WO2018214770A1 - 在发酵过程中收集香气物质并加入葡萄酒的方法和系统 - Google Patents

在发酵过程中收集香气物质并加入葡萄酒的方法和系统 Download PDF

Info

Publication number
WO2018214770A1
WO2018214770A1 PCT/CN2018/086650 CN2018086650W WO2018214770A1 WO 2018214770 A1 WO2018214770 A1 WO 2018214770A1 CN 2018086650 W CN2018086650 W CN 2018086650W WO 2018214770 A1 WO2018214770 A1 WO 2018214770A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
wine
mixture
absorption
aroma
Prior art date
Application number
PCT/CN2018/086650
Other languages
English (en)
French (fr)
Inventor
杨元庆
Original Assignee
杨元庆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨元庆 filed Critical 杨元庆
Publication of WO2018214770A1 publication Critical patent/WO2018214770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H1/00Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages
    • C12H1/12Pasteurisation, sterilisation, preservation, purification, clarification, or ageing of alcoholic beverages without precipitation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • C12G1/02Preparation of must from grapes; Must treatment and fermentation
    • C12G1/0203Preparation of must from grapes; Must treatment and fermentation by microbiological or enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G2200/00Special features
    • C12G2200/21Wine additives, e.g. flavouring or colouring agents

Definitions

  • the invention belongs to the technical field of wine brewing, and relates to a brewing method for increasing the aroma of wine, in particular to a method and a system for collecting aroma substances and adding wines during fermentation.
  • the carbon dioxide gas generated during alcohol fermentation takes away a lot of volatile substances when it is discharged from the fermenter, including the aroma substances contained in the grape fruit itself and the aroma substances produced by alcohol fermentation, and the remaining volatility.
  • the weaker aroma substances are taken away by a small amount of carbon dioxide gas during the secondary malic acid-lactic acid fermentation process, and the remaining aroma substances after the aging process are heavily in the oak barrel aging process or the stainless steel tank micro-oxygen aging process. Oxidation, in the end, consumers can mainly taste the taste of oak and the aroma of some esters formed by the aging, and it does not stimulate people's appetite.
  • Aroma The "wine” described in this specification contains all stages of wine liquor after full or partial alcoholic fermentation.
  • the "fermentation process” described in this specification includes a wine alcoholic fermentation process and a secondary malic acid-lactic acid fermentation process.
  • the “fermentation liquid” described in the present specification includes grape vines in various states during one alcoholic fermentation of the wine, and also contains the original wine in the secondary malic acid-lactic acid fermentation process.
  • the principle of the invention is to use the desorption mass transfer and absorption mass transfer technology between gas and liquid in the chemical principle to transfer the aroma substance in the fermentation liquid to the wine during the fermentation process, and to discharge the mixed gas by the gas membrane separation technology.
  • the gas mixture is separated and concentrated to increase the efficiency and effect of the above mass transfer process.
  • the overall scheme of the present invention is to absorb the mixture of the fermentation mixture discharged from the wine fermentation process and the desorption of the wine fermentation liquid, and then use the wine as the absorption liquid to absorb the aroma substance after the required treatment or no treatment.
  • the mass of the aroma in the wine fermentation broth is transferred to the wine as an absorbent.
  • the fermentation mixture discharged from the wine fermentation process is collected and sent to a membrane separation device, which separates unnecessary and harmful substances in the mixture, concentrates the desired aroma substances, and then concentrates and concentrates the aroma substances.
  • the gas is absorbed as an absorption liquid, so that the aroma substance in the wine fermentation liquid is better transferred to the wine as the absorption liquid.
  • the carbonic acid gas or the carbon dioxide-rich mixture produced by the membrane separation device is used to desorb the wine fermentation liquid, and then the mixture of the produced aroma-containing mixture and the fermentation liquid is fermented.
  • the gas is sent to a membrane separation device, which separates and discharges unwanted and harmful substances in the mixture, concentrates the desired aroma substance, and finally absorbs the concentrated mixture of the obtained aroma substances with the wine as an absorption liquid. In this way, more aroma substances in the fermentation broth can be further transferred to the wine as an absorbing liquid.
  • the specific technical scheme adopted by the invention is a method for collecting aroma substances and adding wine in a fermentation process, collecting and purifying the fermentation mixture discharged from the fermenter in the wine alcohol fermentation process, and reducing the production cost in order to reduce equipment investment.
  • the wine can be directly used as an absorbent to absorb the aroma substance directly at the low temperature.
  • the fermentation mixture gas is collected into a gas storage tank and then pressurized by an air compressor and sent to a separation and concentration device for concentration treatment, separation and concentration.
  • the device may be a membrane separation device or a pressure swing adsorption device, and the membrane separation device may be selected in terms of production continuity and cost.
  • the membrane separation device may be constructed by using various suitable membrane elements in various suitable connection manners, or may be Two or more membrane elements are combined and connected, and the overall purpose is to separate the carbon dioxide in the fermentation mixture from the undesired or even harmful gas, and concentrate the desired aroma substance to obtain a concentrated mixture of the aroma substances;
  • the concentrated gas mixture of the aroma substance is used as an absorbent to absorb the aroma substance at a low temperature, or the highly concentrated mixture of the aroma substance is condensed and recovered, and then the wine is added.
  • the aroma substances which are contained in the grape fruit itself and which are mostly fermented (the saturated vapor pressure of 30 ° C is more than 1 KPa) and a small part of the weak (30 ° C saturated vapor pressure of less than 1 KPa) aroma substances can be obtained.
  • Mass transfer to wine as an absorbent to wine as an absorbent.
  • the method further comprises: in the fermentation process of the wine, including the third day after the start of the alcohol fermentation, the fermentation peak after the fermentation peak, and the stratification of the low-viscosity liquid which can be stripped;
  • the fermentation liquid is desorbed and stripped by using carbon dioxide gas or the carbon dioxide-rich mixture gas produced by the above membrane separation device of the present scheme, and then the mixture gas containing the aroma substance produced by desorption is extracted together with
  • the instant fermentation mixture is directly absorbed by the wine as an absorption liquid at a low temperature, or collected by a pipe to a gas storage tank and then pressurized by an air compressor and input into the membrane separation device for separation, and the desired mixture in the mixture is mixed.
  • the harmful substances are separated and discharged, and the aroma substances required therein are concentrated, and then the concentrated mixed gas of the aroma substances is used as an absorption liquid to absorb the aroma substances at a low temperature, or the highly concentrated mixture gas of the aroma substances is condensed and recovered. , add wine. This further transfers the more aroma substances (including many less volatile aroma substances) in the fermentation broth to the wine as the absorbing liquid.
  • Another technical solution adopted by the present invention is a system for the above method for collecting aroma substances and adding wine in a fermentation process, the system comprising a fermentation device, a membrane separation device and an absorption device connected in series; a membrane separation device It is used to concentrate and separate the aroma substances required in the carbon dioxide mixed gas produced by the fermentation device; the absorption device has a wine used as an absorption liquid.
  • system further comprises a fermentation device capable of performing a stripping operation, the device being sequentially connected to the membrane separation device and the absorption device, wherein the membrane separation device is used for dehydrating the mixture produced during the fermentation process and simultaneously producing the mixture.
  • the aroma substances required in the mixture are concentrated and separated, and passed to an absorption device; the absorption device has a wine used as an absorption liquid.
  • the membrane element may be an aramid composite reverse osmosis membrane element for brackish water; in another embodiment, the membrane element may be an aramid composite reverse osmosis membrane element for brackish water and The primary polyimide nitrogen membrane element assembly is combined to form a membrane separation device.
  • the beneficial effects of the present invention are that the present invention creatively uses the wine of the previous stage of the stage as an absorption liquid to absorb the concentrated aroma substance mixture in the fermentation process at a low temperature.
  • the aroma substances in the wine fermentation broth are well transferred to the wine as the absorbing liquid, and the wine has more aroma substances, including the volatility of the carbon dioxide mixture which was previously completely discharged by the fermentation.
  • the wine has an unprecedented scent.
  • the concentration operation can increase the concentration of the aroma substance in the collected mixture by many times, so that the power of the subsequent absorption operation (difference in the concentration of the solute) is greatly increased, so that the absorption efficiency is greatly improved, and the mixed gas is concentrated.
  • the flow rate is drastically reduced so that the absorption operation can be carried out with a small gas-liquid ratio, thereby reducing the desorption of the existing aroma substances in the wine as the absorbing liquid.
  • the use of wine as an absorbent allows the process of the present invention to be well coupled to other brewing processes so that the aroma material is well retained for consumption.
  • the invention desorbs and extracts the fermentation liquid in the fermentation process, and then concentrates and absorbs, so that the volatile aroma substance is more mass-transferred into the wine.
  • the method of the invention is easy to implement, can be implemented by using existing equipment and process conditions, and the method is easy to scale, and is advantageous for realizing industrial production.
  • FIG. 1 is a schematic diagram of an operating system of the present invention
  • Figure 2 is a schematic view showing the connection mode of the reverse osmosis membrane element of the present invention
  • Figure 3 is a structural view of a microbubble generator of the present invention.
  • Fig. 1 1. fermenter, 2. stripping fermenter, 3. gas storage tank, 4. air compressor, 5. membrane separation device, 6. absorption tank, 7. secondary absorption tank, 8. microbubbles Generator, 9. Circulating pump, 10. Carbon dioxide source.
  • the method of the present invention can have a variety of operating systems, and the system of the present invention also has various configurations.
  • Figure 1 shows an operating system that is convenient for comparison with the specification.
  • the absorption tank in Figure 1 can be retrofitted from existing fermenters or storage tanks. Existing tanks or storage tanks can be considered when the difference between working pressure and ambient pressure is small.
  • the gas separation membrane device can be constructed by using various suitable membrane elements in a variety of suitable connection manners. The concentrated and enriched end of the aroma substance is connected to the absorption tank, and the carbon dioxide-rich end can be connected to the gas extraction tank, as shown by the dotted line in FIG. Shown.
  • Figure 1 shows an operating system that is relatively easy to implement under existing equipment and process conditions and that is less expensive.
  • the fermentor 1 is sequentially connected with a gas storage tank 3, an air compressor 4, and a membrane separation device 5; the concentrated gas of the aroma substance separated by the membrane separation device is processed into microbubbles through a microbubble generator (Fig. 3).
  • the carbon dioxide gas 10 or the carbon dioxide-enriched mixed gas separated by the membrane separation device is processed into microbubbles through the microbubble generator 8 and then introduced into the stripping fermentor 2, and the stripping fermentor 2 is also stored.
  • the gas tank 3, the air compressor 4, and the membrane separation device 5 are connected in order.
  • the fermentation mixed gas discharged from the alcohol fermentation tank is collected into the gas storage tank 3 by a pipe, and then pressurized by the air compressor 4, and then sent to the membrane separation device.
  • the spray dipping, the cap impregnation or the stirring impregnation should be intermittently performed, so that the aroma substance released from the grape epidermis can be enriched in the scum cap.
  • the carbon dioxide mixture can pass through the slag cap as if by absorbing the packing layer of the desorbing tower, so that the aroma substance can be mass-transferred into the discharged carbon dioxide mixture as much as possible.
  • the fermentation process can be carried out after the third day after the start of the alcohol fermentation, after the peak of the fermentation, and after the low-viscosity liquid which can be stripped.
  • the microbubbles in which carbon dioxide or a mixture thereof is introduced into the stripping fermenter are stripped, or desorbed and stripped by an absorption tower. Both methods should be heated and decompressed without affecting the subsequent alcohol fermentation to improve the extraction efficiency of aroma substances.
  • the membrane separation device may be constructed using a variety of suitable membrane elements in a variety of suitable attachment configurations, or may be constructed by a combination of two or more membrane elements.
  • the membrane element may be selected from a hollow fiber type gas separation membrane element or a spirally wound gas separation membrane element, and the membrane of the porous principle should be selected from a membrane having a pore size distribution as narrow as possible within a range of about 0.4 nm, and a mixture of pure water and aroma substances can be selected.
  • a reverse osmosis membrane element having a good carbon dioxide separation effect which can infiltrate a small molecule gas such as carbon dioxide, water vapor, methanol, hydrogen sulfide, ammonia, and a part of ethanol gas in a mixture of aroma substances, and mixes the gas into the mixture.
  • the desired aroma substance of the macromolecule is concentrated and enriched at the retentate end.
  • the membrane element of the principle of dissolution and diffusion can select a polyimide nitrogen membrane element with relatively high polar molecular permeability, and the membrane element can preferentially permeate the aroma substance with polarity through the separation membrane and concentrate and enrich at the permeate end.
  • Non-polar gases such as carbon dioxide are discharged at the retentate end.
  • the number of membrane elements used should be calculated based on the designed total peak gas flow, working pressure, concentration factor, and membrane element recovery, flux, and other parameters.
  • the membrane elements of the present invention may employ existing membrane elements in the food processing industry, such as reverse osmosis membrane elements and nitrogen membrane elements.
  • the reverse osmosis membrane elements are connected by a multi-stage series connection as shown in Fig. 2 (only four stages are shown in the figure), and the gas separation membrane elements connected in parallel are called a section, and the sections and sections are connected in series.
  • the connection, through the multi-stage membrane separation, can not only fully concentrate the target substance, but also reduce the clogging of the membrane element and increase the concentration. Therefore, the gas separation membrane element should be divided into a plurality of segments as much as possible, and the maximum can be designed to be more than 20 segments.
  • the ratio of the permeate flow rate to the intake flow rate of each component (corresponding to the recovery rate of the carbon dioxide solvent) is always less than 40%
  • the number of parallel membrane elements in the latter section is reduced compared to the previous section, and the second section can be reduced compared to the first section.
  • the ratio of the number of membrane elements reduced in parallel in each section should be larger.
  • the nitrogen membrane element polyimide membrane
  • a multistage connection method should be employed to allow the aroma substance mixture gas to permeate through the separation membrane multiple times to obtain concentration. Since the separation factor of carbon dioxide and aroma substances is not very high, the ratio of the retentate flow rate to the intake air flow rate of each component (corresponding to the recovery rate of carbon dioxide solvent) should not exceed 30%, and the next level is higher than the upper level. As the concentration of aroma substances increases, the ratio of the retentate flow to the intake flow should be reduced.
  • a 0.1 micron microporous membrane filter element should be installed for pre-filtration to filter out microorganisms, residue particles and the like in the mixed gas. Flush with a large flow of CO 2 gas before and after use.
  • the working pressure can be increased as much as possible within the pressure and temperature range that the membrane element can withstand.
  • the mixture Before entering the membrane separation device, the mixture should be heated to a temperature at which no substance is condensed and liquefied at the working pressure. . Dew condensation can be reduced by vacuuming the low pressure permeate side of the membrane element.
  • most of the membrane elements can be used for many years, and the last few segments are a few membrane elements that are periodically replaced due to high working concentrations.
  • the high concentration of aroma substance concentrated gas mixture separated by the membrane separation device can be used to recover the aroma substance by condensation, but a large number of membrane elements are required, and the process complexity is relatively high.
  • Dalton's law of partial pressure and Henry's law it is known that in the mixture, because of the relatively low volatility and low concentration of aroma substances, the concentration of aroma substances in the wine as an absorbent can be obtained by a sufficiently continuous absorption operation. When the absorption is saturated, it is much higher than the concentration in the mixture.
  • the Antoine equation and the constant calculation show that the saturated vapor pressure of most aroma substances is 6 to 20 times higher than that at -5 °C at 35 °C.
  • the wine as the absorbent can be cooled to -5 to -7 ° C near the freezing point, so that the absorption concentration of the aroma substance in the wine as the absorbent is greatly increased during the absorption operation.
  • the mixture gas containing the aroma substance can be concentrated as much as possible under the conditions of the process and the input and operation cost, and then the aroma substance can be absorbed at the lowest possible temperature with the wine as the absorption liquid with as little concentrated gas mixture as possible.
  • the absorption efficiency of the aroma substance in the concentrated gas mixture is increased, and the desorption of the original aroma substance by the gas part other than the aroma substance in the concentrated mixture gas is reduced.
  • the wine as an absorbent can be either a new wine of the year or an aged wine.
  • the absorption process can use an absorption tower.
  • the concentrated mixture gas can be processed into microbubbles and passed into the absorption tank 6.
  • the microbubble generator 8 can be aerated with a micron-sized stainless steel powder sintered filter element (Fig. 3), a circulation pump. It should be placed behind the microbubble generator to facilitate the breakage and agitation of the microbubbles.
  • a bubble blocking net can be placed on the top of the absorption tank 6, and a high-temperature spray of wine circulation is used to eliminate air bubbles.
  • the absorption operation can be carried out by using a multi-stage absorption device, that is, the next-stage absorption tank is further provided, and the micro-bubble generator and the circulation pump are also provided, and the first-stage absorption tank is not provided.
  • the absorbed aroma gas is further processed into microbubbles and then passed into the secondary absorption tank 7, so that the aroma substance is fully utilized.
  • the last 10 hours of the absorption operation should be the absorption of the concentrated gas of the fermentation mixture just started by the alcoholic fermentation.
  • the long-term continuous absorption process can desorb the harmful substances such as hydrogen sulfide and ammonia in the wine.
  • the carbon dioxide in the wine as the absorbing liquid needs to be removed after the completion of the absorption operation, the carbon dioxide can be appropriately stirred and discharged at a normal temperature and a normal pressure. If you want to produce aerated wine, you can increase the pressure during the absorption process and then press the pressure into the bottle.
  • the exhaust gas collection pipe of each fermenter for alcohol fermentation should be equipped with a check valve and a shut-off valve to prevent backflow and facilitate other operations.
  • the fermenter 1 and the gas storage tank 3 should allow the negative pressure that the tank body can withstand, so that the aroma substance can enter the mixed gas, and the air compressor working control for pressurizing the mixed gas to the membrane separation device can be conveniently controlled.
  • the temperature of the circulating gas entering the raw wine should not be too high, and the temperature of the raw wine is controlled to ensure the secondary malic acid- The lactic acid fermentation proceeds normally.
  • the design input flux at the highest working pressure of the membrane separation unit should be greater than the maximum mixed gas output flux of the previous process.
  • the peak flow of the fermentation mixture for alcoholic fermentation can be estimated by producing 20 ml of mixed gas per liter of fermentation volume per minute.
  • the amount of wine used to absorb the aroma is determined by factors such as the total amount of fermentation and stripping, the degree of oxidation of the wine, the desired aroma and yield of the final product.
  • an alcohol fermenter is made of a stainless steel fermenter having a wall thickness greater than 1.5 mm, 65 liters and a pressure resistance exceeding 6 bar.
  • the first section is 2
  • the connection method of the second stage is composed of a membrane separation device. It is also possible to use a combination of a reverse osmosis membrane element and a polyimide nitrogen membrane element to form a membrane separation device.
  • a 34 liter insulated stainless steel fermenter with an insulating layer is used as the absorption tank.
  • the alcohol fermentation tank exhaust outlet should be connected with safety relief valve, switch valve, stainless steel mesh filter, pressure gauge, single The valve, microporous membrane filter is then connected to the membrane separation device.
  • the permeate vent gas of the membrane separation device is collected and discharged through a range-matched gas float flowmeter.
  • the membrane separation device is connected to the absorption tank through a needle-type regulating valve.
  • the absorption tank has an inlet port and an outlet port, and the intake port is connected to the concentrating port. Gas, microbubbles were produced using a 316 stainless steel powder sintered filter with a 2 micron pore size of less than 15 cm in length.
  • the absorption tank outlet port is connected to a range matched gas float flow meter.
  • the alcohol fermentation tank fermentation After the alcohol fermentation tank fermentation is fully started, it is connected to the subsequent system. As the alcohol fermentation reaction is strengthened, the system pressure (the pressure difference from the environment) will rise to 1-2 bar, and the membrane separation device relies on the pressure generated by the alcohol fermentation to the fermentation mixture. Separating and concentrating, the concentrated gas mixture enters the absorption tank through the needle regulating valve, and the aeration head of the stainless steel filter element becomes microbubbles for absorption of the finished wine in the absorption tank, and the needle regulating valve is adjusted to make the exhaust flow rate of the absorption tank flow meter The flow rate of the permeate exhaust gas flow meter is 1/4 to 1/2.
  • the alcohol fermenter and the subsequent system can be taken apart every 8 to 4 hours, and the cap is dip.
  • the temperature of the wine in the absorption tank should be kept at a constant temperature of about -6 °C.
  • the operation can be stopped after the three day and night alcohol fermentation is weakened, and then absorbed in the fermentation mixture that has just started the next batch of alcohol fermentation for about 10 hours. After the end of the batch of wine absorption operation.
  • This embodiment provides a small-scale operating system for conducting scale production experiments and collecting data.
  • the system is made up of a 10 cubic meter vertical circulation spray stainless steel fermenter for the alcohol fermentation tank, using a vertical circulation of 10 cubic meters.
  • the spray stainless steel fermenter is used as a secondary malic acid-lactic acid fermenter and a micro-bubble desorbing gas tank.
  • a membrane-like membrane element is composed of a membrane separation device in a first segment of eight, a second segment, a third segment, a fourth segment, and a fourth segment. It is also possible to use a combination of a reverse osmosis membrane element and a primary polyimide nitrogen membrane element to form a membrane separation device.
  • a vortex air compressor or a permanent magnet variable frequency screw air compressor is used to compress and deliver the mixture to the gas separation and concentration device.
  • All components and devices are connected with 4 points of 304 stainless steel pipe and corresponding stainless steel pipe according to the connection method of Figure 1 of the figure.
  • the exhaust outlet of the alcohol fermentation tank should be connected with safety relief valve, switch valve, stainless steel mesh filter, pressure gauge.
  • the check valve is then connected to the gas storage tank.
  • the gas storage tank should be equipped with a pressure gauge, a flow meter, and a pressure controller.
  • the permeate vent gas of the gas separation and concentration device is collected and connected to the microbubble desorbing gas tank through a three-way proportional control valve.
  • a 0.1 micron microporous membrane cartridge was installed in front of the gas separation and concentration device for pre-filtration.
  • the gas separation and concentration device is connected to the absorption tank through a needle regulating valve.
  • the microbubble generating device for the absorption tank and the secondary malic acid-lactic acid fermenter is connected as shown in Fig. 1.
  • the microbubble generator (Fig. 3) can be selected from a 2 micron aperture diameter of 40 mm long and 500 mm long 316 stainless steel powder.
  • Sintering filter element select a 316 stainless steel tube with a diameter of 70mm and a length of 600mm, one end is inserted into the stainless steel filter to seal the interface and then connected to the concentrated gas, the other end is connected with 4 minutes 316 stainless steel outlet pipe to the circulation pump, and the ⁇ 70 tube is close to the stainless steel filter interface.
  • the side wall opening at one end is connected to a 4 minute 316 stainless steel inlet tube.
  • the top of the absorption tank and the secondary malic acid-lactic acid fermenter should be provided with bubbles to block the stainless steel mesh, and the high-pressure spray of the finished wine is used to eliminate bubbles.
  • the fermentation is discharged to the membrane separation device, and the circulating spray of the vertical circulation spray stainless steel fermentation tank is operated for every half hour for 8 to 4 hours.
  • the gas storage tank and the gas separation and concentration device should be flushed with carbon dioxide gas in advance and filled with carbon dioxide gas.
  • the air compressor is started to pressurize the gas mixture to the gas separation and concentration device, and the air compressor can be used.
  • Set to constant voltage constant voltage operation when the gas tank pressure is lower than the set value, the air compressor stops working until the fermentation exhaust gas re-suppresses the gas storage tank to the set upper limit pressure.
  • the tank upper limit starting pressure can be set to 120 kPa and the lower stop limit can be set to 80 kPa.
  • Air compressor The contraction force can be set to a value between 5 and 10 bar according to the total input flow.
  • the constant pressure working pressure of the air compressor should be set as far as possible so that the pressure of the gas tank does not always reach the lower limit.
  • the concentrated gas mixture should be heated to 30 to 50 ° C according to the pressure before entering the membrane separation unit.
  • the temperature should be lowered to below 35 °C, and the three-way proportional valve should be adjusted to make the stripping gas flow meet the normal working requirements of the system.
  • the secondary malic acid-lactic acid fermenter has an operating temperature of 35 ° C and a pressure of 50 to 100 kPa.
  • Adjusting the needle regulating valve between the membrane separating device and the absorption tank makes the total permeate flow rate 2 to 5 times the total amount of the concentrated mixed gas.
  • the finished wine absorbing liquid before filling in the absorption tank should be cooled to -6 ° C for absorption operation.
  • the operation of this embodiment may be carried out simultaneously with alcohol fermentation and secondary malic acid-lactic acid fermentation stripping, or may be carried out separately.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

一种在发酵过程中收集香气物质并加入葡萄酒的方法和系统。该方法是把葡萄酒发酵过程中排出的发酵混合气或者对葡萄酒发酵液解吸气提得到的混合气输送至膜分离装置,把混合气中不需要的和有害的物质分离排出,把需要的香气物质进行浓缩,然后将浓缩混合气用葡萄酒作为吸收液在低温下进行香气物质的吸收。该系统包括依次连接的发酵装置、膜分离装置和吸收装置,还包括可以进行气提操作的气提发酵装置。

Description

在发酵过程中收集香气物质并加入葡萄酒的方法和系统
本申请要求于2017年5月22日提交中国专利局、申请号为201710362109.3、发明名称为“在发酵过程中收集香气物质并加入葡萄酒的系统和方法”的中国专利申请和于2018年4月28日提交中国专利局、申请号为201810400467.3、发明名称为“在发酵过程中收集香气物质并加入葡萄酒的方法和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于葡萄酒酿造技术领域,涉及一种增加葡萄酒香气的酿造方法,具体涉及了一种在发酵过程中收集香气物质并加入葡萄酒的方法和系统。
背景技术
在现在的葡萄酒生产过程中,酒精发酵时产生的二氧化碳气体从发酵罐排走时带走了大量挥发性物质,其中包括葡萄果实本身含有的香气物质和酒精发酵产生的香气物质,剩下的挥发性较弱的香气物质在二次苹果酸-乳酸发酵过程中被少量的二氧化碳气体又带走一小部分,进入陈酿过程后剩余的香气物质在橡木桶陈酿过程或不锈钢罐微氧陈酿过程中被大量氧化,最后消费者能喝到的主要是橡木的味道和部分陈酿形成的酯类香气物质的味道,并不能很好地刺激人们的食欲。
由于不允许添加化学香精,为了使葡萄酒有更理想的香味,酿酒师们尝试了多种物理的方法,比如:用超临界CO 2对葡萄皮渣进行萃取,对发酵排气直接进行冷凝回收香气物质,用加压降温发酵增加香气,用CO 2气体分离膜阻挡香气物质排出发酵罐等办法。这些方法都未能解决发酵排气中香气物质浓度很低(有的小于0.0001ppm),各种香气物质挥发性差别很大(30℃饱和蒸气压从几十Pa到几十KPa),气提(用气体解吸提取溶液中的溶质)和吸收过程中多组分的吸收和解吸同时存在,气提和吸收 过程气液比难以设定,与葡萄酒生产过程中其他工序难以衔接,具体实施的成本太高等问题。
发明内容
本发明的目的是提供一种在发酵过程中收集香气物质并加入葡萄酒的方法和系统,通过该方法和系统能够在葡萄酒发酵过程中把各种香气物质大部分传质到葡萄酒中,增加了葡萄酒的香气。本说明书所述“葡萄酒”包含经过完全或部分酒精发酵以后的所有阶段的葡萄酒液。本说明书所述的“发酵过程”包含葡萄酒一次酒精发酵过程和二次苹果酸-乳酸发酵过程。本说明书所述的“发酵液”包含葡萄酒一次酒精发酵过程中各种状态的葡萄醪,还包含二次苹果酸-乳酸发酵过程中的原酒。
本发明的原理是,用化工原理中的气液之间的解吸传质和吸收传质技术使发酵过程中发酵液中的香气物质传质到葡萄酒中,用气体膜分离技术对发酵排出混合气和气提混合气进行分离浓缩以提高上述传质过程的效率和效果。
本发明的总体方案是,把葡萄酒发酵过程中排出的发酵混合气以及对葡萄酒发酵液解吸气提得到的混合气,经过需要的处理或者不加处理,用葡萄酒作为吸收液进行香气物质的吸收,使得葡萄酒发酵液中的香气物质传质到作为吸收液的葡萄酒中。
把葡萄酒发酵过程中排出的发酵混合气收集并输送至膜分离装置,膜分离装置把混合气中不需要的和有害的物质分离排出,把需要的香气物质进行浓缩,然后把香气物质的浓缩混合气用葡萄酒作为吸收液进行吸收,使得葡萄酒发酵液中的香气物质更好地传质到作为吸收液的葡萄酒中。
在葡萄酒发酵过程中,用二氧化碳气体或者上述膜分离装置产生的富含二氧化碳的混合气对葡萄酒发酵液进行解吸气提,然后将所产生的含有香气物质的混合气以及发酵液发酵产生的混合气,输送至膜分离装置,膜分离装置把混合气中不需要的和有害的物质分离排出,把需要的香气物质进行浓缩,最后把得到的香气物质的浓缩混合气用葡萄酒作为吸收液进行吸收,这样可以进一步把发酵液中更多的香气物质传质到作为吸收液的葡 萄酒中。
本发明所采用的具体技术方案是,一种在发酵过程中收集香气物质并加入葡萄酒的方法,把葡萄酒酒精发酵过程中发酵罐排出的发酵混合气用管道收集净化,为了减少设备投入降低生产成本可以用葡萄酒作为吸收液在低温下对发酵混合气直接进行香气物质的吸收。为了提高香气物质的吸收效率、减少已有香气物质解吸、减少有害物质,选择把发酵混合气用管道收集到储气罐再用空压机加压并输送至分离浓缩装置进行浓缩处理,分离浓缩装置可以用膜分离装置也可以考虑变压吸附装置,从生产连续性和成本方面考虑选择膜分离装置,膜分离装置可以用多种适用的膜元件以多种适用的连接方式构成,也可以由两种以上的膜元件组合连接构成,总之目的是要把发酵混合气中的二氧化碳和不需要的甚至是有害的气体分离排出,把需要的香气物质进行浓缩,得到香气物质的浓缩混合气;然后将香气物质的浓缩混合气用葡萄酒作为吸收液在低温下进行香气物质的吸收,或者将香气物质的高度浓缩的混合气冷凝回收后,加入葡萄酒。这样可以把葡萄果实本身含有的和发酵产生的,大部分挥发性强(30℃饱和蒸气压约大于1KPa)的香气物质和少部分挥发性弱(30℃饱和蒸气压约小于1KPa)的香气物质传质到作为吸收液的葡萄酒中。
本技术方案的特点还在于:
进一步地,该方法还包括:在葡萄酒发酵过程中,包括一次酒精发酵启动后第三天、发酵高峰过后、有了可以进行气提的低粘度液体分层后的发酵过程中;还有二次苹果酸-乳酸发酵过程中,采用二氧化碳气体或者本方案上述膜分离装置产生的富含二氧化碳的混合气对发酵液进行解吸气提,然后将解吸气提产生的含有香气物质的混合气连同即时的发酵混合气直接用葡萄酒作为吸收液在低温下进行吸收,或者用管道收集到储气罐再用空压机加压并输入所述膜分离装置进行分离,把混合气中不需要的和有害的物质分离排出,把其中需要的香气物质进行浓缩,然后将香气物质的浓缩混合气用葡萄酒作为吸收液在低温下进行香气物质的吸收,或者将香气物质的高度浓缩的混合气冷凝回收后,加入葡萄酒。这样可以进一步把发酵液中更多的香气物质(包含许多挥发性较弱的香气物质)传质到作 为吸收液的葡萄酒中。
本发明所采用的另一个技术方案是,用于上述在发酵过程中收集香气物质并加入葡萄酒的方法的一种系统,该系统包括依次连接的发酵装置、膜分离装置和吸收装置;膜分离装置用于把由发酵装置产生的二氧化碳混合气中需要的香气物质浓缩分离出来;吸收装置中有用作吸收液的葡萄酒。
本技术方案的特点还在于:
进一步地,该系统还包括可以进行气提操作的发酵装置,该装置依次与膜分离装置和吸收装置连接,膜分离装置用于把发酵过程中解吸气提产生的混合气和同时发酵产生的混合气中需要的香气物质浓缩分离出来,通入吸收装置;吸收装置中有用作吸收液的葡萄酒。
在一个实施例中,膜元件可以为苦咸水用芳香族聚酰胺复合反渗透膜元件;在另外一个实施例中,膜元件可以为一段苦咸水用芳香族聚酰胺复合反渗透膜元件和一级聚酰亚胺氮气膜元件组合连接成膜分离装置。
本发明的有益效果是:本发明创造性地使用以前后续阶段的葡萄酒作为吸收液在低温下对发酵过程中的经过浓缩的香气物质混合气进行吸收操作。这样使葡萄酒发酵液中的香气物质很好地传质到作为吸收液的葡萄酒中,这样的葡萄酒拥有了更多的香气物质,其中包含以前随着发酵产生的二氧化碳混合气完全排掉的挥发性较强的香气物质,葡萄酒从此拥有了前所未有的清香气味。所述的浓缩操作可以使香气物质在收集到的混合气中的浓度提高许多倍,使得接下来的吸收操作的动力(溶质的浓度差)大幅提高,从而使吸收效率大幅提高,浓缩后混合气流量大幅减少,使得吸收操作可以以很小的气液比来进行,从而减少作为吸收液的葡萄酒中的已有香气物质的解吸。用葡萄酒作为吸收液可以使本发明操作过程与其他酿造工序很好的衔接起来,使得香气物质被很好地保留到饮用时。本发明对发酵过程中的发酵液进行解吸气提然后浓缩吸收,可以使挥发性弱的香气物质被更多地传质到葡萄酒中。本发明方法容易实现,利用现有设备和工艺条件即可实施,且该方法容易规模化,有利于实现产业化生产。
附图说明
图1是本发明的一种操作系统示意图;
图2是本发明反渗透膜元件连接方式示意图;
图3是本发明微气泡发生器的结构图。
图1中,1.发酵罐,2.气提发酵罐,3.储气罐,4.空压机,5.膜分离装置,6.吸收罐,7.二级吸收罐,8.微气泡发生器,9.循环泵,10.二氧化碳气源。
本发明的方法可以有许多种操作系统,本发明所述的系统也有多种构成方案,附图1给出了一种便于和说明书对照说明的操作系统。图1中的吸收罐可以用现有的发酵罐或储酒罐改造而成,储气罐在工作压力与环境压力差值不大时可以考虑使用现有的发酵罐或储酒罐。气体分离膜装置可以用多种适用的膜元件以多种适用的连接方式构成,香气物质浓缩富集的一端接入吸收罐,二氧化碳富集的一端可以接入气提罐,如图1中虚线所示。
具体实施方式
本发明很容易用多种设备和方案来实施,图1中给出的就是一个比较容易在现有设备和工艺条件下实施且成本较低的操作系统。该系统中,发酵罐1依次连接有储气罐3、空压机4、膜分离装置5;膜分离装置分离出的香气物质的浓缩气经过微气泡发生器(附图3)处理成微气泡后通入吸收罐6,二氧化碳气体10或膜分离装置分离出的二氧化碳富集的混合气经过微气泡发生器8处理成微气泡后通入气提发酵罐2,气提发酵罐2也与储气罐3、空压机4、膜分离装置5依次连接。
在葡萄酒的酒精发酵的过程中,将所有从酒精发酵罐排出的发酵混合气体用管道收集到储气罐3,然后用空压机4加压后,输送至膜分离装置。为了使酒精发酵排出的二氧化碳混合气中香气物质浓度更高,应间断地进行喷淋浸渍、压帽浸渍或搅拌浸渍,这样可以使葡萄下表皮释放出来的香 气物质在皮渣帽中富集,而二氧化碳混合气在通过皮渣帽时如同通过吸收解吸塔的填料层,可以使香气物质尽量多地传质进入排出的二氧化碳混合气中。
如果需要在酒精发酵过程中通过二氧化碳气提操作来增加混合气的量,可以在一次酒精发酵启动后第三天、发酵高峰过后、有了可以进行气提的低粘度液体分层后的发酵过程中,在不影响后期的酒精发酵进行的情况下,向气提发酵罐中通入二氧化碳或其混合气的微气泡进行气提,或者用吸收塔进行解吸气提。两种方法都应在不影响后期酒精发酵进行的情况下升温减压,以提高香气物质的提取效率。
如果需要实施对二次苹果酸-乳酸发酵中的原酒进行二氧化碳解吸气提香气物质,可以选择长时间尽量多地往气提发酵罐2中通入二氧化碳或其混合气的微气泡进行气提,或者用吸收塔进行解吸气提。两种方法都应在不影响二次苹果酸-乳酸发酵进行的情况下升温减压,以提高香气物质的提取效率。后面膜分离装置分离出来的二氧化碳富集的混合气可以重新用做气提过程的气体,二氧化碳富集的混合气的循环使用要考虑硫化氢、甲醇等有害气体需要排出,可以用浓缩用的极性分子透过性较强的膜元件对有害气体进行分离排出,同时可以适量添加纯净二氧化碳气体以利逐渐排出有害气体。
膜分离装置可以用多种适用的膜元件以多种适用的连接方式构成,也可以用两种以上的膜元件组合连接构成。膜元件可以选择中空纤维式气体分离膜元件或螺旋卷绕式气体分离膜元件,多孔原理的膜应选择孔径分布在0.4纳米左右尽量窄范围内的膜,可以选用生产纯净水的对香气物质和二氧化碳分离效果较好的反渗透膜元件,这种膜元件可以把香气物质混合气中的二氧化碳、水蒸气、甲醇、硫化氢、氨气等小分子气体及部分乙醇气体渗透排出,把混合气中大分子的需要的香气物质在渗余端浓缩富集。溶解扩散原理的膜元件可以选择极性分子透过性比较强的聚酰亚胺氮气膜元件,这种膜元件可以使具有极性的香气物质优先渗透过分离膜,在渗 透端浓缩富集,二氧化碳等非极性气体在渗余端排出。膜元件的使用数量要根据设计的混合气峰值总流量、工作压力、浓缩倍数以及膜元件的回收率、通量等参数来综合计算。本发明膜元件可采用食品加工行业中现有膜元件,如反渗透膜元件和氮气膜元件。
反渗透膜元件之间采用如图2所示的多段串联的方式连接(图中只示意了4段),并联在一起的气体分离膜元件被称为一段,段与段之间采用串联的方式连接,通过多段膜分离,不仅可以充分地浓缩目的物质,还能减少膜元件的堵塞,提高浓缩度,所以气体分离膜元件应尽量分成较多的段进行串联,最多可以设计到20段以上,为了保证每个元件的渗透气流量与进气流量的比值(相当于二氧化碳溶剂的回收率)始终小于40%,后一段比前一段并联膜元件数量要减少,第二段比第一段可以减少三分之一,随着混合气浓度的逐渐增加,为了保证元件的渗透气流量与进气流量的比值尽量小,每段并联所减少的膜元件数量比值越往后应越大。
氮气膜元件(聚酰亚胺膜),由于香气物质在渗透端富集,所以应该采取多级的连接方式使香气物质混合气多次渗透过分离膜以得到浓缩。由于二氧化碳和香气物质的分离系数并不很高,所以每个元件的渗余气流量与进气流量的比值(相当于二氧化碳溶剂的回收率)不应大于30%,下一级比上一级随着香气物质浓度的增加应该降低渗余气流量与进气流量的比值。
为了延长膜元件的使用寿命应加装0.1微米的微孔膜滤芯进行预过滤,以过滤掉混合气中的微生物、残渣颗粒等。使用前和使用后用大流量的CO 2气体进行冲洗。为了节省设备成本在膜元件所能承受的压力和温度范围内,尽量提高工作压力,混合气在进入膜分离装置前要加热到在工作压力下所有物质不结露液化、不发生化学变化的温度。在膜元件低压的渗透侧可以用抽真空的方法减少结露。在正常使用和维护的情况下,大部分膜元件可以多年使用,最后几段为数不多的膜元件,由于工作浓度高要定期更换。
膜分离装置分离出的高浓度的香气物质浓缩混合气可以用冷凝的办法回收香气物质,但是需要的膜元件很多,工艺复杂成本比较高。根据道尔顿分压定律和亨利定律可以知道,在混合气中因为挥发性相对比较弱而浓度很低的香气物质,可以通过充分连续的吸收操作使作为吸收液的葡萄酒中香气物质的浓度在吸收饱和时比它在混合气中的浓度高很多,另外通过安托因(Antoine)方程和常数进行计算可知大部分香气物质的饱和蒸气压35℃时比-5℃时高6~20倍,这样可以把作为吸收液的葡萄酒制冷到接近冰点的-5~-7℃,使吸收操作时香气物质在作为吸收液的葡萄酒中的吸收饱和浓度大幅提高。在工艺条件以及投入和运行成本允许的情况下可以把含有香气物质的混合气尽量浓缩,然后以尽量少的浓缩混合气用葡萄酒作为吸收液在尽量低的温度下进行香气物质的吸收,这样可以提高对浓缩混合气中香气物质的吸收效率,减少浓缩混合气中香气物质以外的气体部分在通过葡萄酒时对其原来已有香气物质的解吸作用。作为吸收液的葡萄酒可以是当年的新酒,也可以是经过陈酿的陈酒。吸收过程可以用吸收塔,为了节省成本可以把浓缩混合气处理成微气泡通入吸收罐6,微气泡发生器8可以用微米级的不锈钢粉末烧结滤芯来曝气(附图3),循环泵要装在微气泡发生器的后面以利微气泡的打碎和搅动。吸收罐6顶部可以设置气泡阻拦网,同时用葡萄酒循环高压喷淋来消除气泡。为了使浓缩混合气中香气物质得到比较完全的吸收,可以用多级吸收装置进行吸收操作,即再设置下一级吸收罐,并同样设置微气泡发生器和循环泵,一级吸收罐内未吸收的香味气体再处理成微气泡后通入二级吸收罐7,使香味物质得到充分的利用。为了使强挥发性的香气物质吸收充分,吸收操作的最后大约10小时应该是对酒精发酵刚启动的发酵混合气的浓缩气进行吸收。长时间连续的吸收过程可以使葡萄酒中挥发性强烈的硫化氢、氨气等有害物质解吸排出。吸收操作完成后如果需要去除作为吸收液的葡萄酒中的二氧化碳,可以在常温常压下对完成吸收的葡萄酒适当搅拌排出二氧化碳。如果想生产加气葡萄酒,可以在吸收的过程中提高压力,然后等压灌 装入瓶。
酒精发酵的每个发酵罐的排气收集管应装有单向阀和截止阀来防止倒流并方便其他操作。发酵罐1和储气罐3应允许出现罐体可以承受的负压,以利香气物质进入混合气,方便向膜分离装置加压输送混合气的空压机工作控制。对二次苹果酸-乳酸发酵中的原酒进行二氧化碳升温减压解吸气提香气物质过程中,要考虑循环气体进入原酒时的温度不能太高,以及原酒温度的控制,保证二次苹果酸-乳酸发酵的正常进行。膜分离装置最高工作压力时的设计输入通量应大于前面工序的最大混合气输出通量。酒精发酵的发酵混合气峰值流量可以按每升发酵容积每分钟产生20毫升混合气来估算。用来吸收香气物质的葡萄酒的量要根据发酵及气提混合气总量、葡萄酒的氧化程度、期望的最终产品酒的香度和产量等因素来确定。
为了使以上工艺能生产出更满意的芳香味葡萄酒,可以选用香气更浓的葡萄品种,在酒精发酵后期出现不良气味之前要终止混合气的收集,在倒罐和过滤时要尽量减少在二次发酵和陈酿过程中会产生异味的物质,在不锈钢罐陈酿过程中可以停止使用橡木片来遮掩修饰的做法。
经过本发明的操作,通过调整葡萄酒的数量和吸收操作时间等工艺参数,最终得到芳香程度和类型可以根据酿酒师的需要进行调整的非常芳香的葡萄酒。
以下给出两个实施例以对本发明进行进一步的详细说明。
实施例1
本实施例以最简单的方案,较少的实验室酿造量,来实现本发明显著增加葡萄酒香气的目的。具体方案如下:用1个壁厚大于1.5mm、65升的、耐压超过6bar的不锈钢发酵罐做酒精发酵罐。用3支有效膜面积为8.4m 2/支的苦咸水用芳香族聚酰胺复合反渗透膜元件或者用对香气物质和二氧化碳分离效果较好的其他反渗透膜元件,以第一段2支、第二段1支的连接方法组成膜分离装置。也可以用一支反渗透膜元件和一支聚酰亚胺氮气膜元件组合连接成膜分离装置。用34升的有保温层的可以制冷的 不锈钢发酵罐做吸收罐。
所有的元件和装置用2分(外径6.35mm)的PE净水管及相应管件连接,酒精发酵罐排气出口应依次连接安全泄压阀、开关阀门、不锈钢网过滤器,压力表、单向阀、微孔膜过滤器然后连接到膜分离装置。膜分离装置的渗透排出气要汇集起来通过一个量程匹配的气体浮子流量计排出,膜分离装置通过针式调节阀与吸收罐连接,吸收罐有进气接口和出气接口,进气接口接入浓缩气,用2微米孔径的长度小于15cm的316不锈钢粉末烧结滤芯来产生微气泡。吸收罐出气接口接一个量程匹配的气体浮子流量计。
酒精发酵罐发酵完全启动后接入后续系统,随着酒精发酵反应的加强,系统压力(与环境的压差)将升高到1~2bar,膜分离装置靠酒精发酵产生的压力对发酵混合气进行分离浓缩,浓缩混合气通过针式调节阀进入吸收罐中的不锈钢滤芯曝气头变成微气泡供吸收罐中的成品酒吸收,调节针式调节阀使吸收罐流量计的排气流量为渗透气排气流量计流量的1/4到1/2。
每隔8~4小时可以把酒精发酵罐和后续系统拆开,进行压帽浸皮。吸收过程中要保证吸收罐内的葡萄酒温度恒温在-6℃左右,一般3个昼夜酒精发酵减弱后可以停止该操作,然后在对下一批次酒精发酵刚启动的发酵混合气吸收大约10小时后结束该批葡萄酒的吸收操作。
吸收完毕后,得到的葡萄酒清香怡人。
实施例2
本实施例提供一个进行规模生产实验和收集数据用的小规模操作系统,该系统由1个10立方米的立式循环喷淋不锈钢发酵罐做酒精发酵罐,用一个10立方米的立式循环喷淋不锈钢发酵罐做二次苹果酸-乳酸发酵罐及微气泡解吸气提罐。用15支有效膜面积约为35m 2/支的苦咸水用芳香族聚酰胺复合反渗透膜元件,或者用为分离发酵混合气定制的对香气物质和二氧化碳分离效果较好的与上述反渗透膜相似的膜元件,以第一段8 支、第二段4支、第三段2支、第四段1支的连接方法组成膜分离装置。也可以用一段反渗透膜元件和一级聚酰亚胺氮气膜元件组合连接成膜分离装置。用1个5立方米的立式不锈钢发酵罐或储酒罐做好保温外套、接好制冷设备做为吸收罐。用1个5立方米的立式不锈钢发酵罐或储酒罐做储气罐。用一台涡旋空压机或永磁变频螺杆式空压机来压缩输送混合气到气体分离浓缩装置。
所有的元件和装置用4分的304不锈钢管及相应不锈钢管件按附图图1的连接方法连接,酒精发酵罐排气出口应依次连接安全泄压阀、开关阀门、不锈钢网过滤器,压力表、单向阀然后连接到储气罐。储气罐要设压力表、流量计、压力控制器。气体分离浓缩装置的渗透排出气要汇集起来通过一个三通比例调节阀接入微气泡解吸气提罐。在气体分离浓缩装置前安装0.1微米的微孔膜滤芯进行预过滤。气体分离浓缩装置通过针式调节阀与吸收罐连接。吸收罐和二次苹果酸-乳酸发酵罐用的微气泡发生装置按图1所示制作连接,其中的微气泡发生器(附图3)可以选2微米孔径的直径40mm长500mm的316不锈钢粉末烧结滤芯,选择一段直径为70mm,长为600mm的316不锈钢管,一端插入不锈钢滤芯封好接口然后连接浓缩气,另一端连接4分316不锈钢出液管到循环泵,Φ70管靠近不锈钢滤芯接口的一端的侧面管壁开孔接入4分316不锈钢进液管。吸收罐和二次苹果酸-乳酸发酵罐顶部要设置气泡阻拦不锈钢网,同时用成品酒循环高压喷淋来消除气泡。
酒精发酵完全启动后,把发酵排出混合气接入膜分离装置,注意立式循环喷淋不锈钢发酵罐的循环喷淋每过8~4小时运行半小时。储气罐和气体分离浓缩装置应提前用二氧化碳气体冲洗并充满二氧化碳气体,当储气罐储气达到设定压力时,启动空压机向气体分离浓缩装置加压输送混合气,空压机可以设置为变频恒压工作,当储气罐压力低于设定值时,空压机停止工作,直到发酵排气重新使储气罐达到设定的上限压力。储气罐上限启动压力可以设置为120千帕,停止下限可以设置为80千帕。空压机 圧缩圧力根据总输入流量可以设置在5~10bar之间某一数值,空压机的恒压工作压力应设置得尽量使储气罐压力不要经常达到下限停机值。浓缩混合气在进入膜分离装置前应根据压力加热到30~50℃。渗透排出混合气进入气提罐时应降温到35℃以下,并调节三通比例阀使气提气体流量满足系统整体正常工作要求。二次苹果酸-乳酸发酵罐工作温度为35℃,压力为50~100千帕。调节膜分离装置与吸收罐之间的针式调节阀使渗透气总流量为浓缩混合气总量的2~5倍。吸收罐中灌装前的成品酒吸收液应被冷却到-6℃以利吸收操作进行。可以对酒精发酵和二次苹果酸-乳酸发酵气提同时进行本实施例操作,也可以单独进行。
吸收完毕后,得到的葡萄酒清香怡人。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 在发酵过程中收集香气物质并加入葡萄酒的方法,其特征在于,包括:把葡萄酒发酵过程中排出的发酵混合气或者对葡萄酒发酵液解吸气提得到的混合气,或者两者混合的混合气,经过处理或者不加处理,用葡萄酒作为吸收液进行香气物质的吸收。
  2. 根据权利要求1所述的在发酵过程中收集香气物质并加入葡萄酒的方法,其特征在于,经过处理具体为将葡萄酒发酵过程中排出的发酵混合气或者对葡萄酒发酵液解吸气提得到的混合气,或者两者混合的混合气进行香气物质的分离和浓缩。
  3. 根据权利要求2所述的在发酵过程中收集香气物质并加入葡萄酒的方法,其特征在于,采用膜分离装置进行香气物质的分离和浓缩。
  4. 根据1~3任意一项所述的在发酵过程中收集香气物质并加入葡萄酒的方法,其特征在于,所述的对葡萄酒发酵液解吸气提得到的混合气是用二氧化碳气体或者富含二氧化碳的混合气去对葡萄酒发酵液进行解吸气提得到。
  5. 在发酵过程中收集香气物质并加入葡萄酒的方法,其特征在于,包括:把葡萄酒发酵过程中排出的发酵混合气或者对葡萄酒发酵液解吸气提得到的混合气,或者两者混合的混合气,进行香气物质的分离和浓缩,然后将浓缩的香气物质混合气冷凝,加入葡萄酒中。
  6. 一种在发酵过程中收集香气物质并加入葡萄酒的系统,其特征在于,包括依次连接的发酵装置、膜分离装置和吸收装置;膜分离装置用于把由发酵装置产生的二氧化碳混合气中需要的香气物质进行分离浓缩;吸收装置中有用作吸收液的葡萄酒。
  7. 根据权利要求6所述的系统,其特征在于,该系统还包括可以进行气提操作的气提发酵装置,该装置依次与膜分离装置和吸收装置连接,膜分离装置用于把发酵过程中解吸气提产生的混合气和同时发酵产生的 混合气中需要的香气物质进行分离浓缩,通入吸收装置;吸收装置中有用作吸收液的葡萄酒。
  8. 根据权利要求7所述的系统,其特征在于,所述气提发酵装置由发酵罐加装微气泡发生装置构成。
  9. 根据权利要求6~8任意一项所述的系统,其特征在于,所述吸收装置由发酵罐或者储酒罐加装微气泡发生装置构成。
  10. 根据权利要求6~8所述的系统,其特征在于,所述膜分离装置为苦咸水用芳香族聚酰胺复合反渗透膜元件或者苦咸水用芳香族聚酰胺复合反渗透膜元件与聚酰亚胺氮气膜元件组合构成。
PCT/CN2018/086650 2017-05-22 2018-05-14 在发酵过程中收集香气物质并加入葡萄酒的方法和系统 WO2018214770A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710362109.3A CN106957785A (zh) 2017-05-22 2017-05-22 在发酵过程中收集香气物质并加入葡萄酒的系统和方法
CN201710362109.3 2017-05-22
CN201810400467.3A CN108660009A (zh) 2017-05-22 2018-04-28 在发酵过程中收集香气物质并加入葡萄酒的方法和系统
CN201810400467.3 2018-04-28

Publications (1)

Publication Number Publication Date
WO2018214770A1 true WO2018214770A1 (zh) 2018-11-29

Family

ID=59481990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086650 WO2018214770A1 (zh) 2017-05-22 2018-05-14 在发酵过程中收集香气物质并加入葡萄酒的方法和系统

Country Status (2)

Country Link
CN (2) CN106957785A (zh)
WO (1) WO2018214770A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020160644A1 (en) * 2019-02-06 2020-08-13 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage
CN112552145A (zh) * 2020-10-30 2021-03-26 新疆中信国安葡萄酒业有限公司 一种葡萄酒发酵过程中挥发性香气、酒精的收集和浓缩富集方法
US11466237B2 (en) 2013-04-18 2022-10-11 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage
US11649421B2 (en) 2013-04-18 2023-05-16 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957785A (zh) * 2017-05-22 2017-07-18 杨元庆 在发酵过程中收集香气物质并加入葡萄酒的系统和方法
CN108660037A (zh) * 2018-05-22 2018-10-16 贵州省生物研究所 一种蓝莓白兰地果香富集的方法及调香方法
CN108410619A (zh) * 2018-05-30 2018-08-17 新疆农业大学 玫瑰香薰葡萄酒加工设备、玫瑰香薰葡萄酒加工方法及制备的葡萄酒
CN108410613A (zh) * 2018-05-30 2018-08-17 新疆农业大学 一种玫瑰花发酵制备玫瑰香熏葡萄酒的方法及其制备获得的葡萄酒
US11384323B2 (en) * 2019-08-07 2022-07-12 Wisconsin Alumni Research Foundation Method of making sparkling beverage with reduced carbon footprint
CN110860176A (zh) * 2019-11-27 2020-03-06 南京九思高科技有限公司 一种回收葡萄酒发酵过程中混合气体的装置及工艺
CN117925341B (zh) * 2024-03-22 2024-06-11 山东金必来生物科技有限公司 一种发酵反应釜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156709A (zh) * 2007-11-14 2008-04-09 四川大学 苹果原汁发酵加工技术
CN101760414A (zh) * 2010-01-14 2010-06-30 上海化工研究院 一种制造低醇黄酒的方法及装置
CN106957785A (zh) * 2017-05-22 2017-07-18 杨元庆 在发酵过程中收集香气物质并加入葡萄酒的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928200B (zh) * 2009-06-19 2013-04-17 青岛生物能源与过程研究所 一种原位分离发酵中易挥发性有机物的方法和设备
CN205501262U (zh) * 2016-03-16 2016-08-24 甘肃紫轩酒业有限公司 一种发酵罐二氧化碳的回收再利用系统
CN205874358U (zh) * 2016-07-11 2017-01-11 温州科技职业学院 可收回香气的酿酒发酵设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156709A (zh) * 2007-11-14 2008-04-09 四川大学 苹果原汁发酵加工技术
CN101760414A (zh) * 2010-01-14 2010-06-30 上海化工研究院 一种制造低醇黄酒的方法及装置
CN106957785A (zh) * 2017-05-22 2017-07-18 杨元庆 在发酵过程中收集香气物质并加入葡萄酒的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAO, WENYAO ET AL.: "Application of Membrane Separation Technology in Wine", SINO-OVERSEAS GRAPEVINE & WINE, 28 February 2005 (2005-02-28), pages 16 - 18 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466237B2 (en) 2013-04-18 2022-10-11 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage
US11649421B2 (en) 2013-04-18 2023-05-16 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage
WO2020160644A1 (en) * 2019-02-06 2020-08-13 Aromaloc Inc. Apparatus and method for preserving the aroma of a fermentable beverage
CN112552145A (zh) * 2020-10-30 2021-03-26 新疆中信国安葡萄酒业有限公司 一种葡萄酒发酵过程中挥发性香气、酒精的收集和浓缩富集方法
CN112552145B (zh) * 2020-10-30 2023-06-13 新疆中信国安葡萄酒业有限公司 一种葡萄酒发酵过程中挥发性香气、酒精的收集和浓缩富集方法

Also Published As

Publication number Publication date
CN106957785A (zh) 2017-07-18
CN108660009A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018214770A1 (zh) 在发酵过程中收集香气物质并加入葡萄酒的方法和系统
US5814222A (en) Oxygen enriched liquids, method and apparatus for making, and applications thereof
CN104312881B (zh) 一种白酒生产过程中黄水全回收利用的方法
JP2007021472A (ja) 酸素水製造方法及びその装置
Sun et al. Production of alcohol-free wine and grape spirit by pervaporation membrane technology
CN108641944B (zh) 一种co2生物转化为甲烷的装置及方法
CN103305391A (zh) 一种提高白酒品级的方法
IL113281A (en) Process and device for enriching water with oxygen
US9180402B2 (en) System and method for treating natural gas that contains methane
CN110844894A (zh) 一种氦气提浓系统
EP1769063A1 (en) Alcohol reduction in beverages
CN108738817A (zh) 用于温室定时定量增施co2气肥的系统与方法
CN108452644A (zh) 一种燃煤电厂二氧化碳膜捕集耦合氮气制备工艺
US9840687B2 (en) Artificial aging apparatus for spirits and other alcoholic beverages
JP4803990B2 (ja) 下水汚泥由来のメタン濃縮方法及びメタン貯蔵装置
CN209128219U (zh) 利用脱气膜脱除二氧化碳的超纯水制备系统
CN113214948B (zh) 一种降低浓香型白酒中高级醇含量的装置及方法
CN205774373U (zh) 一种用于沼气脱碳净化的膜分离装置
Banazadeh et al. A novel process for oxygen absorption from air using hollow fiber gas-liquid membrane contactor
CN211284278U (zh) 一种甲烷提纯系统
CN113003884A (zh) 基于厌氧发酵和膜蒸馏的绿色氨水回收系统
CN101407755A (zh) 一种果醋快速人工催陈方法
Búcsú et al. Modelling of biohydrogen production and recovery by membrane gas separation
EP2817084A1 (en) Unsteady-state gas permeation process
CN212982692U (zh) —种用于啤酒生产的专用水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806529

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.06.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18806529

Country of ref document: EP

Kind code of ref document: A1