WO2018212337A1 - Thermally expandable resin composition, and multilayer fire-resistant molded article for use as building material - Google Patents

Thermally expandable resin composition, and multilayer fire-resistant molded article for use as building material Download PDF

Info

Publication number
WO2018212337A1
WO2018212337A1 PCT/JP2018/019333 JP2018019333W WO2018212337A1 WO 2018212337 A1 WO2018212337 A1 WO 2018212337A1 JP 2018019333 W JP2018019333 W JP 2018019333W WO 2018212337 A1 WO2018212337 A1 WO 2018212337A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermally expandable
expandable resin
resin
thermoplastic
Prior art date
Application number
PCT/JP2018/019333
Other languages
French (fr)
Japanese (ja)
Inventor
健輔 津村
和洋 沢
聡志 前田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018531262A priority Critical patent/JPWO2018212337A1/en
Publication of WO2018212337A1 publication Critical patent/WO2018212337A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor

Definitions

  • the present invention relates to a thermally expandable resin composition and a multilayer fireproof molded article for building materials.
  • a molded body formed by molding a thermally expandable resin composition expands when exposed to heat such as a fire to form a nonflammable expansion residue. Since this expansion residue can be used to prevent the spread of fire and the diffusion of smoke, molded articles including a thermally expandable resin composition layer are widely used for building materials.
  • Thermally expandable graphite is added to the thermally expandable resin composition in order to expand by heating and prevent fire spread (Patent Documents 1 to 3).
  • Patent Document 4 discloses a PVC-based airtight molding material
  • Patent Document 5 discloses a PVC or EPDM multilayer fire-resistant molding material.
  • JP 2013-136939 A JP 2014-159541 A WO2016 / 031905 JP-A-2016-47999 Patent No. 5347103
  • An object of the present invention is to provide a heat-expandable resin composition excellent in appearance, and a multilayer fireproof molded article for building materials including a heat-expandable resin composition layer formed by molding the heat-expandable resin composition.
  • the present invention provides the following thermally expandable resin composition and multilayer fireproof molded article for building materials.
  • Item 1 A heat-expandable resin composition comprising a thermoplastic resin, heat-expandable graphite and an inorganic filler, wherein the heat-expandable resin composition layer formed by molding the heat-expandable resin composition has a tensile elongation at 180 ° C.
  • a heat-expandable resin composition characterized by having a degree of 20% or more and a specific gravity reduction rate under heating at 220 ° C. of 10% or less.
  • Item 2. The thermally expandable resin composition according to Item 1, further comprising a plasticizer.
  • Item 3. Item 3.
  • thermoplastic resin is a mixture of an olefin resin and a rubber resin.
  • Item 4. Item 3. The thermally expandable resin composition according to Item 1 or 2, wherein the thermoplastic resin contains an olefin-based thermoplastic elastomer (TPO) resin.
  • TPO thermoplastic elastomer
  • Olefin-based thermoplastic elastomer (TPO) resin has a resin viscosity at 220 ° C of 1361 Pa ⁇ s (when shear rate is 61 [1 / s]) or less, or 426 Pa ⁇ s (shear rate 365 [1 / s ]
  • item 4 which is the following.
  • Item 6. The thermally expandable resin composition according to any one of Items 1 to 5, further comprising a thermoplastic modifier.
  • Item 7. Item 7.
  • Item 8. Item 8.
  • Item 9. A multilayer molded article for building materials comprising a thermally expandable resin composition layer formed by molding the thermally expandable resin composition according to any one of items 1 to 8.
  • Item 10. Item 10.
  • the multilayer fireproof molded article for building materials according to Item 9 comprising a thermally expandable resin composition layer and a slidable resin composition layer.
  • Item 11 The multilayer fireproof molded article for building materials according to Item 10, wherein the slidable resin composition layer contains a silicone compound or a high molecular weight thermoplastic resin.
  • thermoforming a heat-expandable resin composition capable of obtaining a heat-expandable resin composition layer and a multilayer fireproof molded article for building materials that are excellent in appearance when molded by extrusion molding or the like.
  • the multilayer fireproof molded article for building materials of the present invention has a thermally expandable resin composition layer. For this reason, when the multilayer fireproof molded article for building materials of the present invention is exposed to heat such as a fire, the thermally expandable resin composition layer expands to form an expansion residue.
  • the expansion residue is nonflammable and can close the gap of the sash where the multilayer fireproof molded body for building materials is installed. Since the expansion residue can prevent the flame and smoke generated by a fire or the like from spreading through the gap of the sash, the multilayer fireproof molded article for building materials of the present invention is excellent in fire resistance.
  • the multilayer fireproof molded article for building materials of the present invention can be easily mass-produced by being obtained by co-extrusion of two or more resin composition layers having different compositions, and is airtight, watertight, Excellent flexibility and slidability.
  • Sectional drawing which shows one embodiment of the multilayer fireproof molded object for building materials of this invention
  • Sectional drawing which shows another embodiment of the multilayer fireproof molded object for building materials of this invention.
  • Sectional drawing which shows one embodiment of the multilayer fireproof molded object for building materials of this invention
  • Sectional drawing which shows the state which fitted the multilayer fireproof molded object for building materials of this invention to the frame of a sash
  • the thermally expandable resin composition of the present invention contains a thermoplastic resin, thermally expandable graphite, and an inorganic filler.
  • the multilayer fireproof molded article for building materials of the present invention includes a thermally expandable resin composition layer and at least one other resin composition layer.
  • resin composition layers those having excellent airtightness, watertightness, flexibility and the like are preferable, and examples thereof include a slidable resin composition layer, an airtight resin composition layer, etc., preferably a slidable resin. It may include a composition layer and may further include an airtight resin composition layer.
  • a multilayer fireproof molded body 100 for building materials is composed of a thermally expandable resin composition layer 1, an airtight resin composition layer 2, and a slidable resin composition layer 3.
  • the multilayer fireproof molded body 100 for building materials shown in FIGS. 2 and 3 includes a thermally expandable resin composition layer 1, an airtight resin composition layer 2, and a slidable resin composition layer 3.
  • the thermally expandable resin composition layer 1 is formed with a fixing portion 7 for fitting the building material multilayer fireproof molded body to a building material (for example, a sash).
  • the heat-expandable resin composition layer 1 is formed with a protrusion 4 that protrudes from the heat-expandable resin composition layer 1, and the protrusion 4 has an airtight resin composition layer 2 and a slidable resin composition layer. 3.
  • a slidable resin composition layer 3 is provided on the surface of the protrusion 4.
  • FIG. 4 is a schematic diagram showing a state in which the multilayer fireproof molded body for building materials of the present invention is fixed to a joinery (for example, a sash).
  • a joinery for example, a sash
  • the multilayer fireproof molded article 100 for building materials of the present invention is fitted and fixed to the fitting part of the frame 5 of the joinery by the fixing part 7 provided in the thermally expandable resin composition layer 1.
  • the projection 4 of the multilayer fireproof molded body 100 for building material abuts on the door 6, the gap between the door 6 and the frame body 5 can be filled.
  • Multilayer includes two or more layers, for example, 2 to 5 layers, or 2 to 4 layers, and 2 to 3 layers.
  • the multilayer refractory molded article of the present invention can be produced by coextrusion.
  • two or more layers may be in close contact with each other, or only a part may be in close contact.
  • a part of the A layer and the B layer are in close contact, and a part of the B layer and the C layer may be in close contact. It does not have to be in close contact.
  • the shape of each “layer” may be a planar shape such as a film shape or a sheet shape, but may be formed into various three-dimensional shapes.
  • the heat-expandable resin composition used for the production of a multilayer fireproof molded article for building materials contains a thermoplastic resin, heat-expandable graphite and an inorganic filler, and further includes a plasticizer and thermoplastic modification as optional components.
  • An agent may be included.
  • a thermally expandable resin composition can be obtained by melt-kneading these components and other additives contained as necessary using a known kneading apparatus.
  • the slidable resin composition preferably contains a silicone compound or a high molecular weight thermoplastic resin.
  • the airtight resin composition may further contain a thermoplastic resin, an inorganic filler, and, if necessary, a flame retardant, a plasticizer, and other additives.
  • resin compositions such as a slidable resin composition and an airtight resin composition can be obtained by melt-kneading using a known kneader in the same manner as the heat-expandable resin composition.
  • Examples of the kneading apparatus include an extruder, a kneader mixer, a two-roller, and a Banbury mixer.
  • Thermoplastic resins include olefin resins, rubber resins, olefin thermoplastic elastomers, polystyrene resins, EPDM resins (terpolymers of ethylene, propylene and crosslinking diene monomers), acrylonitrile-butadiene-styrene.
  • Resin, polycarbonate resin, polyphenylene ether resin, acrylic resin, polyamide resin, phenol resin, etc., olefin resin, rubber resin, olefin thermoplastic elastomer are preferred, olefin resin and rubber resin More preferably, a mixture of olefinic thermoplastic elastomer is used.
  • olefin resin examples include polypropylene resin, polyethylene resin, polybutene resin, polypentene resin, and copolymers of two or more of these.
  • the rubber-based resin is not particularly limited as long as it has rubber elasticity at room temperature. Natural rubber, chloroprene rubber (CR), isoprene rubber (IR), butyl rubber (IIR), nitrile-butadiene rubber Synthetic rubbers such as (NBR), butadiene rubber (BR), urethane rubber, fluorine rubber, acrylic rubber, and silicone rubber can be used.
  • Natural rubber chloroprene rubber (CR), isoprene rubber (IR), butyl rubber (IIR), nitrile-butadiene rubber Synthetic rubbers such as (NBR), butadiene rubber (BR), urethane rubber, fluorine rubber, acrylic rubber, and silicone rubber can be used.
  • thermoplastic elastomers examples include copolymers using thermoplastic crystalline polyolefins such as polypropylene and polyethylene for the hard segment and fully or partially vulcanized rubber for the soft segment.
  • thermoplastic crystalline polyolefin examples include a homopolymer of ⁇ -olefin having 1 to 4 carbon atoms or a copolymer of two or more ⁇ -olefins, and polyethylene or polypropylene is preferable.
  • the soft segment component examples include butyl rubber, halobutyl rubber, EPDM, EPR rubber, acrylonitrile / butadiene rubber, NBR, and natural rubber.
  • the TPO may be any of a highly crosslinked type, a medium crosslinked type, an uncrosslinked type, and a pseudo-crosslinked type.
  • olefinic thermoplastic elastomers include 6772 (highly crosslinked type), 4785 (medium crosslinked type) and 822 (uncrosslinked type) (above, manufactured by Sumitomo Chemical Co., Ltd.), 3700N (pseudo-crosslinked type, JSR) Etc.).
  • the resin viscosity (melt viscosity) when a thermoplastic resin containing an olefinic thermoplastic elastomer (TPO) is melted at 220 ° C. is 1361 Pa ⁇ s or less, for example, 664 to 956 Pa ⁇ s at a shear rate of 61 [1 / s].
  • the shear rate is 365 [1 / s]
  • it is 426 Pa ⁇ s or less, for example, 128 to 387 Pa ⁇ s.
  • a preferable blending ratio in the mixture of olefin resin and rubber resin is 30 to 50 parts by mass of olefin resin and 50 to 70 parts by mass of rubber resin, more preferably 30 to 40 parts by mass of olefin resin and 60 to 60 parts of rubber resin. 70 parts by mass can be mentioned.
  • Thermally expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchloric acid, and perchlorine.
  • a graphite intercalation compound is produced by treatment with a strong oxidizing agent such as acid salts, permanganates, dichromates and hydrogen peroxide.
  • the heat-expandable graphite produced is a crystalline compound that maintains the layered structure of carbon.
  • the heat-expandable graphite used in the present invention may be washed with water until the heat-expandable graphite obtained by acid treatment becomes neutral, and ammonia, an aliphatic lower amine, an alkali metal compound, an alkali It may be neutralized with an earth metal compound or the like.
  • Examples of the aliphatic lower amine include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
  • alkali metal compound and alkaline earth metal compound examples include hydroxides such as lithium, potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts.
  • thermally expandable graphite examples include “CA-60S”, “CA-60N” manufactured by Nippon Kasei Co., Ltd., “GREP-EG” manufactured by Tosoh Corporation, and the like.
  • the particle size of the heat-expandable graphite is too fine, the degree of expansion of the graphite is small, and the foamability tends to decrease. Further, if it becomes too large, there is an effect in that the degree of expansion is large, but when kneaded with a resin, the dispersibility is poor and the moldability is lowered, and the mechanical properties of the obtained extruded product tend to be lowered. .
  • the particle size of the thermally expandable graphite is preferably about 20 to 200 mesh.
  • the amount of thermally expandable graphite added to 100 parts by mass of the thermoplastic resin is about 3 to 300 parts by mass, preferably about 10 to 200 parts by mass.
  • the inorganic filler is not particularly limited, for example, silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawn night, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, calcium silicate, talc, clay, my strength, montmorillonite, Bentonite, activated clay, ceviolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, aluminum phosphite, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon bal , Charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconia titanate, aluminum borate,
  • Inorganic fillers can be used alone or in combination of two or more.
  • the amount of the inorganic filler added is small, the fire resistance tends to be reduced, and when it is increased, extrusion molding is difficult, the surface properties of the obtained molded article are deteriorated, and the mechanical properties tend to be lowered.
  • the amount is 3 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the thermoplastic resin.
  • flame retardants include lower phosphates and melamine derivatives.
  • “Lower phosphate” refers to inorganic phosphate that is not condensed, that is, not polymerized.
  • inorganic phosphoric acid include primary phosphoric acid, secondary phosphoric acid, tertiary phosphoric acid, metaphosphoric acid, phosphorous acid, and hypophosphorous acid.
  • Salts include alkali metal salts (lithium salts, sodium salts, potassium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, strontium salts, barium salts), periodic table group 3B metal salts (aluminum salts, etc.) , Transition metal salts (titanium salt, manganese salt, iron salt, nickel salt, copper salt, zinc salt, vanadium salt, chromium salt, molybdenum salt, tungsten salt), ammonium salt, amine salt, for example, guanidine salt or triazine compound And the like, and preferably a metal salt. However, melamine salt is excluded.
  • the lower phosphate is at least one of a metal phosphate and a metal phosphite.
  • the metal phosphite salt may be foamable.
  • the metal phosphite salt may be surface-treated with a surface treatment agent or the like in order to improve the adhesion with the matrix component.
  • a surface treatment agent for example, an epoxy compound, a silane compound, a titanate compound, etc.
  • a functional compound for example, an epoxy compound, a silane compound, a titanate compound, etc.
  • Examples of such a metal salt of lower phosphoric acid include primary aluminum phosphate, primary sodium phosphate, primary potassium phosphate, primary calcium phosphate, primary zinc phosphate, secondary aluminum phosphate, secondary phosphorus.
  • Examples include aluminum, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, and zinc metaphosphate.
  • the content of the lower phosphate is preferably 5 to 400 parts by weight, more preferably 10 to 400 parts by weight, and more preferably 15 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Further preferred. In terms of imparting sufficient flame retardancy and sufficient water resistance to the refractory resin composition, it is preferably 5 parts by mass or more, and if it is 400 parts by mass or less, the water resistance of the refractory resin composition is further improved.
  • nitrogen-containing cyclic compound which has amino groups other than melamine such as melam, melem, and melon
  • the melamine derivative is preferably one or more selected from melamine pyrophosphate, melamine orthophosphate, melamine polyphosphate and melamine borate from the viewpoint of imparting particularly high flame retardancy and being easily available.
  • the content of the melamine derivative is preferably 5 to 400 parts by weight, more preferably 10 to 400 parts by weight, and still more preferably 15 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. .
  • it is preferably 5 parts by mass or more, and if it is 400 parts by mass or less, the water resistance of the refractory resin composition is further improved.
  • a phosphorus compound may be included as a flame retardant.
  • the thermally expandable resin composition constituting the thermally expandable fireproof sheet increases the strength of the expanded heat insulating layer and improves the fireproof performance.
  • the phosphorus compound is not particularly limited.
  • red phosphorus various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate
  • metal phosphates such as potassium phosphate and magnesium phosphate
  • ammonium polyphosphates compounds represented by the following chemical formula (1), and the like.
  • red phosphorus, ammonium polyphosphates, and compounds represented by the following chemical formula (1) are preferable, and ammonium phosphates are more preferable in terms of performance, safety, cost, and the like. .
  • R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • red phosphorus commercially available red phosphorus can be used, but from the viewpoint of safety such as moisture resistance and not spontaneously igniting during kneading, a material in which the surface of red phosphorus particles is coated with a resin is preferably used.
  • the ammonium polyphosphates are not particularly limited, and examples thereof include ammonium polyphosphate and melamine-modified ammonium polyphosphate. Ammonium polyphosphate is preferably used from the viewpoint of handleability and the like. Examples of commercially available products include “AP422” and “AP462” manufactured by Clariant, “FR CROS 484” and “FR CROS 487” manufactured by Budenheim Iberica.
  • the compound represented by the chemical formula (1) is not particularly limited.
  • methylphosphonic acid dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t- Butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphine Acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • t-butylphosphonic acid is preferable in terms of high flame retardancy
  • the plasticizer is not particularly limited, and examples thereof include phthalate plasticizers such as di-2-ethylhexyl phthalate (DOP), dibutyl phthalate (DBP), diheptyl phthalate (DHP), and diisodecyl phthalate (DIDP).
  • DOP di-2-ethylhexyl phthalate
  • DBP dibutyl phthalate
  • DHP diheptyl phthalate
  • DIDP diisodecyl phthalate
  • Fatty acid ester plasticizers such as di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA), dibutyl adipate (DBA), Epoxidized ester plasticizers such as epoxidized soybean oil, Polyester plasticizers such as adipic acid ester and adipic acid polyester, Trimellitic acid ester plasticizers such as tri-2-ethylhexyl trimellitate (TOTM) and triisononyl trimellitate (TINTM), Examples thereof include phosphate plasticizers such as trimethyl phosphate (TMP) and triethyl phosphate (TEP).
  • DOA di-2-ethylhexyl adipate
  • DIBA diisobutyl adipate
  • DBA dibutyl adipate
  • Epoxidized ester plasticizers such as epoxidized soybean oil
  • Polyester plasticizers such as adipic acid ester and adip
  • Plasticizers can be used alone or in combination of two or more.
  • the addition amount of the plasticizer is decreased, the extrusion moldability tends to be lowered, and when it is increased, the obtained molded product tends to be too soft.
  • the addition amount of the plasticizer is 20 to 200 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • thermoplastic modifier examples include fluororesin viscosity modifiers such as PTFE (polytetrafluoroethylene) viscosity modifiers.
  • fluororesin viscosity modifiers such as PTFE (polytetrafluoroethylene) viscosity modifiers.
  • specific examples of the thermoplastic modifier include, for example, “Metablene (A type)” manufactured by Mitsubishi Rayon Co., Ltd.
  • the heat-expandable resin composition layer of the present invention has a tensile elongation at 180 ° C. of preferably 20% or more, more preferably 36% or more, still more preferably 50% or more, and a specific gravity under heating at 220 ° C.
  • the rate of decrease is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less.
  • the specific gravity reduction rate (swelling property) under 220 ° C heating conditions was as follows: 30mm x 30mm x 1mm thickness of 80 ° C pre-vulcanized sample was used as a test piece, and the temperature was adjusted to 220 ° C in a high-temperature oven before vulcanization. It can be calculated by putting a sample (test piece) for 30 minutes and measuring the specific gravity before and after heating.
  • Tensile elongation at 180 ° C is a universal tensile testing machine RTC-1310A manufactured by Orientec Co., Ltd.
  • a test piece of length 100mm x width 20mm x thickness 1mm is measured at 180 ° C, distance between chucks 60mm, test speed 500mm /
  • additives added to the heat-expandable resin composition and the airtight resin composition as necessary include vulcanizing agents, vulcanization accelerators, vulcanization aids, thermal stabilizers, lubricants, processing aids. , Thermal decomposable foaming agents, antioxidants, antistatic agents, pigments and the like.
  • vulcanizing agent examples include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dithiocarbamate, and sulfur and tetramethylthiuram disulfide are preferable.
  • One or two or more vulcanizing agents can be used.
  • the addition amount of the vulcanizing agent with respect to 100 parts by mass of the thermoplastic resin is about 0.1 to 10 parts by mass, preferably about 0.5 to 5 parts by mass.
  • a vulcanization accelerator can be used in combination.
  • vulcanization accelerator thiazole-containing vulcanization accelerator, guanidine-containing vulcanization accelerator, aldehyde amine-containing vulcanization accelerator, imidazoline-containing vulcanization accelerator, thiourea-containing vulcanization accelerator, thiuram-containing vulcanization accelerator
  • examples include dithioate-containing vulcanization accelerators, thiourea-containing vulcanization accelerators, and xanthate-containing vulcanization accelerators.
  • Examples of the thiazole-containing vulcanization accelerator include N-cyclohexyl-2-benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazole sulfenamide, and the like.
  • Examples of the guanidine-containing vulcanization accelerator include diphenyl guanidine and triphenyl guanidine.
  • aldehyde amine-containing vulcanization accelerators examples include acetaldehyde / aniline condensates.
  • imidazoline-containing vulcanization accelerator examples include 2-mercaptoimidazoline and the like.
  • Examples of the thiourea-containing vulcanization accelerator include diethyl thiourea and dibutyl thiourea.
  • Examples of the thiuram-containing vulcanization accelerator include tetramethylthiuram monosulfide and tetramethylthiuram disulfide.
  • dithioate-containing vulcanization accelerator examples include zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate.
  • thiourea-containing vulcanization accelerator examples include ethylenethiourea, N, N′-diethylthiourea and the like.
  • Examples of the xanthate-containing vulcanization accelerator include zinc dibutylxatogenate.
  • One or two or more vulcanization accelerators can be used.
  • the amount of the vulcanization accelerator added to 100 parts by mass of the thermoplastic resin is preferably about 0.1 to 20 parts by mass.
  • the addition amount of the vulcanization accelerator is preferably about 0.1 to 10 parts by mass.
  • a vulcanizing aid can be used in combination.
  • vulcanization aid examples include quinone dioxime vulcanization aids such as p-quinonedioxime, acrylic-containing vulcanization aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate, diallyl phthalate, triallyl isocyania.
  • quinone dioxime vulcanization aids such as p-quinonedioxime
  • acrylic-containing vulcanization aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate, diallyl phthalate, triallyl isocyania.
  • allyl-containing vulcanization aids such as nurate, maleimide-containing vulcanization aids, divinylbenzene, zinc oxide, magnesium oxide, and zinc white.
  • the amount of the vulcanization aid added to 100 parts by mass of the thermoplastic resin is preferably about 1 to 50 parts by mass.
  • the vulcanization reaction can be performed at a temperature of about 150 to 250 ° C., preferably 200 to 230 ° C.
  • crosslinking accelerator examples include tellurium diethyldithiocarbamate, N, N, N ′, N′-tetraethylthiuram disulfide, benzyl diethyldithiocarbamate, and the like.
  • heat stabilizers include lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate and dibasic lead stearate, organic tin mercapto, organic Examples thereof include organotin heat stabilizers such as tin malate, organic tin laurate, and dibutyltin malate, and metal soap heat stabilizers such as zinc stearate and calcium stearate.
  • lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate and dibasic lead stearate
  • organic tin mercapto organic Examples thereof include organotin heat stabilizers such as tin malate, organic tin laurate, and dibutyltin malate, and metal soap heat stabilizers such as zinc stearate and calcium stearate.
  • lubricant examples include waxes such as polyethylene, paraffin, and montanic acid, various ester waxes, organic acids such as stearic acid and ricinoleic acid, organic alcohols such as stearyl alcohol, and amide compounds such as dimethylbisamide. It is done.
  • One or more lubricants can be used.
  • processing aids include chlorinated polyethylene, methyl methacrylate-ethyl acrylate copolymer, and high molecular weight polymethyl methacrylate.
  • antioxidant examples include phenol compounds.
  • antistatic agent examples include amino compounds.
  • the pigment examples include organic pigments such as azo, phthalocyanine, selenium, and dye lake, and inorganic pigments such as oxide, molybdenum chromate, sulfide / selenide, and ferrocyanide. It is done.
  • the multilayer fireproof molded article for building materials of the present invention includes a thermally expandable resin composition layer and a slidable resin composition layer. Furthermore, an airtight resin composition layer may be included.
  • the slidable resin composition used for forming the slidable resin composition layer includes a silicone compound and a high molecular weight thermoplastic resin, and other additives can be added as necessary. .
  • the high molecular weight thermoplastic resin can be slidable on the surface without being melted to improve the slidability.
  • silicone compound examples include organopolysiloxane having at least one organic group bonded to a silicon atom, and the molecular structure thereof may be any of linear, branched, and network.
  • Organic groups bonded to silicon atoms in the organopolysiloxane include alkyl groups such as methyl, ethyl, propyl, butyl, and hexyl groups, alkenyl groups such as vinyl and propenyl groups, and phenyl groups.
  • Examples include aralkyl groups such as aryl groups and phenethyl groups, and those in which some of the hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms, nitrile groups, and the like.
  • Examples of the terminal organic group of the organopolysiloxane include a methyl group, amino group, epoxy group, carbinol group, hydroxyl group, methoxy group, methacryloxy group, carboxyl group, silanol group, and alkoxy group.
  • the silicone compound may be a reaction product of the organopolysiloxane and at least one silane compound, or a reaction product of at least one silane compound.
  • the slidable resin composition layer is composed of a silicone compound
  • the slidable resin composition is an organopolysiloxane having at least one organic group bonded to a silicon atom and / or at least one silane compound.
  • the silane compound forms a silicone compound by a polycondensation reaction.
  • silane compound examples include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, and ⁇ -glycid.
  • tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, and ⁇ -glycid.
  • the resin viscosity (melt viscosity) at 220 ° C. of the high molecular weight thermoplastic resin that can be contained in the slidable resin composition layer is, for example, 664 to 956 Pa ⁇ s at a shear rate of 61 [1 / s], or 128 to 387 ⁇ Pa ⁇ s at a shear rate of 365 [1 / s].
  • the high molecular weight thermoplastic resin include polypropylene resins, polyethylene resins, polybutene resins, polypentene resins, and polyolefin resins such as copolymers of two or more thereof, and polyethylene resins are preferable.
  • the polyethylene resin include high density polyethylene resin, medium density polyethylene resin, low density polyethylene resin, linear low density polyethylene resin, and the like, and high density polyethylene resin is preferable.
  • the slidable resin composition layer is preferably a coating layer.
  • the thickness of the slidable resin composition layer is 30 to 100 ⁇ m.
  • the plurality of resin compositions used in the present invention can be preferably used for extrusion molding.
  • a multilayer fireproof molded article for building materials can be obtained by melting and coextruding at 130 to 170 ° C. with an extruder such as a single screw extruder or a twin screw extruder according to a conventional method.
  • the multilayer fireproof molded body for building materials of the present invention is obtained by cutting the long multilayer fireproof molded body for building materials into an appropriate length according to the application.
  • the multilayer fireproof molded article for building materials of the present invention can be used in combination with a window plate material, for example, a frame (upper frame, lower frame, vertical frame, etc.) such as a sash, a window (a sliding window, a PJ window, etc.), etc. ), Wall (floor wall, upper wall, edge wall, wall, etc.), etc., and fireproof by installing the multilayer fireproof molded body for building materials of the present invention on the outer periphery of the window plate material Sexual sash is obtained.
  • a window plate material for example, a frame (upper frame, lower frame, vertical frame, etc.) such as a sash, a window (a sliding window, a PJ window, etc.), etc. ), Wall (floor wall, upper wall, edge wall, wall, etc.), etc.
  • the multilayer fireproof molded article for building materials of the present invention can be used in combination with a noncombustible frame material.
  • non-combustible frame materials include metals such as aluminum alloys and stainless steel, inorganic materials such as glass and ceramics, and the like.
  • the multi-layer fireproof molded body for building materials and the non-combustible frame material can be bonded to each other with, for example, an adhesive or a double-sided adhesive tape.
  • the multilayer fireproof molded body for building materials and the noncombustible frame material are, for example, a slide rail portion and a slide rail receiving portion that can slide with each other are installed in the multilayer fireproof molded body for building material and the nonflammable frame material, respectively, It can be fixed by combining with a slide rail receiving portion.
  • thermoplastic resin containing a thermoplastic resin, heat-expandable graphite, an inorganic filler, and a thermoplastic modifier as an optional component shown in Table 1
  • thermoplastic modifier as an optional component shown in Table 1
  • the thermally expandable resin composition layer was produced by molding by the method.
  • type A PTFE viscosity modifier
  • Example 9 EPDM resin (Example 9)
  • a vulcanization treatment was performed at 160 ° C. for 15 minutes to produce a thermally expandable resin composition layer.
  • the following additives were blended.
  • Lubricant Brand name 0.9 part by mass of “Stractol WB222” manufactured by Stratitol Corporation was used.
  • Vulcanization accelerating agent Brand name 1.5 parts by mass of “Sakura” manufactured by NOF Corporation.
  • Product name 7.6 parts by mass of “Zinc oxide” manufactured by Sakai Chemical Co., Ltd. was used.
  • Example 10 Production of multilayer molded article A thermally expandable resin composition containing a thermoplastic resin, thermally expandable graphite, an inorganic filler, and a thermoplastic modifier as an optional component shown in Example 6 of Table 1 was prepared as follows. The kneading was carried out under the kneader kneading conditions. In addition, type A (PTFE viscosity modifier) was used for metablene manufactured by Mitsubishi Rayon Co., Ltd. “# 55G” is carbon black.
  • PTFE viscosity modifier PTFE viscosity modifier
  • the multilayer molded product of Example 10 was a multilayer molded product with no appearance such as breakage / sacrifice or waviness and excellent appearance.

Abstract

The present invention provides: a thermally expandable resin composition containing a thermoplastic resin, thermally expandable graphite and an inorganic filler, said composition being characterized in that a thermally expandable resin composition layer, which is produced by molding the thermally expandable resin composition, has a tensile elongation of 20% or more at 180°C and has a specific gravity decreasing rate of 10% or less under the heating condition at 220°C; and a multilayer molded article for use as a building material, which contains a thermally expandable resin composition layer produced by molding the thermally expandable resin composition.

Description

熱膨張性樹脂組成物及び建材用多層耐火成形体Thermally expandable resin composition and multilayer fireproof molded article for building materials
 本発明は、熱膨張性樹脂組成物及び建材用多層耐火成形体に関する。 The present invention relates to a thermally expandable resin composition and a multilayer fireproof molded article for building materials.
 熱膨張性樹脂組成物を成形してなる成形体は、火災等の熱にさらされた場合に膨張して不燃性の膨張残渣を形成する。この膨張残渣を利用して火災の延焼、煙の拡散を防止することができることから、熱膨張性樹脂組成物層を含む成形体は広く建材の用途に使用されている。 A molded body formed by molding a thermally expandable resin composition expands when exposed to heat such as a fire to form a nonflammable expansion residue. Since this expansion residue can be used to prevent the spread of fire and the diffusion of smoke, molded articles including a thermally expandable resin composition layer are widely used for building materials.
 熱膨張性樹脂組成物には、加熱により膨張し延焼を防止するために、熱膨張性黒鉛が添加される(特許文献1~3)。 Thermally expandable graphite is added to the thermally expandable resin composition in order to expand by heating and prevent fire spread (Patent Documents 1 to 3).
 特許文献4は、PVC系気密成形材を開示し、特許文献5は、PVC又はEPDM系多層耐火成形材を開示する。 Patent Document 4 discloses a PVC-based airtight molding material, and Patent Document 5 discloses a PVC or EPDM multilayer fire-resistant molding material.
特開2013-136939号公報JP 2013-136939 A 特開2014-159541号公報JP 2014-159541 A WO2016/031905WO2016 / 031905 特開2016-47999号公報JP-A-2016-47999 特許第5347103号Patent No. 5347103
 本発明は、外観に優れた熱膨張性樹脂組成物、及び当該熱膨張性樹脂組成物を成形した熱膨張性樹脂組成物層を含む建材用多層耐火成形体を提供することを目的とする。 An object of the present invention is to provide a heat-expandable resin composition excellent in appearance, and a multilayer fireproof molded article for building materials including a heat-expandable resin composition layer formed by molding the heat-expandable resin composition.
 本発明は、以下の熱膨張性樹脂組成物及び建材用多層耐火成形体を提供するものである。
項1. 熱可塑性樹脂、熱膨張性黒鉛及び無機充填剤を含む熱膨張性樹脂組成物であって、前記熱膨張性樹脂組成物を成形してなる熱膨張性樹脂組成物層の180℃での引張伸度が20%以上であり、220℃加熱条件下での比重低下率が10%以下であることを特徴とする、熱膨張性樹脂組成物。
項2. さらに可塑剤を含む、項1に記載の熱膨張性樹脂組成物。
項3. 前記熱可塑性樹脂がオレフィン系樹脂とゴム系樹脂の混合物である、項1又は2に記載の熱膨張性樹脂組成物。
項4. 前記熱可塑性樹脂がオレフィン系熱可塑性エラストマー(TPO)樹脂を含む、項1又は2に記載の熱膨張性樹脂組成物。
項5. オレフィン系熱可塑性エラストマー(TPO)樹脂は、220℃溶融時の樹脂粘度が1361Pa・s(せん断速度61[1/s]のとき)以下、又は、426 Pa・s(せん断速度365[1/s]のとき)以下である、項4に記載の熱膨張性樹脂組成物。
項6. 熱可塑性改質剤をさらに含む、項1~5のいずれか1項に記載の熱膨張性樹脂組成物。
項7. 熱可塑性改質剤がPTFE系粘度調整剤である、項6に記載の熱膨張性樹脂組成物。
項8. オレフィン系熱可塑性エラストマー樹脂に対し熱可塑性改質剤を0~10質量%含む、項1~7のいずれか1項に記載の熱膨張性樹脂組成物。
項9. 前記項1~8のいずれかに記載の熱膨張性樹脂組成物を成形してなる熱膨張性樹脂組成物層を含む建材用多層成形体。
項10. 熱膨張性樹脂組成物層と摺動性樹脂組成物層を含む、項9に記載の建材用多層耐火成形体。
項11. 摺動性樹脂組成物層はシリコーン系化合物、もしくは高分子量な熱可塑性樹脂を含む、項10に記載の建材用多層耐火成形体。
The present invention provides the following thermally expandable resin composition and multilayer fireproof molded article for building materials.
Item 1. A heat-expandable resin composition comprising a thermoplastic resin, heat-expandable graphite and an inorganic filler, wherein the heat-expandable resin composition layer formed by molding the heat-expandable resin composition has a tensile elongation at 180 ° C. A heat-expandable resin composition characterized by having a degree of 20% or more and a specific gravity reduction rate under heating at 220 ° C. of 10% or less.
Item 2. Item 2. The thermally expandable resin composition according to Item 1, further comprising a plasticizer.
Item 3. Item 3. The thermally expandable resin composition according to Item 1 or 2, wherein the thermoplastic resin is a mixture of an olefin resin and a rubber resin.
Item 4. Item 3. The thermally expandable resin composition according to Item 1 or 2, wherein the thermoplastic resin contains an olefin-based thermoplastic elastomer (TPO) resin.
Item 5. Olefin-based thermoplastic elastomer (TPO) resin has a resin viscosity at 220 ° C of 1361 Pa · s (when shear rate is 61 [1 / s]) or less, or 426 Pa · s (shear rate 365 [1 / s ] The thermal expansible resin composition of claim | item 4 which is the following.
Item 6. Item 6. The thermally expandable resin composition according to any one of Items 1 to 5, further comprising a thermoplastic modifier.
Item 7. Item 7. The thermally expandable resin composition according to Item 6, wherein the thermoplastic modifier is a PTFE viscosity modifier.
Item 8. Item 8. The thermally expandable resin composition according to any one of Items 1 to 7, comprising a thermoplastic modifier in an amount of 0 to 10% by mass relative to the olefinic thermoplastic elastomer resin.
Item 9. A multilayer molded article for building materials comprising a thermally expandable resin composition layer formed by molding the thermally expandable resin composition according to any one of items 1 to 8.
Item 10. Item 10. The multilayer fireproof molded article for building materials according to Item 9, comprising a thermally expandable resin composition layer and a slidable resin composition layer.
Item 11. Item 11. The multilayer fireproof molded article for building materials according to Item 10, wherein the slidable resin composition layer contains a silicone compound or a high molecular weight thermoplastic resin.
 本発明によれば、押出成形等により成形したときに外観に優れる熱膨張性樹脂組成物層及び建材用多層耐火成形体を得ることができる熱膨張性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a heat-expandable resin composition capable of obtaining a heat-expandable resin composition layer and a multilayer fireproof molded article for building materials that are excellent in appearance when molded by extrusion molding or the like.
 本発明の建材用多層耐火成形体は熱膨張性樹脂組成物層を有する。このため本発明の建材用多層耐火成形体が火災等の熱にさらされた場合にはこの熱膨張性樹脂組成物層が膨張して膨張残渣を形成する。 The multilayer fireproof molded article for building materials of the present invention has a thermally expandable resin composition layer. For this reason, when the multilayer fireproof molded article for building materials of the present invention is exposed to heat such as a fire, the thermally expandable resin composition layer expands to form an expansion residue.
 膨張残渣は不燃性であり、建材用多層耐火成形体が設置されたサッシの隙間を閉塞させることができる。この膨張残渣により火災等により生じた炎や煙がサッシの隙間を通って広がることを防止できることから、本発明の建材用多層耐火成形体は耐火性に優れる。 The expansion residue is nonflammable and can close the gap of the sash where the multilayer fireproof molded body for building materials is installed. Since the expansion residue can prevent the flame and smoke generated by a fire or the like from spreading through the gap of the sash, the multilayer fireproof molded article for building materials of the present invention is excellent in fire resistance.
 また本発明の建材用多層耐火成形体は、組成の異なる二以上の樹脂組成物層を同時共押出により成形して得られることから容易に大量生産を行うことができ、気密性、水密性、柔軟性、摺動性にも優れる。 The multilayer fireproof molded article for building materials of the present invention can be easily mass-produced by being obtained by co-extrusion of two or more resin composition layers having different compositions, and is airtight, watertight, Excellent flexibility and slidability.
本発明の建材用多層耐火成形体の1つの実施形態を示す断面図Sectional drawing which shows one embodiment of the multilayer fireproof molded object for building materials of this invention 本発明の建材用多層耐火成形体の別の実施形態を示す断面図Sectional drawing which shows another embodiment of the multilayer fireproof molded object for building materials of this invention. 本発明の建材用多層耐火成形体の1つの実施形態を示す断面図Sectional drawing which shows one embodiment of the multilayer fireproof molded object for building materials of this invention 本発明の建材用多層耐火成形体を、サッシの枠体に嵌合した状態を示す断面図Sectional drawing which shows the state which fitted the multilayer fireproof molded object for building materials of this invention to the frame of a sash
 本発明の熱膨張性樹脂組成物は、熱可塑性樹脂、熱膨張性黒鉛及び無機充填剤を含む。 The thermally expandable resin composition of the present invention contains a thermoplastic resin, thermally expandable graphite, and an inorganic filler.
 本発明の建材用多層耐火成形体は、熱膨張性樹脂組成物層と少なくとも1つの他の樹脂組成物層を含む。他の樹脂組成物層としては気密性、水密性、柔軟性等に優れたものがよく、例えば摺動性樹脂組成物層、気密性樹脂組成物層などが挙げられ、好ましくは摺動性樹脂組成物層を含み、さらに気密性樹脂組成物層を含んでいてもよい。 The multilayer fireproof molded article for building materials of the present invention includes a thermally expandable resin composition layer and at least one other resin composition layer. As other resin composition layers, those having excellent airtightness, watertightness, flexibility and the like are preferable, and examples thereof include a slidable resin composition layer, an airtight resin composition layer, etc., preferably a slidable resin. It may include a composition layer and may further include an airtight resin composition layer.
 本発明の1つの好ましい実施形態を図1に示す。図1では建材用多層耐火成形体100は熱膨張性樹脂組成物層1、気密性樹脂組成物層2、摺動性樹脂組成物層3から構成されている。 One preferred embodiment of the present invention is shown in FIG. In FIG. 1, a multilayer fireproof molded body 100 for building materials is composed of a thermally expandable resin composition layer 1, an airtight resin composition layer 2, and a slidable resin composition layer 3.
 本発明の別の好ましい実施形態を図2及び3に示す。図2及び図3の建材用多層耐火成形体100は、熱膨張性樹脂組成物層1、気密性樹脂組成物層2、摺動性樹脂組成物層3から構成されている。熱膨張性樹脂組成物層1には、建材(例えば、サッシ)へ建材用多層耐火性成形体を嵌合するための固定部7が形成されている。 Another preferred embodiment of the present invention is shown in FIGS. The multilayer fireproof molded body 100 for building materials shown in FIGS. 2 and 3 includes a thermally expandable resin composition layer 1, an airtight resin composition layer 2, and a slidable resin composition layer 3. The thermally expandable resin composition layer 1 is formed with a fixing portion 7 for fitting the building material multilayer fireproof molded body to a building material (for example, a sash).
 熱膨張性樹脂組成物層1には、熱膨張性樹脂組成物層1から突起する突起部4が形成されており、突起部4は気密性樹脂組成物層2と摺動性樹脂組成物層3とから構成されている。突起部4の表面には摺動性樹脂組成物層3が設けられている。 The heat-expandable resin composition layer 1 is formed with a protrusion 4 that protrudes from the heat-expandable resin composition layer 1, and the protrusion 4 has an airtight resin composition layer 2 and a slidable resin composition layer. 3. A slidable resin composition layer 3 is provided on the surface of the protrusion 4.
 図4は、本発明の建材用多層耐火性成形体が建具(例えば、サッシ)に固定された状態を示す模式図である。 FIG. 4 is a schematic diagram showing a state in which the multilayer fireproof molded body for building materials of the present invention is fixed to a joinery (for example, a sash).
 本発明の建材用多層耐火性成形体100は、熱膨張性樹脂組成物層1に設けられた固定部7により建具の枠体5の嵌合部に嵌合されて固定される。建材用多層耐火性成形体100の突起部4が扉6に当接することにより、扉6と枠体5との隙間を埋めることができる。 The multilayer fireproof molded article 100 for building materials of the present invention is fitted and fixed to the fitting part of the frame 5 of the joinery by the fixing part 7 provided in the thermally expandable resin composition layer 1. When the projection 4 of the multilayer fireproof molded body 100 for building material abuts on the door 6, the gap between the door 6 and the frame body 5 can be filled.
 「多層」とは、2層以上、例えば2~5層、或いは2~4層、2~3層などが挙げられる。本発明の多層耐火成形体は、共押出により製造することができる。 “Multilayer” includes two or more layers, for example, 2 to 5 layers, or 2 to 4 layers, and 2 to 3 layers. The multilayer refractory molded article of the present invention can be produced by coextrusion.
 本発明の成形体において、2以上の層は、全体的に密着していてもよく、一部のみが密着していてもよい。例えばA層、B層、C層の3層構成の場合、A層とB層の一部が密着し、B層とC層の一部が密着していればよく、A層とC層は全く密着していなくてもよい。また、各「層」の形状は、フィルム状、シート状などの平面的な形状であってもよいが、立体的な種々の形状に成形されていてもよい。好ましい実施形態において、建材用多層耐火成形体の製造に使用する熱膨張性樹脂組成物は、熱可塑性樹脂、熱膨張性黒鉛及び無機充填剤を含み、さらに任意成分として可塑剤、熱可塑性改質剤を含んでいてもよい。これらの成分と、必要に応じて含有される他の添加剤を公知の混練装置を用いて溶融混練することにより熱膨張性樹脂組成物を得ることができる。 In the molded article of the present invention, two or more layers may be in close contact with each other, or only a part may be in close contact. For example, in the case of a three-layer configuration of an A layer, a B layer, and a C layer, a part of the A layer and the B layer are in close contact, and a part of the B layer and the C layer may be in close contact. It does not have to be in close contact. The shape of each “layer” may be a planar shape such as a film shape or a sheet shape, but may be formed into various three-dimensional shapes. In a preferred embodiment, the heat-expandable resin composition used for the production of a multilayer fireproof molded article for building materials contains a thermoplastic resin, heat-expandable graphite and an inorganic filler, and further includes a plasticizer and thermoplastic modification as optional components. An agent may be included. A thermally expandable resin composition can be obtained by melt-kneading these components and other additives contained as necessary using a known kneading apparatus.
 摺動性樹脂組成物は、シリコーン系化合物、もしくは高分子量な熱可塑性樹脂を含むことが好ましい。 The slidable resin composition preferably contains a silicone compound or a high molecular weight thermoplastic resin.
 気密性樹脂組成物は、熱可塑性樹脂、無機充填剤、必要に応じてさらに、難燃剤、可塑剤や他の添加剤を含んでいてもよい。 The airtight resin composition may further contain a thermoplastic resin, an inorganic filler, and, if necessary, a flame retardant, a plasticizer, and other additives.
 摺動性樹脂組成物、気密性樹脂組成物などの他の樹脂組成物は、熱膨張性樹脂組成物と同様に公知の混練装置を用いて溶融混練することにより得ることができる。 Other resin compositions such as a slidable resin composition and an airtight resin composition can be obtained by melt-kneading using a known kneader in the same manner as the heat-expandable resin composition.
 混練装置としては、例えば、押出機、ニーダーミキサー、二本ロール、バンバリーミキサーなどが挙げられる。 Examples of the kneading apparatus include an extruder, a kneader mixer, a two-roller, and a Banbury mixer.
 熱可塑性樹脂としては、オレフィン系樹脂、ゴム系樹脂、オレフィン系熱可塑性エラストマー、ポリスチレン系樹脂、EPDM樹脂(エチレン、プロピレンおよび架橋用ジエンモノマーとの三元共重合体)、アクリロニトリル-ブタジエン-スチレン系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、アクリル系樹脂、ポリアミド系樹脂、フェノール系樹脂等が挙げられ、オレフィン系樹脂、ゴム系樹脂、オレフィン系熱可塑性エラストマーが好ましく、オレフィン系樹脂とゴム系樹脂の混合物、オレフィン系熱可塑性エラストマーがより好ましい。 Thermoplastic resins include olefin resins, rubber resins, olefin thermoplastic elastomers, polystyrene resins, EPDM resins (terpolymers of ethylene, propylene and crosslinking diene monomers), acrylonitrile-butadiene-styrene. Resin, polycarbonate resin, polyphenylene ether resin, acrylic resin, polyamide resin, phenol resin, etc., olefin resin, rubber resin, olefin thermoplastic elastomer are preferred, olefin resin and rubber resin More preferably, a mixture of olefinic thermoplastic elastomer is used.
 オレフィン系樹脂としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリブテン系樹脂、ポリペンテン系樹脂、或いはこれらの2種以上の共重合体が挙げられる。 Examples of the olefin resin include polypropylene resin, polyethylene resin, polybutene resin, polypentene resin, and copolymers of two or more of these.
 ゴム系樹脂としては、室温でゴム弾性(rubber elasticity)を有するものであれば、特に限定されず、天然ゴム、クロロプレンゴム(CR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ニトリル-ブタジエンゴム(NBR)、ブタジエンゴム(BR)、ウレタンゴム、フッ素ゴム、アクリルゴム、シリコーンゴムなどの合成ゴムが挙げられる。 The rubber-based resin is not particularly limited as long as it has rubber elasticity at room temperature. Natural rubber, chloroprene rubber (CR), isoprene rubber (IR), butyl rubber (IIR), nitrile-butadiene rubber Synthetic rubbers such as (NBR), butadiene rubber (BR), urethane rubber, fluorine rubber, acrylic rubber, and silicone rubber can be used.
 オレフィン系熱可塑性エラストマー(TPO)としては、ハードセグメントにポリプロピレンやポリエチレンなどの熱可塑性結晶質ポリオレフィンを使用し、ソフトセグメントに、完全加硫又は部分加硫したゴムを使用した共重合体が挙げられる。熱可塑性結晶質ポリオレフィンとしては、例えば、1~4個の炭素原子を有するαーオレフィンのホモポリマー又は二種以上のαオレフィンの共重合体が挙げられ、ポリエチレン又はポリプロピレンが好ましい。ソフトセグメント成分は、プチルゴム、ハロブチルゴム、EPDM、EPRゴム、アクリロニトリル/ブタジエンゴム、NBR、天然ゴムなどが挙げられる。TPOは高架橋タイプ、中架橋タイプ、未架橋タイプ、擬似架橋タイプのいずれであってもよい。オレフィン系熱可塑性エラストマー(TPO)の具体例としては、6772(高架橋タイプ)、4785(中架橋タイプ)及び822(未架橋タイプ)(以上、住友化学株式会社製)、3700N(擬似架橋タイプ、JSR株式会社製)等が挙げられる。 Examples of olefin-based thermoplastic elastomers (TPO) include copolymers using thermoplastic crystalline polyolefins such as polypropylene and polyethylene for the hard segment and fully or partially vulcanized rubber for the soft segment. . Examples of the thermoplastic crystalline polyolefin include a homopolymer of α-olefin having 1 to 4 carbon atoms or a copolymer of two or more α-olefins, and polyethylene or polypropylene is preferable. Examples of the soft segment component include butyl rubber, halobutyl rubber, EPDM, EPR rubber, acrylonitrile / butadiene rubber, NBR, and natural rubber. The TPO may be any of a highly crosslinked type, a medium crosslinked type, an uncrosslinked type, and a pseudo-crosslinked type. Specific examples of olefinic thermoplastic elastomers (TPO) include 6772 (highly crosslinked type), 4785 (medium crosslinked type) and 822 (uncrosslinked type) (above, manufactured by Sumitomo Chemical Co., Ltd.), 3700N (pseudo-crosslinked type, JSR) Etc.).
 オレフィン系熱可塑性エラストマー(TPO)を含む熱可塑性樹脂の220℃溶融時の樹脂粘度(溶融粘度)は、せん断速度61[1/s]のときには1361Pa・s以下、例えば664~956Pa・sであり、せん断速度365[1/s]のときには426 Pa・s以下、例えば128~387Pa・sである。 The resin viscosity (melt viscosity) when a thermoplastic resin containing an olefinic thermoplastic elastomer (TPO) is melted at 220 ° C. is 1361 Pa · s or less, for example, 664 to 956 Pa · s at a shear rate of 61 [1 / s]. When the shear rate is 365 [1 / s], it is 426 Pa · s or less, for example, 128 to 387 Pa · s.
 オレフィン系樹脂とゴム系樹脂の混合物における好ましい配合割合は、オレフィン系樹脂30~50質量部とゴム系樹脂50~70質量部、より好ましくはオレフィン系樹脂30~40質量部とゴム系樹脂60~70質量部が挙げられる。 A preferable blending ratio in the mixture of olefin resin and rubber resin is 30 to 50 parts by mass of olefin resin and 50 to 70 parts by mass of rubber resin, more preferably 30 to 40 parts by mass of olefin resin and 60 to 60 parts of rubber resin. 70 parts by mass can be mentioned.
 熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とにより処理してグラファイト層間化合物を生成させたものである。生成された熱膨張性黒鉛は炭素の層状構造を維持したままの結晶化合物である。 Thermally expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchloric acid, and perchlorine. A graphite intercalation compound is produced by treatment with a strong oxidizing agent such as acid salts, permanganates, dichromates and hydrogen peroxide. The heat-expandable graphite produced is a crystalline compound that maintains the layered structure of carbon.
 本発明に使用される熱膨張性黒鉛は、酸処理して得られた熱膨張性黒鉛が、洗浄液が中性になるまで水洗されてもよく、アンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和されていてもよい。 The heat-expandable graphite used in the present invention may be washed with water until the heat-expandable graphite obtained by acid treatment becomes neutral, and ammonia, an aliphatic lower amine, an alkali metal compound, an alkali It may be neutralized with an earth metal compound or the like.
 脂肪族低級アミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。 Examples of the aliphatic lower amine include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
 アルカリ金属化合物及びアルカリ土類金属化合物としては、例えば、リチウム、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。 Examples of the alkali metal compound and alkaline earth metal compound include hydroxides such as lithium, potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts.
 熱膨張性黒鉛の具体例としては、例えば、日本化成社製「CA-60S」、「CA-60N」、東ソー製「GREP-EG」等が挙げられる。 Specific examples of thermally expandable graphite include “CA-60S”, “CA-60N” manufactured by Nippon Kasei Co., Ltd., “GREP-EG” manufactured by Tosoh Corporation, and the like.
 熱膨張性黒鉛の粒度は、細かくなりすぎると黒鉛の膨張度が小さく、発泡性が低下する傾向がある。また大きくなりすぎると膨張度が大きいという点では効果があるが、樹脂と混練する際に、分散性が悪く成形性が低下し、得られた押出成形体の機械的物性が低下する傾向がある。 If the particle size of the heat-expandable graphite is too fine, the degree of expansion of the graphite is small, and the foamability tends to decrease. Further, if it becomes too large, there is an effect in that the degree of expansion is large, but when kneaded with a resin, the dispersibility is poor and the moldability is lowered, and the mechanical properties of the obtained extruded product tend to be lowered. .
 このため熱膨張性黒鉛の粒度は、20~200メッシュ程度が好ましい。 Therefore, the particle size of the thermally expandable graphite is preferably about 20 to 200 mesh.
 熱膨張性黒鉛の添加量は、少なくなると耐火性能及び発泡性が低下する傾向がある。また多くなると押出成形しにくくなり、得られた成形体の表面性が悪くなり、機械的物性が低下する傾向がある。このため熱可塑性樹脂100質量部に対する熱膨張性黒鉛の添加量は、3~300質量部程度、好ましくは10~200質量部程度である。 If the amount of thermally expandable graphite added decreases, fire resistance and foaming properties tend to decrease. Moreover, when it increases, it will become difficult to extrusion-mold, the surface property of the obtained molded object will worsen, and there exists a tendency for a mechanical physical property to fall. Therefore, the amount of thermally expandable graphite added to 100 parts by mass of the thermoplastic resin is about 3 to 300 parts by mass, preferably about 10 to 200 parts by mass.
 無機充填材は、特に限定されないが、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーンナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイ力、モンモリロナイト、ベントナイト、活性白土、セビオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、亜リン酸アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコニア鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が挙げられ、炭酸カルシウムおよび加熱時に脱水し、吸熱効果のある水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の含水無機物が好ましい。また、酸化アンチモンは難燃性向上の効果があるので好ましい。 The inorganic filler is not particularly limited, for example, silica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, calcium hydroxide, magnesium hydroxide, Aluminum hydroxide, basic magnesium carbonate, calcium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawn night, hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, calcium silicate, talc, clay, my strength, montmorillonite, Bentonite, activated clay, ceviolite, imogolite, sericite, glass fiber, glass beads, silica-based balun, aluminum nitride, aluminum phosphite, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon bal , Charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconia titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders, slag fiber, fly ash, dehydrated sludge, etc. Preferred are calcium carbonate and water-containing inorganic substances such as calcium hydroxide, magnesium hydroxide and aluminum hydroxide which are dehydrated when heated and have an endothermic effect. Antimony oxide is preferable because it has an effect of improving flame retardancy.
 無機充填材は一種もしくは二種以上を使用することができる。 Inorganic fillers can be used alone or in combination of two or more.
 無機充填材の添加量は、少なくなると耐火性能が低下する傾向があり、多くなると押出成形しにくくなり、得られた成形体の表面性が悪くなり、機械的物性が低下する傾向がある。熱可塑性樹脂100質量部に対して、3~200質量部、好ましくは10~150質量部である。 When the amount of the inorganic filler added is small, the fire resistance tends to be reduced, and when it is increased, extrusion molding is difficult, the surface properties of the obtained molded article are deteriorated, and the mechanical properties tend to be lowered. The amount is 3 to 200 parts by weight, preferably 10 to 150 parts by weight, based on 100 parts by weight of the thermoplastic resin.
 難燃剤としては、低級リン酸塩やメラミン誘導体を例示することができる。 Examples of flame retardants include lower phosphates and melamine derivatives.
 「低級リン酸塩」は、無機リン酸塩のうち、縮合していない、つまり高分子化していない無機リン酸塩を指す。無機リン酸としては第一リン酸、第二リン酸、第三リン酸、メタリン酸、亜リン酸、次亜リン酸等が挙げられる。塩としては、アルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩など)、アルカリ土類金属塩(マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩)、周期表3B族金属の塩(アルミニウム塩など)、遷移金属塩(チタン塩、マンガン塩、鉄塩、ニッケル塩、銅塩、亜鉛塩、バナジウム塩、クロム塩、モリブデン塩、タングステン塩)、アンモニウム塩、アミン塩、例えば、グアニジン塩又はトリアジン系化合物の塩などが挙げられ、好ましくは金属塩である。ただし、メラミン塩は除く。一つの実施形態では、低級リン酸塩はリン酸金属塩及び亜リン酸金属塩のうちの少なくとも一方である。亜リン酸金属塩は発泡性であってもよい。また、亜リン酸金属塩は、マトリックス成分との密着性を向上させるため、表面処理剤などにより表面処理して用いてもよい。このような表面処理剤としては、官能性化合物(例えば、エポキシ系化合物、シラン系化合物、チタネート系化合物など)などが使用できる。 “Lower phosphate” refers to inorganic phosphate that is not condensed, that is, not polymerized. Examples of inorganic phosphoric acid include primary phosphoric acid, secondary phosphoric acid, tertiary phosphoric acid, metaphosphoric acid, phosphorous acid, and hypophosphorous acid. Salts include alkali metal salts (lithium salts, sodium salts, potassium salts, etc.), alkaline earth metal salts (magnesium salts, calcium salts, strontium salts, barium salts), periodic table group 3B metal salts (aluminum salts, etc.) , Transition metal salts (titanium salt, manganese salt, iron salt, nickel salt, copper salt, zinc salt, vanadium salt, chromium salt, molybdenum salt, tungsten salt), ammonium salt, amine salt, for example, guanidine salt or triazine compound And the like, and preferably a metal salt. However, melamine salt is excluded. In one embodiment, the lower phosphate is at least one of a metal phosphate and a metal phosphite. The metal phosphite salt may be foamable. Further, the metal phosphite salt may be surface-treated with a surface treatment agent or the like in order to improve the adhesion with the matrix component. As such a surface treatment agent, a functional compound (for example, an epoxy compound, a silane compound, a titanate compound, etc.) can be used.
 そのような低級リン酸の金属塩の例として、第1リン酸アルミニウム、第1リン酸ナトリウム、第1リン酸カリウム、第1リン酸カルシウム、第1リン酸亜鉛、第2リン酸アルミニウム、第2リン酸ナトリウム、第2リン酸カリウム、第2リン酸カルシウム、第2リン酸亜鉛、第3リン酸アルミニウム、第3リン酸ナトリウム、第3リン酸カリウム、第3リン酸カルシウム、第3リン酸亜鉛、亜リン酸アルミニウム、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸カルシウム、亜リン酸亜鉛、次亜リン酸アルミニウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸亜鉛、メタリン酸アルミニウム、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸カルシウム、メタリン酸亜鉛等が挙げられる。 Examples of such a metal salt of lower phosphoric acid include primary aluminum phosphate, primary sodium phosphate, primary potassium phosphate, primary calcium phosphate, primary zinc phosphate, secondary aluminum phosphate, secondary phosphorus. Sodium phosphate, dibasic potassium phosphate, dibasic calcium phosphate, dibasic zinc phosphate, tertiary aluminum phosphate, tribasic sodium phosphate, tribasic potassium phosphate, tribasic calcium phosphate, tribasic zinc phosphate, phosphorous acid Aluminum, sodium phosphite, potassium phosphite, calcium phosphite, zinc phosphite, aluminum hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, zinc hypophosphite, metaphosphoric acid Examples include aluminum, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, and zinc metaphosphate. .
 低級リン酸塩の含有量は、熱可塑性樹脂100質量部に対して5~400質量部であることが好ましく、10~400質量部であることがより好ましく、15~200質量部であることが更に好ましい。耐火樹脂組成物に十分な難燃性と十分な耐水性を付与する点では5質量部以上であることが好ましく、400質量部以下であると、耐火樹脂組成物の耐水性がより向上する。 The content of the lower phosphate is preferably 5 to 400 parts by weight, more preferably 10 to 400 parts by weight, and more preferably 15 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. Further preferred. In terms of imparting sufficient flame retardancy and sufficient water resistance to the refractory resin composition, it is preferably 5 parts by mass or more, and if it is 400 parts by mass or less, the water resistance of the refractory resin composition is further improved.
 メラミン誘導体としては、特に限定されないが、例えば、メラム、メレム、メロンなどのメラミン以外のアミノ基を有する窒素含有環状化合物;メラム、メレム、メロン、メラミンなどのアミノ基を有する窒素含有環状化合物と酸素酸、有機リン酸、ヒドロキシル基を有する窒素含有化合物との塩;ポリリン酸アミド、環状尿素化合物、ピロリン酸メラミン、オルトリン酸メラミン、ポリリン酸メラミン・メラム・メレム複塩、ポリメタリン酸メラミン、硫酸メラミン、ピロ硫酸メラム、有機スルホン酸メラム、有機ホスホン酸メラミン、有機ホスフィン酸メラミン、メラミンシアヌレート及びホウ酸メラミンなどが挙げられる。 Although it does not specifically limit as a melamine derivative, For example, nitrogen-containing cyclic compound which has amino groups other than melamine, such as melam, melem, and melon; Nitrogen-containing cyclic compounds which have amino groups, such as melam, melem, melon, and melamine, and oxygen Acid, organic phosphoric acid, salt with nitrogen-containing compound having hydroxyl group; polyphosphoric acid amide, cyclic urea compound, melamine pyrophosphate, melamine orthophosphate, melamine polyphosphate melam melem double salt, melamine polymetaphosphate, melamine sulfate, Mental pyrosulfate, melam organic sulfonate, melamine organic phosphonate, melamine organic phosphinate, melamine cyanurate, melamine borate and the like.
 特に高い難燃性を付与し、かつ入手が容易な点から、メラミン誘導体は、ピロリン酸メラミン、オルトリン酸メラミン、ポリリン酸メラミン及びホウ酸メラミンから選択される一種以上であることが好ましい。 In particular, the melamine derivative is preferably one or more selected from melamine pyrophosphate, melamine orthophosphate, melamine polyphosphate and melamine borate from the viewpoint of imparting particularly high flame retardancy and being easily available.
 メラミン誘導体の含有量は、熱可塑性樹脂100質量部に対して5~400質量部であることが好ましく、10~400質量部であることがより好ましく、15~200質量部であることが更に好ましい。耐火樹脂組成物に十分な難燃性と十分な耐水性を付与する点では5質量部以上であることが好ましく、400質量部以下であると、耐火樹脂組成物の耐水性がより向上する。 The content of the melamine derivative is preferably 5 to 400 parts by weight, more preferably 10 to 400 parts by weight, and still more preferably 15 to 200 parts by weight with respect to 100 parts by weight of the thermoplastic resin. . In terms of imparting sufficient flame retardancy and sufficient water resistance to the refractory resin composition, it is preferably 5 parts by mass or more, and if it is 400 parts by mass or less, the water resistance of the refractory resin composition is further improved.
 また、本発明では、難燃剤として、リン化合物を含んでもよい。リン化合物は、熱膨張性耐火性シートを構成する熱膨張性樹脂組成物は、膨張断熱層の強度を増加させ防火性能を向上させる。 In the present invention, a phosphorus compound may be included as a flame retardant. As for the phosphorus compound, the thermally expandable resin composition constituting the thermally expandable fireproof sheet increases the strength of the expanded heat insulating layer and improves the fireproof performance.
 リン化合物としては、特に限定されず、例えば、赤リン;トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル;リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩;ポリリン酸アンモニウム類;下記化学式(1)で表される化合物等が挙げられる。これらのうち、防火性能の観点から、赤リン、ポリリン酸アンモニウム類、及び、下記化学式(1)で表される化合物が好ましく、性能、安全性、コスト等の点においてポリリン酸アンモニウム類がより好ましい。 The phosphorus compound is not particularly limited. For example, red phosphorus; various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate; sodium phosphate, Examples thereof include metal phosphates such as potassium phosphate and magnesium phosphate; ammonium polyphosphates; compounds represented by the following chemical formula (1), and the like. Among these, from the viewpoint of fire prevention performance, red phosphorus, ammonium polyphosphates, and compounds represented by the following chemical formula (1) are preferable, and ammonium phosphates are more preferable in terms of performance, safety, cost, and the like. .
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 化学式(1)中、R1及びR3は、同一又は異なって、水素、炭素数1~16の直鎖状もしくは分岐状のアルキル基、又は、炭素数6~16のアリール基を示す。R2は、水酸基、炭素数1~16の直鎖状もしくは分岐状のアルキル基、炭素数1~16の直鎖状あるいは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を示す。 赤リンとしては、市販の赤リンを用いることができるが、耐湿性、混練時に自然発火しない等の安全性の点から、赤リン粒子の表面を樹脂でコーティングしたもの等が好適に用いられる。ポリリン酸アンモニウム類としては特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられるが、取り扱い性等の点からポリリン酸アンモニウムが好適に用いられる。市販品としては、例えば、クラリアント社製「AP422」、「AP462」、Budenheim Iberica社製「FR CROS 484」、「FR CROS 487」等が挙げられる。 In the chemical formula (1), R 1 and R 3 are the same or different and each represents hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms. R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16. As red phosphorus, commercially available red phosphorus can be used, but from the viewpoint of safety such as moisture resistance and not spontaneously igniting during kneading, a material in which the surface of red phosphorus particles is coated with a resin is preferably used. The ammonium polyphosphates are not particularly limited, and examples thereof include ammonium polyphosphate and melamine-modified ammonium polyphosphate. Ammonium polyphosphate is preferably used from the viewpoint of handleability and the like. Examples of commercially available products include “AP422” and “AP462” manufactured by Clariant, “FR CROS 484” and “FR CROS 487” manufactured by Budenheim Iberica.
 化学式(1)で表される化合物としては特に限定されず、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。中でも、t-ブチルホスホン酸は、高価ではあるが、高難燃性の点において好ましい。前記のリン化合物は、単独で用いても、2種以上を併用してもよい。 The compound represented by the chemical formula (1) is not particularly limited. For example, methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, t- Butylphosphonic acid, 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphine Acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like. Of these, t-butylphosphonic acid is preferable in terms of high flame retardancy although it is expensive. The above phosphorus compounds may be used alone or in combination of two or more.
 可塑剤は、特に限定されないが、例えば、ジ‐2‐エチルヘキシルフタレート(DOP)、ジブチルフタレート(DBP)、ジヘプチルフタレート(DHP)、ジイソデシルフタレート(DIDP)等のフタル酸エステル可塑剤、
 ジ‐2‐エチルヘキシルアジペート(DOA)、ジイソブチルアジペート(DIBA)、ジブチルアジペート(DBA)等の脂肪酸エステル可塑剤、
 エポキシ化大豆油等のエポキシ化エステル可塑剤、
 アジピン酸エステル、アジピン酸ポリエステル等のポリエステル可塑剤、
 トリ‐2-エチルヘキシルトリメリテート(TOTM)、トリイソノニルトリメリテート(TINTM)等のトリメリット酸エステル可塑剤、
 トリメチルホスフェート(TMP)、トリエチルホスフェート(TEP)等の燐酸エステル可塑剤が挙げられる。
The plasticizer is not particularly limited, and examples thereof include phthalate plasticizers such as di-2-ethylhexyl phthalate (DOP), dibutyl phthalate (DBP), diheptyl phthalate (DHP), and diisodecyl phthalate (DIDP).
Fatty acid ester plasticizers such as di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA), dibutyl adipate (DBA),
Epoxidized ester plasticizers such as epoxidized soybean oil,
Polyester plasticizers such as adipic acid ester and adipic acid polyester,
Trimellitic acid ester plasticizers such as tri-2-ethylhexyl trimellitate (TOTM) and triisononyl trimellitate (TINTM),
Examples thereof include phosphate plasticizers such as trimethyl phosphate (TMP) and triethyl phosphate (TEP).
 可塑剤は一種もしくは二種以上を使用することができる。 Plasticizers can be used alone or in combination of two or more.
 可塑剤の添加量は、少なくなると押出成形性が低下する傾向があり、多くなると得られた成形体が柔らかくなり過ぎる傾向がある。このため熱可塑性樹脂100質量部に対して、可塑剤の添加量は20~200質量部である。 When the addition amount of the plasticizer is decreased, the extrusion moldability tends to be lowered, and when it is increased, the obtained molded product tends to be too soft. For this reason, the addition amount of the plasticizer is 20 to 200 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
 熱可塑性改質剤としては、PTFE(ポリテトラフルオロエチレン)系粘度調整剤などのフッ素樹脂系粘度調整剤が挙げられる。熱可塑性改質剤の具体例としては、例えば、三菱レイヨン株式会社製「メタブレン(Aタイプ)」等が挙げられる。 Examples of the thermoplastic modifier include fluororesin viscosity modifiers such as PTFE (polytetrafluoroethylene) viscosity modifiers. Specific examples of the thermoplastic modifier include, for example, “Metablene (A type)” manufactured by Mitsubishi Rayon Co., Ltd.
 本発明の熱膨張性樹脂組成物層は、180℃での引張伸度が好ましくは20%以上、より好ましくは36%以上、さらに好ましくは50%以上であり、220℃加熱条件下での比重低下率が好ましくは10%以下、より好ましくは5%以下、さらに好ましくは2%以下である。 The heat-expandable resin composition layer of the present invention has a tensile elongation at 180 ° C. of preferably 20% or more, more preferably 36% or more, still more preferably 50% or more, and a specific gravity under heating at 220 ° C. The rate of decrease is preferably 10% or less, more preferably 5% or less, and even more preferably 2% or less.
 220℃加熱条件下での比重低下率(膨れ性)は、30mm×30mm×厚み1mmの80℃加硫前サンプルを試験片とし、高温オーブンにて、220℃に温調した中に加硫前サンプル(試験片)を30分間投入し、加熱前後の比重を測定することにより算出することができる。 The specific gravity reduction rate (swelling property) under 220 ° C heating conditions was as follows: 30mm x 30mm x 1mm thickness of 80 ° C pre-vulcanized sample was used as a test piece, and the temperature was adjusted to 220 ° C in a high-temperature oven before vulcanization. It can be calculated by putting a sample (test piece) for 30 minutes and measuring the specific gravity before and after heating.
 180℃での引張伸度は、オリエンテック社製 万能引張試験機 RTC-1310Aを使用し、長さ100mm×幅20mm×厚み1mmの試験片を、180℃でチャック間距離60mm、試験速度500mm/minで伸度を測定し、n=3の平均値より算出することができる。 Tensile elongation at 180 ° C is a universal tensile testing machine RTC-1310A manufactured by Orientec Co., Ltd. A test piece of length 100mm x width 20mm x thickness 1mm is measured at 180 ° C, distance between chucks 60mm, test speed 500mm / The elongation can be measured in min and calculated from the average value of n = 3.
 熱膨張性樹脂組成物、気密性樹脂組成物に必要に応じて添加される他の添加剤としては、加硫剤、加硫促進剤、加硫助剤、熱安定剤、滑剤、加工助剤、熱分解性発泡剤、酸化防止剤、帯電防止剤、顔料などが挙げられる。 Other additives added to the heat-expandable resin composition and the airtight resin composition as necessary include vulcanizing agents, vulcanization accelerators, vulcanization aids, thermal stabilizers, lubricants, processing aids. , Thermal decomposable foaming agents, antioxidants, antistatic agents, pigments and the like.
 加硫剤としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレン等が挙げられ、硫黄およびテトラメチルチウラムジスルフィドが好ましい。 Examples of the vulcanizing agent include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dithiocarbamate, and sulfur and tetramethylthiuram disulfide are preferable.
 加硫剤は、一種もしくは二種以上を使用することができる。 One or two or more vulcanizing agents can be used.
 加硫剤の添加量は、少なくなると熱時の安定性が低下する傾向がある。また多くなると成形しにくくなる傾向がある。このため熱可塑性樹脂100質量部に対する加硫剤の添加量は、0.1~10質量部程度、好ましくは0.5~5質量部程度である。 When the amount of the vulcanizing agent is decreased, the stability during heating tends to decrease. Moreover, when it increases, there exists a tendency for it to become difficult to shape | mold. Therefore, the addition amount of the vulcanizing agent with respect to 100 parts by mass of the thermoplastic resin is about 0.1 to 10 parts by mass, preferably about 0.5 to 5 parts by mass.
 加硫剤を用いる場合には、加硫促進剤を併用することができる。 When a vulcanizing agent is used, a vulcanization accelerator can be used in combination.
 加硫促進剤としては、チアゾール含有加硫促進剤、グアニジン含有加硫促進剤、アルデヒドアミン含有加硫促進剤、イミダゾリン含有加硫促進剤、チオウレア含有加硫促進剤、チウラム含有加硫促進剤、ジチオ酸塩含有加硫促進剤、チオウレア含有加硫促進剤、ザンテート含有加硫促進剤等が挙げられる。 As the vulcanization accelerator, thiazole-containing vulcanization accelerator, guanidine-containing vulcanization accelerator, aldehyde amine-containing vulcanization accelerator, imidazoline-containing vulcanization accelerator, thiourea-containing vulcanization accelerator, thiuram-containing vulcanization accelerator, Examples include dithioate-containing vulcanization accelerators, thiourea-containing vulcanization accelerators, and xanthate-containing vulcanization accelerators.
 チアゾール含有加硫促進剤としては、例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾールスルフェンアミド等が挙げられる。 Examples of the thiazole-containing vulcanization accelerator include N-cyclohexyl-2-benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazole sulfenamide, and the like.
 グアニジン含有加硫促進剤としては、例えば、ジフェニルグアニジン、トリフェニルグアニジン等が挙げられる。 Examples of the guanidine-containing vulcanization accelerator include diphenyl guanidine and triphenyl guanidine.
 アルデヒドアミン含有加硫促進剤としては、例えば、アセトアルデヒド・アニリン縮合物等が挙げられる。 Examples of aldehyde amine-containing vulcanization accelerators include acetaldehyde / aniline condensates.
 イミダゾリン含有加硫促進剤としては、例えば、2-メルカプトイミダゾリン等が挙げられる。 Examples of the imidazoline-containing vulcanization accelerator include 2-mercaptoimidazoline and the like.
 チオウレア含有加硫促進剤としては、例えば、ジエチルチオウレア、ジブチルチオウレア等が挙げられる。 Examples of the thiourea-containing vulcanization accelerator include diethyl thiourea and dibutyl thiourea.
 チウラム含有加硫促進剤としては、例えば、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等が挙げられる。 Examples of the thiuram-containing vulcanization accelerator include tetramethylthiuram monosulfide and tetramethylthiuram disulfide.
 ジチオ酸塩含有加硫促進剤としては、例えば、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛等が挙げられる。 Examples of the dithioate-containing vulcanization accelerator include zinc dimethyldithiocarbamate and zinc diethyldithiocarbamate.
 チオウレア含有加硫促進剤としては、例えば、エチレンチオ尿素、N,N'-ジエチルチオ尿素等が挙げられる。 Examples of the thiourea-containing vulcanization accelerator include ethylenethiourea, N, N′-diethylthiourea and the like.
 ザンテート含有加硫促進剤としては、例えば、ジブチルキサトゲン酸亜鉛等が挙げられる。 Examples of the xanthate-containing vulcanization accelerator include zinc dibutylxatogenate.
 加硫促進剤は、一種もしくは二種以上を使用することができる。 One or two or more vulcanization accelerators can be used.
 熱可塑性樹脂100質量部に対する加硫促進剤の添加量は、0.1~20質量部程度が好ましい。加硫促進剤を使用することにより、加硫を効率よく進行させることができる。 The amount of the vulcanization accelerator added to 100 parts by mass of the thermoplastic resin is preferably about 0.1 to 20 parts by mass. By using a vulcanization accelerator, vulcanization can be efficiently advanced.
 加硫促進剤の添加量は、0.1~10質量部程度が好ましい。 The addition amount of the vulcanization accelerator is preferably about 0.1 to 10 parts by mass.
 また加硫剤を使用する場合には、加硫助剤を併用することができる。 Also, when a vulcanizing agent is used, a vulcanizing aid can be used in combination.
 加硫助剤としては、例えば、p-キノンジオキシム等のキノンジオキシム系加硫助剤、エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル含有加硫助剤、ジアリルフタレート、トリアリルイソシアヌレート等のアリル含有加硫助剤、マレイミド含有加硫助剤、ジビニルベンゼン、酸化亜鉛、酸化マグネシウム、亜鉛華が挙げられる。 Examples of the vulcanization aid include quinone dioxime vulcanization aids such as p-quinonedioxime, acrylic-containing vulcanization aids such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate, diallyl phthalate, triallyl isocyania. Examples include allyl-containing vulcanization aids such as nurate, maleimide-containing vulcanization aids, divinylbenzene, zinc oxide, magnesium oxide, and zinc white.
 熱可塑性樹脂100質量部に対する加硫助剤の添加量は、1~50質量部程度が好ましい。加硫助剤を使用することにより、加硫を効率よく進行させることができる。加硫反応は、150~250℃程度、好ましくは200~230℃の温度で行うことができる。 The amount of the vulcanization aid added to 100 parts by mass of the thermoplastic resin is preferably about 1 to 50 parts by mass. By using a vulcanization aid, vulcanization can be efficiently advanced. The vulcanization reaction can be performed at a temperature of about 150 to 250 ° C., preferably 200 to 230 ° C.
 架橋促進剤としては、例えば、ジエチルジチオカルバミン酸テルル、N,N,N’,N’-テトラエチルチウラムジスルフィド、ジエチルジチオカルバミン酸ベンジル等が挙げられる。 Examples of the crosslinking accelerator include tellurium diethyldithiocarbamate, N, N, N ′, N′-tetraethylthiuram disulfide, benzyl diethyldithiocarbamate, and the like.
 熱安定剤としては、例えば、三塩基性硫酸鉛、三塩基性亜硫酸鉛、二塩基性亜リン酸鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛等の鉛熱安定剤、有機錫メルカプト、有機錫マレート、有機錫ラウレート、ジブチル錫マレート等の有機錫熱安定剤、ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石鹸熱安定剤等が挙げられる。 Examples of heat stabilizers include lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate and dibasic lead stearate, organic tin mercapto, organic Examples thereof include organotin heat stabilizers such as tin malate, organic tin laurate, and dibutyltin malate, and metal soap heat stabilizers such as zinc stearate and calcium stearate.
 熱安定剤は一種もしくは二種以上を使用することができる。 ¡One or more heat stabilizers can be used.
 滑剤としては、例えば、ポリエチレン、パラフィン、モンタン酸等のワックス類、各種エステルワックス類、ステアリン酸、リシノール酸等の有機酸類、ステアリルアルコール等の有機アルコール類、ジメチルビスアミド等のアミド系化合物等が挙げられる。 Examples of the lubricant include waxes such as polyethylene, paraffin, and montanic acid, various ester waxes, organic acids such as stearic acid and ricinoleic acid, organic alcohols such as stearyl alcohol, and amide compounds such as dimethylbisamide. It is done.
 滑剤は一種もしくは二種以上を使用することができる。 One or more lubricants can be used.
 加工助剤としては、例えば、塩素化ポリエチレン、メチルメタクリレート‐エチルアクリレート共重合体、高分子量のポリメチルメタクリレート等が挙げられる。 Examples of processing aids include chlorinated polyethylene, methyl methacrylate-ethyl acrylate copolymer, and high molecular weight polymethyl methacrylate.
 酸化防止剤としては、例えば、フェノール化合物等が挙げられる。 Examples of the antioxidant include phenol compounds.
 帯電防止剤としては、例えば、アミノ化合物等が挙げられる。 Examples of the antistatic agent include amino compounds.
 顔料としては、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料、酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアニン化物系などの無機顔料等が挙げられる。 Examples of the pigment include organic pigments such as azo, phthalocyanine, selenium, and dye lake, and inorganic pigments such as oxide, molybdenum chromate, sulfide / selenide, and ferrocyanide. It is done.
 本発明の好ましい実施形態において、本発明の建材用多層耐火成形体は、熱膨張性樹脂組成物層と摺動性樹脂組成物層を含む。さらに気密性樹脂組成物層を含んでいてもよい。 In a preferred embodiment of the present invention, the multilayer fireproof molded article for building materials of the present invention includes a thermally expandable resin composition layer and a slidable resin composition layer. Furthermore, an airtight resin composition layer may be included.
 摺動性樹脂組成物層を成形するために使用する摺動性樹脂組成物としては、シリコーン系化合物、高分子量な熱可塑性樹脂を含み、必要に応じて他の添加剤を添加することができる。高分子量な熱可塑性樹脂は、溶融せずに表面にブリードして、摺動性をよくすることができる。 The slidable resin composition used for forming the slidable resin composition layer includes a silicone compound and a high molecular weight thermoplastic resin, and other additives can be added as necessary. . The high molecular weight thermoplastic resin can be slidable on the surface without being melted to improve the slidability.
 シリコーン系化合物としては、ケイ素原子に結合した少なくとも一つの有機基をもつオルガノポリシロキサンが挙げられ、その分子構造は直鎖状、分岐状、網状のいずれでもよい。オルガノポリシロキサン中のケイ素原子に結合した有機基は、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基のようなアルキル基、ビニル基、プロペニル基のようなアルケニル基、フェニル基のようなアリール基、フェネチル基のようなアラルキル基およびこれらの炭化水素基の水素原子の一部がハロゲン原子、ニトリル基などで置換されたものが挙げられる。オルガノポリシロキサンの末端有機基としてはメチル基、アミノ基、エポキシ基、カルビノール基、水酸基、メトキシ基、メタクリロキシ基、カルボキシル基、シラノール基、アルコキシ基などが挙げられる。シリコーン系化合物は、上記のオルガノポリシロキサンと少なくとも1種のシラン化合物の反応生成物、或いは少なくとも1種のシラン化合物の反応生成物であってもよい。摺動性樹脂組成物層がシリコーン系化合物から構成される場合、摺動性樹脂組成物はケイ素原子に結合した少なくとも一つの有機基をもつオルガノポリシロキサン、及び/又は、少なくとも1種のシラン化合物を含み、シラン化合物は重縮合反応によりシリコーン系化合物を生成する。シラン化合物としては、例えばテトラメトキシシラン、テトラエトキシシランなどのテトラアルコキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリプロポキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルメチルジプロポキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシランなどが挙げられる。 Examples of the silicone compound include organopolysiloxane having at least one organic group bonded to a silicon atom, and the molecular structure thereof may be any of linear, branched, and network. Organic groups bonded to silicon atoms in the organopolysiloxane include alkyl groups such as methyl, ethyl, propyl, butyl, and hexyl groups, alkenyl groups such as vinyl and propenyl groups, and phenyl groups. Examples include aralkyl groups such as aryl groups and phenethyl groups, and those in which some of the hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms, nitrile groups, and the like. Examples of the terminal organic group of the organopolysiloxane include a methyl group, amino group, epoxy group, carbinol group, hydroxyl group, methoxy group, methacryloxy group, carboxyl group, silanol group, and alkoxy group. The silicone compound may be a reaction product of the organopolysiloxane and at least one silane compound, or a reaction product of at least one silane compound. When the slidable resin composition layer is composed of a silicone compound, the slidable resin composition is an organopolysiloxane having at least one organic group bonded to a silicon atom and / or at least one silane compound. The silane compound forms a silicone compound by a polycondensation reaction. Examples of the silane compound include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, and γ-glycid. Xylpropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycyl Sidoxypropylmethyldipropoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltripropoxysilane, γ-me Acryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropylmethyldipropoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-acryloxy Propyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-amino Examples thereof include propyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, and 3- (2-aminoethyl) aminopropylmethyldimethoxysilane.
 摺動性樹脂組成物層に含まれ得る高分子量な熱可塑性樹脂の220℃溶融時の樹脂粘度(溶融粘度)は、例えばせん断速度61[1/s]のとき664~956Pa・s、又は、せん断速度365[1/s]のとき128~387 Pa・sである。高分子量な熱可塑性樹脂としては、ポリプロピレン系樹脂、ポリエチレン系樹脂、ポリブテン系樹脂、ポリペンテン系樹脂、或いはこれらの2種以上の共重合体などのポリオレフィン系樹脂が挙げられ、ポリエチレン系樹脂が好ましい。ポリエチレン系樹脂としては、高密度ポリエチレン樹脂、中密度ポリエチレン樹脂、低密度ポリエチレン樹脂、線状低密度ポリエチレン樹脂等が挙げられ、高密度ポリエチレン樹脂が好ましい。摺動性樹脂組成物層は、好ましくはコーティング層である。 The resin viscosity (melt viscosity) at 220 ° C. of the high molecular weight thermoplastic resin that can be contained in the slidable resin composition layer is, for example, 664 to 956 Pa · s at a shear rate of 61 [1 / s], or 128 to 387 ・ Pa · s at a shear rate of 365 [1 / s]. Examples of the high molecular weight thermoplastic resin include polypropylene resins, polyethylene resins, polybutene resins, polypentene resins, and polyolefin resins such as copolymers of two or more thereof, and polyethylene resins are preferable. Examples of the polyethylene resin include high density polyethylene resin, medium density polyethylene resin, low density polyethylene resin, linear low density polyethylene resin, and the like, and high density polyethylene resin is preferable. The slidable resin composition layer is preferably a coating layer.
 摺動性樹脂組成物層の厚さは、30~100μmが挙げられる。 The thickness of the slidable resin composition layer is 30 to 100 μm.
 本発明に使用する複数の樹脂組成物は、押出成形用に好ましく使用することができる。樹脂組成物を使用して、常法に従い、一軸押出機、二軸押出機等の押出機で130~170℃で溶融させて共押出することにより建材用多層耐火成形体を得ることができる。 The plurality of resin compositions used in the present invention can be preferably used for extrusion molding. Using the resin composition, a multilayer fireproof molded article for building materials can be obtained by melting and coextruding at 130 to 170 ° C. with an extruder such as a single screw extruder or a twin screw extruder according to a conventional method.
 長尺の建材用多層耐火成形体を用途に応じて適切な長さに切断することにより、本発明の建材用多層耐火成形体が得られる。 The multilayer fireproof molded body for building materials of the present invention is obtained by cutting the long multilayer fireproof molded body for building materials into an appropriate length according to the application.
 本発明の建材用多層耐火成形体は、窓用板材と組み合わせて使用することができ、例えばサッシ、窓(引き違い窓、PJ窓など)等の枠(上枠、下枠、たて枠など)、框(床框、上框、縁框、竪框など)などに嵌合して使用することができ、窓用板材の外周に、本発明の建材用多層耐火成形体を設置することにより耐火性サッシが得られる。 The multilayer fireproof molded article for building materials of the present invention can be used in combination with a window plate material, for example, a frame (upper frame, lower frame, vertical frame, etc.) such as a sash, a window (a sliding window, a PJ window, etc.), etc. ), Wall (floor wall, upper wall, edge wall, wall, etc.), etc., and fireproof by installing the multilayer fireproof molded body for building materials of the present invention on the outer periphery of the window plate material Sexual sash is obtained.
 また本発明の建材用多層耐火成形体は、不燃枠材と組み合わせて使用することもできる。 Also, the multilayer fireproof molded article for building materials of the present invention can be used in combination with a noncombustible frame material.
 不燃枠材の素材としては、例えば、アルミニウム合金、ステンレス等の金属、ガラス、セラミック等の無機物等を挙げることができる。 Examples of non-combustible frame materials include metals such as aluminum alloys and stainless steel, inorganic materials such as glass and ceramics, and the like.
 建材用多層耐火成形体と不燃枠材とは、例えば接着剤、両面粘着テープ等により互いに接着することができる。 The multi-layer fireproof molded body for building materials and the non-combustible frame material can be bonded to each other with, for example, an adhesive or a double-sided adhesive tape.
 また建材用多層耐火成形体と不燃枠材とは、例えば互いにスライドできるスライドレール部とスライドレール受部とをそれぞれ建材用多層耐火成形体と不燃枠材とに設置しておき、スライドレール部とスライドレール受部とを組み合わせること等により固定することができる。 In addition, the multilayer fireproof molded body for building materials and the noncombustible frame material are, for example, a slide rail portion and a slide rail receiving portion that can slide with each other are installed in the multilayer fireproof molded body for building material and the nonflammable frame material, respectively, It can be fixed by combining with a slide rail receiving portion.
 以下、実施例により本発明を詳細に説明する。なお本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. In addition, this invention is not limited at all by these Examples.
 [実施例1~9及び比較例1~6]
(1)熱膨張性樹脂組成物層の作製
 表1に示す熱可塑性樹脂、熱膨張性黒鉛、無機充填剤、任意成分として熱可塑性改質剤を含む熱膨張性樹脂組成物を混練し、押出法により成形して熱膨張性樹脂組成物層を作製した。なお、三菱レイヨン株式会社製のメタブレンはタイプA(PTFE系粘度調整剤)を使用した。「#55G」はカーボンブラックである。
[Examples 1 to 9 and Comparative Examples 1 to 6]
(1) Preparation of heat-expandable resin composition layer A heat-expandable resin composition containing a thermoplastic resin, heat-expandable graphite, an inorganic filler, and a thermoplastic modifier as an optional component shown in Table 1 is kneaded and extruded. The thermally expandable resin composition layer was produced by molding by the method. In addition, type A (PTFE viscosity modifier) was used for metablene manufactured by Mitsubishi Rayon Co., Ltd. “# 55G” is carbon black.
(2)EPDM系樹脂(実施例9)
 上記(1)に加えて、160℃で15分間加硫処理を行い、熱膨張性樹脂組成物層を作製した。また、実施例9では以下添加剤を配合した。
(2) EPDM resin (Example 9)
In addition to the above (1), a vulcanization treatment was performed at 160 ° C. for 15 minutes to produce a thermally expandable resin composition layer. In Example 9, the following additives were blended.
 (i) 滑剤
 商品名:ストラクトール社製、「ストラクトール WB222」を、0.9質量部使用した。
(i) Lubricant Brand name: 0.9 part by mass of “Stractol WB222” manufactured by Stratitol Corporation was used.
 (ii) 加硫促進助剤
 商品名:日本油脂社製、「さくら」を、1.5質量部使用した。
 商品名:堺化学社製、「酸化亜鉛」を、7.6質量部使用した。
(ii) Vulcanization accelerating agent Brand name: 1.5 parts by mass of “Sakura” manufactured by NOF Corporation.
Product name: 7.6 parts by mass of “Zinc oxide” manufactured by Sakai Chemical Co., Ltd. was used.
 (iii) 架橋促進剤
 商品名:三新化学社製、「サンセラーDM-G」を、3質量部使用した。
(iii) Crosslinking accelerator Product name: 3 parts by mass of “Sunceller DM-G” manufactured by Sanshin Chemical Co., Ltd. was used.
 [試験例1]
 熱膨張性樹脂組成物層(成形体)について、下記の条件で膨張倍率、引張伸度(180℃)、比重低下率(220℃フクレ性)、硬度、残渣硬さを測定した。また、得られた熱膨張性樹脂組成物層(成形体)の外観を目視して「破断ササクレ」、「波打ち膨張(スウェル)」について評価した。「破断ササクレ」、「波打ち膨張(スウェル)」について、「○」はこれらが観察されないことを意味し、「×」は破断ササクレ」/「波打ち膨張(スウェル)」が目視で確認できることを意味する。結果を表1に示した。
[Test Example 1]
With respect to the thermally expandable resin composition layer (molded article), the expansion ratio, tensile elongation (180 ° C.), specific gravity reduction rate (220 ° C. swelling), hardness, and residue hardness were measured under the following conditions. Further, the appearance of the obtained heat-expandable resin composition layer (molded body) was visually evaluated to evaluate “breaking sacre” and “wavy expansion (swell)”. Regarding “Breakable Sacrelet” and “Wavy Expansion (Swell)”, “○” means that these are not observed, and “×” means that the broken Sacrelet / “Wave expansion (swell)” can be visually confirmed. . The results are shown in Table 1.
 (i)膨張倍率
 膨張倍率は、600℃で30分間熱膨張性耐火材のサンプルを加熱した時の膨張残渣の最低点と最高点との平均厚みから、燃焼前の荷重が加わっていないときの厚みを除して算出される値である。燃焼後の膨張倍率が15倍以上であると、熱膨張性樹脂組成物が樹脂成分の分の消失を埋めて断熱層を形成するのに十分である。
(i) Expansion ratio The expansion ratio is obtained when the pre-combustion load is not applied, based on the average thickness between the lowest point and the highest point of the expansion residue when a sample of the thermally expandable refractory material is heated at 600 ° C. for 30 minutes. It is a value calculated by dividing the thickness. When the expansion ratio after combustion is 15 times or more, the thermally expandable resin composition is sufficient to fill the disappearance of the resin component and form a heat insulating layer.
 (ii) 引張伸度(180℃)
 各種材料を所定の条件にて溶融混練し、180℃の温度にて1mm厚にプレス成形した。 シートを幅10mm×長さ100mmにカットし、チャック間60mmでセットし、180℃に温調された恒温槽に投入した。 投入後サンプルの温度が180℃に到達した後(約5分)、500mm/minの速度で引張測定し、破断時の伸びを算出した(JIS K 7162準拠)。
(ii) Tensile elongation (180 ° C)
Various materials were melt-kneaded under predetermined conditions, and press-molded to a thickness of 1 mm at a temperature of 180 ° C. The sheet was cut into a width of 10 mm and a length of 100 mm, set between the chucks of 60 mm, and put into a thermostatic chamber adjusted to 180 ° C. After the input, the sample temperature reached 180 ° C. (about 5 minutes), and tensile measurement was performed at a speed of 500 mm / min to calculate the elongation at break (conforming to JIS K 7162).
 (iii) 比重低下率(220℃フクレ性)
 各種材料を所定の条件にて溶融混練し、80℃の温度にて1mm厚にプレス成形した。 シートを30×30mmにカットし、220℃に設定した小型循環式オーブンに投入した。 投入後30分間放置し、サンプルを取出して比重を測定し、加熱前の比重との差を算出した。
(iii) Specific gravity reduction rate (220 ° C swelling)
Various materials were melt-kneaded under predetermined conditions, and press-molded to a thickness of 1 mm at a temperature of 80 ° C. The sheet was cut into 30 × 30 mm and placed in a small circulation oven set at 220 ° C. The sample was allowed to stand for 30 minutes after removal, the sample was taken out, the specific gravity was measured, and the difference from the specific gravity before heating was calculated.
 (iv)硬度
 JIS K 6253準拠のタイプAデュロメーターにて測定した。
(iv) Hardness Measured with a type A durometer according to JIS K 6253.
 (v) 残渣硬さ
 引張試験機(テンシロンRTC、オリエンテック社製)を用いて、残渣を0.25cm2の圧子にて圧縮速度0.1cm/minで圧縮し、最初に現れる最大点荷重を残渣硬さとした。
(v) Residual hardness Using a tensile tester (Tensilon RTC, manufactured by Orientec Co., Ltd.), compress the residue with a 0.25 cm 2 indenter at a compression speed of 0.1 cm / min. Say it.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例10]多層成形品の作製
 表1の実施例6に示す熱可塑性樹脂、熱膨張性黒鉛、無機充填剤、任意成分として熱可塑性改質剤を含む熱膨張性樹脂組成物を下記のニーダの混練条件で混練した。なお、三菱レイヨン株式会社製のメタブレンはタイプA(PTFE系粘度調整剤)を使用した。「#55G」はカーボンブラックである。
[Example 10] Production of multilayer molded article A thermally expandable resin composition containing a thermoplastic resin, thermally expandable graphite, an inorganic filler, and a thermoplastic modifier as an optional component shown in Example 6 of Table 1 was prepared as follows. The kneading was carried out under the kneader kneading conditions. In addition, type A (PTFE viscosity modifier) was used for metablene manufactured by Mitsubishi Rayon Co., Ltd. “# 55G” is carbon black.
(i)ニーダの混練条件
 1Lニーダ(MS加圧式ニーダDS1-5、日本スピンドル社製)を用いて、先ず、所定の充填率で熱膨張性黒鉛以外の材料(熱可塑性樹脂、フィラー、添加剤)を60rpmで所定の時間混練し、次に熱膨張性黒鉛を投入して所定の時間混練した。次に、170℃に温調したプランジャー押出機(PR-1型)に投入して、ペレット化した。
(I) Kneader kneading conditions Using a 1L kneader (MS pressure kneader DS1-5, manufactured by Nihon Spindle Co., Ltd.), first, a material other than thermally expandable graphite (thermoplastic resin, filler, additive) with a predetermined filling rate ) Was kneaded at 60 rpm for a predetermined time, and then thermally expandable graphite was added and kneaded for a predetermined time. Next, it was put into a plunger extruder (PR-1 type) whose temperature was adjusted to 170 ° C. and pelletized.
(ii)3色押出
 次に、膨張部用押出機、気密部用押出機、摺動部用押出機を使用して3色成形品を作製した。熱膨張性樹脂組成物には上記ペレットを使用し、気密性樹脂組成物は東洋紡社製サーリンク3150を含み、摺動性樹脂組成物は三井化学社製リュブマーL3000を含んでいた。これらの樹脂組成部を使用して、それぞれ200℃の条件で押出し、金型の手前のフィードブロック内で合流させて、図2や図3のような断面形状の金型を取付けて成形した。
(Ii) Three-color extrusion Next, a three-color molded product was produced using an extruder for an expanding portion, an extruder for an airtight portion, and an extruder for a sliding portion. The pellets were used for the thermally expandable resin composition, the airtight resin composition contained Toraybo's Sarlink 3150, and the slidable resin composition contained Mitsui Chemicals' Lubemer L3000. Each of these resin composition parts was extruded under the condition of 200 ° C., and merged in a feed block in front of the mold, and a mold having a cross-sectional shape as shown in FIGS. 2 and 3 was attached and molded.
 実施例10の多層成形品について、破断・ササクレや波うちなどがなく、外観に優れた多層成形品であった。 The multilayer molded product of Example 10 was a multilayer molded product with no appearance such as breakage / sacrifice or waviness and excellent appearance.
1 熱膨張性樹脂組成物層
2 気密性樹脂組成物層
3 摺動性樹脂組成物層
4 突起部
5 枠体
6 扉
7 固定部
100 建材用多層耐火成形体
DESCRIPTION OF SYMBOLS 1 Thermal expansion resin composition layer 2 Airtight resin composition layer 3 Sliding resin composition layer 4 Protrusion part 5 Frame body 6 Door 7 Fixing part
100 Multi-layer fireproof moldings for building materials

Claims (11)

  1.  熱可塑性樹脂、熱膨張性黒鉛及び無機充填剤を含む熱膨張性樹脂組成物であって、前記熱膨張性樹脂組成物を成形してなる熱膨張性樹脂組成物層の180℃での引張伸度が20%以上であり、220℃加熱条件下での比重低下率が10%以下であることを特徴とする、熱膨張性樹脂組成物。 A heat-expandable resin composition comprising a thermoplastic resin, heat-expandable graphite and an inorganic filler, wherein the heat-expandable resin composition layer formed by molding the heat-expandable resin composition has a tensile elongation at 180 ° C. A heat-expandable resin composition characterized by having a degree of 20% or more and a specific gravity reduction rate under heating at 220 ° C. of 10% or less.
  2.  さらに可塑剤を含む、請求項1に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to claim 1, further comprising a plasticizer.
  3.  前記熱可塑性樹脂がオレフィン系樹脂とゴム系樹脂の混合物である、請求項1又は2に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to claim 1 or 2, wherein the thermoplastic resin is a mixture of an olefin resin and a rubber resin.
  4.  前記熱可塑性樹脂がオレフィン系熱可塑性エラストマー(TPO)樹脂を含む、請求項1又は2に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to claim 1 or 2, wherein the thermoplastic resin comprises an olefinic thermoplastic elastomer (TPO) resin.
  5.  オレフィン系熱可塑性エラストマー(TPO)樹脂は、220℃溶融時の樹脂粘度が1361Pa・s(せん断速度61[1/s]のとき)以下、又は、426 Pa・s(せん断速度365[1/s]のとき)以下である、請求項4に記載の熱膨張性樹脂組成物。 Olefin-based thermoplastic elastomer (TPO) resin has a resin viscosity when melted at 220 ° C of 1361 Pa · s or less (when shear rate is 61 [1 / s]) or 426 Pa · s (shear rate 365 [1 / s The thermal expandable resin composition according to claim 4, wherein:
  6.  熱可塑性改質剤をさらに含む、請求項1~5のいずれか1項に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to any one of claims 1 to 5, further comprising a thermoplastic modifier.
  7.  熱可塑性改質剤がPTFE系粘度調整剤である、請求項6に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to claim 6, wherein the thermoplastic modifier is a PTFE viscosity modifier.
  8.  オレフィン系熱可塑性エラストマー樹脂に対し熱可塑性改質剤を0~10質量%含む、請求項1~7のいずれか1項に記載の熱膨張性樹脂組成物。 The thermally expandable resin composition according to any one of claims 1 to 7, comprising 0 to 10% by mass of a thermoplastic modifier relative to the olefinic thermoplastic elastomer resin.
  9.  前記請求項1~8のいずれかに記載の熱膨張性樹脂組成物を成形してなる熱膨張性樹脂組成物層を含む建材用多層成形体。 A multilayer molded article for building materials comprising a thermally expandable resin composition layer formed by molding the thermally expandable resin composition according to any one of claims 1 to 8.
  10.   熱膨張性樹脂組成物層と摺動性樹脂組成物層を含む、請求項9に記載の建材用多層耐火成形体。 The multilayer fireproof molded article for building materials according to claim 9, comprising a thermally expandable resin composition layer and a slidable resin composition layer.
  11.   摺動性樹脂組成物層はシリコーン系化合物、もしくは高分子量な熱可塑性樹脂を含む、請求項10に記載の建材用多層耐火成形体。 The multilayer fireproof molded article for building materials according to claim 10, wherein the slidable resin composition layer contains a silicone compound or a high molecular weight thermoplastic resin.
PCT/JP2018/019333 2017-05-18 2018-05-18 Thermally expandable resin composition, and multilayer fire-resistant molded article for use as building material WO2018212337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531262A JPWO2018212337A1 (en) 2017-05-18 2018-05-18 Thermally expandable resin composition and multilayer fire-resistant molded article for building materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099244 2017-05-18
JP2017-099244 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212337A1 true WO2018212337A1 (en) 2018-11-22

Family

ID=64274192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019333 WO2018212337A1 (en) 2017-05-18 2018-05-18 Thermally expandable resin composition, and multilayer fire-resistant molded article for use as building material

Country Status (2)

Country Link
JP (1) JPWO2018212337A1 (en)
WO (1) WO2018212337A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Fire-resistant resin composition, fire-resistant sheet and fitting
CN116023745A (en) * 2023-03-29 2023-04-28 山东恒旺新材料科技有限公司 Flame-retardant ageing-resistant ethylene propylene diene monomer waterproof coiled material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255921A (en) * 2004-03-15 2005-09-22 Kaneka Corp Expandable fireproof composition
JP2006045950A (en) * 2004-08-05 2006-02-16 Ohbayashi Corp Fire resistive material for joint and its manufacturing method, earthquake resisting slit material making use of the fire resistive material for joint and its manufacturing method and building structure equipped with the earthquake resisting slit material
WO2009013931A1 (en) * 2007-07-20 2009-01-29 Air Water Inc. Thermally expandable graphite and method for producing the same
JP2013136939A (en) * 2011-11-29 2013-07-11 Sekisui Chem Co Ltd Thermally-expansible multilayer frame material for sash
JP2016047999A (en) * 2014-08-27 2016-04-07 積水化学工業株式会社 Airtight material and method of manufacturing the same
WO2016117702A1 (en) * 2015-01-22 2016-07-28 積水化学工業株式会社 Refractory resin composition
JP2018059079A (en) * 2016-09-29 2018-04-12 積水化学工業株式会社 Heat expansible resin composition and multilayer fire-resistant molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255921A (en) * 2004-03-15 2005-09-22 Kaneka Corp Expandable fireproof composition
JP2006045950A (en) * 2004-08-05 2006-02-16 Ohbayashi Corp Fire resistive material for joint and its manufacturing method, earthquake resisting slit material making use of the fire resistive material for joint and its manufacturing method and building structure equipped with the earthquake resisting slit material
WO2009013931A1 (en) * 2007-07-20 2009-01-29 Air Water Inc. Thermally expandable graphite and method for producing the same
JP2013136939A (en) * 2011-11-29 2013-07-11 Sekisui Chem Co Ltd Thermally-expansible multilayer frame material for sash
JP2016047999A (en) * 2014-08-27 2016-04-07 積水化学工業株式会社 Airtight material and method of manufacturing the same
WO2016117702A1 (en) * 2015-01-22 2016-07-28 積水化学工業株式会社 Refractory resin composition
JP2018059079A (en) * 2016-09-29 2018-04-12 積水化学工業株式会社 Heat expansible resin composition and multilayer fire-resistant molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021187974A (en) * 2020-06-01 2021-12-13 積水化学工業株式会社 Fire-resistant resin composition, fire-resistant sheet and fitting
JP7007424B2 (en) 2020-06-01 2022-01-24 積水化学工業株式会社 Refractory resin composition, refractory sheet and fittings
CN116023745A (en) * 2023-03-29 2023-04-28 山东恒旺新材料科技有限公司 Flame-retardant ageing-resistant ethylene propylene diene monomer waterproof coiled material
CN116023745B (en) * 2023-03-29 2023-06-02 山东恒旺新材料科技有限公司 Flame-retardant ageing-resistant ethylene propylene diene monomer waterproof coiled material

Also Published As

Publication number Publication date
JPWO2018212337A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP6286004B2 (en) Thermally expandable refractory resin composition
JP6375040B2 (en) Resin composition
JP6168516B2 (en) Thermally expandable packing for building materials
JP6737761B2 (en) Fire resistant resin composition
JP5347103B1 (en) Thermal expansion multilayer packing for building materials
JP5961101B2 (en) Thermally expandable multilayer frame material for sashes
JP6962875B2 (en) Refractory resin composition and refractory resin molded product
JP6200622B1 (en) Fireproof resin composition
JP6438624B1 (en) Thermal expansion fireproof sheet
JP2016223168A (en) Multi-layered thermal expansion packing for building material
WO2018212337A1 (en) Thermally expandable resin composition, and multilayer fire-resistant molded article for use as building material
JP2018059079A (en) Heat expansible resin composition and multilayer fire-resistant molding
JP7095985B2 (en) Refractory resin composition
JP2019070119A (en) Fire-resistant resin composition, fire-resistant molding member, and fittings

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531262

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803231

Country of ref document: EP

Kind code of ref document: A1