WO2018097236A1 - 風計測装置 - Google Patents

風計測装置 Download PDF

Info

Publication number
WO2018097236A1
WO2018097236A1 PCT/JP2017/042178 JP2017042178W WO2018097236A1 WO 2018097236 A1 WO2018097236 A1 WO 2018097236A1 JP 2017042178 W JP2017042178 W JP 2017042178W WO 2018097236 A1 WO2018097236 A1 WO 2018097236A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
transmission member
detection sensor
detector
axis
Prior art date
Application number
PCT/JP2017/042178
Other languages
English (en)
French (fr)
Inventor
林泰正
Original Assignee
ホルトプラン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホルトプラン合同会社 filed Critical ホルトプラン合同会社
Publication of WO2018097236A1 publication Critical patent/WO2018097236A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • G01P5/04Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer using deflection of baffle-plates

Definitions

  • the present invention relates to a wind measuring device that detects the magnitude and direction of wind force and measures the wind speed and direction.
  • wind speed is an important environmental factor and affects productivity.
  • information on the “wind direction” indicating from which direction the wind is blowing is important in understanding the environment. For example, in a living space, it is better to be able to grasp the flow direction of harmful substances such as cigarette smoke. Even in industrial facilities, it is necessary to pay attention to the wind direction of clean rooms.
  • data centers and server rooms that play a central role in ICT and cloud computing if the airflow management is not performed properly, the server will not be cooled properly, and processing speed will be limited. I will receive it.
  • the wind speed in these spaces is often 1 m / s or less, and the installation location is limited, so the wind measuring device needs to be small.
  • an ultrasonic method for obtaining the wind speed and direction from the transmission speed of ultrasonic waves has been put into practical use.
  • This is a method of obtaining wind directions by simultaneously measuring wind speeds in a plurality of directions and deriving vectors from the plurality of wind speeds.
  • the wind direction calculation requires at least two-axis ultrasonic oscillators and receivers. If three sets of these are used and measured in three axes, a three-dimensional wind direction can also be obtained.
  • a method of obtaining a three-dimensional wind direction by combining propeller-type anemometers in three directions is also used in part.
  • a thermal wind measuring device has been put into practical use.
  • This method is easy to downsize, has a relatively simple structure, and is characterized by the ability to measure fine wind speeds.
  • three Pt self-heating type wind speed sensors with directivity are combined, and a method of calculating the wind direction using the difference in sensitivity due to directivity is taken and is also commercially available.
  • this method uses three thin platinum resistors, it has problems in terms of mechanical impact, corrosion, and weather resistance, and has the problem of requiring labor for manufacturing. Therefore, the present inventors have invented and applied for a patent as a structure and manufacturing method of a wind measuring device that overcomes these problems and has high cost, size reduction, and robustness. ing.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a wind measuring device that can measure a wind speed and a wind direction with a simple configuration with high accuracy.
  • a wind measuring device is provided with a detector that receives wind, a transmission member that supports the detector and that transmits wind force received by the detector, and is transmitted by the transmission member. And a detection sensor for detecting the magnitude of the wind force.
  • the detector may be formed in a sphere. According to this, since there is no directivity with respect to the wind from all directions up, down, left and right, the magnitude of the wind force from all directions can be detected.
  • the detector may be formed in a form in which a plurality of thin rod-like members extend radially. According to this, when the detector receives a strong wind, it is possible to prevent an excessive force from being applied to the transmission member and the detection sensor by the wind passing between the rod-shaped members.
  • the transmission member may be a rod-shaped member extending in the axial direction, the detector may be provided at the distal end, the detection sensor may be provided at the proximal end, and the detection sensor may transmit the transmission member.
  • the transmission member may include a rod-like member extending in the axial direction and a plurality of leg members provided at a base end portion of the rod-like member, and a detection sensor may be provided at the base end portion of each leg member. . According to this, the direction of the wind can be measured by synthesizing the detection result of the magnitude of the wind force by each detection sensor provided at the base end portion of each leg member.
  • the transmission member includes a rod-shaped member extending in the axial direction and a flat plate member provided at a base end portion of the rod-shaped member, and a plurality of detection sensors may be provided on the back surface of the flat plate member.
  • the transmission member may be a flat plate member extending in the plane direction, and the detector may be provided on the front surface, and the plurality of detection sensors may be provided on the back surface. According to this, the direction of the wind can be measured by combining the detection results of the magnitude of the wind force by the respective detection sensors provided on the back surface of the flat plate member.
  • the rod-shaped member may be made of a flexible material. According to this, since the force transmitted to the detection sensor can be attenuated by bending according to the wind force received by the detector, it can be applied in a wide wind speed range from a weak wind speed environment to a strong wind speed environment.
  • a measurement unit that measures the wind speed and / or the wind direction based on the magnitude of the wind force detected by the detection sensor may be provided. Accordingly, it is possible to accurately measure the wind speed and / or the wind direction based on the magnitude of the wind force detected by the detection sensor.
  • the present invention it is possible to easily and reliably detect the magnitude of wind force with a simple configuration including a detector, a transmission member, and a detection sensor, and to accurately measure wind speed, wind direction, and the like. It becomes.
  • detection devices such as piezo elements that detect pressure and force are energy-saving such as chemical batteries and energy-harvesting such as solar cells and vibration power generation for power saving that does not require large power.
  • the device can operate in a power supply environment where energy is completed within the device.
  • This apparatus includes a detector 1 that receives wind, a transmission member 2 that transmits wind force, and a detection sensor 3 that detects wind force.
  • the detector 1 is formed in a spherical shape, and has a shape having no directivity with respect to wind from all directions. For this reason, when the detector 1 receives wind from a certain direction, the detector 1 receives wind force while flowing the wind along the surface of the sphere.
  • the transmission member 2 is made of a rod-like member made of a flexible resin or metal extending in the axial direction.
  • the detector 1 is provided at the distal end portion 2a, and the detection sensor 3 is provided at the proximal end portion 2b. .
  • the transmission member 2 transmits the wind force received by the detector 1 to the detection sensor 3. Specifically, when the detector 1 receives wind, the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum, so that the base end 2b of the transmission member 2 is pulled in the Z-axis direction, A force to be pressed acts, and the tensile force and pressing force are transmitted to the detection sensor 3 as wind force.
  • the detection sensor 3 is formed as a flat plate having a rectangular shape in plan view, and the transmission member 2 is erected at the center of the front surface, and the back surface is fixed to a fixed object such as a housing.
  • the detection sensor 3 includes a conversion element such as a piezo element for detecting the magnitude of the wind force transmitted from the transmission member 2 and converting the magnitude of the wind force into an electric signal.
  • the detection sensor 3 outputs a positive value when the base end 2b of the transmission member 2 is pulled in the positive direction of the Z axis, and negative when the transmission member 2 is pushed in the negative direction of the Z axis. Output the value.
  • the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum.
  • the base end portion 2b of the transmission member 2 is pulled in the positive direction of the Z-axis, so that the detection sensor 3 detects the tensile force at that time as a wind force and outputs a positive value.
  • the transmission member 2 has a base end 2b directly fixed to a solid object G such as a housing. For this reason, when the detector 1 receives wind, the transmission member 2 bends with the connection portion with the solid object G as a fulcrum, so that the base end 2b of the transmission member 2 is pushed in the X-axis direction or the Y-axis direction. A force acts, and the pressing force is transmitted to the detection sensor 3 as a wind force.
  • the detection sensor 3 includes two first and second detection sensors 3A and 3B formed in a rectangular parallelepiped.
  • the first and second detection sensors 3A and 3B are provided via connecting members 41 and 42 in the X-axis direction and the Y-axis direction on the peripheral surface side of the base end 2b of the transmission member 2, respectively.
  • the first and second detection sensors 3A and 3B detect the magnitude of the wind force transmitted from the transmission member 2, and convert the magnitude of the wind force into an electric signal. It consists of conversion elements.
  • the first detection sensor 3A outputs a positive value when pulled in the positive direction of the X axis via the connecting member 41 by the base end 2b of the transmission member 2, and in the negative direction of the X axis.
  • the transmission member 2 bends with the connection portion with the fixed object G as a fulcrum.
  • the base end 2b of the transmission member 2 is pushed in the X-axis and Y-axis directions via the connection members 41 and 42, and the first and second detection sensors 3A and 3B are pushed accordingly.
  • the first and second detection sensors 3A and 3B detect the pressing force and the tensile force at that time as wind force and output a positive value or a negative value.
  • the first detection sensor 3A detects the wind force in the X-axis direction and the second detection sensor 3B detects the wind force in the Y-axis direction
  • the first detection sensor 3A detects the wind force in the X-axis direction.
  • the total wind force and direction are measured by combining the wind force in the Y axis direction by the second detection sensor 3B. Can do.
  • the first detection sensor 3A and the second detection sensor 3B are provided separately. However, the first detection sensor 3A and the second detection sensor 3B are integrated into one, Two wind forces may be converted into electrical signals.
  • the transmission member 2 includes a first transmission member 21 made of a rod-shaped member made of a flexible resin or metal extending in the axial direction, and a proximal end portion of the first transmission member 21. It is comprised from the 2nd transmission member 22 which consists of provided leg members, such as flexible resin or metal.
  • the second transmission member 22 includes three transmission members 22A, 22B, and 22C, and extends obliquely downward from the base end portion of the first transmission member 21 at an angle of 120 degrees in plan view.
  • the detection sensor 3 (3A, 3B, 3C) is provided at the base end 2b.
  • the transmission member 2 bends with the connection portion with the detection sensor 3 as a fulcrum, so that the base end portion 2b of the second transmission member 22 is pulled in the Z-axis direction. Then, a pressing force is applied, and the tensile force and pressing force are transmitted to the detection sensor 3 as wind force.
  • the detection sensor 3 includes first to third detection sensors 3A, 3B, and 3C formed on a flat plate having a rectangular shape in plan view.
  • a second transmission member 22 (22A, 22B, and 22C) is provided at the center of the surface.
  • the back surface is fixed to a fixed object such as a housing.
  • the detection sensor 3 (3A, 3B, 3C) detects the magnitude of the wind force transmitted from the transmission member 2, and converts the magnitude of the wind force into an electrical signal. The conversion element.
  • the detection sensor 3 (3A, 3B, 3C) outputs a positive value when the base end 2b of the second transmission member 22 (22A, 22B, 22C) is pulled in the positive direction of the Z-axis.
  • the base end portion 2b of the second transmission member 22 (22A, 22B, 22C) is pushed in the negative direction of the Z axis, a negative value is output.
  • the proximal end portion 2b of the second transmission member 22 (22A, 22B, 22C) is pulled in the positive direction of the Z-axis.
  • Detection sensor 3 (3A, 3B, 3C) detects the pulling force or pressing force at that time as a wind force and detects a positive value or a negative value. Output each. Further, by combining the wind force in the Z-axis direction of these detection sensors 3 (3A, 3B, 3C), the overall wind force and direction (three-dimensional direction in the X-axis-Y-axis-Z-axis direction) can be obtained. It can be measured.
  • the detection sensor 3C detects the pressing force at that time as a wind force and outputs a negative value.
  • the detection sensors 3A and 3B detect the tensile force at that time as the wind force and The value of is output.
  • the detection sensors 3A and 3B detect the pressing force at that time as a wind force and output a negative value.
  • the detection sensor 3C detects the tensile force at that time as a wind force and outputs a positive value. To do.
  • the base end portion 2b of the second transmission member 22B is Since the Z-axis is pressed in the negative direction, the second detection sensor 3B detects the pressing force at that time as a wind force and outputs a negative value.
  • the detection sensor 3A detects the tensile force at that time as a wind force and outputs a positive value. To do.
  • the detection sensor 3C Since the base end portion 2b of the second transmission member 22C is neither pushed nor pulled, the detection sensor 3C outputs a neutral value ( ⁇ 0). By combining the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the entire wind force and direction (the positive direction of the X-axis) can be measured.
  • each of the second transmission members 22A, 22B, and 22C Since the base end 2b is pushed in the negative direction of the Z-axis, the detection sensors 3A, 3B, and 3C detect the pressing force at that time as wind force and output the same negative value. .
  • the entire wind force and direction (negative direction of the Z-axis) can be measured.
  • each of the second transmission members 22A, 22B, and 22C Since the base end 2b is pulled in the positive direction of the Z-axis, the detection sensors 3A, 3B, and 3C detect the tensile force at that time as wind force and output the same positive value. .
  • the entire wind force and direction can be measured.
  • the transmission member 2 includes a first transmission member 21 made of a rod-like member extending in the axial direction, and a second transmission made of a flat plate member provided at the base end of the first transmission member 21. And a member 22.
  • the 1st transmission member 21 is standingly arranged from the center part of the surface, and the detection sensor 3 is provided in the back surface. For this reason, when the detector 1 receives wind, the first transmission member 21 bends with the connection portion with the second transmission member 22 as a fulcrum, so that each part on the plane of the second transmission member 22 becomes Z. A force that is pulled or pushed in the axial direction is applied, and the tensile force or the pressing force is transmitted to the detection sensor 3 as a wind force.
  • the detection sensor 3 includes three detection sensors 3 ⁇ / b> A, 3 ⁇ / b> B, and 3 ⁇ / b> C that are formed in a disk shape, each along the periphery of the back surface of the second transmission member 22.
  • the second transmission members 22 are disposed at an angle of 120 degrees as viewed from the central portion.
  • These detection sensors 3 (3A, 3B, 3C) detect the magnitude of the wind force transmitted from the transmission member 2, and convert the magnitude of the wind force into an electrical signal. The conversion element.
  • the detection sensor 3 (3A, 3B, 3C) outputs a positive value when the proximal end portion 2b of the second transmission member 22 is pulled in the positive direction of the Z axis, and the second transmission member When the base end 2b of 22 is pushed in the negative direction of the Z axis, a negative value is output.
  • each part of the second transmission member 22 is in the positive or negative direction of the Z axis.
  • the sensor 3 (3A, 3B, 3C) detects the pressing force or tensile force at that time as a wind force and outputs a negative value or a positive value. To do. Also, by combining the wind force in the Z-axis direction by these detection sensors 3 (3A, 3B, 3C), the overall wind force and direction (three-dimensional direction in the X-axis-Y-axis-Z-axis direction) can be obtained. It can be measured.
  • the transmission member 2 is composed of the first transmission member 21 made of a rod-shaped member and the second transmission member 22 made of a flat plate member. However, as shown in FIG. It may consist of only.
  • the detector 1 is formed such that a plurality of elongated rod-like members 11 extend radially upward in the positive direction of the Z axis. According to this, when the detector 1 receives a strong wind, it is possible to prevent an excessive force from being applied to the transmission member 2 and the detection sensor 3 by the wind passing between the rod-shaped members 11.
  • the rod-shaped member 11 includes not only a rigid material having a certain diameter but also a material made of hair.
  • a measurement unit 5 that measures the wind speed and / or the wind direction based on the magnitude of the wind force detected by the detection sensor 3 may be provided. Further, the measurement unit 5 may measure the wind speed and the wind direction based on the amplitude and amplitude cycle of the magnitude of the wind force by the detection sensor 3.
  • the detector 1 is a sphere or a radial one, but may have other shapes.
  • the transmission member 2 is made of a rod-like member, a flat plate member, or a combination thereof, it may have other shapes.
  • the transmission member 2 is made of a flexible member, it may be a member that does not bend. However, when the transmission member 2 is made of a flexible member, the force transmitted to the detection sensor 3 can be attenuated by bending according to the wind force received by the detector. It can be applied in a wide range of wind speeds.
  • the detection sensor 3 uses one to three detection sensors 3, four or more detection sensors 3 may be used.
  • each detection sensor 3 (3A, 3B, 3C) is arranged at an angle of 120 degrees from the center. It may be an arrangement.
  • the three detection sensors 3 (3A, 3B, 3C) are provided, the magnitude and direction of the wind can be accurately measured by arranging them so as not to be aligned.

Abstract

本発明は、簡易な構成にして、風速や風向を精度良く計測することが可能な風計測装置を提供することを目的とする。本装置は、風を受けるディテクタ1と、風の力を伝達する伝達部材2と、風の力を検出する検出センサ3とから構成される。X軸やY軸の横方向に風が流れ、ディテクタ1がX軸やY軸の横方向に風を受けると、伝達部材2が検出センサ3との接続部分を支点として撓むことにより、伝達部材2の基端部2bがZ軸の正方向に引っ張られた状態となるため、検出センサ3がそのときの引張力を風の力として検出して正の値を出力する。

Description

風計測装置
 本発明は、風の力の大きさや向きを検出して、風速や風向などを計測する風計測装置に関するものである。
 居住空間や、工業設備、栽培施設などの農場現場では、「風速」は重要な環境要素であり、生産性にも影響を与える。さらに、風がどの方向から吹いているかという「風向」の情報は、環境把握を行う上では重要である。例えば、居住空間では、タバコの煙など有害物質の流れ方向を把握できたほうが良い。工業設備でも、クリーンルーム等の風向きに注意を払う必要がある。さらに、ICT化・クラウド化等で中心的な役割を果たすデータセンタ・サーバルームなどでは、風の気流管理が適切に行われないと、サーバの冷却が適切に行われなくなり、処理速度の制約を受ける事になる。
 また、屋外環境と異なり、これら空間の風速は1m/s以下であることが多く、また、設置場所も限られているため、風計測装置が小型である必要がある。また、屋外であっても、センサの小型化・低コスト化の要求は強くなっており、これらのニーズを満たす風計測装置が求められている。
 ところで、従来より、風速や風向を計測する風計測装置として、様々な方式が提案されている。例えば、屋外気象計測で一般的に用いられているものとして、いわゆる風見鶏と呼ばれるもので、風の力によって風下側に羽根が来るようにしたものが知られている。特に気象庁や屋外気象計測は、風速検出のプロペラを仕込んだ飛行機型と呼ばれるものが用いられている。
 また、超音波の伝達速度から風速と風向を求める超音波式が実用化されている。これは、複数方向の風速を同時計測し、その複数の風速からベクトルを導き出し、風向を得る方法である。風向算出には、最低2軸の超音波発振器と受信器が必要であり、これを3組用いて3軸で計測すると、3次元での風向も得られる。
 さらに、プロペラ式の風速計を3方位組合せて、3次元での風向を得られる方式も、一部では用いられている。
 ところが、これら従来の方式の風計測装置は、装置の大きさが20cm四方以上の空間を必要として大型であり、また装置コストも高額なものばかりであった。また、超音波式を除く上記風計測装置は、風速の3乗に比例した力が物体にかかることを利用しているため、微風速域では計測が困難、もしくは風速の違いによる差が出にくく、逆に微風速域に最適化して設計すると、やや強い風速域の環境下に置かれるとレンジオーバーを引き起こしていた。一方、1m/s以下の微風速を良好に検出できるものは、上記のうち超音波式のみであるが、超音波式のものも、分解能を上げるためには使用周波数を上げるか、発振器~受信器間の距離を広げる必要があった。
 そこで、上述の方式とは別に、熱式の風計測装置が実用化されている。この方式は、小型化が容易で、構造も比較的簡単であり、微風速を計測可能という特徴を備えている。実用化された例として、指向性を持たせたPt自己発熱式風速センサを3つ組合せ、指向性による感度の違いを利用して風向を算出する手法が取られていて、市販もされている。ただ、この方式は、細い白金抵抗体を3本用いる方式であるため、機械的衝撃、腐食性、耐候性の点で問題があり、製造の手間も必要といった問題点を抱えている。
 そこで、これらの問題点を克服し、高コスト、小型化、堅牢性を備えた風計測装置の構造および製造法として、本発明者は特許文献1~3に示すものを発明し、特許出願している。
特開2015-68659号公報 特開2015-210196号公報 特開2016-118511号公報
 ところが、熱式のそもそもの問題点として、検出部分を温めておく必要があり、これにより一定の熱エネルギー源をセンサに供給しなければ稼働しない問題点を有している。これにより、電池を電源とした場合は長時間連続稼働が出来ず、連続稼働を行うためには、長期間安定して電気を受けられるように、商用電源などの電源をエネルギーソースに用意する必要がある。この問題は、装置の設置や運用上の制限を設けることになり、今後予想されるセンサ等を用いたIoT化やスマートコミュニティ実現に制約を与えることになる。
 なお、上述の方式の他に、航空機に用いているピトー管や、パイプなどの流体を図るための差圧式の流量計などが実用化されているが、これらは流れ方向が定まっている場合や、流れ経路が既知な流体に対してのもので、流れ方向が定まっていないもしくは、流れ方向が予想できない計測には向かない。
 本発明は、上述の問題に鑑みてなされたものであって、簡易な構成にして、風速や風向を精度良く計測することが可能な風計測装置を提供することを目的とする。
 本発明に係る風計測装置は、上記目的を達成するために、風を受けるディテクタと、前記ディテクタを支持するとともに、ディテクタにより受けた風の力を伝達する伝達部材と、前記伝達部材により伝達されてきた風の力の大きさを検出する検出センサとを備えることを特徴とする。
 これによれば、ディテクタ、伝達部材および検出センサからなる簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができ、風速や風向などを精度良く計測することが可能となる。
 また、前記ディテクタは、球体に形成されてもよい。これよれば、上下左右あらゆる方向からの風に対して指向性を有しないため、あらゆる方向からの風の力の大きさを検出することができる。
 また、前記ディテクタは、複数の細い棒状部材が放射状に延びる態様に形成されてもよい。これによれば、ディテクタが強い風を受けた場合、風が各棒状部材の間を抜けることにより、過大な力が伝達部材や検出センサにかかることを防止できる。
 また、前記伝達部材は、軸方向に延びる棒状部材からなり、先端部に前記ディテクタが設けられるとともに、基端部に前記検出センサが設けられてもよいし、前記伝達部材は、検出センサが伝達部材の基端部の周面側に配置されてもよい。これによれば、より一層簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができる。
 また、前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた複数の脚部材とからなり、各脚部材の基端部に検出センサが設けられてもよい。これによれば、各脚部材の基端部に設けられた各検出センサによる風の力の大きさの検出結果を合成することにより風の向きを計測することができる。
 また、前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた平板部材とからなり、平板部材の裏面に複数の検出センサが設けられてもよいし、前記伝達部材は、平面方向に延びる平板部材からなり、表面に前記ディテクタが設けられるとともに、裏面に複数の前記検出センサが設けられてもよい。これによれば、平板部材の裏面に設けられた各検出センサによる風の力の大きさの検出結果を合成することにより風の向きを計測することができる。
 また、前記棒状部材は、可撓性の材質からなってもよい。これによれば、ディタクタが受ける風の力に応じて撓むことにより、検出センサに伝達される力を減衰させ得るため、弱い風速環境から強い風速環境の幅広い風速範囲で適用することができる。
 また、さらに、前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部を備えてもよい。これによれば、前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を精度良く計測することが可能となる。
 本発明によれば、ディテクタ、伝達部材および検出センサからなる簡易な構成にして、風の力の大きさを簡単かつ確実に検出することができ、風速や風向などを精度良く計測することが可能となる。
 このため、居住空間や、工業設備、栽培施設などの農業現場などにおいて、風速や風向を必要とする場面に対して、小型で安価な風計測装置を与えることが可能となる。
 また、圧力や力を検出するピエゾ素子などの検出デバイスは、大きな電力を必要としない省電力のため、化学電池などの電源容量の制限のある環境や、太陽電池や振動発電などのエネルギーハーベスティング装置により、エネルギーを装置内で完結させた電源環境でも動作可能である。
第1の実施形態に係る風計測装置の斜視図である。 第2の実施形態に係る風計測装置の斜視図である。 図2の風計測装置の基端部の(a)側断面図、(b)平断面図である。 第3の実施形態に係る風計測装置の斜視図である。 図4の風計測装置における検出センサによる風の力の検出状態を示す模式図である。 第4の実施形態に係る風計測装置の(a)斜視図、(b)底面図である。 第4の実施形態に係る風計測装置の変形例を示す斜視図である。 第5の実施形態に係る風計測装置の斜視図である。 風計測装置の電気的構成を示すブロック図である。
<第1の実施形態>
 次に、本発明に係る風計測装置(以下、本装置という)の第1の実施形態について図1を参照しつつ説明する。
 本装置は、風を受けるディテクタ1と、風の力を伝達する伝達部材2と、風の力を検出する検出センサ3とから構成される。
 前記ディテクタ1は、球体に形成されており、上下左右あらゆる方向からの風に対して指向性を有しない形状となされている。このため、ディテクタ1は、ある方向から風を受けた際、球体表面に沿って風を流しながら風の力を受け止める。
 前記伝達部材2は、軸方向に延びる可撓性の樹脂製又は金属製等の棒状部材からなり、先端部2aにディテクタ1が設けられるとともに、基端部2bに検出センサ3が設けられている。この伝達部材2は、ディテクタ1により受けた風の力を検出センサ3に伝達するものである。具体的には、ディテクタ1が風を受けた際、伝達部材2が検出センサ3との接続部分を支点として撓むことによって、伝達部材2の基端部2bがZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。
 前記検出センサ3は、平面視矩形状の平板に形成されており、表面の中央部に伝達部材2が立設されるとともに、裏面が筐体などの固定物に固定される。この検出センサ3は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3は、伝達部材2の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、伝達部材2がZ軸の負方向に押されると負の値を出力する。
 而して、X軸やY軸の横方向に風が流れ、ディテクタ1がX軸やY軸の横方向に風を受けると、伝達部材2が検出センサ3との接続部分を支点として撓むことにより、伝達部材2の基端部2bがZ軸の正方向に引っ張られた状態となるため、検出センサ3がそのときの引張力を風の力として検出して正の値を出力する。
<第2の実施形態>
 次に、本発明に係る本装置の第2の実施形態について図2~図3を参照しつつ説明する。なお、以下では上記の実施形態と異なる構成についてのみ説明することとし、同一の構成については説明を省略して同一の符号を付すこととする。
 本実施形態では、前記伝達部材2は、基端部2bが筐体などの固形物Gに直接固定されている。このため、ディテクタ1が風を受けた際、伝達部材2が固形物Gとの接続部分を支点として撓むことによって、伝達部材2の基端部2bがX軸方向やY軸方向に押される力が作用し、その押圧力を風の力として検出センサ3に伝達する。
 また、前記検出センサ3は、直方体に形成された2個の第1および第2の検出センサ3A、3Bからなる。これら第1および第2の検出センサ3A、3Bは、それぞれ伝達部材2の基端部2bの周面側のX軸方向およびY軸方向に接続部材41,42を介して設けられている。これら第1および第2の検出センサ3A、3Bは、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、第1の検出センサ3Aは、伝達部材2の基端部2bにより接続部材41を介してX軸の正方向に引っ張られると正の値を出力し、X軸の負方向に押されると負の値を出力する。一方、第2の検出センサ3Bは、伝達部材2の基端部2bにより接続部材42を介してY軸の正方向に押されると正の値を出力し、X軸の負方向に引っ張られると負の値を出力する。
 而して、X軸やY軸の横方向に風が流れ、ディテクタ1がX軸やY軸の横方向に風を受けると、伝達部材2が固定物Gとの接続部分を支点として撓むことによって、伝達部材2の基端部2bが接続部材41、42を介してX軸やY軸の方向に押された状態となり、それに伴って第1および第2の検出センサ3A、3Bが押されたり、引っ張られた状態となるため、第1および第2の検出センサ3A、3Bがそのときの押圧力や引張力を風の力として検出して正の値や負の値を出力する。このとき第1の検出センサ3AがX軸方向の風の力を検出し、第2の検出センサ3BがY軸方向の風の力を検出するため、これら第1の検出センサ3AによるX軸方向の風の力と第2の検出センサ3BによるY軸方向の風の力とを合成することにより全体の風の力と向き(X軸-Y軸方向の2次元平面の向き)を計測することができる。
 なお、本実施形態では、第1の検出センサ3Aと第2の検出センサ3Bを別個に設けたが、第1の検出センサ3Aと第2の検出センサ3Bを統合して1個のものとして、2つの風の力を電気信号に変換してもよい。
<第3の実施形態>
 次に、本発明に係る本装置の第3の実施形態について図4~図5を参照しつつ説明する。
 本実施形態では、前記伝達部材2は、軸方向に延びる可撓性の樹脂製又は金属製等の棒状部材からなる第1の伝達部材21と、該第1の伝達部材21の基端部に設けられた可撓性の樹脂製又は金属製等の脚部材からなる第2の伝達部材22とから構成される。これら第2の伝達部材22は、3個の伝達部材22A、22B、22Cからなり、それぞれ第1の伝達部材21の基端部から互いに平面視120度の角度をなして斜め下方に向けて延びており、基端部2bに検出センサ3(3A,3B、3C)が設けられている。このため、ディテクタ1が風を受けた際、伝達部材2が検出センサ3との接続部分を支点として撓むことによって、第2の伝達部材22の基端部2bがZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。
 前記検出センサ3は、平面視矩形状の平板に形成された第1~第3の検出センサ3A、3B、3Cからなり、表面の中央部に第2の伝達部材22(22A、22B、22C)が立設されるとともに、裏面が筐体などの固定物に固定されている。この検出センサ3(3A、3B、3C)は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3(3A、3B、3C)は、第2の伝達部材22(22A、22B、22C)の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、第2の伝達部材22(22A、22B、22C)の基端部2bがZ軸の負方向に押されると負の値を出力する。
 而して、所定の方向に風が流れ、ディテクタ1が所定の方向に風を受けると、第2の伝達部材22(22A、22B、22C)の基端部2bはZ軸の正方向に引っ張られたり、負方向に押されたりする状態となるため、検出センサ3(3A、3B、3C)がそのときの引張力や押圧力を風の力として検出して正の値または負の値をそれぞれ出力する。また、これら検出センサ3(3A、3B、3C)のZ軸方向の風の力を合成することにより全体の風の力と向き(X軸-Y軸-Z軸方向の3次元の向き)を計測することができる。
 例えば、図5(a)に示すように、Y軸の正方向に風が流れ、ディテクタ1がY軸の正方向に風を受けると、第2の伝達部材22Cの基端部2bはZ軸の負方向に押された状態となるため、検出センサ3Cがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22A、22Bの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3A、3Bがそのときの引張力を風の力として検出して正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Y軸の正方向)を計測することができる。
 また、例えば、図5(b)に示すように、Y軸の負方向に風が流れ、ディテクタ1がY軸の負方向に風を受けると、第2の伝達部材22A,22Bの基端部2bはZ軸の負方向に押された状態となるため、検出センサ3A,3Bがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22Cの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3Cがそのときの引張力を風の力として検出して正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Y軸の負方向)を計測することができる。
 また、例えば、図5(c)に示すように、X軸の正方向に風が流れ、ディテクタ1がX軸の正方向に風を受けると、第2の伝達部材22Bの基端部2bはZ軸の負方向に押された状態となるため、第2の検出センサ3Bがそのときの押圧力を風の力として検出して負の値を出力する。一方、第2の伝達部材22Aの基端部2bはZ軸の正方向に引っ張られた状態となるため、検出センサ3Aがそのときの引張力を風の力として検出して正の値で出力する。なお、第2の伝達部材22Cの基端部2bは押されることも、引っ張られることもないため、検出センサ3Cは中立の値(±0)を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(X軸の正方向)を計測することができる。
 また、例えば、図5(d)に示すように、Z軸の負方向に風が流れ、ディテクタ1がZ軸の負方向に風を受けると、第2の伝達部材22A、22B、22Cの各基端部2bはいずれもZ軸の負方向に押された状態となるため、検出センサ3A、3B、3Cはそのときの押圧力を風の力として検出して同一の負の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Z軸の負方向)を計測することができる。
 また、例えば、図5(e)に示すように、Z軸の正方向に風が流れ、ディテクタ1がZ軸の正方向に風を受けると、第2の伝達部材22A、22B、22Cの各基端部2bはいずれもZ軸の正方向に引っ張られた状態となるため、検出センサ3A、3B、3Cはそのときの引張力を風の力として検出して同一の正の値を出力する。これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(Z軸の正方向)を計測することができる。
<第4の実施形態>
 次に、本発明に係る本装置の第4の実施形態について図6を参照しつつ説明する。
 本実施形態では、前記伝達部材2は、軸方向に延びる棒状部材からなる第1の伝達部材21と、該第1の伝達部材21に基端部に設けられた平板部材からなる第2の伝達部材22とから構成される。この第2の伝達部材22は、表面の中央部から第1の伝達部材21が立設され、裏面に検出センサ3が設けられている。このため、ディテクタ1が風を受けた際、第1の伝達部材21が第2の伝達部材22との接続部分を支点として撓むことにより、第2の伝達部材22の平面上の各部がZ軸方向に引っ張られたり、押されたりする力が作用し、それら引張力や押圧力を風の力として検出センサ3に伝達する。
 前記検出センサ3は、図6(b)に示すように、円盤状に形成された3個の検出センサ3A、3B、3Cからなり、それぞれ第2の伝達部材22の裏面の周縁部に沿って設けられ、第2の伝達部材22の中央部から見て互いに120度の角度をもって配置されている。これら検出センサ3(3A、3B、3C)は、伝達部材2から伝達されてきた風の力の大きさを検出して、その風の力の大きさを電気信号に変換するためのピエゾ素子などの変換素子からなる。本実施形態では、検出センサ3(3A、3B、3C)は、第2の伝達部材22の基端部2bがZ軸の正方向に引っ張られると正の値を出力し、第2の伝達部材22の基端部2bがZ軸の負方向に押されると負の値を出力する。
 而して、第3の実施形態と同様に、所定の方向に風が流れ、ディテクタ1が所定の方向に風を受けると、第2の伝達部材22の各部はZ軸の正方向または負方向に押されたり、引っ張られた状態となるため、検出センサ3(3A、3B、3C)がそのときの押圧力または引張力を風の力として検出して負の値または正の値をそれぞれ出力する。また、これら検出センサ3(3A、3B、3C)によるZ軸方向の風の力を合成することにより全体の風の力と向き(X軸-Y軸-Z軸方向の3次元の向き)を計測することができる。
 なお、本実施形態では、伝達部材2は、棒状部材からなる第1の伝達部材21と、平板部材からなる第2の伝達部材22からなるものとしたが、図7に示すように、平板部材のみからなるものであってもよい。
<第5の実施形態>
 次に、本発明に係る本装置の第5の実施形態について図8を参照しつつ説明する。
 本実施形態では、前記ディテクタ1は、複数の細長い棒状部材11がZ軸の正方向の斜め上方に向けて放射状に延びる態様で形成されている。これによれば、ディテクタ1が強い風を受けた場合、風が各棒状部材11の間を抜けることにより、過大な力が伝達部材2や検出センサ3にかかることを防止できる。
 なお、本実施形態において、棒状部材11とは、ある程度の径を有する剛性物のみならず、毛からなるものなども含む。
 以上の各実施形態において、図9に示すように、前記検出センサ3により検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部5を備えてもよい。さらに、計測部5は、検出センサ3による風の力の大きさの振幅や振幅周期によって風速や風向を計測してもよい。
 また、前記ディテクタ1は、球体や放射状のものとしたが、その他の形状であってもよい。
 また、前記伝達部材2は、棒状部材や平板部材、あるいはそれらの組み合わせからなるものとしたが、その他の形状であってもよい。
 また、前記伝達部材2は、可撓性部材からなるものとしたが、撓まない部材であってもよい。ただ、伝達部材2が可撓性部材からなる場合、ディテクタが受ける風の力に応じて撓むことにより、検出センサ3に伝達される力を減衰させ得るため、弱い風速環境から強い風速環境の幅広い風速範囲で適用することができる。
 また、前記検出センサ3は、1~3個の検出センサ3を用いるものとしたが、4個以上の検出センサ3を用いてもよい。また、3個の検出センサ3(3A、3B、3C)を用いる場合、各検出センサ3(3A、3B、3C)を中心から120度の角度をなすように配置するものとしたが、その他の配置であってもよい。ただ、3個の検出センサ3(3A、3B、3C)を設ける場合、それらを一直線に並ばないように配置すれば、風の大きさや向きを精度良く計測することができる。
 以上、図面を参照して本発明の実施形態を説明したが、本発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、本発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
1…ディテクタ
2…伝達部材
3…検出センサ
 

Claims (10)

  1.  風を受けるディテクタと、
     前記ディテクタを支持するとともに、ディテクタにより受けた風の力を伝達する伝達部材と、
     前記伝達部材により伝達されてきた風の力の大きさを検出する検出センサとを備えることを特徴とする風計測装置。
  2.  前記ディテクタは、球体に形成されている請求項1に記載の風計測装置。
  3.  前記ディテクタは、複数の細い棒状部材が放射状に延びる態様に形成されている請求項1に記載の風計測装置。
  4.  前記伝達部材は、軸方向に延びる棒状部材からなり、先端部に前記ディテクタが設けられるとともに、基端部に前記検出センサが設けられている請求項1に記載の風計測装置。
  5.  前記伝達部材は、検出センサが伝達部材の基端部の周面側に配置されている請求項4に記載の風計測装置。
  6.  前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた複数の脚部材とからなり、各脚部材の基端部に検出センサが設けられている請求項1に記載の風計測装置。
  7.  前記伝達部材は、軸方向に延びる棒状部材と、該棒状部材の基端部に設けられた平板部材とからなり、平板部材の裏面に複数の検出センサが設けられている請求項1に記載の風計測装置。
  8.  前記棒状部材は、可撓性の材質からなる請求項4に記載の風計測装置。
  9.  前記伝達部材は、平面方向に延びる平板部材からなり、表面に前記ディテクタが設けられるとともに、裏面に複数の前記検出センサが設けられている請求項1に記載の風計測装置。
  10.  さらに、前記検出センサにより検出した風の力の大きさに基づいて、風速および/または風向を計測する計測部を備える請求項1に記載の風計測装置。
     
PCT/JP2017/042178 2016-11-25 2017-11-24 風計測装置 WO2018097236A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-228857 2016-11-25
JP2016228857A JP6893678B2 (ja) 2016-11-25 2016-11-25 風計測装置

Publications (1)

Publication Number Publication Date
WO2018097236A1 true WO2018097236A1 (ja) 2018-05-31

Family

ID=62195252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042178 WO2018097236A1 (ja) 2016-11-25 2017-11-24 風計測装置

Country Status (2)

Country Link
JP (1) JP6893678B2 (ja)
WO (1) WO2018097236A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578690A (en) * 2018-10-31 2020-05-20 Secr Defence Fluid flow measuring device, system and method
DE102022104153A1 (de) 2022-02-22 2023-08-24 Hagen Heckel Volumenstromsensor
GB2621874A (en) * 2022-08-25 2024-02-28 Flare Bright Ltd Fluid flow estimation and navigation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208316B (zh) * 2020-02-24 2021-04-20 吉林大学 一种仿生气流全向感知柔性传感器及其制备方法
CN111208315B (zh) * 2020-02-24 2022-02-01 吉林大学 一种仿生毛状气流流速传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4023320B1 (ja) * 1960-11-24 1965-10-14
US5117687A (en) * 1990-01-11 1992-06-02 Gerardi Joseph J Omnidirectional aerodynamic sensor
JPH07140161A (ja) * 1993-11-19 1995-06-02 Hitachi Cable Ltd 表面粗さ利用の風速センサー及びこれを用いた風向風速計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4023320B1 (ja) * 1960-11-24 1965-10-14
US5117687A (en) * 1990-01-11 1992-06-02 Gerardi Joseph J Omnidirectional aerodynamic sensor
JPH07140161A (ja) * 1993-11-19 1995-06-02 Hitachi Cable Ltd 表面粗さ利用の風速センサー及びこれを用いた風向風速計

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578690A (en) * 2018-10-31 2020-05-20 Secr Defence Fluid flow measuring device, system and method
GB2578690B (en) * 2018-10-31 2021-05-05 Secr Defence Fluid flow measuring device, system and method
US11761976B2 (en) 2018-10-31 2023-09-19 The Secretary Of State For Defence Fluid flow measuring device, system and method
DE102022104153A1 (de) 2022-02-22 2023-08-24 Hagen Heckel Volumenstromsensor
GB2621874A (en) * 2022-08-25 2024-02-28 Flare Bright Ltd Fluid flow estimation and navigation

Also Published As

Publication number Publication date
JP2018084537A (ja) 2018-05-31
JP6893678B2 (ja) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2018097236A1 (ja) 風計測装置
EP3262384B1 (en) A multi-directional fluid velocity measurement device (fvmd)
CN103728463B (zh) 超声波测风仪及测量方法
CN103529239B (zh) 一种垂吊型三维风速风向传感器结构
CN201589784U (zh) 并联式三维测风传感器
CN101692097A (zh) 风速风向仪
Bucci et al. A low-cost ultrasonic wind speed and direction measurement system
CN109115275B (zh) 风速风向计
CN203337194U (zh) 一种测量流速和流向的传感器装置
CN101793905B (zh) 光纤式二维风速/风向测量装置及方法
CN110470860B (zh) 一种基于时差法超声波风速仪的校准方法
CN103542962A (zh) 一种压力测试装置
CN203405474U (zh) 一种风速风向仪
US8544320B2 (en) Integrated micromachined wind and gas velocity profiler
Haneda et al. Neural network-based airflow vector sensor using multiple MEMS differential pressure sensors
CN101776696B (zh) 一种三维流速传感器
CN104833819B (zh) 一种风速在线测量系统及测试方法
CN103472252A (zh) 一种基于总线通信方式的超声风速测量装置
CN108691727A (zh) 一种风力机导流罩
CN101187672A (zh) 流速流向测量装置及其方法
CN202075303U (zh) 一种微差压式高精度测风装置
WO2021193051A1 (ja) 熱式流向センサ
CN203350271U (zh) 三维风速仪
CN106405147A (zh) 一种超声波换能器测风阵列及其测风方法
CN205861718U (zh) 一种用于风力发电的风速测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874022

Country of ref document: EP

Kind code of ref document: A1