WO2018216218A1 - Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof - Google Patents

Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof Download PDF

Info

Publication number
WO2018216218A1
WO2018216218A1 PCT/JP2017/019791 JP2017019791W WO2018216218A1 WO 2018216218 A1 WO2018216218 A1 WO 2018216218A1 JP 2017019791 W JP2017019791 W JP 2017019791W WO 2018216218 A1 WO2018216218 A1 WO 2018216218A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
oxide fine
particle dispersion
fine particle
nanobubble
Prior art date
Application number
PCT/JP2017/019791
Other languages
French (fr)
Japanese (ja)
Inventor
小松 通郎
西田 広泰
中山 和洋
幸博 岩崎
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to PCT/JP2017/019791 priority Critical patent/WO2018216218A1/en
Publication of WO2018216218A1 publication Critical patent/WO2018216218A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a method for producing a nanobubble-containing inorganic oxide fine particle dispersion in which the inorganic oxide fine particle dispersion contains nanobubbles (microbubbles), and a nanobubble-containing inorganic oxide fine particle dispersion obtained by the production method. It is.
  • the present invention also provides a method for producing an abrasive (polishing slurry) containing the nanobubble-containing inorganic oxide fine particle dispersion, and an abrasive containing an nanobubble-containing inorganic oxide fine particle dispersion obtained by the production method (for polishing). Slurry).
  • the surface state affects the semiconductor characteristics, and therefore, it is required to polish the surfaces and end faces of these components with extremely high accuracy.
  • a polishing method for such a member after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
  • the following method has been proposed as an abrasive used for such secondary polishing as final polishing.
  • Patent Document 1 discloses a silica sol in which silica fine particles are dispersed in a dispersion medium, and the mode particle diameter in the particle size distribution of the silica fine particles is in the range of 5 to 100 nm, and 1) mode particles The proportion of silica fine particles exceeding the diameter is in the range of 0.1 to 30% by volume with respect to the total silica fine particles. 2) The particle size variation coefficient in the particle size distribution below the mode particle size is 8 to 70%.
  • a polishing silica sol characterized by satisfying the condition that it is in the range of. And, according to such a silica sol for polishing, it is described that it is applied to a polishing application, and generation of linear traces, scratches and the like is suppressed, and an excellent polishing rate is continuously exhibited.
  • inorganic oxide fine particle dispersions in which inorganic oxide fine particles such as silica fine particles are dispersed in a dispersion medium are suitable for transporting operations and handling in various processes unless there is a particular problem. ing.
  • the polishing treatment is often performed in an open system, and when the polishing liquid is prepared, the surrounding environment changes (temperature, humidity, etc.) and stirring in the tank.
  • foreign matters such as dry matter and microgel due to partial concentration are generated due to fluctuations in the surface of the polishing liquid due to the liquid and splashed liquid. It has been broken.
  • polishing liquid is circulated again and used as necessary, Due to changes in the level of the circulating tank due to the consumption of the polishing liquid, and fluctuations in the liquid level due to the falling of the polishing liquid from the return line of the circulating liquid, generation of microgel due to scale generation and concentration of the polishing liquid, and agglomeration It often leads to the production of things. Such foreign matters are hard and large foreign matters can be removed to some extent by microfiltration, but it is particularly difficult to completely remove fine microgels that are particularly flexible.
  • the inorganic oxide fine particle dispersion is also used in the preparation process and the polishing process, in the surrounding environment (temperature, humidity, etc.) and fluctuations in the liquid level of the polishing liquid due to stirring in the tank, In many cases, non-sedimentable fine particles or microgels are generated by the scattering liquid or the like. In the case where the inorganic oxide fine particle dispersion is applied for polishing, the non-sedimentable fine particles or microgel are further aggregated into coarse particles, and the filtration treatment is performed before the inorganic oxide fine particle dispersion is used for polishing. It has been known that the filterability tends to be lowered.
  • an object of the present invention is to provide a nanobubble-containing inorganic oxide fine particle dispersion excellent in concentration stability in a process used as an abrasive, an abrasive containing the same, and a method for producing the same.
  • the present invention reduces the microgel by suppressing the generation of coarse particles by crushing and dispersing the microgel present in the inorganic oxide fine particle dispersion such as silica fine particle dispersion due to the bursting effect of the nanobubbles. By doing so, concentration stability and filterability improvement are achieved.
  • the present invention includes the following (1) to (9).
  • An inorganic oxide fine particle dispersion containing fine particles containing Ce having an average particle size of 1 to 500 nm, and an average bubble size of 50 to 500 nm, and at least one selected from the group consisting of N 2 and H 2 A method of producing a nanobubble-containing inorganic oxide fine particle dispersion comprising a step of mixing a solution containing a nanobubble aqueous solution containing nanobubbles, which is a non-oxidizing gas, while maintaining the solution at 5 to 80 ° C.
  • An abrasive comprising the nanobubble-containing inorganic oxide fine particle dispersion described in (5) above.
  • the average particle diameter is 1 to 500 nm
  • the average bubble diameter is 50 to 500 nm to the inorganic oxide fine particle dispersion containing fine particles containing Ce, and N 2 and H
  • a method for filtering an inorganic oxide fine particle dispersion comprising adding an aqueous nanobubble solution containing nanobubbles that are at least one non-oxidizing gas selected from the group consisting of 2 , mixing, and then filtering.
  • the average particle size is 1 to 500 nm
  • the average bubble size is 50 to 500 nm inside the inorganic oxide fine particle dispersion containing fine particles containing Ce, and N 2
  • the nanobubble-containing inorganic oxide fine particle dispersion that is excellent in concentration stability and filterability and suppresses a decrease in workability even if solid content increases due to concentration or the like in the step of using as an abrasive,
  • polishing agent containing it and those manufacturing methods can be provided.
  • the present invention maintains a solution containing an inorganic oxide fine particle dispersion containing fine particles having an average particle size of 1 to 500 nm and a nanobubble aqueous solution containing nanobubbles having an average bubble size of 50 to 500 nm at 5 to 80 ° C.
  • a method for producing a nanobubble-containing inorganic oxide fine particle dispersion comprising a mixing step.
  • such a method for producing a nanobubble-containing inorganic oxide fine particle dispersion is also referred to as “the production method of the present invention”.
  • an inorganic oxide fine particle dispersion and a nanobubble aqueous solution are prepared.
  • the inorganic oxide fine particle dispersion is obtained by dispersing inorganic oxide fine particles (sometimes simply referred to as fine particles) having an average particle diameter of 1 to 500 nm in a solvent.
  • the average particle size of the inorganic oxide fine particles means a value calculated from a measurement result by an image analysis method.
  • the inorganic oxide fine particles include, for example, Si, Al, B, Mg, Ca, Ba, Mo, Zr, Ga, Be, Sr, Y, La, Ce, Sn, Fe, Zn, Mn, C, H, and Ti.
  • the main component is an oxide containing at least one element selected from the group consisting of:
  • the inorganic oxide fine particles are more preferably substantially composed of such an oxide.
  • the inorganic oxide fine particles may be inorganic composite oxide fine particles.
  • the “main component” has a content of 50% by mass or more (that is, Si, Al, B, Mg, Ca, Ba, Mo, Zr, Ga, Be, Sr, inorganic oxide fine particles are included).
  • Y, La, Ce, Sn, Fe, Zn, Mn, C, H, and Ti oxide total content is preferably 50% by mass or more, more preferably 60% by mass or more, 80 It is more preferably at least mass%, more preferably at least 90 mass%, and even more preferably at least 95 mass%.
  • “substantially” means that impurities mixed in from the raw materials and the manufacturing process can be included. In the following, the terms “main component” and “substantially” are used in this sense unless otherwise specified.
  • a non-oxidizing gas such as N 2 or H 2 as nanobubbles. preferable.
  • a non-oxidizing gas as nanobubbles even when the inorganic oxide fine particles form an interstitial solid solution due to the presence of heteroelements and oxygen vacancies increase.
  • the inorganic oxide fine particles contain Ce and further contain a hetero element such as Si, C, N, La and Zr.
  • the average particle diameter of the inorganic oxide fine particles is 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less.
  • the average particle size is 1 nm or more, and preferably 5 nm or more.
  • the solvent in which the inorganic oxide fine particles are dispersed is not particularly limited, but is preferably water (including ion-exchanged water and pure water).
  • the aqueous nanobubble solution contains nanobubbles having an average bubble diameter of 50 to 500 nm. Nano bubbles are fine bubbles having a bubble diameter of 500 nm or less.
  • the bubble diameter is preferably 400 nm or less, and more preferably 350 nm or less.
  • the bubble diameter is 50 nm or more, and more preferably 70 nm or more.
  • the average bubble diameter and the number of bubbles in nanobubbles are measured using the nanoparticle tracking analysis method for the Brownian movement speed of bubbles in the liquid.
  • the type of gas contained in the nanobubble is not particularly limited as long as the effect of crushing the microgel by bursting of the nanobubble can be exerted, but usually composed of N 2 , H 2 and O 2. It is preferable to consist essentially of at least one selected from the group.
  • the inorganic oxide fine particles are silica fine particles
  • the nanobubbles are preferably composed of N 2 and / or O 2 .
  • the inorganic oxide fine particles are oxide fine particles or complex oxide fine particles containing Ce such as ceria
  • the nanobubbles are preferably a non-oxidizing gas.
  • the nanobubble aqueous solution preferably contains 1.0 ⁇ 10 5 / mL or more nanobubbles, more preferably 1.1 ⁇ 10 5 / mL or more nanobubbles, and 1.0 ⁇ 10 8 / mL. It is more preferable to include the above nanobubbles, and it is further preferable to include 1.1 ⁇ 10 8 / mL or more nanobubbles.
  • the number of nanobubbles is preferably 1000 ⁇ 10 8 pieces / mL or less, more preferably 500 ⁇ 10 8 pieces / mL or less, and further preferably 100 ⁇ 10 8 pieces / mL or less.
  • the method for generating microbubbles is not particularly limited, and a conventionally known method can be used.
  • a swirling flow type a static mixer type, an ejector type, a venturi type, a pressure dissolution type, a pore type, a rotary type, an ultrasonic type, a vapor condensation type, an electrolysis type and the like can be mentioned.
  • the solution containing the above inorganic oxide fine particle dispersion liquid and nanobubble aqueous solution is obtained.
  • This solution can be obtained by adding one to the other, but can also be obtained by generating nanobubbles inside the inorganic oxide fine particle dispersion.
  • the method for generating nanobubbles inside the inorganic oxide fine particle dispersion is not particularly limited, and the above-described conventionally known methods can be used.
  • the nanobubble containing inorganic oxide fine particle dispersion liquid which is excellent in concentration stability in the process used as an abrasive
  • the temperature at which the solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution is maintained is 5 to 80 ° C., preferably 50 ° C. or less, and more preferably 30 ° C. or less.
  • the mixing means is not particularly limited, and mixing by stirring is preferable. Although there is no special restriction
  • the nanobubble-containing inorganic oxide fine particle dispersion obtained in this way is preferably used as an abrasive used for final polishing (secondary polishing), which is one of the processes for manufacturing semiconductor devices such as semiconductor substrates and wiring substrates. be able to.
  • the nanobubble-containing inorganic oxide fine particle dispersion can be used as a polishing agent as it is, but as an additive, for example, a group consisting of conventionally known polishing accelerators, surfactants, heterocyclic compounds, pH adjusting agents and pH buffering agents. One or more selected from more may be included.
  • the amount of microgel is small, since it is possible to improve the production efficiency if filtration of the abrasive can be completed in a short time.
  • the nanobubble-containing inorganic oxide fine particle dispersion of the present invention is used as an abrasive, not only the filtration rate is very fast, but also the concentration stability is excellent.
  • the inventor presumes that the reason why the filtration speed is fast and the concentration stability is improved is that the microgel is dispersed by the shock wave generated when the nanobubbles disappear. If the microgel disappears by being dispersed, coarse particles are further reduced, and it is considered that the surface accuracy of the polished surface is improved (reduction of scratches and the like). Furthermore, an improvement in the polishing rate is also observed.
  • the present invention is a nanobubble-containing inorganic oxide fine particle dispersion produced by the production method of the present invention as described above and an abrasive containing the same.
  • such a nanobubble-containing inorganic oxide fine particle dispersion and an abrasive containing the same are preferably maintained while holding a solution containing a specific inorganic oxide fine particle dispersion and a specific nanobubble aqueous solution at a specific temperature (preferably Is a product obtained by a production method comprising a step of mixing for a specific time.
  • a specific temperature preferably Is a product obtained by a production method comprising a step of mixing for a specific time.
  • the nanobubble-containing inorganic oxide fine particle dispersion of the present invention suppresses germination, generation and growth of larvae and juveniles of molds, fungi and algae in the dispersion due to the presence of nanobubbles in the dispersion ⁇ Can be killed.
  • These organisms of several microns or less should be called nano-organisms, and are difficult to mechanically remove by ordinary filtration or the like, and can easily fly from the air. For this reason, they are killed with drugs, but it is inevitable that the substance itself is organic and remains as a source of contamination.
  • nano-bubbles of several microns that are generally present in liquids are known to have killing, sterilizing, or algicidal effects on molds, fungi, and algae grown and propagated in liquids.
  • nanobubbles of several microns are added to the solution after these microorganisms have propagated, the growth can be stopped, but a large amount of microorganism remains, and even if these dead bodies are filtered off, they remain on the filter surface. Breed on the dead carcass.
  • nanobubbles of several microns have a life of several days or less, they are not durable and have little effect on spores that have passed through the filter or nano organisms that have come through the air.
  • the chemicals added for the killing of nano-organisms or the remains of microorganisms remaining as foreign substances may affect the performance of the semiconductor.
  • nanobubbles of several microns or less are added to the inorganic fine particle dispersion before the growth of fungi, fungi or algae sufficiently in the dispersion, the nanobubbles exist for several months or more. Can be destroyed at the pre-growth spore or larvae and juvenile stages.
  • the inorganic oxide fine particle dispersion containing fine particles containing Ce, molds, fungi and algae are in the spore or larval and juvenile stages or earlier. It is preferred to use the dispersion containing the stages as raw material.
  • the destruction mechanism of spores or larvae caused by nanobubbles of several microns or less occurs due to the phenomenon that the bubbles shrink and collapse over time due to the self-pressurization effect (hot spot phenomenon), destroying water molecules. These free radicals are thought to inhibit their physiological activities by breaking the molecular bonds on the outer surface of the spores, larvae and juveniles.
  • the term “larvae” and “juvenile” used here are not strict terms. They are physiological activities in the pre-growth stage where the former is animal and the latter is capable of exerting a proliferative function in plant-based organisms. Used as a general term for living organisms.
  • the specific polishing effect of Ce on silica is generally accepted by researchers such as academic societies as Ce 3+ on the surface of tetravalent ceria particles reacts specifically with silica. If this is correct, it is preferable that the ceria-based abrasive dispersion medium does not contain oxidizing substances.
  • the present invention suppresses ceria oxidation and suppresses biological activity of nano-sized organisms, thereby suppressing substrate residual organic matter in the abrasive dispersion and polishing slurry. Can prevent contamination of the base.
  • the average particle diameter of the inorganic oxide fine particles was measured by an image analysis method. Specifically, inorganic oxide fine particles are shown in a photograph projection view obtained by photographing a sample inorganic oxide fine particle dispersion at a magnification of 250,000 times with a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.). The longest diameter is taken as the major axis, the length is measured, and the value is taken as the major diameter (DL).
  • a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the fine particle are obtained, and a distance between the two points is measured to obtain a minor axis (DS).
  • the simple average value of the short diameter (DS) and the long diameter (DL) is defined as the particle diameter of the fine particles. In this way, the particle diameter was determined for any 500 fine particles, and the average value thereof was taken as the average particle diameter of the inorganic oxide fine particles.
  • the average bubble diameter of the nanobubbles was measured using the nanoparticle 4 tracking analysis method for the Brownian movement speed of the bubbles in the liquid. Specifically, about 20 mL of a measurement sample (nanobubble-containing inorganic oxide fine particle dispersion) was injected while being sucked into a measuring instrument (“Nanosite NS300” manufactured by Malvern) and measured by a nanoparticle tracking analysis method.
  • a measurement sample nanobubble-containing inorganic oxide fine particle dispersion
  • ⁇ Reference Example 1 500 g of a silica fine particle dispersion (solid content concentration 5 mass%) in which silica fine particles having an average particle diameter of 3 nm are dispersed in water is prepared, and the temperature is maintained at 20 ° C. 500 g of an aqueous solution of nanobubbles containing 1 ⁇ 10 8 / ml N 2 was added. Then, the mixture was stirred for 1 hour while maintaining the same temperature to obtain a nanobubble-containing inorganic oxide fine particle dispersion. The obtained nanobubble-containing inorganic oxide fine particle dispersion was concentrated according to the concentration stability measurement method, and the concentration stability was evaluated. Table 1 shows the processing conditions and the measurement results.
  • the filtration rate when the obtained nanobubble-containing inorganic oxide fine particle dispersion was filtered through a filtration filter (filter diameter: 0.5 ⁇ m) at a filtration pressure of 1 mPa was 35 g / min.
  • the number of coarse particles having a particle diameter of 0.51 ⁇ m or more was measured using an Accusizer 780APS manufactured by PSS for the nanobubble-containing inorganic oxide fine particle dispersion that passed through the filter, and found to be 200,000 particles / ml.
  • ⁇ Reference Example 2 500 g of a silica fine particle dispersion (solid content concentration: 40% by mass) in which silica fine particles having an average particle diameter of 80 nm are dispersed in water is prepared, and the temperature is maintained at 20 ° C. 500 g of an aqueous solution of nanobubbles containing 1 ⁇ 10 8 / ml N 2 was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained inorganic oxide fine particle dispersion was concentrated according to the concentration stability measurement method, and the concentration stability was evaluated. Table 1 shows the processing conditions and the measurement results.
  • ⁇ Reference Example 5 500 g of a silica fine particle dispersion (solid content concentration 48 mass%) in which silica fine particles having an average particle diameter of 250 nm are dispersed in water is prepared, and the temperature is maintained at 5 ° C. 500 g of an aqueous solution of nanobubbles containing N 2 at 0 ⁇ 10 8 pieces / ml was added. Then, after stirring for 1.5 hours while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
  • ⁇ Reference Example 7> Maintaining the pH of a silica fine particle dispersion (solid content concentration: 5% by mass) in which silica fine particles having an average particle diameter of 17 nm are dispersed in water at 9 and maintaining the temperature at 80 ° C., an aqueous solution of zirconium ammonium carbonate (converted to zirconia) Concentration: 5% by mass) was added over 5 hours.
  • Example 1 500 g of a ceria fine particle dispersion (solid content concentration 20% by mass) in which ceria fine particles having an average particle diameter of 20 nm are dispersed in water is prepared, the temperature is maintained at 30 ° C., and 15% of the average bubble diameter is 290 nm. 500 g of a nanobubble aqueous solution containing ⁇ 10 8 / ml N 2 was added. Then, after stirring for 60 hours while maintaining a temperature of 30 ° C., the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
  • the filtration rate when the obtained nanobubble-containing inorganic oxide fine particle dispersion was filtered through a filtration filter (filter diameter: 0.5 ⁇ m) at a filtration pressure of 1 mPa as in Reference Example 1 was 10 g / min. there were.
  • the number of coarse particles having a particle diameter of 0.51 ⁇ m or more was measured using an Accusizer 780APS manufactured by PSS for the nanobubble-containing inorganic oxide fine particle dispersion that passed through the filter, and the result was 600,000 particles / ml.
  • ⁇ Comparative Example 5> 500 g of a silica / ceria fine particle dispersion in which silica / zirconia fine particles (SiO 2 / ZrO 2 mass ratio 75/25, solid concentration 20 mass%) having an average particle diameter of 20 nm are dispersed in water is prepared, and the temperature is 20 Held at 0C. And it concentrated similarly to the reference example 7, without adding nanobubble aqueous solution. Table 1 shows the processing conditions and the results.
  • the concentration stability has a correlation with the particle size (average particle size) of the inorganic oxide fine particles, so the relationship between the average particle size and the concentration stability is shown in the graph (FIG. 1). From the graph of FIG. 1, for example, in the case of Reference Example 3, it can be seen that the concentration stability is superior to Comparative Example 1 or Comparative Example 2 in which the average particle diameter of the silica fine particles is the same. In addition, it can be seen that Reference Example 2 is superior in concentration stability as compared with Comparative Example 3 in which the average particle diameter of the silica fine particles is the same.

Abstract

The present invention addresses the problem of providing a production method for a nano-bubble-containing liquid dispersion of inorganic oxide fine particles which has excellent concentration stability in a process of using the liquid dispersion as an abrasive. The problem is solved by a production method for a nano-bubble-containing liquid dispersion of inorganic oxide fine particles, the method comprising a step for mixing a solution that contains: an inorganic oxide fine particle liquid dispersion containing fine particles having an average particle size of 1-500 nm; and a nano-bubble aqueous solution containing nano-bubbles having an average bubble diameter of 50-500 nm, while the solution is kept at 5-80ºC.

Description

ナノバブル含有無機酸化物微粒子分散液、それを含む研磨剤およびそれらの製造方法Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof
 本発明は、無機酸化物微粒子分散液がナノバブル(微小気泡)を含有してなるナノバブル含有無機酸化物微粒子分散液の製造方法と、その製造方法により得られるナノバブル含有無機酸化物微粒子分散液に関するものである。また、本発明は、該ナノバブル含有無機酸化物微粒子分散液を含む研磨剤(研磨用スラリー)の製造方法と、その製造方法により得られるナノバブル含有無機酸化物微粒子分散液を含む研磨剤(研磨用スラリー)に関する。 The present invention relates to a method for producing a nanobubble-containing inorganic oxide fine particle dispersion in which the inorganic oxide fine particle dispersion contains nanobubbles (microbubbles), and a nanobubble-containing inorganic oxide fine particle dispersion obtained by the production method. It is. The present invention also provides a method for producing an abrasive (polishing slurry) containing the nanobubble-containing inorganic oxide fine particle dispersion, and an abrasive containing an nanobubble-containing inorganic oxide fine particle dispersion obtained by the production method (for polishing). Slurry).
 半導体基板、配線基板などの半導体デバイスなどにおいては、表面状態が半導体特性に影響するため、これらの部品の表面や端面を極めて高精度に研磨することが要求される。
 従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
 このような仕上げ研磨としての2次研磨に用いる研磨剤として、従来、例えば次のような方法等が提案されている。
In semiconductor devices such as a semiconductor substrate and a wiring substrate, the surface state affects the semiconductor characteristics, and therefore, it is required to polish the surfaces and end faces of these components with extremely high accuracy.
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
Conventionally, for example, the following method has been proposed as an abrasive used for such secondary polishing as final polishing.
 特許文献1には、シリカ微粒子が分散媒に分散してなるシリカゾルであって、該シリカ微粒子の粒子径分布における最頻値粒子径が5~100nmの範囲にあり、更に1)最頻値粒子径を超えるシリカ微粒子の割合が、全シリカ微粒子に対して0.1~30体積%の範囲であり、2)最頻値粒子径以下の粒子径分布における粒子径変動係数が、8~70%の範囲であるという条件を満たすことを特徴とする研磨用シリカゾルが提案されている。そして、このような研磨用シリカゾルによれば、研磨用途に適用して、線状痕やスクラッチ等の発生が抑制され、優れた研磨速度を持続して示すと記載されている。 Patent Document 1 discloses a silica sol in which silica fine particles are dispersed in a dispersion medium, and the mode particle diameter in the particle size distribution of the silica fine particles is in the range of 5 to 100 nm, and 1) mode particles The proportion of silica fine particles exceeding the diameter is in the range of 0.1 to 30% by volume with respect to the total silica fine particles. 2) The particle size variation coefficient in the particle size distribution below the mode particle size is 8 to 70%. There has been proposed a polishing silica sol characterized by satisfying the condition that it is in the range of. And, according to such a silica sol for polishing, it is described that it is applied to a polishing application, and generation of linear traces, scratches and the like is suppressed, and an excellent polishing rate is continuously exhibited.
特開2013-177617号公報JP 2013-177617 A
 一般にシリカ微粒子等の無機酸化物微粒子が分散媒に分散してなる無機酸化物微粒子分散液は、特に支障が無い限り、固形分濃度が高いものの方が運搬の作業や各種工程での取扱いに適している。また、該無機酸化物微粒子分散液を研磨用途に適用した場合、研磨処理は、開放系で行われることが多く、研磨液調製時には、周りの環境変化(温度、湿度等)やタンク内の撹拌による研磨液の液面変動、飛散液等により、乾燥物や一部濃縮によるミクロゲル等の異物が発生することが多いために、一般的には、必要とする工程若しくは最終工程で精密ろ過が行われている。また、研磨に時間を要する研磨基板(例えば、タンタル酸リチウム、タンタル酸ニオブ、サファイア等)については、必要に応じて研磨液を再度循環して使用されることが行われ、周りの環境変化や研磨液の消費に伴う循環タンクの液面変化、循環液の戻りラインからの研磨液の落下に伴う液面変動等により、循環タンク壁面でのスケール生成や研磨液の濃縮によるミクロゲルの発生、凝集物の生成等をもたらすことが多い。この様な異物は、精密ろ過により、硬くて大きな異物は、ある程度除去出来るが、特に柔軟なで細かいミクロゲルを完全に除去することは、困難とされている。このようなミクロゲル異物を含む無機酸化物微粒子分散液による研磨処理は、被研磨面でのスクラッチ(線状痕)の発生や研磨作業の作業性低下を招くことが知られている。
 なお、無機酸化物微粒子分散液の濃縮により、被研磨面でのスクラッチ(線状痕)の発生や研磨作業の作業性低下を招く原因は、例えば、シリカ微粒子分散液の場合、シリカ微粒子分散液に含まれるミクロゲル(低分子シリカの凝集体等)が、濃縮により、ミクロゲルどうしで更に凝集すること、あるいはミクロゲルとシリカ微粒子との凝集が生じることにより、スクラッチ発生や作業性低下の原因となり得る大きさの凝集物が生成することが影響するものと考えられている。
 また、シリカ微粒子分散液に限らず、無機酸化物微粒子分散液は、その調製工程及び研磨工程においても、周りの環境変化(温度、湿度等)やタンク内の撹拌による研磨液の液面変動、飛散液等により、非沈降性の微粒子あるいはミクロゲルが生成することが多い。無機酸化物微粒子分散液を研磨用途に適用する場合、前記非沈降性の微粒子あるいはミクロゲルは、更に凝集して粗大粒子となり、無機酸化物微粒子分散液を研磨用途に使用する前に行う濾過処理において、濾過性の低下を招き易いことが知られていた。
In general, inorganic oxide fine particle dispersions in which inorganic oxide fine particles such as silica fine particles are dispersed in a dispersion medium are suitable for transporting operations and handling in various processes unless there is a particular problem. ing. In addition, when the inorganic oxide fine particle dispersion is applied to a polishing application, the polishing treatment is often performed in an open system, and when the polishing liquid is prepared, the surrounding environment changes (temperature, humidity, etc.) and stirring in the tank In many cases, foreign matters such as dry matter and microgel due to partial concentration are generated due to fluctuations in the surface of the polishing liquid due to the liquid and splashed liquid. It has been broken. In addition, for polishing substrates that require time for polishing (for example, lithium tantalate, niobium tantalate, sapphire, etc.), the polishing liquid is circulated again and used as necessary, Due to changes in the level of the circulating tank due to the consumption of the polishing liquid, and fluctuations in the liquid level due to the falling of the polishing liquid from the return line of the circulating liquid, generation of microgel due to scale generation and concentration of the polishing liquid, and agglomeration It often leads to the production of things. Such foreign matters are hard and large foreign matters can be removed to some extent by microfiltration, but it is particularly difficult to completely remove fine microgels that are particularly flexible. It is known that such a polishing process using an inorganic oxide fine particle dispersion containing a microgel foreign material causes generation of scratches (linear marks) on the surface to be polished and a reduction in workability of the polishing operation.
The cause of the generation of scratches (linear traces) on the surface to be polished and the reduction in the workability of the polishing work due to the concentration of the inorganic oxide fine particle dispersion is, for example, in the case of a silica fine particle dispersion, The microgels (such as low-molecular silica aggregates) contained in can be further agglomerated between microgels due to concentration, or agglomeration between microgels and silica fine particles can cause scratches and reduced workability. It is considered that the formation of agglomerates is affected.
In addition to the silica fine particle dispersion, the inorganic oxide fine particle dispersion is also used in the preparation process and the polishing process, in the surrounding environment (temperature, humidity, etc.) and fluctuations in the liquid level of the polishing liquid due to stirring in the tank, In many cases, non-sedimentable fine particles or microgels are generated by the scattering liquid or the like. In the case where the inorganic oxide fine particle dispersion is applied for polishing, the non-sedimentable fine particles or microgel are further aggregated into coarse particles, and the filtration treatment is performed before the inorganic oxide fine particle dispersion is used for polishing. It has been known that the filterability tends to be lowered.
 本発明は上記のような課題を解決するために鋭意検討し、シリカゾル等の無機酸化物微粒子分散液、ナノバブルを特定条件にて加え、ナノバブルがその機能が発揮できる特定条件で混合することで、上記の課題を解決することできる無機酸化物微粒子分散液あるいはそれを含む研磨剤が得られることを見出した。
 すなわち、本発明は、研磨剤として用いる工程において濃縮安定性に優れるナノバブル含有無機酸化物微粒子分散液、それを含む研磨剤およびそれらの製造方法を提供することを目的とする。
 本発明は、ナノバブルの破裂効果により、シリカ微粒子分散液などの無機酸化物微粒子分散液中に存在するミクロゲルを解砕・分散することにより、ミクロゲルを減少させ、延いては粗大粒子の発生を抑止することにより、濃縮安定性と濾過性向上を達成したものである。
The present invention has been intensively studied to solve the above-mentioned problems, by adding inorganic oxide fine particle dispersion liquid such as silica sol, nanobubbles under specific conditions, and mixing under specific conditions where the nanobubbles can exhibit their functions, It has been found that an inorganic oxide fine particle dispersion capable of solving the above problems or an abrasive containing the same can be obtained.
That is, an object of the present invention is to provide a nanobubble-containing inorganic oxide fine particle dispersion excellent in concentration stability in a process used as an abrasive, an abrasive containing the same, and a method for producing the same.
The present invention reduces the microgel by suppressing the generation of coarse particles by crushing and dispersing the microgel present in the inorganic oxide fine particle dispersion such as silica fine particle dispersion due to the bursting effect of the nanobubbles. By doing so, concentration stability and filterability improvement are achieved.
 本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
 本発明は以下の(1)~(9)である。
(1)平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液と、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを含むナノバブル水溶液とを含む溶液を、5~80℃に保持しつつ、混合する工程を備える、ナノバブル含有無機酸化物微粒子分散液の製造方法。
(2)前記ナノバブル水溶液が、105個/mL以上のナノバブルを含む、上記(1)に記載のナノバブル含有無機酸化物微粒子分散液の製造方法。
(3)前記無機酸化物微粒子分散液の内部で前記ナノバブルを発生させることで、前記無機酸化物微粒子分散液と前記ナノバブル水溶液とを含む前記溶液を得る、上記(1)または(2)に記載のナノバブル含有無機酸化物微粒子分散液の製造方法。
(4)上記(1)~(3)のいずれかに記載の製造方法によってナノバブル含有無機酸化物微粒子分散液を得た後、これを用いて研磨剤を得る、研磨剤の製造方法。
(5)上記(1)~(3)のいずれかに記載の製造方法によって製造されたナノバブル含有無機酸化物微粒子分散液。
(6)上記(5)に記載のナノバブル含有無機酸化物微粒子分散液を含む研磨剤。
(7)5~80℃に保持しつつ、平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液へ、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを含むナノバブル水溶液を加え、混合し、その後、濾過する、無機酸化物微粒子分散液の濾過方法。
(8)5~80℃に保持しつつ、平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液の内部で、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを発生させ、混合し、その後、濾過する、無機酸化物微粒子分散液の濾過方法。
(9)前記ナノバブル水溶液が、105個/mL以上のナノバブルを含む、上記(7)または(8)に記載の無機酸化物微粒子分散液の濾過方法。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (9).
(1) An inorganic oxide fine particle dispersion containing fine particles containing Ce having an average particle size of 1 to 500 nm, and an average bubble size of 50 to 500 nm, and at least one selected from the group consisting of N 2 and H 2 A method of producing a nanobubble-containing inorganic oxide fine particle dispersion comprising a step of mixing a solution containing a nanobubble aqueous solution containing nanobubbles, which is a non-oxidizing gas, while maintaining the solution at 5 to 80 ° C.
(2) The method for producing a nanobubble-containing inorganic oxide fine particle dispersion according to (1), wherein the nanobubble aqueous solution contains 10 5 / mL or more nanobubbles.
(3) The nanobubbles are generated inside the inorganic oxide fine particle dispersion, thereby obtaining the solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution. (1) or (2) Of manufacturing nanobubble-containing inorganic oxide fine particle dispersion.
(4) A method for producing an abrasive in which a nanobubble-containing inorganic oxide fine particle dispersion is obtained by the production method according to any one of (1) to (3), and then an abrasive is obtained using the dispersion.
(5) A nanobubble-containing inorganic oxide fine particle dispersion produced by the production method according to any one of (1) to (3) above.
(6) An abrasive comprising the nanobubble-containing inorganic oxide fine particle dispersion described in (5) above.
(7) While maintaining at 5 to 80 ° C., the average particle diameter is 1 to 500 nm, and the average bubble diameter is 50 to 500 nm to the inorganic oxide fine particle dispersion containing fine particles containing Ce, and N 2 and H A method for filtering an inorganic oxide fine particle dispersion, comprising adding an aqueous nanobubble solution containing nanobubbles that are at least one non-oxidizing gas selected from the group consisting of 2 , mixing, and then filtering.
(8) While maintaining at 5 to 80 ° C., the average particle size is 1 to 500 nm, the average bubble size is 50 to 500 nm inside the inorganic oxide fine particle dispersion containing fine particles containing Ce, and N 2 And a method of filtering an inorganic oxide fine particle dispersion, wherein nanobubbles, which are at least one non-oxidizing gas selected from the group consisting of H 2 , are generated, mixed, and then filtered.
(9) The method for filtering an inorganic oxide fine particle dispersion according to (7) or (8), wherein the nanobubble aqueous solution contains 10 5 / mL or more nanobubbles.
 本発明によれば、研磨剤として用いる工程において、濃縮等による固形分の上昇が生じても、濃縮安定性と濾過性に優れ、作業性低下が抑制されるナノバブル含有無機酸化物微粒子分散液、それを含む研磨剤およびそれらの製造方法を提供することができる。 According to the present invention, the nanobubble-containing inorganic oxide fine particle dispersion that is excellent in concentration stability and filterability and suppresses a decrease in workability even if solid content increases due to concentration or the like in the step of using as an abrasive, The abrasive | polishing agent containing it and those manufacturing methods can be provided.
実施例と比較例における濃縮安定性を示すグラフである。It is a graph which shows the concentration stability in an Example and a comparative example.
 本発明について説明する。
 本発明は、平均粒子径が1~500nmの微粒子を含む無機酸化物微粒子分散液と、平均気泡径が50~500nmのナノバブルを含むナノバブル水溶液とを含む溶液を、5~80℃に保持しつつ、混合する工程を備える、ナノバブル含有無機酸化物微粒子分散液の製造方法である。
 このようなナノバブル含有無機酸化物微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
The present invention will be described.
The present invention maintains a solution containing an inorganic oxide fine particle dispersion containing fine particles having an average particle size of 1 to 500 nm and a nanobubble aqueous solution containing nanobubbles having an average bubble size of 50 to 500 nm at 5 to 80 ° C. A method for producing a nanobubble-containing inorganic oxide fine particle dispersion comprising a mixing step.
Hereinafter, such a method for producing a nanobubble-containing inorganic oxide fine particle dispersion is also referred to as “the production method of the present invention”.
 本発明の製造方法では、初めに、無機酸化物微粒子分散液と、ナノバブル水溶液とを用意する。 In the production method of the present invention, first, an inorganic oxide fine particle dispersion and a nanobubble aqueous solution are prepared.
 無機酸化物微粒子分散液は、平均粒子径が1~500nmの無機酸化物微粒子(単に微粒子と記す場合もある)が溶媒に分散してなるものである。
 なお、本発明において無機酸化物微粒子の平均粒子径は、画像解析法による測定結果から算定された値を意味する。
The inorganic oxide fine particle dispersion is obtained by dispersing inorganic oxide fine particles (sometimes simply referred to as fine particles) having an average particle diameter of 1 to 500 nm in a solvent.
In the present invention, the average particle size of the inorganic oxide fine particles means a value calculated from a measurement result by an image analysis method.
 ここで無機酸化物微粒子は、例えばSi、Al、B、Mg、Ca、Ba、Mo、Zr、Ga、Be、Sr、Y、La、Ce、Sn、Fe、Zn、Mn、C、HおよびTiからなる群から選ばれる少なくとも1つの元素を含む酸化物を主成分とするものであることが好ましい。また、無機酸化物微粒子は、このような酸化物から実質的になるものであることがより好ましい。なお、該無機酸化物微粒子は、無機複合酸化物微粒子であっても構わない。
 ここで、「主成分」とは含有率が50質量%以上である(すなわち、無機酸化物微粒子が含む、Si、Al、B、Mg、Ca、Ba、Mo、Zr、Ga、Be、Sr、Y、La、Ce、Sn、Fe、Zn、Mn、C、HおよびTiの酸化物の合計含有率が50質量%以上である)ことが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがより好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。また、「実質的に」とは、原料や製造工程から混入する不純物は含まれ得ることを意味する。以下において「主成分」および「実質的に」の文言は、特に説明がない限り、このような意味で用いることとする。
 無機酸化物微粒子がCeを含む場合(例えばセリア微粒子など)には、酸素欠陥が減じやすいので、これを回避するために、ナノバブルとしてN2あるいはH2等の非酸化性ガスを用いることがより好ましい。
 また、無機酸化物微粒子がヘテロ元素の存在により、侵入型固溶体を形成し酸素欠損が増加している場合にも、ナノバブルとして非酸化性ガスを用いることが好ましい。この様な例としては、無機酸化物微粒子がCeを含み、更にSi、C、N、La、Zrなどのヘテロ元素を含む場合を挙げることができる。
Here, the inorganic oxide fine particles include, for example, Si, Al, B, Mg, Ca, Ba, Mo, Zr, Ga, Be, Sr, Y, La, Ce, Sn, Fe, Zn, Mn, C, H, and Ti. The main component is an oxide containing at least one element selected from the group consisting of: The inorganic oxide fine particles are more preferably substantially composed of such an oxide. The inorganic oxide fine particles may be inorganic composite oxide fine particles.
Here, the “main component” has a content of 50% by mass or more (that is, Si, Al, B, Mg, Ca, Ba, Mo, Zr, Ga, Be, Sr, inorganic oxide fine particles are included). Y, La, Ce, Sn, Fe, Zn, Mn, C, H, and Ti oxide total content is preferably 50% by mass or more, more preferably 60% by mass or more, 80 It is more preferably at least mass%, more preferably at least 90 mass%, and even more preferably at least 95 mass%. Further, “substantially” means that impurities mixed in from the raw materials and the manufacturing process can be included. In the following, the terms “main component” and “substantially” are used in this sense unless otherwise specified.
When the inorganic oxide fine particles contain Ce (for example, ceria fine particles), oxygen defects are easily reduced. Therefore, in order to avoid this, it is more preferable to use a non-oxidizing gas such as N 2 or H 2 as nanobubbles. preferable.
In addition, it is preferable to use a non-oxidizing gas as nanobubbles even when the inorganic oxide fine particles form an interstitial solid solution due to the presence of heteroelements and oxygen vacancies increase. As such an example, there can be mentioned a case where the inorganic oxide fine particles contain Ce and further contain a hetero element such as Si, C, N, La and Zr.
 無機酸化物微粒子の平均粒子径は500nm以下であり、300nm以下であることが好ましく、200nm以下であることがより好ましく、100nm以下であることがより好ましい。また、平均粒子径は1nm以上であり、5nm以上であることが好ましい。 The average particle diameter of the inorganic oxide fine particles is 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, and even more preferably 100 nm or less. The average particle size is 1 nm or more, and preferably 5 nm or more.
 このような無機酸化物微粒子が分散している溶媒は特に限定されないが、水(イオン交換水、純水を含む)であることが好ましい。 The solvent in which the inorganic oxide fine particles are dispersed is not particularly limited, but is preferably water (including ion-exchanged water and pure water).
 ナノバブル水溶液は平均気泡径が50~500nmのナノバブルを含む。
 ナノバブルとは、気泡径が500nm以下である微細気泡である。この気泡径は400nm以下であることが好ましく、350nm以下であることがさらに好ましい。また、この気泡径は50nm以上であり、70nm以上であることがさらに好ましい。
The aqueous nanobubble solution contains nanobubbles having an average bubble diameter of 50 to 500 nm.
Nano bubbles are fine bubbles having a bubble diameter of 500 nm or less. The bubble diameter is preferably 400 nm or less, and more preferably 350 nm or less. The bubble diameter is 50 nm or more, and more preferably 70 nm or more.
 ナノバブルの平均気泡径及び気泡個数は、液中の気泡のブラウン運動移動速度をナノ粒子トラッキング解析法を用いて測定する。 The average bubble diameter and the number of bubbles in nanobubbles are measured using the nanoparticle tracking analysis method for the Brownian movement speed of bubbles in the liquid.
 ナノバブルに含まれる気体の種類については、ナノバブルの破裂によりミクロゲルを解砕する効果が発揮できるものであれば、特に限定されるものではないが、通常は、N2、H2およびO2からなる群から選ばれる少なくとも1つから実質的になることが好ましい。前記無機酸化物微粒子がシリカ微粒子の場合、ナノバブルがN2および/またはO2からなることが好ましい。前記無機酸化物微粒子がセリアなどCeを含む酸化物微粒子又は複合酸化物微粒子である場合、ナノバブルは非酸化性ガスであることが好ましい。 The type of gas contained in the nanobubble is not particularly limited as long as the effect of crushing the microgel by bursting of the nanobubble can be exerted, but usually composed of N 2 , H 2 and O 2. It is preferable to consist essentially of at least one selected from the group. When the inorganic oxide fine particles are silica fine particles, the nanobubbles are preferably composed of N 2 and / or O 2 . When the inorganic oxide fine particles are oxide fine particles or complex oxide fine particles containing Ce such as ceria, the nanobubbles are preferably a non-oxidizing gas.
 ナノバブル水溶液が、1.0×105個/mL以上のナノバブルを含むことが好ましく、1.1×105個/mL以上のナノバブルを含むことがより好ましく、1.0×108個/mL以上のナノバブルを含むことがより好ましく、1.1×108個/mL以上のナノバブルを含むことがさらに好ましい。このナノバブルの個数は、1000×108個/mL以下であることが好ましく、500×108個/mL以下であることがより好ましく、100×108個/mL以下であることがさらに好ましい。 The nanobubble aqueous solution preferably contains 1.0 × 10 5 / mL or more nanobubbles, more preferably 1.1 × 10 5 / mL or more nanobubbles, and 1.0 × 10 8 / mL. It is more preferable to include the above nanobubbles, and it is further preferable to include 1.1 × 10 8 / mL or more nanobubbles. The number of nanobubbles is preferably 1000 × 10 8 pieces / mL or less, more preferably 500 × 10 8 pieces / mL or less, and further preferably 100 × 10 8 pieces / mL or less.
 マイクロバブルの発生方法は、特に制限されず、従来公知の方法を用いることができる。例えば、旋回流式、スタティックミキサー式、エジェクター式、ベンチュリー式、加圧溶解式、細孔式、回転式、超音波式、蒸気凝縮式、電気分解式などが挙げられる。 The method for generating microbubbles is not particularly limited, and a conventionally known method can be used. For example, a swirling flow type, a static mixer type, an ejector type, a venturi type, a pressure dissolution type, a pore type, a rotary type, an ultrasonic type, a vapor condensation type, an electrolysis type and the like can be mentioned.
 次に、本発明の製造方法では、上記のような無機酸化物微粒子分散液と、ナノバブル水溶液とを含む溶液を得る。
 この溶液は一方を他方へ加えることで得ることができるが、無機酸化物微粒子分散液の内部でナノバブルを発生させることでも得ることができる。
 無機酸化物微粒子分散液の内部でナノバブルを発生させる方法は特に限定されず、前述の従来公知の方法を利用することができる。
Next, in the manufacturing method of this invention, the solution containing the above inorganic oxide fine particle dispersion liquid and nanobubble aqueous solution is obtained.
This solution can be obtained by adding one to the other, but can also be obtained by generating nanobubbles inside the inorganic oxide fine particle dispersion.
The method for generating nanobubbles inside the inorganic oxide fine particle dispersion is not particularly limited, and the above-described conventionally known methods can be used.
 無機酸化物微粒子分散液と、ナノバブル水溶液とを含む溶液を得ながら、または、得た後、無機酸化物微粒子分散液とナノバブル水溶液とを含む溶液を5~80℃に保持しつつ、(好ましくは0.5時間以上)混合する。そうすると、研磨剤として用いる工程において濃縮安定性に優れるナノバブル含有無機酸化物微粒子分散液を得ることができる。 While obtaining a solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution, or after being obtained, while maintaining the solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution at 5 to 80 ° C. (preferably Mix for 0.5 hour or more). If it does so, the nanobubble containing inorganic oxide fine particle dispersion liquid which is excellent in concentration stability in the process used as an abrasive | polishing agent can be obtained.
 無機酸化物微粒子分散液とナノバブル水溶液とを含む溶液を保持する温度は5~80℃であるが、50℃以下であることが好ましく、30℃以下であることがさらに好ましい。 The temperature at which the solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution is maintained is 5 to 80 ° C., preferably 50 ° C. or less, and more preferably 30 ° C. or less.
 無機酸化物微粒子分散液にナノバブル水溶液を添加し、混合する。混合手段は格別に限定されるものではなく、撹拌による混合などがこのましい。混合する時間に格別の制限はないが、例えば、0.5時間以上混合することが好ましい。 Add nanobubble aqueous solution to inorganic oxide fine particle dispersion and mix. The mixing means is not particularly limited, and mixing by stirring is preferable. Although there is no special restriction | limiting in the time to mix, For example, it is preferable to mix for 0.5 hour or more.
 このようにして得られたナノバブル含有無機酸化物微粒子分散液は、半導体基板、配線基板などの半導体デバイスなどを製造する過程の1つである仕上げ研磨(2次研磨)に用いる研磨剤として好ましく用いることができる。
 ナノバブル含有無機酸化物微粒子分散液をそのまま研磨剤として用いることもできるが、添加剤として、例えば、従来公知の研磨促進剤、界面活性剤、複素環化合物、pH調整剤およびpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。なお、ナノバブル含有無機酸化物微粒子分散液から研磨用スラリーを調製する際などに、ナノバブル含有無機酸化物微粒子分散液を希釈する必要がある場合は、ナノバブルを含有する水を添加して希釈することが望ましい。
The nanobubble-containing inorganic oxide fine particle dispersion obtained in this way is preferably used as an abrasive used for final polishing (secondary polishing), which is one of the processes for manufacturing semiconductor devices such as semiconductor substrates and wiring substrates. be able to.
The nanobubble-containing inorganic oxide fine particle dispersion can be used as a polishing agent as it is, but as an additive, for example, a group consisting of conventionally known polishing accelerators, surfactants, heterocyclic compounds, pH adjusting agents and pH buffering agents. One or more selected from more may be included. If it is necessary to dilute the nanobubble-containing inorganic oxide fine particle dispersion when preparing a polishing slurry from the nanobubble-containing inorganic oxide fine particle dispersion, add water containing nanobubbles to dilute. Is desirable.
 また、研磨剤を用いて半導体デバイス等を研磨する場合、ミクロゲルが少ないと研磨剤の濾過を短時間に完了することができれば生産効率の向上につながるので好ましい。本発明のナノバブル含有無機酸化物微粒子分散液を研磨剤として用いる場合、濾過速度が非常に早いばかりでなく、濃縮安定性に優れる。
 このように濾過速度が早く、濃縮安定性が良くなる理由は、ナノバブルが消滅する際に発生する衝撃波でミクロゲルが分散されるためと、本発明者は推測している。ミクロゲルが分散されることで消滅すれば、粗大粒子がより減少することになるため、被研磨面の面精度が向上(スクラッチ等の減少)に繋がると考えられる。さらに、研磨速度の向上も認められる。
Further, when polishing a semiconductor device or the like using an abrasive, it is preferable if the amount of microgel is small, since it is possible to improve the production efficiency if filtration of the abrasive can be completed in a short time. When the nanobubble-containing inorganic oxide fine particle dispersion of the present invention is used as an abrasive, not only the filtration rate is very fast, but also the concentration stability is excellent.
The inventor presumes that the reason why the filtration speed is fast and the concentration stability is improved is that the microgel is dispersed by the shock wave generated when the nanobubbles disappear. If the microgel disappears by being dispersed, coarse particles are further reduced, and it is considered that the surface accuracy of the polished surface is improved (reduction of scratches and the like). Furthermore, an improvement in the polishing rate is also observed.
 本発明は、上記のような本発明の製造方法によって製造されたナノバブル含有無機酸化物微粒子分散液およびそれを含む研磨剤である。 The present invention is a nanobubble-containing inorganic oxide fine particle dispersion produced by the production method of the present invention as described above and an abrasive containing the same.
 なお、このようなナノバブル含有無機酸化物微粒子分散液およびそれを含む研磨剤は、特定の無機酸化物微粒子分散液と、特定のナノバブル水溶液とを含む溶液を、特定温度に保持しつつ、(好ましくは特定時間)混合する工程を備える製造方法によって得られる物である。
 特定の温度を保持しながら(好ましくは特定時間)混合することで、ナノバブルが適切に分散させると、上記のような極めて有効な効果を発揮することを特徴とする。
 このような「適切にナノバブルが分散している状態や構造」を直接特定することは不可能である。また、それを規定する特性も存在しない。
 したがって、製造方法によって規定される上記の本発明のナノバブル含有無機酸化物微粒子分散液およびそれを含む研磨剤は、その範囲が不明確ではない。
In addition, such a nanobubble-containing inorganic oxide fine particle dispersion and an abrasive containing the same are preferably maintained while holding a solution containing a specific inorganic oxide fine particle dispersion and a specific nanobubble aqueous solution at a specific temperature (preferably Is a product obtained by a production method comprising a step of mixing for a specific time.
When the nanobubbles are appropriately dispersed by mixing while maintaining a specific temperature (preferably for a specific time), the above-described extremely effective effect is exhibited.
It is impossible to directly specify such “state and structure in which nanobubbles are appropriately dispersed”. Also, there are no characteristics that define it.
Therefore, the range of the nanobubble-containing inorganic oxide fine particle dispersion of the present invention and the abrasive containing the same specified by the production method is not clear.
 本願発明のナノバブル含有無機酸化物微粒子分散液は、該分散液中にナノバブルが存在することにより、該分散液中におけるカビ類、菌類および藻類等の発芽、発生および幼生および幼形の成長を抑制・死滅することができる。これらの数ミクロン以下の生物はナノ生物とも言われるべきもので、通常の濾過等の機械的な除去が困難であり、空気中から飛来することも容易である。このため、薬剤でこれらを死滅させることが行われているが、それ自体が有機物であり残留して汚染源になることも避けられない。
 これに対して、一般に液中に存在する数ミクロンのナノバブルは、液中で生育し繁殖したカビ類、菌類および藻類等に対して殺黴、殺菌または殺藻の効果があることが知られているが、これらの微生物が繁殖した後に数ミクロンのナノバブルを液中に添加した場合、繁殖を止めることはできるものの、微生物の残骸が大量に残存し、これらの死骸を濾別してもフィルター表面に残留した死骸の上に繁殖する。また、数ミクロンのナノバブルは寿命が数日以内なので、持続性がなく濾過後のものに対しては、フィルターをすり抜けた胞子等や空気飛来したナノ生物には効果が薄い。従って、例えば、半導体の研磨用途等では、ナノ生物の死滅のために添加した薬剤あるいは異物として残存した微生物の残骸が半導体の性能に影響を与えるおそれがあった。
 他方、該分散液中にカビ類、菌類または藻類の生育が充分に進行するより前に数ミクロン以下のナノバブルを無機微粒子分散液に加えた場合、ナノバブルが数か月以上存在するので、これら微生物の生育前の胞子ないし幼生および幼形の段階で破壊することができる。そのため、それらがフィルター面で繁殖しないので胞子、幼生および幼形等がフィルター等をすり抜けることがないばかりか、空気中から飛来して混入してもその成長が抑制され、カビ類、菌類および藻類の大量発生を抑制することが可能で、前記薬剤由来の有機物および生体由来の有機異物の残存による影響を低減させることができる。このため、例えば、本願発明のナノバブル含有無機酸化物微粒子分散液を半導体の精密回路の研磨用途に適用した場合、不良発生を抑制することができる。このため、本願発明のナノバブル含有無機酸化物微粒子の製造方法においては、Ceを含む微粒子を含む無機酸化物微粒子分散液として、カビ類、菌類および藻類が胞子または幼生および幼形段階またはそれ以前の段階のものを含む該分散液を原料として使用することが好ましい。
 なお、数ミクロン以下のナノバブルによる胞子ないし幼生等の破壊機構については、経時で自己加圧効果により気泡が縮小し崩壊する現象(ホットスポット現象)が生じて、水分子を破壊し、それにより発生するフリーラジカルが胞子ないし幼生および幼形等を構成する外表面の分子結合を破壊することによりそれらの生理活動が阻害されるものとみられている。
 ここで、用いた「幼生」および「幼形」は厳密な用語として用いたものではなく、前者が動物性、後者が植物性の生物における増殖機能を発揮できる成長の前段階の生理活動を行っている生物の総称として用いた。
 Ceのシリカに対する特異的な研磨効果は、学会等研究者の間では4価セリア粒子の表面のCe3+がシリカと特異的に反応することが通説になっている。このことが、正しいとすれば、セリア系砥粒の分散媒中に酸化性のものが含まれないことが好ましい。つまり、本願発明はセリアの酸化を抑制し、かつナノサイズの大きさの生物の生理活性を抑制することで、砥粒分散液および研磨スラリー中の基盤残留性の有機物を抑制することで半導体等の基盤の汚染を防止することができる。
The nanobubble-containing inorganic oxide fine particle dispersion of the present invention suppresses germination, generation and growth of larvae and juveniles of molds, fungi and algae in the dispersion due to the presence of nanobubbles in the dispersion・ Can be killed. These organisms of several microns or less should be called nano-organisms, and are difficult to mechanically remove by ordinary filtration or the like, and can easily fly from the air. For this reason, they are killed with drugs, but it is inevitable that the substance itself is organic and remains as a source of contamination.
In contrast, nano-bubbles of several microns that are generally present in liquids are known to have killing, sterilizing, or algicidal effects on molds, fungi, and algae grown and propagated in liquids. However, if nanobubbles of several microns are added to the solution after these microorganisms have propagated, the growth can be stopped, but a large amount of microorganism remains, and even if these dead bodies are filtered off, they remain on the filter surface. Breed on the dead carcass. In addition, since nanobubbles of several microns have a life of several days or less, they are not durable and have little effect on spores that have passed through the filter or nano organisms that have come through the air. Therefore, for example, in semiconductor polishing applications, the chemicals added for the killing of nano-organisms or the remains of microorganisms remaining as foreign substances may affect the performance of the semiconductor.
On the other hand, when nanobubbles of several microns or less are added to the inorganic fine particle dispersion before the growth of fungi, fungi or algae sufficiently in the dispersion, the nanobubbles exist for several months or more. Can be destroyed at the pre-growth spore or larvae and juvenile stages. Therefore, since they do not propagate on the filter surface, spores, larvae and juveniles do not pass through the filter etc., and even if they fly from the air and mix, their growth is suppressed, molds, fungi and algae Can be suppressed, and the influence of remaining organic substances derived from the medicine and organic foreign substances derived from the living body can be reduced. For this reason, for example, when the nanobubble-containing inorganic oxide fine particle dispersion of the present invention is applied to polishing applications for semiconductor precision circuits, the occurrence of defects can be suppressed. Therefore, in the method for producing nanobubble-containing inorganic oxide fine particles of the present invention, as the inorganic oxide fine particle dispersion containing fine particles containing Ce, molds, fungi and algae are in the spore or larval and juvenile stages or earlier. It is preferred to use the dispersion containing the stages as raw material.
The destruction mechanism of spores or larvae caused by nanobubbles of several microns or less occurs due to the phenomenon that the bubbles shrink and collapse over time due to the self-pressurization effect (hot spot phenomenon), destroying water molecules. These free radicals are thought to inhibit their physiological activities by breaking the molecular bonds on the outer surface of the spores, larvae and juveniles.
The term “larvae” and “juvenile” used here are not strict terms. They are physiological activities in the pre-growth stage where the former is animal and the latter is capable of exerting a proliferative function in plant-based organisms. Used as a general term for living organisms.
The specific polishing effect of Ce on silica is generally accepted by researchers such as academic societies as Ce 3+ on the surface of tetravalent ceria particles reacts specifically with silica. If this is correct, it is preferable that the ceria-based abrasive dispersion medium does not contain oxidizing substances. In other words, the present invention suppresses ceria oxidation and suppresses biological activity of nano-sized organisms, thereby suppressing substrate residual organic matter in the abrasive dispersion and polishing slurry. Can prevent contamination of the base.
 実施例及び比較例で用いた分析方法又は測定方法について以下に記す。 The analysis method or measurement method used in Examples and Comparative Examples is described below.
[無機酸化物微粒子の平均粒子径]
 無機酸化物微粒子の平均粒子径は、画像解析法により測定した。具体的には、透過型電子顕微鏡(株式会社日立製作所製、H-800)により、試料無機酸化物微粒子分散液を倍率25万倍で写真撮影して得られる写真投影図において、無機酸化物微粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が微粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とする。そして、短径(DS)と長径(DL)との単純平均値を、その微粒子の粒子径とする。このようにして任意の500個の微粒子について粒子径を求め、それらの平均値を無機酸化物微粒子の平均粒子径とした。
[Average particle size of inorganic oxide particles]
The average particle diameter of the inorganic oxide fine particles was measured by an image analysis method. Specifically, inorganic oxide fine particles are shown in a photograph projection view obtained by photographing a sample inorganic oxide fine particle dispersion at a magnification of 250,000 times with a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.). The longest diameter is taken as the major axis, the length is measured, and the value is taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the fine particle are obtained, and a distance between the two points is measured to obtain a minor axis (DS). The simple average value of the short diameter (DS) and the long diameter (DL) is defined as the particle diameter of the fine particles. In this way, the particle diameter was determined for any 500 fine particles, and the average value thereof was taken as the average particle diameter of the inorganic oxide fine particles.
[ナノバブルの平均気泡径と気泡個数]
 ナノバブルの平均気泡径は、液中の気泡のブラウン運動移動速度をナノ粒子4トラッキング解析法を用いて測定した。具体的には、測定試料(ナノバブル含有無機酸化物微粒子分散液)約20mLを吸引させながら測定機器(Malvern社製「ナノサイト NS300」)に注入し、ナノ粒子トラッキング解析法にて測定した。
[Average bubble size and number of bubbles]
The average bubble diameter of the nanobubbles was measured using the nanoparticle 4 tracking analysis method for the Brownian movement speed of the bubbles in the liquid. Specifically, about 20 mL of a measurement sample (nanobubble-containing inorganic oxide fine particle dispersion) was injected while being sucked into a measuring instrument (“Nanosite NS300” manufactured by Malvern) and measured by a nanoparticle tracking analysis method.
[濃縮安定性の測定方法]
 実施例又は比較例で得られた無機酸化物微粒子分散液を1Lのナスフラスコに入れ、ロータリーエバボレーターに設置し、バス温度60℃に設定した後、真空度-740mmHgにて濃縮を行った。ナスフラスコ内壁面にゲル状物が見られた時点で濃縮を止め無機酸化物ゾルを回収し、固形分濃度を測定した。
[Method of measuring concentration stability]
The inorganic oxide fine particle dispersion obtained in Examples or Comparative Examples was placed in a 1 L eggplant flask, placed in a rotary evaporator, set at a bath temperature of 60 ° C., and then concentrated at a vacuum degree of −740 mmHg. When a gel-like substance was found on the inner wall surface of the eggplant flask, the concentration was stopped and the inorganic oxide sol was recovered, and the solid content concentration was measured.
[粗大粒子の個数測定方法]
 測定試料を、ろ過助剤を含むフィルターでろ過処理する前(又は後)のコロイダルシリカスラリーを6mLのシリンジで下記測定機器に注入し、粗大粒子量を測定した。
 測定機器と測定条件は次のとおり。
測定機器:PSS社製「アキュサイザー780APS」
インジェクション・ループ・ボリューム(Injection Loop Volume):1mL
フローレート(Flow Rate):60mL/分
データ・コレクション・タイム(Data Collection Time):60 sec
チャンネル数(Number Channels):128
[Method for measuring the number of coarse particles]
The colloidal silica slurry before (or after) filtering the measurement sample with a filter containing a filter aid was injected into the following measuring device with a 6 mL syringe, and the amount of coarse particles was measured.
Measuring equipment and measuring conditions are as follows.
Measuring equipment: “Accuriser 780APS” manufactured by PSS
Injection loop volume: 1mL
Flow Rate: 60 mL / min Data Collection Time: 60 sec
Number Channels: 128
<参考例1>
 平均粒子径3nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度5質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径が200nmの1.1×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ1Hr撹拌し、ナノバブル含有無機酸化物微粒子分散液を得た。得られたナノバブル含有無機酸化物微粒子分散液を、前記濃縮安定性の測定方法に従って濃縮し、濃縮安定性を評価した。処理条件等および各測定結果を第1表に示す。
 また、得られたナノバブル含有無機酸化物微粒子分散液を、濾過フィルター(フィルター径:0.5μm)に濾過圧1mPaで濾過させたときの濾過速度は35g/分であった。フィルターを通過したナノバブル含有無機酸化物微粒子分散液についてPSS社製アキュサイザー780APSを用いて、粒子径0.51μm以上の粗大粒子の個数を測定したところ、20万個/mlであった。
<Reference Example 1>
500 g of a silica fine particle dispersion (solid content concentration 5 mass%) in which silica fine particles having an average particle diameter of 3 nm are dispersed in water is prepared, and the temperature is maintained at 20 ° C. 500 g of an aqueous solution of nanobubbles containing 1 × 10 8 / ml N 2 was added. Then, the mixture was stirred for 1 hour while maintaining the same temperature to obtain a nanobubble-containing inorganic oxide fine particle dispersion. The obtained nanobubble-containing inorganic oxide fine particle dispersion was concentrated according to the concentration stability measurement method, and the concentration stability was evaluated. Table 1 shows the processing conditions and the measurement results.
The filtration rate when the obtained nanobubble-containing inorganic oxide fine particle dispersion was filtered through a filtration filter (filter diameter: 0.5 μm) at a filtration pressure of 1 mPa was 35 g / min. The number of coarse particles having a particle diameter of 0.51 μm or more was measured using an Accusizer 780APS manufactured by PSS for the nanobubble-containing inorganic oxide fine particle dispersion that passed through the filter, and found to be 200,000 particles / ml.
<参考例2>
 平均粒子径80nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度40質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径が180nmの1.1×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ2Hr撹拌した後、得られた無機酸化物微粒子分散液を、前記濃縮安定性の測定方法に従って濃縮し、濃縮安定性を評価した。処理条件等および各測定結果を第1表に示す。
<Reference Example 2>
500 g of a silica fine particle dispersion (solid content concentration: 40% by mass) in which silica fine particles having an average particle diameter of 80 nm are dispersed in water is prepared, and the temperature is maintained at 20 ° C. 500 g of an aqueous solution of nanobubbles containing 1 × 10 8 / ml N 2 was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained inorganic oxide fine particle dispersion was concentrated according to the concentration stability measurement method, and the concentration stability was evaluated. Table 1 shows the processing conditions and the measurement results.
<参考例3>
 平均粒子径12nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度30質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径が150nmの2.2×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ2Hr撹拌した後、得られた無機酸化物微粒子分散液を、前記濃縮安定性の測定方法に従って濃縮し、濃縮安定性を評価した。処理条件等および各測定結果を第1表に示す。
<Reference Example 3>
500 g of a silica fine particle dispersion (solid content concentration of 30% by mass) in which silica fine particles having an average particle diameter of 12 nm are dispersed in water is prepared and maintained at a temperature of 20 ° C. 500 g of an aqueous nanobubble solution containing 2 × 10 8 / ml N 2 was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained inorganic oxide fine particle dispersion was concentrated according to the concentration stability measurement method, and the concentration stability was evaluated. Table 1 shows the processing conditions and the measurement results.
<参考例4>
 平均粒子径5nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度20質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径が293nmの2.0×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ2Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Reference Example 4>
500 g of a silica fine particle dispersion (solid content concentration 20% by mass) in which silica fine particles having an average particle diameter of 5 nm are dispersed in water is prepared, the temperature is kept at 20 ° C., and 2.2 with an average bubble diameter of 293 nm. 500 g of an aqueous solution of nanobubbles containing N 2 at 0 × 10 8 pieces / ml was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<参考例5>
 平均粒子径250nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度48質量%)の500gを用意し、温度を5℃に保持し、ここへ平均気泡径が80nmの5.0×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ1.5Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Reference Example 5>
500 g of a silica fine particle dispersion (solid content concentration 48 mass%) in which silica fine particles having an average particle diameter of 250 nm are dispersed in water is prepared, and the temperature is maintained at 5 ° C. 500 g of an aqueous solution of nanobubbles containing N 2 at 0 × 10 8 pieces / ml was added. Then, after stirring for 1.5 hours while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<参考例6>
 平均粒子径が20nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度:5質量%)のpHを9に維持し、温度を80℃に保ちながら、硝酸セリウム水溶液(セリア換算濃度:5質量%)を5時間かけて添加した。なお、シリカ微粒子分散液と硝酸セリウム水溶液は、SiO2/CeO2質量比=50/50となるように投入し、シリカ・セリア複合酸化物微粒子分散液(SiO2/CeO2質量比=50/50)を調製した。
 その後、限外膜にて水洗後、濃縮した。このようなSiO2・CeO2からなる無機酸化物微粒子分散液(固形分濃度:20質量%、平均粒子径25nm)を500g用意した。そして、この水溶液内に、平均気泡径が300nmの1.0×108個/mlのO2含有のナノバブルを発生させた。ナノバブルを発生させた後の溶液は1000gとなった。
 そして、溶液の温度を20℃に保持しつつ24Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Reference Example 6>
While maintaining the pH of silica fine particle dispersion (solid content concentration: 5% by mass), in which silica fine particles with an average particle size of 20 nm are dispersed in water, at 9 and maintaining the temperature at 80 ° C., an aqueous cerium nitrate solution (converted to ceria) Concentration: 5% by mass) was added over 5 hours. The silica fine particle dispersion and the cerium nitrate aqueous solution were added so that the SiO 2 / CeO 2 mass ratio = 50/50, and the silica / ceria composite oxide fine particle dispersion (SiO 2 / CeO 2 mass ratio = 50/50). 50) was prepared.
Then, it was concentrated with water after washing with an ultrafiltration membrane. 500 g of such inorganic oxide fine particle dispersion liquid (solid content concentration: 20 mass%, average particle diameter 25 nm) made of SiO 2 .CeO 2 was prepared. Then, 1.0 × 10 8 / ml O 2 -containing nanobubbles having an average bubble diameter of 300 nm were generated in this aqueous solution. The solution after generating nanobubbles was 1000 g.
Then, after stirring for 24 hours while maintaining the temperature of the solution at 20 ° C., the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<参考例7>
 平均粒子径が17nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度:5質量%)のpHを9に維持し、温度80℃を保ちながら、炭酸ジルコニウムアンモニウム水溶液(ジルコニア換算濃度:5質量%)を5時間かけて添加した。なお、シリカ微粒子分散液と炭酸ジルコニウムアンモニウム水溶液は、SiO2/ZrO2質量比=75/25となるように投入し、シリカ・ジルコニア複合微粒子分散液(SiO2/ZrO2質量比=75/25)を調製した。
 その後、限外膜にて水洗後、濃縮した。このようなSiO2・ZrO2からなる無機酸化物微粒子分散液(固形分濃度:20質量%、平均粒子径20nm)を500g用意し、温度を10℃に保持し、ここへ平均気泡径が70nmの2.0×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ2Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Reference Example 7>
Maintaining the pH of a silica fine particle dispersion (solid content concentration: 5% by mass) in which silica fine particles having an average particle diameter of 17 nm are dispersed in water at 9 and maintaining the temperature at 80 ° C., an aqueous solution of zirconium ammonium carbonate (converted to zirconia) Concentration: 5% by mass) was added over 5 hours. Incidentally, the silica particle dispersion liquid and the ammonium zirconium carbonate solution is, SiO 2 / ZrO 2 mass ratio = 75/25 and charged so that the silica-zirconia composite fine particles dispersion (SiO 2 / ZrO 2 mass ratio = 75/25 ) Was prepared.
Then, it was concentrated with water after washing with an ultrafiltration membrane. 500 g of such an inorganic oxide fine particle dispersion liquid (solid content concentration: 20 mass%, average particle diameter 20 nm) made of SiO 2 .ZrO 2 is prepared, the temperature is maintained at 10 ° C., and the average bubble diameter is 70 nm. Of nanobubble aqueous solution containing 2.0 × 10 8 particles / ml of N 2 was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<実施例1>
 平均粒子径が20nmのセリア微粒子が水に分散してなるセリア微粒子分散液(固形分濃度20質量%)の500gを用意し、温度を30℃に保持し、ここへ平均気泡径が290nmの15×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、温度30℃を保持しつつ60時間撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Example 1>
500 g of a ceria fine particle dispersion (solid content concentration 20% by mass) in which ceria fine particles having an average particle diameter of 20 nm are dispersed in water is prepared, the temperature is maintained at 30 ° C., and 15% of the average bubble diameter is 290 nm. 500 g of a nanobubble aqueous solution containing × 10 8 / ml N 2 was added. Then, after stirring for 60 hours while maintaining a temperature of 30 ° C., the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<比較例1>
 平均粒子径12nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度30質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径が150nmの2.2×108個/mlのN2含有のナノバブル水溶液500gを添加した。そして、同温度を保持しつつ0.1Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
 また、得られたナノバブル含有無機酸化物微粒子分散液を、参考例1の場合と同様に濾過フィルター(フィルター径:0.5μm)に濾過圧1mPaで濾過させたときの濾過速度は10g/分であった。フィルターを通過したナノバブル含有無機酸化物微粒子分散液についてPSS社製アキュサイザー780APSを用いて、粒子径0.51μm以上の粗大粒子の個数を測定したところ、60万個/mlであった。
<Comparative Example 1>
500 g of a silica fine particle dispersion (solid content concentration of 30% by mass) in which silica fine particles having an average particle diameter of 12 nm are dispersed in water is prepared and maintained at a temperature of 20 ° C. 500 g of an aqueous nanobubble solution containing 2 × 10 8 / ml N 2 was added. Then, after stirring for 0.1 Hr while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
Further, the filtration rate when the obtained nanobubble-containing inorganic oxide fine particle dispersion was filtered through a filtration filter (filter diameter: 0.5 μm) at a filtration pressure of 1 mPa as in Reference Example 1 was 10 g / min. there were. The number of coarse particles having a particle diameter of 0.51 μm or more was measured using an Accusizer 780APS manufactured by PSS for the nanobubble-containing inorganic oxide fine particle dispersion that passed through the filter, and the result was 600,000 particles / ml.
<比較例2>
 平均粒子径12nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度30質量%)の500gを用意し、温度を20℃に保持し、ここへ平均気泡径1000nmの2×10個/mlのN含有ナノバブル水溶液500gを添加した。そして、同温度を保持しつつ2Hr撹拌した後、得られた溶液について、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Comparative example 2>
500 g of a silica fine particle dispersion (solid content concentration of 30% by mass) in which silica fine particles with an average particle diameter of 12 nm are dispersed in water is prepared, and the temperature is kept at 20 ° C., where 2 × 10 with an average bubble diameter of 1000 nm. 4 g / ml N 2 -containing nanobubble aqueous solution 500 g was added. Then, after stirring for 2 hours while maintaining the same temperature, the obtained solution was concentrated in the same manner as in Reference Example 1. Table 1 shows the processing conditions and the results.
<比較例3>
 平均粒子径80nmのシリカ微粒子が水に分散してなるシリカ微粒子分散液(固形分濃度40質量%)の500gを用意し、温度を20℃に保持した。そしてナノバブル水溶液を添加せずに、参考例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Comparative Example 3>
500 g of a silica fine particle dispersion (solid content concentration: 40% by mass) obtained by dispersing silica fine particles having an average particle diameter of 80 nm in water was prepared, and the temperature was maintained at 20 ° C. And it concentrated similarly to the reference example 1 without adding nanobubble aqueous solution. Table 1 shows the processing conditions and the results.
<比較例4>
 平均粒子径25nmのシリカ・セリア微粒子(SiO2/CeO2質量比=50/50、固形分濃度20質量%)が水に分散してなるシリカ・セリア微粒子分散液の500gを用意し、温度を20℃に保持した。そしてナノバブル水溶液を添加せずに、参考例6と同様に濃縮した。処理条件等および結果を第1表に示す。
<Comparative example 4>
Prepare 500 g of silica / ceria fine particle dispersion in which silica / ceria fine particles (SiO 2 / CeO 2 mass ratio = 50/50, solid content concentration 20% by mass) having an average particle diameter of 25 nm are dispersed in water. Maintained at 20 ° C. And it concentrated similarly to the reference example 6 without adding nanobubble aqueous solution. Table 1 shows the processing conditions and the results.
<比較例5>
 平均粒子径20nmのシリカ・ジルコニア微粒子(SiO2/ZrO2質量比=75/25、固形分濃度20質量%)が水に分散してなるシリカ・セリア微粒子分散液の500gを用意し、温度20℃に保持した。そしてナノバブル水溶液を添加せずに、参考例7と同様に濃縮した。処理条件等および結果を第1表に示す。
<Comparative Example 5>
500 g of a silica / ceria fine particle dispersion in which silica / zirconia fine particles (SiO 2 / ZrO 2 mass ratio = 75/25, solid concentration 20 mass%) having an average particle diameter of 20 nm are dispersed in water is prepared, and the temperature is 20 Held at 0C. And it concentrated similarly to the reference example 7, without adding nanobubble aqueous solution. Table 1 shows the processing conditions and the results.
<比較例6>
 平均粒子径20nmのセリア微粒子が水に分散してなるセリア微粒子分散液(固形分濃度20質量%)の500gを用意し、温度を20℃に保持した。そしてナノバブル水溶液を添加せずに、実施例1と同様に濃縮した。処理条件等および結果を第1表に示す。
<Comparative Example 6>
500 g of a ceria fine particle dispersion (solid content concentration 20% by mass) obtained by dispersing ceria fine particles having an average particle diameter of 20 nm in water was prepared, and the temperature was maintained at 20 ° C. And it concentrated like Example 1 without adding nanobubble aqueous solution. Table 1 shows the processing conditions and the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 濃縮安定性は、同種の無機酸化物の場合、無機酸化物微粒子の粒子径(平均粒子径)と相関があるため、平均粒子径と濃縮安定性の関係をグラフ(図1)に示した。
 図1のグラフより、例えば、参考例3の場合、シリカ微粒子の平均粒子径が同等である比較例1又は比較例2に比べて、濃縮安定性に優れることがわかる。また、参考例2は、同じくシリカ微粒子の平均粒子径が同等である比較例3に比べて、濃縮安定性に優れることがわかる。
 一方、無機酸化物微粒子分散液とナノバブル水溶液との撹拌時間が比較例1のように短かったり、撹拌時の溶液温度が比較例2のように高かったりすると、濃縮安定性が劣ることがわかった。また、比較例3にようにナノバブル水溶液を用いないと、濃縮安定性に劣ることがわかった。なお、本発明によるこれらの効果は、程度の差はあるものの、シリカ微粒子以外の無機酸化物微粒子分散液でも同様に発現することを参考例6と比較例4、参考例7と比較例5、実施例1と比較例6が示している。
In the case of the same kind of inorganic oxide, the concentration stability has a correlation with the particle size (average particle size) of the inorganic oxide fine particles, so the relationship between the average particle size and the concentration stability is shown in the graph (FIG. 1).
From the graph of FIG. 1, for example, in the case of Reference Example 3, it can be seen that the concentration stability is superior to Comparative Example 1 or Comparative Example 2 in which the average particle diameter of the silica fine particles is the same. In addition, it can be seen that Reference Example 2 is superior in concentration stability as compared with Comparative Example 3 in which the average particle diameter of the silica fine particles is the same.
On the other hand, when the stirring time of the inorganic oxide fine particle dispersion and the nanobubble aqueous solution was short as in Comparative Example 1 or the solution temperature during stirring was high as in Comparative Example 2, it was found that the concentration stability was poor. . Moreover, when nanobubble aqueous solution was not used like the comparative example 3, it turned out that it is inferior to concentration stability. In addition, although these effects by this invention differ to some extent, it is expressed similarly in inorganic oxide fine particle dispersion liquids other than silica fine particles, Reference Example 6 and Comparative Example 4, Reference Example 7 and Comparative Example 5, Example 1 and Comparative Example 6 are shown.

Claims (9)

  1.  平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液と、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを含むナノバブル水溶液とを含む溶液を、5~80℃に保持しつつ、混合する工程を備える、ナノバブル含有無機酸化物微粒子分散液の製造方法。 An inorganic oxide fine particle dispersion containing fine particles containing Ce having an average particle size of 1 to 500 nm and an average bubble size of 50 to 500 nm, and at least one selected from the group consisting of N 2 and H 2 A method for producing a nanobubble-containing inorganic oxide fine particle dispersion comprising a step of mixing a solution containing a nanobubble aqueous solution containing nanobubbles, which is a non-oxidizing gas, while maintaining at 5 to 80 ° C.
  2.  前記ナノバブル水溶液が、105個/mL以上のナノバブルを含む、請求項1に記載のナノバブル含有無機酸化物微粒子分散液の製造方法。 The method for producing a nanobubble-containing inorganic oxide fine particle dispersion according to claim 1, wherein the nanobubble aqueous solution contains 10 5 / mL or more nanobubbles.
  3.  前記無機酸化物微粒子分散液の内部で前記ナノバブルを発生させることで、前記無機酸化物微粒子分散液と前記ナノバブル水溶液とを含む前記溶液を得る、請求項1または2に記載のナノバブル含有無機酸化物微粒子分散液の製造方法。 3. The nanobubble-containing inorganic oxide according to claim 1, wherein the nanobubbles are generated inside the inorganic oxide fine particle dispersion to obtain the solution containing the inorganic oxide fine particle dispersion and the nanobubble aqueous solution. 4. A method for producing a fine particle dispersion.
  4.  請求項1~3のいずれかに記載の製造方法によってナノバブル含有無機酸化物微粒子分散液を得た後、これを用いて研磨剤を得る、研磨剤の製造方法。 A method for producing an abrasive, wherein a nanobubble-containing inorganic oxide fine particle dispersion is obtained by the production method according to any one of claims 1 to 3, and then an abrasive is obtained using the dispersion.
  5.  請求項1~3のいずれかに記載の製造方法によって製造されたナノバブル含有無機酸化物微粒子分散液。 A nanobubble-containing inorganic oxide fine particle dispersion produced by the production method according to any one of claims 1 to 3.
  6.  請求項5に記載のナノバブル含有無機酸化物微粒子分散液を含む研磨剤。 An abrasive comprising the nanobubble-containing inorganic oxide fine particle dispersion according to claim 5.
  7.  5~80℃に保持しつつ、平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液へ、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを含むナノバブル水溶液を加え、混合し、その後、濾過する、無機酸化物微粒子分散液の濾過方法。 While maintaining at 5 to 80 ° C., the average particle diameter is 1 to 500 nm, and the average bubble diameter is 50 to 500 nm, and the mixture is composed of N 2 and H 2. A method for filtering an inorganic oxide fine particle dispersion, wherein a nanobubble aqueous solution containing nanobubbles that are at least one non-oxidizing gas selected from the group is added, mixed, and then filtered.
  8.  5~80℃に保持しつつ、平均粒子径が1~500nmであり、Ceを含む微粒子を含む無機酸化物微粒子分散液の内部で、平均気泡径が50~500nmであり、N2およびH2からなる群から選ばれる少なくとも1つである非酸化性ガスであるナノバブルを発生させ、混合し、その後、濾過する、無機酸化物微粒子分散液の濾過方法。 While maintaining at 5 to 80 ° C., the average particle size is 1 to 500 nm, the average bubble size is 50 to 500 nm inside the inorganic oxide fine particle dispersion containing fine particles containing Ce, and N 2 and H 2 A method for filtering an inorganic oxide fine particle dispersion, wherein nanobubbles, which are at least one non-oxidizing gas selected from the group consisting of, are generated, mixed, and then filtered.
  9.  前記ナノバブル水溶液が、105個/mL以上のナノバブルを含む、請求項7または8に記載の無機酸化物微粒子分散液の濾過方法。 The method for filtering an inorganic oxide fine particle dispersion according to claim 7 or 8, wherein the nanobubble aqueous solution contains 10 5 / mL or more nanobubbles.
PCT/JP2017/019791 2017-05-26 2017-05-26 Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof WO2018216218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019791 WO2018216218A1 (en) 2017-05-26 2017-05-26 Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019791 WO2018216218A1 (en) 2017-05-26 2017-05-26 Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof

Publications (1)

Publication Number Publication Date
WO2018216218A1 true WO2018216218A1 (en) 2018-11-29

Family

ID=64396456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019791 WO2018216218A1 (en) 2017-05-26 2017-05-26 Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof

Country Status (1)

Country Link
WO (1) WO2018216218A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505717B2 (en) 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235357A (en) * 2007-03-16 2008-10-02 Toshiba Corp Chemical and mechanical polishing method and method of manufacturing semiconductor device
JP2009111094A (en) * 2007-10-29 2009-05-21 Covalent Materials Corp Wafer mirror polishing method
JP2009111095A (en) * 2007-10-29 2009-05-21 Covalent Materials Corp Wafer lapping method
JP2010042338A (en) * 2008-08-11 2010-02-25 Aura Tec:Kk Floatation separation method of particles in liquid, and apparatus therefor
JP2011005584A (en) * 2009-06-25 2011-01-13 Olympus Corp Device and method for grinding and polishing optical element, and method for manufacturing the same
WO2015064159A1 (en) * 2013-10-31 2015-05-07 日之出産業株式会社 Microbubble formation method, and microbubble formation device
JP2015186838A (en) * 2014-03-14 2015-10-29 不二越機械工業株式会社 Workpiece polishing method and workpiece polishing device
JP6141482B1 (en) * 2016-03-28 2017-06-07 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235357A (en) * 2007-03-16 2008-10-02 Toshiba Corp Chemical and mechanical polishing method and method of manufacturing semiconductor device
JP2009111094A (en) * 2007-10-29 2009-05-21 Covalent Materials Corp Wafer mirror polishing method
JP2009111095A (en) * 2007-10-29 2009-05-21 Covalent Materials Corp Wafer lapping method
JP2010042338A (en) * 2008-08-11 2010-02-25 Aura Tec:Kk Floatation separation method of particles in liquid, and apparatus therefor
JP2011005584A (en) * 2009-06-25 2011-01-13 Olympus Corp Device and method for grinding and polishing optical element, and method for manufacturing the same
WO2015064159A1 (en) * 2013-10-31 2015-05-07 日之出産業株式会社 Microbubble formation method, and microbubble formation device
JP2015186838A (en) * 2014-03-14 2015-10-29 不二越機械工業株式会社 Workpiece polishing method and workpiece polishing device
JP6141482B1 (en) * 2016-03-28 2017-06-07 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505717B2 (en) 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same

Similar Documents

Publication Publication Date Title
Rouxel et al. Dispersion of nanoparticles: From organic solvents to polymer solutions
JP5524094B2 (en) Process for producing fumed metal oxide dispersion
JP2011211178A (en) Polishing composition
CA2469335A1 (en) Stable dispersions of nanoparticles in aqueous media
EP2106426A2 (en) Composition for polishing surface made of silicon dioxide
JP2007169120A (en) Method for dispersing carbon nanotube
WO2018216218A1 (en) Nano-bubble-containing liquid dispersion of inorganic oxide fine particles, abrasive containing same, and production methods thereof
KR19990023544A (en) Aqueous dispersion of inorganic particles and preparation method thereof
JP6141482B1 (en) Nanobubble-containing inorganic oxide fine particle dispersion, abrasive containing the same, and production method thereof
KR20210116492A (en) Titanium Phosphate Powder, White Pigment for Cosmetics
JP4435391B2 (en) Colloidal silica slurry
WO2018221304A1 (en) Nanobubble-containing inorganic oxide fine particles, and polishing agent including same
DE102016122199A1 (en) HALITE SALTS AS A SILICON CARBIDE METHOD FOR INCREASING THE CMP MATERIAL RATE OF RAPE AT SIC WAFERS
TWI715772B (en) Nanobubble-containing inorganic oxide fine particle dispersion, polishing agent containing the same, and manufacturing method thereof
TW201532963A (en) Needle-like strontium carbonate fine powder and method for producing same
JP2001348214A (en) Manufacturing method of fullerene water dispersion
JPS63310714A (en) Silica particles
WO2004063097A1 (en) Method of adding active carbon in water purification and method of water purification
Philipse Preparation of boehmite—silica colloids: Rods, spheres, needles and gels
JP2015105217A (en) Dispersion processing method of nanoparticle slurry by coarse particle addition
DE10239144A1 (en) dispersion
JP6347134B2 (en) Strontium carbonate fine powder and method for producing the same
JP2008255363A (en) Method for manufacturing humin dispersion and humin dispersion
JP2007008981A (en) Humin dispersion
KR100885520B1 (en) Fabrication method of solid particulates and solid particulates prepared by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP