WO2018214821A1 - 服务质量控制方法、设备及系统 - Google Patents

服务质量控制方法、设备及系统 Download PDF

Info

Publication number
WO2018214821A1
WO2018214821A1 PCT/CN2018/087518 CN2018087518W WO2018214821A1 WO 2018214821 A1 WO2018214821 A1 WO 2018214821A1 CN 2018087518 W CN2018087518 W CN 2018087518W WO 2018214821 A1 WO2018214821 A1 WO 2018214821A1
Authority
WO
WIPO (PCT)
Prior art keywords
vlan
qos
correspondence
qos file
message
Prior art date
Application number
PCT/CN2018/087518
Other languages
English (en)
French (fr)
Inventor
于游洋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710751046.0A external-priority patent/CN108965159B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22189491.8A priority Critical patent/EP4152808A1/en
Priority to EP18806906.6A priority patent/EP3611962B1/en
Publication of WO2018214821A1 publication Critical patent/WO2018214821A1/zh
Priority to US16/692,244 priority patent/US11212230B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2425Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
    • H04L47/2433Allocation of priorities to traffic types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/20Traffic policing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a quality of service (QoS) control method, device, and system.
  • QoS quality of service
  • the 3GPP standards group developed the next generation mobile communication system (next generation system) network architecture at the end of 2016. It is a fifth generation (5rd generation, 5G) network architecture.
  • the architecture not only supports the 5G core network defined by the 3GPP standard group but also supports the non-3GPP (non-3GPP) access technology to access the 5G core network, such as supporting the fixed network access 5G core network.
  • the core network function of the 5G core network is divided into a user plane (UP) function and a control plane (CP) function.
  • the UP function entity is mainly responsible for packet data packet forwarding, quality of service (QoS) control, and accounting information statistics.
  • the CP function entity is responsible for delivering data packet forwarding policies and QoS control policies to the UP function entity.
  • the embodiments of the present application provide a QoS control method, device, and system, which can implement QoS control when a fixed network accesses a 5G core network or other future networks.
  • the embodiment of the present application provides the following technical solutions:
  • a QoS control method includes: the access gateway function entity acquires a correspondence between a QoS file and a virtual local area network (VLAN) priority, wherein the correspondence between the QoS file and the VLAN priority includes the first Corresponding relationship between a QoS file and a first VLAN priority; the access gateway function entity sends a first message to the terminal, where the first message includes a correspondence between the QoS file and a VLAN priority; and the access gateway function entity receives the terminal from the terminal
  • the uplink data packet, the QoS file corresponding to the uplink data packet is a first QoS file, and the uplink data packet carries the first VLAN priority level; the access gateway function entity performs the uplink data packet according to the first VLAN priority level.
  • VLAN virtual local area network
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that when the terminal sends the uplink data packet to the access gateway function entity, the terminal may carry the first VLAN in the uplink data packet.
  • the access gateway function entity performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access to the 5G core network or other future networks. QoS control.
  • the access gateway function entity obtains the correspondence between the QoS file and the VLAN priority, and the access gateway function entity generates the correspondence between the QoS file and the VLAN priority; or the access gateway function entity Receiving a second message from the session management function entity, the second message including a correspondence between the QoS file and a VLAN priority.
  • the first message is a fixed network configuration message.
  • the fixed network configuration message further includes a correspondence between the QoS file and the VLAN ID, wherein the correspondence between the QoS file and the VLAN ID includes a correspondence between the first QoS file and the first VLAN ID;
  • the gateway function entity Before the gateway function entity sends the first message to the terminal, the method further includes: the access gateway function entity acquires the correspondence between the QoS file and the VLAN ID. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the VLAN ID to the terminal.
  • the method further includes: the access gateway function entity receives a packet data unit PDU session establishment accept message from the session management function entity, where the PDU session establishment accept message includes a correspondence between the QoS file and a DSCP value of the differentiated service code point, where Corresponding relationship between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value; the access gateway function entity sends the PDU session establishment accept message to the terminal. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the DSCP value to the terminal.
  • the first message is a PDU session setup accept message.
  • the method further includes: the access gateway function entity sends the first to the session management function entity
  • the third message includes a correspondence between the QoS file and the VLAN priority; the access gateway function entity receives the first message from the session management function entity.
  • the third message and the PDU session establishment accept message further include a correspondence between the QoS file and the VLAN ID, where the correspondence between the QoS file and the VLAN ID includes the first QoS file and the first VLAN ID.
  • the method further includes: the access gateway function entity generates a correspondence between the QoS file and the VLAN ID. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the VLAN ID to the terminal.
  • the PDU session establishment accept message further includes a correspondence between the QoS file and the DSCP value, where the correspondence between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the DSCP value to the terminal.
  • the uplink data packet carries the first VLAN priority
  • the VLAN priority in the Layer 2 L2 header of the uplink data packet is the first VLAN priority
  • the method further includes: the access gateway function entity mapping the VLAN ID in the L2 header of the uplink packet to a QoS flow identifier QFI value, wherein the VLAN ID in the L2 header is the first VLAN ID; the access gateway function entity sends the uplink data packet to the user plane UP function entity, and the QFI value is included in the header of the uplink data packet. That is, in the embodiment of the present application, the VLAN ID may be mapped to the QFI value, and the uplink data packet sent by the access gateway function entity to the UP function entity carries the QFI value, so that the UP function entity performs the QFI value according to the QFI value. QoS control.
  • the method further includes: the access gateway function entity mapping the DSCP value in the internet protocol IP header of the uplink data packet to a QFI value, wherein the DSCP value in the IP header is the first DSCP value
  • the access gateway function entity sends the uplink data packet to the UP function entity, and the QFI value is included in the header of the uplink data packet. That is, in the embodiment of the present application, the DSCP value may be mapped to the QFI value, and the uplink data packet sent by the access gateway function entity to the UP function entity carries the QFI value, so that the UP function entity performs the QFI value according to the QFI value.
  • QoS control the access gateway function entity mapping the DSCP value in the internet protocol IP header of the uplink data packet to a QFI value, wherein the DSCP value in the IP header is the first DSCP value
  • the access gateway function entity sends the uplink data packet to the UP function entity, and the QFI value is included in the header of the uplink data packet
  • a QoS control method includes: receiving, by a terminal, a first message from an access gateway functional entity, where the first message includes a correspondence between a QoS file and a virtual local area network (VLAN) priority, where The mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the terminal determines, according to the corresponding relationship, the VLAN priority corresponding to the first QoS file as the first VLAN priority.
  • the first QoS file is a QoS file corresponding to the uplink data packet to be sent, and the terminal sends the uplink data packet to the access gateway function entity, where the uplink data packet carries the first VLAN priority.
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that when the terminal sends the uplink data packet to the access gateway function entity, the terminal may carry the first VLAN in the uplink data packet.
  • the access gateway function entity Priority, performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access to the 5G core network or other future networks. QoS control.
  • the first message is a fixed network configuration message; or the first message is a packet data unit PDU session establishment accept message.
  • the uplink data packet carries the first VLAN priority
  • the VLAN priority in the Layer 2 L2 header of the uplink data packet is the first VLAN priority
  • the VLAN ID in the L2 header of the uplink packet is the first VLAN ID.
  • the first message further includes a correspondence between the QoS file and the VLAN ID, where the correspondence between the QoS file and the VLAN ID includes a correspondence between the first QoS file and the first VLAN ID;
  • the terminal sends the uplink data packet to the access gateway function entity, the method further includes: determining, by the terminal, the corresponding corresponding to the first QoS file according to the correspondence between the QoS file and the VLAN ID A VLAN ID. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the VLAN ID value to the terminal.
  • the method further includes: determining, by the terminal, that the first VLAN ID corresponding to the first QoS file is the first QoS flow identifier QFI value included in the first QoS file. . That is, in the embodiment of the present application, the terminal may determine, by the terminal, the first VLAN ID corresponding to the first QoS file according to the QoS file.
  • the differential service code point DSCP value in the internet protocol IP header of the uplink data packet is the first DSCP value.
  • the first message is a fixed network configuration message; before the terminal sends the uplink data packet to the access gateway function entity, the method further includes: receiving, by the terminal, a packet data unit PDU session establishment accept message from the access gateway function entity, The PDU session establishment accept message includes a correspondence between the QoS file and the DSCP value, where the correspondence between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value; the terminal according to the QoS file Corresponding to the DSCP value, determining a first DSCP value corresponding to the first QoS file. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the DSCP value to the terminal.
  • the first message is a PDU session establishment accept message; the first message further includes a correspondence between the QoS file and the DSCP value; after the terminal receives the first message from the access gateway function entity, the terminal accesses Before the gateway function entity sends the uplink data packet, the method further includes: determining, by the terminal, the first DSCP value corresponding to the first QoS file according to the correspondence between the QoS file and the DSCP value. That is to say, in the embodiment of the present application, the network side may also send a correspondence between the QoS file and the DSCP value to the terminal.
  • the method further includes: determining, by the terminal, that the first DSCP value corresponding to the first QoS file is a first QFI value included in the first QoS file, that is, In this embodiment, the terminal may determine, according to the QoS file, a first DSCP value corresponding to the first QoS file.
  • an access gateway functional entity having the functionality to implement the method described in the first aspect above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a fourth aspect provides an access gateway functional entity, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, when the access gateway When the functional entity is in operation, the processor executes the computer-executed instructions stored by the memory to cause the access gateway functional entity to perform the QoS control method as described in any of the first aspects above.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, to enable the computer to perform any one of the foregoing first aspects.
  • QoS control method
  • an embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the QoS control method of any of the above first aspects.
  • a terminal having the function of implementing the method described in the second aspect above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a terminal including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor is connected to the memory through the bus, and when the terminal is running, the processor The computer executing the memory stores instructions to cause the terminal to perform the QoS control method as described in any of the above second aspects.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions that, when run on a computer, enable the computer to perform any of the foregoing second aspects.
  • QoS control method
  • the embodiment of the present application provides a computer program product comprising instructions, which when executed on a computer, enable the computer to perform the QoS control method of any of the above second aspects.
  • the embodiment of the present application provides a QoS control system, where the QoS control system includes an access gateway function entity and a session management function entity, and a session management function entity is configured to obtain a QoS file and a virtual local area network VLAN priority.
  • the access gateway function entity is configured to receive the second message from the session management function entity, and send a first message to the terminal, where the first message includes a correspondence between the QoS file and the VLAN priority
  • the access gateway function entity is further configured to receive an uplink data packet from the terminal, and perform QoS control on the uplink data packet according to the first VLAN priority carried in the uplink data packet, where the QoS file corresponding to the uplink data packet is First QoS file.
  • the session management function entity is configured to obtain a correspondence between the QoS file and the virtual LAN VLAN priority, and the session management function entity generates a correspondence between the QoS file and the VLAN priority.
  • the first message is a packet data unit PDU session establishment accept message; the access gateway function entity is further configured to generate a correspondence between the QoS file and the VLAN priority, and send the third to the session management function entity.
  • the third message includes a correspondence between the QoS file and the VLAN priority, and the session management function entity is configured to obtain a correspondence between the QoS file and the VLAN priority, where the session management function entity receives the first function from the access gateway function entity.
  • the QoS control system further includes a mobility management entity
  • the session management function entity is further configured to receive a fourth message from the mobility management entity before receiving the third message from the access gateway function entity, where
  • the fourth message includes at least one of a fixed network access identifier or a fixed network access type
  • the session management function entity is further configured to determine that the QoS is received according to at least one of a fixed network access identifier or a fixed network access type.
  • the PDU session establishment accept message is sent to the access gateway function entity.
  • a twelfth aspect provides a QoS control method for a QoS, the method comprising: an access network resource control function entity acquiring a first QoS file; and the access network resource control function entity acquiring the first QoS file and the first virtual local area network Corresponding relationship between at least one of a VLAN priority or a first VLAN ID; the access network resource control function entity sends the correspondence to the access network device; the access network device according to the correspondence and the received data packet The first VLAN priority or the first VLAN ID carried in the QoS control of the received data packet.
  • the corresponding relationship between the first QoS file and the first VLAN ID or the first VLAN priority may be obtained by the access network resource control function entity after receiving the first QoS file, and the corresponding relationship may be performed.
  • the relationship is sent to the access network device.
  • the access network device may perform QoS control on the received data packet according to the corresponding relationship and the first VLAN priority or the first VLAN ID carried in the received data packet after receiving the data packet, so based on the present application.
  • the QoS control method provided by the embodiment can implement QoS control when the fixed network accesses the 5G core network or other future networks.
  • the access network resource control function entity acquires a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID, including: the access network resource control function.
  • the entity generates, according to the first QoS file, a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID; or the access network resource control function entity receives the function from the access gateway Corresponding relationship between the first QoS file of the entity and the first VLAN priority or the first VLAN ID. That is, in the embodiment of the present application, the foregoing correspondence may be generated by the access network resource control function entity, or may be received by the access network resource control function entity from other devices, and the embodiment of the present application does not specifically limited.
  • the access network resource control function entity generates, according to the first QoS file, a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID, including The access network resource control function entity generates a correspondence between the first QoS file and the first VLAN ID according to the packet data unit PDU session identifier information corresponding to the first QoS file, where the first VLAN ID includes the PDU session identification information; or the access network resource control function entity generates a correspondence between the first QoS file and the first VLAN ID according to the QoS flow identifier QFI or the fifth generation 5G QoS indication 5QI in the first QoS file.
  • the first VLAN ID includes the 5QI or the QFI; or the access network resource control function entity according to the PDU session identification information corresponding to the first QoS file, and the QFI or 5QI in the first QoS file Corresponding relationship between the first QoS file and the first VLAN ID, where the first VLAN ID includes the PDU session identifier information, and the 5QI or the QFI; or the access network resource control function
  • the body of the first file with the local QoS policy to generate the first QoS priority document correspondence relationship between the first VLAN.
  • the correspondence is a correspondence between the first QoS file and the first VLAN priority; the received data packet carries a first VLAN priority; and the access network device according to the correspondence Determining the first VLAN priority of the received data packet, and performing QoS control on the received data packet, the method includes: determining, by the access network device, the first QoS file according to the first VLAN priority and the corresponding relationship; The access network device performs QoS control on the received data packet according to the first QoS file. Based on the scheme, QoS control of the received data packet can be achieved.
  • the correspondence is a correspondence between the first QoS file and the first VLAN ID; the received data packet carries a first VLAN ID; and the access network device receives the corresponding relationship according to the correspondence The first VLAN ID carried in the data packet, and performing QoS control on the received data packet, including: determining, by the access network device, the first QoS file according to the first VLAN ID and the corresponding relationship; the access network The device performs QoS control on the received data packet according to the first QoS file. Based on the scheme, QoS control of the received data packet can be achieved.
  • the correspondence is a correspondence between the first QoS file and the first VLAN priority; the received data packet carries a first VLAN ID; and the access network device receives and receives according to the correspondence
  • the first VLAN ID carried in the data packet, and the QoS control of the received data packet the method includes: determining, by the access network device, a first VLAN priority corresponding to the first VLAN ID; Determining the first QoS file by the first VLAN priority and the corresponding relationship; the access network device performs QoS control on the received data packet according to the first QoS file. Based on the scheme, QoS control of the received data packet can be achieved.
  • the method further includes: the access network device in the second layer L2 header of the received data packet
  • the VLAN priority is set to the first VLAN priority. In this way, the subsequent device can perform QoS control on the received data packet according to the first VLAN priority.
  • a QoS control system includes: an access network resource control function entity and an access network device; and the access network resource control function entity is configured to receive the first QoS file; The access network resource control function entity is further configured to obtain a correspondence between the first QoS file and at least one of a first virtual local area network (VLAN) priority or a first VLAN identification ID; the access network resource control function entity further The device is configured to send the corresponding relationship to the access network device, where the access network device is further configured to: according to the corresponding relationship and the first VLAN priority or the first VLAN ID carried in the received data packet, the received data The packet performs QoS control.
  • VLAN virtual local area network
  • a fourteenth aspect provides a QoS control method for a QoS, comprising: receiving, by a terminal, a downlink data packet from a function entity of an access gateway, where the downlink data packet carries a priority of a VLAN of the first virtual local area network; and the function of the terminal to the access gateway The entity sends an uplink data packet corresponding to the downlink data packet, where the uplink data packet carries the first VLAN priority.
  • the terminal can determine the first VLAN priority carried in the uplink data packet according to the first VLAN priority carried in the downlink data packet, so that the access gateway function entity can use the first VLAN priority level to the uplink data packet.
  • QoS control is performed. Therefore, based on the QoS control method provided by the embodiment of the present application, QoS control when the fixed network accesses the 5G core network or other future networks can be implemented.
  • FIG. 1 is a schematic structural diagram of a QoS control system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a 5G network supporting fixed network access according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart 1 of a QoS control method according to an embodiment of the present application.
  • FIG. 5 is a second schematic flowchart of a QoS control method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart 3 of a QoS control method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart 4 of a QoS control method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram 1 of a functional entity of an access gateway according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram 2 of an access gateway functional entity according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram 1 of a terminal according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram 2 of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart 5 of a QoS control method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another QoS control system according to an embodiment of the present disclosure.
  • the words “first”, “second”, and the like are used to distinguish the same items or similar items whose functions and functions are substantially the same. Those skilled in the art can understand that the words “first”, “second” and the like do not limit the number and execution order, and the words “first”, “second” and the like are not necessarily limited.
  • the first message and the second message in the embodiment of the present application may be the same message, or may be different messages, which is not specifically limited in this embodiment of the present application.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a QoS control system 10 provided by an embodiment of the present application.
  • the QoS Control System 10 packet accesses the Gateway Function Entity 101 and the Session Management Function Entity 102.
  • the session management function entity 102 is configured to obtain a correspondence between a QoS file and a virtual local area network (VLAN) priority, and send a second message to the access gateway function entity 101, where the second message includes a QoS file.
  • VLAN virtual local area network
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the access gateway function entity 101 is configured to receive a second message from the session management function entity 102, and send a first message to the terminal, where the first message includes a correspondence between the QoS file and the VLAN priority.
  • the access gateway function entity 101 is further configured to receive an uplink data packet from the terminal, and perform QoS control on the uplink data packet according to the first VLAN priority carried in the uplink data packet, where the QoS file corresponding to the uplink data packet For the first QoS file.
  • the access gateway function entity 101 and the session management function entity 102 in FIG. 1 may communicate directly, and may also perform communication through forwarding of other network devices, which is not specifically limited in this embodiment of the present application.
  • the access gateway function entity 101 in FIG. 1 may not need to communicate with the session management function entity 102.
  • the access gateway function entity 101 may also perform QoS control, as follows:
  • the access gateway function entity 101 is configured to generate a correspondence between the QoS file and the VLAN priority, and send a first message to the terminal, where the first message includes a correspondence between the QoS file and the VLAN priority.
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the access gateway function entity 101 is further configured to receive an uplink data packet from the terminal, and perform QoS control on the uplink data packet according to the first VLAN priority carried in the uplink data packet, where the QoS file corresponding to the uplink data packet For the first QoS file.
  • the foregoing QoS control system 10 can be applied to a 5G network that supports fixed network access and other future networks that support fixed network access, which is not specifically limited in this embodiment of the present application.
  • the network element or entity corresponding to the access gateway function entity 101 may be an access gateway function (access gateway function, The AGF) entity
  • the network element or entity corresponding to the session management function entity 102 may be a session management function (SMF) entity.
  • AGF access gateway function
  • SMF session management function
  • the 5G network supporting the fixed network access may further include an access network (AN) device, a unified data management (UDM) entity, and an authentication server function (authentication server).
  • Function AUSF
  • AMF Access and Mobility Management Function
  • PCF policy control function
  • AN access network
  • N1 Next Generation
  • the AGF entity communicates with the AMF entity through the N interface 2 (N2 for short), and the AMF entity
  • the NMF entity communicates with the SMF entity through the N interface 11 (N11 for short), and the AMF entity communicates with the UDM entity through the N interface 8 (N8 for short).
  • the AMF entity communicates with the AUSF entity through the N interface 12 (N12 for short), and the AMF entity passes the N interface 15 ( Referred to as N15), the SMF entity communicates with the PCF entity through the N interface 7 (N7 for short), and the SMF entity communicates with the UPF entity through the N interface 4 (N4 for short).
  • the UDM entity, the AUSF entity, the PCF entity, the AMF entity, and the SMF entity in FIG. 2 may also be collectively referred to as a CP functional entity, which is not specifically limited in this embodiment of the present application.
  • the 5G network supporting the fixed network access shown in FIG. 2 can also support the mobile network access, which is not specifically limited in this embodiment of the present application.
  • the AN device can directly communicate with the UPF entity when the mobile network access is supported.
  • the existing 5G mobile network architecture and details are not described herein.
  • the terminal, the AN device, the AMF entity, the SMF entity, the AUSF entity, the UDM entity, the AGF entity, the UP function entity, and the PCF entity in the above 5G network are only one name, and the name does not limit the device itself.
  • the network element or entity corresponding to the terminal, the AN device, the AMF entity, the SMF entity, the AUSF entity, the UDM entity, the AGF entity, the UP function entity, and the PCF entity may also be other names.
  • the UDM entity may be replaced by a home subscriber server (HSS) or a user subscription database (USD) or a database entity, etc., and is hereby described in a unified manner, and details are not described herein.
  • HSS home subscriber server
  • USD user subscription database
  • FIG. 13 it is a schematic structural diagram of another QoS control system 130 provided by an embodiment of the present application.
  • the QoS control system 130 includes an access network resource control function entity 1301 and an access network device 1302.
  • the access network resource control function entity 1301 is configured to acquire a first QoS file, and obtain a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID; the access network resource control function entity 1301
  • the access network device 1302 is further configured to receive the corresponding relationship according to the correspondence relationship and the first VLAN priority or the first VLAN ID carried in the received data packet. The packets arriving are QoS controlled.
  • the access network resource control function entity 1301 and the access network device 1302 in FIG. 13 may communicate directly or may be forwarded through forwarding of other network devices, which is not specifically limited in this embodiment of the present application.
  • the foregoing QoS control system 130 can be applied to a 5G network supporting fixed network access and other future networks supporting fixed network access, which is not specifically limited in this embodiment of the present application.
  • the network element or entity corresponding to the access network resource control function 1301 may be an access resource control function (ARCF).
  • the entity or the network element or entity corresponding to the access network device 1302 may be an AN device.
  • For the main function of the ARCF entity refer to the description of the access network resource control function 1301.
  • For the main function of the AN device refer to the description of the access network device 1302, and details are not described herein.
  • the 5G network supporting the fixed network access may also include other network devices.
  • the 5G network supporting the fixed network access may also include other network devices.
  • the ARCF entity is not shown in FIG. 2, and the function of the ARCF entity may be deployed in the AGF entity, or may be independent of the ARCF entity, which is not specifically limited in this embodiment of the present application.
  • the ARCF entity may be replaced by an access network resource management server or the like, which is not specifically limited in this embodiment of the present application.
  • the terminal involved in the present application may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of terminals.
  • MS Mobile station
  • UE user equipment
  • CPE customer premise equipment
  • the access gateway function entity 101 and the session management function entity 102 in FIG. 1 of the embodiment of the present application may be implemented by one entity device, may be implemented by multiple entity devices, or may be a logic in a physical device.
  • the function module is not specifically limited in this embodiment of the present application.
  • the access gateway functional entity 101, the session management function entity 102, and the terminal in FIG. 1 can be implemented by the communication device in FIG.
  • FIG. 3 is a schematic diagram showing the hardware structure of a communication device according to an embodiment of the present application.
  • the communication device 300 includes at least one processor 301, a communication bus 302, a memory 303, and at least one communication interface 304.
  • the processor 301 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 302 can include a path for communicating information between the components described above.
  • the communication interface 304 uses a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • a device such as any transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 303 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory can exist independently and be connected to the processor via a bus.
  • the memory can also be integrated with the processor.
  • the memory 303 is used to store application code for executing the solution of the present application, and is controlled by the processor 301 for execution.
  • the processor 301 is configured to execute the application code stored in the memory 303, thereby implementing the QoS control method provided by the following embodiments of the present application.
  • processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • communication device 300 can include multiple processors, such as processor 301 and processor 308 in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • processors herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the communication device 300 can also include an output device 305 and an input device 306.
  • Output device 305 is in communication with processor 301 and can display information in a variety of ways.
  • the output device 305 can be a liquid crystal display (LCD), a Light Emitting Diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • Input device 306 is in communication with processor 301 and can accept user input in a variety of ways.
  • input device 306 can be a mouse, keyboard, touch screen device, or sensing device, and the like.
  • the communication device 300 described above can be a general purpose computer device or a special purpose computer device.
  • the communication device 300 can be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet, a terminal device, an embedded device, or a device having a similar structure in FIG. .
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 300.
  • FIG. 4 the schematic flowchart of the QoS control method provided by the embodiment of the present application is as shown in FIG. 4, and includes the following steps:
  • the access gateway function entity acquires a correspondence between the QoS file and the VLAN priority, where the correspondence between the QoS file and the VLAN priority includes a correspondence between the first QoS file and the first VLAN priority.
  • the access gateway function entity sends a first message to the terminal, so that the terminal receives the first message.
  • the first message includes a correspondence between the QoS file and the VLAN priority.
  • the terminal determines, according to the correspondence, that the VLAN priority corresponding to the first QoS file is the first VLAN priority, where the first QoS file is a QoS file corresponding to the uplink data packet to be sent.
  • the terminal sends an uplink data packet to the access gateway function entity, so that the access gateway function entity receives the uplink data packet.
  • the uplink data packet carries the first VLAN priority.
  • the access gateway functional entity performs QoS control on the uplink data packet according to the first VLAN priority.
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that the terminal may send uplink data when sending the uplink data packet to the access gateway function entity.
  • the packet carries the first VLAN priority, and the access gateway function entity performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access 5G. QoS control for core networks or other future networks.
  • the action of the access gateway function entity in the foregoing S401, S402, and S405 can be performed by the processor 301 in the communication device 300 shown in FIG. 3, and the application code stored in the memory 303 is used to be executed. Any restrictions.
  • the action of the terminal in the foregoing S403 and S404 can be performed by the processor 301 in the communication device 300 shown in FIG. 3, and the application code stored in the memory 303 is called, and the embodiment of the present application does not impose any limitation.
  • the QoS control system 10 shown in FIG. 1 is applied to the 5G network supporting the fixed network access shown in FIG. 2 as an example, and the QoS control method shown in FIG. 4 is expanded.
  • FIG. 5 it is a schematic flowchart of a QoS control method provided by an embodiment of the present application.
  • the QoS control method involves interaction between a terminal, an AGF entity, an AMF entity, a UDM entity, and an SMF, and includes the following steps:
  • the terminal sends a registration request message to the AGF entity, so that the AGF entity receives the registration request message.
  • the registration request message includes the identifier of the terminal and the fixed network slice information.
  • the identifier of the terminal may be a complete terminal permanent identity, such as an international mobile subscriber identity (IMSI), or may be a partial permanent identity of the terminal, such as in the IMSI. Part of the information; may also be a security-protected terminal identity, such as IMSI information protected by a hash algorithm; or may be a media access control (MAC) address of the terminal or a user name of the terminal, etc.
  • IMSI international mobile subscriber identity
  • MAC media access control
  • the embodiment of the application may set the existing slice selection information as the fixed network slice information.
  • the AGF entity sets the access network type of the terminal to fixed network access according to the identifier of the terminal in the registration request message and the fixed network slice information.
  • the AGF entity sends an N2 message to the AMF entity, so that the AMF entity receives the N2 message.
  • the N2 message includes a registration request message.
  • the N2 message may further include an access point identifier.
  • the access point identifier is included in the registration request message of the N2 message, or the AGF sends the parameter of the access point to the AMF entity through the parameter of the N2 message, which is not specifically limited in this embodiment.
  • the AMF entity performs authentication authentication on the terminal according to the identifier of the terminal. For the terminal that passes the authentication authentication, the AMF entity completes the registration process of the terminal.
  • the terminal sends a packet data unit (PDU) session establishment request message to the AMF entity, so that the AMF entity receives the PDU session establishment request message.
  • the PDU session establishment request message includes at least one of an identifier of the terminal and an access point identifier, and at least one of a fixed network service identifier and fixed network slice information.
  • the AMF entity selects an SMF entity according to at least one of a fixed network service identifier and a fixed network slice information.
  • the AMF entity sends an N11 message to the SMF entity, where the N11 message includes a PDU session establishment request message.
  • the N11 message may further include at least one of an access network type and an access point identifier.
  • the SMF entity establishes a PDU session for the terminal according to the PDU session establishment request message.
  • the SMF entity sends a policy request message to the UDM entity, so that the UDM entity receives the policy request message, where the policy request message includes at least one of an identifier of the terminal and an access point identifier.
  • the UDM entity determines a QoS policy according to at least one of an identifier of the terminal and an identifier of the access point.
  • the UDM entity sends a policy response message to the SMF entity, so that the SMF entity receives the policy response message.
  • the policy response message includes a QoS policy.
  • the S512 and the SMF entity generate a QoS file according to the QoS policy.
  • the QoS file in the embodiment of the present application includes at least one of a QoS flow identifier (QFI), a flow description information, a 5G QoS indicator (5QI), and a QoS parameter.
  • QoS parameters include allocation and retention priority (ARP), guaranteed bandwidth, maximum flow bit rate (MFBR), and guaranteed flow bit rate (GFBR). at least one.
  • the AMF entity may send a policy request message to the UDM entity, and after the UDM entity sends the policy response message including the QoS policy to the AMF entity, the AMF entity sends the QoS policy to the SMF entity.
  • the AMF entity may send a policy request message to the UDM entity after step S503, where the policy request message includes at least one of an identifier of the terminal and an identifier of the access point, where the UDM entity identifies the identifier of the terminal and the identifier of the access point. At least one, after determining the QoS policy, sending a policy response message including the QoS policy to the AMF entity.
  • the AMF entity After receiving the policy response message from the UDM entity, the AMF entity stores the QoS policy. Further, in step S507, when the AMF entity sends the N11 message to the SMF entity, the QoS policy may be included in the N11 message, so that the SMF entity can acquire the QoS policy.
  • the embodiment of the present application is described by taking an example of the QoS policy saved by the operator in the UDM.
  • the operator may also store the QoS policy on other devices on the network side, for example, storing the QoS policy on the PCF entity.
  • the implementation manner of obtaining the QoS policy from the other device may refer to the foregoing implementation manner of obtaining the QoS policy from the UDM entity, and only need to replace the UDM entity in the foregoing solution with The PCF entity or other device may be omitted, and details are not described herein again.
  • the SMF entity sends session management (SM) information to the AGF entity by using the AMF entity, so that the AGF entity receives the SM information.
  • the SM information includes a QoS file.
  • the SM information may further include a PDU session identifier and a tunnel identifier, so that a tunnel is established between the AGF entity and the UPF entity.
  • a PDU session identifier and a tunnel identifier, so that a tunnel is established between the AGF entity and the UPF entity.
  • the SMF entity determines to send the AGF entity to the AGF entity after receiving the correspondence between the QoS file generated by the AGF entity and the VLAN priority.
  • Sending a PDU session establishment accept message includes the following steps:
  • the AGF entity determines an acceptable QoS file from the QoS file. For an acceptable QoS file, the AGF entity generates a correspondence between the QoS file and the VLAN priority.
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the AGF entity may generate a corresponding relationship between the QoS file and the VLAN priority based on at least one of the configuration information or the policy, which is not specifically limited in this embodiment of the present application.
  • the multiple QoS files may correspond to the same VLAN priority, or each of the multiple QoS files may correspond to a different VLAN.
  • Priority is not specifically limited in this embodiment of the present application.
  • similar QoS files may be aggregated into the same VLAN priority based on the aggregation principle.
  • the aggregation principle may be, for example, setting QoS files with the same 5QI and/or ARP to the same VLAN priority.
  • the AGF entity may also generate a correspondence between the QoS file and the VLAN ID.
  • the mapping between the QoS file and the VLAN ID includes the correspondence between the first QoS file and the first VLAN ID.
  • the multiple QoS files may correspond to the same VLAN ID, or each of the multiple QoS files may correspond to a different VLAN ID.
  • the embodiment of the present application does not specifically limit this.
  • the similar QoS files may be aggregated into the same VLAN ID based on the aggregation principle.
  • the aggregation principle may be, for example, setting QoS files with the same 5QI and/or ARP to the same VLAN ID.
  • the AGF entity sends a correspondence between the QoS file and the VLAN priority to the SMF entity by using the AMF entity, so that the AMF entity receives the correspondence between the QoS file and the VLAN priority.
  • the AGF entity further generates a correspondence between the QoS file and the VLAN ID
  • the AGF entity further sends a correspondence between the QoS file and the VLAN ID to the SMF entity by using the AMF entity.
  • the SMF entity sends a PDU session establishment accept message to the AGF through the AMF entity, so that the AGF entity receives the PDU session establishment accept message.
  • the PDU session establishment accept message includes a correspondence between the QoS file generated by the AGF entity and the VLAN priority.
  • the PDU session establishment accept message further includes a correspondence between the QoS file and the VLAN ID.
  • the SMF entity may also generate a correspondence between the QoS file and a Differentiated Services Code Point (DSCP) value.
  • the PDU session establishment accept message may further include a correspondence between the QoS file and the DSCP value, which is not specifically limited in this embodiment of the present application.
  • the mapping between the QoS file and the DSCP value includes the correspondence between the first QoS file and the first DSCP value.
  • the multiple QoS files may correspond to the same DSCP value, or each of the multiple QoS files may correspond to a different DSCP value.
  • the embodiment of the present application does not specifically limit this.
  • the similar QoS files may be aggregated into the same DSCP value based on the aggregation principle.
  • the aggregation principle may for example be to set QoS files with the same 5QI and/or ARP to the same DSCP value.
  • the AGF entity sends the PDU session establishment accept message to the terminal, so that the terminal receives the PDU session establishment accept message.
  • the PDU session establishment accept message sent by the AGF entity to the terminal is a PDU session establishment accept message sent by the forwarded SMF entity to the AGF entity by the AMF entity.
  • the terminal determines, according to the correspondence between the QoS file and the VLAN priority, that the VLAN priority corresponding to the first QoS file is the first VLAN priority.
  • the first QoS file is a QoS file corresponding to the uplink data packet to be sent.
  • the terminal sends an uplink data packet to the AGF entity, so that the AGF entity receives the uplink data packet.
  • the uplink data packet carries the first VLAN priority.
  • the uplink data packet carries the first VLAN priority, which may include: the priority of the VLAN in the Layer 2 (L2) header of the uplink data packet is the first VLAN priority. That is, the terminal can set the VLAN priority in the L2 header to the first VLAN priority.
  • L2 Layer 2
  • the VLAN ID in the L2 header of the uplink packet is the first VLAN ID. That is, the terminal can set the VLAN ID in the L2 header to the first VLAN ID.
  • the terminal may determine the first VLAN ID corresponding to the first QoS file according to the correspondence between the QoS file and the VLAN ID.
  • the terminal may determine that the first VLAN ID corresponding to the first QoS file is the first QFI value included in the first QoS file.
  • the DSCP value in the internet protocol (IP) header of the uplink data packet is a first DSCP value.
  • IP internet protocol
  • the terminal may determine the first DSCP value corresponding to the first QoS file according to the correspondence between the QoS file and the DSCP value.
  • the terminal may determine that the first DSCP value corresponding to the first QoS file is the first QFI value included in the first QoS file.
  • S520 The AGF entity performs QoS control on the uplink data packet according to the first VLAN priority.
  • the AGF entity performs QoS control on the uplink data packet according to the first VLAN priority, including:
  • the AGF entity preferentially schedules data packets with high VLAN priority.
  • the bandwidth can be controlled to be the sum of the bandwidths included in the first QoS file corresponding to the same first VLAN priority.
  • the AGF entity performs QoS control on the uplink data packet according to the first VLAN priority, including:
  • the AGF entity performs QoS control on the uplink data packet according to the locally configured QoS policy corresponding to the first VLAN priority.
  • the QoS policy may include at least one of a maximum stream bit rate and a guaranteed stream bit rate.
  • the AGF entity may also perform admission control of the data packet according to at least one of guaranteed bandwidth and/or ARP in the QoS file. For example, when the current bandwidth is lower than the guaranteed bandwidth, the AGF entity continues to send the received data packet; otherwise, the AGF entity caches or discards the received data packet.
  • the AGF entity may also map the first VLAN ID to a QFI value, and then uplink when sending the uplink data packet to the UP function entity.
  • the QFI value is carried in the data packet, so that the UP function entity performs QoS control according to the QFI value, which is not specifically limited in this embodiment of the present application.
  • the AGF entity may further map the first DSCP value to a QFI value, and further, when sending the uplink data packet to the UP function entity, The QFI value is carried in the data packet, so that the UP function entity performs QoS control according to the QFI value, which is not specifically limited in this embodiment of the present application.
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that the terminal may send uplink data when sending the uplink data packet to the access gateway function entity.
  • the packet carries the first VLAN priority, and the access gateway function entity performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access 5G. QoS control for core networks or other future networks.
  • SMF entities in the foregoing S508, S509, S512, S513, and S516 may be performed by the processor 301 in the communication device 300 shown in FIG. 3 by calling the application code stored in the memory 303. No restrictions are imposed.
  • FIG. 6 it is a schematic flowchart of another QoS control method provided by the embodiment of the present application.
  • the QoS control method involves interaction between a terminal, an AGF entity, an AMF entity, a UDM entity, and an SMF, and includes the following steps:
  • the SMF entity sends an SM information and a PDU session establishment accept message to the AGF entity by using the AMF entity, so that the AGF entity receives the SM information and the PDU session establishment accept message.
  • the SM information includes a QoS file
  • the PDU session establishment accept message includes an IP address allocated by the SMF entity for the terminal.
  • the SM information may further include a PDU session identifier and a tunnel identifier, so that a tunnel is established between the AGF entity and the UPF entity.
  • a PDU session identifier and a tunnel identifier, so that a tunnel is established between the AGF entity and the UPF entity.
  • the SMF entity may also generate a correspondence between the QoS file and the DSCP value.
  • the PDU session establishment accept message may further include a correspondence between the QoS file and the DSCP value, which is not specifically limited in this embodiment of the present application.
  • the mapping between the QoS file and the DSCP value includes the correspondence between the first QoS file and the first DSCP value.
  • the multiple QoS files may correspond to the same DSCP value, or each of the multiple QoS files may correspond to a different DSCP value.
  • the application examples are not specifically limited thereto.
  • the multiple QoS files correspond to the same DSCP value
  • the similar QoS files may be aggregated into the same DSCP value based on the aggregation principle.
  • the aggregation principle may for example be to set QoS files with the same 5QI and/or ARP to the same DSCP value.
  • the AGF entity determines an acceptable QoS file from the QoS file. For an acceptable QoS file, the AGF entity generates a correspondence between the QoS file and the VLAN priority.
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the AGF entity may generate a corresponding relationship between the QoS file and the VLAN priority based on at least one of the local configuration information or the policy, which is not specifically limited in this embodiment.
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the multiple QoS files may correspond to the same VLAN priority, or each of the multiple QoS files may correspond to a different VLAN.
  • Priority is not specifically limited in this embodiment of the present application.
  • similar QoS files may be aggregated into the same VLAN priority based on the aggregation principle.
  • the aggregation principle may be, for example, setting QoS files with the same 5QI and/or ARP to the same VLAN priority.
  • the AGF entity may also generate a correspondence between the QoS file and the VLAN ID.
  • the multiple QoS files may correspond to the same VLAN ID, or each of the multiple QoS files may correspond to a different VLAN ID.
  • the embodiment of the present application does not specifically limit this.
  • the similar QoS files may be aggregated into the same VLAN ID based on the aggregation principle.
  • the aggregation principle may be, for example, setting QoS files with the same ARP to the same VLAN ID.
  • the AGF entity sends a fixed network configuration message to the terminal, so that the terminal receives the fixed network configuration message.
  • the fixed network configuration message includes a correspondence between the QoS file and the VLAN priority.
  • the fixed network configuration message further includes a correspondence between the QoS file and the VLAN ID.
  • the AGF entity sends the PDU session establishment accept message to the terminal, so that the terminal receives the PDU session establishment accept message.
  • the PDU session establishment accept message sent by the AGF entity to the terminal is a PDU session establishment accept message sent by the forwarded SMF entity to the AGF entity by the AMF entity.
  • step S615 may be performed first, and then the step S616 may be performed; or the step S616 may be performed first, and then the step S615 is performed; Steps S616 and S616 may be performed at the same time, which is not specifically limited in this embodiment of the present application.
  • S617-S619 the same as S518-S520, for details, refer to the embodiment shown in FIG. 5, and details are not described herein again.
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that the terminal may send uplink data when sending the uplink data packet to the access gateway function entity.
  • the packet carries the first VLAN priority, and the access gateway function entity performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access 5G. QoS control for core networks or other future networks.
  • SMF entities in the foregoing S608, S609, S612, and S613 can be performed by the processor 301 in the communication device 300 shown in FIG. 3 by calling the application code stored in the memory 303. limit.
  • FIG. 7 it is a schematic flowchart of another QoS control method provided by the embodiment of the present application.
  • the QoS control method involves interaction between a terminal, an AGF entity, an AMF entity, a UDM entity, and an SMF, and includes the following steps:
  • the SMF entity generates a correspondence between the QoS file and the VLAN priority.
  • the mapping between the QoS file and the VLAN priority includes the correspondence between the first QoS file and the first VLAN priority.
  • the SMF entity may generate a correspondence between the QoS file and the VLAN priority according to at least one of the local configuration information and the QoS policy from the PCF entity or the UDM entity, where the QoS policy may include the QoS file and the VLAN priority.
  • the corresponding relationship in this application is not specifically limited.
  • the multiple QoS files may correspond to the same VLAN priority, or each of the multiple QoS files may correspond to a different VLAN priority.
  • the embodiment of the present application does not specifically limit this.
  • similar QoS files may be aggregated into the same VLAN priority based on the aggregation principle.
  • the aggregation principle may be, for example, setting QoS files with the same 5QI and/or ARP to the same VLAN priority.
  • the SMF entity may also generate a correspondence between the QoS file and the VLAN ID.
  • the mapping between the QoS file and the VLAN ID includes the correspondence between the first QoS file and the first VLAN ID.
  • the multiple QoS files may correspond to the same VLAN ID, or each of the multiple QoS files may correspond to a different VLAN ID.
  • the application examples are not specifically limited thereto.
  • the similar QoS files may be aggregated into the same VLAN ID based on the aggregation principle.
  • the aggregation principle may for example be to set QoS files with the same 5QI and/or ARP to the same VLAN ID.
  • the SMF entity may also generate a correspondence between the QoS file and the DSCP value.
  • the mapping between the QoS file and the DSCP value includes the correspondence between the first QoS file and the first DSCP value.
  • the multiple QoS files may correspond to the same DSCP value, or each of the multiple QoS files may correspond to a different DSCP value.
  • the application examples are not specifically limited thereto.
  • the multiple QoS files correspond to the same DSCP value
  • the similar QoS files may be aggregated into the same DSCP value based on the aggregation principle.
  • the aggregation principle may for example be to set QoS files with the same 5QI and/or ARP to the same DSCP value.
  • the SMF entity sends a PDU session establishment accept message to the AGF by using the AMF entity, so that the AGF entity receives the PDU session establishment accept message.
  • the PDU session establishment accept message includes a correspondence between the QoS file and the VLAN priority.
  • the PDU session establishment accept message further includes a correspondence between the QoS file and the VLAN ID.
  • the PDU session establishment accept message further includes a correspondence between the QoS file and the DSCP value.
  • the AGF entity sends the PDU session establishment accept message to the terminal, so that the terminal receives the PDU session establishment accept message.
  • the terminal may determine that the VLAN priority corresponding to the first QoS file is the first VLAN priority, so that the terminal may send uplink data when sending the uplink data packet to the access gateway function entity.
  • the packet carries the first VLAN priority, and the access gateway function entity performs QoS control on the uplink data packet according to the first VLAN priority. Therefore, the QoS control method provided by the embodiment of the present application can implement the fixed network access 5G. QoS control for core networks or other future networks.
  • the action of the terminal in the foregoing S701, S704, S705, S716, and S717 can be performed by the processor 301 in the communication device 300 shown in FIG. 3, and the application code stored in the memory 303 is called, which is not used in this embodiment of the present application. Any restrictions.
  • the action of the AGF entity in the foregoing S702, S703, S715, and S718 can be performed by the processor 301 in the communication device 300 shown in FIG. 3, and the application code stored in the memory 303 is used to be executed. limit.
  • SMF entities in the foregoing S708, S709, S712, S713, and S714 can be performed by the processor 301 in the communication device 300 shown in FIG. 3 by calling the application code stored in the memory 303. No restrictions are imposed.
  • FIG. 12 is a schematic flowchart diagram of another QoS control method provided by an embodiment of the present application.
  • the QoS control method is described by taking an ARCF entity as an example.
  • the interaction between the terminal, the AN device, the ARCF entity, the AGF entity, the AMF entity, the UDM entity, and the SMF entity includes the following steps:
  • the AGF entity sends an access network resource request message to the ARCF entity, so that the ARCF entity receives the access network resource request message from the AGF entity.
  • the access network resource request message carries the PDU session identification information and the QoS file.
  • the QoS file may include at least one of 5QI and QoS parameters.
  • the QoS file in the embodiment of the present application may further include a QFI, and the QFI is in one-to-one correspondence with the QoS file, which is not specifically limited in this embodiment of the present application.
  • the PDU session identifier information in the embodiment of the present application may be PDU session ID information received by the AGF entity, or may be an AGF MAC address corresponding to the PDU session allocated by the AGF entity, or a VLAN ID.
  • the at least one of the generic routing encapsulation (GRE) tunnel identifier is not specifically limited in this embodiment of the present application.
  • the PDU session identifier information is used to determine the PDU session to which the data packet belongs, and is uniformly described herein, and details are not described herein.
  • VLAN ID in the embodiment of the present application may also be referred to as a VLAN tag (Tag), which is uniformly described herein, and is not described here.
  • VLAN tag VLAN tag
  • the ARCF entity sends an access network resource configuration request message to the AN device, so that the AN device receives the access network resource configuration request message from the ARCF entity.
  • the access network resource configuration request message includes a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID.
  • the correspondence between the first QoS file in the access network resource configuration request message and the at least one of the first VLAN priority or the first VLAN ID may be obtained by the ARCF entity in the following manner. :
  • the access network resource request message in the step S1214 carries the correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID, and further, the ARCF entity is configured from the access network resource request message. Obtaining a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID.
  • the AGF entity obtains the correspondence between the first QoS file and the first VLAN priority or the first VLAN ID, reference may be made to the foregoing embodiment shown in FIG. 5 to FIG. 7 , and details are not described herein again.
  • the ARCF entity may determine an acceptable first QoS file from the received QoS file, for an acceptable first QoS file:
  • the ARCF entity may generate a correspondence between the first QoS file and the first VLAN ID according to the information of the PDU session identifier corresponding to the first QoS file, where the first VLAN ID includes PDU session identifier information;
  • the ARCF entity may generate a correspondence between the first QoS file and the first VLAN ID according to the QFI or the 5QI in the first QoS file, where the first VLAN ID includes 5QI or QFI;
  • the ARCF entity may generate a correspondence between the first QoS file and the first VLAN ID according to the PDU session identification information corresponding to the first QoS file and the QFI or 5QI in the first QoS file, where the first VLAN ID includes the PDU. Session identification information, and 5QI or QFI;
  • the ARCF entity may generate a correspondence between the first QoS file and the first VLAN priority according to the first QoS file and the local policy.
  • the data packet of the PDU session when the data packet of the PDU session is encapsulated, if the first VLAN ID includes the PDU session identifier information, and the 5QI or the QFI, the data packet of the PDU session may be encapsulated by using the double-layer VLAN ID.
  • the double-layer VLAN ID A unified explanation is given, and the details are not described below.
  • the embodiment of the present application when the data packet of the PDU session is encapsulated, if the first VLAN ID includes only the PDU session identifier information, or one of the 5QI or the QFI, the other information may be carried by other parameters.
  • the embodiment of the present application does not specifically limit the carrying of the GRE packet.
  • the AN device stores a correspondence between the first QoS file and at least one of the first VLAN priority or the first VLAN ID.
  • the AN device can perform QoS control on the received data packet according to the corresponding relationship and the first VLAN ID or the first VLAN priority carried in the received data packet.
  • S1217 The AN device sends an access network resource configuration response message to the ARCF entity, so that the ARCF entity receives the access network resource configuration response message from the AN device.
  • the ARCF entity sends an access network resource configuration response message to the AGF entity, so that the AGF entity receives the access network resource response message from the ARCF entity.
  • the access network resource response message may further carry the first QoS file.
  • the AGF entity may store the first QoS file with the first VLAN priority or the first VLAN ID, corresponding to the first VLAN priority or the first VLAN ID.
  • the ARCF entity may further determine that the first QoS file is an acceptable QoS file, and further, the access network resource response message sent to the AGF entity may further carry the identifier determined by the ARCF entity.
  • the first QoS file accepted.
  • the ARCF entity may further carry the ARCF entity determination in the access network resource response message sent to the AGF entity. Acceptable first QoS file. In this way, after receiving the access network resource response message, the AGF entity can determine that the first QoS file is an acceptable QoS file, and can perform subsequent operations.
  • the AGF entity sends a fixed network configuration message to the terminal, so that the terminal receives the fixed network configuration message.
  • the fixed network configuration message carries a correspondence between the first QoS file and the first VLAN priority.
  • step S1219 is an optional step. If the corresponding relationship does not include the correspondence between the first QoS file and the first VLAN priority, the step S1219 may not be performed. Narration.
  • the terminal may also obtain the correspondence between the first QoS file and the first VLAN priority in the manner of the embodiment shown in FIG. 5 or FIG. 7. For details, refer to the embodiment shown in FIG. 5 or FIG. No longer.
  • the AGF entity sends a PDU session establishment accept message to the terminal, so that the terminal receives the PDU session establishment accept message from the AGF entity.
  • the PDU session establishment accept message sent by the AGF entity to the terminal is a PDU session establishment accept message sent by the forwarded SMF entity to the AGF entity by the AMF entity.
  • the AN device performs QoS control on the received data packet according to the stored correspondence relationship and the first VLAN ID or the first VLAN priority carried in the received data packet.
  • the data packet received by the AN device may be an uplink data packet sent by the terminal to the AN device, or may be a downlink data packet sent by the AGF entity to the AN device. Specifically limited.
  • the AN device receives the corresponding relationship according to the stored relationship.
  • the first VLAN priority is carried in the data packet, and the QoS control is performed on the received data packet, including: the AN device determines the first QoS file according to the first VLAN priority and the corresponding relationship; and further, the AN device according to the first The QoS file performs QoS control on the received data packets.
  • the AN device determines the first QoS file according to the first VLAN ID and the corresponding relationship; and further, the AN device determines, according to the first QoS file, Received packets for QoS control.
  • the AN device if the correspondence stored by the AN device is a correspondence between the first QoS file and the first VLAN priority, and the received data packet carries the first VLAN ID, the AN device according to the stored correspondence and the received data.
  • the first VLAN ID carried in the packet performs QoS control on the received data packet, including: the AN device determines the first VLAN priority corresponding to the first VLAN ID; and further, the AN device according to the first VLAN priority and the corresponding relationship After determining the first QoS file, performing QoS control on the received data packet according to the first QoS file.
  • the AN device performs QoS control on the received data packet according to the first QoS file, and specifically includes: the AN device determines, according to the 5QI in the first QoS file, a processing priority order and processing of the data packet. Delay or packet loss rate, etc.; or the AN device allocates bandwidth resources for the data packet based on the guaranteed bandwidth in the first QoS file, MFBR or GFBR, or controls the transmission rate of the data packet, and the like.
  • the AN device may determine the first VLAN priority, and then receive the L2 header of the data packet.
  • the priority of the VLAN is set to the first VLAN priority, so that the subsequent device can perform QoS control on the received data packet according to the first VLAN priority.
  • the data packet received by the AN device is sent by the terminal to the AN device.
  • the AGF entity can perform QoS control on the received data packet according to the first VLAN priority.
  • the ARCF entity may obtain the correspondence between the first QoS file and at least one of the first VLAN ID or the first VLAN priority after receiving the first QoS file, and may perform The correspondence is sent to the AN device. Therefore, the AN device can perform QoS control on the received data packet according to the corresponding relationship and the first VLAN priority or the first VLAN ID carried in the received data packet after receiving the data packet, and therefore, based on the embodiment of the present application.
  • the provided QoS control method can implement QoS control when the fixed network accesses the 5G core network or other networks in the future.
  • the operations of the AN device, the ARCF entity, the AGF entity, or the AMF entity in the foregoing S1201-S1221 may be performed by the processor 301 in the communication device 300 shown in FIG. 3 by calling the application code stored in the memory 303, and the implementation is implemented. There are no restrictions on this.
  • the QoS control method provided by the embodiment of the present application may further include: the terminal receiving the downlink data packet from the AGF, where the downlink data packet carries the first VLAN priority; and further, the terminal sends the downlink data packet corresponding to the AGF entity.
  • An uplink data packet the uplink data packet carrying the first VLAN priority.
  • the AGF entity may set the VLAN priority in the L2 packet header of the downlink data packet to the first VLAN priority according to the correspondence between the first QoS file and the first VLAN priority.
  • the uplink data packet corresponding to the downlink data packet may be determined according to the flow information of the downlink data packet, and the VLAN priority in the L2 packet header of the uplink data packet is set to be the same as the first VLAN of the downlink data packet. priority.
  • the flow information in the embodiment of the present application specifically refers to the IP quintuple information, including at least one of a source IP address, a destination IP address, a source port number, a destination port number, and a protocol type, and is uniformly described herein. Let me repeat.
  • the terminal can determine the first VLAN priority carried in the uplink data packet according to the first VLAN priority carried in the downlink data packet, so that the AGF entity can perform QoS control on the uplink data packet according to the first VLAN priority. Therefore, based on the QoS control method provided by the embodiment of the present application, QoS control when the fixed network accesses the 5G core network or other future networks can be implemented.
  • the access gateway function entity and the session management function entity include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the embodiment of the present application may divide the function module of the access gateway function entity and the session management function entity according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated in the function.
  • a processing module In a processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 shows a possible structural diagram of the access gateway function entity 80 involved in the above embodiment.
  • the access gateway function entity 80 includes an obtaining module 801, a receiving module 802, a sending module 803, and a control module 804.
  • the obtaining module 801 is configured to obtain a correspondence between the QoS file and the VLAN priority, where the correspondence between the QoS file and the VLAN priority includes a correspondence between the first QoS file and the first VLAN priority.
  • the sending module 803 is configured to send a first message to the terminal, where the first message includes a correspondence between the QoS file and the VLAN priority.
  • the receiving module 802 is configured to receive an uplink data packet from the terminal, where the QoS file corresponding to the uplink data packet is a first QoS file, and the uplink data packet carries a first VLAN priority.
  • the control module 804 is configured to perform QoS control on the uplink data packet according to the first VLAN priority.
  • the obtaining module 801 is specifically configured to: generate a correspondence between the QoS file and the VLAN priority.
  • the obtaining module 801 is specifically configured to: receive a second message from the session management function entity, where the second message includes a correspondence between the QoS file and the VLAN priority.
  • the first message is a fixed network configuration message.
  • the fixed network configuration message further includes a correspondence between the QoS file and the VLAN ID, where the correspondence between the QoS file and the VLAN ID includes a correspondence between the first QoS file and the first VLAN ID.
  • the obtaining module 801 is further configured to obtain a correspondence between the QoS file and the VLAN ID before the sending module 803 sends the first message to the terminal.
  • the receiving module 802 is further configured to receive a PDU session establishment accept message from the SMF entity, where the PDU session establishment accept message includes a correspondence between the QoS file and the DSCP value, where the correspondence between the QoS file and the DSCP value is included. Correspondence between the first QoS file and the first DSCP value.
  • the sending module 803 is further configured to send a PDU session establishment accept message to the terminal.
  • the first message is a PDU session establishment accept message.
  • the sending module 803 is further configured to: after the obtaining module 801 generates a correspondence between the QoS file and the VLAN priority, before sending the first message to the terminal, the sending module 803 sends a third message to the session management function entity, where the third message is sent.
  • the message includes the correspondence between the QoS file and the VLAN priority.
  • the receiving module 802 is further configured to receive a first message from the session management function entity.
  • the access gateway function entity 80 further includes a generating module 805.
  • the third message and the PDU session establishment acceptance message further include a correspondence between the QoS file and the VLAN ID, where the correspondence between the QoS file and the VLAN ID includes the correspondence between the first QoS file and the first VLAN ID.
  • the generating module 805 is configured to generate a correspondence between the QoS file and the VLAN ID before the sending module 803 sends the third message to the session management function entity.
  • the PDU session establishment accept message includes a correspondence between the QoS file and the DSCP value, where the correspondence between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value.
  • the uplink data packet carries the first VLAN priority, and the priority of the VLAN in the L2 packet header of the uplink data packet is the first VLAN priority.
  • the access gateway functional entity 80 further includes a mapping module 806.
  • the mapping module 806 is configured to map the VLAN ID in the L2 header of the uplink packet to a QFI value, where the VLAN ID in the L2 header is the first VLAN ID.
  • the sending module 803 is further configured to send an uplink data packet to the UP function entity, where the header of the uplink data packet includes a QFI value.
  • the mapping module 806 is further configured to map the DSCP value in the IP header of the uplink data packet to a QFI value, where the DSCP value in the IP header is the first DSCP value.
  • the sending module 803 is further configured to send an uplink data packet to the UP function entity, where the header of the uplink data packet includes a QFI value.
  • FIG. 9 shows a possible structural diagram of the access gateway functional entity 90 involved in the foregoing embodiment, and the access gateway functional entity 90 includes: a processing module 901 and communication module 902.
  • the processing module 901 can be used to perform operations performed by the obtaining module 801, the control module 804, the generating module 805, and the mapping module 806 in FIG. 8.
  • the communication module 902 can be used to execute the receiving module 802 and the sending module 803 in FIG. For the operations that can be performed, refer to the embodiment shown in FIG. 8 , and details are not described herein again.
  • the access gateway function entity is presented in the form of dividing each function module corresponding to each function, or the access gateway function entity is presented in the form of dividing each function module in an integrated manner.
  • a “module” herein may refer to an Application-Specific Integrated Circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC Application-Specific Integrated Circuit
  • access gateway functional entity 80 or access gateway functional entity 90 may take the form shown in FIG.
  • the obtaining module 801, the receiving module 802, the sending module 803, and the control module 804 in FIG. 8 can be implemented by the processor 301 and the memory 303 of FIG.
  • the obtaining module 801, the receiving module 802, the sending module 803, and the control module 804 can be executed by calling the application code stored in the memory 303 by the processor 301, which is not limited in this embodiment.
  • the obtaining module 801, the receiving module 802, the sending module 803, the control module 804, the generating module 805, and the mapping module 806 in FIG. 8 may be implemented by the processor 301 and the memory 303 of FIG.
  • the obtaining module 801, the receiving module 802, the sending module 803, the control module 804, the generating module 805, and the mapping module 806 can be executed by the processor 301 to call the application code stored in the memory 303. This is not subject to any restrictions.
  • the processing module 901 and the communication module 902 in FIG. 9 may be implemented by the processor 301 and the memory 303 of FIG. 3. Specifically, the processing module 901 and the communication module 902 may be called by the processor 301 in the memory 303.
  • the stored application code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the access gateway function entity provided by the embodiment of the present application can be used to perform the foregoing QoS control method. Therefore, the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
  • FIG. 10 is a schematic diagram showing a possible structure of the terminal involved in the foregoing embodiment, and the terminal 100 includes: a receiving module 1001, a determining module 1002, and a sending Module 1003.
  • the receiving module 1001 is configured to receive a first message from the access gateway function entity, where the first message includes a correspondence between the QoS file and the VLAN priority, where the correspondence between the QoS file and the VLAN priority includes the first QoS.
  • the correspondence between the file and the priority of the first VLAN is configured to determine, according to the correspondence, that the VLAN priority corresponding to the first QoS file is the first VLAN priority, where the first QoS file is a QoS file corresponding to the uplink data packet to be sent.
  • the sending module 1003 is configured to send an uplink data packet to the access gateway function entity, where the uplink data packet carries the first VLAN priority.
  • the first message is a fixed network configuration message; or the first message is a PDU session establishment accept message.
  • the uplink data packet carries the first VLAN priority, and the priority of the VLAN in the L2 packet header of the uplink data packet is the first VLAN priority.
  • the VLAN ID in the L2 header of the uplink packet is the first VLAN ID.
  • the first message further includes a correspondence between the QoS file and the VLAN ID, where the correspondence between the QoS file and the VLAN ID includes a correspondence between the first QoS file and the first VLAN ID.
  • the determining module 1002 is further configured to: after the receiving module 1001 receives the first message from the access gateway function entity, before sending the uplink data packet to the access gateway function entity, the sending module 1003 determines, according to the correspondence between the QoS file and the VLAN ID, The first VLAN ID corresponding to the first QoS file.
  • the determining module 1002 is further configured to: before the sending module 1003 sends the uplink data packet to the access gateway function entity, determine that the first VLAN ID corresponding to the first QoS file is included in the first QoS file. The first QFI value.
  • the DSCP value in the IP header of the uplink data packet is a first DSCP value.
  • the first message is a fixed network configuration message.
  • the receiving module 1001 is further configured to: before the sending module 1003 sends an uplink data packet to the access gateway function entity, receive a PDU session establishment accept message from the access gateway function entity, where the PDU session establishment accept message includes a QoS file and a DSCP value. Corresponding relationship, wherein the correspondence between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value.
  • the determining module 1002 is further configured to determine, according to the correspondence between the QoS file and the DSCP value, the first DSCP value corresponding to the first QoS file.
  • the first message is a PDU session establishment accept message.
  • the first message further includes a correspondence between the QoS file and the DSCP value, where the correspondence between the QoS file and the DSCP value includes a correspondence between the first QoS file and the first DSCP value.
  • the determining module 1002 is further configured to: after the receiving module 1001 receives the first message from the access gateway function entity, before sending the uplink data packet to the access gateway function entity, the sending module 1003 determines, according to the correspondence between the QoS file and the DSCP value, The first DSCP value corresponding to the first QoS file.
  • the determining module 1002 is further configured to: before the sending module 1003 sends the uplink data packet to the access gateway function entity, determine that the first DSCP value corresponding to the first QoS file is included in the first QoS file. The first QFI value.
  • FIG. 11 is a schematic diagram showing a possible structure of the terminal 110 involved in the foregoing embodiment.
  • the terminal 110 includes a processing module 1101 and a communication module 1102.
  • the processing module 1101 can be used to perform the operations that can be performed by the determining module 1002 in FIG. 10, and the communications module 1102 can be used to perform operations performed by the receiving module 1001 and the sending module 1003 in FIG.
  • the embodiments of the present application are not described herein again.
  • the terminal is presented in the form of dividing each functional module corresponding to each function, or the terminal is presented in the form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to a particular ASIC, circuitry, processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • terminal 100 or terminal 110 may take the form shown in FIG.
  • the receiving module 1001, the determining module 1002, and the transmitting module 1003 in FIG. 10 can be implemented by the processor 301 and the memory 303 of FIG.
  • the receiving module 1001, the determining module 1002, and the sending module 1003 may be executed by using the application code stored in the memory 303 by the processor 301, which is not limited in this embodiment.
  • the processing module 1101 and the communication module 1102 in FIG. 11 may be implemented by the processor 301 and the memory 303 of FIG. 3.
  • the processing module 1101 and the communication module 1102 may call the memory 303 to be stored by the processor 301.
  • the application code is executed, and the embodiment of the present application does not impose any limitation on this.
  • the terminal provided by the embodiment of the present application can be used to perform the foregoing QoS control method. Therefore, the technical effects that can be obtained by reference to the foregoing method embodiments are not described herein.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了QoS控制方法、设备及系统,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。方法包括:接入网关功能实体获取QoS文件与虚拟局域网VLAN优先级的对应关系,其中,该QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;接入网关功能实体向终端发送第一消息,该第一消息包括该QoS文件与VLAN优先级的对应关系;接入网关功能实体接收来自终端的上行数据包,该上行数据包对应的QoS文件为第一QoS文件,该上行数据包中携带该第一VLAN优先级;接入网关功能实体根据该第一VLAN优先级,对该上行数据包进行QoS控制。

Description

服务质量控制方法、设备及系统
本申请要求了2017年5月24日提交的、申请号为201710374629.6、发明名称为“服务质量控制方法、设备及系统”的中国申请的优先权,以及2017年8月28日提交的、申请号为201710751046.0、发明名称为“服务质量控制方法、设备及系统”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及服务质量(Quality of Service,QoS)控制方法、设备及系统。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的领先优势,3GPP标准组在2016年底制定了下一代移动通信系统(next generation system)网络架构,称为第五代(5rd generation,5G)网络架构。该架构不但支持3GPP标准组定义的无线技术接入5G核心网络(5G core network),而且支持非3GPP(non-3GPP)接入技术接入5G核心网络,比如支持固网接入5G核心网络。其中5G核心网络的核心网功能分为用户面(user plane,UP)功能与控制面(control plane,CP)功能。UP功能实体主要负责分组数据包的转发、服务质量(quality of service,QoS)控制、计费信息统计等;CP功能实体主要负责向UP功能实体下发数据包转发策略、QoS控制策略等。
然而,如何实现固网接入5G核心网络时的QoS控制,目前并没有相关的解决方案。
发明内容
本申请实施例提供QoS控制方法、设备及系统,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
为达到上述目的,本申请实施例提供如下技术方案:
第一方面,提供一种服务质量QoS控制方法,该方法包括:接入网关功能实体获取QoS文件与虚拟局域网VLAN优先级的对应关系,其中,该QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;接入网关功能实体向终端发送第一消息,该第一消息包括该QoS文件与VLAN优先级的对应关系;接入网关功能实体接收来自终端的上行数据包,该上行数据包对应的QoS文件为第一QoS文件,该上行数据包中携带该第一VLAN优先级;接入网关功能实体根据该第一VLAN优先级,对该上行数据包进行QoS控制。基于该方案,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
在一种可能的设计中,接入网关功能实体获取QoS文件与VLAN优先级的对应关系,包括:接入网关功能实体生成该QoS文件与VLAN优先级的对应关系;或者,接入网关功能实体接收来自会话管理功能实体的第二消息,该第二消息包括该QoS文件与VLAN优先级的对应关系。
在一种可能的设计中,该第一消息为固网配置消息。
进一步的,该固网配置消息还包括该QoS文件与VLAN标识ID的对应关系,其中,该QoS文件与VLAN ID的对应关系中包括该第一QoS文件与第一VLAN ID的对应关系;在接入网关功能实体向终端发送第一消息之前,还包括:接入网关功能实体获取该QoS文件与VLAN ID的对应关系。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与VLAN ID的对应关系。
进一步的,方法还包括:接入网关功能实体接收来自会话管理功能实体的分组数据单元PDU会话建立接受消息,该PDU会话建立接受消息包括该QoS文件与差分服务代码点DSCP值的对应关系,其中,该QoS文件与DSCP值的对应关系中包括该第一QoS文件与第一DSCP值的对应关系;接入网关功能实体向该终端发送该PDU会话建立接受消息。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与DSCP值的对应关系。
在一种可能的设计中,该第一消息为PDU会话建立接受消息。
进一步的,在接入网关功能实体生成该QoS文件与VLAN优先级的对应关系之后,接入网关功能实体向终端发送第一消息之前,还包括:接入网关功能实体向会话管理功能实体发送第三消息,该第三消息包括该QoS文件与VLAN优先级的对应关系;接入网关功能实体接收来自会话管理功能实体的第一消息。
进一步的,该第三消息和该PDU会话建立接受消息还包括该QoS文件与VLAN ID的对应关系,其中,该QoS文件与VLAN ID的对应关系中包括该第一QoS文件与第一VLAN ID的对应关系;在接入网关功能实体向会话管理功能实体发送第三消息之前,还包括:接入网关功能实体生成该QoS文件与VLAN ID的对应关系。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与VLAN ID的对应关系。
进一步的,该PDU会话建立接受消息还包括该QoS文件与DSCP值的对应关系,其中,该QoS文件与DSCP值的对应关系中包括该第一QoS文件与第一DSCP值的对应关系。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与DSCP值的对应关系。
在一种可能的设计中,该上行数据包中携带该第一VLAN优先级,包括:该上行数据包的二层L2包头中的VLAN优先级为该第一VLAN优先级。
在一种可能的设计中,该方法还包括:接入网关功能实体将该上行数据包的L2包头中的VLAN ID映射成QoS流标识QFI值,其中,该L2包头中的VLAN ID为第一VLAN ID;接入网关功能实体向用户面UP功能实体发送该上行数据包,该上行数据包的包头中包括该QFI值。也就是说,本申请实施例中,可以将VLAN ID映射成QFI值,进而,接入网关功能实体向UP功能实体发送的上行数据包中携带QFI值,以使得UP功能实体根据该QFI值进行QoS控制。
在一种可能的设计中,该方法还包括:接入网关功能实体将该上行数据包的网际协议 IP头中的DSCP值映射成QFI值,其中,该IP头中的DSCP值为第一DSCP;接入网关功能实体向UP功能实体发送该上行数据包,该上行数据包的包头中包括该QFI值。也就是说,本申请实施例中,可以将DSCP值映射成QFI值,进而,接入网关功能实体向UP功能实体发送的上行数据包中携带QFI值,以使得UP功能实体根据该QFI值进行QoS控制。
第二方面,提供一种服务质量QoS控制方法,该方法包括:终端接收来自接入网关功能实体的第一消息,该第一消息包括QoS文件与虚拟局域网VLAN优先级的对应关系,其中,该QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;终端根据该对应关系,确定该第一QoS文件对应的VLAN优先级为该第一VLAN优先级,其中,该第一QoS文件为待发送的上行数据包对应的QoS文件;终端向该接入网关功能实体发送该上行数据包,其中,该上行数据包中携带该第一VLAN优先级。基于该方案,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
在一种可能的设计中,该第一消息为固网配置消息;或者,该第一消息为分组数据单元PDU会话建立接受消息。
在一种可能的设计中,该上行数据包中携带该第一VLAN优先级,包括:该上行数据包的二层L2包头中的VLAN优先级为该第一VLAN优先级。
在一种可能的设计中,该上行数据包的L2包头中的VLAN标识ID为第一VLAN ID。
进一步的,该第一消息还包括该QoS文件与VLAN ID的对应关系,其中,该QoS文件与VLAN ID的对应关系中包括该第一QoS文件与该第一VLAN ID的对应关系;在终端接收来自接入网关功能实体的第一消息之后,终端向接入网关功能实体发送该上行数据包之前,还包括:终端根据该QoS文件与VLAN ID的对应关系,确定该第一QoS文件对应的第一VLAN ID。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与VLAN ID值的对应关系。
可选的,在终端向接入网关功能实体发送该上行数据包之前,还包括:终端确定该第一QoS文件对应的第一VLAN ID为该第一QoS文件包括的第一QoS流标识QFI值。也就是说,本申请实施例中,可以是由终端根据QoS文件确定第一QoS文件对应的第一VLAN ID。
在一种可能的设计中,该上行数据包的网际协议IP头中的差分服务代码点DSCP值为第一DSCP值。
进一步的,该第一消息为固网配置消息;在终端向该接入网关功能实体发送该上行数据包之前,还包括:终端接收来自接入网关功能实体的分组数据单元PDU会话建立接受消息,该PDU会话建立接受消息包括该QoS文件与DSCP值的对应关系,其中,该QoS文件与DSCP值的对应关系中包括该第一QoS文件与该第一DSCP值的对应关系;终端根据该QoS文件与DSCP值的对应关系,确定该第一QoS文件对应的第一DSCP值。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与DSCP值的对应关系。
可选的,该第一消息为PDU会话建立接受消息;该第一消息还包括该QoS文件与DSCP值的对应关系;在终端接收来自接入网关功能实体的第一消息之后,终端向接入网关功能实体发送该上行数据包之前,还包括:终端根据该QoS文件与DSCP值的对应关系,确定该第一QoS文件对应的第一DSCP值。也就是说,本申请实施例中,网络侧还可以向终端发送QoS文件与DSCP值的对应关系。
可选的,在终端向接入网关功能实体发送该上行数据包之前,还包括:终端确定该第一QoS文件对应的第一DSCP值为该第一QoS文件包括的第一QFI值也就是说,本申请实施例中,可以是由终端根据QoS文件确定第一QoS文件对应的第一DSCP值。
第三方面,提供一种接入网关功能实体,该接入网关功能实体具有实现上述第一方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,提供一种接入网关功能实体,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该接入网关功能实体运行时,该处理器执行该存储器存储的该计算机执行指令,以使该接入网关功能实体执行如上述第一方面中任一所述的QoS控制方法。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的QoS控制方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面中任意一项的QoS控制方法。
其中,第三方面至第六方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第七方面,提供一种终端,该终端具有实现上述第二方面所述的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第八方面,提供一种终端,包括:处理器、存储器、总线和通信接口;该存储器用于存储计算机执行指令,该处理器与该存储器通过该总线连接,当该终端运行时,该处理器执行该存储器存储的该计算机执行指令,以使该终端执行如上述第二方面中任一所述的QoS控制方法。
第九方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的QoS控制方法。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第二方面中任意一项的QoS控制方法。
其中,第七方面至第十方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,本申请实施例提供一种服务质量QoS控制系统,该QoS控制系统包括接入网关功能实体和会话管理功能实体;会话管理功能实体,用于获取QoS文件与虚拟局 域网VLAN优先级的对应关系,并向接入网关功能实体发送第二消息,该第二消息包括QoS文件与VLAN优先级的对应关系,其中,该QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;接入网关功能实体,用于接收来自会话管理功能实体的第二消息,并向终端发送第一消息,该第一消息包括QoS文件与VLAN优先级的对应关系;接入网关功能实体,还用于接收来自终端的上行数据包,并根据上行数据包中携带的第一VLAN优先级,对上行数据包进行QoS控制,其中,上行数据包对应的QoS文件为第一QoS文件。
在一种可能的设计中,会话管理功能实体,用于获取QoS文件与虚拟局域网VLAN优先级的对应关系,包括:会话管理功能实体生成QoS文件与VLAN优先级的对应关系。
在一种可能的设计中,第一消息为分组数据单元PDU会话建立接受消息;接入网关功能实体,还用于生成QoS文件与VLAN优先级的对应关系,并向会话管理功能实体发送第三消息,该第三消息包括QoS文件与VLAN优先级的对应关系;会话管理功能实体,用于获取QoS文件与VLAN优先级的对应关系,包括:会话管理功能实体接收来自接入网关功能实体的第三消息。
在一种可能的设计中,QoS控制系统还包括移动管理实体;会话管理功能实体,还用于在接收来自接入网关功能实体的第三消息之前,接收来自移动管理实体的第四消息,该第四消息包括固网接入标识或固网接入类型中的至少一个;会话管理功能实体,还用于根据固网接入标识或固网接入类型中的至少一个,确定在接收到QoS文件与VLAN优先级的对应关系后向接入网关功能实体发送PDU会话建立接受消息。
第十二方面,提供一种服务质量QoS控制方法,该方法包括:接入网资源控制功能实体获取第一QoS文件;该接入网资源控制功能实体获取该第一QoS文件与第一虚拟局域网VLAN优先级或第一VLAN标识ID中的至少一个的对应关系;该接入网资源控制功能实体向接入网设备发送该对应关系;该接入网设备根据该对应关系以及接收到的数据包中携带的第一VLAN优先级或第一VLAN ID,对接收到的数据包进行QoS控制。基于该方案,由于接入网资源控制功能实体在接收第一QoS文件之后,可以获取第一QoS文件与第一VLAN ID或第一VLAN优先级中的至少一个的对应关系,进行可以将该对应关系发送给接入网设备。这样接入网设备可以在接收数据包之后,根据该对应关系以及接收到的数据包中携带的第一VLAN优先级或第一VLAN ID,对接收到的数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
在一种可能的设计中,该接入网资源控制功能实体获取该第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系,包括:该接入网资源控制功能实体根据该第一QoS文件生成该第一QoS文件与该第一VLAN优先级或该第一VLAN ID中的至少一个的对应关系;或者,该接入网资源控制功能实体接收来自接入网关功能实体的该第一QoS文件与该第一VLAN优先级或该第一VLAN ID中的至少一个的对应关系。也就是说,本申请实施例中,上述对应关系可以是由接入网资源控制功能实体生成的,也可以是接入网资源控制功能实体从其它设备接收的,本申请实施例对此不作具体限定。
在一种可能的设计中,该接入网资源控制功能实体根据该第一QoS文件生成该第一 QoS文件与该第一VLAN优先级或该第一VLAN ID中的至少一个的对应关系,包括:该接入网资源控制功能实体根据该第一QoS文件对应的分组数据单元PDU会话标识信息,生成该第一QoS文件与该第一VLAN ID的对应关系,其中,该第一VLAN ID包括该PDU会话标识信息;或者,该接入网资源控制功能实体根据该第一QoS文件中的QoS流标识QFI或第五代5G QoS指示5QI,生成该第一QoS文件与该第一VLAN ID的对应关系,其中,该第一VLAN ID包括该5QI或该QFI;或者,该接入网资源控制功能实体根据该第一QoS文件对应的PDU会话标识信息,以及该第一QoS文件中的QFI或5QI,生成该第一QoS文件与该第一VLAN ID的对应关系,其中,该第一VLAN ID包括该PDU会话标识信息、以及该5QI或该QFI;或者,该接入网资源控制功能实体根据该第一QoS文件与本地策略,生成该第一QoS文件与第一VLAN优先级的对应关系。
在一种可能的设计中,该对应关系为该第一QoS文件与第一VLAN优先级的对应关系;该接收到的数据包携带第一VLAN优先级;该接入网设备根据该对应关系以及接收到的数据包中携带的第一VLAN优先级,对接收到的数据包进行QoS控制,包括:该接入网设备根据该第一VLAN优先级和该对应关系,确定第一QoS文件;该接入网设备根据该第一QoS文件,对该接收到的数据包进行QoS控制。基于该方案,可以实现对接收到的数据包的QoS控制。
在一种可能的设计中,该对应关系为该第一QoS文件与第一VLAN ID的对应关系;该接收到的数据包携带第一VLAN ID;该接入网设备根据该对应关系以及接收到的数据包中携带的第一VLAN ID,对该接收到的数据包进行QoS控制,包括:该接入网设备根据该第一VLAN ID和该对应关系,确定第一QoS文件;该接入网设备根据该第一QoS文件,对该接收到的数据包进行QoS控制。基于该方案,可以实现对接收到的数据包的QoS控制。
在一种可能的设计中,该对应关系为该第一QoS文件与第一VLAN优先级的对应关系;该接收到的数据包携带第一VLAN ID;该接入网设备根据该对应关系以及接收到的数据包中携带的第一VLAN ID,对该接收到的数据包进行QoS控制,包括:该接入网设备确定该第一VLAN ID对应的第一VLAN优先级;该接入网设备根据该第一VLAN优先级和该对应关系,确定该第一QoS文件;该接入网设备根据该第一QoS文件,对该接收到的数据包进行QoS控制。基于该方案,可以实现对接收到的数据包的QoS控制。
在一种可能的设计中,在该接入网设备确定该第一VLAN ID对应的第一VLAN优先级之后,还包括:该接入网设备将该接收到的数据包的二层L2包头中的VLAN优先级设置为第一VLAN优先级。这样后续设备可以根据该第一VLAN优先级对接收到的数据包进行QoS控制。
第十三方面,提供一种服务质量QoS控制系统,该QoS控制系统包括:接入网资源控制功能实体和接入网设备;该接入网资源控制功能实体,用于接收第一QoS文件;该接入网资源控制功能实体,还用于获取该第一QoS文件与第一虚拟局域网VLAN优先级或第一VLAN标识ID中的至少一个的对应关系;该接入网资源控制功能实体,还用于向接入网设备发送该对应关系;该接入网设备,还用于根据该对应关系以及接收到的数据包中携带的第一VLAN优先级或第一VLAN ID,对接收到的数据包进行QoS控制。
第十四方面,提供一种服务质量QoS控制方法,包括:终端接收来自接入网关功能实体的下行数据包,该下行数据包携带第一虚拟局域网VLAN优先级;该终端向该接入网关功能实体发送该下行数据包对应的上行数据包,该上行数据包携带第一VLAN优先级。基于该方案,由于终端可以根据下行数据包中携带的第一VLAN优先级确定上行数据包中携带的第一VLAN优先级,使得接入网关功能实体可以根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例提供的QoS控制系统的架构示意图;
图2为本申请实施例提供的支持固网接入的5G网络的架构示意图;
图3为本申请实施例提供的通信设备的硬件结构示意图;
图4为本申请实施例提供的QoS控制方法的流程示意图一;
图5为本申请实施例提供的QoS控制方法的流程示意图二;
图6为本申请实施例提供的QoS控制方法的流程示意图三;
图7为本申请实施例提供的QoS控制方法的流程示意图四;
图8为本申请实施例提供的接入网关功能实体的结构示意图一;
图9为本申请实施例提供的接入网关功能实体的结构示意图二;
图10为本申请实施例提供的终端的结构示意图一;
图11为本申请实施例提供的终端的结构示意图二;
图12为本申请实施例提供的QoS控制方法的流程示意图五;
图13为本申请实施例提供的另一种QoS控制系统的架构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。比如,本申请实施例中的第一消息和第二消息可能是相同的消息,也可能是不同的消息,本申请实施例对此不作具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术 问题,同样适用。
如图1所示,为本申请实施例提供的QoS控制系统10的架构示意图。该QoS控制系统10包接入网关功能实体101和会话管理功能实体102。
其中,会话管理功能实体102,用于获取QoS文件与虚拟局域网(virtual local area network,VLAN)优先级的对应关系,并向接入网关功能实体101发送第二消息,该第二消息包括QoS文件与VLAN优先级的对应关系。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
接入网关功能实体101,用于接收来自会话管理功能实体102的第二消息,并向终端发送第一消息,该第一消息包括QoS文件与VLAN优先级的对应关系。
接入网关功能实体101,还用于接收来自终端的上行数据包,并根据上行数据包中携带的第一VLAN优先级,对上行数据包进行QoS控制,其中,该上行数据包对应的QoS文件为第一QoS文件。
需要说明的是,图1中的接入网关功能实体101和会话管理功能实体102可能直接通信,也可能通过其他网络设备的转发进行通信,本申请实施例对此不作具体限定。
可选的,图1中的接入网关功能实体101也可能不需要与会话管理功能实体102通信,即本申请实施例也可以由接入网关功能实体101完成QoS控制,具体如下:
接入网关功能实体101,用于生成QoS文件与VLAN优先级的对应关系,并向终端发送第一消息,该第一消息包括QoS文件与VLAN优先级的对应关系。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
接入网关功能实体101,还用于接收来自终端的上行数据包,并根据上行数据包中携带的第一VLAN优先级,对上行数据包进行QoS控制,其中,该上行数据包对应的QoS文件为第一QoS文件。
具体的,上述QoS控制系统10可以应用于支持固网接入的5G网络以及支持固网接入的未来其它的网络,本申请实施例对此不作具体限定。
其中,若上述QoS控制系统10应用于支持固网接入的5G网络,则如图2所示,接入网关功能实体101所对应的网元或者实体可能为接入网关功能(access gateway function,AGF)实体,会话管理功能实体102所对应的网元或实体可能为会话管理功能(session management function,SMF)实体。其中,AGF实体的主要功能可参考上述对接入网关功能实体101的描述,SMF实体的主要功能可参考上述对会话管理功能实体102的描述,在此不再赘述。
此外,如图2所示,该支持固网接入的5G网络还可以包括接入网络(access network,AN)设备、统一数据管理(unified data management,UDM)实体、鉴权服务器功能(authentication server function,AUSF)实体、接入与移动管理功能(Access and Mobility Management Function,AMF)实体、策略控制功能(policy control function,PCF)实体、UP功能实体等。其中,终端通过下一代网络(Next generation,N)接口1(简称N1)与AMF实体通信,并通过AN设备与AGF实体通信,AGF实体通过N接口2(简称N2)与AMF实体通信,AMF实体通过N接口11(简称N11)与SMF实体通信,AMF实体通过N接口8(简称N8)与UDM实体通信,AMF实体通过N接口12(简称N12)与AUSF 实体通信,AMF实体通过N接口15(简称N15)与PCF实体通信,SMF实体通过N接口7(简称N7)与PCF实体通信,SMF实体通过N接口4(简称N4)与UPF实体通信。
此外,图2中的UDM实体、AUSF实体、PCF实体、AMF实体和SMF实体也可以统称为CP功能实体,本申请实施例对此不作具体限定。
当然,图2所示的支持固网接入的5G网络也可以支持移动网络接入,本申请实施例对此不作具体限定。其中,在支持移动网络接入时,AN设备可以直接和UPF实体通信,具体可参考现有的5G移动网络架构,在此不再赘述。
需要说明的是,上述5G网络中的终端、AN设备、AMF实体、SMF实体、AUSF实体、UDM实体、AGF实体、UP功能实体和PCF实体等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,终端、AN设备、AMF实体、SMF实体、AUSF实体、UDM实体、AGF实体、UP功能实体和PCF实体所对应的网元或实体也可以是其他的名字,本申请实施例对此不作具体限定。例如,该UDM实体还有可能被替换为用户归属服务器(home subscriber server,HSS)或者用户签约数据库(user subscription database,USD)或者数据库实体,等等,在此进行统一说明,以下不再赘述。
可选的,如图13所示,为本申请实施例提供的另一种QoS控制系统130的架构示意图。该QoS控制系统130包括接入网资源控制功能实体1301和接入网设备1302。接入网资源控制功能实体1301,用于获取第一QoS文件,并获取第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系;接入网资源控制功能实体1301,还用于向接入网设备1302发送该对应关系;接入网设备1302,还用于根据该对应关系以及接收到的数据包中携带的第一VLAN优先级或第一VLAN ID,对接收到的数据包进行QoS控制。
需要说明的是,图13中的接入网资源控制功能实体1301和接入网设备1302可能直接通信,也可能通过其他网络设备的转发进行通信,本申请实施例对此不作具体限定。
具体的,上述QoS控制系统130可以应用于支持固网接入的5G网络以及支持固网接入的未来其它的网络,本申请实施例对此不作具体限定。
其中,若上述QoS控制系统130应用于支持固网接入的5G网络,则接入网资源控制功能1301所对应的网元或者实体可能为接入网资源控制功能(access resource control function,ARCF)实体,接入网设备1302所对应的网元或者实体可能为AN设备。其中,ARCF实体的主要功能可参考上述对接入网资源控制功能1301的描述,AN设备的主要功能可参考上述对接入网设备1302的描述,在此不再赘述。
此外,如图2所示,该支持固网接入的5G网络还可以包括其他网络设备,具体可参考上述图2的描述,在此不再赘述。
需要说明的是,图2中未示出ARCF实体,该ARCF实体的功能可以部署在AGF实体中,也可以独立于ARCF实体,本申请实施例对此不作具体限定。此外,该ARCF实体还有可能被替换为接入网资源管理服务器或其它,本申请实施例对此不作具体限定。
需要说明的是,本申请所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的终端,移动台(mobile station,MS),用户设备(user equipment,UE),终端设备(terminal  equipment),客户端设备(customer premise equipment,CPE)软终端等等。为方便描述,本申请中,上面提到的设备统称为终端。
另外,本申请实施例图1中的接入网关功能实体101和会话管理功能实体102,可能由一个实体设备实现,也可能由多个实体设备共同实现,还可能是一个实体设备内的一个逻辑功能模块,本申请实施例对此不作具体限定。
如图3所示,图1中的接入网关功能实体101、会话管理功能实体102和终端可以通过图3中的通信设备来实现。
图3所示为本申请实施例提供的通信设备的硬件结构示意图。通信设备300包括至少一个处理器301,通信总线302,存储器303以及至少一个通信接口304。
处理器301可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线302可包括一通路,在上述组件之间传送信息。
通信接口304,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器303可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器303用于存储执行本申请方案的应用程序代码,并由处理器301来控制执行。处理器301用于执行存储器303中存储的应用程序代码,从而实现本申请下述实施例提供的QoS控制方法。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备300可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备300还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。例如,输出设备305可以是液晶显示器(liquid crystal display,LCD),发光二级管(Light Emitting Diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输 入设备306和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备306可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备300可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中,通信设备300可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、终端设备、嵌入式设备或有图3中类似结构的设备。本申请实施例不限定通信设备300的类型。
下面将结合图1至图3对本申请实施例提供的QoS控制方法进行具体阐述。
首先,结合图1所示的QoS控制系统10,本申请实施例提供的QoS控制方法的流程示意图如图4所示,包括如下步骤:
S401、接入网关功能实体获取QoS文件与VLAN优先级的对应关系,其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
S402、接入网关功能实体向终端发送第一消息,以使得终端接收该第一消息。该第一消息包括QoS文件与VLAN优先级的对应关系。
S403、终端根据对应关系,确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,其中,第一QoS文件为待发送的上行数据包对应的QoS文件。
S404、终端向接入网关功能实体发送上行数据包,以使得接入网关功能实体接收该上行数据包。其中,该上行数据包中携带第一VLAN优先级。
S405、接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制。
本申请实施例提供的QoS控制方法中,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
其中,上述S401、S402和S405中接入网关功能实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S403和S404中终端的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其次,以图1所示的QoS控制系统10应用于图2所示的支持固网接入的5G网络为例,对图4所示的QoS控制方法进行展开说明。
如图5所示,为本申请实施例提供的一种QoS控制方法的流程示意图。该QoS控制方法涉及到终端、AGF实体、AMF实体、UDM实体以及SMF之间的交互,包括如下步骤:
S501、终端向AGF实体发送注册请求消息,以使得AGF实体接收该注册请求消息。其中,该注册请求消息中包含终端的标识以及固网切片信息。
可选的,本申请实施例中,终端的标识可以是完整的终端永久身份标识,比如国际移动用户标识(international mobile subscriber identity,IMSI);也可以是部分的终端永久身份标识,比如IMSI中的部分信息;还可以是经过安全保护的终端身份标识,比如经过哈希 算法保护的IMSI信息;还可以是终端的媒体访问控制(media access control,MAC)地址或者终端的用户名等,本申请实施例对终端的标识的具体内容不作具体限定。
可选的,本申请实施例可以将现有的切片选择信息设置为固网切片信息。
S502、AGF实体根据注册请求消息中的终端的标识以及固网切片信息,将终端的接入网类型设置为固网接入。
S503、AGF实体向AMF实体发送N2消息,以使得AMF实体接收该N2消息。其中,该N2消息中包括注册请求消息。
可选的,N2消息中还可以包括接入点标识。其中,该接入点标识包含在N2消息承载的注册请求消息中,或者AGF将接入点标识通过N2消息的参数发送给AMF实体,本申请实施例对此不作具体限定。
S504、AMF实体根据终端的标识对终端进行鉴权认证,对于鉴权认证通过的终端,AMF实体完成终端的注册流程。
S505、终端向AMF实体发送分组数据单元(packet data unit,PDU)会话建立请求消息,以使得AMF实体接收该PDU会话建立请求消息。其中,该PDU会话建立请求消息包括终端的标识以及接入点标识中的至少一个、以及固网业务标识和固网切片信息中的至少一个。
S506、AMF实体根据固网业务标识和固网切片信息中的至少一个选择SMF实体。
S507、AMF实体向SMF实体发送N11消息,该N11消息包括PDU会话建立请求消息。
可选的,N11消息中还可以包括接入网类型和接入点标识中的至少一个。
S508、SMF实体根据PDU会话建立请求消息为终端建立PDU会话。
具体的,PDU会话的建立流程可参考现有技术,在此不再赘述。
S509、SMF实体向UDM实体发送策略请求消息,以使得UDM实体接收该策略请求消息,该策略请求消息包括终端的标识以及接入点标识中的至少一个。
S510、UDM实体根据终端的标识以及接入点标识中的至少一个,确定QoS策略。
S511、UDM实体向SMF实体发送策略响应消息,以使得SMF实体接收该策略响应消息。其中,该策略响应消息包括QoS策略。
S512、SMF实体根据QoS策略生成QoS文件。
可选的,本申请实施例中的QoS文件包括QoS流标识(QoS flow ID,QFI),流描述信息,5G QoS指示(5G QoS Indicator,5QI),与QoS参数中的至少一个。其中,QoS参数包括分配和预留优先级(allocation and retention priority,ARP)、保证带宽、最大流比特率(maximum flow bit rate,MFBR)和保证流比特率(guaranteed flow bit rate,GFBR)中的至少一个。
可选的,本申请实施例中,也可以是由AMF实体向UDM实体发送策略请求消息,由UDM实体向AMF实体发送包含QoS策略的策略响应消息之后,由AMF实体向SMF实体发送该QoS策略,本申请实施例对此不作具体限定。具体的,AMF实体可以在步骤S503之后向UDM实体发送策略请求消息,该策略请求消息包括终端的标识以及接入点标识中的至少一个,由UDM实体根据终端的标识以及接入点标识中的至少一个,确定QoS 策略后,向AMF实体发送包含QoS策略的策略响应消息。AMF实体接收来自UDM实体的策略响应消息后,存储该QoS策略。进而,在步骤S507中,AMF实体向SMF实体发送N11消息时,N11消息中可以包括该QoS策略,这样,SMF实体可以获取该QoS策略。
另外,本申请实施例以运营商在UDM中保存QoS策略为例进行说明,当然,运营商还可能在网络侧的其他设备上存储QoS策略,比如,在PCF实体上存储QoS策略。其中,当在网络侧的其他设备上存储QoS策略时,从其他设备上获取QoS策略的实现方式可参考上述从UDM实体上获取QoS策略的实现方式,仅需将上述方案中的UDM实体替换为PCF实体或其它设备即可,在此不再赘述。
S513、SMF实体通过AMF实体向AGF实体发送会话管理(session management,SM)信息,以使得AGF实体接收该SM信息。其中,该SM信息中包括QoS文件。
可选的,SM信息中还可以包括PDU会话标识和隧道标识,以使得AGF实体与UPF实体之间建立隧道,具体可参考现有的实现,在此不再赘述。
可选的,若步骤S508中的N11消息中包括接入网类型和接入点标识中的至少一个,则SMF实体确定在接收到AGF实体生成的QoS文件与VLAN优先级对应关系后向AGF实体发送PDU会话建立接受消息,具体包括如下步骤:
S514、AGF实体从QoS文件中确定可接受的QoS文件,对于可接受的QoS文件,AGF实体生成QoS文件与VLAN优先级的对应关系。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
可选的,AGF实体可以基于配置信息或策略中的至少一个生成QoS文件与VLAN优先级的对应关系,本申请实施例对此不作具体限定。
可选的,若本申请实施例中可接受的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN优先级,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN优先级,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN优先级时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN优先级。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的VLAN优先级。
可选的,对于可接受的QoS文件,AGF实体还可以生成QoS文件与VLAN ID的对应关系。其中,QoS文件与VLAN ID的对应关系中包括第一QoS文件与第一VLAN ID的对应关系。
可选的,若本申请实施例中可接受的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN ID,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN ID,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN ID时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN ID。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的VLAN ID。
S515、AGF实体通过AMF实体向SMF实体发送QoS文件与VLAN优先级的对应关系,以使得AMF实体接收QoS文件与VLAN优先级的对应关系。
可选的,若AGF实体还生成QoS文件与VLAN ID的对应关系,则AGF实体还通过AMF实体向SMF实体发送QoS文件与VLAN ID的对应关系。
S516、SMF实体通过AMF实体向AGF发送PDU会话建立接受消息,以使得AGF 实体接收该PDU会话建立接受消息。其中,该PDU会话建立接受消息中包括AGF实体生成的QoS文件与VLAN优先级的对应关系。
可选的,若AGF实体还通过AMF实体向SMF实体发送QoS文件与VLAN ID的对应关系,则PDU会话建立接受消息中还包括QoS文件与VLAN ID的对应关系。
可选的,对于可接受的QoS文件,SMF实体还可以生成QoS文件与差分服务代码点(Differentiated Services Code Point,DSCP)值的对应关系。进而,PDU会话建立接受消息中还可以包括QoS文件与DSCP值的对应关系,本申请实施例对此不作具体限定。其中,QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。
可选的,若本申请实施例中可接受的QoS文件有多个,则上述多个QoS文件可能对应相同的DSCP值,也可能多个QoS文件中的每个QoS文件分别对应不同的DSCP值,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的DSCP值时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的DSCP值。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的DSCP值。
S517、AGF实体向终端发送该PDU会话建立接受消息,以使得终端接收该PDU会话建立接受消息。
其中,AGF实体向终端发送的PDU会话建立接受消息是转发的SMF实体通过AMF实体向AGF实体发送的PDU会话建立接受消息。
S518、终端根据QoS文件与VLAN优先级的对应关系,确定第一QoS文件对应的VLAN优先级为第一VLAN优先级。其中,第一QoS文件为待发送的上行数据包对应的QoS文件。
S519、终端向AGF实体发送上行数据包,以使得AGF实体接收该上行数据包。其中,该上行数据包中携带第一VLAN优先级。
可选的,上行数据包中携带第一VLAN优先级,具体可以包括:上行数据包的二层(Level2,L2)包头中的VLAN优先级为第一VLAN优先级。也就是说,终端可以将L2包头中的VLAN优先级设置为第一VLAN优先级。
可选的,上行数据包的L2包头中的VLAN ID为第一VLAN ID。也就是说,终端可以将L2包头中的VLAN ID设置为第一VLAN ID。
一种可能的实现方式中,终端可以根据QoS文件与VLAN ID的对应关系,确定第一QoS文件对应的第一VLAN ID。
一种可能的实现方式中,终端可以确定第一QoS文件对应的第一VLAN ID为第一QoS文件包括的第一QFI值。
可选的,上行数据包的网际协议(internet protocol,IP)头中的DSCP值为第一DSCP值。
一种可能的实现方式中,终端可以根据QoS文件与DSCP值的对应关系,确定第一QoS文件对应的第一DSCP值。
一种可能的实现方式中,终端可以确定第一QoS文件对应的第一DSCP值为第一QoS文件包括的第一QFI值。
S520、AGF实体根据第一VLAN优先级,对上行数据包进行QoS控制。
示例性的,AGF实体根据第一VLAN优先级,对上行数据包进行QoS控制,包括:
对于VLAN优先级不同的数据包,AGF实体优先调度VLAN优先级高的数据包;
对于VLAN优先级相同的数据包,可以控制带宽为相同第一VLAN优先级对应的第一QoS文件中包含的带宽之和。
或者,AGF实体根据第一VLAN优先级,对上行数据包进行QoS控制,包括:
AGF实体根据本地配置的第一VLAN优先级对应的QoS策略对上行数据包进行QoS控制。其中,该QoS策略可以包括最大流比特率和保证流比特率中的至少一个。
此外,AGF实体还可以根据QoS文件中的保证带宽和/或ARP中的至少一个进行数据包的准入控制。比如,当前带宽低于保证带宽时,AGF实体继续发送接收到的数据包;否则,AGF实体缓存或丢弃接收到的数据包。
可选的,若上行数据包的L2包头中的VLAN ID为第一VLAN ID,则AGF实体还可以将第一VLAN ID映射成QFI值,进而在向UP功能实体发送上行数据包时,在上行数据包中携带该QFI值,以使得UP功能实体根据该QFI值进行QoS控制,本申请实施例对此不作具体限定。
可选的,若上行数据包的IP头中的DSCP值为第一DSCP值,则AGF实体还可以将第一DSCP值映射成QFI值,进而在向UP功能实体发送上行数据包时,在上行数据包中携带该QFI值,以使得UP功能实体根据该QFI值进行QoS控制,本申请实施例对此不作具体限定。
本申请实施例提供的QoS控制方法中,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
其中,上述S501、S504、S505、S518和S519中终端的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S502、S503、S514、S515、S517和S520中AGF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S508、S509、S512、S513和S516中SMF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图6所示,为本申请实施例提供的另一种QoS控制方法的流程示意图。该QoS控制方法涉及到终端、AGF实体、AMF实体、UDM实体以及SMF之间的交互,包括如下步骤:
S601-S612、同S501-S512,具体可参考图5所示的实施例,在此不再赘述。
S613、SMF实体通过AMF实体向AGF实体发送SM信息和PDU会话建立接受消息,以使得AGF实体接收该SM信息和PDU会话建立接受消息。其中,该SM信息中包括QoS 文件,该PDU会话建立接受消息包括SMF实体为终端分配的IP地址。
可选的,SM信息中还可以包括PDU会话标识和隧道标识,以使得AGF实体与UPF实体之间建立隧道,具体可参考现有的实现,在此不再赘述。
可选的,在SMF实体生成QoS文件后,SMF实体还可以生成QoS文件与DSCP值的对应关系。进而,PDU会话建立接受消息中还可以包括QoS文件与DSCP值的对应关系,本申请实施例对此不作具体限定。其中,QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。
可选的,若本申请实施例中的QoS文件有多个,则上述多个QoS文件可能对应相同的DSCP值,也可能多个QoS文件中的每个QoS文件分别对应不同的DSCP值,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的DSCP值时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的DSCP值。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的DSCP值。
S614、AGF实体从QoS文件中确定可接受的QoS文件,对于可接受的QoS文件,AGF实体生成QoS文件与VLAN优先级的对应关系。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
可选的,AGF实体可以基于地配置信息或策略中的至少一个生成QoS文件与VLAN优先级的对应关系,本申请实施例对此不作具体限定。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
可选的,若本申请实施例中可接受的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN优先级,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN优先级,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN优先级时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN优先级。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的VLAN优先级。
可选的,对于可接受的QoS文件,AGF实体还可以生成QoS文件与VLAN ID的对应关系。
可选的,若本申请实施例中可接受的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN ID,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN ID,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN ID时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN ID。汇聚原则例如可以是将具有相同ARP的QoS文件设置成相同的VLAN ID。
S615、AGF实体向终端发送固网配置消息,以使得终端接收该固网配置消息。其中,该固网配置消息中包括QoS文件与VLAN优先级的对应关系。
可选的,若AGF实体还生成QoS文件与VLAN ID的对应关系,则固网配置消息中还包括QoS文件与VLAN ID的对应关系。
S616、AGF实体向终端发送该PDU会话建立接受消息,以使得终端接收该PDU会话建立接受消息。
其中,AGF实体向终端发送的PDU会话建立接受消息是转发的SMF实体通过AMF实体向AGF实体发送的PDU会话建立接受消息。
需要说明的是,本申请实施例中的步骤S615和S616之间没有必然的执行先后顺序,可以是先执行步骤S615,再执行步骤S616;也可以是先执行步骤S616,再执行步骤S615;还可以是同时执行步骤S616和S616,本申请实施例对此不作具体限定。
S617-S619、同S518-S520,具体可参考图5所示的实施例,在此不再赘述。
本申请实施例提供的QoS控制方法中,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
其中,上述S601、S604、S605、S617和S618中终端的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S602、S603、S614、S615、S616和S619中AGF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S608、S609、S612和S613中SMF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,如图7所示,为本申请实施例提供的另一种QoS控制方法的流程示意图。该QoS控制方法涉及到终端、AGF实体、AMF实体、UDM实体以及SMF之间的交互,包括如下步骤:
S701-S712、同S501-S512,具体可参考图5所示的实施例,在此不再赘述。
S713、SMF实体生成QoS文件与VLAN优先级的对应关系。其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。
可选的,SMF实体可以基于地配置信息、以及来自PCF实体或者UDM实体的QoS策略中的至少一个生成QoS文件与VLAN优先级的对应关系,其中,QoS策略中可以包含QoS文件与VLAN优先级的对应关系,本申请实施例对此不作具体限定。
可选的,若本申请实施例中的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN优先级,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN优先级,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN优先级时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN优先级。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的VLAN优先级。
可选的,SMF实体还可以生成QoS文件与VLAN ID的对应关系。其中,QoS文件与VLAN ID的对应关系中包括第一QoS文件与第一VLAN ID的对应关系。
可选的,若本申请实施例中的QoS文件有多个,则上述多个QoS文件可能对应相同的VLAN ID,也可能多个QoS文件中的每个QoS文件分别对应不同的VLAN ID,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的VLAN ID时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的VLAN ID。汇聚原则例如可以是将具有相同 5QI和/或ARP的QoS文件设置成相同的VLAN ID。
可选的,SMF实体还可以生成QoS文件与DSCP值的对应关系。其中,QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。
可选的,若本申请实施例中的QoS文件有多个,则上述多个QoS文件可能对应相同的DSCP值,也可能多个QoS文件中的每个QoS文件分别对应不同的DSCP值,本申请实施例对此不作具体限定。其中,上述多个QoS文件对应相同的DSCP值时,可以是基于汇聚原则将类似的QoS文件汇聚成相同的DSCP值。汇聚原则例如可以是将具有相同5QI和/或ARP的QoS文件设置成相同的DSCP值。
S714、SMF实体通过AMF实体向AGF发送PDU会话建立接受消息,以使得AGF实体接收该PDU会话建立接受消息。其中,该PDU会话建立接受消息中包括QoS文件与VLAN优先级的对应关系。
可选的,若SMF实体还生成QoS文件与VLAN ID的对应关系,则PDU会话建立接受消息中还包括QoS文件与VLAN ID的对应关系。
可选的,若SMF实体还生成QoS文件与DSCP值的对应关系,则PDU会话建立接受消息中还包括QoS文件与DSCP值的对应关系。
S715、AGF实体向终端发送该PDU会话建立接受消息,以使得终端接收该PDU会话建立接受消息。
S716-S718、同S518-S520,具体可参考图5所示的实施例,在此不再赘述。
本申请实施例提供的QoS控制方法中,由于终端可以确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,使得终端在向接入网关功能实体发送上行数据包时,可以在上行数据包中携带该第一VLAN优先级,由接入网关功能实体根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
其中,上述S701、S704、S705、S716和S717中终端的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S702、S703、S715和S718中AGF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
其中,上述S708、S709、S712、S713和S714中SMF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
如图12所示,为本申请实施例提供的另一种QoS控制方法的流程示意图。该QoS控制方法以ARCF实体独立于AGF实体为例进行说明,涉及到终端、AN设备、ARCF实体、AGF实体、AMF实体、UDM实体以及SMF实体之间的交互,包括如下步骤:
S1201-S1213、同S601-S613,具体可参考图6所示的实施例,在此不再赘述。
S1214、AGF实体向ARCF实体发送接入网资源请求消息,以使得ARCF实体接收来自AGF实体的接入网资源请求消息。
其中,该接入网资源请求消息中携带PDU会话标识信息和QoS文件。该QoS文件可以包括5QI和QoS参数中的至少一个。其中,QoS参数的相关描述可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例中的QoS文件还可以包括QFI,该QFI与QoS文件一一对应,本申请实施例对此不作具体限定。
可选的,本申请实施例中的PDU会话标识信息可以是AGF实体接收到的PDU会话标识(PDU session ID)信息;或者可以是AGF实体分配的与PDU会话对应的AGF MAC地址,或者VLAN ID,或者通用路由封装协议(generic routing encapsulation,GRE)隧道标识中的至少一个,本申请实施例对此不作具体限定。其中,该PDU会话标识信息用于确定数据包所属的PDU会话,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中的VLAN ID也可以称之为VLAN标签(Tag),在此进行统一说明,以下不再赘述。
S1215、ARCF实体向AN设备发送接入网资源配置请求消息,以使得AN设备接收来自ARCF实体的接入网资源配置请求消息。
其中,该接入网资源配置请求消息中包括第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系。
可选的,本申请实施例中,接入网资源配置请求消息中的第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系可以是ARCF实体通过如下方式获取的:
方式一,步骤S1214中的接入网资源请求消息中携带第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系,进而,ARCF实体从接入网资源请求消息中获取第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系。其中,AGF实体获取第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系的方式可参考上述图5至图7所示的实施例,在此不再赘述。
方式二,ARCF实体可以从接收到的QoS文件中确定可接受的第一QoS文件,对于可接受的第一QoS文件:
ARCF实体可以根据第一QoS文件对应的PDU会话标识的信息,生成第一QoS文件与第一VLAN ID的对应关系,其中,第一VLAN ID包括PDU会话标识信息;
或者,ARCF实体可以根据第一QoS文件中的QFI或5QI,生成第一QoS文件与第一VLAN ID的对应关系,其中,第一VLAN ID包括5QI或QFI;
或者,ARCF实体可以根据第一QoS文件对应的PDU会话标识信息,以及第一QoS文件中的QFI或5QI,生成第一QoS文件与第一VLAN ID的对应关系,其中,第一VLAN ID包括PDU会话标识信息、以及5QI或QFI;
和/或,ARCF实体可以根据第一QoS文件与本地策略,生成第一QoS文件与第一VLAN优先级的对应关系。
可选的,本申请实施例中,封装PDU会话的数据包时,若第一VLAN ID包括PDU会话标识信息,以及5QI或QFI,则可以采用双层VLAN ID封装PDU会话的数据包,在此进行统一说明,以下不再赘述。
可选的,本申请实施例中,封装PDU会话的数据包时,若第一VLAN ID仅包括PDU 会话标识信息,或者5QI或者QFI中的其中一个信息时,则另外一个信息可以通过其他参数携带,比如通过GRE包头携带,或通过MAC地址携带,本申请实施例对此不作具体限定。
其中,第一QoS文件与第一VLAN优先级或第一VLAN ID的对应关系的相关描述可参考上述图5至图7所示的实施例,在此不再赘述。
S1216、AN设备存储第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系。
这样,在后续流程中,AN设备可以根据该对应关系以及接收到的数据包中携带的第一VLAN ID或第一VLAN优先级,对接收到的数据包进行QoS控制。
S1217、AN设备向ARCF实体发送接入网资源配置响应消息,以使得ARCF实体接收来自AN设备的接入网资源配置响应消息。
S1218、ARCF实体向AGF实体发送接入网资源配置响应消息,以使得AGF实体接收来自ARCF实体的接入网资源响应消息。
可选的,若第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系是由ARCF实体生成的,则该接入网资源响应消息中还可以携带第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系,AGF实体接收到接入网资源响应消息之后,可以存储第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系,本申请实施例对此不作具体限定。
可选的,在步骤S1215的方式一中,ARCF实体还可以确定第一QoS文件为可接受的QoS文件,进而在向AGF实体发送的接入网资源响应消息中还可以携带ARCF实体确定的可接受的第一QoS文件。或者,在步骤S1215的方式二中,ARCF实体在从接收到的QoS文件中确定可接受的第一QoS文件之后,还可以在向AGF实体发送的接入网资源响应消息中携带ARCF实体确定的可接受的第一QoS文件。这样,AGF实体在接收到该接入网资源响应消息之后,可以确定该第一QoS文件为可接受的QoS文件,进而可以执行后续操作。
S1219、AGF实体向终端发送固网配置消息,以使得终端接收该固网配置消息。其中,该固网配置消息携带第一QoS文件与第一VLAN优先级的对应关系。
需要说明的是,步骤S1219是个可选的步骤,若上述对应关系中不包括第一QoS文件与第一VLAN优先级的对应关系,则可以不用执行步骤S1219,在此进行统一说明,以下不再赘述。
此外,终端也可以通过图5或图7所示的实施例中的方式获取第一QoS文件与第一VLAN优先级的对应关系,具体可参考图5或图7所示的实施例,在此不再赘述。
S1220、AGF实体向终端发送PDU会话建立接受消息,以使得终端接收来自AGF实体的该PDU会话建立接受消息。
其中,AGF实体向终端发送的PDU会话建立接受消息是转发的SMF实体通过AMF实体向AGF实体发送的PDU会话建立接受消息。
S1221、AN设备根据存储的对应关系以及接收到的数据包中携带的第一VLAN ID或第一VLAN优先级,对接收到的数据包进行QoS控制。
可选的,本申请实施例中,AN设备接收到的数据包可以是终端发送给AN设备的上行数据包,也可以是AGF实体发送给AN设备的下行数据包,本申请实施例对此不作具体限定。
可选的,若AN设备存储的对应关系为第一QoS文件与第一VLAN优先级的对应关系,接收到的数据包携带第一VLAN优先级,则AN设备根据存储的对应关系以及接收到的数据包中携带的第一VLAN优先级,对接收到的数据包进行QoS控制,包括:AN设备根据第一VLAN优先级和该对应关系,确定第一QoS文件;进而,AN设备根据该第一QoS文件,对接收到的数据包进行QoS控制。
可选的,若AN设备存储的对应关系为第一QoS文件与第一VLAN ID的对应关系,接收到的数据包携带第一VLAN ID,则AN设备根据存储的对应关系以及接收到的数据包中携带的第一VLAN ID,对接收到的数据包进行QoS控制,包括:AN设备根据第一VLAN ID和该对应关系,确定第一QoS文件;进而,AN设备根据该第一QoS文件,对接收到的数据包进行QoS控制。
可选的,若AN设备存储的对应关系为第一QoS文件与第一VLAN优先级的对应关系,接收到的数据包携带第一VLAN ID,则AN设备根据存储的对应关系以及接收到的数据包中携带的第一VLAN ID,对接收到的数据包进行QoS控制,包括:AN设备确定第一VLAN ID对应的第一VLAN优先级;进而,AN设备根据第一VLAN优先级和该对应关系,确定第一QoS文件之后,根据该第一QoS文件,对接收到的数据包进行QoS控制。
可选的,本申请实施例中,AN设备根据第一QoS文件对接收到的数据包进行QoS控制,具体可以包括:AN设备基于第一QoS文件中的5QI确定数据包的处理优先顺序、处理时延或丢包率等;或者AN设备基于第一QoS文件中的保证带宽、MFBR或GFBR为数据包分配带宽资源,或控制数据包的发送速率,等等。
可选的,本申请实施例中,若AN设备接收到的数据包中不携带第一VLAN优先级,则AN设备可以在确定第一VLAN优先级之后,将接收到的数据包的L2包头中的VLAN优先级设置为第一VLAN优先级,这样后续设备可以根据该第一VLAN优先级对接收到的数据包进行QoS控制,比如,若AN设备接收到的数据包是终端发送给AN设备的,则AN设备将接收到的数据包的L2包头中的VLAN优先级设置为第一VLAN优先级之后,AGF实体可以根据该第一VLAN优先级对接收到的数据包进行QoS控制。
本申请实施例提供的QoS控制方法中,由于ARCF实体在接收第一QoS文件之后,可以获取第一QoS文件与第一VLAN ID或第一VLAN优先级中的至少一个的对应关系,进行可以将该对应关系发送给AN设备。这样AN设备可以在接收数据包之后,根据该对应关系以及接收到的数据包中携带的第一VLAN优先级或第一VLAN ID,对接收到的数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
其中,上述S1201-S1221中AN设备、ARCF实体、AGF实体或者AMF实体的动作可以由图3所示的通信设备300中的处理器301调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
可选的,本申请实施例提供的QoS控制方法还可以包括:终端接收来自AGF的下行 数据包,该下行数据包携带第一VLAN优先级;进而,终端向AGF实体发送该下行数据包对应的上行数据包,该上行数据包携带该第一VLAN优先级。具体来讲,AGF实体在转发下行数据包时,可以根据第一QoS文件与第一VLAN优先级的对应关系将下行数据包的L2包头中的VLAN优先级设置为第一VLAN优先级。终端发送上行数据时,可以根据下行数据包的流信息确定该下行数据包对应的上行数据包,并将该上行数据包的L2包头中的VLAN优先级设置为与下行数据包相同的第一VLAN优先级。其中,本申请实施例中的流信息具体指IP五元组信息,包括源IP地址,目的IP地址,源端口号,目的端口号和协议类型中的至少一个,在此进行统一说明,以下不再赘述。
基于该方案,由于终端可以根据下行数据包中携带的第一VLAN优先级确定上行数据包中携带的第一VLAN优先级,使得AGF实体可以根据第一VLAN优先级,对上行数据包进行QoS控制,因此基于本申请实施例提供的QoS控制方法,能够实现固网接入5G核心网络或未来其他网络时的QoS控制。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述接入网关功能实体和会话管理功能实体为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对接入网关功能实体和会话管理功能实体进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,在采用对应各个功能划分各个功能模块的情况下,图8示出了上述实施例中所涉及的接入网关功能实体80的一种可能的结构示意图。该接入网关功能实体80包括:获取模块801、接收模块802、发送模块803和控制模块804。
获取模块801,用于获取QoS文件与VLAN优先级的对应关系,其中,QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。发送模块803,用于向终端发送第一消息,该第一消息包括QoS文件与VLAN优先级的对应关系。接收模块802,用于接收来自终端的上行数据包,该上行数据包对应的QoS文件为第一QoS文件,该上行数据包中携带第一VLAN优先级。控制模块804,用于根据第一VLAN优先级,对上行数据包进行QoS控制。
进一步的,获取模块801具体用于:生成QoS文件与VLAN优先级的对应关系。
或者,获取模块801具体用于:接收来自会话管理功能实体的第二消息,该第二消息包括QoS文件与VLAN优先级的对应关系。
在一种可能的实现方式中,第一消息为固网配置消息。
进一步的,固网配置消息还包括QoS文件与VLAN ID的对应关系,其中,QoS文件 与VLAN ID的对应关系中包括第一QoS文件与第一VLAN ID的对应关系。获取模块801,还用于在发送模块803向终端发送第一消息之前,获取QoS文件与VLAN ID的对应关系。
进一步的,接收模块802,还用于接收来自SMF实体的PDU会话建立接受消息,该PDU会话建立接受消息包括QoS文件与DSCP值的对应关系,其中,该QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。发送模块803,还用于向终端发送PDU会话建立接受消息。
在一种可能的实现方式中,第一消息为PDU会话建立接受消息。
进一步的,发送模块803,还用于在获取模块801生成QoS文件与VLAN优先级的对应关系之后,发送模块803向终端发送第一消息之前,向会话管理功能实体发送第三消息,该第三消息包括QoS文件与VLAN优先级的对应关系。接收模块802,还用于接收来自会话管理功能实体的第一消息。
进一步的,如图8所示,接入网关功能实体80还包括生成模块805。第三消息和PDU会话建立接受消息还包括QoS文件与VLAN ID的对应关系,其中,QoS文件与VLAN ID的对应关系中包括第一QoS文件与第一VLAN ID的对应关系。生成模块805,用于在发送模块803向会话管理功能实体发送第三消息之前,生成QoS文件与VLAN ID的对应关系。
进一步的,PDU会话建立接受消息包括QoS文件与DSCP值的对应关系,其中,该QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。
可选的,上行数据包中携带第一VLAN优先级,包括:上行数据包的L2包头中的VLAN优先级为第一VLAN优先级。
在一种可能的实现方式中,接入网关功能实体80还包括映射模块806。映射模块806,用于将上行数据包的L2包头中的VLAN ID映射成QFI值,其中,L2包头中的VLAN ID为第一VLAN ID。发送模块803,还用于向UP功能实体发送上行数据包,该上行数据包的包头中包括QFI值。
在一种可能的实现方式中,映射模块806,还用于将上行数据包的IP头中的DSCP值映射成QFI值,其中,IP头中的DSCP值为第一DSCP值。发送模块803,还用于向UP功能实体发送上行数据包,所述上行数据包的包头中包括QFI值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图9示出了上述实施例中所涉及的接入网关功能实体90的一种可能的结构示意图,该接入网关功能实体90包括:处理模块901和通信模块902。其中,该处理模块901可用于执行图8中获取模块801、控制模块804、生成模块805和映射模块806所能执行的操作,该通信模块902可用于执行图8中接收模块802和发送模块803所能执行的操作,具体可参考图8所示的实施例,本申请实施例在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该接入网关功能实体以对应各个功能划分各个功能模块的形式来呈现, 或者,该接入网关功能实体以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(Application-Specific Integrated Circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到接入网关功能实体80或者接入网关功能实体90可以采用图3所示的形式。比如,图8中的获取模块801、接收模块802、发送模块803和控制模块804可以通过图3的处理器301和存储器303来实现。具体的,获取模块801、接收模块802、发送模块803和控制模块804可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图8中的获取模块801、接收模块802、发送模块803、控制模块804、生成模块805和映射模块806可以通过图3的处理器301和存储器303来实现。具体的,获取模块801、接收模块802、发送模块803、控制模块804、生成模块805和映射模块806可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,比如,图9中的处理模块901和通信模块902可以通过图3的处理器301和存储器303来实现,具体的,处理模块901和通信模块902可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的接入网关功能实体可用于执行上述QoS控制方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的终端的一种可能的结构示意图,该终端100包括:接收模块1001、确定模块1002和发送模块1003。
接收模块1001,用于接收来自接入网关功能实体的第一消息,该第一消息包括QoS文件与VLAN优先级的对应关系,其中,该QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系。确定模块1002,用于根据对应关系,确定第一QoS文件对应的VLAN优先级为第一VLAN优先级,其中,第一QoS文件为待发送的上行数据包对应的QoS文件。发送模块1003,用于向接入网关功能实体发送上行数据包,其中,该上行数据包中携带第一VLAN优先级。
可选的,第一消息为固网配置消息;或者,第一消息为PDU会话建立接受消息。
可选的,上行数据包中携带第一VLAN优先级,包括:上行数据包的L2包头中的VLAN优先级为第一VLAN优先级。
可选的,上行数据包的L2包头中的VLAN ID为第一VLAN ID。
在一种可能的实现方式中,第一消息还包括QoS文件与VLAN ID的对应关系,其中,QoS文件与VLAN ID的对应关系中包括第一QoS文件与第一VLAN ID的对应关系。确定模块1002,还用于在接收模块1001接收来自接入网关功能实体的第一消息之后,发送模块1003向接入网关功能实体发送上行数据包之前,根据QoS文件与VLAN ID的对应关系,确定第一QoS文件对应的第一VLAN ID。
在一种可能的实现方式中,确定模块1002,还用于在发送模块1003向接入网关功能实体发送上行数据包之前,确定第一QoS文件对应的第一VLAN ID为第一QoS文件包括的第一QFI值。
可选的,上行数据包的IP头中的DSCP值为第一DSCP值。
在一种可能的实现方式中,第一消息为固网配置消息。接收模块1001,还用于在发送模块1003向接入网关功能实体发送上行数据包前,接收来自接入网关功能实体的PDU会话建立接受消息,该PDU会话建立接受消息包括QoS文件与DSCP值的对应关系,其中,QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。确定模块1002,还用于根据QoS文件与DSCP值的对应关系,确定第一QoS文件对应的第一DSCP值。
在一种可能的实现方式中,第一消息为PDU会话建立接受消息。第一消息还包括QoS文件与DSCP值的对应关系其中,QoS文件与DSCP值的对应关系中包括第一QoS文件与第一DSCP值的对应关系。确定模块1002,还用于在接收模块1001接收来自接入网关功能实体的第一消息之后,发送模块1003向接入网关功能实体发送上行数据包之前,根据QoS文件与DSCP值的对应关系,确定第一QoS文件对应的第一DSCP值。
在一种可能的实现方式中,确定模块1002,还用于在发送模块1003向接入网关功能实体发送上行数据包之前,确定第一QoS文件对应的第一DSCP值为第一QoS文件包括的第一QFI值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
以采用集成的方式划分各个功能模块的情况下,图11示出了上述实施例中所涉及的终端110的一种可能的结构示意图,该终端110包括:处理模块1101和通信模块1102。其中,该处理模块1101可用于执行图10中确定模块1002所能执行的操作,该通信模块1102可用于执行图10中接收模块1001和发送模块1003所能执行的操作,具体可参考图10所示的实施例,本申请实施例在此不再赘述。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端以对应各个功能划分各个功能模块的形式来呈现,或者,该终端以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到终端100或者终端110可以采用图3所示的形式。比如,图10中的接收模块1001、确定模块1002和发送模块1003可以通过图3的处理器301和存储器303来实现。具体的,接收模块1001、确定模块1002和发送模块1003可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。或者,图11中的处理模块1101和通信模块1102可以通过图3的处理器301和存储器303来实现,具体的,处理模块1101和通信模块1102可以通过由处理器301来调用存储器303中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
由于本申请实施例提供的终端可用于执行上述QoS控制方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种服务质量QoS控制方法,其特征在于,所述方法包括:
    接入网关功能实体获取QoS文件与虚拟局域网VLAN优先级的对应关系,其中,所述QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;
    所述接入网关功能实体向终端发送第一消息,所述第一消息包括所述QoS文件与VLAN优先级的对应关系;
    所述接入网关功能实体接收来自所述终端的上行数据包,所述上行数据包对应的QoS文件为所述第一QoS文件,所述上行数据包中携带所述第一VLAN优先级;
    所述接入网关功能实体根据所述第一VLAN优先级,对所述上行数据包进行QoS控制。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网关功能实体获取QoS文件与VLAN优先级的对应关系,包括:
    所述接入网关功能实体生成所述QoS文件与VLAN优先级的对应关系;或者,所述接入网关功能实体接收来自会话管理功能实体的第二消息,所述第二消息包括所述QoS文件与VLAN优先级的对应关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一消息为固网配置消息。
  4. 根据权利要求3所述的方法,其特征在于,所述固网配置消息还包括所述QoS文件与VLAN标识ID的对应关系,其中,所述QoS文件与VLAN ID的对应关系中包括所述第一QoS文件与第一VLAN ID的对应关系;
    在所述接入网关功能实体向终端发送第一消息之前,还包括:
    所述接入网关功能实体获取所述QoS文件与VLAN ID的对应关系。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    所述接入网关功能实体接收来自所述会话管理功能实体的分组数据单元PDU会话建立接受消息,所述PDU会话建立接受消息包括所述QoS文件与差分服务代码点DSCP值的对应关系,其中,所述QoS文件与DSCP值的对应关系中包括所述第一QoS文件与第一DSCP值的对应关系;
    所述接入网关功能实体向所述终端发送所述PDU会话建立接受消息。
  6. 根据权利要求2所述的方法,其特征在于,所述第一消息为PDU会话建立接受消息。
  7. 根据权利要求6所述的方法,其特征在于,在所述接入网关功能实体生成所述QoS文件与VLAN优先级的对应关系之后,所述接入网关功能实体向终端发送第一消息之前,还包括:
    所述接入网关功能实体向所述会话管理功能实体发送第三消息,所述第三消息包括所述QoS文件与VLAN优先级的对应关系;
    所述接入网关功能实体接收来自所述会话管理功能实体的所述第一消息。
  8. 根据权利要求7所述的方法,其特征在于,所述第三消息和所述PDU会话建立接受消息还包括所述QoS文件与VLAN ID的对应关系,其中,所述QoS文件与VLAN ID的对应关系中包括所述第一QoS文件与第一VLAN ID的对应关系;
    在所述接入网关功能实体向所述会话管理功能实体发送第三消息之前,还包括:
    所述接入网关功能实体生成所述QoS文件与VLAN ID的对应关系。
  9. 根据权利要求7或8所述的方法,其特征在于,所述PDU会话建立接受消息还包括所述QoS文件与DSCP值的对应关系,其中,所述QoS文件与DSCP值的对应关系中包括所述第一QoS文件与第一DSCP值的对应关系。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述上行数据包中携带所述第一VLAN优先级,包括:
    所述上行数据包的二层L2包头中的VLAN优先级为所述第一VLAN优先级。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述接入网关功能实体将所述上行数据包的L2包头中的VLAN ID映射成QoS流标识QFI值,其中,所述L2包头中的VLAN ID为第一VLAN ID;
    所述接入网关功能实体向用户面UP功能实体发送所述上行数据包,所述上行数据包的包头中包括所述QFI值。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述接入网关功能实体将所述上行数据包的网际协议IP头中的DSCP值映射成QFI值,其中,所述IP头中的DSCP值为第一DSCP;
    所述接入网关功能实体向UP功能实体发送所述上行数据包,所述上行数据包的包头中包括所述QFI值。
  13. 一种服务质量QoS控制方法,其特征在于,所述方法包括:
    终端接收来自接入网关功能实体的第一消息,所述第一消息包括QoS文件与虚拟局域网VLAN优先级的对应关系,其中,所述QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;
    所述终端根据所述对应关系,确定所述第一QoS文件对应的VLAN优先级为所述第一VLAN优先级,其中,所述第一QoS文件为待发送的上行数据包对应的QoS文件;
    所述终端向所述接入网关功能实体发送所述上行数据包,其中,所述上行数据包中携带所述第一VLAN优先级。
  14. 根据权利要求13所述的方法,其特征在于,所述第一消息为固网配置消息;或者,所述第一消息为分组数据单元PDU会话建立接受消息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述上行数据包中携带所述第一VLAN优先级,包括:
    所述上行数据包的二层L2包头中的VLAN优先级为所述第一VLAN优先级。
  16. 根据权利要求15所述的方法,其特征在于,所述上行数据包的L2包头中的VLAN标识ID为第一VLAN ID。
  17. 根据权利要求16所述的方法,其特征在于,所述第一消息还包括所述QoS文件与VLAN ID的对应关系,其中,所述QoS文件与VLAN ID的对应关系中包括所述第一QoS文件与所述第一VLAN ID的对应关系;
    在所述终端接收来自接入网关功能实体的第一消息之后,所述终端向所述接入网关功能实体发送所述上行数据包之前,还包括:
    所述终端根据所述QoS文件与VLAN ID的对应关系,确定所述第一QoS文件对应的所述第一VLAN ID。
  18. 根据权利要求16所述的方法,其特征在于,在所述终端向所述接入网关功能实体发送所述上行数据包之前,还包括:
    所述终端确定所述第一QoS文件对应的所述第一VLAN ID为所述第一QoS文件包括的第一QoS流标识QFI值。
  19. 一种接入网关功能实体,其特征在于,所述接入网关功能实体包括:获取模块、接收模块、发送模块和控制模块;
    所述获取模块,用于获取QoS文件与虚拟局域网VLAN优先级的对应关系,其中,所述QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;
    所述发送模块,用于向终端发送第一消息,所述第一消息包括所述QoS文件与VLAN优先级的对应关系;
    所述接收模块,用于接收来自所述终端的上行数据包,所述上行数据包对应的QoS文件为所述第一QoS文件,所述上行数据包中携带所述第一VLAN优先级;
    所述控制模块,用于根据所述第一VLAN优先级,对所述上行数据包进行QoS控制。
  20. 根据权利要求19所述的接入网关功能实体,其特征在于,所述获取模块具体用于:
    生成所述QoS文件与VLAN优先级的对应关系;
    或者,所述获取模块具体用于:接收来自会话管理功能实体的第二消息,所述第二消息包括所述QoS文件与VLAN优先级的对应关系。
  21. 根据权利要求19或20所述的接入网关功能实体,其特征在于,所述第一消息为固网配置消息,所述固网配置消息还包括所述QoS文件与VLAN标识ID的对应关系,其中,所述QoS文件与VLAN ID的对应关系中包括所述第一QoS文件与第一VLAN ID的对应关系;
    所述获取模块,还用于在所述发送模块向终端发送第一消息之前,获取所述QoS文件与VLAN ID的对应关系。
  22. 根据权利要求20或21所述的接入网关功能实体,其特征在于,所述第一消息为固网配置消息;
    所述接收模块,还用于接收来自所述会话管理功能实体的分组数据单元PDU会话建立接受消息,所述PDU会话建立接受消息包括所述QoS文件与差分服务代码点DSCP值的对应关系,其中,所述QoS文件与DSCP值的对应关系中包括所述第一QoS文件与第一DSCP值的对应关系;
    所述发送模块,还用于向所述终端发送所述PDU会话建立接受消息。
  23. 根据权利要求20所述的接入网关功能实体,其特征在于,所述第一消息为PDU会话建立接受消息;
    所述发送模块,还用于在获取模块生成所述QoS文件与VLAN优先级的对应关系之后,所述发送模块向终端发送第一消息之前,向所述会话管理功能实体发送第三消息,所述第三消息包括所述QoS文件与VLAN优先级的对应关系;
    所述接收模块,还用于接收来自所述会话管理功能实体的所述第一消息。
  24. 根据权利要求23所述的接入网关功能实体,其特征在于,所述接入网关功能实体还包括生成模块;所述第三消息和所述PDU会话建立接受消息还包括所述QoS文件与VLAN ID的对应关系,其中,所述QoS文件与VLAN ID的对应关系中包括所述第一QoS文件与第一VLAN ID的对应关系;
    所述生成模块,用于在所述发送模块向所述会话管理功能实体发送第三消息之前,生成所述QoS文件与VLAN ID的对应关系。
  25. 一种终端,其特征在于,所述终端包括:接收模块、确定模块和发送模块;
    所述接收模块,用于接收来自接入网关功能实体的第一消息,所述第一消息包括QoS文件与虚拟局域网VLAN优先级的对应关系,其中,所述QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;
    所述确定模块,用于根据所述对应关系,确定所述第一QoS文件对应的VLAN优先级为所述第一VLAN优先级,其中,所述第一QoS文件为待发送的上行数据包对应的QoS文件;
    所述发送模块,用于向所述接入网关功能实体发送所述上行数据包,其中,所述上行数据包中携带所述第一VLAN优先级。
  26. 根据权利要求25所述的终端,其特征在于,所述第一消息为固网配置消息;或者,所述第一消息为分组数据单元PDU会话建立接受消息。
  27. 一种接入网关功能实体,其特征在于,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1-12中任一一项所述的服务质量QoS控制方法。
  28. 一种终端,其特征在于,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求13-18中任意一项所述的服务质量QoS控制方法。
  29. 一种服务质量QoS控制系统,所述QoS控制系统包括接入网关功能实体和会话管理功能实体;
    所述会话管理功能实体,用于获取QoS文件与虚拟局域网VLAN优先级的对应关系,并向所述接入网关功能实体发送第二消息,所述第二消息包括所述QoS文件与VLAN优先级的对应关系,其中,所述QoS文件与VLAN优先级的对应关系中包括第一QoS文件与第一VLAN优先级的对应关系;
    所述接入网关功能实体,用于接收来自所述会话管理功能实体的所述第二消息,并向终端发送第一消息,所述第一消息包括所述QoS文件与VLAN优先级的对应关系;
    所述接入网关功能实体,还用于接收来自所述终端的上行数据包,并根据所述上行数据包中携带的所述第一VLAN优先级,对所述上行数据包进行QoS控制,其中,所述上行数据包对应的QoS文件为所述第一QoS文件。
  30. 根据权利要求29所述的QoS控制系统,其特征在于,所述会话管理功能实体,用于获取QoS文件与VLAN优先级的对应关系,包括:
    所述会话管理功能实体生成所述QoS文件与VLAN优先级的对应关系。
  31. 根据权利要求29所述的QoS控制系统,其特征在于,所述第一消息为分组数据单元PDU会话建立接受消息;
    所述接入网关功能实体,还用于生成所述QoS文件与VLAN优先级的对应关系,并向所述会话管理功能实体发送第三消息,所述第三消息包括所述QoS文件与VLAN优先级的对应关系;
    所述会话管理功能实体,用于获取QoS文件与VLAN优先级的对应关系,包括:
    所述会话管理功能实体接收来自所述接入网关功能实体的所述第三消息。
  32. 根据权利要求31所述的QoS控制系统,其特征在于,所述QoS控制系统还包括移动管理实体;
    所述会话管理功能实体,还用于在接收来自所述接入网关功能实体的第三消息之前,接 收来自所述移动管理实体的第四消息,所述第四消息包括固网接入标识或固网接入类型中的至少一个;
    所述会话管理功能实体,还用于根据所述固网接入标识或所述固网接入类型中的至少一个,确定在接收到所述QoS文件与VLAN优先级的对应关系后向所述接入网关功能实体发送所述PDU会话建立接受消息。
  33. 一种服务质量QoS控制方法,其特征在于,所述方法包括:
    接入网资源控制功能实体获取第一QoS文件;
    所述接入网资源控制功能实体获取所述第一QoS文件与第一虚拟局域网VLAN优先级或第一VLAN标识ID中的至少一个的对应关系;
    所述接入网资源控制功能实体向接入网设备发送所述对应关系;
    所述接入网设备根据所述对应关系以及接收到的数据包中携带的所述第一VLAN优先级或所述第一VLAN ID,对所述接收到的数据包进行QoS控制。
  34. 根据权利要求33所述的方法,其特征在于,所述接入网资源控制功能实体获取所述第一QoS文件与第一VLAN优先级或第一VLAN ID中的至少一个的对应关系,包括:
    所述接入网资源控制功能实体根据所述第一QoS文件生成所述第一QoS文件与所述第一VLAN优先级或所述第一VLAN ID中的至少一个的对应关系;
    或者,所述接入网资源控制功能实体接收来自接入网关功能实体的所述第一QoS文件与所述第一VLAN优先级或所述第一VLAN ID中的至少一个的对应关系。
  35. 根据权利要求34所述的方法,其特征在于,所述接入网资源控制功能实体根据所述第一QoS文件生成所述第一QoS文件与所述第一VLAN优先级或所述第一VLAN ID中的至少一个的对应关系,包括:
    所述接入网资源控制功能实体根据所述第一QoS文件对应的分组数据单元PDU会话标识信息,生成所述第一QoS文件与所述第一VLAN ID的对应关系,其中,所述第一VLAN ID包括所述PDU会话标识信息;
    或者,所述接入网资源控制功能实体根据所述第一QoS文件中的QoS流标识QFI或第五代5G QoS指示5QI,生成所述第一QoS文件与所述第一VLAN ID的对应关系,其中,所述第一VLAN ID包括所述5QI或所述QFI;
    或者,所述接入网资源控制功能实体根据所述第一QoS文件对应的PDU会话标识信息,以及所述第一QoS文件中的QFI或5QI,生成所述第一QoS文件与所述第一VLAN ID的对应关系,其中,所述第一VLAN ID包括所述PDU会话标识信息、以及所述5QI或所述QFI;
    或者,所述接入网资源控制功能实体根据所述第一QoS文件与本地策略,生成所述第一QoS文件与第一VLAN优先级的对应关系。
  36. 根据权利要求33-35任一项所述的方法,其特征在于,所述对应关系为所述第一QoS文件与第一VLAN优先级的对应关系;所述接收到的数据包携带所述第一VLAN优先级;
    所述接入网设备根据所述对应关系以及接收到的数据包中携带的所述第一VLAN优先级,对所述接收到的数据包进行QoS控制,包括:
    所述接入网设备根据所述第一VLAN优先级和所述对应关系,确定所述第一QoS文件;
    所述接入网设备根据所述第一QoS文件,对所述接收到的数据包进行QoS控制。
  37. 根据权利要求33-35任一项所述的方法,其特征在于,所述对应关系为所述第一QoS文件与第一VLAN ID的对应关系;所述接收到的数据包携带所述第一VLAN ID;
    所述接入网设备根据所述对应关系以及接收到的数据包中携带的所述第一VLAN ID,对所述接收到的数据包进行QoS控制,包括:
    所述接入网设备根据所述第一VLAN ID和所述对应关系,确定所述第一QoS文件;
    所述接入网设备根据所述第一QoS文件,对所述接收到的数据包进行QoS控制。
  38. 根据权利要求33-35任一项所述的方法,其特征在于,所述对应关系为所述第一QoS文件与第一VLAN优先级的对应关系;所述接收到的数据包携带所述第一VLAN ID;
    所述接入网设备根据所述对应关系以及接收到的数据包中携带的所述第一VLAN ID,对所述接收到的数据包进行QoS控制,包括:
    所述接入网设备确定所述第一VLAN ID对应的第一VLAN优先级;
    所述接入网设备根据所述第一VLAN优先级和所述对应关系,确定所述第一QoS文件;
    所述接入网设备根据所述第一QoS文件,对所述接收到的数据包进行QoS控制。
  39. 根据权利要求38所述的方法,其特征在于,在所述接入网设备确定所述第一VLAN ID对应的第一VLAN优先级之后,还包括:
    所述接入网设备将所述接收到的数据包的二层L2包头中的VLAN优先级设置为所述第一VLAN优先级。
  40. 一种服务质量QoS控制系统,其特征在于,所述QoS控制系统包括:接入网资源控制功能实体和接入网设备;
    所述接入网资源控制功能实体,用于获取第一QoS文件;
    所述接入网资源控制功能实体,还用于获取所述第一QoS文件与第一虚拟局域网VLAN优先级或第一VLAN标识ID中的至少一个的对应关系;
    所述接入网资源控制功能实体,还用于向接入网设备发送所述对应关系;
    所述接入网设备,还用于根据所述对应关系以及接收到的数据包中携带的所述第一VLAN优先级或所述第一VLAN ID,对所述接收到的数据包进行QoS控制。
PCT/CN2018/087518 2017-05-24 2018-05-18 服务质量控制方法、设备及系统 WO2018214821A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22189491.8A EP4152808A1 (en) 2017-05-24 2018-05-18 Quality of service control method, device, and system
EP18806906.6A EP3611962B1 (en) 2017-05-24 2018-05-18 Quality of service control method and device
US16/692,244 US11212230B2 (en) 2017-05-24 2019-11-22 Quality of service control method, device, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710374629.6 2017-05-24
CN201710374629 2017-05-24
CN201710751046.0A CN108965159B (zh) 2017-05-24 2017-08-28 服务质量控制方法、设备及系统
CN201710751046.0 2017-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/692,244 Continuation US11212230B2 (en) 2017-05-24 2019-11-22 Quality of service control method, device, and system

Publications (1)

Publication Number Publication Date
WO2018214821A1 true WO2018214821A1 (zh) 2018-11-29

Family

ID=64395249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087518 WO2018214821A1 (zh) 2017-05-24 2018-05-18 服务质量控制方法、设备及系统

Country Status (3)

Country Link
US (1) US11212230B2 (zh)
EP (1) EP4152808A1 (zh)
WO (1) WO2018214821A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214821A1 (zh) * 2017-05-24 2018-11-29 华为技术有限公司 服务质量控制方法、设备及系统
CN110650168B (zh) * 2018-06-27 2021-09-14 华为技术有限公司 一种通信方法及其装置
CN117641465A (zh) * 2022-08-10 2024-03-01 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414940A (zh) * 2007-10-16 2009-04-22 华为技术有限公司 以太网业务的建立方法、网元设备和网络系统
CN101729398A (zh) * 2009-02-19 2010-06-09 中兴通讯股份有限公司 QoS优先级信息的发送方法、PD-FE、TRC-FE
CN103546984A (zh) * 2012-07-13 2014-01-29 北京三星通信技术研究有限公司 接入移动通信系统的方法及设备
CN104010332A (zh) * 2013-02-21 2014-08-27 中兴通讯股份有限公司 承载绑定方法及系统
CN105340321A (zh) * 2013-04-29 2016-02-17 阿尔卡特朗讯公司 整合可信非3gpp接入网和3gpp核心网时的端到端qos

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526466B2 (en) * 2002-07-15 2013-09-03 At&T Intellectual Property I, L.P. Apparatus and method for prioritizing communications between devices
US7093027B1 (en) * 2002-07-23 2006-08-15 Atrica Israel Ltd. Fast connection protection in a virtual local area network based stack environment
KR100782840B1 (ko) * 2006-02-23 2007-12-06 삼성전자주식회사 Plc 네트워크상에서 데이터를 등급화하여 전송하는 방법및 장치
US8249104B2 (en) * 2008-10-30 2012-08-21 Futurewei Technologies, Inc. Optical network terminal management and control interface over Ethernet
CN102447669A (zh) 2010-09-30 2012-05-09 迈普通信技术股份有限公司 多媒体数据流的转发方法及转发设备
US9225656B2 (en) * 2011-02-07 2015-12-29 Brocade Communications Systems, Inc. Quality of service in a heterogeneous network
US8891373B2 (en) * 2011-02-15 2014-11-18 Cisco Technology, Inc. System and method for synchronizing quality of service in a wireless network environment
US8948007B2 (en) * 2011-06-13 2015-02-03 Verizon Patent And Licensing Inc. Interoperable quality of service pre-negotiation
WO2014060036A1 (en) 2012-10-18 2014-04-24 Nokia Solutions And Networks Oy Intelligent bearer setup configuration control
CN105684546B (zh) * 2013-09-20 2019-11-15 康维达无线有限责任公司 在可信wlan接入和网络中基于流量检测和dscp映射的wifi qos的移动网络运营商(mno)控制
US10177936B2 (en) * 2014-03-28 2019-01-08 International Business Machines Corporation Quality of service (QoS) for multi-tenant-aware overlay virtual networks
US9979557B2 (en) * 2015-08-10 2018-05-22 Hughes Network Systems, Llc Carrier grade Ethernet layer 2 over layer 3 satellite backbones (L2oL3SB)
BR112017028210B1 (pt) * 2015-08-31 2024-03-12 Huawei Technologies Co., Ltd Dispositivo e método de processamento de pacote de dados, sistema de gateway e meio legível por computador
US20200267800A1 (en) * 2015-12-07 2020-08-20 Lg Electronics Inc. Method for performing s1 connection release by mobility management object, mobility management object, method for performing s1 connection release by base station, and base station
CN107396401A (zh) * 2016-05-17 2017-11-24 中兴通讯股份有限公司 数据发送方法及装置
US10447541B2 (en) * 2016-08-13 2019-10-15 Nicira, Inc. Policy driven network QoS deployment
CN110169034B (zh) * 2017-01-09 2022-04-15 Idac控股公司 用于不同通信架构之间互通的服务质量管理
WO2018131902A1 (en) * 2017-01-13 2018-07-19 Lg Electronics Inc. METHOD FOR TRANSMITTING UL PACKET BASED ON QUALITY OF SERVICE (QoS) FLOW IN WIRELESS COMMUNICATION SYSTEM AND A DEVICE THEREFOR
US10623308B2 (en) * 2017-02-17 2020-04-14 Dell Products L.P. Flow routing system
WO2018214821A1 (zh) * 2017-05-24 2018-11-29 华为技术有限公司 服务质量控制方法、设备及系统
CN108965159B (zh) * 2017-05-24 2021-01-05 华为技术有限公司 服务质量控制方法、设备及系统
WO2019054841A1 (en) * 2017-09-18 2019-03-21 Lg Electronics Inc. METHOD FOR IMPLEMENTING REFLECTIVE SERVICE QUALITY IN WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF
US11277847B2 (en) * 2019-04-23 2022-03-15 Lenovo (Singapore) Pte. Ltd. Establishing QOS flows over non-3GPP access

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414940A (zh) * 2007-10-16 2009-04-22 华为技术有限公司 以太网业务的建立方法、网元设备和网络系统
CN101729398A (zh) * 2009-02-19 2010-06-09 中兴通讯股份有限公司 QoS优先级信息的发送方法、PD-FE、TRC-FE
CN103546984A (zh) * 2012-07-13 2014-01-29 北京三星通信技术研究有限公司 接入移动通信系统的方法及设备
CN104010332A (zh) * 2013-02-21 2014-08-27 中兴通讯股份有限公司 承载绑定方法及系统
CN105340321A (zh) * 2013-04-29 2016-02-17 阿尔卡特朗讯公司 整合可信非3gpp接入网和3gpp核心网时的端到端qos

Also Published As

Publication number Publication date
US20200092212A1 (en) 2020-03-19
US11212230B2 (en) 2021-12-28
EP4152808A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
EP3611962B1 (en) Quality of service control method and device
WO2020253456A1 (zh) 数据传输的方法、管理服务质量流的方法、设备及介质
US20230209655A1 (en) Data Transmission Method, Device, and System
EP3879879B1 (en) Time sensitive networking communication method and apparatus thereof
CN111200845B (zh) 一种资源信息发送方法、装置及系统
US20210274418A1 (en) Information Transmission Method and Apparatus
EP3831014A1 (en) Supporting the fulfilment of e2e qos requirements in tsn-3gpp network integration
CN109996345B (zh) 会话建立方法、设备及系统
WO2020168789A1 (zh) 一种通信方法及装置
WO2019011203A1 (zh) 设备接入方法、设备及系统
WO2019101041A1 (zh) 一种通信方法及其装置
WO2020024961A1 (zh) 数据处理方法、设备及系统
CN110166414B (zh) 一种通信方法、装置及系统
WO2021109824A1 (zh) 会话创建方法和装置、会话创建的控制方法和装置、会话创建系统、网元及存储介质
US11212230B2 (en) Quality of service control method, device, and system
WO2019120073A1 (zh) 数据传输方法、设备及系统
WO2019137125A1 (zh) 会话管理方法、设备及系统
US20220103482A1 (en) Maximum data burst volume (mdbv) determining method, apparatus, and system
WO2018233451A1 (zh) 通信方法、装置和系统
JP2023504763A (ja) QoSマッピング
CN108377497B (zh) 连接建立方法、设备及系统
CN109714376B (zh) 一种固网报文的发送方法、装置及系统
KR101929804B1 (ko) 세션 자원 관리 방법 및 장치
WO2021004393A1 (zh) 支持端口控制的方法及设备
WO2019233381A1 (zh) 用户面数据处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018806906

Country of ref document: EP

Effective date: 20191112

NENP Non-entry into the national phase

Ref country code: DE