WO2018214839A1 - 流速流量计与流速流量测量方法 - Google Patents

流速流量计与流速流量测量方法 Download PDF

Info

Publication number
WO2018214839A1
WO2018214839A1 PCT/CN2018/087641 CN2018087641W WO2018214839A1 WO 2018214839 A1 WO2018214839 A1 WO 2018214839A1 CN 2018087641 W CN2018087641 W CN 2018087641W WO 2018214839 A1 WO2018214839 A1 WO 2018214839A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flow rate
flow
volume
signal
Prior art date
Application number
PCT/CN2018/087641
Other languages
English (en)
French (fr)
Inventor
苏健隆
Original Assignee
苏健隆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏健隆 filed Critical 苏健隆
Publication of WO2018214839A1 publication Critical patent/WO2018214839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • This invention relates to the measurement of fluid properties, particularly with respect to flow rate flow meters.
  • the flow of the atmosphere is a natural phenomenon called wind.
  • measuring wind speed has practical applications for many industries. For example, before setting up a wind turbine, it is necessary to measure the wind farm where the address is set up in order to obtain a good wind power effect.
  • the wind field where the chimney is scheduled to be set up can also be measured to pre-calculate the diffusion rate of the exhaust gas and its mode as a basis for evaluation of environmental impact.
  • high-rise buildings such as high-rise buildings or constructing fragile buildings such as greenhouses
  • the fixed site type anemometer used mostly uses a wind turbine or a propeller.
  • Wikipedia's anemometer entries are called the wind cup type and the windmill type.
  • the principle is to measure the rotation rate of the turbine blade or the propeller blade, and then obtain the wind speed according to the corresponding relationship between the rotation rate and the wind speed.
  • these conventional anemometers have moving parts that cause wear after use, causing measurement errors.
  • the moving member itself has a mass and has a large static friction force from rest to movement, and has a large inertia. Therefore, the conventional wind speed flowmeter has the disadvantage of being unable to measure or measuring a large error at a low wind speed.
  • a flow rate flow meter comprising: an ultrasonic conversion device for receiving a fluid and emitting an ultrasonic signal; and a sound transmission channel connected to the ultrasonic conversion device for receiving and transmitting the ultrasonic wave a signal; an ultrasonic sensing device connected to the sound channel for sensing the ultrasonic signal from the sound channel to generate a volume signal; and a computing device connected to the ultrasonic sensing device for The flow rate corresponding to the volume signal is calculated corresponding to the flow rate.
  • a flow rate flow measurement method comprising: providing an ultrasonic conversion device for receiving a fluid and emitting an ultrasonic signal; providing a sound transmission channel connected to the ultrasonic conversion device for receiving and conducting The ultrasonic signal; providing an ultrasonic sensing device connected to the sound channel for sensing the ultrasonic signal from the sound channel to generate a volume signal; and for calculating a correspondence between volume and flow rate The flow rate corresponding to the volume signal.
  • the flow rate flowmeter provided according to various embodiments of the present invention does not have a moving member, can accurately measure the flow rate flow rate, and can also solve the disadvantage of excessive measurement error when the wear after long-term use and the low wind speed.
  • the flow rate meter provided by the present invention can perform long-term continuous measurement to know the long-term appearance of the wind field. Sampling measurements can also be taken every short period of time over a long period of time to save power.
  • FIG. 1 is a block schematic diagram of a flow rate flow measurement system in accordance with an embodiment of the present invention.
  • FIG. 2 is a block schematic diagram of a computing device of a flow rate flow measurement system in accordance with an embodiment of the present invention.
  • FIG. 3A is a schematic flow chart of a flow rate flow measurement method according to an embodiment of the invention.
  • FIG. 3B is a schematic flow chart of a flow rate flow measurement method according to another embodiment of the present invention.
  • FIG. 4A is a schematic diagram of an ultrasonic transducer device in accordance with an embodiment of the present invention.
  • FIG. 4B is a schematic diagram of an ultrasonic transducer according to another embodiment of the present invention.
  • FIG. 4C is a schematic cross-sectional view of the ultrasonic transducer shown in FIG. 4B.
  • FIG. 4D is a front elevational view of the ultrasonic transducer shown in FIG. 4B.
  • Figure 5A is a schematic illustration of a duct in accordance with an embodiment of the present invention.
  • Figure 5B is a schematic illustration of a duct in accordance with another embodiment of the present invention.
  • Figure 5C is a schematic illustration of a duct in accordance with another embodiment of the present invention.
  • Fig. 5D is a schematic cross-sectional view of the duct shown in Fig. 5C.
  • FIG. 5E is a schematic perspective cross-sectional view of the air duct shown in FIG. 5C.
  • 6A-6C are schematic front, side and rear views, respectively, of an array flow rate flow meter in accordance with an embodiment of the present invention.
  • 6D-6F are front, side, and rear views, respectively, of a flow hood array flow rate flow meter in accordance with an embodiment of the present invention.
  • 6G-6J are schematic diagrams of the three-dimensional, front, side and top views, respectively, of the fairing array flow rate flow meter according to an embodiment of the invention.
  • FIG. 7A and 7B are perspective views of a parametric flow rate flow meter in accordance with an embodiment of the present invention.
  • FIG. 8A and FIG. 8B are respectively a side exploded perspective view and an exploded perspective view of an ultrasonic transducer and a sound transmission channel according to an embodiment of the invention.
  • Flow rate measurement system 110, 110A, 110B ultrasonic conversion device
  • Audio Processing Logic Circuit 220 Memory
  • Step 410 Wind
  • Ultrasonic wave conversion device 421 Air inlet
  • hood 500 duct
  • duct housing 512 steady flow fin
  • Connection assembly 820 Connection base
  • tubular passage 850 electronic instrument assembly
  • FIG. 1 is a block schematic diagram of a flow rate flow measurement system in accordance with an embodiment of the present invention.
  • the flow rate flow measurement system 100 includes one or more ultrasonic conversion devices 110, corresponding one or more acoustic channels 120, at least one ultrasonic sensing device 130, air pressure sensing device 132, temperature sensing device 134, background An ultrasonic sensing device 136, a flow sensing device 138, a computing device 140 connected to the sensing devices 130-138, a communication interface device 150 connected to the computing device 140, a communication network 160, and a receiving end 170, wherein the communication Network 160 is coupled to the communication interface device 150 and the receiving end 170.
  • the above-described ultrasonic conversion device 110 is a passive device including, but not limited to, a silent whistle or a Galton whistle. After receiving a fluid such as the atmosphere, the ultrasonic transducer 110 vibrates. Among the sounds emitted, there are ultrasonic bands that are inaudible to the human ear. In general, the ultrasonic band generally refers to a frequency band exceeding 20 kHz. When the flow rate is faster, the ultrasonic signal converted by the ultrasonic converting device 110 is larger. Since the configuration of each of the ultrasonic converting devices 110 is different, the correspondence between the flow velocity and the signal magnitude of the ultrasonic converting device 110 at a certain frequency can be determined in advance in a given environment.
  • correspondences may be stored in the correspondence table or expressed by using one or more calculation formulas.
  • the present invention does not limit the form of the correspondence table and/or the calculation formula.
  • the correspondence table and/or Calculate the formula to get the flow rate usually includes parameters such as background noise, air pressure, temperature, humidity, gas composition and quality.
  • parameters such as background noise, air pressure, temperature, humidity, gas composition and quality.
  • air pressure and temperature in addition to air pressure and temperature, other environmental parameters can be considered almost consistent in the short term.
  • the sound emitted by the ultrasonic converting device 110 is transmitted to the ultrasonic sensing device 130 through the sound transmission channel 120.
  • the sound channel 120 can comprise a rigid tube.
  • the ultrasonic converting device 110 and the sound transmitting channel 120 are passive devices, and do not contain any active sound signals including the ultrasonic band. Device.
  • the ultrasonic sensing device 130 can be a microphone, particularly a highly sensitive microphone with full-band sound receiving functionality, which can be implemented using thin film or microelectromechanical forms.
  • the design of the ultrasonic sensing device 130 can be specifically targeted to the ultrasonic band, making it more sensitive than other bands.
  • the applicable frequency band of the ultrasonic sensing device 130 may only include the ultrasonic frequency band, and may also filter out signals other than a specific frequency band to reduce interference from background sounds in the environment.
  • the specific frequency band may be the frequency band most sensitive to the flow rate of the ultrasonic conversion device 110, or the specific frequency band may be the frequency band with the least attenuation among the sound transmission channels 120. In other words, the specific frequency band may be one of the best frequency-to-noise ratios among the above-mentioned pronunciation and sound channels.
  • the embodiment of the background ultrasonic sensing device 136 can be the same as the ultrasonic sensing device 130, but the background ultrasonic sensing device 136 is not connected to the aforementioned sound channel 120.
  • each of the ultrasonic sensing devices 130 can correspond to a background ultrasonic sensing device 136 to cause the corresponding background ultrasonic sensing device 136 to detect background noise of the particular frequency band.
  • the frequency band to which the background ultrasonic sensing device 136 is applied may be greater than the applicable frequency band of one of the ultrasonic sensing devices 130 to provide background noise to the plurality of ultrasonic sensing devices 130. The measured signals are compared.
  • the air pressure sensing device 132 is configured to sense the air pressure of the environment in the vicinity of the ultrasonic conversion device 110
  • the temperature sensing device 134 is configured to sense the temperature of the environment in the vicinity of the ultrasonic conversion device 110.
  • the flow direction sensing device 138 is used to sense a vector of the wind field, which may be a two-dimensional vector parallel to the surface or a three-dimensional vector.
  • the flow direction sensing device 138 can detect the aforementioned vector by means of a magnetic instrument, a gyroscope, an angular accelerometer, an accelerometer or the like.
  • the above-described air pressure sensing device 132, temperature sensing device 134, background ultrasonic sensing device 136, and/or flow sensing device 138 may be omitted in certain embodiments due to cost and space constraints.
  • the sensing results of the above sensing devices are sent to the computing device 140, and the computing device 140 can calculate the flow rate, flow rate, and/or flow direction based on the sensing results.
  • the computing device 140 can transmit the calculation result to the remote receiving end 170 via the communication network 160 via the communication interface device 150.
  • the communication network 160 can be constructed as a wired and/or wired network.
  • the communication interface device 150 and the receiving end 170 can be connected to the communication network 160.
  • FIG. 2 is a block schematic diagram of a computing device 140 of a flow rate flow measurement system 100 in accordance with an embodiment of the present invention.
  • the computing device 140 includes audio processing logic 210, at least one memory 220, and a processor 230 coupled to the audio processing logic 210 and the memory 220.
  • the processor 230 can be a conventional embedded microprocessor, such as Intel Corporation's i960 series processor or the company's Cortex M series processor, for executing a series of non-volatile computers stored in the memory 220.
  • An instruction that is, an operating system and a computer program, to perform the aforementioned calculation work, and to control each of the peripheral devices, for example, to control the switching and actuation of each peripheral device
  • the audio processing logic circuit 210 has at least one channel or receiving interface that can be used to receive a sensing signal sent by an ultrasonic sensing device 130.
  • the audio processing logic circuit 210 can also have other channels or receiving interfaces to receive the sensed signals from a background ultrasonic sensing device 136.
  • the audio processing logic circuit 210 can also have the function of controlling the ultrasonic sensing device 130 and/or the ultrasonic sensing device 136.
  • the audio processing logic circuit 210 may sample the sensing signal sent by the ultrasonic sensing device 130 and/or the background ultrasonic sensing device 136, and calculate the applicable specific frequency band by using the sampled signal.
  • the audio processing logic circuit 210 can sample the sensing signal sent by the background ultrasonic sensing device 136, and use the sampled signal to calculate the volume of the background noise.
  • the volume history record of the specific frequency band and background noise described above may be stored in the memory 220. These volume history records can be used for long-term statistics to obtain an average over a longer period of time.
  • the memory 220 can be used to store non-volatile computer instructions to provide execution by the processor 230.
  • the aforementioned correspondence table and/or calculation formula of the volume signal size and the flow rate may also be stored in the memory 220.
  • a volume history of a particular frequency band and background noise can be stored in the memory 220.
  • FIG. 3A is a schematic flowchart of a flow rate flow measurement method 300 according to an embodiment of the invention.
  • the method 300 shown in FIG. 3A can be implemented by the computing device 140 shown in FIG. 1, and more precisely, by the processor 230 shown in FIG.
  • the present invention is not limited to the order of implementation of the steps except for causal relationships. In practice, the remaining steps can also be performed between the various steps.
  • Optional step 310 Receive a flow direction to determine whether the flow direction is stable.
  • the flow direction received by this step can come from the flow direction sensing device 138.
  • the flow direction can be considered to be stable.
  • the flow direction is considered to be stable when the flow vector is maintained within one degree within one second. If the flow direction is unstable, step 310 may be repeated.
  • Optional step 320 Receive an environmental parameter to select a volume size and a flow rate correspondence.
  • the environmental variables referred to herein may include air pressure and temperature from the air pressure sensing device 132 and the temperature sensing device 134, respectively.
  • the environmental variables affecting the relationship between the volume and the flow rate are not only the two.
  • the present invention does not limit the types and the number of environmental parameters, as long as the corresponding volume and flow rate can be found according to the environmental parameters. Just fine. Under the controlled environment, even if this step 320 is not required, a preset volume size corresponding to the flow rate can be used.
  • Step 330 Receive the ultrasonic sensing result.
  • This step may receive one or more sensing results, ie, one or more ultrasonic volumes, from at least one ultrasonic sensing device 130.
  • the sampling rate of the ultrasonic sensing device 130 can be 10 times per second, and 10 sensing results can be received in one second.
  • This step 330 can be performed simultaneously with step 310.
  • step 310 determines that the flow direction is stable, the ultrasonic sensing result received in step 330 is considered valid.
  • step 310 determines that the flow direction is unstable, the ultrasonic sensing result received in step 330 is considered invalid.
  • Optional step 335 Receive background ultrasonic sensing results. Similar to step 330, only one or more sensing results are received from at least one ultrasonic sensing device 136. This step 335 can be performed simultaneously with step 330 to serve as a control group.
  • step 340 Correct the ultrasonic sensing result according to the environmental parameter.
  • the internals of the memory 220 may already have corresponding tables and/or calculation formulas for multiple correspondences of multiple sets of environmental parameters, the current environmental parameters may not directly correspond to the set of environmental parameters. Therefore, step 340 may first correct the ultrasonic sensing results for the current environmental parameters to correspond to corresponding tables and/or calculation formulas of the corresponding relationships. For example, the internals of the memory 220 have a corresponding relationship at a temperature of 20 degrees Celsius and 10 degrees Celsius, respectively, and the current environmental parameter measures a temperature of 16 degrees.
  • the ultrasonic sensing result can be first corrected to the volume corresponding to 20 degrees Celsius according to the difference between 16 degrees Celsius and 20 degrees Celsius.
  • it can also be corrected for air pressure.
  • the internal relationship of the air pressure at standard atmospheric pressure and 0.9 standard atmospheric pressure is internal to the memory 220, and the current ambient air pressure is 0.92 standard atmospheric pressure. Since 0.92 standard atmospheric pressure is closer to 0.9 standard atmospheric pressure, the ultrasonic sensing result can be first corrected to the volume corresponding to 0.9 atmospheric pressure according to the difference between 0.92 standard atmospheric pressure and 0.9 standard atmospheric pressure.
  • step 345 Correct the background ultrasonic sensing result according to the environmental parameter. Similar to step 340, although the internals of the memory 220 may already have corresponding tables and/or calculation formulas of multiple correspondences of multiple sets of environmental parameters, the current environmental parameters may not directly correspond to the set of environmental parameters. Therefore, step 345 may first correct the background ultrasonic sensing result for the current environmental parameter to correspond to the correspondence table and/or the calculation formula of the corresponding relationship.
  • step 350 calculating the ultrasonic volume according to the corrected ultrasonic sensing result and the corrected background ultrasonic sensing result. Since step 340 is optional, this step may receive the ultrasonic sensing result of step 330, and may also receive the corrected ultrasonic sensing result of step 340. In addition, since step 345 is optional, this step may receive the background ultrasonic sensing result of step 335, and may also receive the corrected background ultrasonic sensing result of step 345.
  • a plurality of center frequency ultrasonic sensing results may be received, and a plurality of background ultrasonic sensing results corresponding to the center frequency, and then the paired ultrasonic sensing results and the background ultrasonic feeling Among the measured results, find the most suitable pair to calculate the ultrasonic volume. For example, it may be a pair of ultrasonic sensing results with the best signal to noise ratio and the ultrasonic volume calculated by the background ultrasonic sensing result.
  • Step 360 Calculate the flow rate according to the volume relationship and the flow rate correspondence, and the ultrasonic volume obtained in steps 330, 340 or 350.
  • step 340 is calibrated for the volume level measured at step 330.
  • Step 350 corrects the background noise value for the measured or corrected volume level for step 330 or step 340. Therefore, the flow rate converted from the volume measured at step 350 should be better than the flow rate converted from the volume measured at step 340 or step 330. Similarly, the flow rate converted from the volume measured at step 340 should be better than the flow rate converted from the volume measured at step 330.
  • the ultrasonic volume can be obtained directly from step 330 without regard to the error or in the case of cost savings.
  • Optional step 370 If the aforementioned ultrasonic transducer device 110 is disposed in a duct such as a duct or a wind cup, the cross-sectional area and/or volume of the duct is known. This step allows you to know the instantaneous flow rate by multiplying the instantaneous flow rate by the volume of the catheter. If a more complex situation is considered, the fluid viscosity coefficient, kinematic viscosity, fluid density, and/or Reynolds number need to be measured to convert the flow rate into a flow rate given the cross-sectional area of the fluid and the conduit.
  • this step needs to take into account the characteristics of the fluid and the conduit, but in the case where the flow rate of the fluid is not high and the compression factor is negligible, the calculation of the flow can be simplified to a function related to the flow rate and the volume of the conduit.
  • Optional step 380 transmitting, by the communication interface device 150, the aforementioned observation values such as flow rate, flow rate, flow direction, and environmental variables to the receiving end 170 via the communication network 160.
  • FIG. 3B is a schematic flow chart of the variation of the flow rate flow measurement method 300 shown in FIG. 3A.
  • the flow of FIG. 3B does not include optional steps 335 and 345, the main reason being that the flow rate flow meter may not include the background ultrasonic sensing device 136. Therefore, the embodiment shown in Fig. 3B uses the background ultrasonic sensing result previously stored in the memory 220 when the background noise value simultaneously sampled by the ultrasonic sensing device 130 cannot be obtained immediately.
  • Optional step 390 Read background ultrasonic sensing results.
  • the background ultrasonic sensing result can be read from the memory 220.
  • the background ultrasonic sensing results can be read from the server via communication network device 160 via communication interface device 150. In this step, the background ultrasonic sensing result read may not directly correspond to the current environmental parameters. Therefore, optional step 395 can be continued.
  • step 395 Similar to the optional step 340 or 345, the background ultrasonic sensing result is corrected based on the environmental parameters. Similar to step 340, although the internals of the memory 220 may already have corresponding tables and/or calculation formulas of multiple correspondences of multiple sets of environmental parameters, the current environmental parameters may not directly correspond to the set of environmental parameters. Therefore, step 345 may first correct the background ultrasonic sensing result for the current environmental parameter to correspond to the correspondence table and/or the calculation formula of the corresponding relationship.
  • FIG. 4A is a schematic diagram of an ultrasonic transducer device 110 according to an embodiment of the invention.
  • the ultrasonic transducer 110 At the upper open end of the ultrasonic transducer 110, it is affected by the fluid 410, causing additional interference and noise. These induced noises are transmitted to the ultrasonic sensing device 130 along with the sound transmission channel 120, thus generating a large error.
  • the direction of the open end can be switched to the same direction as the flow direction so that the source of the ultrasonic wave is generated by the fluid flowing into the ultrasonic conversion device 110 to the maximum extent.
  • the additional interference and noise generated by the fluid outside the ultrasonic transducer 110 is reduced, that is, the error in ultrasonic conversion is reduced.
  • FIG. 4B is a schematic diagram of an ultrasonic conversion device 420 according to another embodiment of the present invention.
  • the ultrasonic converting device 420 adds a windshield outside the original open end, so that the open end has been changed to the right, which is substantially the same as the direction of the fluid 410, so as to be the largest.
  • the magnitude of the ultrasonic waves is generated by the fluid flowing into the ultrasonic transducer 420.
  • the additional interference and noise generated by the fluid outside the ultrasonic conversion device 420 is reduced, that is, the error in ultrasonic conversion is reduced.
  • the design of the hood can enhance the ultrasonic intensity generated by the ultrasonic transducer at the same flow rate.
  • FIG. 4C is a schematic cross-sectional view of the ultrasonic transducer 420 shown in FIG. 4B.
  • the flow of the fluid 410 is outside the air inlet 421 of the ultrasonic transducer 420, which encounters the wind shield 425 of the ultrasonic transducer 420 to reduce errors in ultrasonic conversion.
  • FIG. 4D is a front view of the ultrasonic conversion device 420 shown in FIG. 4B.
  • the original open end has been obscured by the windshield 425, which reduces the additional interference and noise generated by the fluid outside of the ultrasonic transducer 420, i.e., reduces errors in ultrasonic conversion.
  • FIG. 5A is a schematic diagram of a duct 500 according to an embodiment of the invention.
  • This duct 500 comprises a larger diameter duct casing 510, which is typically of the round tube type.
  • the duct 500 has one or more support brackets 520 for arranging the ultrasonic transducer 420 at or near the center of the duct casing 510.
  • the duct casing 510 has the result of rectification, propelling the flowing laminar flow into the ultrasonic transducer 420 to produce an ultrasonic signal.
  • the support frame 520 can be hollow and its space can serve as part of the sound transmission channel 120.
  • FIG. 5B is a schematic diagram of a duct 500 according to another embodiment of the present invention.
  • the duct 500 of FIG. 5B includes two ultrasonic transducers 110A and 110B.
  • any of the ultrasonic converting devices 110 of FIG. 5B can be replaced with the ultrasonic converting device 420 shown in FIGS. 4B to 4D.
  • the length of the ultrasonic converting device 110A is longer than the length of the ultrasonic converting device 110B. Therefore, it is understood that the ultrasonic band to which the ultrasonic converting device 110A is applied is lower than the ultrasonic band to which the ultrasonic converting device 110B is applied.
  • the ultrasonic wave volume measured by the ultrasonic converting device 110A is greater than the ultrasonic sound volume measured by the ultrasonic converting device 110B in the case where the wind speed is low.
  • the ultrasonic volume measured by the ultrasonic converting device 110A is more suitable for the first flow rate range, because it has a better resolution, and the flow rate within the first flow rate range can be more accurately detected.
  • the ultrasonic wave volume measured by the ultrasonic converting device 110B is more suitable for the second flow rate range, because it has a better resolution, and the flow rate in the second flow rate range can be more accurately detected, wherein the first flow rate The center flow rate of the range is less than the center flow rate of the second flow rate range.
  • step 330 can receive ultrasonic sensing results from a plurality of ultrasonic converting devices 110 or 420, and the centers of the ultrasonic frequency band ranges to which these ultrasonic converting devices 110 or 420 are applied The frequency is different.
  • the method 300 may add an optional step after the step 330 for deciding which of the applicable frequency bands to select based on the historical wind speed. For example, in the case where the wind speed is low, the ultrasonic band to which the ultrasonic converting device 110A is applied may be selected as the sensing result. In the case where the wind speed is high, the ultrasonic band to which the ultrasonic converting device 110B is applied may be selected as the sensing result.
  • the method 300 may add an optional step after the step 330, compare the total volume or the average volume of each applicable frequency band, and then select the applicable frequency band with a larger total volume or an average volume as the sensing result. .
  • the method may add an optional step after the step 330, and perform weighting operation on the ultrasonic waves measured in each applicable frequency band as a sensing result according to the historical wind speed.
  • the two ultrasonic converting devices 110A and 110B of a duct 500 respectively have an applicable frequency band of the center frequency A and an applicable frequency band of the center frequency B, which respectively correspond to the wind speed ranges of the two central wind speeds X and Y.
  • the sensing results measured by the ultrasonic converting devices 110A and 110B can be multiplied by the ratio values of
  • the corresponding scale value is used to obtain the sensed result after weighting.
  • the duct 500 is provided with one or more flow stabilizer fins 512 in addition to the duct casing 510.
  • the stabilizing fin 512 works better, the duct casing 510 of FIGS. 5A and 5B also has the same effect.
  • FIG. 5C is a schematic diagram of a duct 500 according to another embodiment of the present invention.
  • FIG. 5D is a schematic cross-sectional view of the air duct 500 shown in FIG. 5C.
  • Fig. 5D a cross section of two ultrasonic transducers 530B and 530C can be seen.
  • the ultrasonic transducers 530B and 530C have funnel-shaped air inlets 540B and 540C, respectively, in addition to the air inlets.
  • These funnel-shaped air inlets 540 allow more fluid to enter the interior of the ultrasonic transducer 530 per unit time, slightly compressing the volume of the fluid to increase the inlet pressure of the fluid, thereby increasing the volume of the ultrasonic waves.
  • the sensitivity or resolution at lower flow rates can be enhanced at the same flow rate.
  • FIG. 5E is a perspective cross-sectional view of the air duct shown in FIG. 5C.
  • the three-dimensional structure of the funnel-shaped air inlet 540 can be seen more in FIG. 5E than in FIG. 5D.
  • a plurality of ultrasonic transducers 530 having funnel-shaped air inlets 540 can be used to obtain a large average volume when the wind speed is low.
  • the analysis software is Praat, and the frequency band is 41250 to 42375 Hz.
  • step 330 can receive ultrasonic sensing results from a plurality of ultrasonic converting devices 530.
  • the method 300 may add an optional step after the step 330 to simultaneously receive the ultrasonic sensing results of the plurality of ultrasonic converting devices 530, average the volume thereof, and then adjust back. There is no volume of the funnel-shaped air inlet. If the embodiment of Fig. 5A is used, in the case where only a single ultrasonic converting device 110 is used, it is possible to obtain a supersonic sensing result with poor signal-to-noise ratio, resulting in measurement of a flow velocity with a large error.
  • FIG. 6A to FIG. 6C are schematic front, side and rear views, respectively, of the array flow rate flow meter 600 according to an embodiment of the invention.
  • the array flow rate flow meter 600 is adapted to measure the flow direction and flow rate of the horizontal plane, and includes a base 610, a vertical shaft 620 based on the base 610, a shaft body 630 connected to the vertical shaft 620, and a rear side of the shaft body 630
  • the flow fins 640 and the array assembly 650 in front of the shaft body 630 are received by the wind.
  • the shaft body 630 is rotatable relative to the vertical shaft 620, or the shaft body 630 and the vertical shaft 620 are rotated relative to the base 610. Since the shaft body 630 has the stabilizing fins 640, the array assembly 650 in front of the shaft body 630 is aligned with the source of flow.
  • the array assembly 650 includes a plurality of ultrasonic transducers, each of which may have a different length such that it has a different frequency range for the ultrasound. These ultrasonic transducers can also be of the same length so as to have the same ultrasonic frequency band.
  • the array assembly 650 has multiple ultrasonic conversion devices of different ultrasonically applicable frequency bands, reference may be made to the method of the embodiment of Figure 5B.
  • the array assembly 650 has a plurality of ultrasonic conversion devices of the same ultrasonic-applicable frequency band, reference may be made to the method of the embodiment of FIGS. 5C-5E.
  • the array assembly 650 has five ultrasonic transducers, wherein the outermost two ultrasonic transducers have the same first length and the inner side The two ultrasonic transducers have the same second length, and the intermediate ultrasonic transducer has a third length, wherein the first length is greater than the second length and the second length is greater than the third length. Since there are three sets of ultrasonic transducers of different lengths, the method of the embodiment of Fig. 5B can be selected. Also, since there are two sets of ultrasonic transducers of the same length, the method of the embodiment of Figs. 5C to 5E can be selected. One of ordinary skill in the art will appreciate that the present invention does not limit the number of ultrasonic transducers in the array assembly 650 and its length.
  • the shafts 630 of Figures 6A-6C have the apparatus 120-150 of the previous embodiment of Figure 1.
  • the power to the devices 130-150 may be provided via the base 610 and wires within the vertical shaft 620, or may be supplied via a generator set and battery on the shaft.
  • the failure intervals of the devices 130 and 140 composed of electronic components must be greater than that of the ultrasonic converting device 110 and Sound channel 120.
  • the vertical shaft 620 is very high, it is inconvenient to replace the devices 130 and 140.
  • the devices 130 and 140 can be moved to the base provided by the base 610 or the base 610, and the sound channel 120 can be designed to be long, transmitted to the device 130 via the partial shaft 630 and the vertical shaft 620. 140. Since the sound transmission channel 120 is long, a physical ultrasonic amplification mechanism such as a stethoscope can be placed at the head end of the sound transmission channel 120 near the ultrasonic conversion device 110, so that the ultrasonic wave passes through the sound transmission channel 120. After conduction, the volume level still has sufficient resolution for conversion to flow rate with a small error.
  • a physical ultrasonic amplification mechanism such as a stethoscope
  • FIG. 6D to FIG. 6F are schematic front, side and rear views, respectively, of the hood array flow rate flow meter 600 according to an embodiment of the invention.
  • the array assembly 660 of the hood array flow rate flow meter 600 shown in FIGS. 6D to 6F has an air hood, so that all the ultrasonic conversion devices are advanced.
  • the ports are all inside the collecting hood. Since the array assembly 650 does not include a collecting hood, the flow fields drawn by the ultrasonic converting devices are inconsistent.
  • the array assembly 660 of FIGS. 6D-6F has a collecting hood, which can make the flow field of the ultrasonic converting device relatively uniform and can close the reference line of the volume.
  • FIG. 6G to FIG. 6J are schematic diagrams of the three-dimensional, front, side and top views of the fairing array flow rate flow meter 600 according to an embodiment of the invention.
  • the base 610 and the vertical shaft 620 are omitted in the embodiment of FIGS. 6G to 6J.
  • the shaft body 670 shown therein has a streamlined fairing, which can reduce the fluid turbulence caused by the irregular shaft body 630, so that the flow field sucked by each ultrasonic conversion device is relatively uniform, and the shaft can be fastened.
  • the body 670 is aligned with the source of the flow field.
  • the flow direction sensing device 138 can be mounted within the shaft body 630 or 670.
  • an interlocking base may be disposed between the base 610 and the vertical shaft 620, so that the flow sensing device 138 of the device at the base 610 or the base can learn the shaft body 630 or The direction indicated by 670.
  • the flow sensing device 138 can include a vector of the shaft 630 or 670 in a manner such as a magnetic meter, a gyroscope, an angular accelerometer, an accelerometer, or the like.
  • FIG. 7A and FIG. 7B are perspective views of a parametric flow rate flow meter 700 according to an embodiment of the invention.
  • the reference flow rate flow meter 700 also includes a base 610 and a vertical shaft 720 that connects the base 610.
  • the vertical shaft 720 is rotatable relative to the base 610 on a yaw axis that is fixedly coupled to the outer ring 730.
  • the outer ring 730 is coupled to the inner ring 740 by two respective pivot points.
  • the inner ring 740 is configured to freely rotate the pitch axis about the outer ring 730.
  • the inner ring 740 is also coupled to the flow rate meter 500 by two other respective pivot points such that the flow rate meter 500 can freely rotate the roll axis about the inner ring 740.
  • the flow rate meter 500 can have two stabilizing fins as shown in Figure 5B to align the flow rate meter 500 with the flow direction.
  • the flow directions measured by the embodiments of FIGS. 7A and 7B are not only the dimensional vectors parallel to the ground plane, but the dimensional vectors.
  • the devices 110 to 150 shown in Fig. 1 may be disposed in the freely rotatable flow rate flow meter 500.
  • the required power and network lines can be supplied through the outer rings 730 and the respective pivot points of the inner ring 740.
  • the flow sensing device 138 can be implemented with a magnetic instrument at each pivot point of the device.
  • FIG. 8A and FIG. 8B are respectively a side exploded view and an exploded perspective view of the ultrasonic transducer device 110 and the sound transmission channel 120 according to an embodiment of the invention.
  • the mechanical structure 800 includes an ultrasonic transducer device 110, a connection assembly 810, a sound transmission channel 120, and an electronics assembly 850.
  • connection assembly 810 internally contains a space to set the ultrasonic conversion device 110.
  • the connection assembly 810 can include a connection base 820 having an opening 822 for connecting the sound transmission channel 120.
  • the opening 822 and the sound transmission channel 120 can be fixedly connected by using various fastening members such as threads or cassettes.
  • the sound channel 120 includes an interface 830 and a tubular passage 840 that connects the interface 830.
  • the interface 830 includes the snap member described above for attaching the opening 822 of the connection assembly.
  • the interface 830 can internally accommodate an ultrasonic physical amplifying mechanism such as a stethoscope, so that the ultrasonic wave emitted by the ultrasonic converting device 110 in the connecting assembly 810 can enter through the opening 822.
  • an ultrasonic physical amplifying mechanism such as a stethoscope
  • the amplified ultrasonic waves can be transmitted to the electronic instrument assembly 850 via the tubular passage 840 such that the device 130 in the electronic instrument assembly 850 can receive the amplified ultrasonic signals.
  • the following experiment is an amplification effect for verifying an ultrasonic physical amplification mechanism such as a stethoscope.
  • the ultrasonic conversion device was blown at a flow rate of 5, 7, 9, 11, and 13 meters per second, and the analysis software was Praat, and the analyzed frequency band was 39000-43000 Hz.
  • the ultrasonic physical amplifying mechanism such as a stethoscope can enhance the volume of the ultrasonic signal emitted by the ultrasonic converting device 110 at the same flow rate, so that the ultrasonic signal can be transmitted longer.
  • the sound channel 120 is transmitted to the ultrasonic sensing device 130. Accordingly, the ultrasonic sensing device 130 can be placed farther away from the ultrasonic converting device 110, particularly at a medium to low flow rate, while maintaining the sensitivity of the sensing.
  • the flow rate flowmeter provided according to various embodiments of the present invention does not have a moving member, can accurately measure the flow rate flow rate, and can also solve the disadvantage of excessive measurement error when the wear after long-term use and the low wind speed.
  • the flow rate meter provided by the present invention can perform long-term continuous measurement to know the long-term appearance of the wind field. Sampling measurements can also be taken every short period of time over a long period of time to save power.
  • a flow rate flow meter comprising: an ultrasonic conversion device for receiving a fluid and emitting an ultrasonic signal; and a sound transmission channel connected to the ultrasonic conversion device for receiving and transmitting the ultrasonic wave a signal; an ultrasonic sensing device connected to the sound channel for sensing the ultrasonic signal from the sound channel to generate a volume signal; and a computing device connected to the ultrasonic sensing device for The flow rate corresponding to the volume signal is calculated corresponding to the flow rate.
  • the computing device further includes calculating a flow rate based on the flow rate and the size of the ultrasonic transducer.
  • the flow rate flow meter further includes a flow direction sensing device for sensing the flow direction of the fluid.
  • the flow rate flow meter in order to transmit the measured parameters to the remote end, further includes a communication interface device coupled to the communication network and the computing device for receiving the flow rate from the computing device, the flow rate and/or Or the flow direction, and transmitted to the receiving end through the communication network.
  • the computing device in order to provide a steady flow rate of the flow field, is further configured to receive the flow direction to determine whether the flow direction is stable, and when the flow direction is stable, the ultrasonic sensing device generates the volume signal.
  • the flow rate flow meter in order to provide a more accurate measurement, further includes at least one environmental sensing device coupled to the computing device for sensing at least one environmental parameter, the computing device being further for When the flow direction is stable, from the correspondence between the volume and the flow rate of the plurality of groups, a set of correspondences most corresponding to the environmental parameters are selected.
  • the computing device in order to provide a more accurate measurement result, is further configured to correct the volume signal according to an environmental parameter corresponding to the at least one environmental parameter and the group correspondence.
  • the flow rate flow meter further includes a background ultrasonic sensing device coupled to the computing device for sensing the background while the ultrasonic sensing device senses
  • the ultrasonic volume signal is further used by the computing device to calculate the volume signal based on the ultrasonic signal and the background ultrasonic signal before calculating the flow rate.
  • the flow rate flow meter further includes at least one environmental sensing device coupled to the computing device for sensing at least one environmental parameter, the computing device being further used for self-multiple
  • the computing device being further used for self-multiple
  • a corresponding correspondence relationship corresponding to the environment parameter is selected, and the ultrasonic background volume signal is corrected according to the environmental parameter corresponding to the at least one environmental parameter and the corresponding relationship of the group.
  • the computing device is further configured to read the background ultrasonic volume signal before calculating the flow rate, and then calculate the ultrasonic signal according to the ultrasonic signal and the background ultrasonic signal. Volume signal.
  • the flow rate flow meter further includes at least one environmental sensing device coupled to the computing device for sensing at least one environmental parameter, the computing device being further used for self-multiple In the correspondence between the group volume and the flow rate, a group corresponding relationship corresponding to the environment parameter is selected, and the ultrasonic background volume signal is corrected according to the environment parameter corresponding to the at least one environment parameter and the group correspondence.
  • an environmental parameter affecting the correspondence between the volume and the wind speed may be measured, wherein the environmental parameter comprises one or any combination of the following: background noise, air pressure, temperature, humidity, gas Composition and quality.
  • the ultrasonic transducer includes a duct housing and a silent or high-altitude flute located within the duct housing.
  • the ultrasonic conversion device in order to reduce the extra noise caused by the fluid, includes a windshield at the open end such that the direction of the open end is the same as the direction of the fluid.
  • the ultrasonic transducer in order to sense a minute flow rate, includes a gas inlet having a funnel shape.
  • the sound transmission channel further includes an ultrasonic physical amplification mechanism for amplifying the ultrasonic signal of the applicable frequency band of the ultrasonic conversion device.
  • the flow rate flow meter comprises two ultrasonic conversion devices respectively having different applicable frequency bands, and the calculation device is further used for selecting the historical wind speed according to the historical wind speed.
  • the ultrasonic wave emitted by the ultrasonic conversion device generates the volume signal.
  • the flow rate flow meter includes a plurality of ultrasonic conversion devices each having a different applicable frequency band, and the computing device is further configured to compare the total volume of the different applicable frequency bands or The volume of the average volume is selected, and the ultrasonic signal emitted by the ultrasonic conversion device having a larger total volume or a larger average volume is selected to generate the volume signal.
  • the flow rate flow meter comprises two ultrasonic conversion devices respectively having different applicable frequency bands and corresponding central wind speeds
  • the computing device is further used according to the historical wind speed and the above
  • the ratio of the difference between the two central wind speeds is weighted by the sensing signals of the ultrasonic waves emitted by the two ultrasonic converting devices to generate the volume signal.
  • the flow rate flow meter in order to sense a small flow rate, further comprises N ultrasonic conversion devices having the same applicable frequency band, N being a natural number greater than one, and the computing device is further configured to receive the applicable frequency band. The sensed signal is then based on N to produce the volume signal.
  • the flow rate flow meter in order to level the flow rate sensed reference line, further includes a windshield, and the plurality of ultrasonic transducers are disposed in the windshield.
  • the flow rate flow meter further includes a base fixed to the base, a rotating vertical shaft connected to the base, and a shaft body connected to the rotating vertical shaft, the shaft body further including an array total And the at least one steady flow fin, the array assembly is configured to provide a plurality of ultrasonic conversion devices, the shaft body is rotated relative to the base, and the flow direction sensing device is configured to sense a direction of the shaft body.
  • the ultrasonic sensing device is disposed on the base or the base, and the sound transmission channel is connected to the ultrasonic sensing through the vertical axis.
  • the axle body further includes a fairing for containing the array assembly.
  • the flow rate flow meter in order to measure the flow direction of the reference dimension, further comprises a base fixed to the base, a vertical shaft connected to the base, an outer ring connected to the vertical shaft, and connected by the corresponding two rotating pivot points.
  • a flow rate flow measurement method comprising: providing an ultrasonic conversion device for receiving a fluid and emitting an ultrasonic signal; providing a sound transmission channel connected to the ultrasonic conversion device for receiving and conducting The ultrasonic signal; providing an ultrasonic sensing device connected to the sound channel for sensing the ultrasonic signal from the sound channel to generate a volume signal; and for calculating a correspondence between volume and flow rate The flow rate corresponding to the volume signal.
  • in order to provide the flow parameter it is further included to calculate the flow rate based on the flow rate and the size of the ultrasonic transducer.
  • in order to provide flow direction parameters it further includes providing a flow direction sensing device for sensing the flow direction of the fluid.
  • in order to transmit the measured parameters to the remote end further comprising providing a communication interface means coupled to the communication network and the computing device for receiving the flow rate, the flow and/or the flow direction, and by the communication The network is transmitted to the receiving end.
  • the flow direction is further received from the flow sensing device to determine whether the flow direction is stable.
  • the ultrasonic sensing device generates the volume signal.
  • the volume signal is further corrected according to an environmental parameter corresponding to the correspondence relationship of the at least one environmental parameter.
  • a background ultrasonic sensing device connected to the computing device for sensing the background ultrasonic volume while the ultrasonic sensing device senses The signal, and before calculating the flow rate, calculates the volume signal based on the ultrasonic signal and the background ultrasonic signal.
  • the background ultrasonic wave volume signal is first read before the flow rate is calculated, and the volume signal is calculated according to the ultrasonic signal and the background ultrasonic signal.
  • the volume signal is calculated according to the ultrasonic signal and the background ultrasonic signal.
  • an environmental parameter affecting the correspondence between the volume and the wind speed may be measured, wherein the environmental parameter comprises one or any combination of the following: background noise, air pressure, temperature, humidity, gas Composition and quality.
  • it further includes providing two ultrasonic conversion devices respectively having different applicable frequency bands, and according to the historical wind speed, selecting the ultrasonic wave conversion device that is suitable for the historical wind speed The ultrasonic wave produces the volume signal.
  • it further comprises providing a plurality of ultrasonic conversion devices respectively having different applicable frequency bands, and comparing the total volume or the average volume of the different applicable frequency bands, and selecting The volume signal is generated by an ultrasonic wave emitted from a supersonic converting device having a large volume or a large average volume.
  • it further includes providing two ultrasonic conversion devices respectively having different applicable frequency bands and corresponding central wind speeds, and a difference between the historical wind speeds and the two central wind speeds.
  • the proportional value is weighted by the sensing signals of the ultrasonic waves emitted by the two ultrasonic converting devices to generate the volume signal.
  • N ultrasonic conversion devices having the same applicable frequency band, N being a natural number greater than one, and receiving a sensing signal of the applicable frequency band according to N This volume signal is generated.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种流速流量测量方法,包含:提供超音波转换装置(110),用于接受流体并发出超音波信号;提供连接该超音波转换装置(110)的传音通道(120),用于接收与传导该超音波信号;提供连接该传音通道(120)的超音波感测装置(130),用于感测来自于该传音通道(120)的该超音波信号以产生音量信号;以及用于根据音量与流速的对应关系,计算该音量信号对应的流速。

Description

流速流量计与流速流量测量方法 技术领域
本发明是关于流体特性的测量,特别是关于流速流量计。
背景技术
大气的流动是一种称为风的自然现象。除了气象观测的需要以外,测量风速对于许多工业有实际的应用。例如,在设立风力发电机之前,必须对设立地址的风场进行测量,以便获得良好的风力发电效应。另外,在设立工厂通风口或大型废气烟囱之前,也可对烟囱预定设立地址的风场进行测量,以便预先计算废气的扩散速度与其模式,作为环境影响的评估基准。在建造高楼之类受风面积大的建筑物,或是建造温室之类结构脆弱的建筑物之前,也需要测量风场作为结构强度设计的依据。至于设立各式机场,也需要对跑道的设立位置测量风场。在农业应用方面,可以用来考虑风力授粉植物的种植位置,还有空中撒布农药或肥料的航线规划等。总而言之,测量大气的流速与流量对于工业、农业、气象、交通运输等各行各业,均有实际的应用。
目前所使用的固定场址型的风速计,多使用风力涡轮或螺桨等。维基百科的风速计条目中,将其分别称为风杯型与风车型。其原理是测量涡轮叶片或螺桨叶片的转动速率,然后根据转动速率与风速的对应关系,来取得风速。然而,这些传统风速计具有移动件(moving part),在使用之后会产生磨耗,造成测量的误差。除此之外,移动件本身具有质量,且在从静止到移动时的静止摩擦力较大,具有较大的惯性。因此,传统的风速流量计在低风速的情况下会有无法测量或测量误差很大的缺点。
因此,市面上需要一种没有移动件的风速流量计,能够准确地测量风速流量,还能够解决长期使用后磨耗所与低风速时具有过大测量误差的缺点。
发明内容
根据本发明一实施例,提供一种流速流量计,包含:超音波转换装置,用于接受流体并发出超音波信号;连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及连接该超音波感测装置的计算装置,用于根据音量与流速的对应关系,计算该音量信号对应的流速。
根据本发明一实施例,提供一种流速流量测量方法,包含:提供超音 波转换装置,用于接受流体并发出超音波信号;提供连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;提供连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及用于根据音量与流速的对应关系,计算该音量信号对应的流速。
根据本发明各实施例所提供的流速流量计,其并不具有移动件,能够准确地测量流速流量,还能够解决长期使用后磨耗所与低风速时具有过大测量误差的缺点。除此之外,本发明所提供的流量流速计,可以进行长期的持续测量,以得知风场的长期样貌。还可以在一段长时期之内,每隔一小段时间就进行取样测量,以便节省电力。
附图说明
图1为根据本发明一实施例的流速流量测量系统的方框示意图。
图2为根据本发明一实施例的流速流量测量系统的计算装置的方框示意图。
图3A为根据本发明一实施例的流速流量测量方法的流程示意图。
图3B为根据本发明另一实施例的流速流量测量方法的流程示意图。
图4A为根据本发明一实施例的超音波转换装置的示意图。
图4B为根据本发明另一实施例的超音波转换装置的示意图。
图4C为图4B所示的超音波转换装置的剖面示意图。
图4D为图4B所示的超音波转换装置的正面示意图。
图5A为根据本发明一实施例的风管的示意图。
图5B为根据本发明另一实施例的风管的示意图。
图5C为根据本发明另一实施例的风管的示意图。
图5D为图5C所示的风管的剖面示意图。
图5E为图5C所示的风管的立体剖面示意图。
图6A~图6C分别为根据本发明一实施例的阵列流速流量计的正面、侧面与后面示意图。
图6D~图6F分别为根据本发明一实施例的集风罩阵列流速流量计的正面、侧面与后面示意图。
图6G~图6J分别为根据本发明一实施例的整流罩阵列流速流量计的立体、正面、侧面与上面示意图。
图7A与图7B为根据本发明一实施例的参维流速流量计的立体示意图。
图8A与图8B分别为根据本发明一实施例的超音波转换装置与传音通道的侧面分解示意图与分解立体示意图。
【符合说明】
100:流速流量测量系统        110、110A、110B:超音波转换装置
120:传音通道                130:超音波感测装置
132:气压感测装置            134:温度感测装置
136:背景超音波感测装置      138:流向感测装置
140:计算装置                150:通信界面装置
160:通信网络                170:接收端
210:音频处理逻辑电路        220:内存
230:处理器                  300:流速流量测量方法
310~395:步骤               410:风
420:超音波转换装置          421:进气口
425:遮风罩                  500:风管
510:风管外壳                512:稳流鳍
520:支撑架                  530A~530C:超音波转换装置
540B、C:漏斗状的进气口      600:流速流量计
610:基座                    620:立轴
630:轴身                    640:稳流鳍
650:阵列总成                660:阵列总成
670:轴身                    700:参维流速流量计
720:立轴                    730:外环
740:内环                    800:机械结构
810:连接总成                820:连接基座
822:开口                    830:接口
840:管状通道                850:电子仪器总成
具体实施方式
本发明将详细描述一些实施例如下。然而,除了所揭露的实施例外,本发明亦可以广泛地运用在其他的实施例施行。本发明的范围并不受所述实施例的限定,乃以申请专利所要保护的范围为准。而为提供更清楚的描述及使熟悉该项技艺者能理解本发明的发明内容,图示内各部分并没有依照其相对的尺寸而绘图,某些尺寸与其他相关尺度的比例会被突显而显得夸张,且不相关的细节部分亦未完全绘出,以求图示的简洁。
请参考图1,其为根据本发明一实施例的流速流量测量系统的方框示意图。该流速流量测量系统100包含一个或多个超音波转换装置110、相应的一个或多个传音通道120、至少一个超音波感测装置130、气压感测装置132、温度感测装置134、背景超音波感测装置136、流向感测装置138、连接到上述感测装置130~138的计算装置140、连接到该计算装置140的通信界面装置150、通信网络160与接收端170,其中该通信网络160连接到该通信界面装 置150与接收端170。
上述的超音波转换装置110为一种被动装置,包含但不限于静音笛(silent whistle)或高尔顿笛(Galton whistle)等。接收到大气之类的流体之后,该超音波转换装置110会振动发声。在所发出的声音当中,包含人耳不可听的超音波频段。一般来说,超音波频段通常指的是超过20KHz的频段。而当流速越快时,超音波转换装置110所转换发出的超音波信号也就越大。由于每一种超音波转换装置110的构造不同,可以在给定的环境,事先测定该种超音波转换装置110在某一频率所具有的流速与信号大小的对应关系。这些对应关系可以储存在对应表当中,或者是使用一个或多个计算公式来表示,本发明并不限定对应表与/或计算公式的形式,只要输入信号大小,就可以根据对应表与/或计算公式得出流速。上述的给定环境,通常包含了背景噪音、气压、温度、湿度、气体成分与质量等参数。但在普通大气环境下,除了气压与温度以外,其他的环境参数在短期内几乎可以视为一致。
该超音波转换装置110所发出的声音通过传音通道120传送到该超音波感测装置130。在一实施例中,该传音通道120可以包含硬管。换言之,在超音波信号送达到该超音波感测装置130之前,该超音波转换装置110与该传音通道120皆为被动装置,并不含任何主动发出包含超音波频段在内的声音信号的装置。
该超音波感测装置130可以是麦克风,特别是具有全波段声音接收功能的高灵敏性麦克风,可以使用薄膜或微机电形式实作。该超音波感测装置130的设计可以特别针对超音波频段,使其敏感度要高于其他波段。在一实施例中,该超音波感测装置130的适用频段可以只包含超音波频段,还可以滤除某一特定频段以外的其他信号,以便减少来自环境中背景音的干扰。而该特定频段可以是该超音波转换装置110对于流速最敏感的频段,或者该特定频段可以是该传音通道120当中衰减最少的频段。换言之,该特定频段可以是在上述发音与传音通道当中,信噪比最好的一个频段。
该背景超音波感测装置136的实施方式可以与该超音波感测装置130相同,但是该背景超音波感测装置136并不连接到上述的传音通道120。在一实施例中,每一个该超音波感测装置130可以对应到一个背景超音波感测装置136,以便令所对应的背景超音波感测装置136侦测该特定频段的背景噪音。然而,受到成本与空间的限制,该背景超音波感测装置136所适用的频段可以大于某一个超音波感测装置130的适用频段,以便提供背景噪音给多个超音波感测装置130所侦测的信号进行比对。
该气压感测装置132用于感测超音波转换装置110附近环境的气压,该温度感测装置134用于感测超音波转换装置110附近环境的温度。该流向感 测装置138用于感测风场的向量,此向量可以是平行于地表的二维向量,也可以是三维向量。该流向感测装置138可以利用磁性仪、陀螺仪、角加速度计、加速度仪等方式测知前述的向量。由于受到成本与空间的限制,上述的气压感测装置132、温度感测装置134、背景超音波感测装置136与/或流向感测装置138可以在某些实施范例中省略。
上述各感测装置的感测结果会送到该计算装置140,该计算装置140可以根据这些感测结果计算出流速、流量与/或流向。接着,该计算装置140可以通过该通信界面装置150,将计算结果经由通信网络160传送到远端的接收端170。该通信网络160可以是有线与/或有线的网络所构成。该通信界面装置150与该接收端170可以连接到该通信网络160。
请参考图2所示,其为根据本发明一实施例的流速流量测量系统100的计算装置140的方框示意图。该计算装置140包含音频处理逻辑电路210、至少一个内存220、与连接至该音频处理逻辑电路210和该内存220的处理器230。该处理器230可以是常见的嵌入式微处理器,例如英代尔公司的i960系列处理器或安谋公司的Cortex M系列处理器,用于执行储存在该内存220当中一系列非挥发性的电脑指令,亦即作业系统与电脑程序,以便执行前述的计算工作,并且控制上述各周边装置,例如控制各周边装置的开关和作动与否
该音频处理逻辑电路210至少具有一个通道或接收界面,可以用于接收一个超音波感测装置130所送出的感测信号。该音频处理逻辑电路210还可以具有其他通道或接收界面,以便接收一个背景超音波感测装置136所送出的感测信号。该音频处理逻辑电路210还可以具有控制超音波感测装置130与/或超音波感测装置136的功能。
在一实施例中,该音频处理逻辑电路210可以对超音波感测装置130与/或背景超音波感测装置136所送出的感测信号进行取样,利用取样后的信号计算适用的该特定频段的音量大小。该音频处理逻辑电路210可以对背景超音波感测装置136所送出的感测信号进行取样,利用取样后的信号计算背景噪音的音量大小。上述的特定频段与背景噪音的音量历史纪录可以被储存在该内存220当中。这些音量历史纪录可以用于长期统计,以求得更长期间的平均值。
该内存220可以用于储存非挥发性的电脑指令,以提供处理器230执行。前述的音量信号大小与流速的对应表与/或计算公式,也可以储存在该内存220当中。而特定频段与背景噪音的音量历史纪录可以被储存在该内存220当中。
请参考图3A所示,其为根据本发明一实施例的流速流量测量方法300的流程示意图。该图3A所示的方法300可以由图1所示的计算装置140所实施, 更精确地说,可以由图2所示的处理器230所实施。除了有因果关系之外,本发明并不限定各步骤的实施顺序。在实作时,各个步骤之间也可以执行其余的步骤。
可选的步骤310:接收流向,以判断流向是否稳定。此步骤所接收的流向可以来自该流向感测装置138。当某一段时间内,表示流向的向量维持在一定范围内时,可以认为流向是稳定的。例如在一实施例中,在一秒之内,流向向量维持在一度之内时,可以认为流向是稳定的。如果流向不稳定时,可以重复执行步骤310。
可选的步骤320:接收环境参数,以选择音量大小与流速对应关系。这里所指的环境变数,可以包含气压与温度,分别来自于该气压感测装置132与该温度感测装置134。如前所言,影响音量大小与流速对应关系的环境变数不只是这两个,本发明并不限定环境参数的种类与个数,只要可以根据环境参数,可以找到对应的音量大小与流速对应关系即可。在控制的环境之下,甚至于不需要进行此步骤320,可以使用预设的音量大小与流速对应关系。
步骤330:接收超音波感测结果。此步骤可以自至少一个超音波感测装置130接收一个或多个感测结果,亦即一个或多个超音波音量。举例而言,超音波感测装置130的取样率可以是每秒10次,则一秒可以接收10个感测结果。此步骤330可以与步骤310同时进行,当步骤310判断流向稳定时,步骤330所接收的超音波感测结果视为有效。当步骤310判断流向不稳定时,步骤330所接收的超音波感测结果视为无效。
可选的步骤335:接收背景超音波感测结果。和步骤330类似,只是自至少一个超音波感测装置136接收一个或多个感测结果。此步骤335可以与步骤330同时进行,以便作为对照组。
可选的步骤340:根据环境参数,校正超音波感测结果。虽然内存220内部可能已经具有多组环境参数的多个对应关系的对应表与/或计算公式,但当前的环境参数可能没有直接对应到这些组环境参数。因此,步骤340可以针对当前的环境参数,先校正超音波感测结果,使其对应到这些对应关系的对应表与/或计算公式。比方说,内存220内部分别具有在温度为摄氏20度与摄氏10度下的对应关系,而当前的环境参数测得的温度为16度。由于摄氏16度较接近于摄氏20度,可以先将超音波感测结果先根据摄氏16度与20度的差距,先校正至摄氏20度所对应音量大小。除了温度以外,还可以针对气压进行校正。举例而言,在内存220内部分别具有在气压在标准大气压与0.9个标准大气压的对应关系,而当前的环境参数测得的气压为0.92个标准大气压。由于0.92个标准大气压较接近0.9个标准大气压,可以先将超音波感测结果先根据0.92个标准大气压与0.9个标准大气压的差距,先校 正至0.9个大气压时所对应的音量大小。
可选的步骤345:根据环境参数,校正背景超音波感测结果。和步骤340类似,虽然内存220内部可能已经具有多组环境参数的多个对应关系的对应表与/或计算公式,但当前的环境参数可能没有直接对应到这些组环境参数。因此,步骤345可以针对当前的环境参数,先校正背景超音波感测结果,使其对应到这些对应关系的对应表与/或计算公式。
可选的步骤350:根据校正后的超音波感测结果与校正后的背景超音波感测结果,计算超音波音量。由于步骤340是可选的,因此本步骤可以接收步骤330的超音波感测结果,也可以接收步骤340的校正后的超音波感测结果。另外,由于步骤345是可选的,因此本步骤可以接收步骤335的背景超音波感测结果,也可以接收步骤345的校正后的背景超音波感测结果。在一实施例中,可以接收多个中心频率的超音波感测结果,与相对应中心频率的多个背景超音波感测结果,然后在这些成对的超音波感测结果与背景超音波感测结果当中,找出最适合的一对来计算超音波音量。举例来说,可以是信噪比最佳的一对超音波感测结果与背景超音波感测结果所计算得到的超音波音量。
步骤360:根据音量大小与流速对应关系,以及步骤330、340或350所得到的超音波音量,计算流速。如前所述,步骤340针对步骤330所测得的音量大小进行过校正。步骤350针对步骤330或步骤340所测得或所校正的音量大小针对背景噪音值进行过校正。所以,从步骤350所测得音量大小所转换的流速,应该要优于从步骤340或步骤330所测得音量大小所转换的流速。同理,,从步骤340所测得音量大小所转换的流速,应该要优于从步骤330所测得音量大小所转换的流速。但是在不在乎误差的情况下,或是在节省成本的情况下,可以直接自步骤330取得超音波音量。
可选的步骤370:如果前述的超音波转换装置110是设置于风管或风杯之类的导管当中时,该导管的截面积与/或体积是已知的。此步骤可以把瞬间流速乘以该导管的体积,就可以得知瞬间流量。如果考虑到更复杂的情况,则需要对流体粘滞系数、运动粘度、流体密度与/或雷诺数等进行测定,可以在给定的流体与导管截面积的情况下,将流速转换成为流量。这步骤的实施需要考虑到流体与导管的特性,但在流体的流速不高,压缩系数可以忽略的情况下,流量的计算可以简化成与流速和导管体积相关的函数。
可选的步骤380:通过通信界面装置150,将前述的流速、流量、流向、环境变数等观测值,通过通信网络160传送至接收端170。
请参考图3B所示,其为图3A所示的流速流量测量方法300的变化的流程示意图。和图3A相比,图3B的流程并不包含可选的步骤335与345,其主因是该流速流量计可能不包含背景超音波感测装置136。因此,在不能即时取 得在超音波感测装置130取样同时的背景噪音值时,图3B所示的实施例使用了事先储存在内存220当中的背景超音波感测结果。
可选的步骤390:读取背景超音波感测结果。在一实施例当中,可以自内存220当中读取背景超音波感测结果。在另一实施例当中,可以通过通信界面装置150,通过通信网络160自服务器读取背景超音波感测结果。在此步骤当中,所读取的背景超音波感测结果未必能直接对应到当前的环境参数。因此,可以继续进行可选的步骤395。
可选的步骤395:和可选的步骤340或345相似,根据环境参数,校正背景超音波感测结果。和步骤340类似,虽然内存220内部可能已经具有多组环境参数的多个对应关系的对应表与/或计算公式,但当前的环境参数可能没有直接对应到这些组环境参数。因此,步骤345可以针对当前的环境参数,先校正背景超音波感测结果,使其对应到这些对应关系的对应表与/或计算公式。
请参考图4A所示,其为根据本发明一实施例的超音波转换装置110的示意图。在超音波转换装置110的上方开口端,会受到流体410的影响,导致额外的干扰与噪音。这些衍生噪音会随着传音通道120传送至超音波感测装置130,于是会产生较大的误差。为了解决这个问题,可以将开口端的方向转换至与流向同一方向,以便最大幅度地使得超音波的来源是由流进超音波转换装置110的流体所产生。减少超音波转换装置110之外流体所产生额外的干扰与噪音,亦即减少超音波转换时的误差。
请参考图4B所示,其为根据本发明另一实施例的超音波转换装置420的示意图。与图4A所示的超音波转换装置110相比,该超音波转换装置420在原本开口端之外加上遮风罩,使得开口端已经改至右方,与流体410的方向大致相同,以便最大幅度地使得超音波的来源是由流进超音波转换装置420的流体所产生。减少超音波转换装置420之外流体所产生额外的干扰与噪音,亦即减少超音波转换时的误差。换言之,遮风罩的设计可以增强相同流速下,超音波转换装置所产生的超音波强度。
请参考下表所示,其为控制组(超音波转换装置110)与遮风罩组(超音波转换装置420)所做的对照实验。其分别以流速每秒5、7、9、11、13米的相同流体进行实验,所使用的分析软件为Praat,分析的频段为41250~42375Hz,其产生的实验结果如下:
Figure PCTCN2018087641-appb-000001
Figure PCTCN2018087641-appb-000002
上述的实验若是以快速傅立叶转换(FFT,Fast Fourier Transformation)软件来记录的话,则在频段为41250Hz的情况下,可以得到以下的实验结果:
Figure PCTCN2018087641-appb-000003
请参考图4C所示,其为图4B所示的超音波转换装置420的剖面示意图。流体410的流向在超音波转换装置420的进气口421之外,它会遇上超音波转换装置420的遮风罩425,以便减少超音波转换时的误差。
请参考图4D所示,其为图4B所示的超音波转换装置420的正面示意图。可以自图4D看到,原本的开口端已经被遮风罩425所遮挡,而减少超音波转换装置420之外流体所产生额外的干扰与噪音,亦即减少超音波转换时的误差。
请参考图5A所示,其为根据本发明一实施例的风管500的示意图。此风管500包含直径较大的风管外壳510,该风管外壳510通常是圆管型。该风管500具有一个或多个支撑架520,用于将超音波转换装置420设置于该风管外壳510的中心位置或其附近。流体经过该风管500附近时,该风管外壳510具有整流的结果,将顺流过的层流推进该超音波转换装置420以内,以便产生超音波信号。该支撑架520可以是中空的,其空间可以充当传音通道120的一部份。
请参考图5B所示,其为根据本发明另一实施例的风管500的示意图。与图5A相比,图5B的该风管500包含了两个超音波转换装置110A与110B。在一变化中,图5B的任一超音波转换装置110可以改用图4B~图4D所示的超音波转换装置420。从图5B所见,超音波转换装置110A的长度较超音波转换装置110B的长度来得长。因此,可知超音波转换装置110A所适用的超音波频段要比超音波转换装置110B所适用的超音波频段来得低。在一实施例当中,在风速较低的情况之下,超音波转换装置110A所测得的超音波音量要大于超音波转换装置110B所测得的超音波音量。换言之,超音波转换装置110A所测得的超音波音量较适用于第一流速范围内,因为其有较佳的分辨率,可以较精确地测知该第一流速范围内的流速。而超音波转换装置110B所测 得的超音波音量较适用于第二流速范围内,因为其有较佳的分辨率,可以较精确地测知该第二流速范围内的流速,其中第一流速范围的中心流速要小于第二流速范围的中心流速。
回头参考图3A与图3B的实施例,步骤330可以接收来自多个超音波转换装置110或420的超音波感测结果,而这些超音波转换装置110或420所适用的超音波频段范围的中心频率是有高低不同的。在一实施例中,该方法300可以在该步骤330之后加入可选的步骤,用于根据历史风速,来决定选择哪一个适用频段。例如在风速较低的情况下,可以选用超音波转换装置110A所适用的超音波频段作为感测结果。在风速较高的情况下,可以选用超音波转换装置110B所适用的超音波频段作为感测结果。
在一实施例中,该方法300可以在该步骤330之后加入可选的步骤,比较各个适用频段的总音量或平均音量的大小,然后选择总音量或平均音量较大的适用频段作为感测结果。
在一实施例中,该方法可以在该步骤330之后加入可选的步骤,根据历史风速,对各适用频段所测得的超音波进行加权运算作为感测结果。例如,某风管500的两个超音波转换装置110A与110B分别具有中心频率A的适用频段与中心频率B的适用频段,其分别对应至两个中心风速为X与Y的风速范围。当历史风速为Z,介于X与Y之间时,可以分别以|Z-X|与|Y-Z|占用|Y-X|的比例值,各自将超音波转换装置110A与110B所测得的感测结果乘以相应的比例值,以得到加权之后的感测结果。
回到图5B的实施例,该风管500在风管外壳510以外还设置了一个或多个稳流鳍512。在具有转向架的情况下,流体流经该稳流鳍512时,会施加不同的压力令风管500转向至正对流向的位置。尽管稳流鳍512效果比较好,但图5A与图5B的风管外壳510也具有相同的效果。
请参考图5C所示,其为根据本发明另一实施例的风管500的示意图。在该风管500内具有三个超音波转换装置530A~530C,其位置是沿着风管500中心轴平均分布。
请参考图5D所示,其为图5C所示的风管500的剖面示意图。在图5D当中,可以见到两个超音波转换装置530B与530C的剖面。和图4A与图4B的实施例相比,超音波转换装置530B与530C在进气口之外,还分别具有漏斗状的进气口540B与540C。这些漏斗状的进气口540可以在单位时间内让更多的流体进入超音波转换装置530的内部,稍微压缩流体的体积,以便于提高流体的进气压力,进而提高超音波音量。除此之外,可以在相同流速条件下,增强在较低流速时的灵敏度或解析度。
请参考图5E所示,其为图5C所示的风管的立体剖面示意图。与图5D相比,图5E更可以看见漏斗状进气口540的立体结构。图5C~图5E的实施例, 可以在风速较低的情况下,利用多个具有漏斗状进气道540的超音波转换装置530,来取得较大的平均音量。
以下是以流速每秒5、7、9米的情况下进行对照实验的结果,分析软件为Praat,频段为41250~42375Hz。
Figure PCTCN2018087641-appb-000004
回头参考图3A与图3B的实施例,步骤330可以接收来自多个超音波转换装置530的超音波感测结果。在一实施例中,该方法300可以在该步骤330之后加入可选的步骤,用于同时接收多个超音波转换装置530的超音波感测结果,再将其音量进行平均,接着再调整回未具有漏斗状进气口的音量。如果使用如图5A的实施例,在只使用单一超音波转换装置110的情况下,可能得到信噪比较差的超音波感测结果,导致测量出误差较大的流速。
请参考图6A~图6C所示,其分别为根据本发明一实施例的阵列流速流量计600的正面、侧面与后面示意图。该阵列流速流量计600适用于测量水平面的流向与流速,其包含基座610、奠基于该基座610的立轴620、连接于该立轴620的轴身630、在该轴身630受风后方的稳流鳍640以及在该轴身630受风前方的阵列总成650。该轴身630可以相对于该立轴620而转动,或是该轴身630与该立轴620相对于该基座610而转动。由于该轴身630具有稳流鳍640的缘故,会使得该轴身630前方的阵列总成650对准流向来源。
该阵列总成650内包含多个超音波转换装置,这些超音波转换装置可以分别具有不同的长度,以至于具有不同的超音波适用频段。这些超音波转换装置也可以具有相同的长度,以至于具有相同的超音波适用频段。当该阵列总成650具有不同的超音波适用频段的多个超音波转换装置时,可以参考图5B实施例的方法。当该阵列总成650具有相同的超音波适用频段的多个超音波转换装置时,可以参考图5C~图5E实施例的方法。
在一实施例中,例如图6A~图6C的实施例当中,该阵列总成650具有五个超音波转换装置,其中最外侧的两个超音波转换装置具有相同的第一长度,而较内侧的两个超音波转换装置具有相同的第二长度,中间的超音波转换装置具有第三长度,其中第一长度大于第二长度,而第二长度大于第三长度。由于具有三组不同长度的超音波转换装置,可以选用图5B实施例的方法。也由于具有两组相同长度的超音波转换装置,还可以选用图5C~图5E实施例的方法。本领域普通技术人员可以理解到,本发明不限定该阵列 总成650当中超音波转换装置的个数与其长度。
在一实施例中,图6A~图6C的轴身630上具有前述图1实施例的装置120~150。在该实施例当中,这些装置130~150的供电可以经由基座610与立轴620内部的电线来提供,也可以经由轴身上的发电机组与电池来供应。在此实施例中,由于阵列总成650上的超音波转换装置110与传音通道120并没有移动件,由电子零件构成的装置130与140的故障间隔时间必定要大于超音波转换装置110与传音通道120。当立轴620非常高的时候,要更换装置130与140势必较为麻烦。
在另一实施例当中,可以将装置130与140移到基座610或基座610设置的基地,并且将传音通道120设计得较长,经由部分轴身630与立轴620传递到装置130与140。由于传音通道120较长,所以可以在传音通道120的头端,在接近超音波转换装置110的地方放置如听诊器之类的物理性超音波放大机构,使得超音波在经由传音通道120传导之后,其音量大小仍然具有足够的解析度可用于转换为流速,且具有较小的误差。
请参考图6D~图6F所示,其分别为根据本发明一实施例的集风罩阵列流速流量计600的正面、侧面与后面示意图。和图6A~图6C的阵列总成650相比,图6D~图6F所示的集风罩阵列流速流量计600的阵列总成660多了一个集风罩,使得所有超音波转换装置的进气口都在该集风罩内部。由于阵列总成650并没有包含集风罩,因此各超音波转换装置所吸入的流场较不一致。而图6D~图6F的阵列总成660具有集风罩,可以令超音波转换装置的流场较为一致,可以拉近音量的基准线。
请参考图6G~图6J所示,其分别为根据本发明一实施例的整流罩阵列流速流量计600的立体、正面、侧面与上面示意图。和图6A~图6F的实施例相比,图6G~图6J实施例省略了基座610与立轴620。其所示的轴身670具有流线型的整流罩,可以减低不规则的轴身630所造成的流体紊流,使得通过各超音波转换装置所吸入的流场较为一致,并且可以较快地令轴身670对准流场来源。
在图6A~图6J的各实施例中,流向感测装置138可以装在轴身630或670当中。在一实施例当中,在基座610与立轴620之间可以设有连动基座,使得装置在基座610或基地的流向感测装置138可以通过该连动基座得知轴身630或670所指的方向。在一实施例中,该流向感测装置138可以包含磁性仪、陀螺仪、角加速度计、加速度仪等方式测知轴身630或670的向量。
请参考图7A与图7B所示,其为根据本发明一实施例的参维流速流量计700的立体示意图。该参维流速流量计700同样包含基座610与连接该基座610的立轴720。该立轴720可以相对于基座610在偏航(yaw)轴转动,其固定连接于外环730。该外环730通过两个相应的转动支点与内环740连接。使得 该内环740可以绕着该外环730进行俯仰(pitch)轴的自由转动。该内环740也同样通过另外两个相应的转动支点与流速流量计500连接,使得该流速流量计500可以绕着该内环740进行滚转(roll)轴的自由转动。该流速流量计500可以如图5B所示,具有两个稳流鳍,以便使得流速流量计500对准流向。
和图6A~图6J的各实施例不同,图7A与图7B的实施例所测得的流向并不只有平行于地平面的贰维向量,而是参维向量。也由于传音通道120要通过这四个转动支点传导到基座610的设计相当困难,图1所示的装置110~150可能都要装置在可以自由转动的流速流量计500当中。其所需电力与网络线可以通过该外环730与内环740的各转动支点供应。在某实施例中,该流向感测装置138可以用装置在各转动支点的磁性仪实施。
请图8A与图8B所示,其分别为根据本发明一实施例的超音波转换装置110与传音通道120的侧面分解示意图与分解立体示意图。该机械结构800包含超音波转换装置110、连接总成810、传音通道120与电子仪器总成850。
该连接总成810内部包含空间以设置该超音波转换装置110。该连接总成810可以包含连接基座820,该连接基座820具有开口822,用于连接该传音通道120。该开口822与该传音通道120可以利用螺纹或卡榫等各种卡扣件加以固定连接。
该传音通道120包含接口830与连接该接口830的管状通道840。该接口830包含上述的卡扣件,以便连接该连接总成的开口822。在一实施例中,该接口830内部可以容纳如听诊器之类的超音波物理性放大机构,使得该连接总成810内的超音波转换装置110所发出的超音波,可以借由该开口822进入到超音波物理性放大机构。而放大后的超音波可以借由该管状通道840传送到该电子仪器总成850,使得在该电子仪器总成850当中的装置130得以接收放大后的超音波信号。
以下实验是用于验证听诊器之类的超音波物理性放大机构的放大效果。在实验中,分别以每秒5、7、9、11、13米的流速吹向超音波转换装置,分析软件为Praat,分析的频段为39000-43000Hz。可以从实验结果看到,听诊器之类的超音波物理性放大机构在相同的流速下,可以增强超音波转换装置110所发出的超音波信号的音量,以便让超音波信号借由更长的传音通道120传送到超音波感测装置130。据此,就能让超音波感测装置130装置在距离超音波转换装置110更远的地方,特别是在中低流速的情况下,还能保持感测的灵敏度。
Figure PCTCN2018087641-appb-000005
Figure PCTCN2018087641-appb-000006
根据本发明各实施例所提供的流速流量计,其并不具有移动件,能够准确地测量流速流量,还能够解决长期使用后磨耗所与低风速时具有过大测量误差的缺点。除此之外,本发明所提供的流量流速计,可以进行长期的持续测量,以得知风场的长期样貌。还可以在一段长时期之内,每隔一小段时间就进行取样测量,以便节省电力。
根据本发明一实施例,提供一种流速流量计,包含:超音波转换装置,用于接受流体并发出超音波信号;连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及连接该超音波感测装置的计算装置,用于根据音量与流速的对应关系,计算该音量信号对应的流速。
在该实施例中,为了提供流量参数,该计算装置更包含根据该流速与该超音波转换装置的尺寸,计算流量。在该实施例中,为了提供流向参数,该流速流量计更包含流向感测装置,用于感测该流体的流向。在该实施例中,为了将测量的参数传送至远端,该流速流量计更包含连接至通信网络与该计算装置的通信界面装置,用于接收来自该计算装置的该流速、该流量与/或该流向,并且通过该通信网络传送至接收端。
在该实施例中,为了提供稳定流场的流速,该计算装置更用于接收该流向,以判断该流向是否稳定,当该流向稳定时,令该超音波感测装置产生该音量信号。在该实施例中,为了提供更精确的测量结果,该流速流量计更包含连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,该计算装置更用于当该流向稳定时,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系。在该实施例中,为了提供更精确的测量结果,该计算装置更用于根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该音量信号。
在该实施例中,为了提供更精确的测量结果,该流速流量计更包含连接至该计算装置的背景超音波感测装置,用于在该超音波感测装置感测的同时,感测背景超音波音量信号,该计算装置更用于在计算该流速之前,先根据该超音波信号与该背景超音波信号来计算该音量信号。在该实施例中,为了提供更精确的测量结果,该流速流量计更包含连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,该计算装置更用于自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数, 校正该超音波背景音量信号。
在该实施例中,为了提供更精确的测量结果,该计算装置更用于在计算该流速之前,先读取背景超音波音量信号,再根据该超音波信号与该背景超音波信号来计算该音量信号。在该实施例中,为了提供更精确的测量结果,该流速流量计更包含连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,该计算装置更用于自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该超音波背景音量信号。
在该实施例中,为了提供更精确的测量结果,可以测量影响音量与风速对应关系的环境参数,其中该环境参数包含下列其中之一或其任意组合:背景噪音、气压、温度、湿度、气体成分与质量。
在该实施例中,为了提供简单的实施方案,该超音波转换装置包含风管外壳与位于该风管外壳之内的静音笛或高尔顿笛。在该实施例中,为了减少流体造成的额外噪音,该超音波转换装置包含开口端的遮风罩,使得开口端的方向与该流体的方向相同。在该实施例中,为了感测微小的流速,该超音波转换装置包含具有漏斗状的进气口。
在该实施例中,为了令电子装置能够设置在基地或基座上,该传音通道更包含超音波物理放大机构,用于放大该超音波转换装置的适用频段的超音波信号。
在该实施例中,为了提供更精确的测量结果,该流速流量计包含两个超音波转换装置,其分别具有不同的适用频段,该计算装置更用于依据历史风速,选用该历史风速较适用的超音波转换装置所发出的超音波来产生该音量信号。
在该实施例中,为了提供更精确的测量结果,该流速流量计包含多个超音波转换装置,其分别具有不同的适用频段,该计算装置更用于比较该不同的适用频段的总音量或平均音量的大小,并且选择总音量或平均音量较大的超音波转换装置所发出的超音波来产生该音量信号。
在该实施例中,为了提供更精确的测量结果,该流速流量计包含两个超音波转换装置,其分别具有不同的适用频段与其对应的中心风速,该计算装置更用于依据历史风速与上述两个中心风速的差值的比例值,将该两个超音波转换装置所发出的超音波的感测信号进行权重加成以产生该音量信号。
在该实施例中,为了感测微小的流速,该流速流量计更包含N个超音波转换装置,其具有相同的适用频段,N为大于一的自然数,该计算装置更用于接收该适用频段的感测信号后根据N以产生该音量信号。
在该实施例中,为了拉平流速感测的基准线,该流速流量计更包含集 风罩,该集风罩内设置多个超音波转换装置。
在该实施例中,为了测量贰维流向,该流速流量计更包含基座以固定于基地、连接于该基座的旋转立轴、连接于该旋转立轴的轴身,该轴身更包含阵列总成与至少一个稳流鳍,该阵列总成用于设置多个超音波转换装置,该轴身相对于该基座旋转,该流向感测装置用于感测该轴身的方向。在该实施例中,为了令电子装置能够设置在基地或基座上,该超音波感测装置是设置于该基座或该基地,该传音通道是通过该立轴连接至该超音波感测装置。在该实施例中,该轴身更包含一个整流罩,用于包含该阵列总成。
在该实施例中,为了测量参维流向,该流速流量计更包含基座以固定于基地、连接于该基座的立轴、连接于该立轴的外环、通过相对应的两个转动支点连接该外环的内环、以及通过相对应的另外两个转动支点连接该内环的风管外壳,其中该风管外壳之外包含至少一个稳流鳍,该超音波转换装置设置于该风管外壳之内,该流向感测装置用于感测该超音波转换装置的方向。
根据本发明一实施例,提供一种流速流量测量方法,包含:提供超音波转换装置,用于接受流体并发出超音波信号;提供连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;提供连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及用于根据音量与流速的对应关系,计算该音量信号对应的流速。
在该实施例中,为了提供流量参数,更包含根据该流速与该超音波转换装置的尺寸,计算流量。在该实施例中,为了提供流向参数,更包含提供流向感测装置,用于感测该流体的流向。在该实施例中,为了将测量的参数传送至远端,更包含提供连接至通信网络与该计算装置的通信界面装置,用于接收该流速、该流量与/或该流向,并且通过该通信网络传送至接收端。
在该实施例中,为了提供稳定流场的流速,更包含自该流向感测装置接收该流向,以判断该流向是否稳定,当该流向稳定时,令该超音波感测装置产生该音量信号。在该实施例中,为了提供更精确的测量结果,更包含提供至少一个环境感测装置,用于感测至少一个环境参数,以及当该流向稳定时,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系。在该实施例中,为了提供更精确的测量结果,更包含根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该音量信号。
在该实施例中,为了提供更精确的测量结果,更包含提供连接至该计算装置的背景超音波感测装置,用于在该超音波感测装置感测的同时,感测背景超音波音量信号,以及在计算该流速之前,先根据该超音波信号与 该背景超音波信号来计算该音量信号。在该实施例中,为了提供更精确的测量结果,更包含提供连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该超音波背景音量信号。
在该实施例中,为了提供更精确的测量结果,更包含在计算该流速之前,先读取背景超音波音量信号,再根据该超音波信号与该背景超音波信号来计算该音量信号。在该实施例中,为了提供更精确的测量结果,更包含提供连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该超音波背景音量信号。
在该实施例中,为了提供更精确的测量结果,可以测量影响音量与风速对应关系的环境参数,其中该环境参数包含下列其中之一或其任意组合:背景噪音、气压、温度、湿度、气体成分与质量。
在该实施例中,为了提供更精确的测量结果,更包含提供两个超音波转换装置,其分别具有不同的适用频段,以及依据历史风速,选用该历史风速较适用的超音波转换装置所发出的超音波来产生该音量信号。
在该实施例中,为了提供更精确的测量结果,更包含提供多个超音波转换装置,其分别具有不同的适用频段,以及比较该不同的适用频段的总音量或平均音量的大小,并且选择总音量或平均音量较大的超音波转换装置所发出的超音波来产生该音量信号。
在该实施例中,为了提供更精确的测量结果,更包含提供两个超音波转换装置,其分别具有不同的适用频段与其对应的中心风速,以及依据历史风速与上述两个中心风速的差值的比例值,将该两个超音波转换装置所发出的超音波的感测信号进行权重加成以产生该音量信号。
在该实施例中,为了感测微小的流速,更包含提供N个超音波转换装置,其具有相同的适用频段,N为大于一的自然数,以及接收该适用频段的感测信号后根据N以产生该音量信号。

Claims (39)

  1. 一种流速流量计,其特征在于包含:
    超音波转换装置,用于接受流体并发出超音波信号;
    连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;
    连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及
    连接该超音波感测装置的计算装置,用于根据音量与流速的对应关系,计算该音量信号对应的流速。
  2. 根据权利要求1所述的流速流量计,其特征在于:其中该计算装置更包含根据该流速与该超音波转换装置的尺寸,计算流量。
  3. 根据权利要求2所述的流速流量计,其特征在于:更包含流向感测装置,用于感测该流体的流向。
  4. 根据权利要求3所述的流速流量计,其特征在于:更包含连接至通信网络与该计算装置的通信界面装置,用于接收来自该计算装置的该流速、该流量与/或该流向,并且通过该通信网络传送至接收端。
  5. 根据权利要求3所述的流速流量计,其特征在于:其中该计算装置更用于接收该流向,以判断该流向是否稳定,当该流向稳定时,令该超音波感测装置产生该音量信号。
  6. 根据权利要求5所述的流速流量计,其特征在于:更包含连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,该计算装置更用于当该流向稳定时,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系。
  7. 根据权利要求6所述的流速流量计,其特征在于:其中该计算装置更用于根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该音量信号。
  8. 根据权利要求1所述的流速流量计,其特征在于:更包含连接至该计算装置的背景超音波感测装置,用于在该超音波感测装置感测的同时,感测背景超音波音量信号,该计算装置更用于在计算该流速之前,先根据该超音波信号与该背景超音波信号来计算该音量信号。
  9. 根据权利要求1所述的流速流量计,其特征在于:其中该计算装置更用于在计算该流速之前,先读取背景超音波音量信号,再根据该超音波信号与该背景超音波信号来计算该音量信号。
  10. 根据权利要求8或9所述的流速流量计,其特征在于:更包含连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,该计算装置更用于自多组音量与流速的对应关系中,选择最相应于该环境参数 的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该超音波背景音量信号。
  11. 根据权利要求6所述的流速流量计,其特征在于:其中该环境参数包含下列其中之一或其任意组合:背景噪音、气压、温度、湿度、气体成分与质量。
  12. 根据权利要求1所述的流速流量计,其特征在于:其中该超音波转换装置包含风管外壳与位于该风管外壳之内的静音笛或高尔顿笛。
  13. 根据权利要求1所述的流速流量计,其特征在于:其中该超音波转换装置包含开口端的遮风罩,使得开口端的方向与该流体的方向相同。
  14. 根据权利要求1所述的流速流量计,其特征在于:其中该超音波转换装置包含具有漏斗状的进气口。
  15. 根据权利要求1所述的流速流量计,其特征在于:其中该传音通道更包含超音波物理放大机构,用于放大该超音波转换装置的适用频段的超音波信号。
  16. 根据权利要求1所述的流速流量计,其特征在于:更包含两个超音波转换装置,其分别具有不同的适用频段,该计算装置更用于依据历史风速,选用该历史风速较适用的超音波转换装置所发出的超音波来产生该音量信号。
  17. 根据权利要求1所述的流速流量计,其特征在于:更包含多个超音波转换装置,其分别具有不同的适用频段,该计算装置更用于比较该不同的适用频段的总音量或平均音量的大小,并且选择总音量或平均音量较大的超音波转换装置所发出的超音波来产生该音量信号。
  18. 根据权利要求1所述的流速流量计,其特征在于:更包含两个超音波转换装置,其分别具有不同的适用频段与其对应的中心风速,该计算装置更用于依据历史风速与上述两个中心风速的差值的比例值,将该两个超音波转换装置所发出的超音波的感测信号进行权重加成以产生该音量信号。
  19. 根据权利要求1所述的流速流量计,其特征在于:更包含N个超音波转换装置,其具有相同的适用频段,N为大于一的自然数,该计算装置更用于接收该适用频段的感测信号后根据N以产生该音量信号。
  20. 根据权利要求1、16、17、18或19所述的流速流量计,其特征在于:更包含集风罩,该集风罩内设置该多个超音波转换装置。
  21. 根据权利要求1所述的流速流量计,其特征在于更包含:
    基座以固定于基地;
    连接于该基座的旋转立轴;以及
    连接于该旋转立轴的轴身,该轴身更包含阵列总成与至少一个稳流 鳍,该阵列总成用于设置多个超音波转换装置,该轴身相对于该基座旋转,该流向感测装置用于感测该轴身的方向。
  22. 根据权利要求21所述的流速流量计,其特征在于:其中该超音波感测装置系设置于该基座或该基地,该传音通道系通过该立轴连接至该超音波感测装置。
  23. 根据权利要求21所述的流速流量计,其特征在于:其中该轴身更包含一个整流罩,用于包含该阵列总成。
  24. 根据权利要求1所述的流速流量计,其特征在于更包含:
    基座以固定于基地;
    连接于该基座的立轴;
    连接于该立轴的外环;
    通过相对应的两个转动支点连接该外环的内环;以及
    通过相对应的另外两个转动支点连接该内环的风管外壳,其中该风管外壳之外更包含至少一个稳流鳍,该超音波转换装置设置于该风管外壳之内,该流向感测装置用于感测该超音波转换装置的方向。
  25. 一种流速流量测量方法,其特征在于包含:
    提供超音波转换装置,用于接受流体并发出超音波信号;
    提供连接该超音波转换装置的传音通道,用于接收与传导该超音波信号;
    提供连接该传音通道的超音波感测装置,用于感测来自于该传音通道的该超音波信号以产生音量信号;以及
    用于根据音量与流速的对应关系,计算该音量信号对应的流速。
  26. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含根据该流速与该超音波转换装置的尺寸,计算流量。
  27. 根据权利要求26所述的流速流量测量方法,其特征在于:更包含提供流向感测装置,用于感测该流体的流向。
  28. 根据权利要求27所述的流速流量测量方法,其特征在于:更包含提供连接至通信网络与该计算装置的通信界面装置,用于接收该流速、该流量与/或该流向,并且通过该通信网络传送至接收端。
  29. 根据权利要求27所述的流速流量测量方法,其特征在于:更包含自该流向感测装置接收该流向,以判断该流向是否稳定,当该流向稳定时,令该超音波感测装置产生该音量信号。
  30. 根据权利要求29所述的流速流量测量方法,其特征在于:更包含提供至少一个环境感测装置,用于感测至少一个环境参数,以及当该流向稳定时,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系。
  31. 根据权利要求30所述的流速流量测量方法,其特征在于:更包含根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该音量信号。
  32. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含提供连接至该计算装置的背景超音波感测装置,用于在该超音波感测装置感测的同时,感测背景超音波音量信号,以及在计算该流速之前,先根据该超音波信号与该背景超音波信号来计算该音量信号。
  33. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含在计算该流速之前,先读取背景超音波音量信号,再根据该超音波信号与该背景超音波信号来计算该音量信号。
  34. 根据权利要求32或33所述的流速流量测量方法,其特征在于:更包含提供连接至该计算装置的至少一个环境感测装置,用于感测至少一个环境参数,自多组音量与流速的对应关系中,选择最相应于该环境参数的一组对应关系,以及根据该至少一个环境参数与该组对应关系所相应的环境参数,校正该超音波背景音量信号。
  35. 根据权利要求30所述的流速流量测量方法,其特征在于:其中该环境参数包含下列其中之一或其任意组合:背景噪音、气压、温度、湿度、气体成分与质量。
  36. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含提供两个超音波转换装置,其分别具有不同的适用频段,以及依据历史风速,选用该历史风速较适用的超音波转换装置所发出的超音波来产生该音量信号。
  37. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含提供多个超音波转换装置,其分别具有不同的适用频段,以及比较该不同的适用频段的总音量或平均音量的大小,并且选择总音量或平均音量较大的超音波转换装置所发出的超音波来产生该音量信号。
  38. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含提供两个超音波转换装置,其分别具有不同的适用频段与其对应的中心风速,以及依据历史风速与上述两个中心风速的差值的比例值,将该两个超音波转换装置所发出的超音波的感测信号进行权重加成以产生该音量信号。
  39. 根据权利要求25所述的流速流量测量方法,其特征在于:更包含提供N个超音波转换装置,其具有相同的适用频段,N为大于一的自然数,以及接收该适用频段的感测信号后根据N以产生该音量信号。
PCT/CN2018/087641 2017-05-21 2018-05-21 流速流量计与流速流量测量方法 WO2018214839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762509116P 2017-05-21 2017-05-21
US62/509,116 2017-05-21

Publications (1)

Publication Number Publication Date
WO2018214839A1 true WO2018214839A1 (zh) 2018-11-29

Family

ID=64395336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087641 WO2018214839A1 (zh) 2017-05-21 2018-05-21 流速流量计与流速流量测量方法

Country Status (2)

Country Link
TW (1) TW201901155A (zh)
WO (1) WO2018214839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747357B (zh) * 2020-04-21 2021-11-21 國立陽明交通大學 超音波流量計之流量量測方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890541B2 (en) * 2018-05-03 2021-01-12 Htc Corporation Gas detection apparatus
CN113739864A (zh) * 2021-09-08 2021-12-03 北京声智科技有限公司 一种气体流量检测方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050209A1 (en) * 2000-11-01 2002-05-02 D'antonio Consultants International, Inc. Airline coffee brewer
CN1846457A (zh) * 2003-09-18 2006-10-11 松下电器产业株式会社 超声波振动器及使用它的超声波流量计
CN1853098A (zh) * 2003-07-18 2006-10-25 罗斯蒙德公司 过程诊断
US20090038409A1 (en) * 2007-08-07 2009-02-12 Endress + Hauser Flowtec Ag Measuring device
CN102116649A (zh) * 2011-01-11 2011-07-06 上海科洋科技发展有限公司 一种超声波涡街流量计及其安装方法
CN103776497A (zh) * 2014-01-26 2014-05-07 王翥 一种流量计用超声波传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020050209A1 (en) * 2000-11-01 2002-05-02 D'antonio Consultants International, Inc. Airline coffee brewer
CN1853098A (zh) * 2003-07-18 2006-10-25 罗斯蒙德公司 过程诊断
CN1846457A (zh) * 2003-09-18 2006-10-11 松下电器产业株式会社 超声波振动器及使用它的超声波流量计
US20090038409A1 (en) * 2007-08-07 2009-02-12 Endress + Hauser Flowtec Ag Measuring device
CN102116649A (zh) * 2011-01-11 2011-07-06 上海科洋科技发展有限公司 一种超声波涡街流量计及其安装方法
CN103776497A (zh) * 2014-01-26 2014-05-07 王翥 一种流量计用超声波传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747357B (zh) * 2020-04-21 2021-11-21 國立陽明交通大學 超音波流量計之流量量測方法

Also Published As

Publication number Publication date
TW201901155A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Arens et al. Measuring 3D indoor air velocity via an inexpensive low-power ultrasonic anemometer
WO2018214839A1 (zh) 流速流量计与流速流量测量方法
Jacobsen et al. A comparison of two different sound intensity measurement principles
CN105263075B (zh) 一种带方位传感器耳机及其3d声场还原方法
US10317422B2 (en) Multi-directional fluid velocity measurement device (FVMD)
EP2667022A2 (en) Method and system for wind velocity field measurements on a wind farm
US11994532B2 (en) Ultrasonic anemometers systems for sensing air flows in rooms and ducts
CN106461699A (zh) 计测装置及使用该计测装置的计测系统
Grare et al. The influence of wind direction on Campbell Scientific CSAT3 and Gill R3-50 sonic anemometer measurements
WO2018097236A1 (ja) 風計測装置
CN110346600A (zh) 一种超声波风速风向测量方法
WO2020225107A1 (en) A method and an apparatus for characterizing an airflow
CN106644052A (zh) 一种微振镜的反馈系统及方法
CN109900451A (zh) 修正风洞实验测压模型风压信号畸变的方法
CN110470860B (zh) 一种基于时差法超声波风速仪的校准方法
US6601447B1 (en) Acoustic anemometer for simultaneous measurement of three fluid flow vector components
Dos Santos et al. Inflow turbulence distortion for airfoil leading-edge noise prediction for large turbulence length scales for zero-mean loading
US7212937B2 (en) Gas flow measuring device
Awasthi et al. Two-step hybrid calibration of remote microphones
CN103336052B (zh) 一种室内相对湿度在线监测系统及湿度计算方法
CN111289035B (zh) 声学空气数据传感器和系统
CN108507749B (zh) 一种植物冠层气流场生物模拟测试系统及模拟测试方法
US20210207984A1 (en) Systems and methods for operation of a sonic anemometer
Ghahramani et al. An Inexpensive Low-Power Ultrasonic 3-Dimensional Air Velocity Sensor
CN209485657U (zh) 压力扫描阀体积测量信号转化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18804959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18804959

Country of ref document: EP

Kind code of ref document: A1