WO2018214380A1 - 一种扁平马达的驱动方法、驱动电路及电子设备 - Google Patents

一种扁平马达的驱动方法、驱动电路及电子设备 Download PDF

Info

Publication number
WO2018214380A1
WO2018214380A1 PCT/CN2017/105160 CN2017105160W WO2018214380A1 WO 2018214380 A1 WO2018214380 A1 WO 2018214380A1 CN 2017105160 W CN2017105160 W CN 2017105160W WO 2018214380 A1 WO2018214380 A1 WO 2018214380A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
flat motor
processor
instruction
Prior art date
Application number
PCT/CN2017/105160
Other languages
English (en)
French (fr)
Inventor
黄停
张铁利
常智
李璇
陈建立
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202110479580.7A priority Critical patent/CN113315419B/zh
Priority to CN201780009219.XA priority patent/CN108702109B/zh
Priority to US16/616,020 priority patent/US11264864B2/en
Publication of WO2018214380A1 publication Critical patent/WO2018214380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/061Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
    • H02K7/063Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses integrally combined with motor parts, e.g. motors with eccentric rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • Embodiments of the present invention relate to the field of electronic technologies, and in particular, to a driving method, a driving circuit, and an electronic device of a flat motor.
  • the vibration reminder function is a common function of electronic devices such as smartphones.
  • Flat motors are widely used in electronic equipment because of their low cost, simple structure, high reliability, low noise, low power consumption, and strong shock.
  • the embodiment of the invention provides a driving method, a driving circuit and an electronic device for a flat motor, which can realize quick start when the flat motor vibrates.
  • an embodiment of the present invention provides a driving method of a flat motor, which is applied to an electronic device, where the electronic device includes a signal triggering circuit, a driving circuit of a flat motor, and a flat motor; the driving circuit of the flat motor includes a processor and a voltage processing circuit; the driving method comprising the steps of:
  • the signal triggering circuit sends a start command to the processor to initiate a flat motor
  • the voltage processing circuit After receiving the first triggering instruction, the voltage processing circuit supplies a first working voltage V1 to the flat motor, and after the first time period, supplies a second working voltage V0 to the flat motor, V0 ⁇ V1 ⁇ V2, wherein the V0 is a rated voltage value of the flat motor, and the V2 is a maximum forward voltage value that the flat motor can withstand when it is started.
  • the drive circuit of the flat motor provided by the embodiment of the present invention is advantageous for accelerating the start of the flat motor, compared to the prior art drive circuit that uses the rated voltage for starting.
  • the voltage processing circuit includes a boosting circuit and a first circuit, the boosting circuit and the first circuit being in parallel;
  • the voltage processing circuit After receiving the first triggering instruction, the voltage processing circuit provides a first working voltage V1 to the flat motor, and after the first time period, provides a second working voltage V0 to the flat motor, including:
  • the boosting circuit After receiving the first triggering instruction, the boosting circuit outputs a first working voltage V1 to the flat motor during a first time period;
  • the first circuit outputs the second operating voltage V0 to the flat motor after the first period of time after receiving the first triggering instruction.
  • the boosting circuit includes a first capacitor C1, a first resistor R1, and a boosting chip; a first end of the first capacitor C1 is coupled to the processor for receiving The first number sent by the processor a triggering instruction; the second end of the first capacitor C1 is grounded through the first resistor R1, and the second end of the first capacitor C1 is further connected to an input end of the boosting chip; An output end of the pressure chip is connected to the flat motor;
  • the boosting circuit After receiving the first triggering instruction, the boosting circuit outputs a first working voltage V1 to the flat motor in a first time period, including:
  • the second end of the first capacitor After the first end of the first capacitor C1 receives the first triggering instruction, the second end of the first capacitor provides a greater than the boosting to the input end of the boosting chip during the first time period A voltage signal of a minimum operating voltage of the chip triggers operation of the boosting chip to cause the boosting chip to output the first operating voltage V1 to the flat motor.
  • the first circuit includes: a voltage stabilizing circuit connected in series and a first unidirectional conductive circuit;
  • the first circuit After receiving the first triggering instruction, the first circuit outputs the second working voltage V0 to the flat motor after the first period of time, including:
  • the voltage stabilizing circuit After the input end of the voltage stabilizing circuit receives the first triggering instruction, the voltage stabilizing circuit outputs the second working voltage V0, and the first one-way conducting circuit prevents during the first time period The output power of the boost circuit is inverted into the first circuit.
  • the first circuit further includes a slow stop circuit; the slow stop circuit is connected in series between the processor and the voltage stabilizing circuit; and the slow stop circuit includes an energy storage component;
  • the driving circuit further includes a switching circuit, the switching circuit includes a grounding circuit and a control circuit; and the driving method may further include:
  • the signal triggering circuit sends a stop motor running command to the processor
  • the slow stop circuit provides a trigger voltage to the voltage stabilizing circuit during a second time period after the processor stops sending the first trigger command to the voltage processing circuit, triggering the voltage stabilizing circuit to work, Said regulator circuit output voltage;
  • control circuit connects the output voltage of the voltage stabilizing circuit to the negative terminal of the flat motor while grounding the positive terminal of the flat motor through the ground circuit.
  • the flat motor start can be accelerated, and by applying a reverse voltage to the flat motor for the second period of time, the flat motor brake can be accelerated and the flat motor can be accelerated quickly. Stopping, so this technical solution is advantageous for quick start and quick stop of the flat motor.
  • an embodiment of the present invention provides a driving circuit for a flat motor, including: a processor and a voltage processing circuit;
  • the processor is configured to receive a startup instruction indicating that the flat motor is started, and send a first trigger instruction to the voltage processing circuit after receiving the startup instruction, where the first trigger instruction is used to trigger the voltage processing
  • the circuit provides a forward voltage to the flat motor
  • the voltage processing circuit is configured to provide a first working voltage V1 to the flat motor after receiving the first triggering instruction, and provide a second working voltage V0 to the flat motor after the first time period V0 ⁇ V1 ⁇ V2, wherein the V0 is a rated voltage value of the flat motor, and the V2 is a maximum forward voltage value that the flat motor can withstand when it is started.
  • the voltage processing circuit includes a boosting circuit and a first circuit, the boosting circuit and the first circuit being in parallel;
  • the boosting circuit is configured to output the first working voltage V1 in the first time period after receiving the first triggering instruction
  • the first circuit is configured to output the second working voltage V0 after receiving the first triggering instruction.
  • the boosting circuit includes a first capacitor C1, a first resistor R1, and a boosting chip;
  • the first end of the first capacitor C1 is connected to the processor, and is configured to receive the first trigger command sent by the processor; the second end of the first capacitor C1 passes the first resistor R1 Grounded, the second end of the first capacitor C1 is further connected to an input end of the boosting chip; an output end of the boosting chip is connected to the flat motor for providing the flat motor Said first working voltage V1;
  • the first triggering command is a voltage signal V3, V4 ⁇ V3 ⁇ V5, the V4 is a lowest operating voltage value of the boosting chip, and the V5 is a highest operating voltage value of the boosting chip.
  • the first circuit includes: a voltage stabilizing circuit connected in series and a first unidirectional pass circuit, an input end of the voltage stabilizing circuit is connected to an output end of the processor, An output end of the voltage stabilizing circuit is connected to an input end of the first one-way conducting circuit, and an output end of the first one-way conducting circuit is connected to an output end of the boosting chip;
  • the first unidirectional conduction circuit is configured to prevent the boost circuit from injecting power
  • the voltage stabilizing circuit is configured to provide a stable operating voltage to the flat motor.
  • the processor is further configured to stop sending the first trigger instruction to the voltage processing circuit when receiving a stop motor running instruction
  • the first circuit further includes a slow stop circuit; the slow stop circuit is connected in series between the processor and an input end of the voltage stabilizing circuit; the slow stop circuit includes an energy storage element for After the processor stops sending the first triggering instruction to the voltage processing circuit, providing a trigger voltage to the voltage stabilizing circuit during a second time period, triggering the output voltage of the voltage stabilizing circuit;
  • the driving circuit further includes a switching circuit, the switching circuit includes a grounding circuit and a control circuit, wherein an input end of the control circuit is connected to an output end of the grounding circuit, the processor, and the voltage processing circuit, An output end of the control circuit is connected to a positive terminal and a negative terminal of the flat motor;
  • the control circuit is configured to connect an output end of the voltage processing circuit to a positive terminal of the flat motor when the processor sends the first trigger instruction to the voltage processing circuit, and simultaneously a negative terminal of the flat motor is grounded through the ground circuit; and, when the processor stops transmitting the first trigger command to the voltage processing circuit, outputting the output of the voltage processing circuit to the flat motor
  • the negative terminals are connected while the positive terminal of the flat motor is grounded through the ground circuit.
  • the flat motor by providing a flat motor with a forward voltage exceeding a rated voltage for a first period of time, the flat motor can be started up, and by applying a reverse voltage to the flat motor for a second period of time, the flat motor brake can be accelerated.
  • the acceleration of the flat motor is quickly stopped, so this technical solution is advantageous for the quick start and quick stop of the flat motor.
  • the slow stop circuit includes a second capacitor C2 and a second resistor R2, in,
  • a first end of the second resistor R2 is connected to the processor, and a second end of the second resistor R2 is connected to an input end of the voltage stabilizing circuit;
  • the first end of the second capacitor C2 is respectively connected to the input end of the voltage stabilizing circuit and the second end of the second resistor R2, and the second end of the second capacitor C2 is grounded.
  • the ground circuit may be a power ground.
  • the grounding circuit may include: a metal oxide semiconductor MOS transistor and a second unidirectional pass circuit; a gate G of the MOS transistor and a second second of the second resistor R2 The terminal is connected to the first end of the second capacitor C2, and the second end of the first capacitor C1 is connected to the gate G of the MOS transistor through the second unidirectional conduction circuit, the source of the MOS transistor The pole S is grounded, and the drain D of the MOS transistor is connected to the control circuit.
  • the voltage regulator is a low dropout linear regulator LDO.
  • an embodiment of the present invention provides an electronic device including an electrically connected signal trigger circuit, a flat motor drive circuit, and a flat motor;
  • the flat motor drive circuit is electrically connected to the signal trigger circuit and the flat motor, respectively; the flat motor drive circuit is configured to supply an input voltage to the flat motor under the control of the signal trigger circuit;
  • the flat motor drive circuit is the drive circuit of the flat motor according to any of the second aspect or the second aspect of the invention.
  • the signal triggering circuit is a fingerprint sensor.
  • the processor when the driving circuit of the flat motor receives the start command for starting the flat motor, the processor sends a first trigger command to the voltage processing circuit, and the first trigger command triggers the voltage processing circuit to provide the flat motor with a value greater than the rated voltage.
  • the forward voltage because the forward voltage provided by the driving circuit to the flat motor is greater than the rated voltage, the embodiment of the present invention is advantageous for accelerating the startup of the flat motor and improving the user experience.
  • the flat motor start can be accelerated by providing a flat motor with a forward voltage exceeding the rated voltage for a first period of time, and the flat motor can be accelerated by applying a reverse voltage to the flat motor for a second period of time.
  • FIG. 1A is a schematic structural diagram of a driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 1B is a schematic structural diagram of another driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 1C is a schematic structural diagram of another driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of a driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 2B is a schematic structural diagram of another driving circuit of a flat motor according to an embodiment of the present invention.
  • 2C is a schematic structural diagram of another driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 2D is a schematic structural diagram of another driving circuit of a flat motor according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the embodiment of the invention provides a driving method, a driving circuit and an electronic device for a flat motor, which can realize quick start when the flat motor vibrates.
  • An electronic device such as a mobile phone or a personal digital assistant equipped with a flat motor sometimes interacts with the user in a vibrating manner. Specifically, the flat motor generates vibration after running, and feedbacks the state of an event to the user through vibration.
  • the processor controls the mobile phone to unlock, and at the same time, the processor provides a trigger signal to trigger the flat motor to start, and the vibration effect is generated.
  • the processor provides a trigger signal, triggers the flat motor to run, generates vibration, and reminds the user that a shortcut icon of an application has been selected.
  • the fingerprint sensor generates a vibration effect when it is detected that it is pressed. It should be noted that the scene for triggering the vibration of the motor is not limited.
  • the processor controls the flat motor to be driven by a high voltage greater than the rated voltage at the beginning of starting, which is advantageous for the quick start of the flat motor and making the vibration that the user can feel more acute.
  • the processor when the trigger motor stops vibrating, can control the motor to brake under the reverse voltage, which facilitates the motor to stop quickly, further improving the user experience.
  • the drive circuit 100 of the flat motor shown in FIG. 1A includes a processor 110 and a voltage processing circuit 120.
  • the processor 110 is configured to receive a start command for initiating the flat motor, and send a first trigger command to the voltage processing circuit 120 after receiving the start command, where the first trigger command is used to trigger the voltage processing circuit 120 to the flat motor 200.
  • a forward voltage V1 is provided, V0 ⁇ V1 ⁇ V2, where V0 is the rated voltage value of the flat motor 200, and V2 is the maximum forward voltage value that the flat motor 200 can withstand instantaneously when it is started.
  • the voltage processing circuit 120 is configured to provide an operating voltage to the flat motor 200.
  • the voltage processing circuit 120 may include a boosting circuit 121 for receiving the first trigger.
  • the flat motor 200 is supplied with a forward voltage having a voltage value of V1 at the time of instruction.
  • the start command may be triggered by a signal trigger circuit such as a fingerprint sensor. For example, when the user presses the fingerprint sensor, if the input fingerprint matches the preset fingerprint, the start command of the flat motor is triggered.
  • the activation command may also be triggered when the user clicks on a shortcut icon of an application on the display interface.
  • the processor 110 receives the start command, the processor 110 sends a first trigger command to the voltage processing circuit 120, the trigger voltage processing circuit 120 supplies a forward voltage of 5V to the flat motor 200, and the flat motor 200 has a forward voltage of 5V.
  • the driving circuit of the flat motor provided by the embodiment of the present invention is advantageous for accelerating the start of the flat motor, in comparison with the prior art driving circuit that is started with a rated voltage of 3V.
  • the boosting circuit 121 may include a first capacitor C1, a first resistor R1, and a boosting chip 1211; wherein the first end of the first capacitor C1 is processed The device 110 is connected, the first electric The second end of the capacitor C1 is grounded through the first resistor R1, the second end of the first capacitor C1 is also connected to the input end of the boosting chip 1211, and the output end of the boosting chip 1211 is connected to the flat motor 200.
  • the first trigger command sent by the processor 110 to the voltage processing circuit 120 may be a voltage signal V3, V4 ⁇ V3 ⁇ V5, the V4 is the lowest operating voltage of the boosting chip 1211, and the V5 is the boosting chip.
  • V3 is 1.8V
  • V4 is 1V
  • V5 is 2V
  • the output voltage of the boost chip 1211 at the operating voltage is 5V.
  • the processor 110 outputs a voltage signal of 1.8V to the first end of the first capacitor C1
  • the second terminal voltage of the first capacitor C1 is instantaneously induced to 1.8V by 0V, and the induced voltage is greater than V4
  • the boosting The chip 1211 operates, the output voltage of the boosting chip 1211 is 5V, the first capacitor C1 is discharged through the first resistor R1, and the voltage of the second terminal of the first capacitor C1 is gradually decreased, when the voltage of the second terminal of the first capacitor C1 is lower than 1V. (At the lowest operating voltage of the boosting chip 1211), the boosting chip 1211 does not operate.
  • the voltage processing circuit may include a first circuit 122 connected in parallel with the boosting circuit 121, as shown in FIG. 1C, the first circuit 122 includes: a voltage stabilizing circuit 1221 and a first single connected in series The input terminal of the first unidirectional conduction circuit 1222 is connected to the output end of the voltage stabilization circuit 1221, and the output end of the first unidirectional conduction circuit 1222 is connected to the output end of the boosting chip 1211, and the first one-way conduction The circuit 1222 is configured to prevent the boost circuit from being powered by the power.
  • the first unidirectional conduction circuit 1222 may be a diode, and the anode of the diode is connected to the output of the voltage stabilization circuit 1221, and the anode and the boost of the diode are boosted.
  • the output terminals of the chip 1211 are connected; a voltage stabilizing circuit 1221 for supplying a stable operating voltage to the flat motor 200.
  • the voltage stabilizing circuit 1221 receives the input signal whose voltage value is within its working voltage range, the voltage stabilizing circuit 1221 outputs a stable 3V voltage. According to the circuit principle, the output voltage of the voltage processing circuit is the output voltage corresponding to the boosting circuit of 5V.
  • the processor 110 sends the first triggering instruction
  • the processor 110 continues to send the first triggering instruction (eg, continuously outputting 1.8V voltage) before receiving the stop motor running instruction.
  • the voltage stabilizing circuit 1221 When the output voltage of 110 is greater than or equal to the lower limit of the operating voltage (1V to 2V) of the voltage stabilizing circuit 1221, and is less than or equal to the upper limit of 2V, the voltage stabilizing circuit 1221 outputs a voltage of 3V, and the output voltage of the voltage processing circuit is the first circuit.
  • the output voltage is 3V.
  • the drive circuit 100 of the flat motor first supplies the flat motor 200 with a high voltage exceeding the rated voltage of the flat motor 200 through the booster circuit 121 when the flat motor 200 is started, when the booster circuit 1211
  • the first capacitor C1 is discharged through the first resistor R1 such that when the voltage of the second terminal of the first capacitor C1 falls below the lowest operating voltage of the boosting chip 1211, the boosting circuit stops operating, and then the voltage processing circuit 120 is regulated.
  • the circuit 1221 supplies a rated voltage to the flat motor 200. As can be seen from FIG.
  • a single conduction circuit 1222 can be a diode, the anode of which is connected to the output of the voltage regulator circuit 1221, and the cathode of the diode is connected to the output of the boost chip 1211.
  • the driving circuit of the flat motor shown in FIG. 1C is performed. Further optimization allows the flat motor to achieve fast start-up and fast stop. Specifically, it is as shown in FIG. 2A.
  • the circuit in FIG. 2A adds a slow stop circuit 1223 and a switch circuit 123 with respect to the drive circuit of the flat motor shown in FIG. 1C.
  • the processor 110 when the processor 110 receives the stop motor run command, the input voltage provided by the processor 110 to the voltage processing circuit 120 is 0V.
  • the slow stop circuit 1223 is connected in series between the output of the processor 110 and the input of the voltage stabilizing circuit 1221.
  • the slow stop circuit 1223 includes an energy storage component for the processor 110 to provide the voltage stabilization circuit 1221 when the voltage signal supplied to the voltage processing circuit 120 is lower than the minimum operating voltage of the voltage stabilization circuit 1221 after receiving the stop motor operation command.
  • the duration is the start trigger signal of the second period (ie, the voltage greater than 1V), delaying the time point when the output voltage drop of the regulator circuit 1221 is zero.
  • the voltage stabilizing circuit 1221 supplies a reverse voltage to the flat motor 200.
  • the processor 110 receives the stop motor running command
  • the processor 110 sends a control signal to the switch circuit 123.
  • the switch circuit 123 sets the output voltage of the first circuit 122 to the negative terminal of the flat motor. Connected, the positive terminal of the flat motor is grounded, that is, when the control flat motor 200 is stopped, the drive circuit 100 of the flat motor supplies a reverse voltage to the flat motor 200, which is advantageous for accelerating the stop of the flat motor 200.
  • the voltage regulator can be a Low Dropout Regulator (LDO).
  • LDO Low Dropout Regulator
  • the switch circuit 123 may include a control circuit 1231 and a ground circuit 1232, wherein the input end of the control circuit 1231 and the ground circuit, the processor, and the boost chip 1211 The output ends are connected, and the output end of the control circuit 1231 is connected to the positive terminal and the negative terminal of the flat motor 200.
  • the control circuit 1231 is configured to output the output terminal of the boosting chip 1211 when the processor sends the first trigger command to the voltage processing circuit. Connect to the positive terminal of the flat motor while grounding the negative terminal of the flat motor through the grounding circuit.
  • the control circuit is further configured to, when the processor 110 receives the stop motor running command, the processor 110 no longer sends a first trigger signal to the voltage processing circuit, and connects the output end of the boosting chip 1211 to the negative terminal of the flat motor 200. At the same time, the positive terminal of the flat motor 200 is grounded through the grounding circuit 1232. In this manner, after the processor 110 receives the stop motor running command, the flat motor 200 brakes at the reverse voltage, which facilitates the stop of the flat motor 200.
  • the slow-stop circuit 1223 may include a second capacitor C2 and a second resistor R2, wherein the first end of the second resistor R2 is connected to the output of the processor 110.
  • the second end of the second resistor R2 is connected to the input end of the voltage stabilizing circuit 1221.
  • the first end of the second capacitor C2 is connected to the second end of the second resistor R2, and the second end of the second capacitor C2 is grounded.
  • the grounding circuit 1232 is a power ground.
  • the grounding circuit 1232 may include: a metal oxide semiconductor MOS transistor and a second unidirectional conduction circuit 12321; a gate G of the MOS transistor and a second resistor R2 The two ends are connected, the second end of the first capacitor C1 is connected to the gate G of the MOS transistor through the second one-way conduction circuit, the source S of the MOS transistor is grounded, the drain D of the MOS transistor and the input of the control circuit 1231 Connected to the end.
  • the first capacitor C1 When the first end is high level or the first end of the second capacitor C2 of the slow-stop circuit 1223 is high level, the gate G to the source S of the MOS transistor is turned on, and the drain D voltage is 0, then the ground circuit 1232 is turned to Control circuit 1231 provides a voltage of 0V. That is, when the flat motor 200 starts to start, during the first period of time (ie, the processor 110 receives the start command, the voltage of the second end of the first capacitor C1 is higher than the lowest value of the operating voltage of the boosting chip 1211) The ground circuit provides a 0V output voltage to the control circuit.
  • the voltage stabilizing circuit 1221 provided in the embodiment of the present invention may be a controllable voltage stabilizing circuit, that is, the terminal may control the output of the voltage stabilizing circuit 1221 or not by the first touch command.
  • the voltage stabilizing circuit 1221 provided in the embodiment of the present invention may also be an uncontrollable voltage stabilizing circuit.
  • the regulator circuit when the regulator circuit is compatible with a system regulator (such as an LDO), or when the regulator circuit is a common regulator (such as an LDO) in the terminal, the regulator is uncontrollable. Pressure circuit. That is to say, the uncontrollable voltage stabilizing circuit always outputs an operating voltage.
  • the fast-starting process can be controlled by controlling the grounding circuit.
  • the flat motor does not need to work, the flat motor is not grounded by controlling the grounding circuit, so that the circuit between the voltage stabilizing circuit and the flat motor is not connected; although the voltage stabilizing circuit is at the output voltage, since the circuit is not connected, The flat motor is not powered.
  • the flat motor needs to be activated, the motor is grounded by controlling the ground circuit, thereby connecting the circuit between the voltage stabilizing circuit and the flat motor.
  • the drive circuit of the flat motor can be divided into three phases, namely: the first phase, the second phase, and the third phase.
  • the first phase is the startup phase of the flat motor 200, and the booster circuit 121 outputs a high voltage signal phase to the control circuit 1231.
  • the corresponding duration is the first time period, and the first time period begins when the processor 110 receives the start command.
  • the second terminal voltage of the first capacitor C1 starts to be lower than the time interval corresponding to the lowest operating voltage of the boosting chip 1211.
  • the ground circuit 1232 outputs a voltage of 0V.
  • the control circuit connects the output end of the boosting chip 1211 to the positive terminal of the flat motor, and connects the grounding circuit to the negative terminal of the flat motor, so that the flat motor can be quickly started up when the rated voltage is greater than the rated voltage.
  • the second phase is that the first circuit 122 outputs a steady voltage phase to the control circuit 1231, and the output voltage value is the rated voltage of the flat motor 200. That is, in the first stage, the first capacitor C1 is discharged through the first resistor R1. When the booster circuit does not output higher than the rated voltage of the flat motor 200, the first phase ends with the second phase, and in the second phase, the flat motor is rated. Operating under voltage drive.
  • the third phase begins with the processor receiving a stop motor run command, at which time the first circuit 122 begins to provide a reverse voltage to the flat motor 200, and the third phase until the first circuit 122 no longer supplies the output voltage to the flat motor 200, corresponding to The duration is the second time period.
  • the processor stops sending the first trigger command to the voltage processing circuit, the boost circuit 121 does not work, and the slow stop circuit 1223 in the first circuit 122 provides a trigger command to the voltage stabilization circuit 1221, and the trigger voltage regulator circuit 1221 is The processor 110 can continue to operate for a period of time after receiving the stop motor running command.
  • the first circuit 122 can continue to output a voltage for a period of time when the processor no longer outputs the trigger signal, and in the third phase, the control circuit 1231 sets the first circuit.
  • the output end of 122 is connected to the negative end of the flat motor, and the output end of the ground circuit 1232 is connected to the positive end of the flat motor 200, that is,
  • the flat motor is provided with a reverse drive circuit when the motor starts to stop running, which facilitates rapid braking of the flat motor and speeds up the flat motor stop. It can be understood that the duration of the first phase and the second phase can be adjusted by changing the values of the first capacitor, the first resistor, the second capacitor, and the second resistor.
  • the circuit provided by the embodiment of the invention can be tested by a simulation experiment to have a good fast-starting effect.
  • the following is the following: the simulation is performed by using the technical solutions provided by the prior art and the embodiment of the present invention, and the following data is obtained: when the control of the flat motor is started, the startup time of the prior art is 162 ms, and the technical solution provided by the embodiment of the present invention is adopted.
  • the start-up time of the rear flat motor is shortened to 62ms.
  • the prior art stop time is 117 ms
  • the stop time of the flat motor is shortened to 41 ms by the technical solution provided by the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device 300 according to an embodiment of the present invention.
  • the electronic device 300 includes an electrically connected signal triggering circuit 301 and a flat motor driving circuit 302. And a flat motor 303.
  • the drive circuit 302 of the flat motor includes a processor 3021 and a voltage processing circuit 3022 that are electrically connected.
  • the signal trigger circuit 301 is configured to send a start command for starting the flat motor, a stop motor operation command for stopping the operation of the flat motor, and the like to the processor 3021 in the flat motor drive circuit 302.
  • the drive circuit 302 of the flat motor may be any of the previous ones.
  • the driving circuit of the flat motor can refer to the description of the driving circuit of any of the flat motors of FIG. 1A to FIG. 1C or FIG. 2A to FIG. 2D for the sake of brevity, and details are not described herein again.
  • FIG. 4 is a schematic structural diagram of an implementation manner of an electronic device provided by the present application.
  • the electronic device can be a mobile phone.
  • the electronic device 400 can include: a baseband chip 410, a memory 415 (one or more computer readable storage media), a radio frequency (RF) module 416, a peripheral system 417, and voltage processing. Circuit 427, switch circuit 428, flat motor 429, and the like. These components can communicate over one or more communication buses 414.
  • RF radio frequency
  • the peripheral system 417 is mainly used to implement an interactive function between the electronic device 400 and the user/external environment, and mainly includes input and output devices of the electronic device 400.
  • the peripheral system 417 can include a touch screen controller 418, a camera controller 419, an audio controller 420, and a sensor management module 421. Each controller may be coupled to a respective peripheral device such as touch screen 423, camera 424, audio circuit 425, and sensor 426. It should be noted that the peripheral system 417 may also include other I/O peripherals.
  • the baseband chip 410 can be integrated to include one or more processors 411, a clock module 412, and a power management module 413.
  • the clock module 412 integrated in the baseband chip 410 is primarily used to generate the clocks required for data transfer and timing control for the processor 411.
  • the power management module 413 integrated in the baseband chip 410 is mainly used to provide a stable, high-accuracy voltage for the processor 411, the radio frequency module 416, and the peripheral system.
  • a radio frequency (RF) module 416 is used to receive and transmit radio frequency signals, primarily integrating the receiver and transmitter of the electronic device 400.
  • Radio frequency (RF) module 416 communicates with the communication network and other communication devices via radio frequency signals.
  • the radio frequency (RF) module 416 can include, but is not limited to: an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chip, a SIM card, and Storage media, etc.
  • a radio frequency (RF) module 416 can be implemented on a separate chip.
  • Memory 415 is coupled to processor 411 for storing various software programs and/or sets of instructions.
  • Memory 415 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 415 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 415 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 415 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the fingerprint is verified by the fingerprint sensor, and if the fingerprint is matched, the screen is awakened, and the flat motor is vibrated as an example to describe the driving process of the flat motor.
  • the processor 411 sends a first trigger command to the voltage processing circuit 427, the first trigger command is used to trigger the voltage processing circuit to provide a forward voltage to the flat motor, and the voltage processing circuit 427 receives the first trigger.
  • the flat motor 429 is supplied with the first operating voltage V1, and after the first period of time, the flat motor 429 is supplied with the second operating voltage V0, V0 ⁇ V1 ⁇ V2, wherein the V0 is the flat motor 429.
  • the rated voltage value which is the maximum forward voltage value that the flat motor 429 can withstand when it is started.
  • the voltage processing circuit 427 includes a boosting circuit and a first circuit, and the boosting circuit and the first circuit are connected in parallel; after receiving the first triggering command, the voltage processing circuit 427 sends the flat motor 429 to the flat motor 429.
  • the voltage processing circuit 427 Providing the first working voltage V1, and after the first period of time, providing the second operating voltage V0 to the flat motor 429, including: after receiving the first triggering command, the boosting circuit outputs the first to the flat motor 429 in the first period of time.
  • An operating voltage V1; the first circuit outputs a second operating voltage V0 to the flat motor 429 after the first period of time after receiving the first triggering command.
  • the boosting circuit includes a first capacitor C1, a first resistor R1, and a boosting chip; a first end of the first capacitor C1 is coupled to the processor for receiving the The first triggering command sent by the processor; the second end of the first capacitor C1 is grounded through the first resistor R1, and the second end of the first capacitor C1 is also connected to the input end of the boosting chip; the output end of the boosting chip Connected to a flat motor;
  • the boosting circuit After receiving the first triggering instruction, the boosting circuit outputs the first working voltage V1 to the flat motor in the first time period, including:
  • the second end of the first capacitor After the first end of the first capacitor C1 receives the first triggering instruction, the second end of the first capacitor provides a maximum operating voltage of the boosting chip to the input end of the boosting chip during the first time period.
  • the voltage signal triggers the boost chip to operate, so that the boost chip outputs the first operating voltage V1 to the flat motor 429.
  • the first circuit includes: a voltage stabilizing circuit connected in series and a first unidirectional conductive circuit;
  • the first circuit After receiving the first triggering instruction, the first circuit outputs the second working voltage V0 to the flat motor after the first period of time, including:
  • the voltage stabilizing circuit After the input end of the voltage stabilizing circuit receives the first triggering instruction, the voltage stabilizing circuit outputs the second working voltage V0, and the first unidirectional conducting circuit prevents the The output power of the boost circuit is poured into The first circuit.
  • the first circuit further includes a slow stop circuit; the slow stop circuit is connected in series between the processor and the voltage stabilizing circuit; and the slow stop circuit includes The energy storage component;
  • the driving circuit further includes a switching circuit, the switching circuit includes a grounding circuit and a control circuit; and the driving method further includes:
  • the signal triggering circuit sends a stop motor running command to the processor
  • the slow stop circuit provides a trigger voltage to the voltage stabilizing circuit during a second time period after the processor stops sending the first trigger command to the voltage processing circuit, triggering the voltage stabilizing circuit to work, Said regulator circuit output voltage;
  • control circuit connects the output voltage of the voltage stabilizing circuit to the negative terminal of the flat motor while grounding the positive terminal of the flat motor through the ground circuit.
  • the electronic device 400 is only one example provided by the present application, and that the electronic device 400 may have more or fewer components than those shown, two or more components may be combined, or may have components. Different configurations are implemented.
  • the processor in the driving circuit mentioned in the embodiments of the present invention may be a single processor or may be shared with other processors in the terminal. That is, the terminal may include one or more processors, each of which has a different function, and one of the processors has the functions of the processor in the aforementioned driving circuit in addition to other functions.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the above circuit is only a logical function division, and the actual implementation may have another division manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

一种扁平马达(303)的驱动方法、驱动电路(302)及电子设备(300),驱动方法应用于包括信号触发电路(301)、扁平马达(303)的驱动电路(302)、以及扁平马达(303)的电子设备(300);包括如下步骤:信号触发电路(301)向扁平马达(303)的驱动电路(302)发送指示启动扁平马达(303)的启动指令;处理器(3021)接收启动指令后向电压处理电路(3022)发送用于触发电压处理电路(3022)向扁平马达(303)提供正向电压的第一触发指令;电压处理电路(3022)接收到第一触发指令之后,向扁平马达(303)提供第一工作电压V1,并在第一时间段之后,向扁平马达(303)提供第二工作电压V0,V0<V1≤V2,V0为扁平马达(303)的额定电压值,V2为扁平马达(303)启动时能承受的最大正向电压值。其能够在扁平马达(303)振动时,实现快速启动,缩短扁平马达(303)振动时的启动时长,提升了用户体验。

Description

一种扁平马达的驱动方法、驱动电路及电子设备 技术领域
本发明实施例涉及电子技术领域,尤其涉及一种扁平马达的驱动方法、驱动电路及电子设备。
背景技术
振动提醒功能是智能手机等电子设备的常用功能。由于扁平马达具有成本低、结构简单、可靠性强、低噪音、低功耗、震感强等优点,所以扁平马达在电子设备中得到广泛使用。
目前,扁平马达在振动的时候,启动时间较长,不能够快速启动,影响用户体验。
发明内容
本发明实施例提供了一种扁平马达的驱动方法、驱动电路及电子设备,能够在扁平马达振动时,实现快速启动。
第一方面,本发明实施例提供了一种扁平马达的驱动方法,应用于电子设备中,所述电子设备包括信号触发电路、扁平马达的驱动电路以及扁平马达;所述扁平马达的驱动电路包括处理器和电压处理电路;所述驱动方法包括如下步骤:
所述信号触发电路向所述处理器发送指示启动扁平马达的启动指令;
所述处理器接收所述启动指令,并在接收到所述启动指令后向所述电压处理电路发送第一触发指令,所述第一触发指令用于触发所述电压处理电路向所述扁平马达提供正向电压;
所述电压处理电路接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,V0<V1≤V2,其中,所述V0为所述扁平马达的额定电压值,所述V2为所述扁平马达启动时能承受的最大正向电压值。
相对于现有技术使用额定电压进行启动的驱动电路来说,本发明实施例提供的扁平马达的驱动电路有利于加快扁平马达启动。
在本发明一些可能的实施方式中,所述电压处理电路包括升压电路和第一电路,所述升压电路和所述第一电路并联;
所述电压处理电路接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,包括:
所述升压电路接收到所述第一触发指令之后,在第一时间段内向所述扁平马达输出第一工作电压V1;
所述第一电路在接收到所述第一触发指令之后,在所述第一时间段后向所述扁平马达输出所述第二工作电压V0。
在本发明一些可能的实施方式中,所述升压电路包括第一电容C1、第一电阻R1和升压芯片;所述第一电容C1的第一端与所述处理器相连,用于接收所述处理器发送的所述第 一触发指令;所述第一电容C1的第二端通过所述第一电阻R1接地,所述第一电容C1的所述第二端还与所述升压芯片的输入端相连;所述升压芯片的输出端与所述扁平马达相连;
所述升压电路接收到所述第一触发指令之后,在第一时间段内向所述扁平马达输出第一工作电压V1,包括:
所述第一电容C1的第一端接收到所述第一触发指令之后,在第一时间段内所述第一电容的第二端向所述升压芯片的输入端提供大于所述升压芯片最低工作电压的电压信号,触发所述升压芯片工作,使所述升压芯片向所述扁平马达输出所述第一工作电压V1。
在本发明一些可能的实施方式中,所述第一电路包括:串联连接的稳压电路和第一单向导通电路;
所述第一电路在接收到所述第一触发指令之后,在所述第一时间段后向所述扁平马达输出所述第二工作电压V0,包括:
所述稳压电路的输入端在接收到所述第一触发指令之后,所述稳压电路输出所述第二工作电压V0,所述第一单向导通电路在所述第一时间段内防止所述升压电路的输出电能倒灌入所述第一电路。
在本发明一些可能的实施方式中,所述第一电路还包括缓停电路;所述缓停电路串联连接在所述处理器和稳压电路之间;所述缓停电路包括储能元件;所述驱动电路还包括开关电路,所述开关电路包括接地电路和控制电路;所述驱动方法还可以包括:
所述信号触发电路向所述处理器发送停止马达运行指令;
所述处理器接收到所述停止马达运行指令时,停止向所述电压处理电路发送所述第一触发指令;
所缓停电路在所述处理器停止向所述电压处理电路发送所述第一触发指令起,在第二时间段内向所述稳压电路提供触发电压,触发所述稳压电路工作,使所述稳压电路输出电压;
在所述第二时间段内,所述控制电路将所述稳压电路的输出电压连接到所述扁平马达的负极端,同时将所述扁平马达的正极端通过所述接地电路接地。
通过在第一时间段内向扁平马达提供超过额定电压的正向电压,可以加快扁平马达启动,通过在第二时间段内给扁平马达施加反向电压,可以加速扁平马达制动,加速扁平马达快速停止,因此该技术方案有利于使扁平马达快速启动和快速停止。
第二方面,本发明实施例提供了一种扁平马达的驱动电路,包括:处理器和电压处理电路;其中,
所述处理器,用于接收指示启动扁平马达的启动指令,以及在接收到所述启动指令后向所述电压处理电路发送第一触发指令,所述第一触发指令用于触发所述电压处理电路向所述扁平马达提供正向电压;
所述电压处理电路,用于在接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,V0<V1≤V2,其中,所述V0为所述扁平马达的额定电压值,所述V2为所述扁平马达启动时能承受的最大正向电压值。
在本发明一些可能的实施方式中,所述电压处理电路包括升压电路和第一电路,所述升压电路和所述第一电路并联;
所述升压电路,用于在接收到所述第一触发指令之后,在所述第一时间段内输出所述第一工作电压V1;
所述第一电路,用于在接收到所述第一触发指令之后,输出所述第二工作电压V0。
在本发明一些可能的实施方式中,所述升压电路包括第一电容C1、第一电阻R1和升压芯片;其中,
所述第一电容C1的第一端与所述处理器相连,用于接收所述处理器发送的所述第一触发指令;所述第一电容C1的第二端通过所述第一电阻R1接地,所述第一电容C1的所述第二端还与所述升压芯片的输入端相连;所述升压芯片的输出端与所述扁平马达相连,用于向所述扁平马达提供所述第一工作电压V1;
所述第一触发指令为电压信号V3,V4≤V3≤V5,所述V4是所述升压芯片的最低工作电压值,所述V5是所述升压芯片的最高工作电压值。
在本发明一些可能的实施方式中,所述第一电路包括:串联连接的稳压电路和第一单向导通电路,所述稳压电路的输入端与所述处理器的输出端相连,所述稳压电路的输出端与所述第一单向导通电路的输入端相连,所述第一单向导通电路的输出端与所述升压芯片的输出端相连;
所述第一单向导通电路,用于防止所述升压电路电能倒灌;
所述稳压电路,用于向所述扁平马达提供稳定的工作电压。
在本发明一些可能的实施方式中,所述处理器还用于,在接收到停止马达运行指令时,停止向所述电压处理电路发送所述第一触发指令;
所述第一电路还包括缓停电路;所述缓停电路串联连接在所述处理器和所述稳压电路的输入端之间;所述缓停电路包括储能元件,用于在所述处理器停止向所述电压处理电路发送所述第一触发指令之后,在第二时间段内向所述稳压电路提供触发电压,触发所述稳压电路输出电压;
所述驱动电路还包括开关电路,所述开关电路包括接地电路和控制电路,其中,所述控制电路的输入端与所述接地电路、所述处理器、所述电压处理电路的输出端相连,所述控制电路的输出端与所述扁平马达的正极端和负极端相连;其中,
所述控制电路,用于在所述处理器向所述电压处理电路发送所述第一触发指令时,将所述电压处理电路的输出端与所述扁平马达的正极端相连,同时将所述扁平马达的负极端通过所述接地电路接地;以及,在所述处理器停止向所述电压处理电路发送所述第一触发指令时,将所述电压处理电路的输出端与所述扁平马达的负极端相连,同时将所述扁平马达的正极端通过所述接地电路接地。
本实施例中,通过在第一时间段内向扁平马达提供超过额定电压的正向电压,可以加快扁平马达启动,通过在第二时间段内给扁平马达施加反向电压,可以加速扁平马达制动,加速扁平马达快速停止,因此该技术方案有利于使扁平马达快速启动和快速停止。
在本发明一些可能的实施方式中,所述缓停电路包括第二电容C2和第二电阻R2,其 中,
所述第二电阻R2的第一端与所述处理器相连,所述第二电阻R2的第二端与所述稳压电路的输入端相连;
所述第二电容C2的第一端分别与所述稳压电路的输入端和所述第二电阻R2的第二端相连,所述第二电容C2的第二端接地。
在本发明一些可能的实施方式中,所述接地电路可以为电源地。
在本发明一些可能的实施方式中,所述接地电路可以包括:金属氧化物半导体MOS管和第二单向导通电路;所述MOS管的栅极G分别与所述第二电阻R2的第二端和所述第二电容C2的第一端相连,所述第一电容C1的第二端通过所述第二单向导通电路与所述MOS管的栅极G相连,所述MOS管的源极S接地,所述MOS管的漏极D与所述控制电路相连。
在本发明一些可能的实施方式中,所述稳压器为低压差线性稳压器LDO。
第三方面,本发明实施例提供了一种电子设备,所述电子设备包括电连接的信号触发电路、扁平马达驱动电路和扁平马达;
所述扁平马达驱动电路分别与所述信号触发电路和所述扁平马达电连接;所述扁平马达驱动电路用于在所述信号触发电路的控制下向所述扁平马达提供输入电压;
所述扁平马达驱动电路为前面所述第二方面或者第二方面任一实施例所述的扁平马达的驱动电路。
在本发明一些可能的实施方式中,所述信号触发电路为指纹传感器。
本发明实施例,当扁平马达的驱动电路接收到启动扁平马达的启动指令时,处理器向电压处理电路发送第一触发指令,第一触发指令触发电压处理电路向扁平马达提供正大于额定电压值的正向电压,由于驱动电路向扁平马达提供的正向电压大于额定电压,因此,本发明实施例有利于加快扁平马达启动,提升了用户体验。
在一些改进的实施例中,通过在第一时间段内向扁平马达提供超过额定电压的正向电压,可以加快扁平马达启动,通过在第二时间段内给扁平马达施加反向电压,可以加速扁平马达制动,加速扁平马达快速停止,因此本发明的一些实施例有利于使扁平马达快速启动和快速停止。
附图说明
图1A为本发明实施例提供的一种扁平马达的驱动电路的结构示意图。
图1B为本发明实施例提供的另一种扁平马达的驱动电路的结构示意图。
图1C为本发明实施例提供的另一种扁平马达的驱动电路的结构示意图。
图2A为本发明实施例提供的一种扁平马达的驱动电路的结构示意图。
图2B为本发明实施例提供的另一种扁平马达的驱动电路的结构示意图。
图2C为本发明实施例提供的另一种扁平马达的驱动电路的结构示意图。
图2D为本发明实施例提供的另一种扁平马达的驱动电路的结构示意图。
图3为本发明实施例提供的一种电子设备的结构示意图。
图4为本发明实施例提供的一种电子设备的结构示意图。
具体实施方式
本发明实施例提供了一种扁平马达的驱动方法、驱动电路及电子设备,能够在扁平马达振动时,实现快速启动。
设置有扁平马达的手机、个人数字助理等电子设备,有时会以振动的方式与用户交互,具体地,扁平马达运行后产生振动,通过振动向用户反馈某个事件的状态。
比如,在手机熄屏时,若用户按压指纹传感器,在输入的指纹与预设指纹匹配时,处理器控制手机解锁,同时,处理器提供触发信号,触发扁平马达启动,产生振动效果,通过这种方式使用户感知到触感。再比如,当用户通过点击方式选中触摸屏中某个应用的快捷图标时,处理器提供触发信号,触发扁平马达运行,产生振动,提醒用户已选中某个应用的快捷图标。也可以是指纹传感器在检测到被按压时,产生振动效果。需要说明的是,对触发马达振动的场景不做限定。
本发明实施例中,处理器控制扁平马达在刚开始启动时,被大于额定电压的高电压驱动,这样有利于扁平马达快速启动,使用户能感受到的振动更敏锐。
在本发明另一些可能的实施方式中,在触发马达停止振动时,处理器可以控制马达在反向电压的作用下制动,这样有利于马达快速停止,进一步提升了用户体验。
请参阅图1A为本发明实施例提供的一种扁平马达的驱动电路的结构示意图。图1A所示的扁平马达的驱动电路100包括:处理器110和电压处理电路120。其中,处理器110,用于接收指示启动扁平马达的启动指令,以及在接收到启动指令后向电压处理电路120发送第一触发指令,第一触发指令用于触发电压处理电路120向扁平马达200提供正向电压V1,V0<V1≤V2,其中,V0为所述扁平马达200的额定电压值,V2为所述扁平马达200启动时瞬间能承受的最大正向电压值。电压处理电路120,用于向扁平马达200提供工作电压,在本发明一些可能的实施方式中,如图1B所示,电压处理电路120可以包括升压电路121,用于在接收到第一触发指令时向扁平马达200提供电压值为V1的正向电压。
启动指令可以是通过指纹传感器等信号触发电路触发,比如当用户按压指纹传感器时,若输入的指纹与预设的指纹匹配,则触发启动扁平马达的启动指令。在本发明一些可能的实施方式中,启动指令也可以是当用户点击显示界面上某个应用的快捷图标时触发。
举例来说,当启动指令通过指纹传感器触发时,若扁平马达的额定电压V0为3V,扁平马达启动时能承受的最大正向电压V2为6V,需要说明的是,V2是指扁平马达在短暂时间区间内可以承受的最大正向电压。当处理器110接收到启动指令时,处理器110向电压处理电路120发送第一触发指令,触发电压处理电路120向扁平马达200提供5V的正向电压,则扁平马达200在5V的正向电压下进行启动,相对于现有技术使用额定电压3V进行启动的驱动电路来说,本发明实施例提供的扁平马达的驱动电路有利于加快扁平马达启动。
在本发明一些可能的实施方式中,如图1B所示,升压电路121可以包括第一电容C1、第一电阻R1、和升压芯片1211;其中,第一电容C1的第一端与处理器110相连,第一电 容C1的第二端通过第一电阻R1接地,第一电容C1的第二端还与升压芯片1211的输入端相连,升压芯片1211的输出端与扁平马达200相连。
处理器110向电压处理电路120发送的第一触发指令可以是电压信号V3,V4≤V3≤V5,所述V4是所述升压芯片1211的最低工作电压,所述V5是所述升压芯片1211的最高工作电压。举例来说,在本发明一个实施例中,V3为1.8V,V4为1V,V5为2V,升压芯片1211在工作电压下的输出电压为5V。具体地,则当处理器110向第一电容C1的第一端输出1.8V的电压信号时,第一电容C1的第二端电压由0V瞬间感应到1.8V,感应电压大于V4,所以升压芯片1211工作,升压芯片1211的输出电压为5V,第一电容C1通过第一电阻R1放电,第一电容C1的第二端的电压逐渐降低,当第一电容C1的第二端的电压低于1V(升压芯片1211的最低工作电压)时,升压芯片1211不工作。
在本发明一些可能的实施方式中,电压处理电路可以如图1C所示,包括与升压电路121并联的第一电路122,第一电路122包括:串联连接的稳压电路1221和第一单向导通电路1222;第一单向导通电路1222的输入端与稳压电路1221的输出端相连,第一单向导通电路1222的输出端与升压芯片1211的输出端相连,第一单向导通电路1222用于防止升压电路电能倒灌,在本发明一些可能的实施方式中第一单向导通电路1222可以是二极管,二极管的正极与稳压电路1221的输出端相连,二极管的负极与升压芯片1211的输出端相连;稳压电路1221,用于向所述扁平马达200提供稳定的工作电压。
处理器110发送第一触发指令(比如,第一触发指令可以是输出1.8V电压信号)后,第一电路122的输出电压为V0,V0=3V。可以理解的是,当升压电路121中的升压芯片1211输出5V电压时,电压处理电路120的输出电压为5V。稳压电路1221接收到电压值位于其工作电压范围内的输入信号时,稳压电路1221输出稳定的3V电压,根据电路原理这时电压处理电路的输出电压为升压电路对应的输出电压5V。
随着第一电容C1通过第一电阻R1放电,第一电容C1第二端的电压逐渐降低,当低于升压芯片1211的最低工作电压时,升压芯片1211不工作,需要说明的是,在本发明一些可能的实施方式中,处理器110发送第一触发指令之后,在接收到停止马达运行指令之前,处理器110持续发送第一触发指令(比如,持续输出1.8V电压),在处理器110的输出电压大于或者等于稳压电路1221的工作电压(1V~2V)的下限1V,并且小于或者等于上限2V时,稳压电路1221输出3V电压,电压处理电路的输出电压为第一电路的输出电压3V。即在处理器110接收到启动指令后,扁平马达的驱动电路100在扁平马达200启动时,先通过升压电路121向扁平马达200提供超过扁平马达200额定电压的高电压,当升压电路1211中的第一电容C1通过第一电阻R1放电,使得第一电容C1的第二端的电压降到升压芯片1211的最低工作电压以下时,升压电路停止工作,然后电压处理电路120通过稳压电路1221向扁平马达200提供额定电压。由图1C可知,为了防止升压芯片1211输出高电压时电流倒灌入第一电路122,在第一电路122中设置了第一单向导通电路1222,在本发明一些可能的实施方式中,第一单向导通电路1222可以是二极管,二极管的正极与稳压电路1221的输出端相连,二极管的负极与升压芯片1211的输出端相连。
为了使扁平马达不仅可以实现快起,而且可以实现快停,从而提升扁平马达振动时触感的敏锐性,在本发明一些可能的实施方式中,对图1C所示的扁平马达的驱动电路进行了进一步的优化,使扁平马达不仅可以实现快速启动,而且可以实现快速停止。具体地,如图2A所示。相对于图1C所示的扁平马达的驱动电路来说,图2A中的电路增加了缓停电路1223和开关电路123。
在图2A所示的实施方式中,处理器110在接收到停止马达运行指令时,处理器110向电压处理电路120提供的输入电压为0V。缓停电路1223串联连接在处理器110的输出端和稳压电路1221的输入端之间。缓停电路1223包括储能元件,用于处理器110在接收到停止马达运行指令之后、向电压处理电路120提供的电压信号低于稳压电路1221的最小工作电压时,向稳压电路1221提供时长为第二时间段的启动触发信号(即大于1V的电压),延缓稳压电路1221输出电压降为0的时间点。比如,若稳压电路1221的工作电压为1V~2V,在缓停电路1223的控制下,稳压电路1221的输入电压低于1V的时间点延迟了。在开关电路123的控制下,稳压电路1221向扁平马达200提供反向电压。具体地,在处理器110接收到停止马达运行指令时,处理器110向开关电路123发送控制信号,开关电路123在接收到控制信号后,将第一电路122的输出电压与扁平马达的负极端相连,将扁平马达的正极端接地,即在控制扁平马达200停止时,扁平马达的驱动电路100向扁平马达200提供了反向电压,这样有利于加快扁平马达200停止。
在本发明一些可能的实施方式中,稳压器可以是低压差线性稳压器(Low Dropout Regulator,LDO)。
在本发明一些可能的实施方式中,如图2B所示,开关电路123可以包括控制电路1231和接地电路1232,其中,控制电路1231的输入端与接地电路、处理器、以及升压芯片1211的输出端相连,控制电路1231的输出端与扁平马达200的正极端和负极端相连;控制电路1231,用于在处理器向电压处理电路发送第一触发指令时,将升压芯片1211的输出端与扁平马达的正极端相连,同时将扁平马达的负极端通过接地电路接地。控制电路还用于,在处理器110接收到停止马达运行指令时,处理器110不再向电压处理电路发送第一触发信号,将升压芯片1211的输出端与扁平马达200的负极端相连,同时将扁平马达200的正极端通过接地电路1232接地。通过这种方式,实现在处理器110接收到停止马达运行指令后,扁平马达200在反向电压下制动,有利于加快扁平马达200停止。
在本发明一些可能的实施方式中,如图2B所示,缓停电路1223可以包括第二电容C2和第二电阻R2,其中,第二电阻R2的第一端与处理器110的输出端相连,第二电阻R2的第二端与稳压电路1221的输入端相连;第二电容C2的第一端与第二电阻R2的第二端相连,第二电容C2的第二端接地。
在本发明一些可能的实施方式中,如图2C所示,接地电路1232为电源地。
在本发明一些可能的实施方式中,如图2D所示,接地电路1232可以包括:金属氧化物半导体MOS管和第二单向导通电路12321;MOS管的栅极G与第二电阻R2的第二端相连,第一电容C1的第二端通过第二单向导通电路与MOS管的栅极G相连,MOS管的源极S接地,MOS管的漏极D与所述控制电路1231的输入端相连。因此,第一电容C1 的第一端为高电平或者缓停电路1223的第二电容C2的第一端为高电平时MOS管栅极G到源极S导通,漏极D电压为0,则接地电路1232向控制电路1231提供0V电压。即当扁平马达200开始启动时,在第一时间段(即处理器110接收到启动指令开始,第一电容C1的第二端的电压高于升压芯片1211工作电压的最低值对应的时间段)接地电路向控制电路提供0V输出电压。
需要说明的是,本发明实施例中提供的稳压电路1221可以是可控的稳压电路,即终端可以通过前述的第一触摸指令来控制稳压电路1221输出或不输出电压。在另一种实现方式中,本发明实施例中提供的稳压电路1221也可以是不可控的稳压电路。例如:当该稳压电路兼容系统的稳压器(例如LDO)时,或者当该稳压电路是终端中公用的稳压器(例如LDO)时,所述的稳压器为不可控的稳压电路。也就是说,该不可控的稳压电路始终输出有工作电压。在本发明实施例中,对于不可控的稳压电路,可以通过控制接地电路来控制快起的过程。在所述扁平马达无需工作时,通过控制接地电路,使得扁平马达不接地,由此稳压电路与扁平马达之间的电路不连通;虽然稳压电路在输出电压,但由于电路不连通,所以扁平马达没有被供电。当该扁平马达需要被启动时,通过控制该接地电路使得马达接地,由此连通稳压电路与扁平马达之间的电路。
扁平马达的驱动电路运行时可以分为三个阶段,即:第一阶段、第二阶段、和第三阶段。
其中,第一阶段是扁平马达200启动阶段,也是升压电路121向控制电路1231输出高电压信号阶段,对应时长为第一时间段,第一时间段从处理器110接收到启动指令开始,到第一电容C1的第二端电压开始低于升压芯片1211的最低工作电压对应的时间点为止的时间区间,升压芯片1211工作时,其输出端的电压大于扁平马达200的额定电压。在第一阶段,接地电路1232输出0V电压。控制电路将升压芯片1211的输出端与扁平马达的正极端相连,将接地电路与扁平马达的负极端相连,这样扁平马达可以在大于额定电压的情况下,快速启动。
第二阶段为第一电路122向控制电路1231输出稳定电压阶段,输出电压值为扁平马达200的额定电压。即在第一阶段第一电容C1通过第一电阻R1放电,当升压电路不输出高于扁平马达200的额定电压时,第一阶段结束第二阶段开始,在第二阶段,扁平马达在额定电压驱动下运行。
第三阶段从处理器接收到停止马达运行指令开始,这时第一电路122开始向扁平马达200提供反向电压,第三阶段到第一电路122不再向扁平马达200提供输出电压为止,对应时长为第二时间段。在第三阶段,处理器停止向电压处理电路发送第一触发指令,升压电路121不工作,第一电路122中的缓停电路1223向稳压电路1221提供触发指令,触发稳压电路1221在处理器110接收到停止马达运行指令后任然可以继续工作一段时间。因为第一电路中包括具有储能功能的第二电容C2,所以在处理器不再输出触发信号时,第一电路122可以继续输出一段时间电压,在第三阶段,控制电路1231将第一电路122的输出端与扁平马达的负极端相连,将接地电路1232的输出端与扁平马达200的正极端相连,即在 马达开始停止运行时给扁平马达提供反向驱动电路,这样有利于扁平马达快速制动,加快了扁平马达停止。可以理解的,第一阶段和第二阶段的时长可以通过改变第一电容、第一电阻、第二电容、第二电阻的值来调节。
通过仿真实验测试本发明实施例提供的电路能够有很好的快起快停效果。具体如下:分别采用现有技术和本发明实施例提供的技术方案进行仿真实验,得到如下数据:在控制扁平马达启动时,现有技术的启动时间为162ms,采用本发明实施例提供的技术方案后扁平马达的启动时间缩短为62ms。在控制扁平马达停止时,现有技术的停止时间为117ms,采用本发明实施例提供的技术方案后扁平马达的停止时间缩短为41ms。
请参阅图3,图3为本发明实施例提供的一种电子设备300的结构示意图,具体地,如图3所示,电子设备300包括电连接的信号触发电路301、扁平马达的驱动电路302、和扁平马达303。扁平马达的驱动电路302包括电连接的处理器3021和电压处理电路3022。其中,信号触发电路301,用于向扁平马达驱动电路302中的处理器3021发送启动扁平马达的启动指令、停止扁平马达运行的停止马达运行指令等,扁平马达的驱动电路302可以为前面任一实施例中所述的扁平马达的驱动电路。具体地,扁平马达的驱动电路可以参见本发明实施例对图1A至图1C或者图2A至图2D中任一扁平马达的驱动电路的描述,为简洁描述,在这里不再赘述。
请参见图4,图4是本申请提供的一种电子设备的实现方式的结构示意图。该电子设备可以是手机,如图4所示,电子设备400可包括:基带芯片410、存储器415(一个或多个计算机可读存储介质)、射频(RF)模块416、外围系统417、电压处理电路427、开关电路428、扁平马达429等。这些部件可在一个或多个通信总线414上通信。
外围系统417主要用于实现电子设备400和用户/外部环境之间的交互功能,主要包括电子设备400的输入输出装置。具体实现中,外围系统417可包括:触摸屏控制器418、摄像头控制器419、音频控制器420以及传感器管理模块421。其中,各个控制器可与各自对应的外围设备(如触摸屏423、摄像头424、音频电路425以及传感器426)耦合。需要说明的,外围系统417还可以包括其他I/O外设。
基带芯片410可集成包括:一个或多个处理器411、时钟模块412以及电源管理模块413。集成于基带芯片410中的时钟模块412主要用于为处理器411产生数据传输和时序控制所需要的时钟。集成于基带芯片410中的电源管理模块413主要用于为处理器411、射频模块416以及外围系统提供稳定的、高精确度的电压。
射频(RF)模块416用于接收和发送射频信号,主要集成了电子设备400的接收器和发射器。射频(RF)模块416通过射频信号与通信网络和其他通信设备通信。具体实现中,射频(RF)模块416可包括但不限于:天线系统、RF收发器、一个或多个放大器、调谐器、一个或多个振荡器、数字信号处理器、CODEC芯片、SIM卡和存储介质等。在一些实施例中,可在单独的芯片上实现射频(RF)模块416。
存储器415与处理器411耦合,用于存储各种软件程序和/或多组指令。具体实现中, 存储器415可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器415可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器415还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器415还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
以电子设备400处于熄屏状态,利用指纹传感器校验指纹,若指纹匹配则唤醒屏幕,同时扁平马达振动这个场景为例,描述对扁平马达的驱动过程。
若传感器426中的指纹传感器获取用户输入的指纹信息,将输入的指纹信息与存储器中预设的指纹信息进行比较,若匹配,则传感器管理模块221向处理器411发送指示启动扁平马达429的启动指令,处理器411接收到启动指令后向电压处理电路427发送第一触发指令,第一触发指令用于触发电压处理电路向扁平马达提供正向电压,电压处理电路427接收到所述第一触发指令之后,向扁平马达429提供第一工作电压V1,并在第一时间段之后,向扁平马达429提供第二工作电压V0,V0<V1≤V2,其中,所述V0为所述扁平马达429的额定电压值,所述V2为所述扁平马达429启动时能承受的最大正向电压值。
在本发明一些可能的实施方式中,电压处理电路427包括升压电路和第一电路,升压电路和所述第一电路并联;电压处理电路427接收到第一触发指令之后,向扁平马达429提供第一工作电压V1,并在第一时间段之后,向扁平马达429提供第二工作电压V0,包括:升压电路接收到第一触发指令之后,在第一时间段内向扁平马达429输出第一工作电压V1;第一电路在接收到第一触发指令之后,在第一时间段后向扁平马达429输出第二工作电压V0。
参见图1B,在本发明一些可能的实施方式中,升压电路包括第一电容C1、第一电阻R1和升压芯片;第一电容C1的第一端与处理器相连,用于接收所述处理器发送的所述第一触发指令;第一电容C1的第二端通过第一电阻R1接地,第一电容C1的第二端还与升压芯片的输入端相连;升压芯片的输出端与扁平马达相连;
升压电路接收到第一触发指令之后,在第一时间段内向扁平马达输出第一工作电压V1,包括:
第一电容C1的第一端接收到第一触发指令之后,在第一时间段内所述第一电容的第二端向所述升压芯片的输入端提供大于所述升压芯片最低工作电压的电压信号,触发升压芯片工作,使升压芯片向扁平马达429输出第一工作电压V1。
在本发明一些可能的实施方式中,参见图1C,第一电路包括:串联连接的稳压电路和第一单向导通电路;
所述第一电路在接收到所述第一触发指令之后,在所述第一时间段后向所述扁平马达输出所述第二工作电压V0,包括:
稳压电路的输入端在接收到所述第一触发指令之后,所述稳压电路输出所述第二工作电压V0,所述第一单向导通电路在所述第一时间段内防止所述升压电路的输出电能倒灌入 所述第一电路。
在本发明一些可能的实施方式中,参见图2A,所述第一电路还包括缓停电路;所述缓停电路串联连接在所述处理器和稳压电路之间;所述缓停电路包括储能元件;所述驱动电路还包括开关电路,所述开关电路包括接地电路和控制电路;所述驱动方法还包括:
所述信号触发电路向所述处理器发送停止马达运行指令;
所述处理器接收到所述停止马达运行指令时,停止向所述电压处理电路发送所述第一触发指令;
所缓停电路在所述处理器停止向所述电压处理电路发送所述第一触发指令起,在第二时间段内向所述稳压电路提供触发电压,触发所述稳压电路工作,使所述稳压电路输出电压;
在所述第二时间段内,所述控制电路将所述稳压电路的输出电压连接到所述扁平马达的负极端,同时将所述扁平马达的正极端通过所述接地电路接地。
可以理解的,前面描述的只是一种可能的实现场景,还可以在其他场景(比如检测到指纹时)使用本发明实施例的技术方案来实现扁平马达快速启动,或者同时实现扁平马达快速启动和快速停止。
应当理解,电子设备400仅为本申请提供的一个例子,并且,电子设备400可具有比示出的部件更多或更少的部件,可以组合两个或更多个部件,或者可具有部件的不同配置实现。
需要说明的是,本发明各实施例中提到的驱动电路中的处理器,可以是一个单独的处理器,也可以与终端中的其它处理器共用。即终端中可以包括一个或多个处理器,这些处理器分别具有不同的功能,其中一个处理器除了具有其它功能之外,还能具有前述的驱动电路中的处理器的功能。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述电路的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种扁平马达的驱动方法,其特征在于,应用于电子设备中,所述电子设备包括信号触发电路、扁平马达的驱动电路以及扁平马达;所述扁平马达的驱动电路包括处理器和电压处理电路;所述驱动方法包括如下步骤:
    所述信号触发电路向所述处理器发送指示启动扁平马达的启动指令;
    所述处理器接收所述启动指令,并在接收到所述启动指令后向所述电压处理电路发送第一触发指令,所述第一触发指令用于触发所述电压处理电路向所述扁平马达提供正向电压;
    所述电压处理电路接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,V0<V1≤V2,其中,所述V0为所述扁平马达的额定电压值,所述V2为所述扁平马达启动时能承受的最大正向电压值。
  2. 根据权利要求1所述的驱动方法,其特征在于,所述电压处理电路包括升压电路和第一电路,所述升压电路和所述第一电路并联;
    所述电压处理电路接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,包括:
    所述升压电路接收到所述第一触发指令之后,在第一时间段内向所述扁平马达输出第一工作电压V1;
    所述第一电路在接收到所述第一触发指令之后,在所述第一时间段后向所述扁平马达输出所述第二工作电压V0。
  3. 根据权利要求2所述的驱动方法,其特征在于,
    所述升压电路包括第一电容C1、第一电阻R1和升压芯片;所述第一电容C1的第一端与所述处理器相连,用于接收所述处理器发送的所述第一触发指令;所述第一电容C1的第二端通过所述第一电阻R1接地,所述第一电容C1的所述第二端还与所述升压芯片的输入端相连;所述升压芯片的输出端与所述扁平马达相连;
    所述升压电路接收到所述第一触发指令之后,在第一时间段内向所述扁平马达输出第一工作电压V1,包括:
    所述第一电容C1的第一端接收到所述第一触发指令之后,在第一时间段内所述第一电容的第二端向所述升压芯片的输入端提供大于所述升压芯片最低工作电压的电压信号,触发所述升压芯片工作,使所述升压芯片向所述扁平马达输出所述第一工作电压V1。
  4. 根据权利要求2或3所述的驱动方法,其特征在于,
    所述第一电路包括:串联连接的稳压电路和第一单向导通电路;
    所述第一电路在接收到所述第一触发指令之后,在所述第一时间段后向所述扁平马达输出所述第二工作电压V0,包括:
    所述稳压电路的输入端在接收到所述第一触发指令之后,所述稳压电路输出所述第二工作电压V0,所述第一单向导通电路在所述第一时间段内防止所述升压电路的输出电能倒灌入所述第一电路。
  5. 根据权利要求4所述的驱动方法,其特征在于,所述第一电路还包括缓停电路;所述缓停电路串联连接在所述处理器和稳压电路之间;所述缓停电路包括储能元件;所述驱动电路还包括开关电路,所述开关电路包括接地电路和控制电路;所述驱动方法还包括:
    所述信号触发电路向所述处理器发送停止马达运行指令;
    所述处理器接收到所述停止马达运行指令时,停止向所述电压处理电路发送所述第一触发指令;
    所缓停电路在所述处理器停止向所述电压处理电路发送所述第一触发指令起,在第二时间段内向所述稳压电路提供触发电压,触发所述稳压电路工作,使所述稳压电路输出电压;
    在所述第二时间段内,所述控制电路将所述稳压电路的输出电压连接到所述扁平马达的负极端,同时将所述扁平马达的正极端通过所述接地电路接地。
  6. 一种扁平马达的驱动电路,其特征在于,包括:处理器和电压处理电路;其中,
    所述处理器,用于接收指示启动扁平马达的启动指令,以及在接收到所述启动指令后向所述电压处理电路发送第一触发指令,所述第一触发指令用于触发所述电压处理电路向所述扁平马达提供正向电压;
    所述电压处理电路,用于在接收到所述第一触发指令之后,向所述扁平马达提供第一工作电压V1,并在第一时间段之后,向所述扁平马达提供第二工作电压V0,V0<V1≤V2,其中,所述V0为所述扁平马达的额定电压值,所述V2为所述扁平马达启动时能承受的最大正向电压值。
  7. 根据权利要求6所述的驱动电路,其特征在于,所述电压处理电路包括升压电路和第一电路,所述升压电路和所述第一电路并联;
    所述升压电路,用于在接收到所述第一触发指令之后,在所述第一时间段内输出所述第一工作电压V1;
    所述第一电路,用于在接收到所述第一触发指令之后,输出所述第二工作电压V0。
  8. 根据权利要求7所述的驱动电路,其特征在于,
    所述升压电路包括第一电容C1、第一电阻R1和升压芯片;其中,
    所述第一电容C1的第一端与所述处理器相连,用于接收所述处理器发送的所述第一触发指令;所述第一电容C1的第二端通过所述第一电阻R1接地,所述第一电容C1的所述第二端还与所述升压芯片的输入端相连;所述升压芯片的输出端与所述扁平马达相连,用于向所述扁平马达提供所述第一工作电压V1;
    所述第一触发指令为电压信号V3,V4≤V3≤V5,所述V4是所述升压芯片的最低工作电压值,所述V5是所述升压芯片的最高工作电压值。
  9. 根据权利要求7所述的驱动电路,其特征在于,所述第一电路包括:串联连接的稳压电路和第一单向导通电路,所述稳压电路的输入端与所述处理器的输出端相连,所述稳压电路的输出端与所述第一单向导通电路的输入端相连,所述第一单向导通电路的输出端与所述升压芯片的输出端相连;
    所述第一单向导通电路,用于防止所述升压电路电能倒灌;
    所述稳压电路,用于向所述扁平马达提供稳定的工作电压。
  10. 根据权利要求9所述的驱动电路,其特征在于,
    所述处理器还用于,在接收到停止马达运行指令时,停止向所述电压处理电路发送所述第一触发指令;
    所述第一电路还包括缓停电路;所述缓停电路串联连接在所述处理器和所述稳压电路的输入端之间;所述缓停电路包括储能元件,用于在所述处理器停止向所述电压处理电路发送所述第一触发指令之后,在第二时间段内向所述稳压电路提供触发电压,触发所述稳压电路输出电压;
    所述驱动电路还包括开关电路,所述开关电路包括接地电路和控制电路,其中,所述控制电路的输入端与所述接地电路、所述处理器、所述电压处理电路的输出端相连,所述控制电路的输出端与所述扁平马达的正极端和负极端相连;其中,
    所述控制电路,用于在所述处理器向所述电压处理电路发送所述第一触发指令时,将所述电压处理电路的输出端与所述扁平马达的正极端相连,同时将所述扁平马达的负极端通过所述接地电路接地;以及,在所述处理器停止向所述电压处理电路发送所述第一触发指令时,将所述电压处理电路的输出端与所述扁平马达的负极端相连,同时将所述扁平马达的正极端通过所述接地电路接地。
  11. 根据权利要求10所述的驱动电路,其特征在于,
    所述缓停电路包括第二电容C2和第二电阻R2,其中,
    所述第二电阻R2的第一端与所述处理器相连,所述第二电阻R2的第二端与所述稳压电路的输入端相连;
    所述第二电容C2的第一端分别与所述稳压电路的输入端和所述第二电阻R2的第二端相连,所述第二电容C2的第二端接地。
  12. 根据权利要求10所述的驱动电路,其特征在于,
    所述接地电路为电源地。
  13. 根据权利要求10所述的驱动电路,其特征在于,
    所述接地电路包括:金属氧化物半导体MOS管和第二单向导通电路;所述MOS管的栅极G分别与所述第二电阻R2的第二端和所述第二电容C2的第一端相连,所述第一电容C1的第二端通过所述第二单向导通电路与所述MOS管的栅极G相连,所述MOS管的源极S接地,所述MOS管的漏极D与所述控制电路相连。
  14. 根据权利要求9至13任意一项所述的驱动电路,其特征在于,
    所述稳压器为低压差线性稳压器LDO。
  15. 一种电子设备,其特征在于,所述电子设备包括电连接的信号触发电路、扁平马达驱动电路和扁平马达;
    所述扁平马达驱动电路分别与所述信号触发电路和所述扁平马达电连接;所述扁平马达驱动电路用于在所述信号触发电路的控制下向所述扁平马达提供输入电压;
    所述扁平马达驱动电路为权利要求6至14任意一项所述的扁平马达的驱动电路。
  16. 根据权利要求15所述的电子设备,其特征在于,
    所述信号触发电路为指纹传感器。
PCT/CN2017/105160 2017-05-24 2017-09-30 一种扁平马达的驱动方法、驱动电路及电子设备 WO2018214380A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110479580.7A CN113315419B (zh) 2017-05-24 2017-09-30 一种扁平马达的驱动方法、驱动电路及电子设备
CN201780009219.XA CN108702109B (zh) 2017-05-24 2017-09-30 一种扁平马达的驱动方法、驱动电路及电子设备
US16/616,020 US11264864B2 (en) 2017-05-24 2017-09-30 Flat-motor driving method and drive circuit, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710374736 2017-05-24
CN201710374736.9 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018214380A1 true WO2018214380A1 (zh) 2018-11-29

Family

ID=64396191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105160 WO2018214380A1 (zh) 2017-05-24 2017-09-30 一种扁平马达的驱动方法、驱动电路及电子设备

Country Status (1)

Country Link
WO (1) WO2018214380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264864B2 (en) * 2017-05-24 2022-03-01 Honor Device Co., Ltd. Flat-motor driving method and drive circuit, and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570945A (zh) * 2010-11-15 2012-07-11 北京航天发射技术研究所 永磁同步陀螺马达控制方法及设备
US20130076292A1 (en) * 2011-09-28 2013-03-28 Mitsuba Corporation Sr motor control apparatus
CN103418087A (zh) * 2013-08-19 2013-12-04 廖植生 一种多功能射频康复仪
CN204244260U (zh) * 2014-11-05 2015-04-01 深圳市广和通实业发展有限公司 通信模块的低压开机电路
CN104767440A (zh) * 2015-04-22 2015-07-08 青岛歌尔声学科技有限公司 一种扁平马达控制电路
WO2016092289A1 (en) * 2014-12-08 2016-06-16 Trw Limited Method and apparatus for controlling an electric pump of a hydraulic braking circuit
CN106688173A (zh) * 2014-09-17 2017-05-17 Arm 有限公司 马达驱动器和操作马达驱动器的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570945A (zh) * 2010-11-15 2012-07-11 北京航天发射技术研究所 永磁同步陀螺马达控制方法及设备
US20130076292A1 (en) * 2011-09-28 2013-03-28 Mitsuba Corporation Sr motor control apparatus
CN103418087A (zh) * 2013-08-19 2013-12-04 廖植生 一种多功能射频康复仪
CN106688173A (zh) * 2014-09-17 2017-05-17 Arm 有限公司 马达驱动器和操作马达驱动器的方法
CN204244260U (zh) * 2014-11-05 2015-04-01 深圳市广和通实业发展有限公司 通信模块的低压开机电路
WO2016092289A1 (en) * 2014-12-08 2016-06-16 Trw Limited Method and apparatus for controlling an electric pump of a hydraulic braking circuit
CN104767440A (zh) * 2015-04-22 2015-07-08 青岛歌尔声学科技有限公司 一种扁平马达控制电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11264864B2 (en) * 2017-05-24 2022-03-01 Honor Device Co., Ltd. Flat-motor driving method and drive circuit, and electronic device

Similar Documents

Publication Publication Date Title
US8166331B2 (en) Computer system and operating method thereof
US20200045184A1 (en) Scene-based vibration feedback method and mobile terminal
US10818151B2 (en) Vibration method, electronic device and computer readable storage medium
US11500645B2 (en) Boot method and electronic device
US20070192523A1 (en) Integrated circuit, universal serial bus on-the-go power source and methods for use therewith
US11264864B2 (en) Flat-motor driving method and drive circuit, and electronic device
CN109842755B (zh) 一种马达的控制方法、控制电路及电子设备
US20140189338A1 (en) Electronic device and method for detecting booting time period for electronic device
JP2019527526A (ja) ワイヤレス充電方法及び端末
WO2023024764A1 (zh) 一种电源管理电路及其控制方法、系统
WO2013033948A1 (zh) 移动终端开机控制方法及移动终端
KR101495181B1 (ko) 휴대용 단말기 및 그의 열관리 방법
WO2018214380A1 (zh) 一种扁平马达的驱动方法、驱动电路及电子设备
CN106325454B (zh) 供电控制装置、方法和电子设备
US9250644B2 (en) Power conversion system
US9781679B2 (en) Electronic systems and method of operating electronic systems
JP5091936B2 (ja) ダイナミック電流供給ポンプ
US10298180B2 (en) Control circuit, control method, and electronic device
US20170026933A1 (en) Mobile communication device and prompting method thereof
US8954717B2 (en) System capable of booting through a universal serial bus device and method thereof
US10360041B2 (en) Information processing method and first electronic device
CN105138323A (zh) 一种信息处理方法及电子设备
US9585181B2 (en) Method for finding wireless device by Wi-Fi direct
CN106331950B (zh) 音频装置以及包括音频装置的多媒体装置
KR20190095001A (ko) 신호의 emi를 감소시키는 집적 회로, 방법 및 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910661

Country of ref document: EP

Kind code of ref document: A1