WO2018214498A1 - 一种紧凑型多波长光组件及其使用方法 - Google Patents

一种紧凑型多波长光组件及其使用方法 Download PDF

Info

Publication number
WO2018214498A1
WO2018214498A1 PCT/CN2017/118568 CN2017118568W WO2018214498A1 WO 2018214498 A1 WO2018214498 A1 WO 2018214498A1 CN 2017118568 W CN2017118568 W CN 2017118568W WO 2018214498 A1 WO2018214498 A1 WO 2018214498A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
optical signal
optical
signal channel
wavelength
Prior art date
Application number
PCT/CN2017/118568
Other languages
English (en)
French (fr)
Inventor
封建胜
张玓
王志刚
常静
石川
陈奔
付永安
孙莉萍
余向红
Original Assignee
武汉光迅科技股份有限公司
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司, 武汉电信器件有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2018214498A1 publication Critical patent/WO2018214498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention relates to the field of optical module technologies, and in particular, to a compact multi-wavelength optical component and a method of using the same.
  • the optical transceiver module is a key unit in the field of optical communication. From the initial single transceiver to the transceiver, the system integration is getting higher and higher, high speed, low cost, miniaturization, hot swap, low power consumption, intelligent and The long distance is the development direction of the optical transceiver module.
  • U.S. Pat. No. 8772704 which uses a silicon-based packaged light source technology, is coupled vertically by a coupling unit on a light source and an optoelectronic integrated chip.
  • the light source is composed of a laser chip, a ball lens, an isolator assembly, a mirror, and a silicon substrate.
  • the divergent beam output from the edge emitting laser chip is concentrated by the lens, passed through the isolator assembly and the mirror, and then vertically incident on the coupling unit of the optoelectronic integrated chip.
  • the solution has the advantages of compactness, simple packaging, etc., but the light source can only provide one wavelength. If a multi-wavelength light source is realized by placing multiple devices, the volume will be multiplied, which does not meet the requirements of small size of photoelectric integration, that is, the patent scheme
  • the application is limited when wavelength division multiplexing or the like is required to have a plurality of wavelengths.
  • the invention name is: a high power laser coupled fiber fixing device
  • a high power laser coupled fiber fixing device also relates to a multi-wavelength laser implementation, all substrates of high power laser
  • the fast axis collimating mirror FAC, the slow axis collimating mirror SAC, and the mirror are respectively fixed on different steps of the base, each laser diode is fixed on one substrate, and the plurality of laser diodes generate a plurality of high and low beams, and respectively
  • the fast axis collimating mirror FAC and the slow axis collimating mirror SAC generate high and low parallel beams; after being reflected by the respective mirrors, they reach the collimating lens, and a plurality of high and low parallel beams are focused on the optical fiber through the collimating lens;
  • a boss is designed at the fixed position of the fiber, and the boss and the base are integrated, and a V-shaped groove is designed on the upper surface of the boss along the direction of the parallel beam focused by the collimating lens, and the optical fiber is
  • the heat on the glass solder quickly dissipates through the base.
  • the scheme adopts a spatial combination method to couple multiple wavelengths of light into the optical fiber. Since the coupled beam is a discrete spot, a large amount of energy is distributed outside the main spot after being focused by the lens, that is, the energy loss is large, especially When the optical fiber is a single mode fiber, the insertion loss of the solution described in this patent is large.
  • a compact multi-wavelength optical module includes at least two sets of optical signal channel units and a substrate, and the optical signal channel unit group is disposed on the substrate, wherein a group
  • the optical signal channel unit group includes a lens, a non-transparent device, and a mirror, and the three are sequentially disposed on the substrate along the optical signal transmission direction, and the optical component further includes:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the different optical signal channel unit groups are separated by a preset distance, the predetermined distance is such that the optical signals passing through the optical signal channel unit groups and the optical signals transmitted in the substrate through the diffraction of the first diffraction grating region are After being totally reflected by the bottom of the substrate, converge at the same convergence point on the surface of the substrate;
  • the surface of the substrate to which the optical signals are to be concentrated is provided with a second diffraction grating region.
  • the optical signal input end of the optical component is used to couple a laser, wherein the number of lasers is consistent with the number of the optical signal channel unit groups, and the range of the laser emission wavelength is less than one tenth of its center wavelength. .
  • the laser comprises: a vertical cavity surface emitting laser and/or an edge emitting laser, which operates in a direct modulation mode or a continuous illumination mode.
  • n is the refractive index of the substrate
  • is the grating period
  • is the angle between the diffracted light and the normal
  • is the wavelength of the incident light
  • m is the natural number, determined by the blazed angle of the grating and the incident wavelength.
  • the substrate is selected or processed to meet a preset parameter value, and different optical signal channel unit groups are set.
  • the distance between the differences including:
  • ⁇ i is an angle at which the i-th laser-emitting optical signal is diffracted from the i-th optical signal channel unit group into the substrate.
  • the non-reciprocal device comprises: a magneto-optical isolator or a unidirectional coupling element.
  • the present invention also provides a method of using a compact multi-wavelength optical component using the compact multi-wavelength optical component of the first aspect, and wherein the compact multi-wavelength optical component has its own wavelength
  • the laser is fully coupled and fixed, specifically:
  • a delay between driving signals is set for each laser according to the optical path difference; a delay between the driving signals is used to cancel an optical path difference between the optical signals, so that each light
  • the signals are simultaneously concentrated to the same convergence point on the surface of the substrate.
  • the light detector is disposed on the light-emitting port side of the compact multi-wavelength optical module substrate, and the method of using the method further includes:
  • the present invention further provides a compact multi-wavelength optical component, the optical component comprising at least two lasers, at least two optical signal channel unit groups, and a substrate, wherein the optical signal channel unit group is disposed on the substrate
  • the optical signal channel unit group includes a lens, a non-transparent device and a mirror, and the three are sequentially disposed on the substrate along the optical signal transmission direction; the laser is coupled to the lens in the optical signal channel unit group,
  • the optical component further includes:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the different optical signal channel unit groups are separated by a preset distance, the predetermined distance is such that the optical signals passing through the optical signal channel unit groups and the optical signals transmitted in the substrate through the diffraction of the first diffraction grating region are After being totally reflected by the bottom of the substrate, converge at the same convergence point on the surface of the substrate;
  • the surface of the substrate to which the optical signals are to be concentrated is provided with a second diffraction grating region
  • Each of the lasers is fixed to the substrate according to a laser wavelength of its own configuration and coupled to the optical signal channel unit group; wherein the wavelength of the laser is coupled to the optical signal channel unit group and the distance from the convergence point The farther it is.
  • n is the refractive index of the substrate
  • is the grating period
  • is the angle between the diffracted light and the normal
  • is the wavelength of the incident light
  • m is the natural number, determined by the blazed angle of the grating and the incident wavelength.
  • the substrate is selected or processed to meet a preset parameter value, and different optical signal channel unit groups are set.
  • the distance between the differences including:
  • ⁇ i is an angle at which the i-th laser-emitting optical signal is diffracted from the i-th optical signal channel unit group into the substrate.
  • the present invention further provides a compact multi-wavelength optical component, the optical component comprising at least two sets of optical signal channel units and a substrate, wherein the optical signal channel unit group is disposed on the substrate, wherein The group of optical signal channel units includes a lens, a non-transparent device and a mirror, and the three are sequentially disposed on the substrate in the order of the optical signal receiving direction according to the order of the mirror, the non-transparent device and the lens, the light
  • the components also include:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the surface of the substrate is provided with a second diffraction grating region; wherein the second diffraction grating region and the first diffraction grating region are located on the same side of the substrate;
  • the different optical signal channel unit groups are separated by a preset distance, and the preset distance is such that when the combined laser signal is incident on the second diffraction grating region of the upper surface of the substrate, the laser signals corresponding to different wavelengths can be diffracted. After total reflection at the bottom of the substrate, the first diffraction grating region under the mirror in each of the optical signal channel unit groups is reached.
  • each optical signal channel unit group in the optical component is used to couple the photodetector.
  • n ⁇ sin( ⁇ ) m ⁇ and the center wavelength of each laser, a substrate whose thickness and grating period respectively satisfy the requirements of the equation are selected, and the difference between the different optical signal channel unit groups is set. a distance, such that the combined light signal can be diffracted through the second grating region and the first grating region, and coupled to the optical path of the corresponding optical signal channel unit group;
  • n is the refractive index of the substrate
  • is the grating period
  • is the angle between the diffracted light and the normal
  • is the wavelength of the incident light
  • m is the natural number, determined by the blazed angle of the grating and the incident wavelength.
  • the distance between the different optical signal channel unit groups is set such that the combined optical signal can be diffracted through the second grating region and the first grating region and coupled into the optical path of the corresponding optical signal channel unit group.
  • the distance between the different optical signal channel unit groups is set such that the combined optical signal can be diffracted through the second grating region and the first grating region and coupled into the optical path of the corresponding optical signal channel unit group.
  • ⁇ i is an angle at which the i-th laser-emitting optical signal is diffracted from the i-th optical signal channel unit group into the substrate.
  • the non-reciprocal device comprises: a magneto-optical isolator or a unidirectional coupling element.
  • the present invention provides a compact multi-wavelength optical component, which utilizes the principle that the diffraction grating can correspond to optical signals of different wavelengths and generate different diffraction angles, and By reasonably designed to turn on the spacing between groups of optical signal channels of different wavelengths, the optical signals of different wavelengths can be subjected to diffraction of the first diffraction grating region, reflection at the bottom of the substrate, and diffraction of the second diffraction grating region. Complete the bundling process of the optical signal.
  • the compactness is better. Due to the subtle transformation of the optical axis, the utilization of the substrate space is greatly improved, and more components can be placed in the allowable space of the existing optoelectronic integrated chip;
  • the structure proposed by the present invention is more stable because the diffraction grating can be fabricated directly on the substrate, and the entire multiplexed optical path will be completed in the substrate, so that the entire optical path structure can be stabilized.
  • the thermal stability of the compact multi-wavelength optical module proposed by the present invention is also better. If the exit wavelength of the semiconductor laser changes with temperature, but the wavelength difference of the adjacent semiconductor laser does not change, the invention remains Multi-wavelength multiplexing can be done well.
  • FIG. 1 is a front view showing a structure of a compact multi-wavelength optical module according to an embodiment of the present invention
  • FIG. 2 is a front elevational view of an optical path effect in a compact multi-wavelength optical module structure according to an embodiment of the present invention
  • FIG. 3 is a front view showing another structure of a compact multi-wavelength optical module according to an embodiment of the present invention.
  • FIG. 4 is a front elevational view of an optical path effect in another compact multi-wavelength optical module structure according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for using a compact multi-wavelength optical component according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for detecting a compact multi-wavelength optical component according to an embodiment of the present invention
  • FIG. 7 is a front view showing another structure of a compact multi-wavelength optical module according to an embodiment of the present invention.
  • FIG. 8 is a right side view of an optical path effect in another compact multi-wavelength optical module structure according to an embodiment of the present invention.
  • FIG. 9 is a front view showing another structure of a compact multi-wavelength optical module according to an embodiment of the present invention.
  • FIG. 10 is a front elevational view of an optical path effect in another compact multi-wavelength optical module structure according to an embodiment of the present invention.
  • FIG. 11 is a front view showing another structure of a compact multi-wavelength optical module according to an embodiment of the present invention.
  • FIG. 12 is a front elevational view of an optical path effect in another compact multi-wavelength optical module structure according to an embodiment of the present invention.
  • Embodiment 1 of the present invention provides a compact multi-wavelength optical component.
  • the optical component includes at least two sets of optical signal channel units and a substrate, and the optical signal channel unit group is disposed in the On the substrate, the set of optical signal channel units includes a lens, a non-transparent device and a mirror, and the three are sequentially disposed on the substrate along the optical signal transmission direction; in the embodiment of the invention, the lens Receiving an input beam of the laser and converting it into a collimated beam output; the non-reciprocal device for transmitting a collimated beam signal from the lens and isolating the beam signal from the mirror (also referred to as The light signal) is configured to change a propagation direction of the light beam transmitted from the non-reciprocal device such that the beam signal is directed perpendicular to the substrate.
  • the optical component further includes:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the different optical signal channel unit groups are separated by a preset distance, the predetermined distance is such that an optical signal passing through each of the optical signal channel unit groups and an optical signal transmitted into the substrate through the diffraction of the first diffraction grating region is After being totally reflected by the bottom of the substrate, converge at the same convergence point on the surface of the substrate;
  • the surface of the substrate to which the optical signals are to be concentrated is provided with a second diffraction grating region.
  • the embodiment of the invention provides a compact multi-wavelength optical component, which utilizes the principle that the diffraction grating can correspond to optical signals of different wavelengths and generate different diffraction angles, and is designed to conduct optical signal channels of different wavelengths through reasonable design.
  • the spacing between the groups of cells enables the different wavelength optical signals to complete the bundling process of the optical signal after undergoing diffraction of the first diffraction grating region, reflection at the bottom of the substrate, and diffraction of the second diffraction grating region.
  • the compactness is better. Due to the subtle transformation of the optical axis, the utilization of the substrate space is greatly improved, and more components can be placed in the allowable space of the existing optoelectronic integrated chip;
  • the structure proposed by the embodiment of the present invention is more stable because the diffraction grating can be directly fabricated on the substrate, and the entire multiplexed optical path will be completed in the substrate, so that the entire optical path structure can be stabilized.
  • the thermal stability of the compact multi-wavelength optical component proposed by the embodiment of the present invention is also better. If the emission wavelength of the semiconductor laser changes with temperature, because the wavelength difference of the adjacent semiconductor laser does not change, the The invention still performs well for multi-wavelength multiplexing.
  • the lens may be a single, discrete component or a microlens array; the non-reciprocal device may be discrete or Integration with a diffraction grating; the diffraction grating can be either a discrete component or integrated on a substrate.
  • the schematic diagram of the number of optical signal channel unit groups is specifically set to two groups according to an embodiment of the present invention, wherein the first group of optical signal channel unit groups includes a lens 101, a non-transparent device 102, and The mirror 103, and the second group of optical signal channel units includes a lens 111, a non-transparent device 112 and a mirror 113; the first diffraction grating region is shown by the broken line frame 11 shown in FIG. 1 and is located on the upper surface of the substrate 1. And the mirror (including the mirror 103 and the mirror 113); the second diffraction grating region is shown by the broken line frame 12 shown in FIG.
  • FIG. 2 is a schematic diagram of an optical path effect in a front view of the compact multi-wavelength optical component in an operating state according to an embodiment of the present invention.
  • a schematic diagram of the number of optical signal channel unit groups is specifically set to three groups according to an embodiment of the present invention, wherein the first group of optical signal channel unit groups includes a lens 101, a non-transparent device 102, and The mirror 103, the second group of optical signal channel units includes a lens 111, a non-transparent device 112 and a mirror 113, and the third group of optical signal channel units includes a lens 121, a non-transparent device 122 and a mirror 123; A diffraction grating region is shown by the broken line frame 11 shown in FIG.
  • FIG. 4 is a schematic diagram of an optical path effect in a front view of the compact multi-wavelength optical component in an operating state according to an embodiment of the present invention.
  • the number of the optical signal channel unit groups may also be four or more, and details are not described herein again.
  • the optical signal input end of the optical component is used to couple a laser, wherein the number of lasers is consistent with the number of the optical signal channel unit groups, and the range of the laser emission wavelength is less than one tenth of the center wavelength thereof. .
  • the lateral distance is linear with the incident wavelength, that is, the pitch of the semiconductor laser is proportional to the exit wavelength; wherein, the lateral distance It refers to a distance between a position where each optical signal is incident on the first diffraction grating region and a position where each optical signal converges to a second diffraction grating region in the substrate 1.
  • the laser can be used together with the proposed compact multi-wavelength optical component, including: a vertical cavity surface emitting laser and/or an edge emitting laser, and the working mode is direct modulation mode or continuous illumination mode. .
  • the distance allows the optical signals output by different lasers to converge at the same convergence point on the surface of the substrate; where n is the refractive index of the substrate, ⁇ is the grating period, ⁇ is the angle between the diffracted light and the normal, and ⁇ is the wavelength of the incident light, m
  • the natural number is determined by the blazed angle of the grating and the incident wavelength.
  • the illuminating angle of the m and the grating and the incident wavelength is known in the prior art, and will not be described herein.
  • the grating is scored into a zigzag wire trough section, the light energy of the grating is concentrated in a predetermined direction, i.e., at a certain spectral level.
  • the intensity of the spectrum is the largest, and this phenomenon is called blaze.
  • This grating is called a blazed grating (i.e., an example of the diffraction grating described in the embodiment of the present invention).
  • the groove surface which is diffractive is a smooth plane which is at an angle to the surface of the grating and is called a blaze angle.
  • the factors affecting the diffraction angle ⁇ include the grating period ⁇ , the refractive index n of the substrate material and the incident light wavelength ⁇ .
  • the incident light wavelength ⁇ is usually in a compact multi-wavelength optical component.
  • the design is initially determined, and the variability of the refractive index n of the substrate material is also small, and the diffraction angle ⁇ is usually changed by adjusting the grating period ⁇ .
  • the diffraction angle ⁇ is related to whether each optical signal can achieve total reflection at the bottom of the substrate.
  • the thickness of the substrate and the separation distance of different optical signal channel unit groups is another important factor affecting the compact multi-wavelength optical module proposed by the embodiments of the present invention.
  • the distance between the different light signal channel unit groups is proportional to the thickness of the substrate, and therefore, the thickness is satisfied on the basis of the total reflection effect at the bottom of the substrate and the diffraction grating on the substrate surface. It can be designed to be as small as possible, which can further reduce the separation distance between the optical signal channel unit groups.
  • the design of the substrate thickness in actual operation also needs to be considered, that is, the parameter value cannot be so small that the interval between the optical signal channel unit groups is smaller than the size inherent in the unit itself (ie, the optical signal channel unit group cannot be caused). The interval between them cannot accommodate the constituent elements of the lower optical signal channel unit group).
  • the distance between the different optical signal channel unit groups and the thickness of the substrate are proportional. Specifically, after the optical signal passes through the optical signal channel unit group and is perpendicularly incident on the first diffraction grating region on the substrate, the substrate is selected or processed to meet a preset parameter value, and different optical signal channel unit groups are set. The distance between the differences, including:
  • ⁇ i is the angle at which the i-th laser-emitting optical signal is diffracted from the i-th group of optical signal channel elements into the substrate (ie, the angle between the diffracted light and the normal).
  • the non-reciprocal device includes, but is not limited to, a magneto-optical isolator or a unidirectional coupling element.
  • the first diffraction grating region and the second diffraction grating region may be generated under the same lithography operation, that is, the regions between the two are not intentionally isolated. This mode of operation is more convenient.
  • the first diffraction grating and the second diffraction grating may be generated by using a mask to the position of the diffraction grating, respectively, and other regions (for example, between the first diffraction grating and the second diffraction grating) Part) is an ordinary base material structure.
  • the reflective layer may be applied at the corresponding position.
  • a full-emissive layer is applied to the second diffraction grating region and/or a reflective layer is applied to a region of the substrate for reflecting the optical signal.
  • the compact multi-wavelength optical component proposed by the embodiment of the present invention includes four sets of optical signal channel units in the application of CWDM, which correspond to four laser wavelengths of 1271 nm, 1291 nm, 1311 nm, and 1331 nm, respectively.
  • the substrate material is silicon and the refractive index is 3.5.
  • the first diffraction grating and the second diffraction grating can be fabricated on the upper surface of the substrate, and the first diffraction grating is a transmission type blazed grating.
  • the grating period is 0.92 um and the blaze angle is 70°.
  • the four wavelength lasers are incident on the first diffraction grating, and are diffracted by the lower surface of the substrate, and overlap at the same position.
  • the lateral distances are 9.22 mm, 9.62 mm, 10.05 mm, and 10.53 mm, respectively, and the interval between the incident positions is 399 um. 433um and 474um.
  • the thickness of the substrate is 3.6 mm.
  • the structure of the second diffraction grating may be the same as that of the first diffraction grating.
  • the second diffraction grating is a reflective blazed grating with a grating period of 0.92 um and a blaze angle of 27.2.
  • the embodiment of the present invention further provides a method for using a compact multi-wavelength optical component.
  • the use of the present embodiment utilizes the compact multi-wavelength optical component described in Embodiment 1, and the compact multi-wavelength is used.
  • the optical component is coupled and fixed to a laser having a respective wavelength, as shown in FIG. 5, the method includes:
  • each optical signal is emitted with respect to the light emitted from the laser, passes through the optical signal channel unit group and the substrate, and converges to the same convergence point on the surface of the substrate.
  • step 302 when a driving signal is sent for each laser, a delay between driving signals is set for each laser according to the optical path difference; a delay between the driving signals is used to cancel the optical path of each optical signal. Poor, so that each optical signal is simultaneously concentrated to the same convergence point on the surface of the substrate.
  • the embodiment of the present invention provides a method for using a compact multi-wavelength optical component.
  • the embodiment of the present invention considers the optical path of each optical signal transmitted in the substrate.
  • the gap is used to delay the pre-interference when the optical signal is emitted by the laser, so that the optical signals from each optical signal channel unit group can reach the convergence point at the same time, thereby ensuring the transmission quality of the laser signal after the combining.
  • the embodiment of the present invention provides a method for detecting the eligibility of the compact multi-wavelength optical component of the embodiment 1, which is located in the compact type.
  • a light detector is disposed on the light exit side of the multi-wavelength optical module substrate. As shown in FIG. 6, the method further includes:
  • step 401 each laser is tested separately based on the calculated delay parameters between the drive signals.
  • the main body that sends the driving signal to each laser and the main body that connects the photodetectors are the same, for example, the main body is a host or a server. Since different optical signals are emitted as a combined optical signal after passing through the substrate, it is optimal to be able to detect the time taken for the optical signals emitted by the respective lasers to be emitted after passing through the respective optical signal channel unit groups and the substrate.
  • the method is to sequentially use the same batch of driving signals to sequentially trigger the corresponding laser color light signals to calculate the time consumption one by one.
  • step 402 it is counted whether the lasers respectively start from the operation of receiving the driving signal, and when the photodetector detects the laser signal, whether the interval time is the same; wherein the delay parameter is set in the driving signal.
  • the reason why the delay parameter is set in the driving signal is that in the actual working process, the driving signal will be pre-processed according to the delay parameter, and the driving signal for the laser can be formed, so the test is performed in this way.
  • the experiment is the closest to the reality.
  • the pre-processing method of the driving signal can improve the efficiency of generating the driving signal, and is much more efficient than increasing the delay signal in real time.
  • step 403 if the interval lengths of the optical signals transmitted by the respective lasers are inconsistent, it is confirmed that the current compact multi-wavelength optical component is a defective product.
  • the above test method proposed by the embodiment of the present invention can effectively detect the defective rate of the finished product obtained after the production process by the compact multi-wavelength optical module proposed in Embodiment 1. It guarantees the stability of its work when it is put into industrial use in the future.
  • the embodiment of the present invention further provides a compact multi-wavelength optical component, wherein the embodiment of the present invention
  • the proposed compact multi-wavelength optical assembly also carries a laser.
  • the laser is introduced in the embodiment of the present invention, the flexibility of the industrial use of the compact multi-wavelength optical component is reduced to some extent (ie, the laser cannot be used by the manufacturer or the user. It is self-selected), but it reduces the consequence that the compact multi-wavelength optical module proposed in Embodiment 1 does not work properly when the coupling accuracy is not up to standard when installed with a separately purchased laser.
  • the optical component includes at least two lasers, at least two optical signal channel unit groups, and a substrate, and the optical signal channel unit group is disposed on the substrate.
  • a group of optical signal channel units includes a lens, a non-transparent device and a mirror, three of which are sequentially disposed on the substrate along an optical signal transmission direction; and the laser is coupled to a lens in the optical signal channel unit group, and is implemented in the present invention.
  • the lens is configured to receive an input beam of a laser and convert it into a collimated beam output;
  • the non-reciprocal device is configured to transmit a collimated beam signal from the lens and isolate the mirror from the mirror
  • a beam signal also referred to as an optical signal;
  • the reflecting device for changing a direction of propagation of a beam transmitted from the non-reciprocal device such that the beam signal is directed perpendicular to the substrate.
  • the optical component further includes:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the different optical signal channel unit groups are separated by a preset distance, the predetermined distance is such that an optical signal passing through each of the optical signal channel unit groups and an optical signal transmitted into the substrate through the diffraction of the first diffraction grating region is After being totally reflected by the bottom of the substrate, converge at the same convergence point on the surface of the substrate;
  • the surface of the substrate to which the optical signals are to be concentrated is provided with a second diffraction grating region
  • Each of the lasers is fixed to the substrate according to a laser wavelength of its own configuration and coupled to the optical signal channel unit group; wherein the wavelength of the laser is coupled to the optical signal channel unit group and the distance from the convergence point The farther it is.
  • the embodiment of the invention provides a compact multi-wavelength optical component, which utilizes the principle that the diffraction grating can correspond to optical signals of different wavelengths and generate different diffraction angles, and is designed to conduct optical signal channels of different wavelengths through reasonable design.
  • the spacing between the groups of cells enables the different wavelength optical signals to complete the bundling process of the optical signal after undergoing diffraction of the first diffraction grating region, reflection at the bottom of the substrate, and diffraction of the second diffraction grating region.
  • the compactness is better. Due to the subtle transformation of the optical axis, the utilization of the substrate space is greatly improved, and more components can be placed in the allowable space of the existing optoelectronic integrated chip;
  • the structure proposed by the embodiment of the present invention is more stable because the diffraction grating can be directly fabricated on the substrate, and the entire multiplexed optical path will be completed in the substrate, so that the entire optical path structure can be stabilized.
  • the thermal stability of the compact multi-wavelength optical component proposed by the embodiment of the present invention is also better. If the emission wavelength of the semiconductor laser changes with temperature, since the wavelength difference of the adjacent semiconductor laser does not change, the The invention still performs well for multi-wavelength multiplexing.
  • the embodiment of the present invention has a higher degree of integration than the embodiment 1, and can improve the ease of use in industrial use.
  • the schematic diagram of the number of optical signal channel unit groups is specifically set to two groups according to an embodiment of the present invention, wherein the first group of optical signal channel unit groups includes a lens 101, a non-transparent device 102, and The mirror 103 is coupled to the first group of optical signal channel unit groups by a laser 104, and the second group of optical signal channel unit groups includes a lens 111, a non-transparent device 112 and a mirror 113, and the second group The optical signal channel unit group is coupled to the laser 114; the first diffraction grating region is shown by the broken line frame 11 shown in FIG.
  • FIG. 7 is a schematic diagram of an optical path effect in a right view of the compact multi-wavelength optical component in an operating state according to an embodiment of the present invention; the compact multi-wavelength optical component provided by the embodiment of the present invention is in operation.
  • the schematic diagram of the optical path effect in the front view of the state can be referred to as shown in FIG. 2, and details are not described herein again.
  • the schematic diagram of the number of optical signal channel unit groups is specifically set to four groups according to an embodiment of the present invention, wherein the first group of optical signal channel unit groups includes a lens 101, a non-transparent device 102, and The mirror 103 is coupled to the first group of optical signal channel unit groups by a laser 104; the second group of optical signal channel unit groups includes a lens 111, a non-transparent device 112 and a mirror 113, and the second group of light The signal channel unit group is coupled to the laser 114; the third group of optical signal channel unit groups includes a lens 121, a non-transparent device 122 and a mirror 123, and coupled to the third group of optical signal channel unit groups is a laser 124;
  • the four sets of optical signal channel unit groups include a lens 131, a non-transparent device 132 and a mirror 133, and a laser 134 is coupled to the fourth group of optical signal channel unit groups; the first diffraction grating region is a broken line frame
  • FIG. 10 is a schematic diagram of an optical path effect in a front view of the compact multi-wavelength optical component in an operating state according to an embodiment of the present invention.
  • the number of the optical signal channel unit groups may also be five or more, and the matching lasers and the like are not repeated herein.
  • the optical signal input end of the optical component is used to couple a laser, wherein the number of lasers is consistent with the number of the optical signal channel unit groups, and the range of the laser emission wavelength is less than one tenth of the center wavelength thereof. .
  • the lateral distance is linear with the incident wavelength, that is, the pitch of the semiconductor laser is proportional to the exit wavelength; wherein, the lateral distance It refers to a distance between a position where each optical signal is incident on the first diffraction grating region and a position where each optical signal converges to a second diffraction grating region in the substrate 1.
  • the laser can be used together with the proposed compact multi-wavelength optical component, including: a vertical cavity surface emitting laser and/or an edge emitting laser, and the working mode is direct modulation mode or continuous illumination mode. .
  • the distance allows the optical signals output by different lasers to converge at the same convergence point on the surface of the substrate; where n is the refractive index of the substrate, ⁇ is the grating period, ⁇ is the angle between the diffracted light and the normal, and ⁇ is the wavelength of the incident light, m
  • the natural number is determined by the blazed angle of the grating and the incident wavelength.
  • the factors affecting the diffraction angle ⁇ include the grating period ⁇ , the refractive index n of the substrate material and the incident light wavelength ⁇ .
  • the incident light wavelength ⁇ is usually in a compact multi-wavelength optical component.
  • the design is initially determined, and the variability of the refractive index n of the substrate material is also small, and the diffraction angle ⁇ is usually changed by adjusting the grating period ⁇ .
  • the diffraction angle ⁇ is related to whether each optical signal can achieve total reflection at the bottom of the substrate.
  • the thickness of the substrate and the separation distance of different optical signal channel unit groups is another important factor affecting the compact multi-wavelength optical module proposed by the embodiments of the present invention.
  • the distance between the different light signal channel unit groups is proportional to the thickness of the substrate, and therefore, the thickness is satisfied on the basis of the total reflection effect at the bottom of the substrate and the diffraction grating on the substrate surface. It can be designed to be as small as possible, which can further reduce the separation distance between the optical signal channel unit groups.
  • the design of the substrate thickness in actual operation also needs to be considered, that is, the parameter value cannot be so small that the interval between the optical signal channel unit groups is smaller than the size inherent in the unit itself (ie, the optical signal channel unit group cannot be caused). The interval between them cannot accommodate the constituent elements of the lower optical signal channel unit group).
  • the distance between the different optical signal channel unit groups and the thickness of the substrate are proportional. Specifically, after the optical signal passes through the optical signal channel unit group and is perpendicularly incident on the first diffraction grating region on the substrate, the substrate is selected or processed to meet a preset parameter value, and different optical signal channel unit groups are set. The distance between the differences, including:
  • ⁇ i is the angle at which the i-th laser-emitting optical signal is diffracted from the i-th group of optical signal channel elements into the substrate (ie, the angle between the diffracted light and the normal).
  • the non-reciprocal device includes, but is not limited to, a magneto-optical isolator or a unidirectional coupling element.
  • the optical component includes at least two sets of optical signal channel units and a substrate, and the optical signal channel unit group is disposed on the substrate, wherein the set of optical signal channel units includes a lens, The non-transparent device and the mirror are disposed on the substrate in sequence according to the direction of the optical signal receiving, in the order of the mirror, the non-transparent device and the lens.
  • the optical component further includes:
  • the substrate is disposed below the reflective surface on which the mirror is fixed, and is provided with a first diffraction grating region;
  • the surface of the substrate is provided with a second diffraction grating region; wherein the second diffraction grating region and the first diffraction grating region are located on the same side of the substrate;
  • the different optical signal channel unit groups are separated by a preset distance, and the preset distance is such that when the combined laser signal is incident on the second diffraction grating region of the upper surface of the substrate, the laser signals corresponding to different wavelengths can be diffracted. After total reflection at the bottom of the substrate, the first diffraction grating region under the mirror in each of the optical signal channel unit groups is reached.
  • the embodiment of the present invention is implemented in a reverse direction in the embodiment. Therefore, the embodiment of the present invention can obtain the beneficial effects that can be obtained by the corresponding optical components in the embodiment 1.
  • the embodiment of the present invention also provides a solution including a photodetector, as shown in FIG.
  • the optical signal output of the signal path unit group is used to couple the photodetector.
  • FIG. 11 is a schematic structural diagram showing the number of optical signal channel unit groups being specifically set to four groups according to an embodiment of the present invention, wherein the first group of optical signal channel unit groups includes a lens 101, a non-transparent device 102, and a reflection.
  • the mirror 103 is coupled to the first group of optical signal channel unit groups as a photodetector 105; the second group of optical signal channel unit groups includes a lens 111, a non-transparent device 112 and a mirror 113, and the second group
  • the optical signal channel unit group is coupled to the laser 115;
  • the third group of optical signal channel unit group includes a lens 121, a non-transparent device 122 and a mirror 123, coupled with the third group of optical signal channel unit is a laser 125;
  • the fourth group of optical signal channel unit groups includes a lens 131, a non-transparent device 132 and a mirror 133, and a laser 135 is coupled to the fourth group of optical signal channel units;
  • the first diffraction grating region is a dotted line as shown in FIG.
  • FIG. 12 is a schematic diagram of an optical path effect in a front view of the compact multi-wavelength optical component in an operating state according to an embodiment of the present invention.
  • the substrate thickness, the substrate refractive index, the interval of the optical signal channel unit group, the diffraction grating period setting, and the like may be referred to the description of the design principle described in Embodiment 1 or Embodiment 3, and details are not described herein again.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • disk optical disk

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

提供了一种紧凑型多波长光组件及其使用方法。其中光组件包括至少两组光信号通道单元组和一基板(1),基板(1)上位于固定有反射镜(103)的反射面的下方,设置有第一衍射光栅区(11);不同光信号通道单元组之间相差预设距离,预设距离使得经过各光信号通道单元组的光信号,并且在通过第一衍射光栅区(11)衍射作用进入基板(1)中传输的光信号,在经过基板(1)底部的全反射后,汇聚于基板(1)表面的同一汇聚点;其中,各光信号所要汇聚的基板(1)表面设置有第二衍射光栅区域(12)。该紧凑型多波长光组件紧凑性更好,由于巧妙地转变光轴,大大提高了基板空间的利用率,可在现有光电集成芯片的容许空间内放置更多的元件。

Description

一种紧凑型多波长光组件及其使用方法 【技术领域】
本发明涉及光模块技术领域,特别是涉及一种紧凑型多波长光组件及其使用方法。
【背景技术】
光收发模块是光通信领域的关键单元器件,从最初的单独收发到收发一体,系统集成的程度越来越高,高速率、低成本、小型化、热插拔、低功耗、智能化和远距离是光收发模块的发展方向。
随着5G的发展、互联网信息量的爆炸式增长,对低成本、高速率(100Gb/s)并能传输较远距离的多路并行单模光收发模块的需求日渐增长。近年来,基于半导体工艺制作的光电集成芯片受到业界的关注越来越多,在这种光电集成芯片中,既能对光信号进行高速调制、光电探测转换,还能对电信号进行预加重、均衡、放大以及数据时钟恢复,这种集成芯片满足了模块的小型化、低成本、低功耗要求。
然而,硅是一种间接带隙半导体材料,不能直接作为光电子材料,因此这些高集成度的光电集成芯片需要外加光源。采用硅基封装光源技术的有美国专利U.S.Pat.No.8772704,光源和光电集成芯片上的耦合单元进行垂直耦合。该光源由激光器芯片、球透镜、隔离器组件、反射镜和硅基板组成。边发射激光器芯片输出的发散光束由透镜汇聚后,经过隔离器组件、反射镜后,垂直入射到光电集成芯片的耦合单元上。该方案具有紧凑、封装简单等优点,但是该光源仅能提供一个波长,如果通过放置多个装置实现多波长光源,体积将成倍增加,并不符合光电集成小尺寸的要求,即该专利方案在波分复用等要求光源具有多个波长的场合应用受到限制。
另外,在现有的文献(申请号:CN201310322502.1,发明名称为:一种大 功率激光器耦合的光纤固定装置)中也涉及了一种多波长激光器的实现方式,大功率激光器的所有衬底、快轴准直镜FAC、慢轴准直镜SAC、反射镜分别固定在底座的不同台阶上,每个激光二极管固定在一个衬底上,多个激光二极管产生多个高低不同光束,经过各自快轴准直镜FAC、慢轴准直镜SAC后产生高低不同平行光束;经过各自反射镜反射后到达准直透镜,多个高低不同平行光束经过准直透镜后聚焦在光纤上;在底座上光纤固定位置处设计一个凸台,且凸台和底座为一体,并在凸台上表面沿着准直透镜聚焦后的平行光束的方向设计一个V形槽,将光纤放置于V形槽内并用玻璃焊料填充及固定,这种光纤固定方式将包层中的光剥离,避免烧坏光纤。玻璃焊料上的热量通过底座迅速散出去。该方案采用空间合束的方式,将多个波长的光耦合进入光纤,由于耦合光束为分立的光斑,经过透镜聚焦后将有大量的能量分布在主光斑之外,即能量损失较多,尤其当光纤为单模光纤的时候,该专利所述方案的插损较大。
【发明内容】
本发明要解决的技术问题是提供
本发明采用如下技术方案:
本发明第一方面,提供了一种紧凑型多波长光组件,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上,所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域。
优选的,所述光组件的光信号输入端用于耦合激光器,其中,激光器的数 目与所述光信号通道单元组的数目一致,所述激光器出射波长的范围小于其中心波长的十分之一。
优选的,所述激光器包括:垂直腔面发射激光器和/或边发射激光器,其工作方式为直接调制方式或者连续发光方式。
优选的,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;
其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数,由光栅的闪耀角度和入射波长确定。
优选的,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
优选的,所述非互易性器件包括:磁光隔离器或者单向耦合元件。
第二方面,本发明还提供了一种紧凑型多波长光组件的使用方法,使用如第一方面所述的紧凑型多波长光组件,并且,所述紧凑型多波长光组件与拥有各自波长的激光器完成耦合与固定,具体的:
计算所述紧凑型多波长光组件中,各光信号相对于从激光器中射出,通过各光信号通道单元组和基板后,汇聚到基板表面的同一汇聚点时,各光信号所经过的光程差;
在为各激光器发送驱动信号时,根据所述光程差为各激光器设置驱动信号间的延时;所述驱动信号间的延时用于抵消各光信号所经过的光程差,使得各光信号同时汇聚到基板表面的同一汇聚点。
优选的,位于所述紧凑型多波长光组件基板的出光口侧设置有光探测器,则所述使用方法还包括:
根据计算出来的驱动信号间的延时参数,分别测试各激光器;
统计各激光器分别从收到驱动信号工作开始,到光探测器检测到激光信号时,间隔的时间是否相同;其中,延时参数被设置在驱动信号中;
若统计的对应各激光器所发射的光信号的间隔时长不一致,则确认当前的紧凑型多波长光组件为次品。
第三方面,本发明还提供了一种紧凑型多波长光组件,光组件包括至少两个激光器、至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上;其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上;激光器与光信号通道单元组中的透镜耦合,所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域;
各激光器根据其自身配置的激光波长,分别与布局在光信号通道单元组耦合后,固定在所述基板上;其中,波长越大的激光器与之耦合的光信号通道单元组相对于汇聚点距离越远。
优选的,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;
其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数,由光栅的闪耀角度和入射波长确定。
优选的,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
第四方面,本发明还提供了一种紧凑型多波长光组件,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号接收方向,按照反射镜、非互异性器件和透镜的顺序,依次设置在所述基板上,所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
基板表面设置有第二衍射光栅区域;其中,第二衍射光栅区域和第一衍射光栅区位于所述基板的同侧;
不同光信号通道单元组之间相差预设距离,所述预设距离使得合束激光信号在入射到基板上表面的第二衍射光栅区时,衍射出的对应不同波长的激光信号,能够在经过基板底部的全反射后,抵达各光信号通道单元组中的反射镜下方的第一衍射光栅区。
优选的,所述光组件中各光信号通道单元组的光信号输出端用于耦合光探测器。
优选的,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得合束光信号能够经过所述第二光栅区域和第一光栅区域衍射后,耦合到相应光信号通道单元组的光通路中;
其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数,由光栅的闪耀角度和入射波长确定。
优选的,并设置不同光信号通道单元组之间相差的距离,使得合束光信号能够经过所述第二光栅区域和第一光栅区域衍射后,耦合到相应光信号通道单元组的光通路中,具体包括:
根据公式L i=2D·tan(θ i)计算得到第i个波长光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
优选的,所述非互易性器件包括:磁光隔离器或者单向耦合元件。
与现有技术相比,本发明实施例的有益效果在于:本发明提出了一种紧凑型多波长光组件,利用了衍射光栅能够对应不同波长的光信号,产生不同的衍射角度的原理,并通过合理的设计用于导通不同波长的光信号通道单元组之间间隔,使得不同波长光信号能够在经历第一衍射光栅区域的衍射、基板底部的反射和第二衍射光栅区域的衍射后,完成光信号的集束过程。相比较背景技术中提出的方式,紧凑性更好,由于巧妙地转变光轴,大大提高了基板空间的利用率,可在现有光电集成芯片的容许空间内放置更多的元件;
另一方面,本发明所提出的结构稳定更好,因为可以将衍射光栅直接在基板上制作,整个合波光路将在基板内完成,可使得整个光路结构稳定。
除此以外,本发明所提出的紧凑型多波长光组件的热稳定性也更好,若半导体激光器的出射波长随温度发生变化,但是因为相邻半导体激光器的波长差不变,则该发明仍能够很好地完成多波长合波。
【附图说明】
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种紧凑型多波长光组件结构主视图;
图2是本发明实施例提供的一种紧凑型多波长光组件结构中带光路效果的正视图;
图3是本发明实施例提供的另一种紧凑型多波长光组件结构主视图;
图4是本发明实施例提供的另一种紧凑型多波长光组件结构中带光路效果的正视图;
图5是本发明实施例提供的一种紧凑型多波长光组件使用方法流程图;
图6是本发明实施例提供的一种紧凑型多波长光组件检测方法流程图;
图7是本发明实施例提供的另一种紧凑型多波长光组件结构主视图;
图8是本发明实施例提供的另一种紧凑型多波长光组件结构中带光路效果的右视图;
图9是本发明实施例提供的另一种紧凑型多波长光组件结构主视图;
图10是本发明实施例提供的另一种紧凑型多波长光组件结构中带光路效果的正视图;
图11是本发明实施例提供的另一种紧凑型多波长光组件结构主视图;
图12是本发明实施例提供的另一种紧凑型多波长光组件结构中带光路效果的正视图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此 之间未构成冲突就可以相互组合。
实施例1:
本发明实施例1提供了一种紧凑型多波长光组件,如图1和图3所示,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上;在本发明实施例中,所述透镜,用于接收激光器的输入光束,并将其转化成准直光束输出;所述非互易性器件,用于透射来自透镜的准直光束信号,并隔离来自反射镜的光束信号(也称为光信号);所述反射器件,用于改变从非互易性器件透射过来的光束的传播方向,使得所述光束信号垂直射向基板。所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区域;
不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区域衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域。
本发明实施例提出了一种紧凑型多波长光组件,利用了衍射光栅能够对应不同波长的光信号,产生不同的衍射角度的原理,并通过合理的设计用于导通不同波长的光信号通道单元组之间间隔,使得不同波长光信号能够在经历第一衍射光栅区域的衍射、基板底部的反射和第二衍射光栅区域的衍射后,完成光信号的集束过程。相比较背景技术中提出的方式,紧凑性更好,由于巧妙地转变光轴,大大提高了基板空间的利用率,可在现有光电集成芯片的容许空间内放置更多的元件;
另一方面,本发明实施例所提出的结构稳定更好,因为可以将衍射光栅直接在基板上制作,整个合波光路将在基板内完成,可使得整个光路结构稳定。
除此以外,本发明实施例所提出的紧凑型多波长光组件的热稳定性也更好, 若半导体激光器的出射波长随温度发生变化,但是因为相邻半导体激光器的波长差不变,则该发明仍能够很好地完成多波长合波。
在本发明实施例中,作为光信号通道单元组中的各组成单元的存在形式,透镜可以是单个、分立的元件,也可以是微透镜阵列;非互易性器件可以是分立的,也可以与衍射光栅进行集成;衍射光栅既可以是分立元件,也可以在基板上集成。
如图1所示,为本发明实施例所提供的以光信号通道单元组的数目具体为2组的结构示意图,其中,第1组光信号通道单元组包括透镜101、非互异性器件102和反射镜103,而第2组光信号通道单元组包括透镜111、非互异性器件112和反射镜113;第一衍射光栅区域为图1所示虚线框11所示,并且位于基板1的上表面和反射镜(包括反射镜103和反射镜113)下方;第二衍射光栅区域为图1所示虚线框12所示,其位置区域为所述紧凑型多波长光组件处于工作状态时,对应各组光信号通道单元组传递过来的光信号在经过基板1的底面全反射后所汇聚的位置。如图2所示,为本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的正视图中的光路效果示意图。
如图3所示,为本发明实施例所提供的以光信号通道单元组的数目具体为3组的结构示意图,其中,第1组光信号通道单元组包括透镜101、非互异性器件102和反射镜103,第2组光信号通道单元组包括透镜111、非互异性器件112和反射镜113,而第3组光信号通道单元组包括透镜121、非互异性器件122和反射镜123;第一衍射光栅区域为图3所示虚线框11所示,并且位于基板1的上表面和反射镜(包括反射镜103、反射镜113和反射镜123)下方;第二衍射光栅区域为图3所示虚线框12所示,其位置区域为所述紧凑型多波长光组件处于工作状态时,对应各组光信号通道单元组传递过来的光信号在经过基板1的底面全反射后所汇聚的位置。如图4所示,为本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的正视图中的光路效果示意图。
依此类推,所述光信号通道单元组的数目具体还可以为4个或者多个,在此不再赘述。
在本发明实施例实现过程中,为了保证所提出的紧凑型多波长光组件能够配合各激光器实现其特征描述中对应要达到的效果,对于配合工作的至少两个激光器同样有着相应特性的限定,具体的,所述光组件的光信号输入端用于耦合激光器,其中,激光器的数目与所述光信号通道单元组的数目一致,所述激光器出射波长的范围小于其中心波长的十分之一。其原理是,当波长变化范围小于中心波长十分之一时,例如粗波分复用等应用,横向距离与入射波长呈线性关系,即半导体激光器的间距与出射波长呈比例;其中,横向距离指各光信号入射到基板1中时位于第一衍射光栅区域的位置与各光信号汇聚到基板1中第二衍射光栅区域的位置之间的距离。
在本发明实施例中,可以用于与所提出的紧凑型多波长光组件共同工作的激光器,包括:垂直腔面发射激光器和/或边发射激光器,其工作方式为直接调制方式或者连续发光方式。
为了进一步论证本发明实施例所提出的紧凑型多波长光组件中的功能特性的可实现性,接下来将通过理论论证的方式进行具体阐述。由于在生产所述紧凑型多波长光组件或者在选择具体紧凑型多波长光组件相关结构参数前,通常会就光路中所要使用的光信号中心波长、使用频段和传输速率等做评估和确认,因此,在进行所述紧凑型多波长光组件设计时,通常所要采用的激光器数量和激光器型号就已经确认了,下面的理论论证便是在此基础上进行的。
根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择(设计)厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数,由光栅的闪耀角度和入射波长确定,所述m和光栅的闪耀角度以及入射波长之间的对应关系为现有技术,在此不再赘述。当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀(blaze),这种光栅称为闪耀光栅(即本发明实施例中所述衍射光栅的一种实例)。其中,在这样刻成 的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角(blaze angle)。
在具体设计过程中,影响衍射角度θ的因素包括光栅周期Λ,基板材料的折射率n和入射光波长λ,但是,在前面的前提中已经明确入射光波长λ通常在紧凑型多波长光组件设计之初就确定了,而基板材料的折射率n的可变动性也很小,通常是通过调整光栅周期Λ来改变衍射角度θ。所述衍射角度θ关系到各光信号是否能够在基板的底部完成全反射。
除了上述通过设计来调整衍射角度θ外,影响本发明实施例所提出的紧凑型多波长光组件的另一重要因素便是基板的厚度和不同光信号通道单元组的间隔距离。其中,在衍射角度θ确定后,不同光信号通道单元组之间相差的距离和基板的厚度是正比关系,因此,在满足基板底部全反射效果和在基板表面制作衍射光栅的基础上,其厚度可以设计的尽可能小,这样可以进一步降低光信号通道单元组之间的间隔距离。但是,实际操作中基板厚度的设计还需要考虑一点,就是其参数值不能小到程度造成光信号通道单元组之间的间隔小于其单元自身所固有的尺寸大小(即不能造成光信号通道单元组之间的间隔无法容纳下光信号通道单元组自身的组成单元)。
接下来,进一步通过理论推导阐述不同光信号通道单元组之间相差的距离和基板的厚度是正比关系。具体的,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区域时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度(即衍射光与法线的夹角)。
在本发明实施例中,所述非互易性器件包括但不局限于:磁光隔离器或者单向耦合元件。
在本发明实施例以及本发明其它实施例中,所述第一衍射光栅区域和第二衍射光栅区域可以是在相同的光刻操作下生成,即不刻意的将两者的区域之间隔离开,这样的操作方式更为方便。但是可选的,可以通过掩膜的方式,分别就利用到衍射光栅的位置生成所述第一衍射光栅和第二衍射光栅,其它区域(例如:第一衍射光栅和第二衍射光栅之间的部分)则为普通的基地材料结构。
在本发明实施例以及本发明其它实施例中,为了提高涉及光信号全反射的区域的反射效果,可以在相应位置涂敷反射层。例如:在所述第二衍射光栅区域涂敷全射层和/或在所述基板底部用于反射光信号的区域涂敷反射层。
本发明实施例所提出的紧凑型多波长光组件在CWDM的应用中,包含四组光信号通道单元组,其对应于四个激光波长分别为1271nm、1291nm、1311nm和1331nm。其中,基板材质为硅,折射率为3.5,为了节约制作成本和提高整个方案的集成程度,可将第一衍射光栅和第二衍射光栅制作在基板上表面,第一衍射光栅为透射型闪耀光栅,光栅周期为0.92um,闪耀角70°。上述四个波长激光入射第一衍射光栅后发生衍射,经过基板下表面反射作用,在同一位置重合,横向距离分别为9.22mm、9.62mm、10.05mm和10.53mm,入射位置的间隔依次为399um、433um和474um。此时基板的厚度为3.6mm,对于半导体工艺而言,这样一个厚度太大,这一问题可以通过衍射光在基板中多次反射加以改善:在基板中反射两次,基板厚度为1.8mm,反射三次,基板厚度为1.2mm,反射四次,基板厚度可降低为0.9mm,即基板的厚度可以结合具体工艺灵活选择。
在接收光的应用中(如实施例4),第二衍射光栅的结构与第一衍射光栅结构相同即可。
在发射端的应用中,第二衍射光栅为反射性闪耀光栅,光栅周期为0.92um,闪耀角27.2°。
实施例2:
本发明实施例还提供了一种紧凑型多波长光组件的使用方法,本实施例所提出的使用利用到了实施例1中所述的紧凑型多波长光组件,并且,所述紧凑型多波长光组件与拥有各自波长的激光器完成耦合与固定,如图5所示,所述 方法包括:
在步骤301中,计算所述紧凑型多波长光组件中,各光信号相对于从激光器中射出,通过各光信号通道单元组和基板后,汇聚到基板表面的同一汇聚点时,各光信号所经过的光程差。
在步骤302中,在为各激光器发送驱动信号时,根据所述光程差为各激光器设置驱动信号间的延时;所述驱动信号间的延时用于抵消各光信号所经过的光程差,使得各光信号同时汇聚到基板表面的同一汇聚点。
本发明实施例提出了一种紧凑型多波长光组件的使用方法,除了具备实施例1中所描述的诸多有益效果外,本发明实施例在考虑了各光信号在基板中传输的光程上的差距,在利用激光器发射光信号的时候便通过延时预干涉,使得来自各光信号通道单元组的光信号能够同时抵达所述汇聚点,保证了合束后激光信号的传输质量。
本发明实施例除了提供了使用实施例1所述紧凑型多波长光组件的方法外,还提供了一种检测实施例1所述紧凑型多波长光组件是否合格的方法,位于所述紧凑型多波长光组件基板的出光口侧设置有光探测器,如图6所示,所述使用方法还包括:
在步骤401中,根据计算出来的驱动信号间的延时参数,分别测试各激光器。
在具体测试过程中,向各激光器发送驱动信号的主体和连接光探测器的主体为同一个,例如:所述主体为一主机或者服务器。由于不同的光信号在通过基板后射出是一合束光信号,因此,为了能够检测各激光器所发出的光信号在通过各自的光信号通道单元组和基板后射出所用的耗时,最优的方式便是依次利用同一批驱动信号,依次触发相应激光器发色光信号,来逐一计算所述耗时。
在步骤402中,统计各激光器分别从收到驱动信号工作开始,到光探测器检测到激光信号时,间隔的时间是否相同;其中,延时参数被设置在驱动信号中。
之所以将延时参数被设置在驱动信号中,是考虑在实际工作过程中,驱动 信号均会根据延时参数做预处理,才会形成可供激光器使用的驱动信号,因此,如此来进行测试实验是最接近现实情况的。这种驱动信号预处理方式,能够提高驱动信号的生成效率,比实时增加延时信号效率高很多。
在步骤403中,若统计的对应各激光器所发射的光信号的间隔时长不一致,则确认当前的紧凑型多波长光组件为次品。
本发明实施例提出的上述测试方法,能够有效的检测由实施例1所提出的紧凑型多波长光组件,在生产加工后所得到的成品的次品率。保证了其未来投入工业使用时的工作稳定性。
实施例3:
在提供了如实施例1所述的一种紧凑型多波长光组件后(其光组件中不携带激光器),本发明实施例还提供了一种紧凑型多波长光组件,其中本发明实施例所提出的一种紧凑型多波长光组件还携带激光器。相比较实施例1所述紧凑型多波长光组件,由于本发明实施例中将激光器引进进来,一定程度上降低了紧凑型多波长光组件工业使用的灵活性(即激光器无法由使用厂家或者用户自行选定),但是却减少了因为实施例1中提出的紧凑型多波长光组件在与另外采购的激光器安装时,耦合精准度不达标造成的最终无法正常工作的后果。
在本发明实施例中,如图7和8所述光组件包括至少两个激光器、至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上;其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上;激光器与光信号通道单元组中的透镜耦合,在本发明实施例中,所述透镜,用于接收激光器的输入光束,并将其转化成准直光束输出;所述非互易性器件,用于透射来自透镜的准直光束信号,并隔离来自反射镜的光束信号(也称为光信号);所述反射器件,用于改变从非互易性器件透射过来的光束的传播方向,使得所述光束信号垂直射向基板。所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区域;
不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区域衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域;
各激光器根据其自身配置的激光波长,分别与布局在光信号通道单元组耦合后,固定在所述基板上;其中,波长越大的激光器与之耦合的光信号通道单元组相对于汇聚点距离越远。
本发明实施例提出了一种紧凑型多波长光组件,利用了衍射光栅能够对应不同波长的光信号,产生不同的衍射角度的原理,并通过合理的设计用于导通不同波长的光信号通道单元组之间间隔,使得不同波长光信号能够在经历第一衍射光栅区域的衍射、基板底部的反射和第二衍射光栅区域的衍射后,完成光信号的集束过程。相比较背景技术中提出的方式,紧凑性更好,由于巧妙地转变光轴,大大提高了基板空间的利用率,可在现有光电集成芯片的容许空间内放置更多的元件;
另一方面,本发明实施例所提出的结构稳定更好,因为可以将衍射光栅直接在基板上制作,整个合波光路将在基板内完成,可使得整个光路结构稳定。
除此以外,本发明实施例所提出的紧凑型多波长光组件的热稳定性也更好,若半导体激光器的出射波长随温度发生变化,但是因为相邻半导体激光器的波长差不变,则该发明仍能够很好地完成多波长合波。
还有就是本发明实施例相比较实施例1具有更高的集成度,并且可以提高工业使用时的简易程度。
如图7所示,为本发明实施例所提供的以光信号通道单元组的数目具体为2组的结构示意图,其中,第1组光信号通道单元组包括透镜101、非互异性器件102和反射镜103,与所述第1组光信号通道单元组耦合的是激光器104,而第2组光信号通道单元组包括透镜111、非互异性器件112和反射镜113,与所述第2组光信号通道单元组耦合的是激光器114;第一衍射光栅区域为图7所示虚 线框11所示,并且位于基板1的上表面和反射镜(包括反射镜103和反射镜113)下方;第二衍射光栅区域为图7所示虚线框12所示,其位置区域为所述紧凑型多波长光组件处于工作状态时,对应各组光信号通道单元组传递过来的光信号在经过基板1的底面全反射后所汇聚的位置。本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的右视图中的光路效果示意图如图8所示;本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的正视图中的光路效果示意图可以借鉴图2所示,在此不再赘述。
如图9所示,为本发明实施例所提供的以光信号通道单元组的数目具体为4组的结构示意图,其中,第1组光信号通道单元组包括透镜101、非互异性器件102和反射镜103,与所述第1组光信号通道单元组耦合的是激光器104;第2组光信号通道单元组包括透镜111、非互异性器件112和反射镜113,与所述第2组光信号通道单元组耦合的是激光器114;第3组光信号通道单元组包括透镜121、非互异性器件122和反射镜123,与所述第3组光信号通道单元组耦合的是激光器124;第4组光信号通道单元组包括透镜131、非互异性器件132和反射镜133,与所述第4组光信号通道单元组耦合的是激光器134;第一衍射光栅区域为图9所示虚线框11所示,并且位于基板1的上表面和反射镜(包括反射镜103、反射镜113和反射镜123)下方;第二衍射光栅区域为图9所示虚线框12所示,其位置区域为所述紧凑型多波长光组件处于工作状态时,对应各组光信号通道单元组传递过来的光信号在经过基板1的底面全反射后所汇聚的位置。如图10所示,为本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的正视图中的光路效果示意图。
依此类推,所述光信号通道单元组的数目具体还可以为5个或者多个,与之匹配的激光器依此类推,在此不再赘述。
在本发明实施例实现过程中,为了保证所提出的紧凑型多波长光组件能够配合各激光器实现其特征描述中对应要达到的效果,对于配合工作的至少两个激光器同样有着相应特性的限定,具体的,所述光组件的光信号输入端用于耦合激光器,其中,激光器的数目与所述光信号通道单元组的数目一致,所述激 光器出射波长的范围小于其中心波长的十分之一。其原理是,当波长变化范围小于中心波长十分之一时,例如粗波分复用等应用,横向距离与入射波长呈线性关系,即半导体激光器的间距与出射波长呈比例;其中,横向距离指各光信号入射到基板1中时位于第一衍射光栅区域的位置与各光信号汇聚到基板1中第二衍射光栅区域的位置之间的距离。
在本发明实施例中,可以用于与所提出的紧凑型多波长光组件共同工作的激光器,包括:垂直腔面发射激光器和/或边发射激光器,其工作方式为直接调制方式或者连续发光方式。
为了进一步论证本发明实施例所提出的紧凑型多波长光组件中的功能特性的可实现性,接下来将通过理论论证的方式进行具体阐述。由于在生产所述紧凑型多波长光组件或者在选择具体紧凑型多波长光组件相关结构参数前,通常会就光路中所要使用的光信号中心波长、使用频段和传输速率等做评估和确认,因此,在进行所述紧凑型多波长光组件设计时,通常所要采用的激光器数量和激光器型号就已经确认了,下面的理论论证便是在此基础上进行的。
根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择(设计)厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数,由光栅的闪耀角度和入射波长确定。
在具体设计过程中,影响衍射角度θ的因素包括光栅周期Λ,基板材料的折射率n和入射光波长λ,但是,在前面的前提中已经明确入射光波长λ通常在紧凑型多波长光组件设计之初就确定了,而基板材料的折射率n的可变动性也很小,通常是通过调整光栅周期Λ来改变衍射角度θ。所述衍射角度θ关系到各光信号是否能够在基板的底部完成全反射。
除了上述通过设计来调整衍射角度θ外,影响本发明实施例所提出的紧凑型多波长光组件的另一重要因素便是基板的厚度和不同光信号通道单元组的间隔距离。其中,在衍射角度θ确定后,不同光信号通道单元组之间相差的距离 和基板的厚度是正比关系,因此,在满足基板底部全反射效果和在基板表面制作衍射光栅的基础上,其厚度可以设计的尽可能小,这样可以进一步降低光信号通道单元组之间的间隔距离。但是,实际操作中基板厚度的设计还需要考虑一点,就是其参数值不能小到程度造成光信号通道单元组之间的间隔小于其单元自身所固有的尺寸大小(即不能造成光信号通道单元组之间的间隔无法容纳下光信号通道单元组自身的组成单元)。
接下来,进一步通过理论推导阐述不同光信号通道单元组之间相差的距离和基板的厚度是正比关系。具体的,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区域时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度(即衍射光与法线的夹角)。
在本发明实施例中,所述非互易性器件包括但不局限于:磁光隔离器或者单向耦合元件。
实施例4:
实施例1和实施例3均提出了一种紧凑型多波长光组件,但是相应光组件是作为激光发射端进行阐述的,而相类似的技术原理和结构也可以适用于光接收端。具体的,如图11所示,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号接收方向,按照反射镜、非互异性器件和透镜的顺序,依次设置在所述基板上,所述光组件还包括:
所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区域;
基板表面设置有第二衍射光栅区域;其中,第二衍射光栅区域和第一衍射 光栅区域位于所述基板的同侧;
不同光信号通道单元组之间相差预设距离,所述预设距离使得合束激光信号在入射到基板上表面的第二衍射光栅区时,衍射出的对应不同波长的激光信号,能够在经过基板底部的全反射后,抵达各光信号通道单元组中的反射镜下方的第一衍射光栅区域。
相比较实施例1,由于本发明实施例从原理上来说是实施例中光路走向采取逆向走向完成的,因此,本发明实施例可以获得实施例1中相应光组件能够获得的有益效果。
相比较实施例3中在所述紧凑型多波长光组件中增设激光器的实现方式,本发明实施例同样提供了包含光探测器的解决方案,如图11所示,所述光组件中各光信号通道单元组的光信号输出端用于耦合光探测器。
在图11中,为本发明实施例所提供的以光信号通道单元组的数目具体为4组的结构示意图,其中,第1组光信号通道单元组包括透镜101、非互异性器件102和反射镜103,与所述第1组光信号通道单元组耦合的是光探测器105;第2组光信号通道单元组包括透镜111、非互异性器件112和反射镜113,与所述第2组光信号通道单元组耦合的是激光器115;第3组光信号通道单元组包括透镜121、非互异性器件122和反射镜123,与所述第3组光信号通道单元组耦合的是激光器125;第4组光信号通道单元组包括透镜131、非互异性器件132和反射镜133,与所述第4组光信号通道单元组耦合的是激光器135;第一衍射光栅区域为图11所示虚线框11所示,并且位于基板1的上表面和反射镜(包括反射镜103、反射镜113和反射镜123)下方;第二衍射光栅区域为图11所示虚线框12所示,其位置区域为所述紧凑型多波长光组件处于工作状态时,对应各组光信号通道单元组传递过来的光信号在经过基板1的底面全反射后所汇聚的位置。如图12所示,为本发明实施例所提供的所述紧凑型多波长光组件处于工作状态下的正视图中的光路效果示意图。
本发明实施例中涉及基板厚度、基板折射率、光信号通道单元组的间隔、衍射光栅周期设定等可以参考实施例1或者实施例3中所述设计原理的阐述, 在此不再赘述。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种紧凑型多波长光组件,其特征在于,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上,所述光组件还包括:
    所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
    不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
    其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域。
  2. 根据权利要求1所述的紧凑型多波长光组件,其特征在于,所述光组件的光信号输入端用于耦合激光器,其中,激光器的数目与所述光信号通道单元组的数目一致,所述激光器出射波长的范围小于其中心波长的十分之一。
  3. 根据权利要求2所述的紧凑型多波长光组件,其特征在于,所述激光器包括:
    垂直腔面发射激光器和/或边发射激光器,其工作方式为直接调制方式或者连续发光方式。
  4. 根据权利要求1-3任一所述的紧凑型多波长光组件,其特征在于,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;
    其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入 射光波长,m为自然数。
  5. 根据权利要求4所述的紧凑型多波长光组件,其特征在于,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
    根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
    其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
  6. 根据权利要求1所述的紧凑型多波长光组件,其特征在于,所述非互易性器件包括:磁光隔离器或者单向耦合元件。
  7. 一种紧凑型多波长光组件的使用方法,其特征在于,使用如权利要求1-6任一所述的紧凑型多波长光组件,并且,所述紧凑型多波长光组件与拥有各自波长的激光器完成耦合与固定,具体的:
    计算所述紧凑型多波长光组件中,各光信号相对于从激光器中射出,通过各光信号通道单元组和基板后,汇聚到基板表面的同一汇聚点时,各光信号所经过的光程差;
    在为各激光器发送驱动信号时,根据所述光程差为各激光器设置驱动信号间的延时;所述驱动信号间的延时用于抵消各光信号所经过的光程差,使得各光信号同时汇聚到基板表面的同一汇聚点。
  8. 根据权利要求7所述的紧凑型多波长光组件的使用方法,其特征在于,位于所述紧凑型多波长光组件基板的出光口侧设置有光探测器,则所述使用方 法还包括:
    根据计算出来的驱动信号间的延时参数,分别测试各激光器;
    统计各激光器分别从收到驱动信号工作开始,到光探测器检测到激光信号时,间隔的时间是否相同;其中,延时参数被设置在驱动信号中;
    若统计的对应各激光器所发射的光信号的间隔时长不一致,则确认当前的紧凑型多波长光组件为次品。
  9. 一种紧凑型多波长光组件,其特征在于,光组件包括至少两个激光器、至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上;其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号传输方向依次设置在所述基板上;激光器与光信号通道单元组中的透镜耦合,所述光组件还包括:
    所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
    不同光信号通道单元组之间相差预设距离,所述预设距离使得经过各光信号通道单元组的光信号,并且在通过所述第一衍射光栅区衍射作用进入基板中传输的光信号,在经过所述基板底部的全反射后,汇聚于基板表面的同一汇聚点;
    其中,各光信号所要汇聚的基板表面设置有第二衍射光栅区域;
    各激光器根据其自身配置的激光波长,分别与布局在光信号通道单元组耦合后,固定在所述基板上;其中,波长越大的激光器与之耦合的光信号通道单元组相对于汇聚点距离越远。
  10. 根据权利要求9所述的紧凑型多波长光组件,其特征在于,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得不同激光器输出的光信号能够汇聚于基板表面的同一汇聚点;
    其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数。
  11. 根据权利要求10所述的紧凑型多波长光组件,其特征在于,在光信号通过各光信号通道单元组后,垂直入射到基板上第一衍射光栅区时,所述选择或加工厚度满足预设参数值的基板,并设置不同光信号通道单元组之间相差的距离,具体包括:
    根据公式L i=2D·tan(θ i)计算得到第i个激光器射出光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
    其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
  12. 一种紧凑型多波长光组件,其特征在于,光组件包括至少两组光信号通道单元组和一基板,所述光信号通道单元组设置在所述基板上,其中,一组光信号通道单元组包括透镜、非互异性器件和反射镜,三者沿着光信号接收方向,按照反射镜、非互异性器件和透镜的顺序,依次设置在所述基板上,所述光组件还包括:
    所述基板上位于固定有所述反射镜的反射面的下方,设置有第一衍射光栅区;
    基板表面设置有第二衍射光栅区域;其中,第二衍射光栅区域和第一衍射光栅区位于所述基板的同侧;
    不同光信号通道单元组之间相差预设距离,所述预设距离使得合束激光信号在入射到基板上表面的第二衍射光栅区时,衍射出的对应不同波长的激光信号,能够在经过基板底部的全反射后,抵达各光信号通道单元组中的反射镜下方的第一衍射光栅区。
  13. 根据权利要求12所述的紧凑型多波长光组件,其特征在于,所述光组件中各光信号通道单元组的光信号输出端用于耦合光探测器。
  14. 根据权利要求12或13任一所述的紧凑型多波长光组件,其特征在于,根据光栅方程:n·Λ·sin(θ)=m·λ和各激光器的中心波长,选择厚度和光栅周期分别满足方程需求的基板,并设置不同光信号通道单元组之间相差的距离,使得合束光信号能够经过所述第二光栅区域和第一光栅区域衍射后,耦合到相应光信号通道单元组的光通路中;
    其中n为基板的折射率,Λ为光栅周期,θ为衍射光与法线的夹角,λ为入射光波长,m为自然数。
  15. 根据权利要求14所述的紧凑型多波长光组件,其特征在于,并设置不同光信号通道单元组之间相差的距离,使得合束光信号能够经过所述第二光栅区域和第一光栅区域衍射后,耦合到相应光信号通道单元组的光通路中,具体包括:
    根据公式L i=2D·tan(θ i)计算得到第i个波长光信号在基板中传输光路映射到基板表面的直线距离;使得各光信号通道单元组之间的距离与其对应映射到基板表面的直线距离差的绝对值相同;
    其中,θ i为第i个激光器射出光信号从第i组光信号通道单元组衍射到基板内的角度。
  16. 根据权利要求12所述的紧凑型多波长光组件,其特征在于,所述非互易性器件包括:磁光隔离器或者单向耦合元件。
PCT/CN2017/118568 2017-05-26 2017-12-26 一种紧凑型多波长光组件及其使用方法 WO2018214498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710385173.3 2017-05-26
CN201710385173.3A CN107121782A (zh) 2017-05-26 2017-05-26 一种紧凑型多波长光组件及其使用方法

Publications (1)

Publication Number Publication Date
WO2018214498A1 true WO2018214498A1 (zh) 2018-11-29

Family

ID=59728596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118568 WO2018214498A1 (zh) 2017-05-26 2017-12-26 一种紧凑型多波长光组件及其使用方法

Country Status (2)

Country Link
CN (1) CN107121782A (zh)
WO (1) WO2018214498A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121782A (zh) * 2017-05-26 2017-09-01 武汉光迅科技股份有限公司 一种紧凑型多波长光组件及其使用方法
CN108828717B (zh) * 2018-06-08 2019-08-20 武汉大学 基于超表面闪耀光栅的光路单向导通元件结构及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978197A (en) * 1988-08-26 1990-12-18 Fuji Photo Film Co., Ltd. Beam-combining laser beam source device
CN101566711A (zh) * 2005-01-07 2009-10-28 日本板硝子株式会社 光学模组
CN101995610A (zh) * 2010-10-25 2011-03-30 北京理工大学 超轻薄宽光谱全息天线
CN103401136A (zh) * 2013-07-29 2013-11-20 武汉锐科光纤激光器技术有限责任公司 一种大功率半导体激光器耦合的光纤固定装置
US8772704B2 (en) * 2008-07-09 2014-07-08 Luxtera, Inc. Method and system for a light source assembly supporting direct coupling to an integrated circuit
CN104020569A (zh) * 2013-02-28 2014-09-03 住友电气工业株式会社 光学组件及其组装方法以及配备有光学组件的光学模块
CN104221233A (zh) * 2012-03-26 2014-12-17 西铁城控股株式会社 激光光源装置及激光光源装置的制造方法
WO2015139761A1 (en) * 2014-03-20 2015-09-24 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Imaging system
CN106443902A (zh) * 2016-06-30 2017-02-22 武汉光迅科技股份有限公司 一种大功率激光器及其衍射透镜制作方法
US20170160553A1 (en) * 2013-04-06 2017-06-08 Robin Huang High brightness, monolithic, multispectral semiconductor laser
CN107121782A (zh) * 2017-05-26 2017-09-01 武汉光迅科技股份有限公司 一种紧凑型多波长光组件及其使用方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393584B2 (en) * 2008-03-11 2019-08-27 Oto Photonics Inc. Spectrometer, monochromator, diffraction grating and methods of manufacturing grating and mold
CN203133391U (zh) * 2013-03-06 2013-08-14 昂纳信息技术(深圳)有限公司 一种光栅型的可调滤波器
US9337606B2 (en) * 2014-04-21 2016-05-10 Northrop Grumman Systems Corporation Spectral-temporal multiplexer for pulsed fiber scaling
CN104332821A (zh) * 2014-11-18 2015-02-04 中国工程物理研究院应用电子学研究所 一种基于双光栅外腔反馈的二极管激光光谱合成装置
CN104901149A (zh) * 2015-05-05 2015-09-09 中国科学院上海光学精密机械研究所 基于三块衍射光栅的光谱合束系统
CN105428996A (zh) * 2015-12-09 2016-03-23 中国科学院长春光学精密机械与物理研究所 基于多光栅结构的半导体激光器合束装置及合束方法
CN105892067A (zh) * 2016-05-10 2016-08-24 芜湖安瑞激光科技有限公司 一种多波长激光合束系统
CN106338836B (zh) * 2016-10-25 2019-04-12 湖北航天技术研究院总体设计所 光纤激光非对称补偿光谱合成装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978197A (en) * 1988-08-26 1990-12-18 Fuji Photo Film Co., Ltd. Beam-combining laser beam source device
CN101566711A (zh) * 2005-01-07 2009-10-28 日本板硝子株式会社 光学模组
US8772704B2 (en) * 2008-07-09 2014-07-08 Luxtera, Inc. Method and system for a light source assembly supporting direct coupling to an integrated circuit
CN101995610A (zh) * 2010-10-25 2011-03-30 北京理工大学 超轻薄宽光谱全息天线
CN104221233A (zh) * 2012-03-26 2014-12-17 西铁城控股株式会社 激光光源装置及激光光源装置的制造方法
CN104020569A (zh) * 2013-02-28 2014-09-03 住友电气工业株式会社 光学组件及其组装方法以及配备有光学组件的光学模块
US20170160553A1 (en) * 2013-04-06 2017-06-08 Robin Huang High brightness, monolithic, multispectral semiconductor laser
CN103401136A (zh) * 2013-07-29 2013-11-20 武汉锐科光纤激光器技术有限责任公司 一种大功率半导体激光器耦合的光纤固定装置
WO2015139761A1 (en) * 2014-03-20 2015-09-24 Csem Centre Suisse D'electronique Et De Microtechnique Sa - Recherche Et Developpement Imaging system
CN106443902A (zh) * 2016-06-30 2017-02-22 武汉光迅科技股份有限公司 一种大功率激光器及其衍射透镜制作方法
CN107121782A (zh) * 2017-05-26 2017-09-01 武汉光迅科技股份有限公司 一种紧凑型多波长光组件及其使用方法

Also Published As

Publication number Publication date
CN107121782A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
US10048456B2 (en) Packaging device of single optical multiplexed parallel optical receiver coupling system component and the system thereof
US8265486B2 (en) Optical communication module
CN104422990B (zh) 利用多芯光纤进行波分解复用的方法和光学系统
CN101833150A (zh) 一种大功率半导体激光器光纤耦合模块
US11435522B2 (en) Grating coupled laser for Si photonics
WO2020155426A1 (zh) 多路波分复用光接收组件以及光模块
JP2011066339A (ja) 光通信モジュール、および光通信モジュールの製造方法
JP2010191231A (ja) 光モジュール
KR102594414B1 (ko) 프로브 장치 및 이를 포함하는 테스트 장치
CN105071196A (zh) 一种窄线宽合束模块及具有该模块的多波长拉曼激光器
WO2018214498A1 (zh) 一种紧凑型多波长光组件及其使用方法
KR100492980B1 (ko) 수직입사 수광소자를 이용한 광학장치
US9927576B2 (en) Optical modules for wavelength multiplexing
WO2015085640A1 (zh) 一种激光器
KR20130083765A (ko) 파장 측정 기능을 가지는 파장 가변형 레이저 장치
CN108873128B (zh) 棱镜、棱镜作为光束调整器的使用方法、棱镜组及光组件
JPH0763943A (ja) 合波装置
CN112636158A (zh) 一种具备双层光路的半导体激光器
WO2020253534A1 (zh) 一种小型化波分解复用光接收组件及其装配方法
TW202007029A (zh) 用於光譜射束組合的方法和系統
TWI637203B (zh) 光學模組
CN214044341U (zh) 一种小体积半导体激光器
CN210605101U (zh) 一种基于光波导的多路波分解复用光接收组件
US20210063653A1 (en) Optical module and optical communication network system having the same
KR20190043021A (ko) 고출력 광원 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910634

Country of ref document: EP

Kind code of ref document: A1