signal is sent to an abnormality detection unit 43 described later.
  • the abnormality detection unit 43 closes the shutoff valves V11 and V12 when an abnormality in combustion of the hydrogen gas G1 in the burner 20 is detected. More specifically, the abnormality detection unit 43 closes the shutoff valves V11 and V12 when an abnormality signal is acquired from the burner monitoring unit 90. Moreover, the abnormality detection part 43 closes shutoff valve V11, V12, when the pressure fall of the inert gas G2 is detected. More specifically, when the abnormality detection unit 43 acquires an abnormality signal from the pressure detection unit 80, the abnormality detection unit 43 closes the cutoff valves V11 and V12. And the abnormality detection part 43 applies an interlock in the state which stopped combustion of the hydrogen gas G1 in the burner 20 based on the abnormality signal. That is, the abnormality detection unit 43 interlocks the automatic start of combustion of the hydrogen gas G1 by the burner 20.
  • the pre-purge control unit 42 performs pre-purge when the interlock is released.
  • the burner monitoring unit 90 detects abnormal combustion of the hydrogen gas G1 during the operation of the hydrogen combustion boiler 1A
  • the burner monitoring unit 90 sends an abnormal signal to the abnormality detection unit 43.
  • the abnormality detection unit 43 closes the shutoff valves V11 and V12 and stops the supply of the hydrogen gas G1 to the burner 20. Further, the abnormality detection unit 43 interlocks the automatic start of the combustion of the hydrogen gas G1 by the burner 20 in a state where the supply of the hydrogen gas G1 is stopped.
  • the pre-purge control unit 42 determines whether or not the interlock is released. The pre-purge control unit 42 performs pre-purge when the interlock is released.
  • the control unit 40A includes the abnormality detection unit 43, and the control unit 40A is pre-purged when the combustion of the hydrogen gas G1 is started after the abnormality detection unit 43 closes the shutoff valves V11 and V12. Control by the control unit 42 was performed.
  • the control unit 42 was performed.
  • the hydrogen combustion boiler 1A includes a pressure detector 80 that is disposed in the purge line L200 and detects the pressure of the inert gas G2. Then, the combustion of the hydrogen gas G1 by the burner 20 was stopped when the pressure of the inert gas G2 detected by the pressure detection unit 80 decreased below a predetermined value. Thereby, when there is a possibility that the hydrogen supply line L100 between the burner 20 and the shutoff valve V12 cannot be purged by the inert gas G2, the operation of the burner 20 can be stopped. Therefore, it is possible to prevent the hydrogen combustion boiler 1A from operating in a state where the inert gas G2 is insufficient, and it is possible to safely operate the hydrogen combustion boiler 1A.
  • the purge line L200 is connected to the vicinity of the downstream side of the shutoff valve V12, but the present invention is not limited to this.
  • the purge line L200 may be connected to the hydrogen supply line L100 on the downstream side of the frame arrester 50. Thereby, consumption of the inert gas G2 used for purging can be suppressed.
  • the flame arrester 50 is disposed in the hydrogen supply line L100, but the present invention is not limited to this. In other words, the frame arrester 50 may not be included. In this case, the purge line L200 may be connected to any position as long as it is downstream of the shutoff valve V12.
  • the pressure switch is exemplified as the pressure detection unit 80, but is not limited thereto.
  • the hydrogen combustion boiler 1 includes a flow meter arranged in the purge line L200, and the abnormality detection unit 43 detects the shutoff valve when the flow rate of the inert gas G2 measured by the flow meter is lower than a predetermined amount. V11 and V12 can also be closed.

Abstract

A hydrogen combustion boiler (1) comprises: a hydrogen supply line (L100) that is connected to a burner (20) and supplies hydrogen gas (G1) to the burner (20); shutoff valves (V11), (V12) that are disposed in the hydrogen supply line (L100) and that open and close the flow channel of the hydrogen supply line (L100); a purge line (L200) that is connected near the shutoff valve (V12) on the downstream side of the shutoff valve (V12) and that supplies an inert gas (G2) to the hydrogen supply line (L100); supply valves (V31), (V32) that are disposed in the purge line (L200) and that regulate the amount of inert gas (G2) supplied; and a control unit (40) that controls the opening and closing of the shutoff valves (V11), (V12) and the supply valves (V31), (V32); wherein the control unit (40) comprises a post-purge control unit (41) that closes the shutoff valves (V11), (V12) when combustion of the hydrogen gas (G1) in the burner (20) is to be stopped and that opens the supply valves (V31), (V32) only when the shutoff valves (V11), (V12) are in a closed state.

Description

水素燃焼ボイラHydrogen fired boiler
 本発明は、水素燃焼ボイラに関する。本願は、2017年5月26日に日本に出願された特願2017-104875号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a hydrogen combustion boiler. This application claims priority based on Japanese Patent Application No. 2017-104875 filed in Japan on May 26, 2017, the contents of which are incorporated herein by reference.
 従来、水素ガスを燃料として用いる水素燃焼ボイラが知られている。水素燃焼ボイラは、燃料を燃焼させた場合に二酸化炭素を発生させない点等で注目されている。 Conventionally, hydrogen combustion boilers using hydrogen gas as fuel are known. Hydrogen combustion boilers are attracting attention because they do not generate carbon dioxide when fuel is burned.
 一方、燃料である水素ガスは、炭化水素ガスに比して燃焼速度が速く、また、空気と混合した場合の燃焼範囲が広いため、バーナで発生した火炎が水素供給ラインに逆流することを防止する必要がある。特に、バーナの運転停止時に水素供給ラインに水素ガスが残り、水素ガスが空気と混合することで、バーナの再運転時に逆火現象が発生することが考えられる。 On the other hand, hydrogen gas, which is a fuel, has a higher combustion speed than hydrocarbon gas, and has a wide combustion range when mixed with air, preventing the flame generated in the burner from flowing back to the hydrogen supply line. There is a need to. In particular, it is conceivable that when the burner is stopped, hydrogen gas remains in the hydrogen supply line, and the hydrogen gas is mixed with air, thereby causing a flashback phenomenon when the burner is restarted.
 そこで、水素供給ラインに不活性ガスを注入することにより、水素供給ラインに残存する水素ガスをパージするボイラが提案されている(例えば、特許文献1参照)。 Therefore, a boiler that purges the hydrogen gas remaining in the hydrogen supply line by injecting an inert gas into the hydrogen supply line has been proposed (for example, see Patent Document 1).
特開2010-65579号公報JP 2010-65579 A
 特許文献1に開示されたボイラでは、水素供給ラインが不活性ガスによりパージされることにより、バーナ運転停止時の安全性を向上できる点で有用である。負荷側の必要蒸気量の変動に応じた蒸気を発生させる小型貫流ボイラ等では、ボイラ燃焼の発停が頻繁に起こる。ボイラ燃焼の発停の際に、適切に効率よく不活性ガスのパージを行い、ボイラ運転停止時及び起動時の安全性を向上できるボイラが求められていた。 The boiler disclosed in Patent Document 1 is useful in that the hydrogen supply line is purged with an inert gas, thereby improving the safety when the burner is stopped. In small once-through boilers that generate steam according to fluctuations in the required steam amount on the load side, boiler combustion frequently starts and stops. There has been a demand for a boiler capable of appropriately and efficiently purging inert gas when boiler combustion is started and stopped, and improving safety at the time of boiler operation stop and startup.
 従って、本発明は、水素供給ラインをより効率よくパージできる水素燃焼ボイラを提供することを目的とする。 Therefore, an object of the present invention is to provide a hydrogen combustion boiler that can purge the hydrogen supply line more efficiently.
 本発明は、バーナと、前記バーナに接続され、前記バーナに水素ガスを供給する水素供給ラインと、前記水素供給ラインに配置され、該水素供給ラインの流路を開閉する遮断弁と、前記遮断弁の下流側における該遮断弁の近傍に接続され、前記水素供給ラインに不活性ガスを供給するパージラインと、前記パージラインに配置され、不活性ガスの供給量を調整する供給弁と、前記遮断弁及び前記供給弁の開閉を制御する制御部と、を備え、前記制御部は、前記バーナにおける水素ガスの燃焼を停止する場合に前記遮断弁を閉止し、前記遮断弁が閉止された状態においてのみ前記供給弁を開くポストパージ制御部を備える水素燃焼ボイラに関する。 The present invention includes a burner, a hydrogen supply line that is connected to the burner and supplies hydrogen gas to the burner, a shutoff valve that is disposed in the hydrogen supply line and opens and closes the flow path of the hydrogen supply line, and the shutoff A purge line connected to the vicinity of the shutoff valve on the downstream side of the valve and supplying an inert gas to the hydrogen supply line; a supply valve disposed in the purge line for adjusting the supply amount of the inert gas; A control unit that controls opening and closing of the shutoff valve and the supply valve, and the control unit closes the shutoff valve when the combustion of hydrogen gas in the burner is stopped, and the shutoff valve is closed. The present invention relates to a hydrogen combustion boiler provided with a post-purge control unit that opens the supply valve only.
 また、水素燃焼ボイラは、缶体を更に備え、前記バーナは、前記缶体の上端面に配置され、前記水素供給ラインは、前記バーナの上方から前記バーナに接続され、前記パージラインは、酸素よりも軽い不活性ガスを供給することが好ましい。 The hydrogen combustion boiler further includes a can body, the burner is disposed on an upper end surface of the can body, the hydrogen supply line is connected to the burner from above the burner, and the purge line is an oxygen It is preferable to supply a lighter inert gas.
 また、前記ポストパージ制御部は、前記バーナから前記遮断弁までの間の前記水素供給ラインの容積の4倍以上の不活性ガスを供給するように前記供給弁の開閉を制御することが好ましい。 Further, it is preferable that the post-purge control unit controls the opening and closing of the supply valve so as to supply an inert gas that is four times or more the volume of the hydrogen supply line between the burner and the shutoff valve.
 また、前記制御部は、前記バーナによる水素ガスの燃焼を開始する前に、所定時間前記供給弁を開いて前記パージラインから不活性ガスを供給した後該供給弁を閉止し、前記供給弁が閉止された後に前記遮断弁を開くプレパージ制御部を更に備え、前記プレパージ制御部は、前記遮断弁が閉止された状態においてのみ前記供給弁の開放を許容することが好ましい。 Further, the control unit opens the supply valve for a predetermined time before starting combustion of hydrogen gas by the burner, supplies the inert gas from the purge line, and then closes the supply valve. It is preferable that a pre-purge control unit that opens the shut-off valve after being closed is further provided, and the pre-purge control unit allows the supply valve to be opened only when the shut-off valve is closed.
 また、前記プレパージ制御部は、前記バーナから前記遮断弁までの間の前記水素供給ラインの容積の4倍以上の不活性ガスを供給するように前記供給弁の開閉を制御することが好ましい。 Further, it is preferable that the pre-purge control unit controls the opening and closing of the supply valve so as to supply an inert gas that is four times or more the volume of the hydrogen supply line between the burner and the shutoff valve.
 また、前記制御部は、前記バーナにおける水素ガスの燃焼の異常を検知した場合に前記遮断弁を閉止する異常検知部を更に備え、前記異常検知部により前記遮断弁が閉止された後に水素ガスの燃焼が開始される場合に前記プレパージ制御部による制御を行うことが好ましい。 In addition, the control unit further includes an abnormality detection unit that closes the shut-off valve when an abnormality in combustion of hydrogen gas in the burner is detected, and after the shut-off valve is closed by the abnormality detection unit, It is preferable to perform control by the pre-purge control unit when combustion is started.
 また、水素燃焼ボイラは、前記パージラインに配置されるオリフィスを更に備え、前記パージラインにおける前記オリフィスの下流側の不活性ガスの圧力は、前記バーナの最小燃焼状態において前記水素供給ラインにおける前記遮断弁の下流側に供給される水素ガスの圧力よりも低く設定されることが好ましい。 The hydrogen combustion boiler further includes an orifice disposed in the purge line, and the pressure of the inert gas downstream of the orifice in the purge line is cut off in the hydrogen supply line in a minimum combustion state of the burner. The pressure is preferably set lower than the pressure of the hydrogen gas supplied to the downstream side of the valve.
 また、前記パージラインにおける前記オリフィスの上流側の不活性ガスの圧力は、前記バーナの最大燃焼状態において前記水素供給ラインにおける前記遮断弁の下流側に供給される水素ガスの圧力よりも高く設定されることが好ましい。 The pressure of the inert gas upstream of the orifice in the purge line is set higher than the pressure of hydrogen gas supplied downstream of the shutoff valve in the hydrogen supply line in the maximum combustion state of the burner. It is preferable.
 また、水素燃焼ボイラは、前記パージラインに配置され、不活性ガスの圧力を検知する圧力検知部を更に備え、前記制御部は、前記圧力検知部により検知された不活性ガスの圧力が所定値よりも低下した場合に前記バーナによる水素ガスの燃焼を停止することが好ましい。 The hydrogen combustion boiler is further provided with a pressure detection unit that is disposed in the purge line and detects the pressure of the inert gas, and the control unit is configured such that the pressure of the inert gas detected by the pressure detection unit is a predetermined value. It is preferable to stop the combustion of hydrogen gas by the burner when the temperature is lower than that.
 本発明によれば、水素供給ラインをより効率よくパージできる水素燃焼ボイラを提供することができる。 According to the present invention, it is possible to provide a hydrogen combustion boiler that can purge the hydrogen supply line more efficiently.
本発明の第1実施形態に係る水素燃焼ボイラの構成を模式的に示す図である  。1 is a diagram schematically showing the configuration of a hydrogen combustion boiler according to a first embodiment of the present invention. 本発明の第2実施形態に係る水素燃焼ボイラの構成を模式的に示す図である  。FIG. 5 is a diagram schematically showing a configuration of a hydrogen combustion boiler according to a second embodiment of the present invention.
 以下、本発明の各実施形態に係る水素燃焼ボイラ1について、図面を参照しながら説明する。 Hereinafter, the hydrogen combustion boiler 1 according to each embodiment of the present invention will be described with reference to the drawings.
[第1実施形態]
 まず、本発明の第1実施形態に係る水素燃焼ボイラ1について、図1を参照して説明する。
 第1実施形態の水素燃焼ボイラ1は、水素ガスG1を燃料として用いるボイラである。水素燃焼ボイラ1は、例えば貫流ボイラであり、この水素燃焼ボイラ1では、水素ガスG1を供給するラインから缶体10に配置されたバーナ20に水素ガスG1が供給される。バーナ20の燃焼停止時及びバーナ20の燃焼開始時のそれぞれにおいて、水素ガスG1を供給するラインに残留する水素ガスG1は、不活性ガスG2によりパージされる。以下、バーナ20の燃焼停止時のパージをポストパージといい、バーナ20の燃焼開始時のパージをプレパージという。
[First Embodiment]
First, the hydrogen combustion boiler 1 which concerns on 1st Embodiment of this invention is demonstrated with reference to FIG.
The hydrogen combustion boiler 1 of the first embodiment is a boiler that uses hydrogen gas G1 as fuel. The hydrogen combustion boiler 1 is, for example, a once-through boiler. In the hydrogen combustion boiler 1, the hydrogen gas G1 is supplied from a line that supplies the hydrogen gas G1 to the burner 20 disposed in the can 10. The hydrogen gas G1 remaining in the line supplying the hydrogen gas G1 is purged by the inert gas G2 when the burner 20 is stopped and when the burner 20 is started. Hereinafter, the purge when the combustion of the burner 20 is stopped is referred to as a post purge, and the purge when the combustion of the burner 20 is started is referred to as a pre-purge.
 水素燃焼ボイラ1は、図1に示すように、缶体10と、バーナ20と、送風機30と、制御部40と、を備える。また、この水素燃焼ボイラ1は、水素供給ラインL100と、パージラインL200と、空気供給ラインL300と、を備える。本明細書における「ライン」とは、流路、経路、管路等の総称である。 As shown in FIG. 1, the hydrogen combustion boiler 1 includes a can 10, a burner 20, a blower 30, and a control unit 40. The hydrogen combustion boiler 1 includes a hydrogen supply line L100, a purge line L200, and an air supply line L300. The “line” in this specification is a general term for a flow path, a path, a pipe line, and the like.
 缶体10は、下部ヘッダ、複数の水管、上部ヘッダ(いずれも図示せず)、及び燃焼室B等を含んで構成され、この缶体10に供給される水を加熱して蒸気を生成する。 The can body 10 includes a lower header, a plurality of water pipes, an upper header (all not shown), a combustion chamber B, and the like, and heats water supplied to the can body 10 to generate steam. .
 バーナ20は、缶体10の上部に配置される。バーナ20は、缶体10の燃焼室Bで水素ガスG1を燃焼させる。
 送風機30は、バーナ20に燃焼用の空気(燃焼用空気A1)を供給する。
 制御部40は、水素燃焼ボイラ1の燃焼を制御する。制御部40の詳細については後述する。
The burner 20 is disposed on the upper portion of the can 10. The burner 20 burns hydrogen gas G1 in the combustion chamber B of the can 10.
The blower 30 supplies combustion air (combustion air A <b> 1) to the burner 20.
The control unit 40 controls the combustion of the hydrogen combustion boiler 1. Details of the control unit 40 will be described later.
 水素供給ラインL100は、水素ガスG1を燃料としてバーナ20に供給する。より具体的には、水素供給ラインL100は、下流側がバーナ20の上方からバーナ20に接続され、上流側が水素ガスG1を供給する供給源(図示せず)に接続される。 The hydrogen supply line L100 supplies hydrogen gas G1 to the burner 20 as fuel. More specifically, the hydrogen supply line L100 has a downstream side connected to the burner 20 from above the burner 20, and an upstream side connected to a supply source (not shown) that supplies the hydrogen gas G1.
 以上の水素供給ラインL100には、フレームアレスタ50と、遮断弁V11,V12と、流量調整弁V21と、が配置される。
 フレームアレスタ50は、水素供給ラインL100に配置され、後述するパージラインL200との接続位置よりも下流側に配置される。フレームアレスタ50は、バーナ20から水素供給ラインL100に発生した逆火の上流側への進行を防止する。
In the above hydrogen supply line L100, the flame arrester 50, the shutoff valves V11 and V12, and the flow rate adjusting valve V21 are arranged.
The flame arrester 50 is disposed on the hydrogen supply line L100, and is disposed on the downstream side of a connection position with a purge line L200 described later. The flame arrester 50 prevents the backfire generated in the hydrogen supply line L100 from the burner 20 from proceeding upstream.
 遮断弁V11,V12は、水素供給ラインL100におけるフレームアレスタ50よりも上流側に配置される。遮断弁V11,V12は、電磁弁により構成され、水素供給ラインL100の流路を開閉する。 The shutoff valves V11 and V12 are disposed upstream of the flame arrester 50 in the hydrogen supply line L100. The shutoff valves V11 and V12 are constituted by electromagnetic valves and open and close the flow path of the hydrogen supply line L100.
 流量調整弁V21は、水素供給ラインL100において、遮断弁V11の上流側に配置される。流量調整弁V21は、水素供給ラインL100を流れる水素ガスG1の流量を調整する。 The flow rate adjusting valve V21 is disposed upstream of the shutoff valve V11 in the hydrogen supply line L100. The flow rate adjustment valve V21 adjusts the flow rate of the hydrogen gas G1 flowing through the hydrogen supply line L100.
 パージラインL200は、水素供給ラインL100を介して缶体10に不活性ガスG2を供給するラインである。パージラインL200の上流側は不活性ガスG2の供給源60に接続され、下流側は、水素供給ラインL100における遮断弁V12とフレームアレスタ50との間に接続される。本実施形態では、パージラインL200は遮断弁V12の近傍に接続される。
 不活性ガスG2としては、窒素、ヘリウム、ネオン等の酸素よりも比重の軽いガスが用いられ、本実施形態では、不活性ガスG2として窒素が用いられる。
The purge line L200 is a line that supplies the inert gas G2 to the can body 10 through the hydrogen supply line L100. The upstream side of the purge line L200 is connected to the supply source 60 of the inert gas G2, and the downstream side is connected between the cutoff valve V12 and the flame arrester 50 in the hydrogen supply line L100. In the present embodiment, the purge line L200 is connected in the vicinity of the shutoff valve V12.
As the inert gas G2, a gas having a lighter specific gravity than oxygen, such as nitrogen, helium, or neon, is used. In the present embodiment, nitrogen is used as the inert gas G2.
 以上のパージラインL200には、供給弁V31,V32と、オリフィス70と、が配置される。
 供給弁V31,V32は、電磁弁により構成され、パージラインL200の流路を開閉して、不活性ガスG2の供給量を調整する。
Supply valves V31 and V32 and an orifice 70 are arranged in the purge line L200.
The supply valves V31 and V32 are constituted by electromagnetic valves, and adjust the supply amount of the inert gas G2 by opening and closing the flow path of the purge line L200.
 オリフィス70は、パージラインL200における供給弁V32よりも下流側に配置される。オリフィス70は、パージラインL200を流れる不活性ガスG2を絞り、下流側に流れる不活性ガスG2の圧力を下げる。 The orifice 70 is disposed downstream of the supply valve V32 in the purge line L200. The orifice 70 restricts the inert gas G2 flowing through the purge line L200 and lowers the pressure of the inert gas G2 flowing downstream.
 以上のパージラインL200からは、水素供給ラインL100における遮断弁V12の下流側に供給される水素ガスG1の圧力よりも高い圧力の不活性ガスG2が供給される。即ち、パージラインL200におけるオリフィス70の上流側の不活性ガスG2の圧力は、バーナ20の最大燃焼状態において水素供給ラインL100における遮断弁V12の下流側に供給される水素ガスG1の圧力よりも高くなるように設定される。 From the above purge line L200, an inert gas G2 having a pressure higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 is supplied. That is, the pressure of the inert gas G2 upstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the maximum combustion state of the burner 20. Is set to be
 また、パージラインL200におけるオリフィス70の下流側の不活性ガスG2の圧力は、バーナ20の最小燃焼状態において、水素供給ラインL100における遮断弁V12の下流側に供給される水素ガスG1の圧力よりも低くなるように設定される。これにより、オリフィス70の下流側における不活性ガスG2の圧力は、水素供給ラインL100における遮断弁V12の下流側の水素ガスG1の圧力と、遮断弁V12の逆耐圧との和よりも低くなる。 The pressure of the inert gas G2 downstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the minimum combustion state of the burner 20. It is set to be low. As a result, the pressure of the inert gas G2 on the downstream side of the orifice 70 becomes lower than the sum of the pressure of the hydrogen gas G1 on the downstream side of the shutoff valve V12 in the hydrogen supply line L100 and the reverse pressure resistance of the shutoff valve V12.
 空気供給ラインL300は、バーナ20に燃焼用空気A1を供給する。空気供給ラインL300の上流側は、送風機30に接続される。また、空気供給ラインL300の下流側は、バーナ20に接続される。 The air supply line L300 supplies combustion air A1 to the burner 20. The upstream side of the air supply line L300 is connected to the blower 30. The downstream side of the air supply line L300 is connected to the burner 20.
 制御部40は、遮断弁V11,V12及び供給弁V31,V32の開閉を制御する。また、制御部40は、送風機30の起動及び停止を制御する。制御部40は、ポストパージ制御部41と、プレパージ制御部42と、を備える。 The control unit 40 controls the opening and closing of the shutoff valves V11 and V12 and the supply valves V31 and V32. The control unit 40 controls the start and stop of the blower 30. The control unit 40 includes a post-purge control unit 41 and a pre-purge control unit 42.
 ポストパージ制御部41は、バーナ20における水素ガスG1の燃焼を停止する場合に、水素供給ラインL100をパージする。
 プレパージ制御部42は、バーナ20による水素ガスG1の燃焼を開始する前に、水素供給ラインL100をパージする。ポストパージ制御部41及びプレパージ制御部42の動作については後述する。
The post-purge control unit 41 purges the hydrogen supply line L100 when the combustion of the hydrogen gas G1 in the burner 20 is stopped.
The pre-purge control unit 42 purges the hydrogen supply line L100 before the combustion of the hydrogen gas G1 by the burner 20 is started. Operations of the post-purge control unit 41 and the pre-purge control unit 42 will be described later.
 次に、水素燃焼ボイラ1の動作について説明する。
 バーナ20における水素ガスG1の燃焼を停止する場合、ポストパージ制御部41によるポストパージが実施される。まず、ポストパージ制御部41は、遮断弁V11,V12を閉止する。遮断弁V11,V12が閉止されることで、水素供給ラインL100が閉止され、バーナ20への水素ガスG1の供給が停止される。
Next, the operation of the hydrogen combustion boiler 1 will be described.
When the combustion of the hydrogen gas G1 in the burner 20 is stopped, the post purge by the post purge control unit 41 is performed. First, the post-purge control unit 41 closes the shut-off valves V11 and V12. By closing the shutoff valves V11 and V12, the hydrogen supply line L100 is closed and the supply of the hydrogen gas G1 to the burner 20 is stopped.
 次いで、ポストパージ制御部41は、遮断弁V11,V12が閉止された後に供給弁V31,V32を所定時間開放して、ポストパージを実施する。本実施形態では、ポストパージ制御部41は、遮断弁V11,V12が閉止された状態においてのみ供給弁V31,V32の開放を許容する。これにより、ポストパージを行う場合に水素ガスG1が誤ってバーナ20に供給されることを防げる。 Next, the post-purge control unit 41 opens the supply valves V31 and V32 for a predetermined time after the shut-off valves V11 and V12 are closed, and performs post-purge. In the present embodiment, the post-purge control unit 41 allows the supply valves V31 and V32 to be opened only when the shutoff valves V11 and V12 are closed. Thereby, it is possible to prevent the hydrogen gas G1 from being supplied to the burner 20 by mistake when performing the post purge.
 供給弁V31,V32が開放されることで、不活性ガスG2の供給源60からパージラインL200を通じて水素供給ラインL100に不活性ガスG2が供給される。水素供給ラインL100に供給された不活性ガスG2は、フレームアレスタ50を通り、バーナ20から噴出する。バーナ20から噴出した水素ガスG1は、空気供給ラインL300からバーナ20に供給される燃焼用空気A1と共に、缶体10の燃焼室Bからパージされる。 When the supply valves V31 and V32 are opened, the inert gas G2 is supplied from the supply source 60 of the inert gas G2 to the hydrogen supply line L100 through the purge line L200. The inert gas G <b> 2 supplied to the hydrogen supply line L <b> 100 passes through the flame arrester 50 and is ejected from the burner 20. The hydrogen gas G1 ejected from the burner 20 is purged from the combustion chamber B of the can body 10 together with the combustion air A1 supplied to the burner 20 from the air supply line L300.
 ここで、ポストパージ制御部41は、バーナ20の吹き出し口から遮断弁V12までの間の水素供給ラインL100の内容積の4倍以上の不活性ガスG2を供給するように供給弁V31,V32の開閉を制御する。本実施形態において、ポストパージ制御部41は、所定時間供給弁V31,V32を開放することで、所定量の不活性ガスG2を水素供給ラインL100に供給する。不活性ガスG2が水素供給ラインL100の容積の4倍以上、水素供給ラインL100に供給されることで、水素供給ラインL100に残留する水素ガスG1は、1%以下に希釈される。水素ガスG1が1%以下に希釈されることで、水素供給ラインL100に残留する水素ガスG1の濃度が可燃範囲(4%~75%)から外れる。 Here, the post-purge control unit 41 supplies the inert gas G2 at least four times the internal volume of the hydrogen supply line L100 from the outlet of the burner 20 to the shutoff valve V12. Controls opening and closing. In the present embodiment, the post-purge control unit 41 supplies a predetermined amount of the inert gas G2 to the hydrogen supply line L100 by opening the supply valves V31 and V32 for a predetermined time. By supplying the inert gas G2 to the hydrogen supply line L100 at least four times the volume of the hydrogen supply line L100, the hydrogen gas G1 remaining in the hydrogen supply line L100 is diluted to 1% or less. By diluting the hydrogen gas G1 to 1% or less, the concentration of the hydrogen gas G1 remaining in the hydrogen supply line L100 deviates from the combustible range (4% to 75%).
 ポストパージ制御部41は、水素供給ラインL100をパージラインL200から供給される不活性ガスG2によりパージした後に、供給弁V31,V32を閉止する。次いで、ポストパージ制御部41は、送風機30を停止して、バーナ20による水素ガスG1の燃焼停止動作を終了する。 The post-purge control unit 41 closes the supply valves V31 and V32 after purging the hydrogen supply line L100 with the inert gas G2 supplied from the purge line L200. Next, the post-purge control unit 41 stops the blower 30 and ends the combustion stop operation of the hydrogen gas G1 by the burner 20.
 次に、バーナ20による水素ガスG1の燃焼を開始する場合、プレパージ制御部42によるプレパージが実施される。まず、プレパージ制御部42は、送風機30を起動して、空気供給ラインL300からバーナ20に燃焼用空気A1の供給を開始する。次いで、プレパージ制御部42は、供給弁V31,V32を開放する。供給弁V31,V32が開放されることで、不活性ガスG2の供給源60からパージラインL200を通じて水素供給ラインL100に不活性ガスG2が供給される。水素供給ラインL100に供給された不活性ガスG2は、フレームアレスタ50を通り、バーナ20から噴出する。本実施形態では、ポストパージ制御部41は、遮断弁V11,V12が閉止された状態においてのみ供給弁V31,V32の開放を許容する。これにより、ポストパージを行う場合に水素ガスG1が誤ってバーナ20に供給されることを防げる。 Next, when the combustion of the hydrogen gas G1 by the burner 20 is started, pre-purge by the pre-purge control unit 42 is performed. First, the pre-purge control part 42 starts the air blower 30, and starts supply of the combustion air A1 to the burner 20 from the air supply line L300. Next, the pre-purge control unit 42 opens the supply valves V31 and V32. By opening the supply valves V31 and V32, the inert gas G2 is supplied from the supply source 60 of the inert gas G2 to the hydrogen supply line L100 through the purge line L200. The inert gas G <b> 2 supplied to the hydrogen supply line L <b> 100 passes through the flame arrester 50 and is ejected from the burner 20. In the present embodiment, the post-purge control unit 41 allows the supply valves V31 and V32 to be opened only when the shutoff valves V11 and V12 are closed. Thereby, it is possible to prevent the hydrogen gas G1 from being supplied to the burner 20 by mistake when performing the post purge.
 ここで、プレパージ制御部42は、バーナ20から遮断弁V11,V12までの間の水素供給ラインL100の容積の4倍以上の不活性ガスG2を供給するように供給弁V31,V32の開閉を制御する。本実施形態において、プレパージ制御部42は、供給弁V31,V32を所定時間開放することで、所定量の不活性ガスG2を水素供給ラインL100に供給する。プレパージ制御部42は、水素供給ラインL100をパージラインL200から供給される不活性ガスG2によりパージした後に、供給弁V31,V32を閉止する。 Here, the pre-purge control unit 42 controls the opening and closing of the supply valves V31 and V32 so as to supply an inert gas G2 that is four times the volume of the hydrogen supply line L100 between the burner 20 and the shutoff valves V11 and V12. To do. In the present embodiment, the pre-purge control unit 42 supplies a predetermined amount of the inert gas G2 to the hydrogen supply line L100 by opening the supply valves V31 and V32 for a predetermined time. The pre-purge control unit 42 purges the hydrogen supply line L100 with the inert gas G2 supplied from the purge line L200, and then closes the supply valves V31 and V32.
 次いで、プレパージ制御部42は、遮断弁V11,V12を開放する。遮断弁V11,V12が開放されることで、水素供給ラインL100が開放され、バーナ20への水素ガスG1の供給が開始される。これにより、プレパージ制御部42は、バーナ20による水素ガスG1の燃焼開始動作を終了する。 Next, the pre-purge control unit 42 opens the shut-off valves V11 and V12. When the shutoff valves V11 and V12 are opened, the hydrogen supply line L100 is opened, and the supply of the hydrogen gas G1 to the burner 20 is started. Thereby, the pre-purge control part 42 complete | finishes the combustion start operation | movement of the hydrogen gas G1 by the burner 20. FIG.
 以上説明した第1実施形態の水素燃焼ボイラ1によれば、以下のような効果を奏する。
 (1)水素燃焼ボイラ1を、バーナ20と、バーナ20に水素ガスG1を供給する水素供給ラインL100と、水素供給ラインL100に配置される遮断弁V11,V12と、遮断弁V12の下流側における遮断弁V12の近傍に接続され水素供給ラインL100に不活性ガスG2を供給するパージラインL200と、パージラインL200に配置され不活性ガスG2の供給量を調整する供給弁V31,V32と、を含んで構成した。これにより、バーナ20から遮断弁V12までの水素供給ラインL100の水素ガスG1を不活性ガスG2によりパージすることで、水素ガスG1が空気と混合して可燃範囲に入ることを防止できるので、バーナ20の点火時に逆火現象が発生することを防止できる。また、水素供給ラインL100における遮断弁V12の下流側の近傍にパージラインL200を接続した。これにより、遮断弁V12の直近から不活性ガスG2を供給することができる。従って、バーナ20から遮断弁V12までの水素供給ラインL100に残存する水素ガスG1を効率よくパージできる。
 また、水素燃焼ボイラ1を、ポストパージ制御部41を含んで構成し、ポストパージ制御部41に、バーナ20による水素ガスG1の燃焼を開始する前に、所定時間供給弁V31,V32を開いてパージラインL200から不活性ガスG2を供給させ、その後供給弁V31,V32を閉止させ、供給弁V31,V32が閉止された状態においてのみ遮断弁V11,V12の開放を許容させた。これにより、ポストパージを行う場合に水素ガスG1が誤って供給されることを防げる。よって、水素燃焼ボイラ1の安全性をより向上させられる。
According to the hydrogen combustion boiler 1 of 1st Embodiment demonstrated above, there exist the following effects.
(1) The hydrogen combustion boiler 1 is disposed on the downstream side of the burner 20, the hydrogen supply line L100 for supplying the burner 20 with the hydrogen gas G1, the shutoff valves V11 and V12 disposed in the hydrogen feed line L100, and the shutoff valve V12. A purge line L200 that is connected in the vicinity of the shutoff valve V12 and supplies the inert gas G2 to the hydrogen supply line L100; and supply valves V31 and V32 that are arranged in the purge line L200 and adjust the supply amount of the inert gas G2. Consists of. Accordingly, by purging the hydrogen gas G1 in the hydrogen supply line L100 from the burner 20 to the shutoff valve V12 with the inert gas G2, it is possible to prevent the hydrogen gas G1 from mixing with the air and entering the combustible range. It is possible to prevent the flashback phenomenon from occurring at the time of ignition of 20. Further, a purge line L200 is connected in the vicinity of the downstream side of the shutoff valve V12 in the hydrogen supply line L100. Thereby, the inert gas G2 can be supplied from the immediate vicinity of the cutoff valve V12. Therefore, the hydrogen gas G1 remaining in the hydrogen supply line L100 from the burner 20 to the shutoff valve V12 can be efficiently purged.
Further, the hydrogen combustion boiler 1 includes a post-purge control unit 41, and before the combustion of the hydrogen gas G1 by the burner 20 is started in the post-purge control unit 41, the supply valves V31 and V32 are opened for a predetermined time. The inert gas G2 was supplied from the purge line L200, and then the supply valves V31 and V32 were closed, and the shutoff valves V11 and V12 were allowed to open only when the supply valves V31 and V32 were closed. Thereby, it is possible to prevent the hydrogen gas G1 from being erroneously supplied when performing the post purge. Therefore, the safety of the hydrogen combustion boiler 1 can be further improved.
 (2)水素燃焼ボイラ1を、缶体10を含んで構成し、バーナ20を缶体10の上端面に配置した。また、水素供給ラインL100を、バーナ20の上方からバーナ20に接続し、更にパージラインL200から、酸素よりも軽い不活性ガスG2を供給させた。これにより、バーナ20及び水素供給ラインL100を缶体10よりも上部に位置させられるので、水素供給ラインL100における遮断弁V12からバーナ20までの間を酸素よりも軽い不活性ガスG2によって満たした場合に、不活性ガスG2が缶体10の内部に存在する酸素と置換されてしまうことを抑制できる。よって、水素供給ラインL100への酸素の混入を防止できる。 (2) The hydrogen combustion boiler 1 was configured including the can body 10, and the burner 20 was disposed on the upper end surface of the can body 10. Further, the hydrogen supply line L100 was connected to the burner 20 from above the burner 20, and an inert gas G2 lighter than oxygen was further supplied from the purge line L200. As a result, the burner 20 and the hydrogen supply line L100 can be positioned above the can body 10, so that the space between the shutoff valve V12 and the burner 20 in the hydrogen supply line L100 is filled with an inert gas G2 that is lighter than oxygen. Moreover, it can suppress that the inert gas G2 will be substituted with the oxygen which exists in the inside of the can 10. Therefore, mixing of oxygen into the hydrogen supply line L100 can be prevented.
 (3)ポストパージ制御部41に、バーナ20から遮断弁V12までの間の水素供給ラインL100の容積の4倍以上の不活性ガスG2を供給するように供給弁V31,V32の開閉を制御させた。これにより、バーナ20における水素ガスG1の燃焼が停止された場合に、水素供給ラインL100に残存する水素ガスG1を好適にパージできる。 (3) The post-purge control unit 41 is controlled to open and close the supply valves V31 and V32 so as to supply an inert gas G2 that is four times or more the volume of the hydrogen supply line L100 between the burner 20 and the shutoff valve V12. It was. Thereby, when combustion of the hydrogen gas G1 in the burner 20 is stopped, the hydrogen gas G1 remaining in the hydrogen supply line L100 can be suitably purged.
 (4)水素燃焼ボイラ1を、プレパージ制御部42を含んで構成し、プレパージ制御部42に、バーナ20による水素ガスG1の燃焼を開始する前に、所定時間供給弁V31,V32を開いてパージラインL200から不活性ガスG2を供給させ、その後供給弁V31,V32を閉止させ、供給弁V31,V32が閉止された後に遮断弁V11,V12を開かせた。また、供給弁V31,V32が閉止された状態においてのみ遮断弁V11,V12の開放を許容させた。これにより、バーナ20を着火する前に水素供給ラインL100をパージでき、また、プレパージを行う場合に水素ガスG1が誤って供給されることを防げる。よって、水素燃焼ボイラ1の安全性をより向上させられる。 (4) The hydrogen combustion boiler 1 includes a pre-purge control unit 42, and the pre-purge control unit 42 is purged by opening the supply valves V31 and V32 for a predetermined time before starting the combustion of the hydrogen gas G1 by the burner 20. Inert gas G2 was supplied from line L200, then supply valves V31 and V32 were closed, and after supply valves V31 and V32 were closed, shut-off valves V11 and V12 were opened. Further, the shutoff valves V11 and V12 are allowed to be opened only when the supply valves V31 and V32 are closed. As a result, the hydrogen supply line L100 can be purged before the burner 20 is ignited, and hydrogen gas G1 can be prevented from being erroneously supplied when pre-purging is performed. Therefore, the safety of the hydrogen combustion boiler 1 can be further improved.
 (5)プレパージ制御部42に、バーナ20の吹き出し口から遮断弁V12までの間の水素供給ラインL100の内容積の4倍以上の不活性ガスG2を供給するように供給弁V31,V32の開閉を制御させた。これにより、バーナ20から遮断弁V12までの間に残留する水素ガスG1の濃度を十分に低下させることができ、より安全にバーナ20を点火することができる。 (5) Opening and closing of the supply valves V31 and V32 so as to supply the pre-purge control unit 42 with an inert gas G2 that is at least four times the internal volume of the hydrogen supply line L100 from the outlet of the burner 20 to the shutoff valve V12. Was controlled. As a result, the concentration of the hydrogen gas G1 remaining between the burner 20 and the shutoff valve V12 can be sufficiently reduced, and the burner 20 can be ignited more safely.
(6)水素燃焼ボイラ1を、パージラインL200に配置されるオリフィス70を含んで構成し、パージラインL200におけるオリフィス70の下流側の不活性ガスG2の圧力を、バーナ20の最小燃焼状態において水素供給ラインL100における遮断弁V12の下流側に供給される水素ガスG1の圧力よりも低く設定した。これにより、パージラインL200から供給される不活性ガスG2により遮断弁V11,V12が下流側から開いてしまうことを防止できる。 (6) The hydrogen combustion boiler 1 is configured to include an orifice 70 disposed in the purge line L200, and the pressure of the inert gas G2 downstream of the orifice 70 in the purge line L200 is reduced to hydrogen in the minimum combustion state of the burner 20. The pressure was set lower than the pressure of the hydrogen gas G1 supplied to the downstream side of the shutoff valve V12 in the supply line L100. Thereby, it is possible to prevent the shutoff valves V11 and V12 from being opened from the downstream side by the inert gas G2 supplied from the purge line L200.
(7)パージラインL200におけるオリフィス70の上流側の不活性ガスG2の圧力を、バーナ20の最大燃焼状態において水素供給ラインL100における遮断弁V12の下流側に供給される水素ガスG1の圧力よりも高く設定した。これにより、パージラインL200に水素ガスG1が逆流してしまうことを防止できる。 (7) The pressure of the inert gas G2 upstream of the orifice 70 in the purge line L200 is higher than the pressure of the hydrogen gas G1 supplied downstream of the shutoff valve V12 in the hydrogen supply line L100 in the maximum combustion state of the burner 20. Set high. Thereby, it is possible to prevent the hydrogen gas G1 from flowing back into the purge line L200.
[第2実施形態]
 次に、本発明の第2実施形態に係る水素燃焼ボイラ1Aについて、図2を参照して説明する。第2実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第2実施形態の水素燃焼ボイラ1Aは、異常停止した後に燃焼を開始する場合に限り、プレパージを実施する。本実施形態では、バーナ20の異常燃焼又は不活性ガスG2の圧力低下で、バーナ20による水素ガスG1の燃焼の開始にインターロックをかけた場合を例として説明する。
[Second Embodiment]
Next, a hydrogen combustion boiler 1A according to a second embodiment of the present invention will be described with reference to FIG. In the description of the second embodiment, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
1 A of hydrogen combustion boilers of 2nd Embodiment implement a pre purge only when starting combustion after having stopped abnormally. In this embodiment, the case where the start of combustion of the hydrogen gas G1 by the burner 20 is interlocked due to the abnormal combustion of the burner 20 or the pressure drop of the inert gas G2 will be described as an example.
 第2実施形態に係る水素燃焼ボイラ1Aは、図2に示すように、圧力検知部80及びバーナ監視部90を備える点、並びに、制御部40Aが異常検知部43を備える点で、主として第1実施形態と異なる。 As shown in FIG. 2, the hydrogen combustion boiler 1 </ b> A according to the second embodiment is mainly the first in that it includes a pressure detection unit 80 and a burner monitoring unit 90, and the control unit 40 </ b> A includes an abnormality detection unit 43. Different from the embodiment.
 圧力検知部80は、パージラインL200に配置され、不活性ガスG2の圧力を検知する。圧力検知部80は、供給弁V31よりも上流側に配置され、供給弁V31よりも上流側の不活性ガスG2の圧力を検知する。本実施形態では、圧力検知部80は、例えば、圧力スイッチであり、供給弁V31よりも上流側を流れる不活性ガスG2の圧力が所定の圧力よりも低下した場合に、圧力が低下したことを示す異常信号を後述する異常検知部43に送る。 The pressure detector 80 is disposed in the purge line L200 and detects the pressure of the inert gas G2. The pressure detection unit 80 is disposed on the upstream side of the supply valve V31 and detects the pressure of the inert gas G2 on the upstream side of the supply valve V31. In the present embodiment, the pressure detector 80 is, for example, a pressure switch, and indicates that the pressure has decreased when the pressure of the inert gas G2 flowing upstream from the supply valve V31 is lower than a predetermined pressure. An abnormal signal to be shown is sent to an abnormality detection unit 43 described later.
 バーナ監視部90は、例えば、炎検知器により構成され、バーナ20における水素ガスG1の燃焼を監視する。バーナ監視部90は、バーナ20における水素ガスG1の燃焼に異常が発生した場合(例えば、燃焼指示が出ている状態において炎検知をしなくなった場合)に、燃焼に異常が発生したことを示す異常信号を後述する異常検知部43に送る。 The burner monitoring unit 90 is constituted by a flame detector, for example, and monitors the combustion of the hydrogen gas G1 in the burner 20. The burner monitoring unit 90 indicates that an abnormality has occurred in combustion when an abnormality has occurred in the combustion of the hydrogen gas G1 in the burner 20 (for example, when flame detection is no longer performed when a combustion instruction is issued). An abnormality signal is sent to an abnormality detection unit 43 described later.
 異常検知部43は、バーナ20における水素ガスG1の燃焼の異常を検知した場合に遮断弁V11,V12を閉止する。より具体的には、異常検知部43は、バーナ監視部90から異常信号を取得した場合に、遮断弁V11,V12を閉止する。
 また、異常検知部43は、不活性ガスG2の圧力低下を検知した場合に遮断弁V11,V12を閉止する。より具体的には、異常検知部43は、圧力検知部80から異常信号を取得した場合に、遮断弁V11,V12を閉止する。
 そして、異常検知部43は、異常信号に基づいてバーナ20における水素ガスG1の燃焼を停止した状態でインターロックをかける。即ち、異常検知部43は、バーナ20による水素ガスG1の燃焼の自動開始にインターロックをかける。
The abnormality detection unit 43 closes the shutoff valves V11 and V12 when an abnormality in combustion of the hydrogen gas G1 in the burner 20 is detected. More specifically, the abnormality detection unit 43 closes the shutoff valves V11 and V12 when an abnormality signal is acquired from the burner monitoring unit 90.
Moreover, the abnormality detection part 43 closes shutoff valve V11, V12, when the pressure fall of the inert gas G2 is detected. More specifically, when the abnormality detection unit 43 acquires an abnormality signal from the pressure detection unit 80, the abnormality detection unit 43 closes the cutoff valves V11 and V12.
And the abnormality detection part 43 applies an interlock in the state which stopped combustion of the hydrogen gas G1 in the burner 20 based on the abnormality signal. That is, the abnormality detection unit 43 interlocks the automatic start of combustion of the hydrogen gas G1 by the burner 20.
 プレパージ制御部42は、インターロックが解除された場合に、プレパージを実施する。 The pre-purge control unit 42 performs pre-purge when the interlock is released.
 次に、水素燃焼ボイラ1Aの動作について説明する。
 水素燃焼ボイラ1Aの運転中に、水素ガスG1の異常燃焼をバーナ監視部90が検知した場合、バーナ監視部90は、異常信号を異常検知部43に送る。異常検知部43は、遮断弁V11,V12を閉止してバーナ20への水素ガスG1の供給を停止する。また、異常検知部43は、水素ガスG1の供給を停止した状態で、バーナ20による水素ガスG1の燃焼の自動開始にインターロックをかける。
Next, the operation of the hydrogen combustion boiler 1A will be described.
When the burner monitoring unit 90 detects abnormal combustion of the hydrogen gas G1 during the operation of the hydrogen combustion boiler 1A, the burner monitoring unit 90 sends an abnormal signal to the abnormality detection unit 43. The abnormality detection unit 43 closes the shutoff valves V11 and V12 and stops the supply of the hydrogen gas G1 to the burner 20. Further, the abnormality detection unit 43 interlocks the automatic start of the combustion of the hydrogen gas G1 by the burner 20 in a state where the supply of the hydrogen gas G1 is stopped.
 プレパージ制御部42は、インターロックが解除されたか否かを判断する。プレパージ制御部42は、インターロックが解除された場合にプレパージを実施する。 The pre-purge control unit 42 determines whether or not the interlock is released. The pre-purge control unit 42 performs pre-purge when the interlock is released.
 以上説明した第2実施形態の水素燃焼ボイラ1Aによれば、以下のような効果を奏する。
 (8)制御部40Aを、異常検知部43を含んで構成し、制御部40Aに、異常検知部43により遮断弁V11,V12が閉止された後に水素ガスG1の燃焼が開始される場合にプレパージ制御部42による制御を行わせた。これにより、バーナ20による水素ガスG1の燃焼が正常に停止された場合には、燃焼停止時のポストパージのみを行い、異常検知により燃焼が停止された場合には、ポストパージだけでなく燃焼開始前にプレパージも行わせられる。よって、より安全にバーナ20を点火することができる。
According to 1 A of hydrogen combustion boilers of 2nd Embodiment demonstrated above, there exist the following effects.
(8) The control unit 40A includes the abnormality detection unit 43, and the control unit 40A is pre-purged when the combustion of the hydrogen gas G1 is started after the abnormality detection unit 43 closes the shutoff valves V11 and V12. Control by the control unit 42 was performed. As a result, when the combustion of the hydrogen gas G1 by the burner 20 is normally stopped, only the post purge at the time of the combustion stop is performed, and when the combustion is stopped due to the abnormality detection, not only the post purge but also the combustion starts. A pre-purge is also performed before. Therefore, the burner 20 can be ignited more safely.
 (9)水素燃焼ボイラ1Aを、パージラインL200に配置され不活性ガスG2の圧力を検知する圧力検知部80を含んで構成した。そして、制御部40Aに、圧力検知部80により検知された不活性ガスG2の圧力が所定値よりも低下した場合にバーナ20による水素ガスG1の燃焼を停止させた。これにより、バーナ20から遮断弁V12までの間の水素供給ラインL100を不活性ガスG2によりパージできないおそれがある場合に、バーナ20の運転を停止することができる。よって、不活性ガスG2が不足する状態で水素燃焼ボイラ1Aを運転することを防止でき、水素燃焼ボイラ1Aを安全に運転することができる。 (9) The hydrogen combustion boiler 1A includes a pressure detector 80 that is disposed in the purge line L200 and detects the pressure of the inert gas G2. Then, the combustion of the hydrogen gas G1 by the burner 20 was stopped when the pressure of the inert gas G2 detected by the pressure detection unit 80 decreased below a predetermined value. Thereby, when there is a possibility that the hydrogen supply line L100 between the burner 20 and the shutoff valve V12 cannot be purged by the inert gas G2, the operation of the burner 20 can be stopped. Therefore, it is possible to prevent the hydrogen combustion boiler 1A from operating in a state where the inert gas G2 is insufficient, and it is possible to safely operate the hydrogen combustion boiler 1A.
 以上、本発明の水素燃焼ボイラの好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。 The preferred embodiments of the hydrogen-fired boiler of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and can be modified as appropriate.
 例えば、上記実施形態において、パージラインL200を遮断弁V12の下流側の近傍に接続したが、これに制限されない。例えば、パージラインL200を、フレームアレスタ50よりも下流側の水素供給ラインL100に接続してもよい。これにより、パージに用いる不活性ガスG2の消費量を抑制することができる。 For example, in the above embodiment, the purge line L200 is connected to the vicinity of the downstream side of the shutoff valve V12, but the present invention is not limited to this. For example, the purge line L200 may be connected to the hydrogen supply line L100 on the downstream side of the frame arrester 50. Thereby, consumption of the inert gas G2 used for purging can be suppressed.
 また、上記実施形態において、フレームアレスタ50を水素供給ラインL100に配置したが、これに制限されない。即ち、フレームアレスタ50を含まない構成とすることもできる。この場合、パージラインL200は、遮断弁V12の下流側であれば、いずれの位置に接続されてもよい。 In the above embodiment, the flame arrester 50 is disposed in the hydrogen supply line L100, but the present invention is not limited to this. In other words, the frame arrester 50 may not be included. In this case, the purge line L200 may be connected to any position as long as it is downstream of the shutoff valve V12.
 また、上記第2実施形態において、圧力検知部80として圧力スイッチを例示したが、これに制限されない。例えば、水素燃焼ボイラ1は、パージラインL200に配置される流量計を備え、異常検知部43は、流量計によって計測される不活性ガスG2の流量が所定量よりも低下した場合に、遮断弁V11,V12を閉止することもできる。 In the second embodiment, the pressure switch is exemplified as the pressure detection unit 80, but is not limited thereto. For example, the hydrogen combustion boiler 1 includes a flow meter arranged in the purge line L200, and the abnormality detection unit 43 detects the shutoff valve when the flow rate of the inert gas G2 measured by the flow meter is lower than a predetermined amount. V11 and V12 can also be closed.
 1,1A 水素燃焼ボイラ
 10 缶体
 20 バーナ
 40,40A 制御部
 41 ポストパージ制御部
 42 プレパージ制御部
 43 異常検知部
 60 供給源
 70 オリフィス
 80 圧力検知部
 L100 水素供給ライン
 L200 パージライン
 V11,V12 遮断弁
 V31,V32 供給弁
DESCRIPTION OF SYMBOLS 1,1A Hydrogen combustion boiler 10 Can body 20 Burner 40, 40A Control part 41 Post purge control part 42 Pre purge control part 43 Abnormality detection part 60 Supply source 70 Orifice 80 Pressure detection part L100 Hydrogen supply line L200 Purge line V11, V12 Shut-off valve V31, V32 supply valve

Claims (9)

  1.  バーナと、
     前記バーナに接続され、前記バーナに水素ガスを供給する水素供給ラインと、
     前記水素供給ラインに配置され、該水素供給ラインの流路を開閉する遮断弁と、
     前記遮断弁の下流側における該遮断弁の近傍に接続され、前記水素供給ラインに不活性ガスを供給するパージラインと、
     前記パージラインに配置され、不活性ガスの供給量を調整する供給弁と、
     前記遮断弁及び前記供給弁の開閉を制御する制御部と、を備え、
     前記制御部は、
      前記バーナにおける水素ガスの燃焼を停止する場合に前記遮断弁を閉止し、
      前記遮断弁が閉止された状態においてのみ前記供給弁を開くポストパージ制御部
    を備える水素燃焼ボイラ。
    With a burner,
    A hydrogen supply line connected to the burner for supplying hydrogen gas to the burner;
    A shutoff valve disposed in the hydrogen supply line and opening and closing a flow path of the hydrogen supply line;
    A purge line connected to the vicinity of the shutoff valve on the downstream side of the shutoff valve, and supplying an inert gas to the hydrogen supply line;
    A supply valve that is arranged in the purge line and adjusts the supply amount of the inert gas;
    A control unit that controls opening and closing of the shutoff valve and the supply valve,
    The controller is
    Closing the shut-off valve when stopping combustion of hydrogen gas in the burner,
    A hydrogen combustion boiler comprising a post-purge control unit that opens the supply valve only when the shut-off valve is closed.
  2.  缶体を更に備え、
     前記バーナは、前記缶体の上端面に配置され、
     前記水素供給ラインは、前記バーナの上方から前記バーナに接続され、
     前記パージラインは、酸素よりも軽い不活性ガスを供給する請求項1に記載の水素燃焼ボイラ。
    A can body,
    The burner is disposed on the upper end surface of the can body,
    The hydrogen supply line is connected to the burner from above the burner,
    The hydrogen combustion boiler according to claim 1, wherein the purge line supplies an inert gas lighter than oxygen.
  3.  前記ポストパージ制御部は、前記バーナから前記遮断弁までの間の前記水素供給ラインの容積の4倍以上の不活性ガスを供給するように前記供給弁の開閉を制御する請求項1又は2に記載の水素燃焼ボイラ。 The said post purge control part controls opening and closing of the said supply valve so that an inert gas more than 4 times the volume of the said hydrogen supply line between the said burner and the said cutoff valve may be supplied. The described hydrogen fired boiler.
  4.  前記制御部は、
      前記バーナによる水素ガスの燃焼を開始する前に、所定時間前記供給弁を開いて前記パージラインから不活性ガスを供給した後該供給弁を閉止し、前記供給弁が閉止された後に前記遮断弁を開くプレパージ制御部を更に備え、
     前記プレパージ制御部は、前記遮断弁が閉止された状態においてのみ前記供給弁の開放を許容する請求項1~3のいずれかに記載の水素燃焼ボイラ。
    The controller is
    Before starting combustion of hydrogen gas by the burner, the supply valve is opened for a predetermined time to supply inert gas from the purge line, and then the supply valve is closed, and after the supply valve is closed, the shut-off valve A pre-purge control unit for opening the
    The hydrogen combustion boiler according to any one of claims 1 to 3, wherein the pre-purge control unit allows the supply valve to be opened only when the shut-off valve is closed.
  5.  前記プレパージ制御部は、前記バーナから前記遮断弁までの間の前記水素供給ラインの容積の4倍以上の不活性ガスを供給するように前記供給弁の開閉を制御する請求項4に記載の水素燃焼ボイラ。 5. The hydrogen according to claim 4, wherein the pre-purge control unit controls the opening and closing of the supply valve so as to supply an inert gas that is four times or more the volume of the hydrogen supply line between the burner and the shutoff valve. Burning boiler.
  6.  前記制御部は、
      前記バーナにおける水素ガスの燃焼の異常を検知した場合に前記遮断弁を閉止する異常検知部を更に備え、
      前記異常検知部により前記遮断弁が閉止された後に水素ガスの燃焼が開始される場合に前記プレパージ制御部による制御を行う請求項4又は5に記載の水素燃焼ボイラ。
    The controller is
    An abnormality detector for closing the shut-off valve when an abnormality in combustion of hydrogen gas in the burner is detected;
    The hydrogen combustion boiler according to claim 4 or 5, wherein control by the pre-purge control unit is performed when combustion of hydrogen gas is started after the shutoff valve is closed by the abnormality detection unit.
  7.  前記パージラインに配置されるオリフィスを更に備え、
     前記パージラインにおける前記オリフィスの下流側の不活性ガスの圧力は、前記バーナの最小燃焼状態において前記水素供給ラインにおける前記遮断弁の下流側に供給される水素ガスの圧力よりも低く設定される請求項1~6のいずれかに記載の水素燃焼ボイラ。
    Further comprising an orifice disposed in the purge line;
    The pressure of the inert gas downstream of the orifice in the purge line is set lower than the pressure of hydrogen gas supplied downstream of the shut-off valve in the hydrogen supply line in the minimum combustion state of the burner. Item 7. The hydrogen fired boiler according to any one of Items 1 to 6.
  8.  前記パージラインにおける前記オリフィスの上流側の不活性ガスの圧力は、前記バーナの最大燃焼状態において前記水素供給ラインにおける前記遮断弁の下流側に供給される水素ガスの圧力よりも高く設定される請求項7に記載の水素燃焼ボイラ。 The pressure of the inert gas upstream of the orifice in the purge line is set higher than the pressure of hydrogen gas supplied downstream of the shutoff valve in the hydrogen supply line in the maximum combustion state of the burner. Item 8. The hydrogen combustion boiler according to Item 7.
  9.  前記パージラインに配置され、不活性ガスの圧力を検知する圧力検知部を更に備え、
     前記制御部は、前記圧力検知部により検知された不活性ガスの圧力が所定値よりも低下した場合に前記バーナによる水素ガスの燃焼を停止する請求項1~8のいずれかに記載の水素燃焼ボイラ。
    A pressure detector disposed in the purge line for detecting the pressure of the inert gas;
    The hydrogen combustion according to any one of claims 1 to 8, wherein the control unit stops combustion of hydrogen gas by the burner when the pressure of the inert gas detected by the pressure detection unit falls below a predetermined value. boiler.
PCT/JP2018/011158 2017-05-26 2018-03-20 Hydrogen combustion boiler WO2018216331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-104875 2017-05-26
JP2017104875 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216331A1 true WO2018216331A1 (en) 2018-11-29

Family

ID=64396560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011158 WO2018216331A1 (en) 2017-05-26 2018-03-20 Hydrogen combustion boiler

Country Status (2)

Country Link
JP (1) JP6939705B2 (en)
WO (1) WO2018216331A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079489A1 (en) * 2019-10-25 2021-04-29 三浦工業株式会社 Boiler
WO2022258421A1 (en) * 2021-06-11 2022-12-15 Bdr Thermea Group B.V. Method for controlling the operation of a gas boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597662B2 (en) * 2017-02-08 2019-10-30 トヨタ自動車株式会社 Hydrogen gas burner equipment
JP2024021897A (en) * 2022-08-04 2024-02-16 川崎重工業株式会社 How to operate a hydrogen gas supply system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392930A (en) * 1977-01-26 1978-08-15 Agency Of Ind Science & Technol Combustion system
JPS5452344A (en) * 1977-10-04 1979-04-24 Showa Denko Kk Hydrogen gas combusting boiler hydrogen gas supplying device
JPH0881234A (en) * 1994-09-13 1996-03-26 Mitsubishi Cable Ind Ltd Device for producing preform material for optical fiber
JP2004144458A (en) * 2002-10-23 2004-05-20 E & E Corp Brown's gas flow regulator
JP2009102207A (en) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2013095604A (en) * 2011-10-28 2013-05-20 Sumitomo Electric Ind Ltd Apparatus and method for producing glass preform for optical fiber
JP2014127271A (en) * 2012-12-25 2014-07-07 Mitsubishi Heavy Ind Ltd Power generation system and method for stopping power generation system
JP2016008790A (en) * 2014-06-25 2016-01-18 三浦工業株式会社 Boiler system
JP2016109352A (en) * 2014-12-05 2016-06-20 三浦工業株式会社 Boiler equipment
JP2016136074A (en) * 2015-01-23 2016-07-28 三浦工業株式会社 Method for combusting fuel gas in combustion device and combustion system
JP2017219221A (en) * 2016-06-06 2017-12-14 岩谷産業株式会社 Hydrogen combustion device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053689A (en) * 2008-08-26 2010-03-11 Hitachi Ltd Fuel supply method of gas turbine combustor
JP2013033673A (en) * 2011-08-03 2013-02-14 Miura Co Ltd Fuel cell system and residual gas purging method therefor
US9650955B2 (en) * 2011-11-10 2017-05-16 General Electric Company System for purging gas fuel circuit for a gas turbine engine
JP5991014B2 (en) * 2012-05-09 2016-09-14 三浦工業株式会社 Combustion equipment
JP5315492B1 (en) * 2012-06-13 2013-10-16 武史 畑中 Next generation carbon-free power plant and next-generation carbon-free power generation method, and next-generation carbon-free power plant and next-generation carbon-free power generation method
JP6065669B2 (en) * 2013-03-13 2017-01-25 三浦工業株式会社 Boiler system
JP2015200466A (en) * 2014-04-09 2015-11-12 静岡ガス株式会社 Hydrogen gas utilization device
JP2016048044A (en) * 2014-08-27 2016-04-07 川崎重工業株式会社 Gas turbine engine system
JP2016153716A (en) * 2015-02-20 2016-08-25 三浦工業株式会社 Boiler

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392930A (en) * 1977-01-26 1978-08-15 Agency Of Ind Science & Technol Combustion system
JPS5452344A (en) * 1977-10-04 1979-04-24 Showa Denko Kk Hydrogen gas combusting boiler hydrogen gas supplying device
JPH0881234A (en) * 1994-09-13 1996-03-26 Mitsubishi Cable Ind Ltd Device for producing preform material for optical fiber
JP2004144458A (en) * 2002-10-23 2004-05-20 E & E Corp Brown's gas flow regulator
JP2009102207A (en) * 2007-10-25 2009-05-14 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing fine glass particle deposit
JP2013095604A (en) * 2011-10-28 2013-05-20 Sumitomo Electric Ind Ltd Apparatus and method for producing glass preform for optical fiber
JP2014127271A (en) * 2012-12-25 2014-07-07 Mitsubishi Heavy Ind Ltd Power generation system and method for stopping power generation system
JP2016008790A (en) * 2014-06-25 2016-01-18 三浦工業株式会社 Boiler system
JP2016109352A (en) * 2014-12-05 2016-06-20 三浦工業株式会社 Boiler equipment
JP2016136074A (en) * 2015-01-23 2016-07-28 三浦工業株式会社 Method for combusting fuel gas in combustion device and combustion system
JP2017219221A (en) * 2016-06-06 2017-12-14 岩谷産業株式会社 Hydrogen combustion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079489A1 (en) * 2019-10-25 2021-04-29 三浦工業株式会社 Boiler
WO2022258421A1 (en) * 2021-06-11 2022-12-15 Bdr Thermea Group B.V. Method for controlling the operation of a gas boiler

Also Published As

Publication number Publication date
JP6939705B2 (en) 2021-09-22
JP2018200166A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2018216331A1 (en) Hydrogen combustion boiler
JP2022553756A (en) Surface stabilized fully premixed gas premixed burner for burning hydrogen gas and method for starting such burner
WO2016031219A1 (en) Gas turbine engine system
JP6065669B2 (en) Boiler system
KR102494767B1 (en) Industrial furnace and industrial furnace ignition method
JP6981053B2 (en) Hydrogen combustion boiler
JP6536041B2 (en) Combustion system
JP6369677B2 (en) boiler
JP6582364B2 (en) Boiler system
JP5717251B2 (en) Combustion device
US20140272737A1 (en) Staged Combustion Method and Apparatus
JP6394104B2 (en) boiler
JP4926915B2 (en) Method and apparatus for preventing backfire of partially premixed burner
JP5622083B2 (en) Combustion device
JP7210125B2 (en) Combustion equipment
JP6277873B2 (en) boiler
JP5521602B2 (en) Fuel control device for by-product gas-fired combustion device
JP2008116181A (en) Combustion apparatus
JPH06241416A (en) Gas fuel low oxygen burner and control method thereof
JP2018087651A (en) Gas combustion system
JP7070090B2 (en) boiler
JP2024043212A (en) combustion device
JP2017101895A (en) Combustion apparatus
JP2024003430A (en) combustion system
JP2023174146A (en) Gas burner purging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806721

Country of ref document: EP

Kind code of ref document: A1